Thread language through c_type_print_args
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
814 : name (name_),
815 dbfd (std::move (abfd))
816 {
817 }
818
819 /* Name of the file. */
820 const char *name;
821
822 /* File format version. */
823 int version = 0;
824
825 /* The bfd. */
826 gdb_bfd_ref_ptr dbfd;
827
828 /* Section info for this file. */
829 struct dwp_sections sections {};
830
831 /* Table of CUs in the file. */
832 const struct dwp_hash_table *cus = nullptr;
833
834 /* Table of TUs in the file. */
835 const struct dwp_hash_table *tus = nullptr;
836
837 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
838 htab_t loaded_cus {};
839 htab_t loaded_tus {};
840
841 /* Table to map ELF section numbers to their sections.
842 This is only needed for the DWP V1 file format. */
843 unsigned int num_sections = 0;
844 asection **elf_sections = nullptr;
845 };
846
847 /* This represents a '.dwz' file. */
848
849 struct dwz_file
850 {
851 dwz_file (gdb_bfd_ref_ptr &&bfd)
852 : dwz_bfd (std::move (bfd))
853 {
854 }
855
856 /* A dwz file can only contain a few sections. */
857 struct dwarf2_section_info abbrev {};
858 struct dwarf2_section_info info {};
859 struct dwarf2_section_info str {};
860 struct dwarf2_section_info line {};
861 struct dwarf2_section_info macro {};
862 struct dwarf2_section_info gdb_index {};
863 struct dwarf2_section_info debug_names {};
864
865 /* The dwz's BFD. */
866 gdb_bfd_ref_ptr dwz_bfd;
867 };
868
869 /* Struct used to pass misc. parameters to read_die_and_children, et
870 al. which are used for both .debug_info and .debug_types dies.
871 All parameters here are unchanging for the life of the call. This
872 struct exists to abstract away the constant parameters of die reading. */
873
874 struct die_reader_specs
875 {
876 /* The bfd of die_section. */
877 bfd* abfd;
878
879 /* The CU of the DIE we are parsing. */
880 struct dwarf2_cu *cu;
881
882 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
883 struct dwo_file *dwo_file;
884
885 /* The section the die comes from.
886 This is either .debug_info or .debug_types, or the .dwo variants. */
887 struct dwarf2_section_info *die_section;
888
889 /* die_section->buffer. */
890 const gdb_byte *buffer;
891
892 /* The end of the buffer. */
893 const gdb_byte *buffer_end;
894
895 /* The value of the DW_AT_comp_dir attribute. */
896 const char *comp_dir;
897
898 /* The abbreviation table to use when reading the DIEs. */
899 struct abbrev_table *abbrev_table;
900 };
901
902 /* Type of function passed to init_cutu_and_read_dies, et.al. */
903 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
904 const gdb_byte *info_ptr,
905 struct die_info *comp_unit_die,
906 int has_children,
907 void *data);
908
909 /* A 1-based directory index. This is a strong typedef to prevent
910 accidentally using a directory index as a 0-based index into an
911 array/vector. */
912 enum class dir_index : unsigned int {};
913
914 /* Likewise, a 1-based file name index. */
915 enum class file_name_index : unsigned int {};
916
917 struct file_entry
918 {
919 file_entry () = default;
920
921 file_entry (const char *name_, dir_index d_index_,
922 unsigned int mod_time_, unsigned int length_)
923 : name (name_),
924 d_index (d_index_),
925 mod_time (mod_time_),
926 length (length_)
927 {}
928
929 /* Return the include directory at D_INDEX stored in LH. Returns
930 NULL if D_INDEX is out of bounds. */
931 const char *include_dir (const line_header *lh) const;
932
933 /* The file name. Note this is an observing pointer. The memory is
934 owned by debug_line_buffer. */
935 const char *name {};
936
937 /* The directory index (1-based). */
938 dir_index d_index {};
939
940 unsigned int mod_time {};
941
942 unsigned int length {};
943
944 /* True if referenced by the Line Number Program. */
945 bool included_p {};
946
947 /* The associated symbol table, if any. */
948 struct symtab *symtab {};
949 };
950
951 /* The line number information for a compilation unit (found in the
952 .debug_line section) begins with a "statement program header",
953 which contains the following information. */
954 struct line_header
955 {
956 line_header ()
957 : offset_in_dwz {}
958 {}
959
960 /* Add an entry to the include directory table. */
961 void add_include_dir (const char *include_dir);
962
963 /* Add an entry to the file name table. */
964 void add_file_name (const char *name, dir_index d_index,
965 unsigned int mod_time, unsigned int length);
966
967 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
968 is out of bounds. */
969 const char *include_dir_at (dir_index index) const
970 {
971 /* Convert directory index number (1-based) to vector index
972 (0-based). */
973 size_t vec_index = to_underlying (index) - 1;
974
975 if (vec_index >= include_dirs.size ())
976 return NULL;
977 return include_dirs[vec_index];
978 }
979
980 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
981 is out of bounds. */
982 file_entry *file_name_at (file_name_index index)
983 {
984 /* Convert file name index number (1-based) to vector index
985 (0-based). */
986 size_t vec_index = to_underlying (index) - 1;
987
988 if (vec_index >= file_names.size ())
989 return NULL;
990 return &file_names[vec_index];
991 }
992
993 /* Const version of the above. */
994 const file_entry *file_name_at (unsigned int index) const
995 {
996 if (index >= file_names.size ())
997 return NULL;
998 return &file_names[index];
999 }
1000
1001 /* Offset of line number information in .debug_line section. */
1002 sect_offset sect_off {};
1003
1004 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1005 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1006
1007 unsigned int total_length {};
1008 unsigned short version {};
1009 unsigned int header_length {};
1010 unsigned char minimum_instruction_length {};
1011 unsigned char maximum_ops_per_instruction {};
1012 unsigned char default_is_stmt {};
1013 int line_base {};
1014 unsigned char line_range {};
1015 unsigned char opcode_base {};
1016
1017 /* standard_opcode_lengths[i] is the number of operands for the
1018 standard opcode whose value is i. This means that
1019 standard_opcode_lengths[0] is unused, and the last meaningful
1020 element is standard_opcode_lengths[opcode_base - 1]. */
1021 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1022
1023 /* The include_directories table. Note these are observing
1024 pointers. The memory is owned by debug_line_buffer. */
1025 std::vector<const char *> include_dirs;
1026
1027 /* The file_names table. */
1028 std::vector<file_entry> file_names;
1029
1030 /* The start and end of the statement program following this
1031 header. These point into dwarf2_per_objfile->line_buffer. */
1032 const gdb_byte *statement_program_start {}, *statement_program_end {};
1033 };
1034
1035 typedef std::unique_ptr<line_header> line_header_up;
1036
1037 const char *
1038 file_entry::include_dir (const line_header *lh) const
1039 {
1040 return lh->include_dir_at (d_index);
1041 }
1042
1043 /* When we construct a partial symbol table entry we only
1044 need this much information. */
1045 struct partial_die_info : public allocate_on_obstack
1046 {
1047 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1048
1049 /* Disable assign but still keep copy ctor, which is needed
1050 load_partial_dies. */
1051 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1052
1053 /* Adjust the partial die before generating a symbol for it. This
1054 function may set the is_external flag or change the DIE's
1055 name. */
1056 void fixup (struct dwarf2_cu *cu);
1057
1058 /* Read a minimal amount of information into the minimal die
1059 structure. */
1060 const gdb_byte *read (const struct die_reader_specs *reader,
1061 const struct abbrev_info &abbrev,
1062 const gdb_byte *info_ptr);
1063
1064 /* Offset of this DIE. */
1065 const sect_offset sect_off;
1066
1067 /* DWARF-2 tag for this DIE. */
1068 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1069
1070 /* Assorted flags describing the data found in this DIE. */
1071 const unsigned int has_children : 1;
1072
1073 unsigned int is_external : 1;
1074 unsigned int is_declaration : 1;
1075 unsigned int has_type : 1;
1076 unsigned int has_specification : 1;
1077 unsigned int has_pc_info : 1;
1078 unsigned int may_be_inlined : 1;
1079
1080 /* This DIE has been marked DW_AT_main_subprogram. */
1081 unsigned int main_subprogram : 1;
1082
1083 /* Flag set if the SCOPE field of this structure has been
1084 computed. */
1085 unsigned int scope_set : 1;
1086
1087 /* Flag set if the DIE has a byte_size attribute. */
1088 unsigned int has_byte_size : 1;
1089
1090 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1091 unsigned int has_const_value : 1;
1092
1093 /* Flag set if any of the DIE's children are template arguments. */
1094 unsigned int has_template_arguments : 1;
1095
1096 /* Flag set if fixup has been called on this die. */
1097 unsigned int fixup_called : 1;
1098
1099 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1100 unsigned int is_dwz : 1;
1101
1102 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1103 unsigned int spec_is_dwz : 1;
1104
1105 /* The name of this DIE. Normally the value of DW_AT_name, but
1106 sometimes a default name for unnamed DIEs. */
1107 const char *name = nullptr;
1108
1109 /* The linkage name, if present. */
1110 const char *linkage_name = nullptr;
1111
1112 /* The scope to prepend to our children. This is generally
1113 allocated on the comp_unit_obstack, so will disappear
1114 when this compilation unit leaves the cache. */
1115 const char *scope = nullptr;
1116
1117 /* Some data associated with the partial DIE. The tag determines
1118 which field is live. */
1119 union
1120 {
1121 /* The location description associated with this DIE, if any. */
1122 struct dwarf_block *locdesc;
1123 /* The offset of an import, for DW_TAG_imported_unit. */
1124 sect_offset sect_off;
1125 } d {};
1126
1127 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1128 CORE_ADDR lowpc = 0;
1129 CORE_ADDR highpc = 0;
1130
1131 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1132 DW_AT_sibling, if any. */
1133 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1134 could return DW_AT_sibling values to its caller load_partial_dies. */
1135 const gdb_byte *sibling = nullptr;
1136
1137 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1138 DW_AT_specification (or DW_AT_abstract_origin or
1139 DW_AT_extension). */
1140 sect_offset spec_offset {};
1141
1142 /* Pointers to this DIE's parent, first child, and next sibling,
1143 if any. */
1144 struct partial_die_info *die_parent = nullptr;
1145 struct partial_die_info *die_child = nullptr;
1146 struct partial_die_info *die_sibling = nullptr;
1147
1148 friend struct partial_die_info *
1149 dwarf2_cu::find_partial_die (sect_offset sect_off);
1150
1151 private:
1152 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1153 partial_die_info (sect_offset sect_off)
1154 : partial_die_info (sect_off, DW_TAG_padding, 0)
1155 {
1156 }
1157
1158 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1159 int has_children_)
1160 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1161 {
1162 is_external = 0;
1163 is_declaration = 0;
1164 has_type = 0;
1165 has_specification = 0;
1166 has_pc_info = 0;
1167 may_be_inlined = 0;
1168 main_subprogram = 0;
1169 scope_set = 0;
1170 has_byte_size = 0;
1171 has_const_value = 0;
1172 has_template_arguments = 0;
1173 fixup_called = 0;
1174 is_dwz = 0;
1175 spec_is_dwz = 0;
1176 }
1177 };
1178
1179 /* This data structure holds the information of an abbrev. */
1180 struct abbrev_info
1181 {
1182 unsigned int number; /* number identifying abbrev */
1183 enum dwarf_tag tag; /* dwarf tag */
1184 unsigned short has_children; /* boolean */
1185 unsigned short num_attrs; /* number of attributes */
1186 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1187 struct abbrev_info *next; /* next in chain */
1188 };
1189
1190 struct attr_abbrev
1191 {
1192 ENUM_BITFIELD(dwarf_attribute) name : 16;
1193 ENUM_BITFIELD(dwarf_form) form : 16;
1194
1195 /* It is valid only if FORM is DW_FORM_implicit_const. */
1196 LONGEST implicit_const;
1197 };
1198
1199 /* Size of abbrev_table.abbrev_hash_table. */
1200 #define ABBREV_HASH_SIZE 121
1201
1202 /* Top level data structure to contain an abbreviation table. */
1203
1204 struct abbrev_table
1205 {
1206 explicit abbrev_table (sect_offset off)
1207 : sect_off (off)
1208 {
1209 m_abbrevs =
1210 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1211 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1212 }
1213
1214 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1215
1216 /* Allocate space for a struct abbrev_info object in
1217 ABBREV_TABLE. */
1218 struct abbrev_info *alloc_abbrev ();
1219
1220 /* Add an abbreviation to the table. */
1221 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1222
1223 /* Look up an abbrev in the table.
1224 Returns NULL if the abbrev is not found. */
1225
1226 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1227
1228
1229 /* Where the abbrev table came from.
1230 This is used as a sanity check when the table is used. */
1231 const sect_offset sect_off;
1232
1233 /* Storage for the abbrev table. */
1234 auto_obstack abbrev_obstack;
1235
1236 private:
1237
1238 /* Hash table of abbrevs.
1239 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1240 It could be statically allocated, but the previous code didn't so we
1241 don't either. */
1242 struct abbrev_info **m_abbrevs;
1243 };
1244
1245 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1246
1247 /* Attributes have a name and a value. */
1248 struct attribute
1249 {
1250 ENUM_BITFIELD(dwarf_attribute) name : 16;
1251 ENUM_BITFIELD(dwarf_form) form : 15;
1252
1253 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1254 field should be in u.str (existing only for DW_STRING) but it is kept
1255 here for better struct attribute alignment. */
1256 unsigned int string_is_canonical : 1;
1257
1258 union
1259 {
1260 const char *str;
1261 struct dwarf_block *blk;
1262 ULONGEST unsnd;
1263 LONGEST snd;
1264 CORE_ADDR addr;
1265 ULONGEST signature;
1266 }
1267 u;
1268 };
1269
1270 /* This data structure holds a complete die structure. */
1271 struct die_info
1272 {
1273 /* DWARF-2 tag for this DIE. */
1274 ENUM_BITFIELD(dwarf_tag) tag : 16;
1275
1276 /* Number of attributes */
1277 unsigned char num_attrs;
1278
1279 /* True if we're presently building the full type name for the
1280 type derived from this DIE. */
1281 unsigned char building_fullname : 1;
1282
1283 /* True if this die is in process. PR 16581. */
1284 unsigned char in_process : 1;
1285
1286 /* Abbrev number */
1287 unsigned int abbrev;
1288
1289 /* Offset in .debug_info or .debug_types section. */
1290 sect_offset sect_off;
1291
1292 /* The dies in a compilation unit form an n-ary tree. PARENT
1293 points to this die's parent; CHILD points to the first child of
1294 this node; and all the children of a given node are chained
1295 together via their SIBLING fields. */
1296 struct die_info *child; /* Its first child, if any. */
1297 struct die_info *sibling; /* Its next sibling, if any. */
1298 struct die_info *parent; /* Its parent, if any. */
1299
1300 /* An array of attributes, with NUM_ATTRS elements. There may be
1301 zero, but it's not common and zero-sized arrays are not
1302 sufficiently portable C. */
1303 struct attribute attrs[1];
1304 };
1305
1306 /* Get at parts of an attribute structure. */
1307
1308 #define DW_STRING(attr) ((attr)->u.str)
1309 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1310 #define DW_UNSND(attr) ((attr)->u.unsnd)
1311 #define DW_BLOCK(attr) ((attr)->u.blk)
1312 #define DW_SND(attr) ((attr)->u.snd)
1313 #define DW_ADDR(attr) ((attr)->u.addr)
1314 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1315
1316 /* Blocks are a bunch of untyped bytes. */
1317 struct dwarf_block
1318 {
1319 size_t size;
1320
1321 /* Valid only if SIZE is not zero. */
1322 const gdb_byte *data;
1323 };
1324
1325 #ifndef ATTR_ALLOC_CHUNK
1326 #define ATTR_ALLOC_CHUNK 4
1327 #endif
1328
1329 /* Allocate fields for structs, unions and enums in this size. */
1330 #ifndef DW_FIELD_ALLOC_CHUNK
1331 #define DW_FIELD_ALLOC_CHUNK 4
1332 #endif
1333
1334 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1335 but this would require a corresponding change in unpack_field_as_long
1336 and friends. */
1337 static int bits_per_byte = 8;
1338
1339 /* When reading a variant or variant part, we track a bit more
1340 information about the field, and store it in an object of this
1341 type. */
1342
1343 struct variant_field
1344 {
1345 /* If we see a DW_TAG_variant, then this will be the discriminant
1346 value. */
1347 ULONGEST discriminant_value;
1348 /* If we see a DW_TAG_variant, then this will be set if this is the
1349 default branch. */
1350 bool default_branch;
1351 /* While reading a DW_TAG_variant_part, this will be set if this
1352 field is the discriminant. */
1353 bool is_discriminant;
1354 };
1355
1356 struct nextfield
1357 {
1358 int accessibility = 0;
1359 int virtuality = 0;
1360 /* Extra information to describe a variant or variant part. */
1361 struct variant_field variant {};
1362 struct field field {};
1363 };
1364
1365 struct fnfieldlist
1366 {
1367 const char *name = nullptr;
1368 std::vector<struct fn_field> fnfields;
1369 };
1370
1371 /* The routines that read and process dies for a C struct or C++ class
1372 pass lists of data member fields and lists of member function fields
1373 in an instance of a field_info structure, as defined below. */
1374 struct field_info
1375 {
1376 /* List of data member and baseclasses fields. */
1377 std::vector<struct nextfield> fields;
1378 std::vector<struct nextfield> baseclasses;
1379
1380 /* Number of fields (including baseclasses). */
1381 int nfields = 0;
1382
1383 /* Set if the accesibility of one of the fields is not public. */
1384 int non_public_fields = 0;
1385
1386 /* Member function fieldlist array, contains name of possibly overloaded
1387 member function, number of overloaded member functions and a pointer
1388 to the head of the member function field chain. */
1389 std::vector<struct fnfieldlist> fnfieldlists;
1390
1391 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1392 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1393 std::vector<struct decl_field> typedef_field_list;
1394
1395 /* Nested types defined by this class and the number of elements in this
1396 list. */
1397 std::vector<struct decl_field> nested_types_list;
1398 };
1399
1400 /* One item on the queue of compilation units to read in full symbols
1401 for. */
1402 struct dwarf2_queue_item
1403 {
1404 struct dwarf2_per_cu_data *per_cu;
1405 enum language pretend_language;
1406 struct dwarf2_queue_item *next;
1407 };
1408
1409 /* The current queue. */
1410 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1411
1412 /* Loaded secondary compilation units are kept in memory until they
1413 have not been referenced for the processing of this many
1414 compilation units. Set this to zero to disable caching. Cache
1415 sizes of up to at least twenty will improve startup time for
1416 typical inter-CU-reference binaries, at an obvious memory cost. */
1417 static int dwarf_max_cache_age = 5;
1418 static void
1419 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421 {
1422 fprintf_filtered (file, _("The upper bound on the age of cached "
1423 "DWARF compilation units is %s.\n"),
1424 value);
1425 }
1426 \f
1427 /* local function prototypes */
1428
1429 static const char *get_section_name (const struct dwarf2_section_info *);
1430
1431 static const char *get_section_file_name (const struct dwarf2_section_info *);
1432
1433 static void dwarf2_find_base_address (struct die_info *die,
1434 struct dwarf2_cu *cu);
1435
1436 static struct partial_symtab *create_partial_symtab
1437 (struct dwarf2_per_cu_data *per_cu, const char *name);
1438
1439 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1440 const gdb_byte *info_ptr,
1441 struct die_info *type_unit_die,
1442 int has_children, void *data);
1443
1444 static void dwarf2_build_psymtabs_hard
1445 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1446
1447 static void scan_partial_symbols (struct partial_die_info *,
1448 CORE_ADDR *, CORE_ADDR *,
1449 int, struct dwarf2_cu *);
1450
1451 static void add_partial_symbol (struct partial_die_info *,
1452 struct dwarf2_cu *);
1453
1454 static void add_partial_namespace (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int set_addrmap, struct dwarf2_cu *cu);
1457
1458 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1459 CORE_ADDR *highpc, int set_addrmap,
1460 struct dwarf2_cu *cu);
1461
1462 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1463 struct dwarf2_cu *cu);
1464
1465 static void add_partial_subprogram (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int need_pc, struct dwarf2_cu *cu);
1468
1469 static void dwarf2_read_symtab (struct partial_symtab *,
1470 struct objfile *);
1471
1472 static void psymtab_to_symtab_1 (struct partial_symtab *);
1473
1474 static abbrev_table_up abbrev_table_read_table
1475 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1476 sect_offset);
1477
1478 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1479
1480 static struct partial_die_info *load_partial_dies
1481 (const struct die_reader_specs *, const gdb_byte *, int);
1482
1483 static struct partial_die_info *find_partial_die (sect_offset, int,
1484 struct dwarf2_cu *);
1485
1486 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1487 struct attribute *, struct attr_abbrev *,
1488 const gdb_byte *);
1489
1490 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1491
1492 static int read_1_signed_byte (bfd *, const gdb_byte *);
1493
1494 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1495
1496 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1497
1498 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1499
1500 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1501 unsigned int *);
1502
1503 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static LONGEST read_checked_initial_length_and_offset
1506 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1507 unsigned int *, unsigned int *);
1508
1509 static LONGEST read_offset (bfd *, const gdb_byte *,
1510 const struct comp_unit_head *,
1511 unsigned int *);
1512
1513 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1514
1515 static sect_offset read_abbrev_offset
1516 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1517 struct dwarf2_section_info *, sect_offset);
1518
1519 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1520
1521 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1522
1523 static const char *read_indirect_string
1524 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1525 const struct comp_unit_head *, unsigned int *);
1526
1527 static const char *read_indirect_line_string
1528 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1529 const struct comp_unit_head *, unsigned int *);
1530
1531 static const char *read_indirect_string_at_offset
1532 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1533 LONGEST str_offset);
1534
1535 static const char *read_indirect_string_from_dwz
1536 (struct objfile *objfile, struct dwz_file *, LONGEST);
1537
1538 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1539
1540 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1541 const gdb_byte *,
1542 unsigned int *);
1543
1544 static const char *read_str_index (const struct die_reader_specs *reader,
1545 ULONGEST str_index);
1546
1547 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1548
1549 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1550 struct dwarf2_cu *);
1551
1552 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1553 unsigned int);
1554
1555 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1556 struct dwarf2_cu *cu);
1557
1558 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1559 struct dwarf2_cu *cu);
1560
1561 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1562
1563 static struct die_info *die_specification (struct die_info *die,
1564 struct dwarf2_cu **);
1565
1566 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1567 struct dwarf2_cu *cu);
1568
1569 static void dwarf_decode_lines (struct line_header *, const char *,
1570 struct dwarf2_cu *, struct partial_symtab *,
1571 CORE_ADDR, int decode_mapping);
1572
1573 static void dwarf2_start_subfile (const char *, const char *);
1574
1575 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1576 const char *, const char *,
1577 CORE_ADDR);
1578
1579 static struct symbol *new_symbol (struct die_info *, struct type *,
1580 struct dwarf2_cu *, struct symbol * = NULL);
1581
1582 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1583 struct dwarf2_cu *);
1584
1585 static void dwarf2_const_value_attr (const struct attribute *attr,
1586 struct type *type,
1587 const char *name,
1588 struct obstack *obstack,
1589 struct dwarf2_cu *cu, LONGEST *value,
1590 const gdb_byte **bytes,
1591 struct dwarf2_locexpr_baton **baton);
1592
1593 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1594
1595 static int need_gnat_info (struct dwarf2_cu *);
1596
1597 static struct type *die_descriptive_type (struct die_info *,
1598 struct dwarf2_cu *);
1599
1600 static void set_descriptive_type (struct type *, struct die_info *,
1601 struct dwarf2_cu *);
1602
1603 static struct type *die_containing_type (struct die_info *,
1604 struct dwarf2_cu *);
1605
1606 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1607 struct dwarf2_cu *);
1608
1609 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1610
1611 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1612
1613 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1614
1615 static char *typename_concat (struct obstack *obs, const char *prefix,
1616 const char *suffix, int physname,
1617 struct dwarf2_cu *cu);
1618
1619 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1620
1621 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1624
1625 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1626
1627 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1628
1629 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1630
1631 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1632 struct dwarf2_cu *, struct partial_symtab *);
1633
1634 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1635 values. Keep the items ordered with increasing constraints compliance. */
1636 enum pc_bounds_kind
1637 {
1638 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1639 PC_BOUNDS_NOT_PRESENT,
1640
1641 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1642 were present but they do not form a valid range of PC addresses. */
1643 PC_BOUNDS_INVALID,
1644
1645 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1646 PC_BOUNDS_RANGES,
1647
1648 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1649 PC_BOUNDS_HIGH_LOW,
1650 };
1651
1652 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1653 CORE_ADDR *, CORE_ADDR *,
1654 struct dwarf2_cu *,
1655 struct partial_symtab *);
1656
1657 static void get_scope_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *);
1660
1661 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1662 CORE_ADDR, struct dwarf2_cu *);
1663
1664 static void dwarf2_add_field (struct field_info *, struct die_info *,
1665 struct dwarf2_cu *);
1666
1667 static void dwarf2_attach_fields_to_type (struct field_info *,
1668 struct type *, struct dwarf2_cu *);
1669
1670 static void dwarf2_add_member_fn (struct field_info *,
1671 struct die_info *, struct type *,
1672 struct dwarf2_cu *);
1673
1674 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1675 struct type *,
1676 struct dwarf2_cu *);
1677
1678 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1679
1680 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1681
1682 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1683
1684 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1685
1686 static struct using_direct **using_directives (enum language);
1687
1688 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1689
1690 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1691
1692 static struct type *read_module_type (struct die_info *die,
1693 struct dwarf2_cu *cu);
1694
1695 static const char *namespace_name (struct die_info *die,
1696 int *is_anonymous, struct dwarf2_cu *);
1697
1698 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1699
1700 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1701
1702 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1703 struct dwarf2_cu *);
1704
1705 static struct die_info *read_die_and_siblings_1
1706 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1707 struct die_info *);
1708
1709 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1710 const gdb_byte *info_ptr,
1711 const gdb_byte **new_info_ptr,
1712 struct die_info *parent);
1713
1714 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1715 struct die_info **, const gdb_byte *,
1716 int *, int);
1717
1718 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1719 struct die_info **, const gdb_byte *,
1720 int *);
1721
1722 static void process_die (struct die_info *, struct dwarf2_cu *);
1723
1724 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1725 struct obstack *);
1726
1727 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1728
1729 static const char *dwarf2_full_name (const char *name,
1730 struct die_info *die,
1731 struct dwarf2_cu *cu);
1732
1733 static const char *dwarf2_physname (const char *name, struct die_info *die,
1734 struct dwarf2_cu *cu);
1735
1736 static struct die_info *dwarf2_extension (struct die_info *die,
1737 struct dwarf2_cu **);
1738
1739 static const char *dwarf_tag_name (unsigned int);
1740
1741 static const char *dwarf_attr_name (unsigned int);
1742
1743 static const char *dwarf_form_name (unsigned int);
1744
1745 static const char *dwarf_bool_name (unsigned int);
1746
1747 static const char *dwarf_type_encoding_name (unsigned int);
1748
1749 static struct die_info *sibling_die (struct die_info *);
1750
1751 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1752
1753 static void dump_die_for_error (struct die_info *);
1754
1755 static void dump_die_1 (struct ui_file *, int level, int max_level,
1756 struct die_info *);
1757
1758 /*static*/ void dump_die (struct die_info *, int max_level);
1759
1760 static void store_in_ref_table (struct die_info *,
1761 struct dwarf2_cu *);
1762
1763 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1764
1765 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1766
1767 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1768 const struct attribute *,
1769 struct dwarf2_cu **);
1770
1771 static struct die_info *follow_die_ref (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu **);
1774
1775 static struct die_info *follow_die_sig (struct die_info *,
1776 const struct attribute *,
1777 struct dwarf2_cu **);
1778
1779 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1780 struct dwarf2_cu *);
1781
1782 static struct type *get_DW_AT_signature_type (struct die_info *,
1783 const struct attribute *,
1784 struct dwarf2_cu *);
1785
1786 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1787
1788 static void read_signatured_type (struct signatured_type *);
1789
1790 static int attr_to_dynamic_prop (const struct attribute *attr,
1791 struct die_info *die, struct dwarf2_cu *cu,
1792 struct dynamic_prop *prop);
1793
1794 /* memory allocation interface */
1795
1796 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1797
1798 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1799
1800 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1801
1802 static int attr_form_is_block (const struct attribute *);
1803
1804 static int attr_form_is_section_offset (const struct attribute *);
1805
1806 static int attr_form_is_constant (const struct attribute *);
1807
1808 static int attr_form_is_ref (const struct attribute *);
1809
1810 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1811 struct dwarf2_loclist_baton *baton,
1812 const struct attribute *attr);
1813
1814 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1815 struct symbol *sym,
1816 struct dwarf2_cu *cu,
1817 int is_block);
1818
1819 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1820 const gdb_byte *info_ptr,
1821 struct abbrev_info *abbrev);
1822
1823 static hashval_t partial_die_hash (const void *item);
1824
1825 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1826
1827 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1828 (sect_offset sect_off, unsigned int offset_in_dwz,
1829 struct dwarf2_per_objfile *dwarf2_per_objfile);
1830
1831 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1832 struct die_info *comp_unit_die,
1833 enum language pretend_language);
1834
1835 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1836
1837 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1838
1839 static struct type *set_die_type (struct die_info *, struct type *,
1840 struct dwarf2_cu *);
1841
1842 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1843
1844 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1845
1846 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1847 enum language);
1848
1849 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1850 enum language);
1851
1852 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1853 enum language);
1854
1855 static void dwarf2_add_dependence (struct dwarf2_cu *,
1856 struct dwarf2_per_cu_data *);
1857
1858 static void dwarf2_mark (struct dwarf2_cu *);
1859
1860 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1861
1862 static struct type *get_die_type_at_offset (sect_offset,
1863 struct dwarf2_per_cu_data *);
1864
1865 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1866
1867 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1868 enum language pretend_language);
1869
1870 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1871
1872 /* Class, the destructor of which frees all allocated queue entries. This
1873 will only have work to do if an error was thrown while processing the
1874 dwarf. If no error was thrown then the queue entries should have all
1875 been processed, and freed, as we went along. */
1876
1877 class dwarf2_queue_guard
1878 {
1879 public:
1880 dwarf2_queue_guard () = default;
1881
1882 /* Free any entries remaining on the queue. There should only be
1883 entries left if we hit an error while processing the dwarf. */
1884 ~dwarf2_queue_guard ()
1885 {
1886 struct dwarf2_queue_item *item, *last;
1887
1888 item = dwarf2_queue;
1889 while (item)
1890 {
1891 /* Anything still marked queued is likely to be in an
1892 inconsistent state, so discard it. */
1893 if (item->per_cu->queued)
1894 {
1895 if (item->per_cu->cu != NULL)
1896 free_one_cached_comp_unit (item->per_cu);
1897 item->per_cu->queued = 0;
1898 }
1899
1900 last = item;
1901 item = item->next;
1902 xfree (last);
1903 }
1904
1905 dwarf2_queue = dwarf2_queue_tail = NULL;
1906 }
1907 };
1908
1909 /* The return type of find_file_and_directory. Note, the enclosed
1910 string pointers are only valid while this object is valid. */
1911
1912 struct file_and_directory
1913 {
1914 /* The filename. This is never NULL. */
1915 const char *name;
1916
1917 /* The compilation directory. NULL if not known. If we needed to
1918 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1919 points directly to the DW_AT_comp_dir string attribute owned by
1920 the obstack that owns the DIE. */
1921 const char *comp_dir;
1922
1923 /* If we needed to build a new string for comp_dir, this is what
1924 owns the storage. */
1925 std::string comp_dir_storage;
1926 };
1927
1928 static file_and_directory find_file_and_directory (struct die_info *die,
1929 struct dwarf2_cu *cu);
1930
1931 static char *file_full_name (int file, struct line_header *lh,
1932 const char *comp_dir);
1933
1934 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1935 enum class rcuh_kind { COMPILE, TYPE };
1936
1937 static const gdb_byte *read_and_check_comp_unit_head
1938 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1939 struct comp_unit_head *header,
1940 struct dwarf2_section_info *section,
1941 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1942 rcuh_kind section_kind);
1943
1944 static void init_cutu_and_read_dies
1945 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1946 int use_existing_cu, int keep, bool skip_partial,
1947 die_reader_func_ftype *die_reader_func, void *data);
1948
1949 static void init_cutu_and_read_dies_simple
1950 (struct dwarf2_per_cu_data *this_cu,
1951 die_reader_func_ftype *die_reader_func, void *data);
1952
1953 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1954
1955 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1956
1957 static struct dwo_unit *lookup_dwo_unit_in_dwp
1958 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1959 struct dwp_file *dwp_file, const char *comp_dir,
1960 ULONGEST signature, int is_debug_types);
1961
1962 static struct dwp_file *get_dwp_file
1963 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1964
1965 static struct dwo_unit *lookup_dwo_comp_unit
1966 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1967
1968 static struct dwo_unit *lookup_dwo_type_unit
1969 (struct signatured_type *, const char *, const char *);
1970
1971 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1972
1973 static void free_dwo_file (struct dwo_file *);
1974
1975 /* A unique_ptr helper to free a dwo_file. */
1976
1977 struct dwo_file_deleter
1978 {
1979 void operator() (struct dwo_file *df) const
1980 {
1981 free_dwo_file (df);
1982 }
1983 };
1984
1985 /* A unique pointer to a dwo_file. */
1986
1987 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1988
1989 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1990
1991 static void check_producer (struct dwarf2_cu *cu);
1992
1993 static void free_line_header_voidp (void *arg);
1994 \f
1995 /* Various complaints about symbol reading that don't abort the process. */
1996
1997 static void
1998 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1999 {
2000 complaint (_("statement list doesn't fit in .debug_line section"));
2001 }
2002
2003 static void
2004 dwarf2_debug_line_missing_file_complaint (void)
2005 {
2006 complaint (_(".debug_line section has line data without a file"));
2007 }
2008
2009 static void
2010 dwarf2_debug_line_missing_end_sequence_complaint (void)
2011 {
2012 complaint (_(".debug_line section has line "
2013 "program sequence without an end"));
2014 }
2015
2016 static void
2017 dwarf2_complex_location_expr_complaint (void)
2018 {
2019 complaint (_("location expression too complex"));
2020 }
2021
2022 static void
2023 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2024 int arg3)
2025 {
2026 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2027 arg1, arg2, arg3);
2028 }
2029
2030 static void
2031 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2032 {
2033 complaint (_("debug info runs off end of %s section"
2034 " [in module %s]"),
2035 get_section_name (section),
2036 get_section_file_name (section));
2037 }
2038
2039 static void
2040 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2041 {
2042 complaint (_("macro debug info contains a "
2043 "malformed macro definition:\n`%s'"),
2044 arg1);
2045 }
2046
2047 static void
2048 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2049 {
2050 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2051 arg1, arg2);
2052 }
2053
2054 /* Hash function for line_header_hash. */
2055
2056 static hashval_t
2057 line_header_hash (const struct line_header *ofs)
2058 {
2059 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2060 }
2061
2062 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2063
2064 static hashval_t
2065 line_header_hash_voidp (const void *item)
2066 {
2067 const struct line_header *ofs = (const struct line_header *) item;
2068
2069 return line_header_hash (ofs);
2070 }
2071
2072 /* Equality function for line_header_hash. */
2073
2074 static int
2075 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2076 {
2077 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2078 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2079
2080 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2081 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2082 }
2083
2084 \f
2085
2086 /* Read the given attribute value as an address, taking the attribute's
2087 form into account. */
2088
2089 static CORE_ADDR
2090 attr_value_as_address (struct attribute *attr)
2091 {
2092 CORE_ADDR addr;
2093
2094 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2095 {
2096 /* Aside from a few clearly defined exceptions, attributes that
2097 contain an address must always be in DW_FORM_addr form.
2098 Unfortunately, some compilers happen to be violating this
2099 requirement by encoding addresses using other forms, such
2100 as DW_FORM_data4 for example. For those broken compilers,
2101 we try to do our best, without any guarantee of success,
2102 to interpret the address correctly. It would also be nice
2103 to generate a complaint, but that would require us to maintain
2104 a list of legitimate cases where a non-address form is allowed,
2105 as well as update callers to pass in at least the CU's DWARF
2106 version. This is more overhead than what we're willing to
2107 expand for a pretty rare case. */
2108 addr = DW_UNSND (attr);
2109 }
2110 else
2111 addr = DW_ADDR (attr);
2112
2113 return addr;
2114 }
2115
2116 /* See declaration. */
2117
2118 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2119 const dwarf2_debug_sections *names)
2120 : objfile (objfile_)
2121 {
2122 if (names == NULL)
2123 names = &dwarf2_elf_names;
2124
2125 bfd *obfd = objfile->obfd;
2126
2127 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2128 locate_sections (obfd, sec, *names);
2129 }
2130
2131 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2132
2133 dwarf2_per_objfile::~dwarf2_per_objfile ()
2134 {
2135 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2136 free_cached_comp_units ();
2137
2138 if (quick_file_names_table)
2139 htab_delete (quick_file_names_table);
2140
2141 if (line_header_hash)
2142 htab_delete (line_header_hash);
2143
2144 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2145 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2146
2147 for (signatured_type *sig_type : all_type_units)
2148 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2149
2150 VEC_free (dwarf2_section_info_def, types);
2151
2152 if (dwo_files != NULL)
2153 free_dwo_files (dwo_files, objfile);
2154
2155 /* Everything else should be on the objfile obstack. */
2156 }
2157
2158 /* See declaration. */
2159
2160 void
2161 dwarf2_per_objfile::free_cached_comp_units ()
2162 {
2163 dwarf2_per_cu_data *per_cu = read_in_chain;
2164 dwarf2_per_cu_data **last_chain = &read_in_chain;
2165 while (per_cu != NULL)
2166 {
2167 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2168
2169 delete per_cu->cu;
2170 *last_chain = next_cu;
2171 per_cu = next_cu;
2172 }
2173 }
2174
2175 /* A helper class that calls free_cached_comp_units on
2176 destruction. */
2177
2178 class free_cached_comp_units
2179 {
2180 public:
2181
2182 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2183 : m_per_objfile (per_objfile)
2184 {
2185 }
2186
2187 ~free_cached_comp_units ()
2188 {
2189 m_per_objfile->free_cached_comp_units ();
2190 }
2191
2192 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2193
2194 private:
2195
2196 dwarf2_per_objfile *m_per_objfile;
2197 };
2198
2199 /* Try to locate the sections we need for DWARF 2 debugging
2200 information and return true if we have enough to do something.
2201 NAMES points to the dwarf2 section names, or is NULL if the standard
2202 ELF names are used. */
2203
2204 int
2205 dwarf2_has_info (struct objfile *objfile,
2206 const struct dwarf2_debug_sections *names)
2207 {
2208 if (objfile->flags & OBJF_READNEVER)
2209 return 0;
2210
2211 struct dwarf2_per_objfile *dwarf2_per_objfile
2212 = get_dwarf2_per_objfile (objfile);
2213
2214 if (dwarf2_per_objfile == NULL)
2215 {
2216 /* Initialize per-objfile state. */
2217 dwarf2_per_objfile
2218 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2219 names);
2220 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2221 }
2222 return (!dwarf2_per_objfile->info.is_virtual
2223 && dwarf2_per_objfile->info.s.section != NULL
2224 && !dwarf2_per_objfile->abbrev.is_virtual
2225 && dwarf2_per_objfile->abbrev.s.section != NULL);
2226 }
2227
2228 /* Return the containing section of virtual section SECTION. */
2229
2230 static struct dwarf2_section_info *
2231 get_containing_section (const struct dwarf2_section_info *section)
2232 {
2233 gdb_assert (section->is_virtual);
2234 return section->s.containing_section;
2235 }
2236
2237 /* Return the bfd owner of SECTION. */
2238
2239 static struct bfd *
2240 get_section_bfd_owner (const struct dwarf2_section_info *section)
2241 {
2242 if (section->is_virtual)
2243 {
2244 section = get_containing_section (section);
2245 gdb_assert (!section->is_virtual);
2246 }
2247 return section->s.section->owner;
2248 }
2249
2250 /* Return the bfd section of SECTION.
2251 Returns NULL if the section is not present. */
2252
2253 static asection *
2254 get_section_bfd_section (const struct dwarf2_section_info *section)
2255 {
2256 if (section->is_virtual)
2257 {
2258 section = get_containing_section (section);
2259 gdb_assert (!section->is_virtual);
2260 }
2261 return section->s.section;
2262 }
2263
2264 /* Return the name of SECTION. */
2265
2266 static const char *
2267 get_section_name (const struct dwarf2_section_info *section)
2268 {
2269 asection *sectp = get_section_bfd_section (section);
2270
2271 gdb_assert (sectp != NULL);
2272 return bfd_section_name (get_section_bfd_owner (section), sectp);
2273 }
2274
2275 /* Return the name of the file SECTION is in. */
2276
2277 static const char *
2278 get_section_file_name (const struct dwarf2_section_info *section)
2279 {
2280 bfd *abfd = get_section_bfd_owner (section);
2281
2282 return bfd_get_filename (abfd);
2283 }
2284
2285 /* Return the id of SECTION.
2286 Returns 0 if SECTION doesn't exist. */
2287
2288 static int
2289 get_section_id (const struct dwarf2_section_info *section)
2290 {
2291 asection *sectp = get_section_bfd_section (section);
2292
2293 if (sectp == NULL)
2294 return 0;
2295 return sectp->id;
2296 }
2297
2298 /* Return the flags of SECTION.
2299 SECTION (or containing section if this is a virtual section) must exist. */
2300
2301 static int
2302 get_section_flags (const struct dwarf2_section_info *section)
2303 {
2304 asection *sectp = get_section_bfd_section (section);
2305
2306 gdb_assert (sectp != NULL);
2307 return bfd_get_section_flags (sectp->owner, sectp);
2308 }
2309
2310 /* When loading sections, we look either for uncompressed section or for
2311 compressed section names. */
2312
2313 static int
2314 section_is_p (const char *section_name,
2315 const struct dwarf2_section_names *names)
2316 {
2317 if (names->normal != NULL
2318 && strcmp (section_name, names->normal) == 0)
2319 return 1;
2320 if (names->compressed != NULL
2321 && strcmp (section_name, names->compressed) == 0)
2322 return 1;
2323 return 0;
2324 }
2325
2326 /* See declaration. */
2327
2328 void
2329 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2330 const dwarf2_debug_sections &names)
2331 {
2332 flagword aflag = bfd_get_section_flags (abfd, sectp);
2333
2334 if ((aflag & SEC_HAS_CONTENTS) == 0)
2335 {
2336 }
2337 else if (section_is_p (sectp->name, &names.info))
2338 {
2339 this->info.s.section = sectp;
2340 this->info.size = bfd_get_section_size (sectp);
2341 }
2342 else if (section_is_p (sectp->name, &names.abbrev))
2343 {
2344 this->abbrev.s.section = sectp;
2345 this->abbrev.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &names.line))
2348 {
2349 this->line.s.section = sectp;
2350 this->line.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.loc))
2353 {
2354 this->loc.s.section = sectp;
2355 this->loc.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.loclists))
2358 {
2359 this->loclists.s.section = sectp;
2360 this->loclists.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.macinfo))
2363 {
2364 this->macinfo.s.section = sectp;
2365 this->macinfo.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.macro))
2368 {
2369 this->macro.s.section = sectp;
2370 this->macro.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.str))
2373 {
2374 this->str.s.section = sectp;
2375 this->str.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.line_str))
2378 {
2379 this->line_str.s.section = sectp;
2380 this->line_str.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.addr))
2383 {
2384 this->addr.s.section = sectp;
2385 this->addr.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.frame))
2388 {
2389 this->frame.s.section = sectp;
2390 this->frame.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.eh_frame))
2393 {
2394 this->eh_frame.s.section = sectp;
2395 this->eh_frame.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.ranges))
2398 {
2399 this->ranges.s.section = sectp;
2400 this->ranges.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.rnglists))
2403 {
2404 this->rnglists.s.section = sectp;
2405 this->rnglists.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.types))
2408 {
2409 struct dwarf2_section_info type_section;
2410
2411 memset (&type_section, 0, sizeof (type_section));
2412 type_section.s.section = sectp;
2413 type_section.size = bfd_get_section_size (sectp);
2414
2415 VEC_safe_push (dwarf2_section_info_def, this->types,
2416 &type_section);
2417 }
2418 else if (section_is_p (sectp->name, &names.gdb_index))
2419 {
2420 this->gdb_index.s.section = sectp;
2421 this->gdb_index.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.debug_names))
2424 {
2425 this->debug_names.s.section = sectp;
2426 this->debug_names.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.debug_aranges))
2429 {
2430 this->debug_aranges.s.section = sectp;
2431 this->debug_aranges.size = bfd_get_section_size (sectp);
2432 }
2433
2434 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2435 && bfd_section_vma (abfd, sectp) == 0)
2436 this->has_section_at_zero = true;
2437 }
2438
2439 /* A helper function that decides whether a section is empty,
2440 or not present. */
2441
2442 static int
2443 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2444 {
2445 if (section->is_virtual)
2446 return section->size == 0;
2447 return section->s.section == NULL || section->size == 0;
2448 }
2449
2450 /* See dwarf2read.h. */
2451
2452 void
2453 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2454 {
2455 asection *sectp;
2456 bfd *abfd;
2457 gdb_byte *buf, *retbuf;
2458
2459 if (info->readin)
2460 return;
2461 info->buffer = NULL;
2462 info->readin = 1;
2463
2464 if (dwarf2_section_empty_p (info))
2465 return;
2466
2467 sectp = get_section_bfd_section (info);
2468
2469 /* If this is a virtual section we need to read in the real one first. */
2470 if (info->is_virtual)
2471 {
2472 struct dwarf2_section_info *containing_section =
2473 get_containing_section (info);
2474
2475 gdb_assert (sectp != NULL);
2476 if ((sectp->flags & SEC_RELOC) != 0)
2477 {
2478 error (_("Dwarf Error: DWP format V2 with relocations is not"
2479 " supported in section %s [in module %s]"),
2480 get_section_name (info), get_section_file_name (info));
2481 }
2482 dwarf2_read_section (objfile, containing_section);
2483 /* Other code should have already caught virtual sections that don't
2484 fit. */
2485 gdb_assert (info->virtual_offset + info->size
2486 <= containing_section->size);
2487 /* If the real section is empty or there was a problem reading the
2488 section we shouldn't get here. */
2489 gdb_assert (containing_section->buffer != NULL);
2490 info->buffer = containing_section->buffer + info->virtual_offset;
2491 return;
2492 }
2493
2494 /* If the section has relocations, we must read it ourselves.
2495 Otherwise we attach it to the BFD. */
2496 if ((sectp->flags & SEC_RELOC) == 0)
2497 {
2498 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2499 return;
2500 }
2501
2502 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2503 info->buffer = buf;
2504
2505 /* When debugging .o files, we may need to apply relocations; see
2506 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2507 We never compress sections in .o files, so we only need to
2508 try this when the section is not compressed. */
2509 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2510 if (retbuf != NULL)
2511 {
2512 info->buffer = retbuf;
2513 return;
2514 }
2515
2516 abfd = get_section_bfd_owner (info);
2517 gdb_assert (abfd != NULL);
2518
2519 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2520 || bfd_bread (buf, info->size, abfd) != info->size)
2521 {
2522 error (_("Dwarf Error: Can't read DWARF data"
2523 " in section %s [in module %s]"),
2524 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2525 }
2526 }
2527
2528 /* A helper function that returns the size of a section in a safe way.
2529 If you are positive that the section has been read before using the
2530 size, then it is safe to refer to the dwarf2_section_info object's
2531 "size" field directly. In other cases, you must call this
2532 function, because for compressed sections the size field is not set
2533 correctly until the section has been read. */
2534
2535 static bfd_size_type
2536 dwarf2_section_size (struct objfile *objfile,
2537 struct dwarf2_section_info *info)
2538 {
2539 if (!info->readin)
2540 dwarf2_read_section (objfile, info);
2541 return info->size;
2542 }
2543
2544 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2545 SECTION_NAME. */
2546
2547 void
2548 dwarf2_get_section_info (struct objfile *objfile,
2549 enum dwarf2_section_enum sect,
2550 asection **sectp, const gdb_byte **bufp,
2551 bfd_size_type *sizep)
2552 {
2553 struct dwarf2_per_objfile *data
2554 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2555 dwarf2_objfile_data_key);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2633 there is no .gnu_debugaltlink section in the file. Error if there
2634 is such a section but the file cannot be found. */
2635
2636 static struct dwz_file *
2637 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2638 {
2639 const char *filename;
2640 bfd_size_type buildid_len_arg;
2641 size_t buildid_len;
2642 bfd_byte *buildid;
2643
2644 if (dwarf2_per_objfile->dwz_file != NULL)
2645 return dwarf2_per_objfile->dwz_file.get ();
2646
2647 bfd_set_error (bfd_error_no_error);
2648 gdb::unique_xmalloc_ptr<char> data
2649 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2650 &buildid_len_arg, &buildid));
2651 if (data == NULL)
2652 {
2653 if (bfd_get_error () == bfd_error_no_error)
2654 return NULL;
2655 error (_("could not read '.gnu_debugaltlink' section: %s"),
2656 bfd_errmsg (bfd_get_error ()));
2657 }
2658
2659 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2660
2661 buildid_len = (size_t) buildid_len_arg;
2662
2663 filename = data.get ();
2664
2665 std::string abs_storage;
2666 if (!IS_ABSOLUTE_PATH (filename))
2667 {
2668 gdb::unique_xmalloc_ptr<char> abs
2669 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2670
2671 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2672 filename = abs_storage.c_str ();
2673 }
2674
2675 /* First try the file name given in the section. If that doesn't
2676 work, try to use the build-id instead. */
2677 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2678 if (dwz_bfd != NULL)
2679 {
2680 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2681 dwz_bfd.release ();
2682 }
2683
2684 if (dwz_bfd == NULL)
2685 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2686
2687 if (dwz_bfd == NULL)
2688 error (_("could not find '.gnu_debugaltlink' file for %s"),
2689 objfile_name (dwarf2_per_objfile->objfile));
2690
2691 std::unique_ptr<struct dwz_file> result
2692 (new struct dwz_file (std::move (dwz_bfd)));
2693
2694 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2695 result.get ());
2696
2697 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2698 result->dwz_bfd.get ());
2699 dwarf2_per_objfile->dwz_file = std::move (result);
2700 return dwarf2_per_objfile->dwz_file.get ();
2701 }
2702 \f
2703 /* DWARF quick_symbols_functions support. */
2704
2705 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2706 unique line tables, so we maintain a separate table of all .debug_line
2707 derived entries to support the sharing.
2708 All the quick functions need is the list of file names. We discard the
2709 line_header when we're done and don't need to record it here. */
2710 struct quick_file_names
2711 {
2712 /* The data used to construct the hash key. */
2713 struct stmt_list_hash hash;
2714
2715 /* The number of entries in file_names, real_names. */
2716 unsigned int num_file_names;
2717
2718 /* The file names from the line table, after being run through
2719 file_full_name. */
2720 const char **file_names;
2721
2722 /* The file names from the line table after being run through
2723 gdb_realpath. These are computed lazily. */
2724 const char **real_names;
2725 };
2726
2727 /* When using the index (and thus not using psymtabs), each CU has an
2728 object of this type. This is used to hold information needed by
2729 the various "quick" methods. */
2730 struct dwarf2_per_cu_quick_data
2731 {
2732 /* The file table. This can be NULL if there was no file table
2733 or it's currently not read in.
2734 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2735 struct quick_file_names *file_names;
2736
2737 /* The corresponding symbol table. This is NULL if symbols for this
2738 CU have not yet been read. */
2739 struct compunit_symtab *compunit_symtab;
2740
2741 /* A temporary mark bit used when iterating over all CUs in
2742 expand_symtabs_matching. */
2743 unsigned int mark : 1;
2744
2745 /* True if we've tried to read the file table and found there isn't one.
2746 There will be no point in trying to read it again next time. */
2747 unsigned int no_file_data : 1;
2748 };
2749
2750 /* Utility hash function for a stmt_list_hash. */
2751
2752 static hashval_t
2753 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2754 {
2755 hashval_t v = 0;
2756
2757 if (stmt_list_hash->dwo_unit != NULL)
2758 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2759 v += to_underlying (stmt_list_hash->line_sect_off);
2760 return v;
2761 }
2762
2763 /* Utility equality function for a stmt_list_hash. */
2764
2765 static int
2766 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2767 const struct stmt_list_hash *rhs)
2768 {
2769 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2770 return 0;
2771 if (lhs->dwo_unit != NULL
2772 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2773 return 0;
2774
2775 return lhs->line_sect_off == rhs->line_sect_off;
2776 }
2777
2778 /* Hash function for a quick_file_names. */
2779
2780 static hashval_t
2781 hash_file_name_entry (const void *e)
2782 {
2783 const struct quick_file_names *file_data
2784 = (const struct quick_file_names *) e;
2785
2786 return hash_stmt_list_entry (&file_data->hash);
2787 }
2788
2789 /* Equality function for a quick_file_names. */
2790
2791 static int
2792 eq_file_name_entry (const void *a, const void *b)
2793 {
2794 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2795 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2796
2797 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2798 }
2799
2800 /* Delete function for a quick_file_names. */
2801
2802 static void
2803 delete_file_name_entry (void *e)
2804 {
2805 struct quick_file_names *file_data = (struct quick_file_names *) e;
2806 int i;
2807
2808 for (i = 0; i < file_data->num_file_names; ++i)
2809 {
2810 xfree ((void*) file_data->file_names[i]);
2811 if (file_data->real_names)
2812 xfree ((void*) file_data->real_names[i]);
2813 }
2814
2815 /* The space for the struct itself lives on objfile_obstack,
2816 so we don't free it here. */
2817 }
2818
2819 /* Create a quick_file_names hash table. */
2820
2821 static htab_t
2822 create_quick_file_names_table (unsigned int nr_initial_entries)
2823 {
2824 return htab_create_alloc (nr_initial_entries,
2825 hash_file_name_entry, eq_file_name_entry,
2826 delete_file_name_entry, xcalloc, xfree);
2827 }
2828
2829 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2830 have to be created afterwards. You should call age_cached_comp_units after
2831 processing PER_CU->CU. dw2_setup must have been already called. */
2832
2833 static void
2834 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2835 {
2836 if (per_cu->is_debug_types)
2837 load_full_type_unit (per_cu);
2838 else
2839 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2840
2841 if (per_cu->cu == NULL)
2842 return; /* Dummy CU. */
2843
2844 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2845 }
2846
2847 /* Read in the symbols for PER_CU. */
2848
2849 static void
2850 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2851 {
2852 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2853
2854 /* Skip type_unit_groups, reading the type units they contain
2855 is handled elsewhere. */
2856 if (IS_TYPE_UNIT_GROUP (per_cu))
2857 return;
2858
2859 /* The destructor of dwarf2_queue_guard frees any entries left on
2860 the queue. After this point we're guaranteed to leave this function
2861 with the dwarf queue empty. */
2862 dwarf2_queue_guard q_guard;
2863
2864 if (dwarf2_per_objfile->using_index
2865 ? per_cu->v.quick->compunit_symtab == NULL
2866 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2867 {
2868 queue_comp_unit (per_cu, language_minimal);
2869 load_cu (per_cu, skip_partial);
2870
2871 /* If we just loaded a CU from a DWO, and we're working with an index
2872 that may badly handle TUs, load all the TUs in that DWO as well.
2873 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2874 if (!per_cu->is_debug_types
2875 && per_cu->cu != NULL
2876 && per_cu->cu->dwo_unit != NULL
2877 && dwarf2_per_objfile->index_table != NULL
2878 && dwarf2_per_objfile->index_table->version <= 7
2879 /* DWP files aren't supported yet. */
2880 && get_dwp_file (dwarf2_per_objfile) == NULL)
2881 queue_and_load_all_dwo_tus (per_cu);
2882 }
2883
2884 process_queue (dwarf2_per_objfile);
2885
2886 /* Age the cache, releasing compilation units that have not
2887 been used recently. */
2888 age_cached_comp_units (dwarf2_per_objfile);
2889 }
2890
2891 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2892 the objfile from which this CU came. Returns the resulting symbol
2893 table. */
2894
2895 static struct compunit_symtab *
2896 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2897 {
2898 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2899
2900 gdb_assert (dwarf2_per_objfile->using_index);
2901 if (!per_cu->v.quick->compunit_symtab)
2902 {
2903 free_cached_comp_units freer (dwarf2_per_objfile);
2904 scoped_restore decrementer = increment_reading_symtab ();
2905 dw2_do_instantiate_symtab (per_cu, skip_partial);
2906 process_cu_includes (dwarf2_per_objfile);
2907 }
2908
2909 return per_cu->v.quick->compunit_symtab;
2910 }
2911
2912 /* See declaration. */
2913
2914 dwarf2_per_cu_data *
2915 dwarf2_per_objfile::get_cutu (int index)
2916 {
2917 if (index >= this->all_comp_units.size ())
2918 {
2919 index -= this->all_comp_units.size ();
2920 gdb_assert (index < this->all_type_units.size ());
2921 return &this->all_type_units[index]->per_cu;
2922 }
2923
2924 return this->all_comp_units[index];
2925 }
2926
2927 /* See declaration. */
2928
2929 dwarf2_per_cu_data *
2930 dwarf2_per_objfile::get_cu (int index)
2931 {
2932 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2933
2934 return this->all_comp_units[index];
2935 }
2936
2937 /* See declaration. */
2938
2939 signatured_type *
2940 dwarf2_per_objfile::get_tu (int index)
2941 {
2942 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2943
2944 return this->all_type_units[index];
2945 }
2946
2947 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2948 objfile_obstack, and constructed with the specified field
2949 values. */
2950
2951 static dwarf2_per_cu_data *
2952 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2953 struct dwarf2_section_info *section,
2954 int is_dwz,
2955 sect_offset sect_off, ULONGEST length)
2956 {
2957 struct objfile *objfile = dwarf2_per_objfile->objfile;
2958 dwarf2_per_cu_data *the_cu
2959 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_data);
2961 the_cu->sect_off = sect_off;
2962 the_cu->length = length;
2963 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2964 the_cu->section = section;
2965 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct dwarf2_per_cu_quick_data);
2967 the_cu->is_dwz = is_dwz;
2968 return the_cu;
2969 }
2970
2971 /* A helper for create_cus_from_index that handles a given list of
2972 CUs. */
2973
2974 static void
2975 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2976 const gdb_byte *cu_list, offset_type n_elements,
2977 struct dwarf2_section_info *section,
2978 int is_dwz)
2979 {
2980 for (offset_type i = 0; i < n_elements; i += 2)
2981 {
2982 gdb_static_assert (sizeof (ULONGEST) >= 8);
2983
2984 sect_offset sect_off
2985 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2986 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2987 cu_list += 2 * 8;
2988
2989 dwarf2_per_cu_data *per_cu
2990 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2991 sect_off, length);
2992 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2993 }
2994 }
2995
2996 /* Read the CU list from the mapped index, and use it to create all
2997 the CU objects for this objfile. */
2998
2999 static void
3000 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 const gdb_byte *cu_list, offset_type cu_list_elements,
3002 const gdb_byte *dwz_list, offset_type dwz_elements)
3003 {
3004 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3005 dwarf2_per_objfile->all_comp_units.reserve
3006 ((cu_list_elements + dwz_elements) / 2);
3007
3008 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3009 &dwarf2_per_objfile->info, 0);
3010
3011 if (dwz_elements == 0)
3012 return;
3013
3014 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3015 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3016 &dwz->info, 1);
3017 }
3018
3019 /* Create the signatured type hash table from the index. */
3020
3021 static void
3022 create_signatured_type_table_from_index
3023 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3024 struct dwarf2_section_info *section,
3025 const gdb_byte *bytes,
3026 offset_type elements)
3027 {
3028 struct objfile *objfile = dwarf2_per_objfile->objfile;
3029
3030 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3031 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3032
3033 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3034
3035 for (offset_type i = 0; i < elements; i += 3)
3036 {
3037 struct signatured_type *sig_type;
3038 ULONGEST signature;
3039 void **slot;
3040 cu_offset type_offset_in_tu;
3041
3042 gdb_static_assert (sizeof (ULONGEST) >= 8);
3043 sect_offset sect_off
3044 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3045 type_offset_in_tu
3046 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3047 BFD_ENDIAN_LITTLE);
3048 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3049 bytes += 3 * 8;
3050
3051 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3052 struct signatured_type);
3053 sig_type->signature = signature;
3054 sig_type->type_offset_in_tu = type_offset_in_tu;
3055 sig_type->per_cu.is_debug_types = 1;
3056 sig_type->per_cu.section = section;
3057 sig_type->per_cu.sect_off = sect_off;
3058 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3059 sig_type->per_cu.v.quick
3060 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3061 struct dwarf2_per_cu_quick_data);
3062
3063 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3064 *slot = sig_type;
3065
3066 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3067 }
3068
3069 dwarf2_per_objfile->signatured_types = sig_types_hash;
3070 }
3071
3072 /* Create the signatured type hash table from .debug_names. */
3073
3074 static void
3075 create_signatured_type_table_from_debug_names
3076 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3077 const mapped_debug_names &map,
3078 struct dwarf2_section_info *section,
3079 struct dwarf2_section_info *abbrev_section)
3080 {
3081 struct objfile *objfile = dwarf2_per_objfile->objfile;
3082
3083 dwarf2_read_section (objfile, section);
3084 dwarf2_read_section (objfile, abbrev_section);
3085
3086 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3087 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3088
3089 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3090
3091 for (uint32_t i = 0; i < map.tu_count; ++i)
3092 {
3093 struct signatured_type *sig_type;
3094 void **slot;
3095
3096 sect_offset sect_off
3097 = (sect_offset) (extract_unsigned_integer
3098 (map.tu_table_reordered + i * map.offset_size,
3099 map.offset_size,
3100 map.dwarf5_byte_order));
3101
3102 comp_unit_head cu_header;
3103 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3104 abbrev_section,
3105 section->buffer + to_underlying (sect_off),
3106 rcuh_kind::TYPE);
3107
3108 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3109 struct signatured_type);
3110 sig_type->signature = cu_header.signature;
3111 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3112 sig_type->per_cu.is_debug_types = 1;
3113 sig_type->per_cu.section = section;
3114 sig_type->per_cu.sect_off = sect_off;
3115 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3116 sig_type->per_cu.v.quick
3117 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3118 struct dwarf2_per_cu_quick_data);
3119
3120 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3121 *slot = sig_type;
3122
3123 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3124 }
3125
3126 dwarf2_per_objfile->signatured_types = sig_types_hash;
3127 }
3128
3129 /* Read the address map data from the mapped index, and use it to
3130 populate the objfile's psymtabs_addrmap. */
3131
3132 static void
3133 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3134 struct mapped_index *index)
3135 {
3136 struct objfile *objfile = dwarf2_per_objfile->objfile;
3137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3138 const gdb_byte *iter, *end;
3139 struct addrmap *mutable_map;
3140 CORE_ADDR baseaddr;
3141
3142 auto_obstack temp_obstack;
3143
3144 mutable_map = addrmap_create_mutable (&temp_obstack);
3145
3146 iter = index->address_table.data ();
3147 end = iter + index->address_table.size ();
3148
3149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3150
3151 while (iter < end)
3152 {
3153 ULONGEST hi, lo, cu_index;
3154 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3157 iter += 8;
3158 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3159 iter += 4;
3160
3161 if (lo > hi)
3162 {
3163 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3164 hex_string (lo), hex_string (hi));
3165 continue;
3166 }
3167
3168 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3169 {
3170 complaint (_(".gdb_index address table has invalid CU number %u"),
3171 (unsigned) cu_index);
3172 continue;
3173 }
3174
3175 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3176 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3177 addrmap_set_empty (mutable_map, lo, hi - 1,
3178 dwarf2_per_objfile->get_cu (cu_index));
3179 }
3180
3181 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3182 &objfile->objfile_obstack);
3183 }
3184
3185 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3186 populate the objfile's psymtabs_addrmap. */
3187
3188 static void
3189 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3190 struct dwarf2_section_info *section)
3191 {
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3193 bfd *abfd = objfile->obfd;
3194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3195 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3196 SECT_OFF_TEXT (objfile));
3197
3198 auto_obstack temp_obstack;
3199 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3200
3201 std::unordered_map<sect_offset,
3202 dwarf2_per_cu_data *,
3203 gdb::hash_enum<sect_offset>>
3204 debug_info_offset_to_per_cu;
3205 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3206 {
3207 const auto insertpair
3208 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3209 if (!insertpair.second)
3210 {
3211 warning (_("Section .debug_aranges in %s has duplicate "
3212 "debug_info_offset %s, ignoring .debug_aranges."),
3213 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3214 return;
3215 }
3216 }
3217
3218 dwarf2_read_section (objfile, section);
3219
3220 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3221
3222 const gdb_byte *addr = section->buffer;
3223
3224 while (addr < section->buffer + section->size)
3225 {
3226 const gdb_byte *const entry_addr = addr;
3227 unsigned int bytes_read;
3228
3229 const LONGEST entry_length = read_initial_length (abfd, addr,
3230 &bytes_read);
3231 addr += bytes_read;
3232
3233 const gdb_byte *const entry_end = addr + entry_length;
3234 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3235 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3236 if (addr + entry_length > section->buffer + section->size)
3237 {
3238 warning (_("Section .debug_aranges in %s entry at offset %zu "
3239 "length %s exceeds section length %s, "
3240 "ignoring .debug_aranges."),
3241 objfile_name (objfile), entry_addr - section->buffer,
3242 plongest (bytes_read + entry_length),
3243 pulongest (section->size));
3244 return;
3245 }
3246
3247 /* The version number. */
3248 const uint16_t version = read_2_bytes (abfd, addr);
3249 addr += 2;
3250 if (version != 2)
3251 {
3252 warning (_("Section .debug_aranges in %s entry at offset %zu "
3253 "has unsupported version %d, ignoring .debug_aranges."),
3254 objfile_name (objfile), entry_addr - section->buffer,
3255 version);
3256 return;
3257 }
3258
3259 const uint64_t debug_info_offset
3260 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3261 addr += offset_size;
3262 const auto per_cu_it
3263 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3264 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3265 {
3266 warning (_("Section .debug_aranges in %s entry at offset %zu "
3267 "debug_info_offset %s does not exists, "
3268 "ignoring .debug_aranges."),
3269 objfile_name (objfile), entry_addr - section->buffer,
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 segment_selector_size);
3293 return;
3294 }
3295
3296 /* Must pad to an alignment boundary that is twice the address
3297 size. It is undocumented by the DWARF standard but GCC does
3298 use it. */
3299 for (size_t padding = ((-(addr - section->buffer))
3300 & (2 * address_size - 1));
3301 padding > 0; padding--)
3302 if (*addr++ != 0)
3303 {
3304 warning (_("Section .debug_aranges in %s entry at offset %zu "
3305 "padding is not zero, ignoring .debug_aranges."),
3306 objfile_name (objfile), entry_addr - section->buffer);
3307 return;
3308 }
3309
3310 for (;;)
3311 {
3312 if (addr + 2 * address_size > entry_end)
3313 {
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "address list is not properly terminated, "
3316 "ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3318 return;
3319 }
3320 ULONGEST start = extract_unsigned_integer (addr, address_size,
3321 dwarf5_byte_order);
3322 addr += address_size;
3323 ULONGEST length = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 if (start == 0 && length == 0)
3327 break;
3328 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3329 {
3330 /* Symbol was eliminated due to a COMDAT group. */
3331 continue;
3332 }
3333 ULONGEST end = start + length;
3334 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3335 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3336 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3337 }
3338 }
3339
3340 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3341 &objfile->objfile_obstack);
3342 }
3343
3344 /* Find a slot in the mapped index INDEX for the object named NAME.
3345 If NAME is found, set *VEC_OUT to point to the CU vector in the
3346 constant pool and return true. If NAME cannot be found, return
3347 false. */
3348
3349 static bool
3350 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3351 offset_type **vec_out)
3352 {
3353 offset_type hash;
3354 offset_type slot, step;
3355 int (*cmp) (const char *, const char *);
3356
3357 gdb::unique_xmalloc_ptr<char> without_params;
3358 if (current_language->la_language == language_cplus
3359 || current_language->la_language == language_fortran
3360 || current_language->la_language == language_d)
3361 {
3362 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3363 not contain any. */
3364
3365 if (strchr (name, '(') != NULL)
3366 {
3367 without_params = cp_remove_params (name);
3368
3369 if (without_params != NULL)
3370 name = without_params.get ();
3371 }
3372 }
3373
3374 /* Index version 4 did not support case insensitive searches. But the
3375 indices for case insensitive languages are built in lowercase, therefore
3376 simulate our NAME being searched is also lowercased. */
3377 hash = mapped_index_string_hash ((index->version == 4
3378 && case_sensitivity == case_sensitive_off
3379 ? 5 : index->version),
3380 name);
3381
3382 slot = hash & (index->symbol_table.size () - 1);
3383 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3384 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3385
3386 for (;;)
3387 {
3388 const char *str;
3389
3390 const auto &bucket = index->symbol_table[slot];
3391 if (bucket.name == 0 && bucket.vec == 0)
3392 return false;
3393
3394 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3395 if (!cmp (name, str))
3396 {
3397 *vec_out = (offset_type *) (index->constant_pool
3398 + MAYBE_SWAP (bucket.vec));
3399 return true;
3400 }
3401
3402 slot = (slot + step) & (index->symbol_table.size () - 1);
3403 }
3404 }
3405
3406 /* A helper function that reads the .gdb_index from SECTION and fills
3407 in MAP. FILENAME is the name of the file containing the section;
3408 it is used for error reporting. DEPRECATED_OK is true if it is
3409 ok to use deprecated sections.
3410
3411 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3412 out parameters that are filled in with information about the CU and
3413 TU lists in the section.
3414
3415 Returns 1 if all went well, 0 otherwise. */
3416
3417 static bool
3418 read_index_from_section (struct objfile *objfile,
3419 const char *filename,
3420 bool deprecated_ok,
3421 struct dwarf2_section_info *section,
3422 struct mapped_index *map,
3423 const gdb_byte **cu_list,
3424 offset_type *cu_list_elements,
3425 const gdb_byte **types_list,
3426 offset_type *types_list_elements)
3427 {
3428 const gdb_byte *addr;
3429 offset_type version;
3430 offset_type *metadata;
3431 int i;
3432
3433 if (dwarf2_section_empty_p (section))
3434 return 0;
3435
3436 /* Older elfutils strip versions could keep the section in the main
3437 executable while splitting it for the separate debug info file. */
3438 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3439 return 0;
3440
3441 dwarf2_read_section (objfile, section);
3442
3443 addr = section->buffer;
3444 /* Version check. */
3445 version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3449 indices. */
3450 if (version < 4)
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3456 filename);
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
3474 warning (_("\
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3478 filename);
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3490
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3493 if (version > 8)
3494 return 0;
3495
3496 map->version = version;
3497
3498 metadata = (offset_type *) (addr + sizeof (offset_type));
3499
3500 i = 0;
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
3504 ++i;
3505
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
3510 ++i;
3511
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3516 ++i;
3517
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3524
3525 ++i;
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3527
3528 return 1;
3529 }
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3536 {
3537 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3538 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3539 struct dwz_file *dwz;
3540 struct objfile *objfile = dwarf2_per_objfile->objfile;
3541
3542 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3543 if (!read_index_from_section (objfile, objfile_name (objfile),
3544 use_deprecated_index_sections,
3545 &dwarf2_per_objfile->gdb_index, map.get (),
3546 &cu_list, &cu_list_elements,
3547 &types_list, &types_list_elements))
3548 return 0;
3549
3550 /* Don't use the index if it's empty. */
3551 if (map->symbol_table.empty ())
3552 return 0;
3553
3554 /* If there is a .dwz file, read it so we can get its CU list as
3555 well. */
3556 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3557 if (dwz != NULL)
3558 {
3559 struct mapped_index dwz_map;
3560 const gdb_byte *dwz_types_ignore;
3561 offset_type dwz_types_elements_ignore;
3562
3563 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3564 1,
3565 &dwz->gdb_index, &dwz_map,
3566 &dwz_list, &dwz_list_elements,
3567 &dwz_types_ignore,
3568 &dwz_types_elements_ignore))
3569 {
3570 warning (_("could not read '.gdb_index' section from %s; skipping"),
3571 bfd_get_filename (dwz->dwz_bfd));
3572 return 0;
3573 }
3574 }
3575
3576 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3577 dwz_list, dwz_list_elements);
3578
3579 if (types_list_elements)
3580 {
3581 struct dwarf2_section_info *section;
3582
3583 /* We can only handle a single .debug_types when we have an
3584 index. */
3585 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3586 return 0;
3587
3588 section = VEC_index (dwarf2_section_info_def,
3589 dwarf2_per_objfile->types, 0);
3590
3591 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3592 types_list, types_list_elements);
3593 }
3594
3595 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3596
3597 dwarf2_per_objfile->index_table = std::move (map);
3598 dwarf2_per_objfile->using_index = 1;
3599 dwarf2_per_objfile->quick_file_names_table =
3600 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3601
3602 return 1;
3603 }
3604
3605 /* die_reader_func for dw2_get_file_names. */
3606
3607 static void
3608 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3609 const gdb_byte *info_ptr,
3610 struct die_info *comp_unit_die,
3611 int has_children,
3612 void *data)
3613 {
3614 struct dwarf2_cu *cu = reader->cu;
3615 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3616 struct dwarf2_per_objfile *dwarf2_per_objfile
3617 = cu->per_cu->dwarf2_per_objfile;
3618 struct objfile *objfile = dwarf2_per_objfile->objfile;
3619 struct dwarf2_per_cu_data *lh_cu;
3620 struct attribute *attr;
3621 int i;
3622 void **slot;
3623 struct quick_file_names *qfn;
3624
3625 gdb_assert (! this_cu->is_debug_types);
3626
3627 /* Our callers never want to match partial units -- instead they
3628 will match the enclosing full CU. */
3629 if (comp_unit_die->tag == DW_TAG_partial_unit)
3630 {
3631 this_cu->v.quick->no_file_data = 1;
3632 return;
3633 }
3634
3635 lh_cu = this_cu;
3636 slot = NULL;
3637
3638 line_header_up lh;
3639 sect_offset line_offset {};
3640
3641 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3642 if (attr)
3643 {
3644 struct quick_file_names find_entry;
3645
3646 line_offset = (sect_offset) DW_UNSND (attr);
3647
3648 /* We may have already read in this line header (TU line header sharing).
3649 If we have we're done. */
3650 find_entry.hash.dwo_unit = cu->dwo_unit;
3651 find_entry.hash.line_sect_off = line_offset;
3652 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3653 &find_entry, INSERT);
3654 if (*slot != NULL)
3655 {
3656 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3657 return;
3658 }
3659
3660 lh = dwarf_decode_line_header (line_offset, cu);
3661 }
3662 if (lh == NULL)
3663 {
3664 lh_cu->v.quick->no_file_data = 1;
3665 return;
3666 }
3667
3668 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3669 qfn->hash.dwo_unit = cu->dwo_unit;
3670 qfn->hash.line_sect_off = line_offset;
3671 gdb_assert (slot != NULL);
3672 *slot = qfn;
3673
3674 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3675
3676 qfn->num_file_names = lh->file_names.size ();
3677 qfn->file_names =
3678 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3679 for (i = 0; i < lh->file_names.size (); ++i)
3680 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3681 qfn->real_names = NULL;
3682
3683 lh_cu->v.quick->file_names = qfn;
3684 }
3685
3686 /* A helper for the "quick" functions which attempts to read the line
3687 table for THIS_CU. */
3688
3689 static struct quick_file_names *
3690 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3691 {
3692 /* This should never be called for TUs. */
3693 gdb_assert (! this_cu->is_debug_types);
3694 /* Nor type unit groups. */
3695 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3696
3697 if (this_cu->v.quick->file_names != NULL)
3698 return this_cu->v.quick->file_names;
3699 /* If we know there is no line data, no point in looking again. */
3700 if (this_cu->v.quick->no_file_data)
3701 return NULL;
3702
3703 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3704
3705 if (this_cu->v.quick->no_file_data)
3706 return NULL;
3707 return this_cu->v.quick->file_names;
3708 }
3709
3710 /* A helper for the "quick" functions which computes and caches the
3711 real path for a given file name from the line table. */
3712
3713 static const char *
3714 dw2_get_real_path (struct objfile *objfile,
3715 struct quick_file_names *qfn, int index)
3716 {
3717 if (qfn->real_names == NULL)
3718 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3719 qfn->num_file_names, const char *);
3720
3721 if (qfn->real_names[index] == NULL)
3722 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3723
3724 return qfn->real_names[index];
3725 }
3726
3727 static struct symtab *
3728 dw2_find_last_source_symtab (struct objfile *objfile)
3729 {
3730 struct dwarf2_per_objfile *dwarf2_per_objfile
3731 = get_dwarf2_per_objfile (objfile);
3732 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3733 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3734
3735 if (cust == NULL)
3736 return NULL;
3737
3738 return compunit_primary_filetab (cust);
3739 }
3740
3741 /* Traversal function for dw2_forget_cached_source_info. */
3742
3743 static int
3744 dw2_free_cached_file_names (void **slot, void *info)
3745 {
3746 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3747
3748 if (file_data->real_names)
3749 {
3750 int i;
3751
3752 for (i = 0; i < file_data->num_file_names; ++i)
3753 {
3754 xfree ((void*) file_data->real_names[i]);
3755 file_data->real_names[i] = NULL;
3756 }
3757 }
3758
3759 return 1;
3760 }
3761
3762 static void
3763 dw2_forget_cached_source_info (struct objfile *objfile)
3764 {
3765 struct dwarf2_per_objfile *dwarf2_per_objfile
3766 = get_dwarf2_per_objfile (objfile);
3767
3768 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3769 dw2_free_cached_file_names, NULL);
3770 }
3771
3772 /* Helper function for dw2_map_symtabs_matching_filename that expands
3773 the symtabs and calls the iterator. */
3774
3775 static int
3776 dw2_map_expand_apply (struct objfile *objfile,
3777 struct dwarf2_per_cu_data *per_cu,
3778 const char *name, const char *real_path,
3779 gdb::function_view<bool (symtab *)> callback)
3780 {
3781 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3782
3783 /* Don't visit already-expanded CUs. */
3784 if (per_cu->v.quick->compunit_symtab)
3785 return 0;
3786
3787 /* This may expand more than one symtab, and we want to iterate over
3788 all of them. */
3789 dw2_instantiate_symtab (per_cu, false);
3790
3791 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3792 last_made, callback);
3793 }
3794
3795 /* Implementation of the map_symtabs_matching_filename method. */
3796
3797 static bool
3798 dw2_map_symtabs_matching_filename
3799 (struct objfile *objfile, const char *name, const char *real_path,
3800 gdb::function_view<bool (symtab *)> callback)
3801 {
3802 const char *name_basename = lbasename (name);
3803 struct dwarf2_per_objfile *dwarf2_per_objfile
3804 = get_dwarf2_per_objfile (objfile);
3805
3806 /* The rule is CUs specify all the files, including those used by
3807 any TU, so there's no need to scan TUs here. */
3808
3809 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3810 {
3811 /* We only need to look at symtabs not already expanded. */
3812 if (per_cu->v.quick->compunit_symtab)
3813 continue;
3814
3815 quick_file_names *file_data = dw2_get_file_names (per_cu);
3816 if (file_data == NULL)
3817 continue;
3818
3819 for (int j = 0; j < file_data->num_file_names; ++j)
3820 {
3821 const char *this_name = file_data->file_names[j];
3822 const char *this_real_name;
3823
3824 if (compare_filenames_for_search (this_name, name))
3825 {
3826 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3827 callback))
3828 return true;
3829 continue;
3830 }
3831
3832 /* Before we invoke realpath, which can get expensive when many
3833 files are involved, do a quick comparison of the basenames. */
3834 if (! basenames_may_differ
3835 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3836 continue;
3837
3838 this_real_name = dw2_get_real_path (objfile, file_data, j);
3839 if (compare_filenames_for_search (this_real_name, name))
3840 {
3841 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3842 callback))
3843 return true;
3844 continue;
3845 }
3846
3847 if (real_path != NULL)
3848 {
3849 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3850 gdb_assert (IS_ABSOLUTE_PATH (name));
3851 if (this_real_name != NULL
3852 && FILENAME_CMP (real_path, this_real_name) == 0)
3853 {
3854 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3855 callback))
3856 return true;
3857 continue;
3858 }
3859 }
3860 }
3861 }
3862
3863 return false;
3864 }
3865
3866 /* Struct used to manage iterating over all CUs looking for a symbol. */
3867
3868 struct dw2_symtab_iterator
3869 {
3870 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3871 struct dwarf2_per_objfile *dwarf2_per_objfile;
3872 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3873 int want_specific_block;
3874 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3875 Unused if !WANT_SPECIFIC_BLOCK. */
3876 int block_index;
3877 /* The kind of symbol we're looking for. */
3878 domain_enum domain;
3879 /* The list of CUs from the index entry of the symbol,
3880 or NULL if not found. */
3881 offset_type *vec;
3882 /* The next element in VEC to look at. */
3883 int next;
3884 /* The number of elements in VEC, or zero if there is no match. */
3885 int length;
3886 /* Have we seen a global version of the symbol?
3887 If so we can ignore all further global instances.
3888 This is to work around gold/15646, inefficient gold-generated
3889 indices. */
3890 int global_seen;
3891 };
3892
3893 /* Initialize the index symtab iterator ITER.
3894 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3895 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3896
3897 static void
3898 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3899 struct dwarf2_per_objfile *dwarf2_per_objfile,
3900 int want_specific_block,
3901 int block_index,
3902 domain_enum domain,
3903 const char *name)
3904 {
3905 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3906 iter->want_specific_block = want_specific_block;
3907 iter->block_index = block_index;
3908 iter->domain = domain;
3909 iter->next = 0;
3910 iter->global_seen = 0;
3911
3912 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3913
3914 /* index is NULL if OBJF_READNOW. */
3915 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3916 iter->length = MAYBE_SWAP (*iter->vec);
3917 else
3918 {
3919 iter->vec = NULL;
3920 iter->length = 0;
3921 }
3922 }
3923
3924 /* Return the next matching CU or NULL if there are no more. */
3925
3926 static struct dwarf2_per_cu_data *
3927 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3928 {
3929 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3930
3931 for ( ; iter->next < iter->length; ++iter->next)
3932 {
3933 offset_type cu_index_and_attrs =
3934 MAYBE_SWAP (iter->vec[iter->next + 1]);
3935 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3936 int want_static = iter->block_index != GLOBAL_BLOCK;
3937 /* This value is only valid for index versions >= 7. */
3938 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3939 gdb_index_symbol_kind symbol_kind =
3940 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3941 /* Only check the symbol attributes if they're present.
3942 Indices prior to version 7 don't record them,
3943 and indices >= 7 may elide them for certain symbols
3944 (gold does this). */
3945 int attrs_valid =
3946 (dwarf2_per_objfile->index_table->version >= 7
3947 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3948
3949 /* Don't crash on bad data. */
3950 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3951 + dwarf2_per_objfile->all_type_units.size ()))
3952 {
3953 complaint (_(".gdb_index entry has bad CU index"
3954 " [in module %s]"),
3955 objfile_name (dwarf2_per_objfile->objfile));
3956 continue;
3957 }
3958
3959 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3960
3961 /* Skip if already read in. */
3962 if (per_cu->v.quick->compunit_symtab)
3963 continue;
3964
3965 /* Check static vs global. */
3966 if (attrs_valid)
3967 {
3968 if (iter->want_specific_block
3969 && want_static != is_static)
3970 continue;
3971 /* Work around gold/15646. */
3972 if (!is_static && iter->global_seen)
3973 continue;
3974 if (!is_static)
3975 iter->global_seen = 1;
3976 }
3977
3978 /* Only check the symbol's kind if it has one. */
3979 if (attrs_valid)
3980 {
3981 switch (iter->domain)
3982 {
3983 case VAR_DOMAIN:
3984 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3985 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3986 /* Some types are also in VAR_DOMAIN. */
3987 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3988 continue;
3989 break;
3990 case STRUCT_DOMAIN:
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3992 continue;
3993 break;
3994 case LABEL_DOMAIN:
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3996 continue;
3997 break;
3998 default:
3999 break;
4000 }
4001 }
4002
4003 ++iter->next;
4004 return per_cu;
4005 }
4006
4007 return NULL;
4008 }
4009
4010 static struct compunit_symtab *
4011 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4012 const char *name, domain_enum domain)
4013 {
4014 struct compunit_symtab *stab_best = NULL;
4015 struct dwarf2_per_objfile *dwarf2_per_objfile
4016 = get_dwarf2_per_objfile (objfile);
4017
4018 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4019
4020 struct dw2_symtab_iterator iter;
4021 struct dwarf2_per_cu_data *per_cu;
4022
4023 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4024
4025 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4026 {
4027 struct symbol *sym, *with_opaque = NULL;
4028 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4029 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4030 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4031
4032 sym = block_find_symbol (block, name, domain,
4033 block_find_non_opaque_type_preferred,
4034 &with_opaque);
4035
4036 /* Some caution must be observed with overloaded functions
4037 and methods, since the index will not contain any overload
4038 information (but NAME might contain it). */
4039
4040 if (sym != NULL
4041 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4042 return stab;
4043 if (with_opaque != NULL
4044 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4045 stab_best = stab;
4046
4047 /* Keep looking through other CUs. */
4048 }
4049
4050 return stab_best;
4051 }
4052
4053 static void
4054 dw2_print_stats (struct objfile *objfile)
4055 {
4056 struct dwarf2_per_objfile *dwarf2_per_objfile
4057 = get_dwarf2_per_objfile (objfile);
4058 int total = (dwarf2_per_objfile->all_comp_units.size ()
4059 + dwarf2_per_objfile->all_type_units.size ());
4060 int count = 0;
4061
4062 for (int i = 0; i < total; ++i)
4063 {
4064 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4065
4066 if (!per_cu->v.quick->compunit_symtab)
4067 ++count;
4068 }
4069 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4070 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4071 }
4072
4073 /* This dumps minimal information about the index.
4074 It is called via "mt print objfiles".
4075 One use is to verify .gdb_index has been loaded by the
4076 gdb.dwarf2/gdb-index.exp testcase. */
4077
4078 static void
4079 dw2_dump (struct objfile *objfile)
4080 {
4081 struct dwarf2_per_objfile *dwarf2_per_objfile
4082 = get_dwarf2_per_objfile (objfile);
4083
4084 gdb_assert (dwarf2_per_objfile->using_index);
4085 printf_filtered (".gdb_index:");
4086 if (dwarf2_per_objfile->index_table != NULL)
4087 {
4088 printf_filtered (" version %d\n",
4089 dwarf2_per_objfile->index_table->version);
4090 }
4091 else
4092 printf_filtered (" faked for \"readnow\"\n");
4093 printf_filtered ("\n");
4094 }
4095
4096 static void
4097 dw2_relocate (struct objfile *objfile,
4098 const struct section_offsets *new_offsets,
4099 const struct section_offsets *delta)
4100 {
4101 /* There's nothing to relocate here. */
4102 }
4103
4104 static void
4105 dw2_expand_symtabs_for_function (struct objfile *objfile,
4106 const char *func_name)
4107 {
4108 struct dwarf2_per_objfile *dwarf2_per_objfile
4109 = get_dwarf2_per_objfile (objfile);
4110
4111 struct dw2_symtab_iterator iter;
4112 struct dwarf2_per_cu_data *per_cu;
4113
4114 /* Note: It doesn't matter what we pass for block_index here. */
4115 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4116 func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->psymtabs_addrmap)
5233 return NULL;
5234
5235 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5236 pc);
5237 if (!data)
5238 return NULL;
5239
5240 if (warn_if_readin && data->v.quick->compunit_symtab)
5241 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5242 paddress (get_objfile_arch (objfile), pc));
5243
5244 result
5245 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5246 false),
5247 pc);
5248 gdb_assert (result != NULL);
5249 return result;
5250 }
5251
5252 static void
5253 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5254 void *data, int need_fullname)
5255 {
5256 struct dwarf2_per_objfile *dwarf2_per_objfile
5257 = get_dwarf2_per_objfile (objfile);
5258
5259 if (!dwarf2_per_objfile->filenames_cache)
5260 {
5261 dwarf2_per_objfile->filenames_cache.emplace ();
5262
5263 htab_up visited (htab_create_alloc (10,
5264 htab_hash_pointer, htab_eq_pointer,
5265 NULL, xcalloc, xfree));
5266
5267 /* The rule is CUs specify all the files, including those used
5268 by any TU, so there's no need to scan TUs here. We can
5269 ignore file names coming from already-expanded CUs. */
5270
5271 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5272 {
5273 if (per_cu->v.quick->compunit_symtab)
5274 {
5275 void **slot = htab_find_slot (visited.get (),
5276 per_cu->v.quick->file_names,
5277 INSERT);
5278
5279 *slot = per_cu->v.quick->file_names;
5280 }
5281 }
5282
5283 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5284 {
5285 /* We only need to look at symtabs not already expanded. */
5286 if (per_cu->v.quick->compunit_symtab)
5287 continue;
5288
5289 quick_file_names *file_data = dw2_get_file_names (per_cu);
5290 if (file_data == NULL)
5291 continue;
5292
5293 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5294 if (*slot)
5295 {
5296 /* Already visited. */
5297 continue;
5298 }
5299 *slot = file_data;
5300
5301 for (int j = 0; j < file_data->num_file_names; ++j)
5302 {
5303 const char *filename = file_data->file_names[j];
5304 dwarf2_per_objfile->filenames_cache->seen (filename);
5305 }
5306 }
5307 }
5308
5309 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5310 {
5311 gdb::unique_xmalloc_ptr<char> this_real_name;
5312
5313 if (need_fullname)
5314 this_real_name = gdb_realpath (filename);
5315 (*fun) (filename, this_real_name.get (), data);
5316 });
5317 }
5318
5319 static int
5320 dw2_has_symbols (struct objfile *objfile)
5321 {
5322 return 1;
5323 }
5324
5325 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5326 {
5327 dw2_has_symbols,
5328 dw2_find_last_source_symtab,
5329 dw2_forget_cached_source_info,
5330 dw2_map_symtabs_matching_filename,
5331 dw2_lookup_symbol,
5332 dw2_print_stats,
5333 dw2_dump,
5334 dw2_relocate,
5335 dw2_expand_symtabs_for_function,
5336 dw2_expand_all_symtabs,
5337 dw2_expand_symtabs_with_fullname,
5338 dw2_map_matching_symbols,
5339 dw2_expand_symtabs_matching,
5340 dw2_find_pc_sect_compunit_symtab,
5341 NULL,
5342 dw2_map_symbol_filenames
5343 };
5344
5345 /* DWARF-5 debug_names reader. */
5346
5347 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5348 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5349
5350 /* A helper function that reads the .debug_names section in SECTION
5351 and fills in MAP. FILENAME is the name of the file containing the
5352 section; it is used for error reporting.
5353
5354 Returns true if all went well, false otherwise. */
5355
5356 static bool
5357 read_debug_names_from_section (struct objfile *objfile,
5358 const char *filename,
5359 struct dwarf2_section_info *section,
5360 mapped_debug_names &map)
5361 {
5362 if (dwarf2_section_empty_p (section))
5363 return false;
5364
5365 /* Older elfutils strip versions could keep the section in the main
5366 executable while splitting it for the separate debug info file. */
5367 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5368 return false;
5369
5370 dwarf2_read_section (objfile, section);
5371
5372 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5373
5374 const gdb_byte *addr = section->buffer;
5375
5376 bfd *const abfd = get_section_bfd_owner (section);
5377
5378 unsigned int bytes_read;
5379 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5380 addr += bytes_read;
5381
5382 map.dwarf5_is_dwarf64 = bytes_read != 4;
5383 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5384 if (bytes_read + length != section->size)
5385 {
5386 /* There may be multiple per-CU indices. */
5387 warning (_("Section .debug_names in %s length %s does not match "
5388 "section length %s, ignoring .debug_names."),
5389 filename, plongest (bytes_read + length),
5390 pulongest (section->size));
5391 return false;
5392 }
5393
5394 /* The version number. */
5395 uint16_t version = read_2_bytes (abfd, addr);
5396 addr += 2;
5397 if (version != 5)
5398 {
5399 warning (_("Section .debug_names in %s has unsupported version %d, "
5400 "ignoring .debug_names."),
5401 filename, version);
5402 return false;
5403 }
5404
5405 /* Padding. */
5406 uint16_t padding = read_2_bytes (abfd, addr);
5407 addr += 2;
5408 if (padding != 0)
5409 {
5410 warning (_("Section .debug_names in %s has unsupported padding %d, "
5411 "ignoring .debug_names."),
5412 filename, padding);
5413 return false;
5414 }
5415
5416 /* comp_unit_count - The number of CUs in the CU list. */
5417 map.cu_count = read_4_bytes (abfd, addr);
5418 addr += 4;
5419
5420 /* local_type_unit_count - The number of TUs in the local TU
5421 list. */
5422 map.tu_count = read_4_bytes (abfd, addr);
5423 addr += 4;
5424
5425 /* foreign_type_unit_count - The number of TUs in the foreign TU
5426 list. */
5427 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5428 addr += 4;
5429 if (foreign_tu_count != 0)
5430 {
5431 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5432 "ignoring .debug_names."),
5433 filename, static_cast<unsigned long> (foreign_tu_count));
5434 return false;
5435 }
5436
5437 /* bucket_count - The number of hash buckets in the hash lookup
5438 table. */
5439 map.bucket_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* name_count - The number of unique names in the index. */
5443 map.name_count = read_4_bytes (abfd, addr);
5444 addr += 4;
5445
5446 /* abbrev_table_size - The size in bytes of the abbreviations
5447 table. */
5448 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5449 addr += 4;
5450
5451 /* augmentation_string_size - The size in bytes of the augmentation
5452 string. This value is rounded up to a multiple of 4. */
5453 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5454 addr += 4;
5455 map.augmentation_is_gdb = ((augmentation_string_size
5456 == sizeof (dwarf5_augmentation))
5457 && memcmp (addr, dwarf5_augmentation,
5458 sizeof (dwarf5_augmentation)) == 0);
5459 augmentation_string_size += (-augmentation_string_size) & 3;
5460 addr += augmentation_string_size;
5461
5462 /* List of CUs */
5463 map.cu_table_reordered = addr;
5464 addr += map.cu_count * map.offset_size;
5465
5466 /* List of Local TUs */
5467 map.tu_table_reordered = addr;
5468 addr += map.tu_count * map.offset_size;
5469
5470 /* Hash Lookup Table */
5471 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5472 addr += map.bucket_count * 4;
5473 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5474 addr += map.name_count * 4;
5475
5476 /* Name Table */
5477 map.name_table_string_offs_reordered = addr;
5478 addr += map.name_count * map.offset_size;
5479 map.name_table_entry_offs_reordered = addr;
5480 addr += map.name_count * map.offset_size;
5481
5482 const gdb_byte *abbrev_table_start = addr;
5483 for (;;)
5484 {
5485 unsigned int bytes_read;
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %zu vs. written as %u, ignoring .debug_names."),
5526 filename, addr - abbrev_table_start, abbrev_table_size);
5527 return false;
5528 }
5529 map.entry_pool = addr;
5530
5531 return true;
5532 }
5533
5534 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5535 list. */
5536
5537 static void
5538 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5539 const mapped_debug_names &map,
5540 dwarf2_section_info &section,
5541 bool is_dwz)
5542 {
5543 sect_offset sect_off_prev;
5544 for (uint32_t i = 0; i <= map.cu_count; ++i)
5545 {
5546 sect_offset sect_off_next;
5547 if (i < map.cu_count)
5548 {
5549 sect_off_next
5550 = (sect_offset) (extract_unsigned_integer
5551 (map.cu_table_reordered + i * map.offset_size,
5552 map.offset_size,
5553 map.dwarf5_byte_order));
5554 }
5555 else
5556 sect_off_next = (sect_offset) section.size;
5557 if (i >= 1)
5558 {
5559 const ULONGEST length = sect_off_next - sect_off_prev;
5560 dwarf2_per_cu_data *per_cu
5561 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5562 sect_off_prev, length);
5563 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5564 }
5565 sect_off_prev = sect_off_next;
5566 }
5567 }
5568
5569 /* Read the CU list from the mapped index, and use it to create all
5570 the CU objects for this dwarf2_per_objfile. */
5571
5572 static void
5573 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5574 const mapped_debug_names &map,
5575 const mapped_debug_names &dwz_map)
5576 {
5577 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5578 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5579
5580 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5581 dwarf2_per_objfile->info,
5582 false /* is_dwz */);
5583
5584 if (dwz_map.cu_count == 0)
5585 return;
5586
5587 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5588 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5589 true /* is_dwz */);
5590 }
5591
5592 /* Read .debug_names. If everything went ok, initialize the "quick"
5593 elements of all the CUs and return true. Otherwise, return false. */
5594
5595 static bool
5596 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5597 {
5598 std::unique_ptr<mapped_debug_names> map
5599 (new mapped_debug_names (dwarf2_per_objfile));
5600 mapped_debug_names dwz_map (dwarf2_per_objfile);
5601 struct objfile *objfile = dwarf2_per_objfile->objfile;
5602
5603 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5604 &dwarf2_per_objfile->debug_names,
5605 *map))
5606 return false;
5607
5608 /* Don't use the index if it's empty. */
5609 if (map->name_count == 0)
5610 return false;
5611
5612 /* If there is a .dwz file, read it so we can get its CU list as
5613 well. */
5614 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5615 if (dwz != NULL)
5616 {
5617 if (!read_debug_names_from_section (objfile,
5618 bfd_get_filename (dwz->dwz_bfd),
5619 &dwz->debug_names, dwz_map))
5620 {
5621 warning (_("could not read '.debug_names' section from %s; skipping"),
5622 bfd_get_filename (dwz->dwz_bfd));
5623 return false;
5624 }
5625 }
5626
5627 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5628
5629 if (map->tu_count != 0)
5630 {
5631 /* We can only handle a single .debug_types when we have an
5632 index. */
5633 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5634 return false;
5635
5636 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5637 dwarf2_per_objfile->types, 0);
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5661 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5662 dw2_debug_names_iterator (const mapped_debug_names &map,
5663 bool want_specific_block,
5664 block_enum block_index, domain_enum domain,
5665 const char *name)
5666 : m_map (map), m_want_specific_block (want_specific_block),
5667 m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5669 {}
5670
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5673 : m_map (map),
5674 m_search (search),
5675 m_addr (find_vec_in_debug_names (map, namei))
5676 {}
5677
5678 /* Return the next matching CU or NULL if there are no more. */
5679 dwarf2_per_cu_data *next ();
5680
5681 private:
5682 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5683 const char *name);
5684 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5685 uint32_t namei);
5686
5687 /* The internalized form of .debug_names. */
5688 const mapped_debug_names &m_map;
5689
5690 /* If true, only look for symbols that match BLOCK_INDEX. */
5691 const bool m_want_specific_block = false;
5692
5693 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5694 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5695 value. */
5696 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5697
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5701
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5703 not found. */
5704 const gdb_byte *m_addr;
5705 };
5706
5707 const char *
5708 mapped_debug_names::namei_to_name (uint32_t namei) const
5709 {
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5713 offset_size,
5714 dwarf5_byte_order);
5715 return read_indirect_string_at_offset
5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5717 }
5718
5719 /* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5721 return NULL. */
5722
5723 const gdb_byte *
5724 dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5726 {
5727 int (*cmp) (const char *, const char *);
5728
5729 if (current_language->la_language == language_cplus
5730 || current_language->la_language == language_fortran
5731 || current_language->la_language == language_d)
5732 {
5733 /* NAME is already canonical. Drop any qualifiers as
5734 .debug_names does not contain any. */
5735
5736 if (strchr (name, '(') != NULL)
5737 {
5738 gdb::unique_xmalloc_ptr<char> without_params
5739 = cp_remove_params (name);
5740
5741 if (without_params != NULL)
5742 {
5743 name = without_params.get();
5744 }
5745 }
5746 }
5747
5748 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5749
5750 const uint32_t full_hash = dwarf5_djb_hash (name);
5751 uint32_t namei
5752 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5753 (map.bucket_table_reordered
5754 + (full_hash % map.bucket_count)), 4,
5755 map.dwarf5_byte_order);
5756 if (namei == 0)
5757 return NULL;
5758 --namei;
5759 if (namei >= map.name_count)
5760 {
5761 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5762 "[in module %s]"),
5763 namei, map.name_count,
5764 objfile_name (map.dwarf2_per_objfile->objfile));
5765 return NULL;
5766 }
5767
5768 for (;;)
5769 {
5770 const uint32_t namei_full_hash
5771 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5772 (map.hash_table_reordered + namei), 4,
5773 map.dwarf5_byte_order);
5774 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5775 return NULL;
5776
5777 if (full_hash == namei_full_hash)
5778 {
5779 const char *const namei_string = map.namei_to_name (namei);
5780
5781 #if 0 /* An expensive sanity check. */
5782 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5783 {
5784 complaint (_("Wrong .debug_names hash for string at index %u "
5785 "[in module %s]"),
5786 namei, objfile_name (dwarf2_per_objfile->objfile));
5787 return NULL;
5788 }
5789 #endif
5790
5791 if (cmp (namei_string, name) == 0)
5792 {
5793 const ULONGEST namei_entry_offs
5794 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5795 + namei * map.offset_size),
5796 map.offset_size, map.dwarf5_byte_order);
5797 return map.entry_pool + namei_entry_offs;
5798 }
5799 }
5800
5801 ++namei;
5802 if (namei >= map.name_count)
5803 return NULL;
5804 }
5805 }
5806
5807 const gdb_byte *
5808 dw2_debug_names_iterator::find_vec_in_debug_names
5809 (const mapped_debug_names &map, uint32_t namei)
5810 {
5811 if (namei >= map.name_count)
5812 {
5813 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5814 "[in module %s]"),
5815 namei, map.name_count,
5816 objfile_name (map.dwarf2_per_objfile->objfile));
5817 return NULL;
5818 }
5819
5820 const ULONGEST namei_entry_offs
5821 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5822 + namei * map.offset_size),
5823 map.offset_size, map.dwarf5_byte_order);
5824 return map.entry_pool + namei_entry_offs;
5825 }
5826
5827 /* See dw2_debug_names_iterator. */
5828
5829 dwarf2_per_cu_data *
5830 dw2_debug_names_iterator::next ()
5831 {
5832 if (m_addr == NULL)
5833 return NULL;
5834
5835 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5836 struct objfile *objfile = dwarf2_per_objfile->objfile;
5837 bfd *const abfd = objfile->obfd;
5838
5839 again:
5840
5841 unsigned int bytes_read;
5842 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5843 m_addr += bytes_read;
5844 if (abbrev == 0)
5845 return NULL;
5846
5847 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5848 if (indexval_it == m_map.abbrev_map.cend ())
5849 {
5850 complaint (_("Wrong .debug_names undefined abbrev code %s "
5851 "[in module %s]"),
5852 pulongest (abbrev), objfile_name (objfile));
5853 return NULL;
5854 }
5855 const mapped_debug_names::index_val &indexval = indexval_it->second;
5856 bool have_is_static = false;
5857 bool is_static;
5858 dwarf2_per_cu_data *per_cu = NULL;
5859 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5860 {
5861 ULONGEST ull;
5862 switch (attr.form)
5863 {
5864 case DW_FORM_implicit_const:
5865 ull = attr.implicit_const;
5866 break;
5867 case DW_FORM_flag_present:
5868 ull = 1;
5869 break;
5870 case DW_FORM_udata:
5871 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5872 m_addr += bytes_read;
5873 break;
5874 default:
5875 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5876 dwarf_form_name (attr.form),
5877 objfile_name (objfile));
5878 return NULL;
5879 }
5880 switch (attr.dw_idx)
5881 {
5882 case DW_IDX_compile_unit:
5883 /* Don't crash on bad data. */
5884 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5885 {
5886 complaint (_(".debug_names entry has bad CU index %s"
5887 " [in module %s]"),
5888 pulongest (ull),
5889 objfile_name (dwarf2_per_objfile->objfile));
5890 continue;
5891 }
5892 per_cu = dwarf2_per_objfile->get_cutu (ull);
5893 break;
5894 case DW_IDX_type_unit:
5895 /* Don't crash on bad data. */
5896 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5897 {
5898 complaint (_(".debug_names entry has bad TU index %s"
5899 " [in module %s]"),
5900 pulongest (ull),
5901 objfile_name (dwarf2_per_objfile->objfile));
5902 continue;
5903 }
5904 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5905 break;
5906 case DW_IDX_GNU_internal:
5907 if (!m_map.augmentation_is_gdb)
5908 break;
5909 have_is_static = true;
5910 is_static = true;
5911 break;
5912 case DW_IDX_GNU_external:
5913 if (!m_map.augmentation_is_gdb)
5914 break;
5915 have_is_static = true;
5916 is_static = false;
5917 break;
5918 }
5919 }
5920
5921 /* Skip if already read in. */
5922 if (per_cu->v.quick->compunit_symtab)
5923 goto again;
5924
5925 /* Check static vs global. */
5926 if (have_is_static)
5927 {
5928 const bool want_static = m_block_index != GLOBAL_BLOCK;
5929 if (m_want_specific_block && want_static != is_static)
5930 goto again;
5931 }
5932
5933 /* Match dw2_symtab_iter_next, symbol_kind
5934 and debug_names::psymbol_tag. */
5935 switch (m_domain)
5936 {
5937 case VAR_DOMAIN:
5938 switch (indexval.dwarf_tag)
5939 {
5940 case DW_TAG_variable:
5941 case DW_TAG_subprogram:
5942 /* Some types are also in VAR_DOMAIN. */
5943 case DW_TAG_typedef:
5944 case DW_TAG_structure_type:
5945 break;
5946 default:
5947 goto again;
5948 }
5949 break;
5950 case STRUCT_DOMAIN:
5951 switch (indexval.dwarf_tag)
5952 {
5953 case DW_TAG_typedef:
5954 case DW_TAG_structure_type:
5955 break;
5956 default:
5957 goto again;
5958 }
5959 break;
5960 case LABEL_DOMAIN:
5961 switch (indexval.dwarf_tag)
5962 {
5963 case 0:
5964 case DW_TAG_variable:
5965 break;
5966 default:
5967 goto again;
5968 }
5969 break;
5970 default:
5971 break;
5972 }
5973
5974 /* Match dw2_expand_symtabs_matching, symbol_kind and
5975 debug_names::psymbol_tag. */
5976 switch (m_search)
5977 {
5978 case VARIABLES_DOMAIN:
5979 switch (indexval.dwarf_tag)
5980 {
5981 case DW_TAG_variable:
5982 break;
5983 default:
5984 goto again;
5985 }
5986 break;
5987 case FUNCTIONS_DOMAIN:
5988 switch (indexval.dwarf_tag)
5989 {
5990 case DW_TAG_subprogram:
5991 break;
5992 default:
5993 goto again;
5994 }
5995 break;
5996 case TYPES_DOMAIN:
5997 switch (indexval.dwarf_tag)
5998 {
5999 case DW_TAG_typedef:
6000 case DW_TAG_structure_type:
6001 break;
6002 default:
6003 goto again;
6004 }
6005 break;
6006 default:
6007 break;
6008 }
6009
6010 return per_cu;
6011 }
6012
6013 static struct compunit_symtab *
6014 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6015 const char *name, domain_enum domain)
6016 {
6017 const block_enum block_index = static_cast<block_enum> (block_index_int);
6018 struct dwarf2_per_objfile *dwarf2_per_objfile
6019 = get_dwarf2_per_objfile (objfile);
6020
6021 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6022 if (!mapp)
6023 {
6024 /* index is NULL if OBJF_READNOW. */
6025 return NULL;
6026 }
6027 const auto &map = *mapp;
6028
6029 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6030 block_index, domain, name);
6031
6032 struct compunit_symtab *stab_best = NULL;
6033 struct dwarf2_per_cu_data *per_cu;
6034 while ((per_cu = iter.next ()) != NULL)
6035 {
6036 struct symbol *sym, *with_opaque = NULL;
6037 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6038 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6039 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6040
6041 sym = block_find_symbol (block, name, domain,
6042 block_find_non_opaque_type_preferred,
6043 &with_opaque);
6044
6045 /* Some caution must be observed with overloaded functions and
6046 methods, since the index will not contain any overload
6047 information (but NAME might contain it). */
6048
6049 if (sym != NULL
6050 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6051 return stab;
6052 if (with_opaque != NULL
6053 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6054 stab_best = stab;
6055
6056 /* Keep looking through other CUs. */
6057 }
6058
6059 return stab_best;
6060 }
6061
6062 /* This dumps minimal information about .debug_names. It is called
6063 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6064 uses this to verify that .debug_names has been loaded. */
6065
6066 static void
6067 dw2_debug_names_dump (struct objfile *objfile)
6068 {
6069 struct dwarf2_per_objfile *dwarf2_per_objfile
6070 = get_dwarf2_per_objfile (objfile);
6071
6072 gdb_assert (dwarf2_per_objfile->using_index);
6073 printf_filtered (".debug_names:");
6074 if (dwarf2_per_objfile->debug_names_table)
6075 printf_filtered (" exists\n");
6076 else
6077 printf_filtered (" faked for \"readnow\"\n");
6078 printf_filtered ("\n");
6079 }
6080
6081 static void
6082 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6083 const char *func_name)
6084 {
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
6088 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6089 if (dwarf2_per_objfile->debug_names_table)
6090 {
6091 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6092
6093 /* Note: It doesn't matter what we pass for block_index here. */
6094 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6095 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6096
6097 struct dwarf2_per_cu_data *per_cu;
6098 while ((per_cu = iter.next ()) != NULL)
6099 dw2_instantiate_symtab (per_cu, false);
6100 }
6101 }
6102
6103 static void
6104 dw2_debug_names_expand_symtabs_matching
6105 (struct objfile *objfile,
6106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6107 const lookup_name_info &lookup_name,
6108 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6109 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6110 enum search_domain kind)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 /* debug_names_table is NULL if OBJF_READNOW. */
6116 if (!dwarf2_per_objfile->debug_names_table)
6117 return;
6118
6119 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6120
6121 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6122
6123 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6124 symbol_matcher,
6125 kind, [&] (offset_type namei)
6126 {
6127 /* The name was matched, now expand corresponding CUs that were
6128 marked. */
6129 dw2_debug_names_iterator iter (map, kind, namei);
6130
6131 struct dwarf2_per_cu_data *per_cu;
6132 while ((per_cu = iter.next ()) != NULL)
6133 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6134 expansion_notify);
6135 });
6136 }
6137
6138 const struct quick_symbol_functions dwarf2_debug_names_functions =
6139 {
6140 dw2_has_symbols,
6141 dw2_find_last_source_symtab,
6142 dw2_forget_cached_source_info,
6143 dw2_map_symtabs_matching_filename,
6144 dw2_debug_names_lookup_symbol,
6145 dw2_print_stats,
6146 dw2_debug_names_dump,
6147 dw2_relocate,
6148 dw2_debug_names_expand_symtabs_for_function,
6149 dw2_expand_all_symtabs,
6150 dw2_expand_symtabs_with_fullname,
6151 dw2_map_matching_symbols,
6152 dw2_debug_names_expand_symtabs_matching,
6153 dw2_find_pc_sect_compunit_symtab,
6154 NULL,
6155 dw2_map_symbol_filenames
6156 };
6157
6158 /* See symfile.h. */
6159
6160 bool
6161 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6162 {
6163 struct dwarf2_per_objfile *dwarf2_per_objfile
6164 = get_dwarf2_per_objfile (objfile);
6165
6166 /* If we're about to read full symbols, don't bother with the
6167 indices. In this case we also don't care if some other debug
6168 format is making psymtabs, because they are all about to be
6169 expanded anyway. */
6170 if ((objfile->flags & OBJF_READNOW))
6171 {
6172 dwarf2_per_objfile->using_index = 1;
6173 create_all_comp_units (dwarf2_per_objfile);
6174 create_all_type_units (dwarf2_per_objfile);
6175 dwarf2_per_objfile->quick_file_names_table
6176 = create_quick_file_names_table
6177 (dwarf2_per_objfile->all_comp_units.size ());
6178
6179 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6180 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6181 {
6182 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6183
6184 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6185 struct dwarf2_per_cu_quick_data);
6186 }
6187
6188 /* Return 1 so that gdb sees the "quick" functions. However,
6189 these functions will be no-ops because we will have expanded
6190 all symtabs. */
6191 *index_kind = dw_index_kind::GDB_INDEX;
6192 return true;
6193 }
6194
6195 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6196 {
6197 *index_kind = dw_index_kind::DEBUG_NAMES;
6198 return true;
6199 }
6200
6201 if (dwarf2_read_index (dwarf2_per_objfile))
6202 {
6203 *index_kind = dw_index_kind::GDB_INDEX;
6204 return true;
6205 }
6206
6207 return false;
6208 }
6209
6210 \f
6211
6212 /* Build a partial symbol table. */
6213
6214 void
6215 dwarf2_build_psymtabs (struct objfile *objfile)
6216 {
6217 struct dwarf2_per_objfile *dwarf2_per_objfile
6218 = get_dwarf2_per_objfile (objfile);
6219
6220 if (objfile->global_psymbols.capacity () == 0
6221 && objfile->static_psymbols.capacity () == 0)
6222 init_psymbol_list (objfile, 1024);
6223
6224 TRY
6225 {
6226 /* This isn't really ideal: all the data we allocate on the
6227 objfile's obstack is still uselessly kept around. However,
6228 freeing it seems unsafe. */
6229 psymtab_discarder psymtabs (objfile);
6230 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6231 psymtabs.keep ();
6232 }
6233 CATCH (except, RETURN_MASK_ERROR)
6234 {
6235 exception_print (gdb_stderr, except);
6236 }
6237 END_CATCH
6238 }
6239
6240 /* Return the total length of the CU described by HEADER. */
6241
6242 static unsigned int
6243 get_cu_length (const struct comp_unit_head *header)
6244 {
6245 return header->initial_length_size + header->length;
6246 }
6247
6248 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6249
6250 static inline bool
6251 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6252 {
6253 sect_offset bottom = cu_header->sect_off;
6254 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6255
6256 return sect_off >= bottom && sect_off < top;
6257 }
6258
6259 /* Find the base address of the compilation unit for range lists and
6260 location lists. It will normally be specified by DW_AT_low_pc.
6261 In DWARF-3 draft 4, the base address could be overridden by
6262 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6263 compilation units with discontinuous ranges. */
6264
6265 static void
6266 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6267 {
6268 struct attribute *attr;
6269
6270 cu->base_known = 0;
6271 cu->base_address = 0;
6272
6273 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6274 if (attr)
6275 {
6276 cu->base_address = attr_value_as_address (attr);
6277 cu->base_known = 1;
6278 }
6279 else
6280 {
6281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6282 if (attr)
6283 {
6284 cu->base_address = attr_value_as_address (attr);
6285 cu->base_known = 1;
6286 }
6287 }
6288 }
6289
6290 /* Read in the comp unit header information from the debug_info at info_ptr.
6291 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6292 NOTE: This leaves members offset, first_die_offset to be filled in
6293 by the caller. */
6294
6295 static const gdb_byte *
6296 read_comp_unit_head (struct comp_unit_head *cu_header,
6297 const gdb_byte *info_ptr,
6298 struct dwarf2_section_info *section,
6299 rcuh_kind section_kind)
6300 {
6301 int signed_addr;
6302 unsigned int bytes_read;
6303 const char *filename = get_section_file_name (section);
6304 bfd *abfd = get_section_bfd_owner (section);
6305
6306 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6307 cu_header->initial_length_size = bytes_read;
6308 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6309 info_ptr += bytes_read;
6310 cu_header->version = read_2_bytes (abfd, info_ptr);
6311 info_ptr += 2;
6312 if (cu_header->version < 5)
6313 switch (section_kind)
6314 {
6315 case rcuh_kind::COMPILE:
6316 cu_header->unit_type = DW_UT_compile;
6317 break;
6318 case rcuh_kind::TYPE:
6319 cu_header->unit_type = DW_UT_type;
6320 break;
6321 default:
6322 internal_error (__FILE__, __LINE__,
6323 _("read_comp_unit_head: invalid section_kind"));
6324 }
6325 else
6326 {
6327 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6328 (read_1_byte (abfd, info_ptr));
6329 info_ptr += 1;
6330 switch (cu_header->unit_type)
6331 {
6332 case DW_UT_compile:
6333 if (section_kind != rcuh_kind::COMPILE)
6334 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6335 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6336 filename);
6337 break;
6338 case DW_UT_type:
6339 section_kind = rcuh_kind::TYPE;
6340 break;
6341 default:
6342 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6343 "(is %d, should be %d or %d) [in module %s]"),
6344 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6345 }
6346
6347 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6348 info_ptr += 1;
6349 }
6350 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6351 cu_header,
6352 &bytes_read);
6353 info_ptr += bytes_read;
6354 if (cu_header->version < 5)
6355 {
6356 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6357 info_ptr += 1;
6358 }
6359 signed_addr = bfd_get_sign_extend_vma (abfd);
6360 if (signed_addr < 0)
6361 internal_error (__FILE__, __LINE__,
6362 _("read_comp_unit_head: dwarf from non elf file"));
6363 cu_header->signed_addr_p = signed_addr;
6364
6365 if (section_kind == rcuh_kind::TYPE)
6366 {
6367 LONGEST type_offset;
6368
6369 cu_header->signature = read_8_bytes (abfd, info_ptr);
6370 info_ptr += 8;
6371
6372 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6373 info_ptr += bytes_read;
6374 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6375 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6376 error (_("Dwarf Error: Too big type_offset in compilation unit "
6377 "header (is %s) [in module %s]"), plongest (type_offset),
6378 filename);
6379 }
6380
6381 return info_ptr;
6382 }
6383
6384 /* Helper function that returns the proper abbrev section for
6385 THIS_CU. */
6386
6387 static struct dwarf2_section_info *
6388 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6389 {
6390 struct dwarf2_section_info *abbrev;
6391 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6392
6393 if (this_cu->is_dwz)
6394 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6395 else
6396 abbrev = &dwarf2_per_objfile->abbrev;
6397
6398 return abbrev;
6399 }
6400
6401 /* Subroutine of read_and_check_comp_unit_head and
6402 read_and_check_type_unit_head to simplify them.
6403 Perform various error checking on the header. */
6404
6405 static void
6406 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6407 struct comp_unit_head *header,
6408 struct dwarf2_section_info *section,
6409 struct dwarf2_section_info *abbrev_section)
6410 {
6411 const char *filename = get_section_file_name (section);
6412
6413 if (header->version < 2 || header->version > 5)
6414 error (_("Dwarf Error: wrong version in compilation unit header "
6415 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6416 filename);
6417
6418 if (to_underlying (header->abbrev_sect_off)
6419 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6420 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6421 "(offset %s + 6) [in module %s]"),
6422 sect_offset_str (header->abbrev_sect_off),
6423 sect_offset_str (header->sect_off),
6424 filename);
6425
6426 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6427 avoid potential 32-bit overflow. */
6428 if (((ULONGEST) header->sect_off + get_cu_length (header))
6429 > section->size)
6430 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6431 "(offset %s + 0) [in module %s]"),
6432 header->length, sect_offset_str (header->sect_off),
6433 filename);
6434 }
6435
6436 /* Read in a CU/TU header and perform some basic error checking.
6437 The contents of the header are stored in HEADER.
6438 The result is a pointer to the start of the first DIE. */
6439
6440 static const gdb_byte *
6441 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6442 struct comp_unit_head *header,
6443 struct dwarf2_section_info *section,
6444 struct dwarf2_section_info *abbrev_section,
6445 const gdb_byte *info_ptr,
6446 rcuh_kind section_kind)
6447 {
6448 const gdb_byte *beg_of_comp_unit = info_ptr;
6449
6450 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6451
6452 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6453
6454 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6455
6456 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6457 abbrev_section);
6458
6459 return info_ptr;
6460 }
6461
6462 /* Fetch the abbreviation table offset from a comp or type unit header. */
6463
6464 static sect_offset
6465 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6466 struct dwarf2_section_info *section,
6467 sect_offset sect_off)
6468 {
6469 bfd *abfd = get_section_bfd_owner (section);
6470 const gdb_byte *info_ptr;
6471 unsigned int initial_length_size, offset_size;
6472 uint16_t version;
6473
6474 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6475 info_ptr = section->buffer + to_underlying (sect_off);
6476 read_initial_length (abfd, info_ptr, &initial_length_size);
6477 offset_size = initial_length_size == 4 ? 4 : 8;
6478 info_ptr += initial_length_size;
6479
6480 version = read_2_bytes (abfd, info_ptr);
6481 info_ptr += 2;
6482 if (version >= 5)
6483 {
6484 /* Skip unit type and address size. */
6485 info_ptr += 2;
6486 }
6487
6488 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6489 }
6490
6491 /* Allocate a new partial symtab for file named NAME and mark this new
6492 partial symtab as being an include of PST. */
6493
6494 static void
6495 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6496 struct objfile *objfile)
6497 {
6498 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6499
6500 if (!IS_ABSOLUTE_PATH (subpst->filename))
6501 {
6502 /* It shares objfile->objfile_obstack. */
6503 subpst->dirname = pst->dirname;
6504 }
6505
6506 subpst->textlow = 0;
6507 subpst->texthigh = 0;
6508
6509 subpst->dependencies
6510 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6511 subpst->dependencies[0] = pst;
6512 subpst->number_of_dependencies = 1;
6513
6514 subpst->globals_offset = 0;
6515 subpst->n_global_syms = 0;
6516 subpst->statics_offset = 0;
6517 subpst->n_static_syms = 0;
6518 subpst->compunit_symtab = NULL;
6519 subpst->read_symtab = pst->read_symtab;
6520 subpst->readin = 0;
6521
6522 /* No private part is necessary for include psymtabs. This property
6523 can be used to differentiate between such include psymtabs and
6524 the regular ones. */
6525 subpst->read_symtab_private = NULL;
6526 }
6527
6528 /* Read the Line Number Program data and extract the list of files
6529 included by the source file represented by PST. Build an include
6530 partial symtab for each of these included files. */
6531
6532 static void
6533 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6534 struct die_info *die,
6535 struct partial_symtab *pst)
6536 {
6537 line_header_up lh;
6538 struct attribute *attr;
6539
6540 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6541 if (attr)
6542 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6543 if (lh == NULL)
6544 return; /* No linetable, so no includes. */
6545
6546 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6547 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6548 }
6549
6550 static hashval_t
6551 hash_signatured_type (const void *item)
6552 {
6553 const struct signatured_type *sig_type
6554 = (const struct signatured_type *) item;
6555
6556 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6557 return sig_type->signature;
6558 }
6559
6560 static int
6561 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6562 {
6563 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6564 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6565
6566 return lhs->signature == rhs->signature;
6567 }
6568
6569 /* Allocate a hash table for signatured types. */
6570
6571 static htab_t
6572 allocate_signatured_type_table (struct objfile *objfile)
6573 {
6574 return htab_create_alloc_ex (41,
6575 hash_signatured_type,
6576 eq_signatured_type,
6577 NULL,
6578 &objfile->objfile_obstack,
6579 hashtab_obstack_allocate,
6580 dummy_obstack_deallocate);
6581 }
6582
6583 /* A helper function to add a signatured type CU to a table. */
6584
6585 static int
6586 add_signatured_type_cu_to_table (void **slot, void *datum)
6587 {
6588 struct signatured_type *sigt = (struct signatured_type *) *slot;
6589 std::vector<signatured_type *> *all_type_units
6590 = (std::vector<signatured_type *> *) datum;
6591
6592 all_type_units->push_back (sigt);
6593
6594 return 1;
6595 }
6596
6597 /* A helper for create_debug_types_hash_table. Read types from SECTION
6598 and fill them into TYPES_HTAB. It will process only type units,
6599 therefore DW_UT_type. */
6600
6601 static void
6602 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6603 struct dwo_file *dwo_file,
6604 dwarf2_section_info *section, htab_t &types_htab,
6605 rcuh_kind section_kind)
6606 {
6607 struct objfile *objfile = dwarf2_per_objfile->objfile;
6608 struct dwarf2_section_info *abbrev_section;
6609 bfd *abfd;
6610 const gdb_byte *info_ptr, *end_ptr;
6611
6612 abbrev_section = (dwo_file != NULL
6613 ? &dwo_file->sections.abbrev
6614 : &dwarf2_per_objfile->abbrev);
6615
6616 if (dwarf_read_debug)
6617 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6618 get_section_name (section),
6619 get_section_file_name (abbrev_section));
6620
6621 dwarf2_read_section (objfile, section);
6622 info_ptr = section->buffer;
6623
6624 if (info_ptr == NULL)
6625 return;
6626
6627 /* We can't set abfd until now because the section may be empty or
6628 not present, in which case the bfd is unknown. */
6629 abfd = get_section_bfd_owner (section);
6630
6631 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6632 because we don't need to read any dies: the signature is in the
6633 header. */
6634
6635 end_ptr = info_ptr + section->size;
6636 while (info_ptr < end_ptr)
6637 {
6638 struct signatured_type *sig_type;
6639 struct dwo_unit *dwo_tu;
6640 void **slot;
6641 const gdb_byte *ptr = info_ptr;
6642 struct comp_unit_head header;
6643 unsigned int length;
6644
6645 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6646
6647 /* Initialize it due to a false compiler warning. */
6648 header.signature = -1;
6649 header.type_cu_offset_in_tu = (cu_offset) -1;
6650
6651 /* We need to read the type's signature in order to build the hash
6652 table, but we don't need anything else just yet. */
6653
6654 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6655 abbrev_section, ptr, section_kind);
6656
6657 length = get_cu_length (&header);
6658
6659 /* Skip dummy type units. */
6660 if (ptr >= info_ptr + length
6661 || peek_abbrev_code (abfd, ptr) == 0
6662 || header.unit_type != DW_UT_type)
6663 {
6664 info_ptr += length;
6665 continue;
6666 }
6667
6668 if (types_htab == NULL)
6669 {
6670 if (dwo_file)
6671 types_htab = allocate_dwo_unit_table (objfile);
6672 else
6673 types_htab = allocate_signatured_type_table (objfile);
6674 }
6675
6676 if (dwo_file)
6677 {
6678 sig_type = NULL;
6679 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6680 struct dwo_unit);
6681 dwo_tu->dwo_file = dwo_file;
6682 dwo_tu->signature = header.signature;
6683 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6684 dwo_tu->section = section;
6685 dwo_tu->sect_off = sect_off;
6686 dwo_tu->length = length;
6687 }
6688 else
6689 {
6690 /* N.B.: type_offset is not usable if this type uses a DWO file.
6691 The real type_offset is in the DWO file. */
6692 dwo_tu = NULL;
6693 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6694 struct signatured_type);
6695 sig_type->signature = header.signature;
6696 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6697 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6698 sig_type->per_cu.is_debug_types = 1;
6699 sig_type->per_cu.section = section;
6700 sig_type->per_cu.sect_off = sect_off;
6701 sig_type->per_cu.length = length;
6702 }
6703
6704 slot = htab_find_slot (types_htab,
6705 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6706 INSERT);
6707 gdb_assert (slot != NULL);
6708 if (*slot != NULL)
6709 {
6710 sect_offset dup_sect_off;
6711
6712 if (dwo_file)
6713 {
6714 const struct dwo_unit *dup_tu
6715 = (const struct dwo_unit *) *slot;
6716
6717 dup_sect_off = dup_tu->sect_off;
6718 }
6719 else
6720 {
6721 const struct signatured_type *dup_tu
6722 = (const struct signatured_type *) *slot;
6723
6724 dup_sect_off = dup_tu->per_cu.sect_off;
6725 }
6726
6727 complaint (_("debug type entry at offset %s is duplicate to"
6728 " the entry at offset %s, signature %s"),
6729 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6730 hex_string (header.signature));
6731 }
6732 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6733
6734 if (dwarf_read_debug > 1)
6735 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6736 sect_offset_str (sect_off),
6737 hex_string (header.signature));
6738
6739 info_ptr += length;
6740 }
6741 }
6742
6743 /* Create the hash table of all entries in the .debug_types
6744 (or .debug_types.dwo) section(s).
6745 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6746 otherwise it is NULL.
6747
6748 The result is a pointer to the hash table or NULL if there are no types.
6749
6750 Note: This function processes DWO files only, not DWP files. */
6751
6752 static void
6753 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6754 struct dwo_file *dwo_file,
6755 VEC (dwarf2_section_info_def) *types,
6756 htab_t &types_htab)
6757 {
6758 int ix;
6759 struct dwarf2_section_info *section;
6760
6761 if (VEC_empty (dwarf2_section_info_def, types))
6762 return;
6763
6764 for (ix = 0;
6765 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6766 ++ix)
6767 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6768 types_htab, rcuh_kind::TYPE);
6769 }
6770
6771 /* Create the hash table of all entries in the .debug_types section,
6772 and initialize all_type_units.
6773 The result is zero if there is an error (e.g. missing .debug_types section),
6774 otherwise non-zero. */
6775
6776 static int
6777 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6778 {
6779 htab_t types_htab = NULL;
6780
6781 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6782 &dwarf2_per_objfile->info, types_htab,
6783 rcuh_kind::COMPILE);
6784 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6785 dwarf2_per_objfile->types, types_htab);
6786 if (types_htab == NULL)
6787 {
6788 dwarf2_per_objfile->signatured_types = NULL;
6789 return 0;
6790 }
6791
6792 dwarf2_per_objfile->signatured_types = types_htab;
6793
6794 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6795 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6796
6797 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6798 &dwarf2_per_objfile->all_type_units);
6799
6800 return 1;
6801 }
6802
6803 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6804 If SLOT is non-NULL, it is the entry to use in the hash table.
6805 Otherwise we find one. */
6806
6807 static struct signatured_type *
6808 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6809 void **slot)
6810 {
6811 struct objfile *objfile = dwarf2_per_objfile->objfile;
6812
6813 if (dwarf2_per_objfile->all_type_units.size ()
6814 == dwarf2_per_objfile->all_type_units.capacity ())
6815 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6816
6817 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6818 struct signatured_type);
6819
6820 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6821 sig_type->signature = sig;
6822 sig_type->per_cu.is_debug_types = 1;
6823 if (dwarf2_per_objfile->using_index)
6824 {
6825 sig_type->per_cu.v.quick =
6826 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6827 struct dwarf2_per_cu_quick_data);
6828 }
6829
6830 if (slot == NULL)
6831 {
6832 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6833 sig_type, INSERT);
6834 }
6835 gdb_assert (*slot == NULL);
6836 *slot = sig_type;
6837 /* The rest of sig_type must be filled in by the caller. */
6838 return sig_type;
6839 }
6840
6841 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6842 Fill in SIG_ENTRY with DWO_ENTRY. */
6843
6844 static void
6845 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6846 struct signatured_type *sig_entry,
6847 struct dwo_unit *dwo_entry)
6848 {
6849 /* Make sure we're not clobbering something we don't expect to. */
6850 gdb_assert (! sig_entry->per_cu.queued);
6851 gdb_assert (sig_entry->per_cu.cu == NULL);
6852 if (dwarf2_per_objfile->using_index)
6853 {
6854 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6855 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6856 }
6857 else
6858 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6859 gdb_assert (sig_entry->signature == dwo_entry->signature);
6860 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6861 gdb_assert (sig_entry->type_unit_group == NULL);
6862 gdb_assert (sig_entry->dwo_unit == NULL);
6863
6864 sig_entry->per_cu.section = dwo_entry->section;
6865 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6866 sig_entry->per_cu.length = dwo_entry->length;
6867 sig_entry->per_cu.reading_dwo_directly = 1;
6868 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6869 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6870 sig_entry->dwo_unit = dwo_entry;
6871 }
6872
6873 /* Subroutine of lookup_signatured_type.
6874 If we haven't read the TU yet, create the signatured_type data structure
6875 for a TU to be read in directly from a DWO file, bypassing the stub.
6876 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6877 using .gdb_index, then when reading a CU we want to stay in the DWO file
6878 containing that CU. Otherwise we could end up reading several other DWO
6879 files (due to comdat folding) to process the transitive closure of all the
6880 mentioned TUs, and that can be slow. The current DWO file will have every
6881 type signature that it needs.
6882 We only do this for .gdb_index because in the psymtab case we already have
6883 to read all the DWOs to build the type unit groups. */
6884
6885 static struct signatured_type *
6886 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6887 {
6888 struct dwarf2_per_objfile *dwarf2_per_objfile
6889 = cu->per_cu->dwarf2_per_objfile;
6890 struct objfile *objfile = dwarf2_per_objfile->objfile;
6891 struct dwo_file *dwo_file;
6892 struct dwo_unit find_dwo_entry, *dwo_entry;
6893 struct signatured_type find_sig_entry, *sig_entry;
6894 void **slot;
6895
6896 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6897
6898 /* If TU skeletons have been removed then we may not have read in any
6899 TUs yet. */
6900 if (dwarf2_per_objfile->signatured_types == NULL)
6901 {
6902 dwarf2_per_objfile->signatured_types
6903 = allocate_signatured_type_table (objfile);
6904 }
6905
6906 /* We only ever need to read in one copy of a signatured type.
6907 Use the global signatured_types array to do our own comdat-folding
6908 of types. If this is the first time we're reading this TU, and
6909 the TU has an entry in .gdb_index, replace the recorded data from
6910 .gdb_index with this TU. */
6911
6912 find_sig_entry.signature = sig;
6913 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6914 &find_sig_entry, INSERT);
6915 sig_entry = (struct signatured_type *) *slot;
6916
6917 /* We can get here with the TU already read, *or* in the process of being
6918 read. Don't reassign the global entry to point to this DWO if that's
6919 the case. Also note that if the TU is already being read, it may not
6920 have come from a DWO, the program may be a mix of Fission-compiled
6921 code and non-Fission-compiled code. */
6922
6923 /* Have we already tried to read this TU?
6924 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6925 needn't exist in the global table yet). */
6926 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6927 return sig_entry;
6928
6929 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6930 dwo_unit of the TU itself. */
6931 dwo_file = cu->dwo_unit->dwo_file;
6932
6933 /* Ok, this is the first time we're reading this TU. */
6934 if (dwo_file->tus == NULL)
6935 return NULL;
6936 find_dwo_entry.signature = sig;
6937 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6938 if (dwo_entry == NULL)
6939 return NULL;
6940
6941 /* If the global table doesn't have an entry for this TU, add one. */
6942 if (sig_entry == NULL)
6943 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6944
6945 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6946 sig_entry->per_cu.tu_read = 1;
6947 return sig_entry;
6948 }
6949
6950 /* Subroutine of lookup_signatured_type.
6951 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6952 then try the DWP file. If the TU stub (skeleton) has been removed then
6953 it won't be in .gdb_index. */
6954
6955 static struct signatured_type *
6956 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6957 {
6958 struct dwarf2_per_objfile *dwarf2_per_objfile
6959 = cu->per_cu->dwarf2_per_objfile;
6960 struct objfile *objfile = dwarf2_per_objfile->objfile;
6961 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6962 struct dwo_unit *dwo_entry;
6963 struct signatured_type find_sig_entry, *sig_entry;
6964 void **slot;
6965
6966 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6967 gdb_assert (dwp_file != NULL);
6968
6969 /* If TU skeletons have been removed then we may not have read in any
6970 TUs yet. */
6971 if (dwarf2_per_objfile->signatured_types == NULL)
6972 {
6973 dwarf2_per_objfile->signatured_types
6974 = allocate_signatured_type_table (objfile);
6975 }
6976
6977 find_sig_entry.signature = sig;
6978 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6979 &find_sig_entry, INSERT);
6980 sig_entry = (struct signatured_type *) *slot;
6981
6982 /* Have we already tried to read this TU?
6983 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6984 needn't exist in the global table yet). */
6985 if (sig_entry != NULL)
6986 return sig_entry;
6987
6988 if (dwp_file->tus == NULL)
6989 return NULL;
6990 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6991 sig, 1 /* is_debug_types */);
6992 if (dwo_entry == NULL)
6993 return NULL;
6994
6995 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6996 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6997
6998 return sig_entry;
6999 }
7000
7001 /* Lookup a signature based type for DW_FORM_ref_sig8.
7002 Returns NULL if signature SIG is not present in the table.
7003 It is up to the caller to complain about this. */
7004
7005 static struct signatured_type *
7006 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7007 {
7008 struct dwarf2_per_objfile *dwarf2_per_objfile
7009 = cu->per_cu->dwarf2_per_objfile;
7010
7011 if (cu->dwo_unit
7012 && dwarf2_per_objfile->using_index)
7013 {
7014 /* We're in a DWO/DWP file, and we're using .gdb_index.
7015 These cases require special processing. */
7016 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7017 return lookup_dwo_signatured_type (cu, sig);
7018 else
7019 return lookup_dwp_signatured_type (cu, sig);
7020 }
7021 else
7022 {
7023 struct signatured_type find_entry, *entry;
7024
7025 if (dwarf2_per_objfile->signatured_types == NULL)
7026 return NULL;
7027 find_entry.signature = sig;
7028 entry = ((struct signatured_type *)
7029 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7030 return entry;
7031 }
7032 }
7033 \f
7034 /* Low level DIE reading support. */
7035
7036 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7037
7038 static void
7039 init_cu_die_reader (struct die_reader_specs *reader,
7040 struct dwarf2_cu *cu,
7041 struct dwarf2_section_info *section,
7042 struct dwo_file *dwo_file,
7043 struct abbrev_table *abbrev_table)
7044 {
7045 gdb_assert (section->readin && section->buffer != NULL);
7046 reader->abfd = get_section_bfd_owner (section);
7047 reader->cu = cu;
7048 reader->dwo_file = dwo_file;
7049 reader->die_section = section;
7050 reader->buffer = section->buffer;
7051 reader->buffer_end = section->buffer + section->size;
7052 reader->comp_dir = NULL;
7053 reader->abbrev_table = abbrev_table;
7054 }
7055
7056 /* Subroutine of init_cutu_and_read_dies to simplify it.
7057 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7058 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7059 already.
7060
7061 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7062 from it to the DIE in the DWO. If NULL we are skipping the stub.
7063 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7064 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7065 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7066 STUB_COMP_DIR may be non-NULL.
7067 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7068 are filled in with the info of the DIE from the DWO file.
7069 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7070 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7071 kept around for at least as long as *RESULT_READER.
7072
7073 The result is non-zero if a valid (non-dummy) DIE was found. */
7074
7075 static int
7076 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7077 struct dwo_unit *dwo_unit,
7078 struct die_info *stub_comp_unit_die,
7079 const char *stub_comp_dir,
7080 struct die_reader_specs *result_reader,
7081 const gdb_byte **result_info_ptr,
7082 struct die_info **result_comp_unit_die,
7083 int *result_has_children,
7084 abbrev_table_up *result_dwo_abbrev_table)
7085 {
7086 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7087 struct objfile *objfile = dwarf2_per_objfile->objfile;
7088 struct dwarf2_cu *cu = this_cu->cu;
7089 bfd *abfd;
7090 const gdb_byte *begin_info_ptr, *info_ptr;
7091 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7092 int i,num_extra_attrs;
7093 struct dwarf2_section_info *dwo_abbrev_section;
7094 struct attribute *attr;
7095 struct die_info *comp_unit_die;
7096
7097 /* At most one of these may be provided. */
7098 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7099
7100 /* These attributes aren't processed until later:
7101 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7102 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7103 referenced later. However, these attributes are found in the stub
7104 which we won't have later. In order to not impose this complication
7105 on the rest of the code, we read them here and copy them to the
7106 DWO CU/TU die. */
7107
7108 stmt_list = NULL;
7109 low_pc = NULL;
7110 high_pc = NULL;
7111 ranges = NULL;
7112 comp_dir = NULL;
7113
7114 if (stub_comp_unit_die != NULL)
7115 {
7116 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7117 DWO file. */
7118 if (! this_cu->is_debug_types)
7119 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7120 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7121 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7122 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7123 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7124
7125 /* There should be a DW_AT_addr_base attribute here (if needed).
7126 We need the value before we can process DW_FORM_GNU_addr_index. */
7127 cu->addr_base = 0;
7128 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7129 if (attr)
7130 cu->addr_base = DW_UNSND (attr);
7131
7132 /* There should be a DW_AT_ranges_base attribute here (if needed).
7133 We need the value before we can process DW_AT_ranges. */
7134 cu->ranges_base = 0;
7135 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7136 if (attr)
7137 cu->ranges_base = DW_UNSND (attr);
7138 }
7139 else if (stub_comp_dir != NULL)
7140 {
7141 /* Reconstruct the comp_dir attribute to simplify the code below. */
7142 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7143 comp_dir->name = DW_AT_comp_dir;
7144 comp_dir->form = DW_FORM_string;
7145 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7146 DW_STRING (comp_dir) = stub_comp_dir;
7147 }
7148
7149 /* Set up for reading the DWO CU/TU. */
7150 cu->dwo_unit = dwo_unit;
7151 dwarf2_section_info *section = dwo_unit->section;
7152 dwarf2_read_section (objfile, section);
7153 abfd = get_section_bfd_owner (section);
7154 begin_info_ptr = info_ptr = (section->buffer
7155 + to_underlying (dwo_unit->sect_off));
7156 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7157
7158 if (this_cu->is_debug_types)
7159 {
7160 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7161
7162 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7163 &cu->header, section,
7164 dwo_abbrev_section,
7165 info_ptr, rcuh_kind::TYPE);
7166 /* This is not an assert because it can be caused by bad debug info. */
7167 if (sig_type->signature != cu->header.signature)
7168 {
7169 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7170 " TU at offset %s [in module %s]"),
7171 hex_string (sig_type->signature),
7172 hex_string (cu->header.signature),
7173 sect_offset_str (dwo_unit->sect_off),
7174 bfd_get_filename (abfd));
7175 }
7176 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7177 /* For DWOs coming from DWP files, we don't know the CU length
7178 nor the type's offset in the TU until now. */
7179 dwo_unit->length = get_cu_length (&cu->header);
7180 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7181
7182 /* Establish the type offset that can be used to lookup the type.
7183 For DWO files, we don't know it until now. */
7184 sig_type->type_offset_in_section
7185 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7186 }
7187 else
7188 {
7189 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7190 &cu->header, section,
7191 dwo_abbrev_section,
7192 info_ptr, rcuh_kind::COMPILE);
7193 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7194 /* For DWOs coming from DWP files, we don't know the CU length
7195 until now. */
7196 dwo_unit->length = get_cu_length (&cu->header);
7197 }
7198
7199 *result_dwo_abbrev_table
7200 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7201 cu->header.abbrev_sect_off);
7202 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7203 result_dwo_abbrev_table->get ());
7204
7205 /* Read in the die, but leave space to copy over the attributes
7206 from the stub. This has the benefit of simplifying the rest of
7207 the code - all the work to maintain the illusion of a single
7208 DW_TAG_{compile,type}_unit DIE is done here. */
7209 num_extra_attrs = ((stmt_list != NULL)
7210 + (low_pc != NULL)
7211 + (high_pc != NULL)
7212 + (ranges != NULL)
7213 + (comp_dir != NULL));
7214 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7215 result_has_children, num_extra_attrs);
7216
7217 /* Copy over the attributes from the stub to the DIE we just read in. */
7218 comp_unit_die = *result_comp_unit_die;
7219 i = comp_unit_die->num_attrs;
7220 if (stmt_list != NULL)
7221 comp_unit_die->attrs[i++] = *stmt_list;
7222 if (low_pc != NULL)
7223 comp_unit_die->attrs[i++] = *low_pc;
7224 if (high_pc != NULL)
7225 comp_unit_die->attrs[i++] = *high_pc;
7226 if (ranges != NULL)
7227 comp_unit_die->attrs[i++] = *ranges;
7228 if (comp_dir != NULL)
7229 comp_unit_die->attrs[i++] = *comp_dir;
7230 comp_unit_die->num_attrs += num_extra_attrs;
7231
7232 if (dwarf_die_debug)
7233 {
7234 fprintf_unfiltered (gdb_stdlog,
7235 "Read die from %s@0x%x of %s:\n",
7236 get_section_name (section),
7237 (unsigned) (begin_info_ptr - section->buffer),
7238 bfd_get_filename (abfd));
7239 dump_die (comp_unit_die, dwarf_die_debug);
7240 }
7241
7242 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7243 TUs by skipping the stub and going directly to the entry in the DWO file.
7244 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7245 to get it via circuitous means. Blech. */
7246 if (comp_dir != NULL)
7247 result_reader->comp_dir = DW_STRING (comp_dir);
7248
7249 /* Skip dummy compilation units. */
7250 if (info_ptr >= begin_info_ptr + dwo_unit->length
7251 || peek_abbrev_code (abfd, info_ptr) == 0)
7252 return 0;
7253
7254 *result_info_ptr = info_ptr;
7255 return 1;
7256 }
7257
7258 /* Subroutine of init_cutu_and_read_dies to simplify it.
7259 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7260 Returns NULL if the specified DWO unit cannot be found. */
7261
7262 static struct dwo_unit *
7263 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7264 struct die_info *comp_unit_die)
7265 {
7266 struct dwarf2_cu *cu = this_cu->cu;
7267 ULONGEST signature;
7268 struct dwo_unit *dwo_unit;
7269 const char *comp_dir, *dwo_name;
7270
7271 gdb_assert (cu != NULL);
7272
7273 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7274 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7275 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7276
7277 if (this_cu->is_debug_types)
7278 {
7279 struct signatured_type *sig_type;
7280
7281 /* Since this_cu is the first member of struct signatured_type,
7282 we can go from a pointer to one to a pointer to the other. */
7283 sig_type = (struct signatured_type *) this_cu;
7284 signature = sig_type->signature;
7285 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7286 }
7287 else
7288 {
7289 struct attribute *attr;
7290
7291 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7292 if (! attr)
7293 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7294 " [in module %s]"),
7295 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7296 signature = DW_UNSND (attr);
7297 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7298 signature);
7299 }
7300
7301 return dwo_unit;
7302 }
7303
7304 /* Subroutine of init_cutu_and_read_dies to simplify it.
7305 See it for a description of the parameters.
7306 Read a TU directly from a DWO file, bypassing the stub. */
7307
7308 static void
7309 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7310 int use_existing_cu, int keep,
7311 die_reader_func_ftype *die_reader_func,
7312 void *data)
7313 {
7314 std::unique_ptr<dwarf2_cu> new_cu;
7315 struct signatured_type *sig_type;
7316 struct die_reader_specs reader;
7317 const gdb_byte *info_ptr;
7318 struct die_info *comp_unit_die;
7319 int has_children;
7320 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7321
7322 /* Verify we can do the following downcast, and that we have the
7323 data we need. */
7324 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7325 sig_type = (struct signatured_type *) this_cu;
7326 gdb_assert (sig_type->dwo_unit != NULL);
7327
7328 if (use_existing_cu && this_cu->cu != NULL)
7329 {
7330 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7331 /* There's no need to do the rereading_dwo_cu handling that
7332 init_cutu_and_read_dies does since we don't read the stub. */
7333 }
7334 else
7335 {
7336 /* If !use_existing_cu, this_cu->cu must be NULL. */
7337 gdb_assert (this_cu->cu == NULL);
7338 new_cu.reset (new dwarf2_cu (this_cu));
7339 }
7340
7341 /* A future optimization, if needed, would be to use an existing
7342 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7343 could share abbrev tables. */
7344
7345 /* The abbreviation table used by READER, this must live at least as long as
7346 READER. */
7347 abbrev_table_up dwo_abbrev_table;
7348
7349 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7350 NULL /* stub_comp_unit_die */,
7351 sig_type->dwo_unit->dwo_file->comp_dir,
7352 &reader, &info_ptr,
7353 &comp_unit_die, &has_children,
7354 &dwo_abbrev_table) == 0)
7355 {
7356 /* Dummy die. */
7357 return;
7358 }
7359
7360 /* All the "real" work is done here. */
7361 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7362
7363 /* This duplicates the code in init_cutu_and_read_dies,
7364 but the alternative is making the latter more complex.
7365 This function is only for the special case of using DWO files directly:
7366 no point in overly complicating the general case just to handle this. */
7367 if (new_cu != NULL && keep)
7368 {
7369 /* Link this CU into read_in_chain. */
7370 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7371 dwarf2_per_objfile->read_in_chain = this_cu;
7372 /* The chain owns it now. */
7373 new_cu.release ();
7374 }
7375 }
7376
7377 /* Initialize a CU (or TU) and read its DIEs.
7378 If the CU defers to a DWO file, read the DWO file as well.
7379
7380 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7381 Otherwise the table specified in the comp unit header is read in and used.
7382 This is an optimization for when we already have the abbrev table.
7383
7384 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7385 Otherwise, a new CU is allocated with xmalloc.
7386
7387 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7388 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7389
7390 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7391 linker) then DIE_READER_FUNC will not get called. */
7392
7393 static void
7394 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7395 struct abbrev_table *abbrev_table,
7396 int use_existing_cu, int keep,
7397 bool skip_partial,
7398 die_reader_func_ftype *die_reader_func,
7399 void *data)
7400 {
7401 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7402 struct objfile *objfile = dwarf2_per_objfile->objfile;
7403 struct dwarf2_section_info *section = this_cu->section;
7404 bfd *abfd = get_section_bfd_owner (section);
7405 struct dwarf2_cu *cu;
7406 const gdb_byte *begin_info_ptr, *info_ptr;
7407 struct die_reader_specs reader;
7408 struct die_info *comp_unit_die;
7409 int has_children;
7410 struct attribute *attr;
7411 struct signatured_type *sig_type = NULL;
7412 struct dwarf2_section_info *abbrev_section;
7413 /* Non-zero if CU currently points to a DWO file and we need to
7414 reread it. When this happens we need to reread the skeleton die
7415 before we can reread the DWO file (this only applies to CUs, not TUs). */
7416 int rereading_dwo_cu = 0;
7417
7418 if (dwarf_die_debug)
7419 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7420 this_cu->is_debug_types ? "type" : "comp",
7421 sect_offset_str (this_cu->sect_off));
7422
7423 if (use_existing_cu)
7424 gdb_assert (keep);
7425
7426 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7427 file (instead of going through the stub), short-circuit all of this. */
7428 if (this_cu->reading_dwo_directly)
7429 {
7430 /* Narrow down the scope of possibilities to have to understand. */
7431 gdb_assert (this_cu->is_debug_types);
7432 gdb_assert (abbrev_table == NULL);
7433 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7434 die_reader_func, data);
7435 return;
7436 }
7437
7438 /* This is cheap if the section is already read in. */
7439 dwarf2_read_section (objfile, section);
7440
7441 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7442
7443 abbrev_section = get_abbrev_section_for_cu (this_cu);
7444
7445 std::unique_ptr<dwarf2_cu> new_cu;
7446 if (use_existing_cu && this_cu->cu != NULL)
7447 {
7448 cu = this_cu->cu;
7449 /* If this CU is from a DWO file we need to start over, we need to
7450 refetch the attributes from the skeleton CU.
7451 This could be optimized by retrieving those attributes from when we
7452 were here the first time: the previous comp_unit_die was stored in
7453 comp_unit_obstack. But there's no data yet that we need this
7454 optimization. */
7455 if (cu->dwo_unit != NULL)
7456 rereading_dwo_cu = 1;
7457 }
7458 else
7459 {
7460 /* If !use_existing_cu, this_cu->cu must be NULL. */
7461 gdb_assert (this_cu->cu == NULL);
7462 new_cu.reset (new dwarf2_cu (this_cu));
7463 cu = new_cu.get ();
7464 }
7465
7466 /* Get the header. */
7467 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7468 {
7469 /* We already have the header, there's no need to read it in again. */
7470 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7471 }
7472 else
7473 {
7474 if (this_cu->is_debug_types)
7475 {
7476 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7477 &cu->header, section,
7478 abbrev_section, info_ptr,
7479 rcuh_kind::TYPE);
7480
7481 /* Since per_cu is the first member of struct signatured_type,
7482 we can go from a pointer to one to a pointer to the other. */
7483 sig_type = (struct signatured_type *) this_cu;
7484 gdb_assert (sig_type->signature == cu->header.signature);
7485 gdb_assert (sig_type->type_offset_in_tu
7486 == cu->header.type_cu_offset_in_tu);
7487 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7488
7489 /* LENGTH has not been set yet for type units if we're
7490 using .gdb_index. */
7491 this_cu->length = get_cu_length (&cu->header);
7492
7493 /* Establish the type offset that can be used to lookup the type. */
7494 sig_type->type_offset_in_section =
7495 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7496
7497 this_cu->dwarf_version = cu->header.version;
7498 }
7499 else
7500 {
7501 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7502 &cu->header, section,
7503 abbrev_section,
7504 info_ptr,
7505 rcuh_kind::COMPILE);
7506
7507 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7508 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7509 this_cu->dwarf_version = cu->header.version;
7510 }
7511 }
7512
7513 /* Skip dummy compilation units. */
7514 if (info_ptr >= begin_info_ptr + this_cu->length
7515 || peek_abbrev_code (abfd, info_ptr) == 0)
7516 return;
7517
7518 /* If we don't have them yet, read the abbrevs for this compilation unit.
7519 And if we need to read them now, make sure they're freed when we're
7520 done (own the table through ABBREV_TABLE_HOLDER). */
7521 abbrev_table_up abbrev_table_holder;
7522 if (abbrev_table != NULL)
7523 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7524 else
7525 {
7526 abbrev_table_holder
7527 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7528 cu->header.abbrev_sect_off);
7529 abbrev_table = abbrev_table_holder.get ();
7530 }
7531
7532 /* Read the top level CU/TU die. */
7533 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7534 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7535
7536 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7537 return;
7538
7539 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7540 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7541 table from the DWO file and pass the ownership over to us. It will be
7542 referenced from READER, so we must make sure to free it after we're done
7543 with READER.
7544
7545 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7546 DWO CU, that this test will fail (the attribute will not be present). */
7547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7548 abbrev_table_up dwo_abbrev_table;
7549 if (attr)
7550 {
7551 struct dwo_unit *dwo_unit;
7552 struct die_info *dwo_comp_unit_die;
7553
7554 if (has_children)
7555 {
7556 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7557 " has children (offset %s) [in module %s]"),
7558 sect_offset_str (this_cu->sect_off),
7559 bfd_get_filename (abfd));
7560 }
7561 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7562 if (dwo_unit != NULL)
7563 {
7564 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7565 comp_unit_die, NULL,
7566 &reader, &info_ptr,
7567 &dwo_comp_unit_die, &has_children,
7568 &dwo_abbrev_table) == 0)
7569 {
7570 /* Dummy die. */
7571 return;
7572 }
7573 comp_unit_die = dwo_comp_unit_die;
7574 }
7575 else
7576 {
7577 /* Yikes, we couldn't find the rest of the DIE, we only have
7578 the stub. A complaint has already been logged. There's
7579 not much more we can do except pass on the stub DIE to
7580 die_reader_func. We don't want to throw an error on bad
7581 debug info. */
7582 }
7583 }
7584
7585 /* All of the above is setup for this call. Yikes. */
7586 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7587
7588 /* Done, clean up. */
7589 if (new_cu != NULL && keep)
7590 {
7591 /* Link this CU into read_in_chain. */
7592 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7593 dwarf2_per_objfile->read_in_chain = this_cu;
7594 /* The chain owns it now. */
7595 new_cu.release ();
7596 }
7597 }
7598
7599 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7600 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7601 to have already done the lookup to find the DWO file).
7602
7603 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7604 THIS_CU->is_debug_types, but nothing else.
7605
7606 We fill in THIS_CU->length.
7607
7608 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7609 linker) then DIE_READER_FUNC will not get called.
7610
7611 THIS_CU->cu is always freed when done.
7612 This is done in order to not leave THIS_CU->cu in a state where we have
7613 to care whether it refers to the "main" CU or the DWO CU. */
7614
7615 static void
7616 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7617 struct dwo_file *dwo_file,
7618 die_reader_func_ftype *die_reader_func,
7619 void *data)
7620 {
7621 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7622 struct objfile *objfile = dwarf2_per_objfile->objfile;
7623 struct dwarf2_section_info *section = this_cu->section;
7624 bfd *abfd = get_section_bfd_owner (section);
7625 struct dwarf2_section_info *abbrev_section;
7626 const gdb_byte *begin_info_ptr, *info_ptr;
7627 struct die_reader_specs reader;
7628 struct die_info *comp_unit_die;
7629 int has_children;
7630
7631 if (dwarf_die_debug)
7632 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7633 this_cu->is_debug_types ? "type" : "comp",
7634 sect_offset_str (this_cu->sect_off));
7635
7636 gdb_assert (this_cu->cu == NULL);
7637
7638 abbrev_section = (dwo_file != NULL
7639 ? &dwo_file->sections.abbrev
7640 : get_abbrev_section_for_cu (this_cu));
7641
7642 /* This is cheap if the section is already read in. */
7643 dwarf2_read_section (objfile, section);
7644
7645 struct dwarf2_cu cu (this_cu);
7646
7647 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7648 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7649 &cu.header, section,
7650 abbrev_section, info_ptr,
7651 (this_cu->is_debug_types
7652 ? rcuh_kind::TYPE
7653 : rcuh_kind::COMPILE));
7654
7655 this_cu->length = get_cu_length (&cu.header);
7656
7657 /* Skip dummy compilation units. */
7658 if (info_ptr >= begin_info_ptr + this_cu->length
7659 || peek_abbrev_code (abfd, info_ptr) == 0)
7660 return;
7661
7662 abbrev_table_up abbrev_table
7663 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7664 cu.header.abbrev_sect_off);
7665
7666 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7667 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7668
7669 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7670 }
7671
7672 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7673 does not lookup the specified DWO file.
7674 This cannot be used to read DWO files.
7675
7676 THIS_CU->cu is always freed when done.
7677 This is done in order to not leave THIS_CU->cu in a state where we have
7678 to care whether it refers to the "main" CU or the DWO CU.
7679 We can revisit this if the data shows there's a performance issue. */
7680
7681 static void
7682 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7683 die_reader_func_ftype *die_reader_func,
7684 void *data)
7685 {
7686 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7687 }
7688 \f
7689 /* Type Unit Groups.
7690
7691 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7692 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7693 so that all types coming from the same compilation (.o file) are grouped
7694 together. A future step could be to put the types in the same symtab as
7695 the CU the types ultimately came from. */
7696
7697 static hashval_t
7698 hash_type_unit_group (const void *item)
7699 {
7700 const struct type_unit_group *tu_group
7701 = (const struct type_unit_group *) item;
7702
7703 return hash_stmt_list_entry (&tu_group->hash);
7704 }
7705
7706 static int
7707 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7708 {
7709 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7710 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7711
7712 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7713 }
7714
7715 /* Allocate a hash table for type unit groups. */
7716
7717 static htab_t
7718 allocate_type_unit_groups_table (struct objfile *objfile)
7719 {
7720 return htab_create_alloc_ex (3,
7721 hash_type_unit_group,
7722 eq_type_unit_group,
7723 NULL,
7724 &objfile->objfile_obstack,
7725 hashtab_obstack_allocate,
7726 dummy_obstack_deallocate);
7727 }
7728
7729 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7730 partial symtabs. We combine several TUs per psymtab to not let the size
7731 of any one psymtab grow too big. */
7732 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7733 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7734
7735 /* Helper routine for get_type_unit_group.
7736 Create the type_unit_group object used to hold one or more TUs. */
7737
7738 static struct type_unit_group *
7739 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7740 {
7741 struct dwarf2_per_objfile *dwarf2_per_objfile
7742 = cu->per_cu->dwarf2_per_objfile;
7743 struct objfile *objfile = dwarf2_per_objfile->objfile;
7744 struct dwarf2_per_cu_data *per_cu;
7745 struct type_unit_group *tu_group;
7746
7747 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7748 struct type_unit_group);
7749 per_cu = &tu_group->per_cu;
7750 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7751
7752 if (dwarf2_per_objfile->using_index)
7753 {
7754 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7755 struct dwarf2_per_cu_quick_data);
7756 }
7757 else
7758 {
7759 unsigned int line_offset = to_underlying (line_offset_struct);
7760 struct partial_symtab *pst;
7761 char *name;
7762
7763 /* Give the symtab a useful name for debug purposes. */
7764 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7765 name = xstrprintf ("<type_units_%d>",
7766 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7767 else
7768 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7769
7770 pst = create_partial_symtab (per_cu, name);
7771 pst->anonymous = 1;
7772
7773 xfree (name);
7774 }
7775
7776 tu_group->hash.dwo_unit = cu->dwo_unit;
7777 tu_group->hash.line_sect_off = line_offset_struct;
7778
7779 return tu_group;
7780 }
7781
7782 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7783 STMT_LIST is a DW_AT_stmt_list attribute. */
7784
7785 static struct type_unit_group *
7786 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7787 {
7788 struct dwarf2_per_objfile *dwarf2_per_objfile
7789 = cu->per_cu->dwarf2_per_objfile;
7790 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7791 struct type_unit_group *tu_group;
7792 void **slot;
7793 unsigned int line_offset;
7794 struct type_unit_group type_unit_group_for_lookup;
7795
7796 if (dwarf2_per_objfile->type_unit_groups == NULL)
7797 {
7798 dwarf2_per_objfile->type_unit_groups =
7799 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7800 }
7801
7802 /* Do we need to create a new group, or can we use an existing one? */
7803
7804 if (stmt_list)
7805 {
7806 line_offset = DW_UNSND (stmt_list);
7807 ++tu_stats->nr_symtab_sharers;
7808 }
7809 else
7810 {
7811 /* Ugh, no stmt_list. Rare, but we have to handle it.
7812 We can do various things here like create one group per TU or
7813 spread them over multiple groups to split up the expansion work.
7814 To avoid worst case scenarios (too many groups or too large groups)
7815 we, umm, group them in bunches. */
7816 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7817 | (tu_stats->nr_stmt_less_type_units
7818 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7819 ++tu_stats->nr_stmt_less_type_units;
7820 }
7821
7822 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7823 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7824 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7825 &type_unit_group_for_lookup, INSERT);
7826 if (*slot != NULL)
7827 {
7828 tu_group = (struct type_unit_group *) *slot;
7829 gdb_assert (tu_group != NULL);
7830 }
7831 else
7832 {
7833 sect_offset line_offset_struct = (sect_offset) line_offset;
7834 tu_group = create_type_unit_group (cu, line_offset_struct);
7835 *slot = tu_group;
7836 ++tu_stats->nr_symtabs;
7837 }
7838
7839 return tu_group;
7840 }
7841 \f
7842 /* Partial symbol tables. */
7843
7844 /* Create a psymtab named NAME and assign it to PER_CU.
7845
7846 The caller must fill in the following details:
7847 dirname, textlow, texthigh. */
7848
7849 static struct partial_symtab *
7850 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7851 {
7852 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7853 struct partial_symtab *pst;
7854
7855 pst = start_psymtab_common (objfile, name, 0,
7856 objfile->global_psymbols,
7857 objfile->static_psymbols);
7858
7859 pst->psymtabs_addrmap_supported = 1;
7860
7861 /* This is the glue that links PST into GDB's symbol API. */
7862 pst->read_symtab_private = per_cu;
7863 pst->read_symtab = dwarf2_read_symtab;
7864 per_cu->v.psymtab = pst;
7865
7866 return pst;
7867 }
7868
7869 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7870 type. */
7871
7872 struct process_psymtab_comp_unit_data
7873 {
7874 /* True if we are reading a DW_TAG_partial_unit. */
7875
7876 int want_partial_unit;
7877
7878 /* The "pretend" language that is used if the CU doesn't declare a
7879 language. */
7880
7881 enum language pretend_language;
7882 };
7883
7884 /* die_reader_func for process_psymtab_comp_unit. */
7885
7886 static void
7887 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7888 const gdb_byte *info_ptr,
7889 struct die_info *comp_unit_die,
7890 int has_children,
7891 void *data)
7892 {
7893 struct dwarf2_cu *cu = reader->cu;
7894 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7895 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7896 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7897 CORE_ADDR baseaddr;
7898 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7899 struct partial_symtab *pst;
7900 enum pc_bounds_kind cu_bounds_kind;
7901 const char *filename;
7902 struct process_psymtab_comp_unit_data *info
7903 = (struct process_psymtab_comp_unit_data *) data;
7904
7905 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7906 return;
7907
7908 gdb_assert (! per_cu->is_debug_types);
7909
7910 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7911
7912 cu->list_in_scope = &file_symbols;
7913
7914 /* Allocate a new partial symbol table structure. */
7915 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7916 if (filename == NULL)
7917 filename = "";
7918
7919 pst = create_partial_symtab (per_cu, filename);
7920
7921 /* This must be done before calling dwarf2_build_include_psymtabs. */
7922 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7923
7924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7925
7926 dwarf2_find_base_address (comp_unit_die, cu);
7927
7928 /* Possibly set the default values of LOWPC and HIGHPC from
7929 `DW_AT_ranges'. */
7930 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7931 &best_highpc, cu, pst);
7932 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7933 /* Store the contiguous range if it is not empty; it can be empty for
7934 CUs with no code. */
7935 addrmap_set_empty (objfile->psymtabs_addrmap,
7936 gdbarch_adjust_dwarf2_addr (gdbarch,
7937 best_lowpc + baseaddr),
7938 gdbarch_adjust_dwarf2_addr (gdbarch,
7939 best_highpc + baseaddr) - 1,
7940 pst);
7941
7942 /* Check if comp unit has_children.
7943 If so, read the rest of the partial symbols from this comp unit.
7944 If not, there's no more debug_info for this comp unit. */
7945 if (has_children)
7946 {
7947 struct partial_die_info *first_die;
7948 CORE_ADDR lowpc, highpc;
7949
7950 lowpc = ((CORE_ADDR) -1);
7951 highpc = ((CORE_ADDR) 0);
7952
7953 first_die = load_partial_dies (reader, info_ptr, 1);
7954
7955 scan_partial_symbols (first_die, &lowpc, &highpc,
7956 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7957
7958 /* If we didn't find a lowpc, set it to highpc to avoid
7959 complaints from `maint check'. */
7960 if (lowpc == ((CORE_ADDR) -1))
7961 lowpc = highpc;
7962
7963 /* If the compilation unit didn't have an explicit address range,
7964 then use the information extracted from its child dies. */
7965 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7966 {
7967 best_lowpc = lowpc;
7968 best_highpc = highpc;
7969 }
7970 }
7971 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7972 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7973
7974 end_psymtab_common (objfile, pst);
7975
7976 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7977 {
7978 int i;
7979 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7980 struct dwarf2_per_cu_data *iter;
7981
7982 /* Fill in 'dependencies' here; we fill in 'users' in a
7983 post-pass. */
7984 pst->number_of_dependencies = len;
7985 pst->dependencies =
7986 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7987 for (i = 0;
7988 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7989 i, iter);
7990 ++i)
7991 pst->dependencies[i] = iter->v.psymtab;
7992
7993 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7994 }
7995
7996 /* Get the list of files included in the current compilation unit,
7997 and build a psymtab for each of them. */
7998 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7999
8000 if (dwarf_read_debug)
8001 {
8002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8003
8004 fprintf_unfiltered (gdb_stdlog,
8005 "Psymtab for %s unit @%s: %s - %s"
8006 ", %d global, %d static syms\n",
8007 per_cu->is_debug_types ? "type" : "comp",
8008 sect_offset_str (per_cu->sect_off),
8009 paddress (gdbarch, pst->textlow),
8010 paddress (gdbarch, pst->texthigh),
8011 pst->n_global_syms, pst->n_static_syms);
8012 }
8013 }
8014
8015 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8016 Process compilation unit THIS_CU for a psymtab. */
8017
8018 static void
8019 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8020 int want_partial_unit,
8021 enum language pretend_language)
8022 {
8023 /* If this compilation unit was already read in, free the
8024 cached copy in order to read it in again. This is
8025 necessary because we skipped some symbols when we first
8026 read in the compilation unit (see load_partial_dies).
8027 This problem could be avoided, but the benefit is unclear. */
8028 if (this_cu->cu != NULL)
8029 free_one_cached_comp_unit (this_cu);
8030
8031 if (this_cu->is_debug_types)
8032 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8033 build_type_psymtabs_reader, NULL);
8034 else
8035 {
8036 process_psymtab_comp_unit_data info;
8037 info.want_partial_unit = want_partial_unit;
8038 info.pretend_language = pretend_language;
8039 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8040 process_psymtab_comp_unit_reader, &info);
8041 }
8042
8043 /* Age out any secondary CUs. */
8044 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8045 }
8046
8047 /* Reader function for build_type_psymtabs. */
8048
8049 static void
8050 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8051 const gdb_byte *info_ptr,
8052 struct die_info *type_unit_die,
8053 int has_children,
8054 void *data)
8055 {
8056 struct dwarf2_per_objfile *dwarf2_per_objfile
8057 = reader->cu->per_cu->dwarf2_per_objfile;
8058 struct objfile *objfile = dwarf2_per_objfile->objfile;
8059 struct dwarf2_cu *cu = reader->cu;
8060 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8061 struct signatured_type *sig_type;
8062 struct type_unit_group *tu_group;
8063 struct attribute *attr;
8064 struct partial_die_info *first_die;
8065 CORE_ADDR lowpc, highpc;
8066 struct partial_symtab *pst;
8067
8068 gdb_assert (data == NULL);
8069 gdb_assert (per_cu->is_debug_types);
8070 sig_type = (struct signatured_type *) per_cu;
8071
8072 if (! has_children)
8073 return;
8074
8075 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8076 tu_group = get_type_unit_group (cu, attr);
8077
8078 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8079
8080 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8081 cu->list_in_scope = &file_symbols;
8082 pst = create_partial_symtab (per_cu, "");
8083 pst->anonymous = 1;
8084
8085 first_die = load_partial_dies (reader, info_ptr, 1);
8086
8087 lowpc = (CORE_ADDR) -1;
8088 highpc = (CORE_ADDR) 0;
8089 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8090
8091 end_psymtab_common (objfile, pst);
8092 }
8093
8094 /* Struct used to sort TUs by their abbreviation table offset. */
8095
8096 struct tu_abbrev_offset
8097 {
8098 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8099 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8100 {}
8101
8102 signatured_type *sig_type;
8103 sect_offset abbrev_offset;
8104 };
8105
8106 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8107
8108 static bool
8109 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8110 const struct tu_abbrev_offset &b)
8111 {
8112 return a.abbrev_offset < b.abbrev_offset;
8113 }
8114
8115 /* Efficiently read all the type units.
8116 This does the bulk of the work for build_type_psymtabs.
8117
8118 The efficiency is because we sort TUs by the abbrev table they use and
8119 only read each abbrev table once. In one program there are 200K TUs
8120 sharing 8K abbrev tables.
8121
8122 The main purpose of this function is to support building the
8123 dwarf2_per_objfile->type_unit_groups table.
8124 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8125 can collapse the search space by grouping them by stmt_list.
8126 The savings can be significant, in the same program from above the 200K TUs
8127 share 8K stmt_list tables.
8128
8129 FUNC is expected to call get_type_unit_group, which will create the
8130 struct type_unit_group if necessary and add it to
8131 dwarf2_per_objfile->type_unit_groups. */
8132
8133 static void
8134 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8135 {
8136 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8137 abbrev_table_up abbrev_table;
8138 sect_offset abbrev_offset;
8139
8140 /* It's up to the caller to not call us multiple times. */
8141 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8142
8143 if (dwarf2_per_objfile->all_type_units.empty ())
8144 return;
8145
8146 /* TUs typically share abbrev tables, and there can be way more TUs than
8147 abbrev tables. Sort by abbrev table to reduce the number of times we
8148 read each abbrev table in.
8149 Alternatives are to punt or to maintain a cache of abbrev tables.
8150 This is simpler and efficient enough for now.
8151
8152 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8153 symtab to use). Typically TUs with the same abbrev offset have the same
8154 stmt_list value too so in practice this should work well.
8155
8156 The basic algorithm here is:
8157
8158 sort TUs by abbrev table
8159 for each TU with same abbrev table:
8160 read abbrev table if first user
8161 read TU top level DIE
8162 [IWBN if DWO skeletons had DW_AT_stmt_list]
8163 call FUNC */
8164
8165 if (dwarf_read_debug)
8166 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8167
8168 /* Sort in a separate table to maintain the order of all_type_units
8169 for .gdb_index: TU indices directly index all_type_units. */
8170 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8171 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8172
8173 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8174 sorted_by_abbrev.emplace_back
8175 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8176 sig_type->per_cu.section,
8177 sig_type->per_cu.sect_off));
8178
8179 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8180 sort_tu_by_abbrev_offset);
8181
8182 abbrev_offset = (sect_offset) ~(unsigned) 0;
8183
8184 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8185 {
8186 /* Switch to the next abbrev table if necessary. */
8187 if (abbrev_table == NULL
8188 || tu.abbrev_offset != abbrev_offset)
8189 {
8190 abbrev_offset = tu.abbrev_offset;
8191 abbrev_table =
8192 abbrev_table_read_table (dwarf2_per_objfile,
8193 &dwarf2_per_objfile->abbrev,
8194 abbrev_offset);
8195 ++tu_stats->nr_uniq_abbrev_tables;
8196 }
8197
8198 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8199 0, 0, false, build_type_psymtabs_reader, NULL);
8200 }
8201 }
8202
8203 /* Print collected type unit statistics. */
8204
8205 static void
8206 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8207 {
8208 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8209
8210 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8211 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8212 dwarf2_per_objfile->all_type_units.size ());
8213 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8214 tu_stats->nr_uniq_abbrev_tables);
8215 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8216 tu_stats->nr_symtabs);
8217 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8218 tu_stats->nr_symtab_sharers);
8219 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8220 tu_stats->nr_stmt_less_type_units);
8221 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8222 tu_stats->nr_all_type_units_reallocs);
8223 }
8224
8225 /* Traversal function for build_type_psymtabs. */
8226
8227 static int
8228 build_type_psymtab_dependencies (void **slot, void *info)
8229 {
8230 struct dwarf2_per_objfile *dwarf2_per_objfile
8231 = (struct dwarf2_per_objfile *) info;
8232 struct objfile *objfile = dwarf2_per_objfile->objfile;
8233 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8234 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8235 struct partial_symtab *pst = per_cu->v.psymtab;
8236 int len = VEC_length (sig_type_ptr, tu_group->tus);
8237 struct signatured_type *iter;
8238 int i;
8239
8240 gdb_assert (len > 0);
8241 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8242
8243 pst->number_of_dependencies = len;
8244 pst->dependencies =
8245 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8246 for (i = 0;
8247 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8248 ++i)
8249 {
8250 gdb_assert (iter->per_cu.is_debug_types);
8251 pst->dependencies[i] = iter->per_cu.v.psymtab;
8252 iter->type_unit_group = tu_group;
8253 }
8254
8255 VEC_free (sig_type_ptr, tu_group->tus);
8256
8257 return 1;
8258 }
8259
8260 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8261 Build partial symbol tables for the .debug_types comp-units. */
8262
8263 static void
8264 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8265 {
8266 if (! create_all_type_units (dwarf2_per_objfile))
8267 return;
8268
8269 build_type_psymtabs_1 (dwarf2_per_objfile);
8270 }
8271
8272 /* Traversal function for process_skeletonless_type_unit.
8273 Read a TU in a DWO file and build partial symbols for it. */
8274
8275 static int
8276 process_skeletonless_type_unit (void **slot, void *info)
8277 {
8278 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8279 struct dwarf2_per_objfile *dwarf2_per_objfile
8280 = (struct dwarf2_per_objfile *) info;
8281 struct signatured_type find_entry, *entry;
8282
8283 /* If this TU doesn't exist in the global table, add it and read it in. */
8284
8285 if (dwarf2_per_objfile->signatured_types == NULL)
8286 {
8287 dwarf2_per_objfile->signatured_types
8288 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8289 }
8290
8291 find_entry.signature = dwo_unit->signature;
8292 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8293 INSERT);
8294 /* If we've already seen this type there's nothing to do. What's happening
8295 is we're doing our own version of comdat-folding here. */
8296 if (*slot != NULL)
8297 return 1;
8298
8299 /* This does the job that create_all_type_units would have done for
8300 this TU. */
8301 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8302 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8303 *slot = entry;
8304
8305 /* This does the job that build_type_psymtabs_1 would have done. */
8306 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8307 build_type_psymtabs_reader, NULL);
8308
8309 return 1;
8310 }
8311
8312 /* Traversal function for process_skeletonless_type_units. */
8313
8314 static int
8315 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8316 {
8317 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8318
8319 if (dwo_file->tus != NULL)
8320 {
8321 htab_traverse_noresize (dwo_file->tus,
8322 process_skeletonless_type_unit, info);
8323 }
8324
8325 return 1;
8326 }
8327
8328 /* Scan all TUs of DWO files, verifying we've processed them.
8329 This is needed in case a TU was emitted without its skeleton.
8330 Note: This can't be done until we know what all the DWO files are. */
8331
8332 static void
8333 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8334 {
8335 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8336 if (get_dwp_file (dwarf2_per_objfile) == NULL
8337 && dwarf2_per_objfile->dwo_files != NULL)
8338 {
8339 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8340 process_dwo_file_for_skeletonless_type_units,
8341 dwarf2_per_objfile);
8342 }
8343 }
8344
8345 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8346
8347 static void
8348 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8349 {
8350 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8351 {
8352 struct partial_symtab *pst = per_cu->v.psymtab;
8353
8354 if (pst == NULL)
8355 continue;
8356
8357 for (int j = 0; j < pst->number_of_dependencies; ++j)
8358 {
8359 /* Set the 'user' field only if it is not already set. */
8360 if (pst->dependencies[j]->user == NULL)
8361 pst->dependencies[j]->user = pst;
8362 }
8363 }
8364 }
8365
8366 /* Build the partial symbol table by doing a quick pass through the
8367 .debug_info and .debug_abbrev sections. */
8368
8369 static void
8370 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8371 {
8372 struct objfile *objfile = dwarf2_per_objfile->objfile;
8373
8374 if (dwarf_read_debug)
8375 {
8376 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8377 objfile_name (objfile));
8378 }
8379
8380 dwarf2_per_objfile->reading_partial_symbols = 1;
8381
8382 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8383
8384 /* Any cached compilation units will be linked by the per-objfile
8385 read_in_chain. Make sure to free them when we're done. */
8386 free_cached_comp_units freer (dwarf2_per_objfile);
8387
8388 build_type_psymtabs (dwarf2_per_objfile);
8389
8390 create_all_comp_units (dwarf2_per_objfile);
8391
8392 /* Create a temporary address map on a temporary obstack. We later
8393 copy this to the final obstack. */
8394 auto_obstack temp_obstack;
8395
8396 scoped_restore save_psymtabs_addrmap
8397 = make_scoped_restore (&objfile->psymtabs_addrmap,
8398 addrmap_create_mutable (&temp_obstack));
8399
8400 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8401 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8402
8403 /* This has to wait until we read the CUs, we need the list of DWOs. */
8404 process_skeletonless_type_units (dwarf2_per_objfile);
8405
8406 /* Now that all TUs have been processed we can fill in the dependencies. */
8407 if (dwarf2_per_objfile->type_unit_groups != NULL)
8408 {
8409 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8410 build_type_psymtab_dependencies, dwarf2_per_objfile);
8411 }
8412
8413 if (dwarf_read_debug)
8414 print_tu_stats (dwarf2_per_objfile);
8415
8416 set_partial_user (dwarf2_per_objfile);
8417
8418 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8419 &objfile->objfile_obstack);
8420 /* At this point we want to keep the address map. */
8421 save_psymtabs_addrmap.release ();
8422
8423 if (dwarf_read_debug)
8424 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8425 objfile_name (objfile));
8426 }
8427
8428 /* die_reader_func for load_partial_comp_unit. */
8429
8430 static void
8431 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8432 const gdb_byte *info_ptr,
8433 struct die_info *comp_unit_die,
8434 int has_children,
8435 void *data)
8436 {
8437 struct dwarf2_cu *cu = reader->cu;
8438
8439 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8440
8441 /* Check if comp unit has_children.
8442 If so, read the rest of the partial symbols from this comp unit.
8443 If not, there's no more debug_info for this comp unit. */
8444 if (has_children)
8445 load_partial_dies (reader, info_ptr, 0);
8446 }
8447
8448 /* Load the partial DIEs for a secondary CU into memory.
8449 This is also used when rereading a primary CU with load_all_dies. */
8450
8451 static void
8452 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8453 {
8454 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8455 load_partial_comp_unit_reader, NULL);
8456 }
8457
8458 static void
8459 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8460 struct dwarf2_section_info *section,
8461 struct dwarf2_section_info *abbrev_section,
8462 unsigned int is_dwz)
8463 {
8464 const gdb_byte *info_ptr;
8465 struct objfile *objfile = dwarf2_per_objfile->objfile;
8466
8467 if (dwarf_read_debug)
8468 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8469 get_section_name (section),
8470 get_section_file_name (section));
8471
8472 dwarf2_read_section (objfile, section);
8473
8474 info_ptr = section->buffer;
8475
8476 while (info_ptr < section->buffer + section->size)
8477 {
8478 struct dwarf2_per_cu_data *this_cu;
8479
8480 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8481
8482 comp_unit_head cu_header;
8483 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8484 abbrev_section, info_ptr,
8485 rcuh_kind::COMPILE);
8486
8487 /* Save the compilation unit for later lookup. */
8488 if (cu_header.unit_type != DW_UT_type)
8489 {
8490 this_cu = XOBNEW (&objfile->objfile_obstack,
8491 struct dwarf2_per_cu_data);
8492 memset (this_cu, 0, sizeof (*this_cu));
8493 }
8494 else
8495 {
8496 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8497 struct signatured_type);
8498 memset (sig_type, 0, sizeof (*sig_type));
8499 sig_type->signature = cu_header.signature;
8500 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8501 this_cu = &sig_type->per_cu;
8502 }
8503 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8504 this_cu->sect_off = sect_off;
8505 this_cu->length = cu_header.length + cu_header.initial_length_size;
8506 this_cu->is_dwz = is_dwz;
8507 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8508 this_cu->section = section;
8509
8510 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8511
8512 info_ptr = info_ptr + this_cu->length;
8513 }
8514 }
8515
8516 /* Create a list of all compilation units in OBJFILE.
8517 This is only done for -readnow and building partial symtabs. */
8518
8519 static void
8520 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8521 {
8522 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8523 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8524 &dwarf2_per_objfile->abbrev, 0);
8525
8526 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8527 if (dwz != NULL)
8528 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8529 1);
8530 }
8531
8532 /* Process all loaded DIEs for compilation unit CU, starting at
8533 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8534 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8535 DW_AT_ranges). See the comments of add_partial_subprogram on how
8536 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8537
8538 static void
8539 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8540 CORE_ADDR *highpc, int set_addrmap,
8541 struct dwarf2_cu *cu)
8542 {
8543 struct partial_die_info *pdi;
8544
8545 /* Now, march along the PDI's, descending into ones which have
8546 interesting children but skipping the children of the other ones,
8547 until we reach the end of the compilation unit. */
8548
8549 pdi = first_die;
8550
8551 while (pdi != NULL)
8552 {
8553 pdi->fixup (cu);
8554
8555 /* Anonymous namespaces or modules have no name but have interesting
8556 children, so we need to look at them. Ditto for anonymous
8557 enums. */
8558
8559 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8560 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8561 || pdi->tag == DW_TAG_imported_unit
8562 || pdi->tag == DW_TAG_inlined_subroutine)
8563 {
8564 switch (pdi->tag)
8565 {
8566 case DW_TAG_subprogram:
8567 case DW_TAG_inlined_subroutine:
8568 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8569 break;
8570 case DW_TAG_constant:
8571 case DW_TAG_variable:
8572 case DW_TAG_typedef:
8573 case DW_TAG_union_type:
8574 if (!pdi->is_declaration)
8575 {
8576 add_partial_symbol (pdi, cu);
8577 }
8578 break;
8579 case DW_TAG_class_type:
8580 case DW_TAG_interface_type:
8581 case DW_TAG_structure_type:
8582 if (!pdi->is_declaration)
8583 {
8584 add_partial_symbol (pdi, cu);
8585 }
8586 if ((cu->language == language_rust
8587 || cu->language == language_cplus) && pdi->has_children)
8588 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8589 set_addrmap, cu);
8590 break;
8591 case DW_TAG_enumeration_type:
8592 if (!pdi->is_declaration)
8593 add_partial_enumeration (pdi, cu);
8594 break;
8595 case DW_TAG_base_type:
8596 case DW_TAG_subrange_type:
8597 /* File scope base type definitions are added to the partial
8598 symbol table. */
8599 add_partial_symbol (pdi, cu);
8600 break;
8601 case DW_TAG_namespace:
8602 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8603 break;
8604 case DW_TAG_module:
8605 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8606 break;
8607 case DW_TAG_imported_unit:
8608 {
8609 struct dwarf2_per_cu_data *per_cu;
8610
8611 /* For now we don't handle imported units in type units. */
8612 if (cu->per_cu->is_debug_types)
8613 {
8614 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8615 " supported in type units [in module %s]"),
8616 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8617 }
8618
8619 per_cu = dwarf2_find_containing_comp_unit
8620 (pdi->d.sect_off, pdi->is_dwz,
8621 cu->per_cu->dwarf2_per_objfile);
8622
8623 /* Go read the partial unit, if needed. */
8624 if (per_cu->v.psymtab == NULL)
8625 process_psymtab_comp_unit (per_cu, 1, cu->language);
8626
8627 VEC_safe_push (dwarf2_per_cu_ptr,
8628 cu->per_cu->imported_symtabs, per_cu);
8629 }
8630 break;
8631 case DW_TAG_imported_declaration:
8632 add_partial_symbol (pdi, cu);
8633 break;
8634 default:
8635 break;
8636 }
8637 }
8638
8639 /* If the die has a sibling, skip to the sibling. */
8640
8641 pdi = pdi->die_sibling;
8642 }
8643 }
8644
8645 /* Functions used to compute the fully scoped name of a partial DIE.
8646
8647 Normally, this is simple. For C++, the parent DIE's fully scoped
8648 name is concatenated with "::" and the partial DIE's name.
8649 Enumerators are an exception; they use the scope of their parent
8650 enumeration type, i.e. the name of the enumeration type is not
8651 prepended to the enumerator.
8652
8653 There are two complexities. One is DW_AT_specification; in this
8654 case "parent" means the parent of the target of the specification,
8655 instead of the direct parent of the DIE. The other is compilers
8656 which do not emit DW_TAG_namespace; in this case we try to guess
8657 the fully qualified name of structure types from their members'
8658 linkage names. This must be done using the DIE's children rather
8659 than the children of any DW_AT_specification target. We only need
8660 to do this for structures at the top level, i.e. if the target of
8661 any DW_AT_specification (if any; otherwise the DIE itself) does not
8662 have a parent. */
8663
8664 /* Compute the scope prefix associated with PDI's parent, in
8665 compilation unit CU. The result will be allocated on CU's
8666 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8667 field. NULL is returned if no prefix is necessary. */
8668 static const char *
8669 partial_die_parent_scope (struct partial_die_info *pdi,
8670 struct dwarf2_cu *cu)
8671 {
8672 const char *grandparent_scope;
8673 struct partial_die_info *parent, *real_pdi;
8674
8675 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8676 then this means the parent of the specification DIE. */
8677
8678 real_pdi = pdi;
8679 while (real_pdi->has_specification)
8680 real_pdi = find_partial_die (real_pdi->spec_offset,
8681 real_pdi->spec_is_dwz, cu);
8682
8683 parent = real_pdi->die_parent;
8684 if (parent == NULL)
8685 return NULL;
8686
8687 if (parent->scope_set)
8688 return parent->scope;
8689
8690 parent->fixup (cu);
8691
8692 grandparent_scope = partial_die_parent_scope (parent, cu);
8693
8694 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8695 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8696 Work around this problem here. */
8697 if (cu->language == language_cplus
8698 && parent->tag == DW_TAG_namespace
8699 && strcmp (parent->name, "::") == 0
8700 && grandparent_scope == NULL)
8701 {
8702 parent->scope = NULL;
8703 parent->scope_set = 1;
8704 return NULL;
8705 }
8706
8707 if (pdi->tag == DW_TAG_enumerator)
8708 /* Enumerators should not get the name of the enumeration as a prefix. */
8709 parent->scope = grandparent_scope;
8710 else if (parent->tag == DW_TAG_namespace
8711 || parent->tag == DW_TAG_module
8712 || parent->tag == DW_TAG_structure_type
8713 || parent->tag == DW_TAG_class_type
8714 || parent->tag == DW_TAG_interface_type
8715 || parent->tag == DW_TAG_union_type
8716 || parent->tag == DW_TAG_enumeration_type)
8717 {
8718 if (grandparent_scope == NULL)
8719 parent->scope = parent->name;
8720 else
8721 parent->scope = typename_concat (&cu->comp_unit_obstack,
8722 grandparent_scope,
8723 parent->name, 0, cu);
8724 }
8725 else
8726 {
8727 /* FIXME drow/2004-04-01: What should we be doing with
8728 function-local names? For partial symbols, we should probably be
8729 ignoring them. */
8730 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8731 parent->tag, sect_offset_str (pdi->sect_off));
8732 parent->scope = grandparent_scope;
8733 }
8734
8735 parent->scope_set = 1;
8736 return parent->scope;
8737 }
8738
8739 /* Return the fully scoped name associated with PDI, from compilation unit
8740 CU. The result will be allocated with malloc. */
8741
8742 static char *
8743 partial_die_full_name (struct partial_die_info *pdi,
8744 struct dwarf2_cu *cu)
8745 {
8746 const char *parent_scope;
8747
8748 /* If this is a template instantiation, we can not work out the
8749 template arguments from partial DIEs. So, unfortunately, we have
8750 to go through the full DIEs. At least any work we do building
8751 types here will be reused if full symbols are loaded later. */
8752 if (pdi->has_template_arguments)
8753 {
8754 pdi->fixup (cu);
8755
8756 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8757 {
8758 struct die_info *die;
8759 struct attribute attr;
8760 struct dwarf2_cu *ref_cu = cu;
8761
8762 /* DW_FORM_ref_addr is using section offset. */
8763 attr.name = (enum dwarf_attribute) 0;
8764 attr.form = DW_FORM_ref_addr;
8765 attr.u.unsnd = to_underlying (pdi->sect_off);
8766 die = follow_die_ref (NULL, &attr, &ref_cu);
8767
8768 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8769 }
8770 }
8771
8772 parent_scope = partial_die_parent_scope (pdi, cu);
8773 if (parent_scope == NULL)
8774 return NULL;
8775 else
8776 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8777 }
8778
8779 static void
8780 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8781 {
8782 struct dwarf2_per_objfile *dwarf2_per_objfile
8783 = cu->per_cu->dwarf2_per_objfile;
8784 struct objfile *objfile = dwarf2_per_objfile->objfile;
8785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8786 CORE_ADDR addr = 0;
8787 const char *actual_name = NULL;
8788 CORE_ADDR baseaddr;
8789 char *built_actual_name;
8790
8791 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8792
8793 built_actual_name = partial_die_full_name (pdi, cu);
8794 if (built_actual_name != NULL)
8795 actual_name = built_actual_name;
8796
8797 if (actual_name == NULL)
8798 actual_name = pdi->name;
8799
8800 switch (pdi->tag)
8801 {
8802 case DW_TAG_inlined_subroutine:
8803 case DW_TAG_subprogram:
8804 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8805 if (pdi->is_external || cu->language == language_ada)
8806 {
8807 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8808 of the global scope. But in Ada, we want to be able to access
8809 nested procedures globally. So all Ada subprograms are stored
8810 in the global scope. */
8811 add_psymbol_to_list (actual_name, strlen (actual_name),
8812 built_actual_name != NULL,
8813 VAR_DOMAIN, LOC_BLOCK,
8814 &objfile->global_psymbols,
8815 addr, cu->language, objfile);
8816 }
8817 else
8818 {
8819 add_psymbol_to_list (actual_name, strlen (actual_name),
8820 built_actual_name != NULL,
8821 VAR_DOMAIN, LOC_BLOCK,
8822 &objfile->static_psymbols,
8823 addr, cu->language, objfile);
8824 }
8825
8826 if (pdi->main_subprogram && actual_name != NULL)
8827 set_objfile_main_name (objfile, actual_name, cu->language);
8828 break;
8829 case DW_TAG_constant:
8830 {
8831 std::vector<partial_symbol *> *list;
8832
8833 if (pdi->is_external)
8834 list = &objfile->global_psymbols;
8835 else
8836 list = &objfile->static_psymbols;
8837 add_psymbol_to_list (actual_name, strlen (actual_name),
8838 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8839 list, 0, cu->language, objfile);
8840 }
8841 break;
8842 case DW_TAG_variable:
8843 if (pdi->d.locdesc)
8844 addr = decode_locdesc (pdi->d.locdesc, cu);
8845
8846 if (pdi->d.locdesc
8847 && addr == 0
8848 && !dwarf2_per_objfile->has_section_at_zero)
8849 {
8850 /* A global or static variable may also have been stripped
8851 out by the linker if unused, in which case its address
8852 will be nullified; do not add such variables into partial
8853 symbol table then. */
8854 }
8855 else if (pdi->is_external)
8856 {
8857 /* Global Variable.
8858 Don't enter into the minimal symbol tables as there is
8859 a minimal symbol table entry from the ELF symbols already.
8860 Enter into partial symbol table if it has a location
8861 descriptor or a type.
8862 If the location descriptor is missing, new_symbol will create
8863 a LOC_UNRESOLVED symbol, the address of the variable will then
8864 be determined from the minimal symbol table whenever the variable
8865 is referenced.
8866 The address for the partial symbol table entry is not
8867 used by GDB, but it comes in handy for debugging partial symbol
8868 table building. */
8869
8870 if (pdi->d.locdesc || pdi->has_type)
8871 add_psymbol_to_list (actual_name, strlen (actual_name),
8872 built_actual_name != NULL,
8873 VAR_DOMAIN, LOC_STATIC,
8874 &objfile->global_psymbols,
8875 addr + baseaddr,
8876 cu->language, objfile);
8877 }
8878 else
8879 {
8880 int has_loc = pdi->d.locdesc != NULL;
8881
8882 /* Static Variable. Skip symbols whose value we cannot know (those
8883 without location descriptors or constant values). */
8884 if (!has_loc && !pdi->has_const_value)
8885 {
8886 xfree (built_actual_name);
8887 return;
8888 }
8889
8890 add_psymbol_to_list (actual_name, strlen (actual_name),
8891 built_actual_name != NULL,
8892 VAR_DOMAIN, LOC_STATIC,
8893 &objfile->static_psymbols,
8894 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8895 cu->language, objfile);
8896 }
8897 break;
8898 case DW_TAG_typedef:
8899 case DW_TAG_base_type:
8900 case DW_TAG_subrange_type:
8901 add_psymbol_to_list (actual_name, strlen (actual_name),
8902 built_actual_name != NULL,
8903 VAR_DOMAIN, LOC_TYPEDEF,
8904 &objfile->static_psymbols,
8905 0, cu->language, objfile);
8906 break;
8907 case DW_TAG_imported_declaration:
8908 case DW_TAG_namespace:
8909 add_psymbol_to_list (actual_name, strlen (actual_name),
8910 built_actual_name != NULL,
8911 VAR_DOMAIN, LOC_TYPEDEF,
8912 &objfile->global_psymbols,
8913 0, cu->language, objfile);
8914 break;
8915 case DW_TAG_module:
8916 add_psymbol_to_list (actual_name, strlen (actual_name),
8917 built_actual_name != NULL,
8918 MODULE_DOMAIN, LOC_TYPEDEF,
8919 &objfile->global_psymbols,
8920 0, cu->language, objfile);
8921 break;
8922 case DW_TAG_class_type:
8923 case DW_TAG_interface_type:
8924 case DW_TAG_structure_type:
8925 case DW_TAG_union_type:
8926 case DW_TAG_enumeration_type:
8927 /* Skip external references. The DWARF standard says in the section
8928 about "Structure, Union, and Class Type Entries": "An incomplete
8929 structure, union or class type is represented by a structure,
8930 union or class entry that does not have a byte size attribute
8931 and that has a DW_AT_declaration attribute." */
8932 if (!pdi->has_byte_size && pdi->is_declaration)
8933 {
8934 xfree (built_actual_name);
8935 return;
8936 }
8937
8938 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8939 static vs. global. */
8940 add_psymbol_to_list (actual_name, strlen (actual_name),
8941 built_actual_name != NULL,
8942 STRUCT_DOMAIN, LOC_TYPEDEF,
8943 cu->language == language_cplus
8944 ? &objfile->global_psymbols
8945 : &objfile->static_psymbols,
8946 0, cu->language, objfile);
8947
8948 break;
8949 case DW_TAG_enumerator:
8950 add_psymbol_to_list (actual_name, strlen (actual_name),
8951 built_actual_name != NULL,
8952 VAR_DOMAIN, LOC_CONST,
8953 cu->language == language_cplus
8954 ? &objfile->global_psymbols
8955 : &objfile->static_psymbols,
8956 0, cu->language, objfile);
8957 break;
8958 default:
8959 break;
8960 }
8961
8962 xfree (built_actual_name);
8963 }
8964
8965 /* Read a partial die corresponding to a namespace; also, add a symbol
8966 corresponding to that namespace to the symbol table. NAMESPACE is
8967 the name of the enclosing namespace. */
8968
8969 static void
8970 add_partial_namespace (struct partial_die_info *pdi,
8971 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8972 int set_addrmap, struct dwarf2_cu *cu)
8973 {
8974 /* Add a symbol for the namespace. */
8975
8976 add_partial_symbol (pdi, cu);
8977
8978 /* Now scan partial symbols in that namespace. */
8979
8980 if (pdi->has_children)
8981 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8982 }
8983
8984 /* Read a partial die corresponding to a Fortran module. */
8985
8986 static void
8987 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8988 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8989 {
8990 /* Add a symbol for the namespace. */
8991
8992 add_partial_symbol (pdi, cu);
8993
8994 /* Now scan partial symbols in that module. */
8995
8996 if (pdi->has_children)
8997 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8998 }
8999
9000 /* Read a partial die corresponding to a subprogram or an inlined
9001 subprogram and create a partial symbol for that subprogram.
9002 When the CU language allows it, this routine also defines a partial
9003 symbol for each nested subprogram that this subprogram contains.
9004 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9005 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9006
9007 PDI may also be a lexical block, in which case we simply search
9008 recursively for subprograms defined inside that lexical block.
9009 Again, this is only performed when the CU language allows this
9010 type of definitions. */
9011
9012 static void
9013 add_partial_subprogram (struct partial_die_info *pdi,
9014 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9015 int set_addrmap, struct dwarf2_cu *cu)
9016 {
9017 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9018 {
9019 if (pdi->has_pc_info)
9020 {
9021 if (pdi->lowpc < *lowpc)
9022 *lowpc = pdi->lowpc;
9023 if (pdi->highpc > *highpc)
9024 *highpc = pdi->highpc;
9025 if (set_addrmap)
9026 {
9027 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9028 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9029 CORE_ADDR baseaddr;
9030 CORE_ADDR highpc;
9031 CORE_ADDR lowpc;
9032
9033 baseaddr = ANOFFSET (objfile->section_offsets,
9034 SECT_OFF_TEXT (objfile));
9035 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9036 pdi->lowpc + baseaddr);
9037 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9038 pdi->highpc + baseaddr);
9039 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9040 cu->per_cu->v.psymtab);
9041 }
9042 }
9043
9044 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9045 {
9046 if (!pdi->is_declaration)
9047 /* Ignore subprogram DIEs that do not have a name, they are
9048 illegal. Do not emit a complaint at this point, we will
9049 do so when we convert this psymtab into a symtab. */
9050 if (pdi->name)
9051 add_partial_symbol (pdi, cu);
9052 }
9053 }
9054
9055 if (! pdi->has_children)
9056 return;
9057
9058 if (cu->language == language_ada)
9059 {
9060 pdi = pdi->die_child;
9061 while (pdi != NULL)
9062 {
9063 pdi->fixup (cu);
9064 if (pdi->tag == DW_TAG_subprogram
9065 || pdi->tag == DW_TAG_inlined_subroutine
9066 || pdi->tag == DW_TAG_lexical_block)
9067 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9068 pdi = pdi->die_sibling;
9069 }
9070 }
9071 }
9072
9073 /* Read a partial die corresponding to an enumeration type. */
9074
9075 static void
9076 add_partial_enumeration (struct partial_die_info *enum_pdi,
9077 struct dwarf2_cu *cu)
9078 {
9079 struct partial_die_info *pdi;
9080
9081 if (enum_pdi->name != NULL)
9082 add_partial_symbol (enum_pdi, cu);
9083
9084 pdi = enum_pdi->die_child;
9085 while (pdi)
9086 {
9087 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9088 complaint (_("malformed enumerator DIE ignored"));
9089 else
9090 add_partial_symbol (pdi, cu);
9091 pdi = pdi->die_sibling;
9092 }
9093 }
9094
9095 /* Return the initial uleb128 in the die at INFO_PTR. */
9096
9097 static unsigned int
9098 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9099 {
9100 unsigned int bytes_read;
9101
9102 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9103 }
9104
9105 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9106 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9107
9108 Return the corresponding abbrev, or NULL if the number is zero (indicating
9109 an empty DIE). In either case *BYTES_READ will be set to the length of
9110 the initial number. */
9111
9112 static struct abbrev_info *
9113 peek_die_abbrev (const die_reader_specs &reader,
9114 const gdb_byte *info_ptr, unsigned int *bytes_read)
9115 {
9116 dwarf2_cu *cu = reader.cu;
9117 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9118 unsigned int abbrev_number
9119 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9120
9121 if (abbrev_number == 0)
9122 return NULL;
9123
9124 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9125 if (!abbrev)
9126 {
9127 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9128 " at offset %s [in module %s]"),
9129 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9130 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9131 }
9132
9133 return abbrev;
9134 }
9135
9136 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9137 Returns a pointer to the end of a series of DIEs, terminated by an empty
9138 DIE. Any children of the skipped DIEs will also be skipped. */
9139
9140 static const gdb_byte *
9141 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9142 {
9143 while (1)
9144 {
9145 unsigned int bytes_read;
9146 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9147
9148 if (abbrev == NULL)
9149 return info_ptr + bytes_read;
9150 else
9151 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9152 }
9153 }
9154
9155 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9156 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9157 abbrev corresponding to that skipped uleb128 should be passed in
9158 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9159 children. */
9160
9161 static const gdb_byte *
9162 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9163 struct abbrev_info *abbrev)
9164 {
9165 unsigned int bytes_read;
9166 struct attribute attr;
9167 bfd *abfd = reader->abfd;
9168 struct dwarf2_cu *cu = reader->cu;
9169 const gdb_byte *buffer = reader->buffer;
9170 const gdb_byte *buffer_end = reader->buffer_end;
9171 unsigned int form, i;
9172
9173 for (i = 0; i < abbrev->num_attrs; i++)
9174 {
9175 /* The only abbrev we care about is DW_AT_sibling. */
9176 if (abbrev->attrs[i].name == DW_AT_sibling)
9177 {
9178 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9179 if (attr.form == DW_FORM_ref_addr)
9180 complaint (_("ignoring absolute DW_AT_sibling"));
9181 else
9182 {
9183 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9184 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9185
9186 if (sibling_ptr < info_ptr)
9187 complaint (_("DW_AT_sibling points backwards"));
9188 else if (sibling_ptr > reader->buffer_end)
9189 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9190 else
9191 return sibling_ptr;
9192 }
9193 }
9194
9195 /* If it isn't DW_AT_sibling, skip this attribute. */
9196 form = abbrev->attrs[i].form;
9197 skip_attribute:
9198 switch (form)
9199 {
9200 case DW_FORM_ref_addr:
9201 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9202 and later it is offset sized. */
9203 if (cu->header.version == 2)
9204 info_ptr += cu->header.addr_size;
9205 else
9206 info_ptr += cu->header.offset_size;
9207 break;
9208 case DW_FORM_GNU_ref_alt:
9209 info_ptr += cu->header.offset_size;
9210 break;
9211 case DW_FORM_addr:
9212 info_ptr += cu->header.addr_size;
9213 break;
9214 case DW_FORM_data1:
9215 case DW_FORM_ref1:
9216 case DW_FORM_flag:
9217 info_ptr += 1;
9218 break;
9219 case DW_FORM_flag_present:
9220 case DW_FORM_implicit_const:
9221 break;
9222 case DW_FORM_data2:
9223 case DW_FORM_ref2:
9224 info_ptr += 2;
9225 break;
9226 case DW_FORM_data4:
9227 case DW_FORM_ref4:
9228 info_ptr += 4;
9229 break;
9230 case DW_FORM_data8:
9231 case DW_FORM_ref8:
9232 case DW_FORM_ref_sig8:
9233 info_ptr += 8;
9234 break;
9235 case DW_FORM_data16:
9236 info_ptr += 16;
9237 break;
9238 case DW_FORM_string:
9239 read_direct_string (abfd, info_ptr, &bytes_read);
9240 info_ptr += bytes_read;
9241 break;
9242 case DW_FORM_sec_offset:
9243 case DW_FORM_strp:
9244 case DW_FORM_GNU_strp_alt:
9245 info_ptr += cu->header.offset_size;
9246 break;
9247 case DW_FORM_exprloc:
9248 case DW_FORM_block:
9249 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9250 info_ptr += bytes_read;
9251 break;
9252 case DW_FORM_block1:
9253 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9254 break;
9255 case DW_FORM_block2:
9256 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9257 break;
9258 case DW_FORM_block4:
9259 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9260 break;
9261 case DW_FORM_sdata:
9262 case DW_FORM_udata:
9263 case DW_FORM_ref_udata:
9264 case DW_FORM_GNU_addr_index:
9265 case DW_FORM_GNU_str_index:
9266 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9267 break;
9268 case DW_FORM_indirect:
9269 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9270 info_ptr += bytes_read;
9271 /* We need to continue parsing from here, so just go back to
9272 the top. */
9273 goto skip_attribute;
9274
9275 default:
9276 error (_("Dwarf Error: Cannot handle %s "
9277 "in DWARF reader [in module %s]"),
9278 dwarf_form_name (form),
9279 bfd_get_filename (abfd));
9280 }
9281 }
9282
9283 if (abbrev->has_children)
9284 return skip_children (reader, info_ptr);
9285 else
9286 return info_ptr;
9287 }
9288
9289 /* Locate ORIG_PDI's sibling.
9290 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9291
9292 static const gdb_byte *
9293 locate_pdi_sibling (const struct die_reader_specs *reader,
9294 struct partial_die_info *orig_pdi,
9295 const gdb_byte *info_ptr)
9296 {
9297 /* Do we know the sibling already? */
9298
9299 if (orig_pdi->sibling)
9300 return orig_pdi->sibling;
9301
9302 /* Are there any children to deal with? */
9303
9304 if (!orig_pdi->has_children)
9305 return info_ptr;
9306
9307 /* Skip the children the long way. */
9308
9309 return skip_children (reader, info_ptr);
9310 }
9311
9312 /* Expand this partial symbol table into a full symbol table. SELF is
9313 not NULL. */
9314
9315 static void
9316 dwarf2_read_symtab (struct partial_symtab *self,
9317 struct objfile *objfile)
9318 {
9319 struct dwarf2_per_objfile *dwarf2_per_objfile
9320 = get_dwarf2_per_objfile (objfile);
9321
9322 if (self->readin)
9323 {
9324 warning (_("bug: psymtab for %s is already read in."),
9325 self->filename);
9326 }
9327 else
9328 {
9329 if (info_verbose)
9330 {
9331 printf_filtered (_("Reading in symbols for %s..."),
9332 self->filename);
9333 gdb_flush (gdb_stdout);
9334 }
9335
9336 /* If this psymtab is constructed from a debug-only objfile, the
9337 has_section_at_zero flag will not necessarily be correct. We
9338 can get the correct value for this flag by looking at the data
9339 associated with the (presumably stripped) associated objfile. */
9340 if (objfile->separate_debug_objfile_backlink)
9341 {
9342 struct dwarf2_per_objfile *dpo_backlink
9343 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9344
9345 dwarf2_per_objfile->has_section_at_zero
9346 = dpo_backlink->has_section_at_zero;
9347 }
9348
9349 dwarf2_per_objfile->reading_partial_symbols = 0;
9350
9351 psymtab_to_symtab_1 (self);
9352
9353 /* Finish up the debug error message. */
9354 if (info_verbose)
9355 printf_filtered (_("done.\n"));
9356 }
9357
9358 process_cu_includes (dwarf2_per_objfile);
9359 }
9360 \f
9361 /* Reading in full CUs. */
9362
9363 /* Add PER_CU to the queue. */
9364
9365 static void
9366 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9367 enum language pretend_language)
9368 {
9369 struct dwarf2_queue_item *item;
9370
9371 per_cu->queued = 1;
9372 item = XNEW (struct dwarf2_queue_item);
9373 item->per_cu = per_cu;
9374 item->pretend_language = pretend_language;
9375 item->next = NULL;
9376
9377 if (dwarf2_queue == NULL)
9378 dwarf2_queue = item;
9379 else
9380 dwarf2_queue_tail->next = item;
9381
9382 dwarf2_queue_tail = item;
9383 }
9384
9385 /* If PER_CU is not yet queued, add it to the queue.
9386 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9387 dependency.
9388 The result is non-zero if PER_CU was queued, otherwise the result is zero
9389 meaning either PER_CU is already queued or it is already loaded.
9390
9391 N.B. There is an invariant here that if a CU is queued then it is loaded.
9392 The caller is required to load PER_CU if we return non-zero. */
9393
9394 static int
9395 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9396 struct dwarf2_per_cu_data *per_cu,
9397 enum language pretend_language)
9398 {
9399 /* We may arrive here during partial symbol reading, if we need full
9400 DIEs to process an unusual case (e.g. template arguments). Do
9401 not queue PER_CU, just tell our caller to load its DIEs. */
9402 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9403 {
9404 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9405 return 1;
9406 return 0;
9407 }
9408
9409 /* Mark the dependence relation so that we don't flush PER_CU
9410 too early. */
9411 if (dependent_cu != NULL)
9412 dwarf2_add_dependence (dependent_cu, per_cu);
9413
9414 /* If it's already on the queue, we have nothing to do. */
9415 if (per_cu->queued)
9416 return 0;
9417
9418 /* If the compilation unit is already loaded, just mark it as
9419 used. */
9420 if (per_cu->cu != NULL)
9421 {
9422 per_cu->cu->last_used = 0;
9423 return 0;
9424 }
9425
9426 /* Add it to the queue. */
9427 queue_comp_unit (per_cu, pretend_language);
9428
9429 return 1;
9430 }
9431
9432 /* Process the queue. */
9433
9434 static void
9435 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9436 {
9437 struct dwarf2_queue_item *item, *next_item;
9438
9439 if (dwarf_read_debug)
9440 {
9441 fprintf_unfiltered (gdb_stdlog,
9442 "Expanding one or more symtabs of objfile %s ...\n",
9443 objfile_name (dwarf2_per_objfile->objfile));
9444 }
9445
9446 /* The queue starts out with one item, but following a DIE reference
9447 may load a new CU, adding it to the end of the queue. */
9448 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9449 {
9450 if ((dwarf2_per_objfile->using_index
9451 ? !item->per_cu->v.quick->compunit_symtab
9452 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9453 /* Skip dummy CUs. */
9454 && item->per_cu->cu != NULL)
9455 {
9456 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9457 unsigned int debug_print_threshold;
9458 char buf[100];
9459
9460 if (per_cu->is_debug_types)
9461 {
9462 struct signatured_type *sig_type =
9463 (struct signatured_type *) per_cu;
9464
9465 sprintf (buf, "TU %s at offset %s",
9466 hex_string (sig_type->signature),
9467 sect_offset_str (per_cu->sect_off));
9468 /* There can be 100s of TUs.
9469 Only print them in verbose mode. */
9470 debug_print_threshold = 2;
9471 }
9472 else
9473 {
9474 sprintf (buf, "CU at offset %s",
9475 sect_offset_str (per_cu->sect_off));
9476 debug_print_threshold = 1;
9477 }
9478
9479 if (dwarf_read_debug >= debug_print_threshold)
9480 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9481
9482 if (per_cu->is_debug_types)
9483 process_full_type_unit (per_cu, item->pretend_language);
9484 else
9485 process_full_comp_unit (per_cu, item->pretend_language);
9486
9487 if (dwarf_read_debug >= debug_print_threshold)
9488 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9489 }
9490
9491 item->per_cu->queued = 0;
9492 next_item = item->next;
9493 xfree (item);
9494 }
9495
9496 dwarf2_queue_tail = NULL;
9497
9498 if (dwarf_read_debug)
9499 {
9500 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9501 objfile_name (dwarf2_per_objfile->objfile));
9502 }
9503 }
9504
9505 /* Read in full symbols for PST, and anything it depends on. */
9506
9507 static void
9508 psymtab_to_symtab_1 (struct partial_symtab *pst)
9509 {
9510 struct dwarf2_per_cu_data *per_cu;
9511 int i;
9512
9513 if (pst->readin)
9514 return;
9515
9516 for (i = 0; i < pst->number_of_dependencies; i++)
9517 if (!pst->dependencies[i]->readin
9518 && pst->dependencies[i]->user == NULL)
9519 {
9520 /* Inform about additional files that need to be read in. */
9521 if (info_verbose)
9522 {
9523 /* FIXME: i18n: Need to make this a single string. */
9524 fputs_filtered (" ", gdb_stdout);
9525 wrap_here ("");
9526 fputs_filtered ("and ", gdb_stdout);
9527 wrap_here ("");
9528 printf_filtered ("%s...", pst->dependencies[i]->filename);
9529 wrap_here (""); /* Flush output. */
9530 gdb_flush (gdb_stdout);
9531 }
9532 psymtab_to_symtab_1 (pst->dependencies[i]);
9533 }
9534
9535 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9536
9537 if (per_cu == NULL)
9538 {
9539 /* It's an include file, no symbols to read for it.
9540 Everything is in the parent symtab. */
9541 pst->readin = 1;
9542 return;
9543 }
9544
9545 dw2_do_instantiate_symtab (per_cu, false);
9546 }
9547
9548 /* Trivial hash function for die_info: the hash value of a DIE
9549 is its offset in .debug_info for this objfile. */
9550
9551 static hashval_t
9552 die_hash (const void *item)
9553 {
9554 const struct die_info *die = (const struct die_info *) item;
9555
9556 return to_underlying (die->sect_off);
9557 }
9558
9559 /* Trivial comparison function for die_info structures: two DIEs
9560 are equal if they have the same offset. */
9561
9562 static int
9563 die_eq (const void *item_lhs, const void *item_rhs)
9564 {
9565 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9566 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9567
9568 return die_lhs->sect_off == die_rhs->sect_off;
9569 }
9570
9571 /* die_reader_func for load_full_comp_unit.
9572 This is identical to read_signatured_type_reader,
9573 but is kept separate for now. */
9574
9575 static void
9576 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9577 const gdb_byte *info_ptr,
9578 struct die_info *comp_unit_die,
9579 int has_children,
9580 void *data)
9581 {
9582 struct dwarf2_cu *cu = reader->cu;
9583 enum language *language_ptr = (enum language *) data;
9584
9585 gdb_assert (cu->die_hash == NULL);
9586 cu->die_hash =
9587 htab_create_alloc_ex (cu->header.length / 12,
9588 die_hash,
9589 die_eq,
9590 NULL,
9591 &cu->comp_unit_obstack,
9592 hashtab_obstack_allocate,
9593 dummy_obstack_deallocate);
9594
9595 if (has_children)
9596 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9597 &info_ptr, comp_unit_die);
9598 cu->dies = comp_unit_die;
9599 /* comp_unit_die is not stored in die_hash, no need. */
9600
9601 /* We try not to read any attributes in this function, because not
9602 all CUs needed for references have been loaded yet, and symbol
9603 table processing isn't initialized. But we have to set the CU language,
9604 or we won't be able to build types correctly.
9605 Similarly, if we do not read the producer, we can not apply
9606 producer-specific interpretation. */
9607 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9608 }
9609
9610 /* Load the DIEs associated with PER_CU into memory. */
9611
9612 static void
9613 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9614 bool skip_partial,
9615 enum language pretend_language)
9616 {
9617 gdb_assert (! this_cu->is_debug_types);
9618
9619 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9620 load_full_comp_unit_reader, &pretend_language);
9621 }
9622
9623 /* Add a DIE to the delayed physname list. */
9624
9625 static void
9626 add_to_method_list (struct type *type, int fnfield_index, int index,
9627 const char *name, struct die_info *die,
9628 struct dwarf2_cu *cu)
9629 {
9630 struct delayed_method_info mi;
9631 mi.type = type;
9632 mi.fnfield_index = fnfield_index;
9633 mi.index = index;
9634 mi.name = name;
9635 mi.die = die;
9636 cu->method_list.push_back (mi);
9637 }
9638
9639 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9640 "const" / "volatile". If so, decrements LEN by the length of the
9641 modifier and return true. Otherwise return false. */
9642
9643 template<size_t N>
9644 static bool
9645 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9646 {
9647 size_t mod_len = sizeof (mod) - 1;
9648 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9649 {
9650 len -= mod_len;
9651 return true;
9652 }
9653 return false;
9654 }
9655
9656 /* Compute the physnames of any methods on the CU's method list.
9657
9658 The computation of method physnames is delayed in order to avoid the
9659 (bad) condition that one of the method's formal parameters is of an as yet
9660 incomplete type. */
9661
9662 static void
9663 compute_delayed_physnames (struct dwarf2_cu *cu)
9664 {
9665 /* Only C++ delays computing physnames. */
9666 if (cu->method_list.empty ())
9667 return;
9668 gdb_assert (cu->language == language_cplus);
9669
9670 for (const delayed_method_info &mi : cu->method_list)
9671 {
9672 const char *physname;
9673 struct fn_fieldlist *fn_flp
9674 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9675 physname = dwarf2_physname (mi.name, mi.die, cu);
9676 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9677 = physname ? physname : "";
9678
9679 /* Since there's no tag to indicate whether a method is a
9680 const/volatile overload, extract that information out of the
9681 demangled name. */
9682 if (physname != NULL)
9683 {
9684 size_t len = strlen (physname);
9685
9686 while (1)
9687 {
9688 if (physname[len] == ')') /* shortcut */
9689 break;
9690 else if (check_modifier (physname, len, " const"))
9691 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9692 else if (check_modifier (physname, len, " volatile"))
9693 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9694 else
9695 break;
9696 }
9697 }
9698 }
9699
9700 /* The list is no longer needed. */
9701 cu->method_list.clear ();
9702 }
9703
9704 /* Go objects should be embedded in a DW_TAG_module DIE,
9705 and it's not clear if/how imported objects will appear.
9706 To keep Go support simple until that's worked out,
9707 go back through what we've read and create something usable.
9708 We could do this while processing each DIE, and feels kinda cleaner,
9709 but that way is more invasive.
9710 This is to, for example, allow the user to type "p var" or "b main"
9711 without having to specify the package name, and allow lookups
9712 of module.object to work in contexts that use the expression
9713 parser. */
9714
9715 static void
9716 fixup_go_packaging (struct dwarf2_cu *cu)
9717 {
9718 char *package_name = NULL;
9719 struct pending *list;
9720 int i;
9721
9722 for (list = global_symbols; list != NULL; list = list->next)
9723 {
9724 for (i = 0; i < list->nsyms; ++i)
9725 {
9726 struct symbol *sym = list->symbol[i];
9727
9728 if (SYMBOL_LANGUAGE (sym) == language_go
9729 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9730 {
9731 char *this_package_name = go_symbol_package_name (sym);
9732
9733 if (this_package_name == NULL)
9734 continue;
9735 if (package_name == NULL)
9736 package_name = this_package_name;
9737 else
9738 {
9739 struct objfile *objfile
9740 = cu->per_cu->dwarf2_per_objfile->objfile;
9741 if (strcmp (package_name, this_package_name) != 0)
9742 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9743 (symbol_symtab (sym) != NULL
9744 ? symtab_to_filename_for_display
9745 (symbol_symtab (sym))
9746 : objfile_name (objfile)),
9747 this_package_name, package_name);
9748 xfree (this_package_name);
9749 }
9750 }
9751 }
9752 }
9753
9754 if (package_name != NULL)
9755 {
9756 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9757 const char *saved_package_name
9758 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9759 package_name,
9760 strlen (package_name));
9761 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9762 saved_package_name);
9763 struct symbol *sym;
9764
9765 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9766
9767 sym = allocate_symbol (objfile);
9768 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9769 SYMBOL_SET_NAMES (sym, saved_package_name,
9770 strlen (saved_package_name), 0, objfile);
9771 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9772 e.g., "main" finds the "main" module and not C's main(). */
9773 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9774 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9775 SYMBOL_TYPE (sym) = type;
9776
9777 add_symbol_to_list (sym, &global_symbols);
9778
9779 xfree (package_name);
9780 }
9781 }
9782
9783 /* Allocate a fully-qualified name consisting of the two parts on the
9784 obstack. */
9785
9786 static const char *
9787 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9788 {
9789 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9790 }
9791
9792 /* A helper that allocates a struct discriminant_info to attach to a
9793 union type. */
9794
9795 static struct discriminant_info *
9796 alloc_discriminant_info (struct type *type, int discriminant_index,
9797 int default_index)
9798 {
9799 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9800 gdb_assert (discriminant_index == -1
9801 || (discriminant_index >= 0
9802 && discriminant_index < TYPE_NFIELDS (type)));
9803 gdb_assert (default_index == -1
9804 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9805
9806 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9807
9808 struct discriminant_info *disc
9809 = ((struct discriminant_info *)
9810 TYPE_ZALLOC (type,
9811 offsetof (struct discriminant_info, discriminants)
9812 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9813 disc->default_index = default_index;
9814 disc->discriminant_index = discriminant_index;
9815
9816 struct dynamic_prop prop;
9817 prop.kind = PROP_UNDEFINED;
9818 prop.data.baton = disc;
9819
9820 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9821
9822 return disc;
9823 }
9824
9825 /* Some versions of rustc emitted enums in an unusual way.
9826
9827 Ordinary enums were emitted as unions. The first element of each
9828 structure in the union was named "RUST$ENUM$DISR". This element
9829 held the discriminant.
9830
9831 These versions of Rust also implemented the "non-zero"
9832 optimization. When the enum had two values, and one is empty and
9833 the other holds a pointer that cannot be zero, the pointer is used
9834 as the discriminant, with a zero value meaning the empty variant.
9835 Here, the union's first member is of the form
9836 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9837 where the fieldnos are the indices of the fields that should be
9838 traversed in order to find the field (which may be several fields deep)
9839 and the variantname is the name of the variant of the case when the
9840 field is zero.
9841
9842 This function recognizes whether TYPE is of one of these forms,
9843 and, if so, smashes it to be a variant type. */
9844
9845 static void
9846 quirk_rust_enum (struct type *type, struct objfile *objfile)
9847 {
9848 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9849
9850 /* We don't need to deal with empty enums. */
9851 if (TYPE_NFIELDS (type) == 0)
9852 return;
9853
9854 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9855 if (TYPE_NFIELDS (type) == 1
9856 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9857 {
9858 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9859
9860 /* Decode the field name to find the offset of the
9861 discriminant. */
9862 ULONGEST bit_offset = 0;
9863 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9864 while (name[0] >= '0' && name[0] <= '9')
9865 {
9866 char *tail;
9867 unsigned long index = strtoul (name, &tail, 10);
9868 name = tail;
9869 if (*name != '$'
9870 || index >= TYPE_NFIELDS (field_type)
9871 || (TYPE_FIELD_LOC_KIND (field_type, index)
9872 != FIELD_LOC_KIND_BITPOS))
9873 {
9874 complaint (_("Could not parse Rust enum encoding string \"%s\""
9875 "[in module %s]"),
9876 TYPE_FIELD_NAME (type, 0),
9877 objfile_name (objfile));
9878 return;
9879 }
9880 ++name;
9881
9882 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9883 field_type = TYPE_FIELD_TYPE (field_type, index);
9884 }
9885
9886 /* Make a union to hold the variants. */
9887 struct type *union_type = alloc_type (objfile);
9888 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9889 TYPE_NFIELDS (union_type) = 3;
9890 TYPE_FIELDS (union_type)
9891 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9892 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9893 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9894
9895 /* Put the discriminant must at index 0. */
9896 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9897 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9898 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9899 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9900
9901 /* The order of fields doesn't really matter, so put the real
9902 field at index 1 and the data-less field at index 2. */
9903 struct discriminant_info *disc
9904 = alloc_discriminant_info (union_type, 0, 1);
9905 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9906 TYPE_FIELD_NAME (union_type, 1)
9907 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9908 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9909 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9910 TYPE_FIELD_NAME (union_type, 1));
9911
9912 const char *dataless_name
9913 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9914 name);
9915 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9916 dataless_name);
9917 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9918 /* NAME points into the original discriminant name, which
9919 already has the correct lifetime. */
9920 TYPE_FIELD_NAME (union_type, 2) = name;
9921 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9922 disc->discriminants[2] = 0;
9923
9924 /* Smash this type to be a structure type. We have to do this
9925 because the type has already been recorded. */
9926 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9927 TYPE_NFIELDS (type) = 1;
9928 TYPE_FIELDS (type)
9929 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9930
9931 /* Install the variant part. */
9932 TYPE_FIELD_TYPE (type, 0) = union_type;
9933 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9934 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9935 }
9936 else if (TYPE_NFIELDS (type) == 1)
9937 {
9938 /* We assume that a union with a single field is a univariant
9939 enum. */
9940 /* Smash this type to be a structure type. We have to do this
9941 because the type has already been recorded. */
9942 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9943
9944 /* Make a union to hold the variants. */
9945 struct type *union_type = alloc_type (objfile);
9946 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9947 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9948 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9949 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9950 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9951
9952 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9953 const char *variant_name
9954 = rust_last_path_segment (TYPE_NAME (field_type));
9955 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9956 TYPE_NAME (field_type)
9957 = rust_fully_qualify (&objfile->objfile_obstack,
9958 TYPE_NAME (type), variant_name);
9959
9960 /* Install the union in the outer struct type. */
9961 TYPE_NFIELDS (type) = 1;
9962 TYPE_FIELDS (type)
9963 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9964 TYPE_FIELD_TYPE (type, 0) = union_type;
9965 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9966 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9967
9968 alloc_discriminant_info (union_type, -1, 0);
9969 }
9970 else
9971 {
9972 struct type *disr_type = nullptr;
9973 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9974 {
9975 disr_type = TYPE_FIELD_TYPE (type, i);
9976
9977 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9978 {
9979 /* All fields of a true enum will be structs. */
9980 return;
9981 }
9982 else if (TYPE_NFIELDS (disr_type) == 0)
9983 {
9984 /* Could be data-less variant, so keep going. */
9985 disr_type = nullptr;
9986 }
9987 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9988 "RUST$ENUM$DISR") != 0)
9989 {
9990 /* Not a Rust enum. */
9991 return;
9992 }
9993 else
9994 {
9995 /* Found one. */
9996 break;
9997 }
9998 }
9999
10000 /* If we got here without a discriminant, then it's probably
10001 just a union. */
10002 if (disr_type == nullptr)
10003 return;
10004
10005 /* Smash this type to be a structure type. We have to do this
10006 because the type has already been recorded. */
10007 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10008
10009 /* Make a union to hold the variants. */
10010 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10011 struct type *union_type = alloc_type (objfile);
10012 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10013 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10014 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10015 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10016 TYPE_FIELDS (union_type)
10017 = (struct field *) TYPE_ZALLOC (union_type,
10018 (TYPE_NFIELDS (union_type)
10019 * sizeof (struct field)));
10020
10021 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10022 TYPE_NFIELDS (type) * sizeof (struct field));
10023
10024 /* Install the discriminant at index 0 in the union. */
10025 TYPE_FIELD (union_type, 0) = *disr_field;
10026 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10027 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10028
10029 /* Install the union in the outer struct type. */
10030 TYPE_FIELD_TYPE (type, 0) = union_type;
10031 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10032 TYPE_NFIELDS (type) = 1;
10033
10034 /* Set the size and offset of the union type. */
10035 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10036
10037 /* We need a way to find the correct discriminant given a
10038 variant name. For convenience we build a map here. */
10039 struct type *enum_type = FIELD_TYPE (*disr_field);
10040 std::unordered_map<std::string, ULONGEST> discriminant_map;
10041 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10042 {
10043 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10044 {
10045 const char *name
10046 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10047 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10048 }
10049 }
10050
10051 int n_fields = TYPE_NFIELDS (union_type);
10052 struct discriminant_info *disc
10053 = alloc_discriminant_info (union_type, 0, -1);
10054 /* Skip the discriminant here. */
10055 for (int i = 1; i < n_fields; ++i)
10056 {
10057 /* Find the final word in the name of this variant's type.
10058 That name can be used to look up the correct
10059 discriminant. */
10060 const char *variant_name
10061 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10062 i)));
10063
10064 auto iter = discriminant_map.find (variant_name);
10065 if (iter != discriminant_map.end ())
10066 disc->discriminants[i] = iter->second;
10067
10068 /* Remove the discriminant field, if it exists. */
10069 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10070 if (TYPE_NFIELDS (sub_type) > 0)
10071 {
10072 --TYPE_NFIELDS (sub_type);
10073 ++TYPE_FIELDS (sub_type);
10074 }
10075 TYPE_FIELD_NAME (union_type, i) = variant_name;
10076 TYPE_NAME (sub_type)
10077 = rust_fully_qualify (&objfile->objfile_obstack,
10078 TYPE_NAME (type), variant_name);
10079 }
10080 }
10081 }
10082
10083 /* Rewrite some Rust unions to be structures with variants parts. */
10084
10085 static void
10086 rust_union_quirks (struct dwarf2_cu *cu)
10087 {
10088 gdb_assert (cu->language == language_rust);
10089 for (type *type_ : cu->rust_unions)
10090 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10091 /* We don't need this any more. */
10092 cu->rust_unions.clear ();
10093 }
10094
10095 /* Return the symtab for PER_CU. This works properly regardless of
10096 whether we're using the index or psymtabs. */
10097
10098 static struct compunit_symtab *
10099 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10100 {
10101 return (per_cu->dwarf2_per_objfile->using_index
10102 ? per_cu->v.quick->compunit_symtab
10103 : per_cu->v.psymtab->compunit_symtab);
10104 }
10105
10106 /* A helper function for computing the list of all symbol tables
10107 included by PER_CU. */
10108
10109 static void
10110 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10111 htab_t all_children, htab_t all_type_symtabs,
10112 struct dwarf2_per_cu_data *per_cu,
10113 struct compunit_symtab *immediate_parent)
10114 {
10115 void **slot;
10116 int ix;
10117 struct compunit_symtab *cust;
10118 struct dwarf2_per_cu_data *iter;
10119
10120 slot = htab_find_slot (all_children, per_cu, INSERT);
10121 if (*slot != NULL)
10122 {
10123 /* This inclusion and its children have been processed. */
10124 return;
10125 }
10126
10127 *slot = per_cu;
10128 /* Only add a CU if it has a symbol table. */
10129 cust = get_compunit_symtab (per_cu);
10130 if (cust != NULL)
10131 {
10132 /* If this is a type unit only add its symbol table if we haven't
10133 seen it yet (type unit per_cu's can share symtabs). */
10134 if (per_cu->is_debug_types)
10135 {
10136 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10137 if (*slot == NULL)
10138 {
10139 *slot = cust;
10140 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10141 if (cust->user == NULL)
10142 cust->user = immediate_parent;
10143 }
10144 }
10145 else
10146 {
10147 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10148 if (cust->user == NULL)
10149 cust->user = immediate_parent;
10150 }
10151 }
10152
10153 for (ix = 0;
10154 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10155 ++ix)
10156 {
10157 recursively_compute_inclusions (result, all_children,
10158 all_type_symtabs, iter, cust);
10159 }
10160 }
10161
10162 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10163 PER_CU. */
10164
10165 static void
10166 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10167 {
10168 gdb_assert (! per_cu->is_debug_types);
10169
10170 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10171 {
10172 int ix, len;
10173 struct dwarf2_per_cu_data *per_cu_iter;
10174 struct compunit_symtab *compunit_symtab_iter;
10175 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10176 htab_t all_children, all_type_symtabs;
10177 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10178
10179 /* If we don't have a symtab, we can just skip this case. */
10180 if (cust == NULL)
10181 return;
10182
10183 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10184 NULL, xcalloc, xfree);
10185 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10186 NULL, xcalloc, xfree);
10187
10188 for (ix = 0;
10189 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10190 ix, per_cu_iter);
10191 ++ix)
10192 {
10193 recursively_compute_inclusions (&result_symtabs, all_children,
10194 all_type_symtabs, per_cu_iter,
10195 cust);
10196 }
10197
10198 /* Now we have a transitive closure of all the included symtabs. */
10199 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10200 cust->includes
10201 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10202 struct compunit_symtab *, len + 1);
10203 for (ix = 0;
10204 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10205 compunit_symtab_iter);
10206 ++ix)
10207 cust->includes[ix] = compunit_symtab_iter;
10208 cust->includes[len] = NULL;
10209
10210 VEC_free (compunit_symtab_ptr, result_symtabs);
10211 htab_delete (all_children);
10212 htab_delete (all_type_symtabs);
10213 }
10214 }
10215
10216 /* Compute the 'includes' field for the symtabs of all the CUs we just
10217 read. */
10218
10219 static void
10220 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10221 {
10222 int ix;
10223 struct dwarf2_per_cu_data *iter;
10224
10225 for (ix = 0;
10226 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10227 ix, iter);
10228 ++ix)
10229 {
10230 if (! iter->is_debug_types)
10231 compute_compunit_symtab_includes (iter);
10232 }
10233
10234 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10235 }
10236
10237 /* Generate full symbol information for PER_CU, whose DIEs have
10238 already been loaded into memory. */
10239
10240 static void
10241 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10242 enum language pretend_language)
10243 {
10244 struct dwarf2_cu *cu = per_cu->cu;
10245 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10246 struct objfile *objfile = dwarf2_per_objfile->objfile;
10247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10248 CORE_ADDR lowpc, highpc;
10249 struct compunit_symtab *cust;
10250 CORE_ADDR baseaddr;
10251 struct block *static_block;
10252 CORE_ADDR addr;
10253
10254 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10255
10256 buildsym_init ();
10257 scoped_free_pendings free_pending;
10258
10259 /* Clear the list here in case something was left over. */
10260 cu->method_list.clear ();
10261
10262 cu->list_in_scope = &file_symbols;
10263
10264 cu->language = pretend_language;
10265 cu->language_defn = language_def (cu->language);
10266
10267 /* Do line number decoding in read_file_scope () */
10268 process_die (cu->dies, cu);
10269
10270 /* For now fudge the Go package. */
10271 if (cu->language == language_go)
10272 fixup_go_packaging (cu);
10273
10274 /* Now that we have processed all the DIEs in the CU, all the types
10275 should be complete, and it should now be safe to compute all of the
10276 physnames. */
10277 compute_delayed_physnames (cu);
10278
10279 if (cu->language == language_rust)
10280 rust_union_quirks (cu);
10281
10282 /* Some compilers don't define a DW_AT_high_pc attribute for the
10283 compilation unit. If the DW_AT_high_pc is missing, synthesize
10284 it, by scanning the DIE's below the compilation unit. */
10285 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10286
10287 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10288 static_block = end_symtab_get_static_block (addr, 0, 1);
10289
10290 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10291 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10292 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10293 addrmap to help ensure it has an accurate map of pc values belonging to
10294 this comp unit. */
10295 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10296
10297 cust = end_symtab_from_static_block (static_block,
10298 SECT_OFF_TEXT (objfile), 0);
10299
10300 if (cust != NULL)
10301 {
10302 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10303
10304 /* Set symtab language to language from DW_AT_language. If the
10305 compilation is from a C file generated by language preprocessors, do
10306 not set the language if it was already deduced by start_subfile. */
10307 if (!(cu->language == language_c
10308 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10309 COMPUNIT_FILETABS (cust)->language = cu->language;
10310
10311 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10312 produce DW_AT_location with location lists but it can be possibly
10313 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10314 there were bugs in prologue debug info, fixed later in GCC-4.5
10315 by "unwind info for epilogues" patch (which is not directly related).
10316
10317 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10318 needed, it would be wrong due to missing DW_AT_producer there.
10319
10320 Still one can confuse GDB by using non-standard GCC compilation
10321 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10322 */
10323 if (cu->has_loclist && gcc_4_minor >= 5)
10324 cust->locations_valid = 1;
10325
10326 if (gcc_4_minor >= 5)
10327 cust->epilogue_unwind_valid = 1;
10328
10329 cust->call_site_htab = cu->call_site_htab;
10330 }
10331
10332 if (dwarf2_per_objfile->using_index)
10333 per_cu->v.quick->compunit_symtab = cust;
10334 else
10335 {
10336 struct partial_symtab *pst = per_cu->v.psymtab;
10337 pst->compunit_symtab = cust;
10338 pst->readin = 1;
10339 }
10340
10341 /* Push it for inclusion processing later. */
10342 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10343 }
10344
10345 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10346 already been loaded into memory. */
10347
10348 static void
10349 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10350 enum language pretend_language)
10351 {
10352 struct dwarf2_cu *cu = per_cu->cu;
10353 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10354 struct objfile *objfile = dwarf2_per_objfile->objfile;
10355 struct compunit_symtab *cust;
10356 struct signatured_type *sig_type;
10357
10358 gdb_assert (per_cu->is_debug_types);
10359 sig_type = (struct signatured_type *) per_cu;
10360
10361 buildsym_init ();
10362 scoped_free_pendings free_pending;
10363
10364 /* Clear the list here in case something was left over. */
10365 cu->method_list.clear ();
10366
10367 cu->list_in_scope = &file_symbols;
10368
10369 cu->language = pretend_language;
10370 cu->language_defn = language_def (cu->language);
10371
10372 /* The symbol tables are set up in read_type_unit_scope. */
10373 process_die (cu->dies, cu);
10374
10375 /* For now fudge the Go package. */
10376 if (cu->language == language_go)
10377 fixup_go_packaging (cu);
10378
10379 /* Now that we have processed all the DIEs in the CU, all the types
10380 should be complete, and it should now be safe to compute all of the
10381 physnames. */
10382 compute_delayed_physnames (cu);
10383
10384 if (cu->language == language_rust)
10385 rust_union_quirks (cu);
10386
10387 /* TUs share symbol tables.
10388 If this is the first TU to use this symtab, complete the construction
10389 of it with end_expandable_symtab. Otherwise, complete the addition of
10390 this TU's symbols to the existing symtab. */
10391 if (sig_type->type_unit_group->compunit_symtab == NULL)
10392 {
10393 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10394 sig_type->type_unit_group->compunit_symtab = cust;
10395
10396 if (cust != NULL)
10397 {
10398 /* Set symtab language to language from DW_AT_language. If the
10399 compilation is from a C file generated by language preprocessors,
10400 do not set the language if it was already deduced by
10401 start_subfile. */
10402 if (!(cu->language == language_c
10403 && COMPUNIT_FILETABS (cust)->language != language_c))
10404 COMPUNIT_FILETABS (cust)->language = cu->language;
10405 }
10406 }
10407 else
10408 {
10409 augment_type_symtab ();
10410 cust = sig_type->type_unit_group->compunit_symtab;
10411 }
10412
10413 if (dwarf2_per_objfile->using_index)
10414 per_cu->v.quick->compunit_symtab = cust;
10415 else
10416 {
10417 struct partial_symtab *pst = per_cu->v.psymtab;
10418 pst->compunit_symtab = cust;
10419 pst->readin = 1;
10420 }
10421 }
10422
10423 /* Process an imported unit DIE. */
10424
10425 static void
10426 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10427 {
10428 struct attribute *attr;
10429
10430 /* For now we don't handle imported units in type units. */
10431 if (cu->per_cu->is_debug_types)
10432 {
10433 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10434 " supported in type units [in module %s]"),
10435 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10436 }
10437
10438 attr = dwarf2_attr (die, DW_AT_import, cu);
10439 if (attr != NULL)
10440 {
10441 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10442 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10443 dwarf2_per_cu_data *per_cu
10444 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10445 cu->per_cu->dwarf2_per_objfile);
10446
10447 /* If necessary, add it to the queue and load its DIEs. */
10448 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10449 load_full_comp_unit (per_cu, false, cu->language);
10450
10451 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10452 per_cu);
10453 }
10454 }
10455
10456 /* RAII object that represents a process_die scope: i.e.,
10457 starts/finishes processing a DIE. */
10458 class process_die_scope
10459 {
10460 public:
10461 process_die_scope (die_info *die, dwarf2_cu *cu)
10462 : m_die (die), m_cu (cu)
10463 {
10464 /* We should only be processing DIEs not already in process. */
10465 gdb_assert (!m_die->in_process);
10466 m_die->in_process = true;
10467 }
10468
10469 ~process_die_scope ()
10470 {
10471 m_die->in_process = false;
10472
10473 /* If we're done processing the DIE for the CU that owns the line
10474 header, we don't need the line header anymore. */
10475 if (m_cu->line_header_die_owner == m_die)
10476 {
10477 delete m_cu->line_header;
10478 m_cu->line_header = NULL;
10479 m_cu->line_header_die_owner = NULL;
10480 }
10481 }
10482
10483 private:
10484 die_info *m_die;
10485 dwarf2_cu *m_cu;
10486 };
10487
10488 /* Process a die and its children. */
10489
10490 static void
10491 process_die (struct die_info *die, struct dwarf2_cu *cu)
10492 {
10493 process_die_scope scope (die, cu);
10494
10495 switch (die->tag)
10496 {
10497 case DW_TAG_padding:
10498 break;
10499 case DW_TAG_compile_unit:
10500 case DW_TAG_partial_unit:
10501 read_file_scope (die, cu);
10502 break;
10503 case DW_TAG_type_unit:
10504 read_type_unit_scope (die, cu);
10505 break;
10506 case DW_TAG_subprogram:
10507 case DW_TAG_inlined_subroutine:
10508 read_func_scope (die, cu);
10509 break;
10510 case DW_TAG_lexical_block:
10511 case DW_TAG_try_block:
10512 case DW_TAG_catch_block:
10513 read_lexical_block_scope (die, cu);
10514 break;
10515 case DW_TAG_call_site:
10516 case DW_TAG_GNU_call_site:
10517 read_call_site_scope (die, cu);
10518 break;
10519 case DW_TAG_class_type:
10520 case DW_TAG_interface_type:
10521 case DW_TAG_structure_type:
10522 case DW_TAG_union_type:
10523 process_structure_scope (die, cu);
10524 break;
10525 case DW_TAG_enumeration_type:
10526 process_enumeration_scope (die, cu);
10527 break;
10528
10529 /* These dies have a type, but processing them does not create
10530 a symbol or recurse to process the children. Therefore we can
10531 read them on-demand through read_type_die. */
10532 case DW_TAG_subroutine_type:
10533 case DW_TAG_set_type:
10534 case DW_TAG_array_type:
10535 case DW_TAG_pointer_type:
10536 case DW_TAG_ptr_to_member_type:
10537 case DW_TAG_reference_type:
10538 case DW_TAG_rvalue_reference_type:
10539 case DW_TAG_string_type:
10540 break;
10541
10542 case DW_TAG_base_type:
10543 case DW_TAG_subrange_type:
10544 case DW_TAG_typedef:
10545 /* Add a typedef symbol for the type definition, if it has a
10546 DW_AT_name. */
10547 new_symbol (die, read_type_die (die, cu), cu);
10548 break;
10549 case DW_TAG_common_block:
10550 read_common_block (die, cu);
10551 break;
10552 case DW_TAG_common_inclusion:
10553 break;
10554 case DW_TAG_namespace:
10555 cu->processing_has_namespace_info = 1;
10556 read_namespace (die, cu);
10557 break;
10558 case DW_TAG_module:
10559 cu->processing_has_namespace_info = 1;
10560 read_module (die, cu);
10561 break;
10562 case DW_TAG_imported_declaration:
10563 cu->processing_has_namespace_info = 1;
10564 if (read_namespace_alias (die, cu))
10565 break;
10566 /* The declaration is not a global namespace alias. */
10567 /* Fall through. */
10568 case DW_TAG_imported_module:
10569 cu->processing_has_namespace_info = 1;
10570 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10571 || cu->language != language_fortran))
10572 complaint (_("Tag '%s' has unexpected children"),
10573 dwarf_tag_name (die->tag));
10574 read_import_statement (die, cu);
10575 break;
10576
10577 case DW_TAG_imported_unit:
10578 process_imported_unit_die (die, cu);
10579 break;
10580
10581 case DW_TAG_variable:
10582 read_variable (die, cu);
10583 break;
10584
10585 default:
10586 new_symbol (die, NULL, cu);
10587 break;
10588 }
10589 }
10590 \f
10591 /* DWARF name computation. */
10592
10593 /* A helper function for dwarf2_compute_name which determines whether DIE
10594 needs to have the name of the scope prepended to the name listed in the
10595 die. */
10596
10597 static int
10598 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10599 {
10600 struct attribute *attr;
10601
10602 switch (die->tag)
10603 {
10604 case DW_TAG_namespace:
10605 case DW_TAG_typedef:
10606 case DW_TAG_class_type:
10607 case DW_TAG_interface_type:
10608 case DW_TAG_structure_type:
10609 case DW_TAG_union_type:
10610 case DW_TAG_enumeration_type:
10611 case DW_TAG_enumerator:
10612 case DW_TAG_subprogram:
10613 case DW_TAG_inlined_subroutine:
10614 case DW_TAG_member:
10615 case DW_TAG_imported_declaration:
10616 return 1;
10617
10618 case DW_TAG_variable:
10619 case DW_TAG_constant:
10620 /* We only need to prefix "globally" visible variables. These include
10621 any variable marked with DW_AT_external or any variable that
10622 lives in a namespace. [Variables in anonymous namespaces
10623 require prefixing, but they are not DW_AT_external.] */
10624
10625 if (dwarf2_attr (die, DW_AT_specification, cu))
10626 {
10627 struct dwarf2_cu *spec_cu = cu;
10628
10629 return die_needs_namespace (die_specification (die, &spec_cu),
10630 spec_cu);
10631 }
10632
10633 attr = dwarf2_attr (die, DW_AT_external, cu);
10634 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10635 && die->parent->tag != DW_TAG_module)
10636 return 0;
10637 /* A variable in a lexical block of some kind does not need a
10638 namespace, even though in C++ such variables may be external
10639 and have a mangled name. */
10640 if (die->parent->tag == DW_TAG_lexical_block
10641 || die->parent->tag == DW_TAG_try_block
10642 || die->parent->tag == DW_TAG_catch_block
10643 || die->parent->tag == DW_TAG_subprogram)
10644 return 0;
10645 return 1;
10646
10647 default:
10648 return 0;
10649 }
10650 }
10651
10652 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10653 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10654 defined for the given DIE. */
10655
10656 static struct attribute *
10657 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10658 {
10659 struct attribute *attr;
10660
10661 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10662 if (attr == NULL)
10663 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10664
10665 return attr;
10666 }
10667
10668 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10669 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10670 defined for the given DIE. */
10671
10672 static const char *
10673 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10674 {
10675 const char *linkage_name;
10676
10677 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10678 if (linkage_name == NULL)
10679 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10680
10681 return linkage_name;
10682 }
10683
10684 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10685 compute the physname for the object, which include a method's:
10686 - formal parameters (C++),
10687 - receiver type (Go),
10688
10689 The term "physname" is a bit confusing.
10690 For C++, for example, it is the demangled name.
10691 For Go, for example, it's the mangled name.
10692
10693 For Ada, return the DIE's linkage name rather than the fully qualified
10694 name. PHYSNAME is ignored..
10695
10696 The result is allocated on the objfile_obstack and canonicalized. */
10697
10698 static const char *
10699 dwarf2_compute_name (const char *name,
10700 struct die_info *die, struct dwarf2_cu *cu,
10701 int physname)
10702 {
10703 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10704
10705 if (name == NULL)
10706 name = dwarf2_name (die, cu);
10707
10708 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10709 but otherwise compute it by typename_concat inside GDB.
10710 FIXME: Actually this is not really true, or at least not always true.
10711 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10712 Fortran names because there is no mangling standard. So new_symbol
10713 will set the demangled name to the result of dwarf2_full_name, and it is
10714 the demangled name that GDB uses if it exists. */
10715 if (cu->language == language_ada
10716 || (cu->language == language_fortran && physname))
10717 {
10718 /* For Ada unit, we prefer the linkage name over the name, as
10719 the former contains the exported name, which the user expects
10720 to be able to reference. Ideally, we want the user to be able
10721 to reference this entity using either natural or linkage name,
10722 but we haven't started looking at this enhancement yet. */
10723 const char *linkage_name = dw2_linkage_name (die, cu);
10724
10725 if (linkage_name != NULL)
10726 return linkage_name;
10727 }
10728
10729 /* These are the only languages we know how to qualify names in. */
10730 if (name != NULL
10731 && (cu->language == language_cplus
10732 || cu->language == language_fortran || cu->language == language_d
10733 || cu->language == language_rust))
10734 {
10735 if (die_needs_namespace (die, cu))
10736 {
10737 const char *prefix;
10738 const char *canonical_name = NULL;
10739
10740 string_file buf;
10741
10742 prefix = determine_prefix (die, cu);
10743 if (*prefix != '\0')
10744 {
10745 char *prefixed_name = typename_concat (NULL, prefix, name,
10746 physname, cu);
10747
10748 buf.puts (prefixed_name);
10749 xfree (prefixed_name);
10750 }
10751 else
10752 buf.puts (name);
10753
10754 /* Template parameters may be specified in the DIE's DW_AT_name, or
10755 as children with DW_TAG_template_type_param or
10756 DW_TAG_value_type_param. If the latter, add them to the name
10757 here. If the name already has template parameters, then
10758 skip this step; some versions of GCC emit both, and
10759 it is more efficient to use the pre-computed name.
10760
10761 Something to keep in mind about this process: it is very
10762 unlikely, or in some cases downright impossible, to produce
10763 something that will match the mangled name of a function.
10764 If the definition of the function has the same debug info,
10765 we should be able to match up with it anyway. But fallbacks
10766 using the minimal symbol, for instance to find a method
10767 implemented in a stripped copy of libstdc++, will not work.
10768 If we do not have debug info for the definition, we will have to
10769 match them up some other way.
10770
10771 When we do name matching there is a related problem with function
10772 templates; two instantiated function templates are allowed to
10773 differ only by their return types, which we do not add here. */
10774
10775 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10776 {
10777 struct attribute *attr;
10778 struct die_info *child;
10779 int first = 1;
10780
10781 die->building_fullname = 1;
10782
10783 for (child = die->child; child != NULL; child = child->sibling)
10784 {
10785 struct type *type;
10786 LONGEST value;
10787 const gdb_byte *bytes;
10788 struct dwarf2_locexpr_baton *baton;
10789 struct value *v;
10790
10791 if (child->tag != DW_TAG_template_type_param
10792 && child->tag != DW_TAG_template_value_param)
10793 continue;
10794
10795 if (first)
10796 {
10797 buf.puts ("<");
10798 first = 0;
10799 }
10800 else
10801 buf.puts (", ");
10802
10803 attr = dwarf2_attr (child, DW_AT_type, cu);
10804 if (attr == NULL)
10805 {
10806 complaint (_("template parameter missing DW_AT_type"));
10807 buf.puts ("UNKNOWN_TYPE");
10808 continue;
10809 }
10810 type = die_type (child, cu);
10811
10812 if (child->tag == DW_TAG_template_type_param)
10813 {
10814 c_print_type (type, "", &buf, -1, 0, cu->language,
10815 &type_print_raw_options);
10816 continue;
10817 }
10818
10819 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10820 if (attr == NULL)
10821 {
10822 complaint (_("template parameter missing "
10823 "DW_AT_const_value"));
10824 buf.puts ("UNKNOWN_VALUE");
10825 continue;
10826 }
10827
10828 dwarf2_const_value_attr (attr, type, name,
10829 &cu->comp_unit_obstack, cu,
10830 &value, &bytes, &baton);
10831
10832 if (TYPE_NOSIGN (type))
10833 /* GDB prints characters as NUMBER 'CHAR'. If that's
10834 changed, this can use value_print instead. */
10835 c_printchar (value, type, &buf);
10836 else
10837 {
10838 struct value_print_options opts;
10839
10840 if (baton != NULL)
10841 v = dwarf2_evaluate_loc_desc (type, NULL,
10842 baton->data,
10843 baton->size,
10844 baton->per_cu);
10845 else if (bytes != NULL)
10846 {
10847 v = allocate_value (type);
10848 memcpy (value_contents_writeable (v), bytes,
10849 TYPE_LENGTH (type));
10850 }
10851 else
10852 v = value_from_longest (type, value);
10853
10854 /* Specify decimal so that we do not depend on
10855 the radix. */
10856 get_formatted_print_options (&opts, 'd');
10857 opts.raw = 1;
10858 value_print (v, &buf, &opts);
10859 release_value (v);
10860 }
10861 }
10862
10863 die->building_fullname = 0;
10864
10865 if (!first)
10866 {
10867 /* Close the argument list, with a space if necessary
10868 (nested templates). */
10869 if (!buf.empty () && buf.string ().back () == '>')
10870 buf.puts (" >");
10871 else
10872 buf.puts (">");
10873 }
10874 }
10875
10876 /* For C++ methods, append formal parameter type
10877 information, if PHYSNAME. */
10878
10879 if (physname && die->tag == DW_TAG_subprogram
10880 && cu->language == language_cplus)
10881 {
10882 struct type *type = read_type_die (die, cu);
10883
10884 c_type_print_args (type, &buf, 1, cu->language,
10885 &type_print_raw_options);
10886
10887 if (cu->language == language_cplus)
10888 {
10889 /* Assume that an artificial first parameter is
10890 "this", but do not crash if it is not. RealView
10891 marks unnamed (and thus unused) parameters as
10892 artificial; there is no way to differentiate
10893 the two cases. */
10894 if (TYPE_NFIELDS (type) > 0
10895 && TYPE_FIELD_ARTIFICIAL (type, 0)
10896 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10897 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10898 0))))
10899 buf.puts (" const");
10900 }
10901 }
10902
10903 const std::string &intermediate_name = buf.string ();
10904
10905 if (cu->language == language_cplus)
10906 canonical_name
10907 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10908 &objfile->per_bfd->storage_obstack);
10909
10910 /* If we only computed INTERMEDIATE_NAME, or if
10911 INTERMEDIATE_NAME is already canonical, then we need to
10912 copy it to the appropriate obstack. */
10913 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10914 name = ((const char *)
10915 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10916 intermediate_name.c_str (),
10917 intermediate_name.length ()));
10918 else
10919 name = canonical_name;
10920 }
10921 }
10922
10923 return name;
10924 }
10925
10926 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10927 If scope qualifiers are appropriate they will be added. The result
10928 will be allocated on the storage_obstack, or NULL if the DIE does
10929 not have a name. NAME may either be from a previous call to
10930 dwarf2_name or NULL.
10931
10932 The output string will be canonicalized (if C++). */
10933
10934 static const char *
10935 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10936 {
10937 return dwarf2_compute_name (name, die, cu, 0);
10938 }
10939
10940 /* Construct a physname for the given DIE in CU. NAME may either be
10941 from a previous call to dwarf2_name or NULL. The result will be
10942 allocated on the objfile_objstack or NULL if the DIE does not have a
10943 name.
10944
10945 The output string will be canonicalized (if C++). */
10946
10947 static const char *
10948 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10949 {
10950 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10951 const char *retval, *mangled = NULL, *canon = NULL;
10952 int need_copy = 1;
10953
10954 /* In this case dwarf2_compute_name is just a shortcut not building anything
10955 on its own. */
10956 if (!die_needs_namespace (die, cu))
10957 return dwarf2_compute_name (name, die, cu, 1);
10958
10959 mangled = dw2_linkage_name (die, cu);
10960
10961 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10962 See https://github.com/rust-lang/rust/issues/32925. */
10963 if (cu->language == language_rust && mangled != NULL
10964 && strchr (mangled, '{') != NULL)
10965 mangled = NULL;
10966
10967 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10968 has computed. */
10969 gdb::unique_xmalloc_ptr<char> demangled;
10970 if (mangled != NULL)
10971 {
10972
10973 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10974 {
10975 /* Do nothing (do not demangle the symbol name). */
10976 }
10977 else if (cu->language == language_go)
10978 {
10979 /* This is a lie, but we already lie to the caller new_symbol.
10980 new_symbol assumes we return the mangled name.
10981 This just undoes that lie until things are cleaned up. */
10982 }
10983 else
10984 {
10985 /* Use DMGL_RET_DROP for C++ template functions to suppress
10986 their return type. It is easier for GDB users to search
10987 for such functions as `name(params)' than `long name(params)'.
10988 In such case the minimal symbol names do not match the full
10989 symbol names but for template functions there is never a need
10990 to look up their definition from their declaration so
10991 the only disadvantage remains the minimal symbol variant
10992 `long name(params)' does not have the proper inferior type. */
10993 demangled.reset (gdb_demangle (mangled,
10994 (DMGL_PARAMS | DMGL_ANSI
10995 | DMGL_RET_DROP)));
10996 }
10997 if (demangled)
10998 canon = demangled.get ();
10999 else
11000 {
11001 canon = mangled;
11002 need_copy = 0;
11003 }
11004 }
11005
11006 if (canon == NULL || check_physname)
11007 {
11008 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11009
11010 if (canon != NULL && strcmp (physname, canon) != 0)
11011 {
11012 /* It may not mean a bug in GDB. The compiler could also
11013 compute DW_AT_linkage_name incorrectly. But in such case
11014 GDB would need to be bug-to-bug compatible. */
11015
11016 complaint (_("Computed physname <%s> does not match demangled <%s> "
11017 "(from linkage <%s>) - DIE at %s [in module %s]"),
11018 physname, canon, mangled, sect_offset_str (die->sect_off),
11019 objfile_name (objfile));
11020
11021 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11022 is available here - over computed PHYSNAME. It is safer
11023 against both buggy GDB and buggy compilers. */
11024
11025 retval = canon;
11026 }
11027 else
11028 {
11029 retval = physname;
11030 need_copy = 0;
11031 }
11032 }
11033 else
11034 retval = canon;
11035
11036 if (need_copy)
11037 retval = ((const char *)
11038 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11039 retval, strlen (retval)));
11040
11041 return retval;
11042 }
11043
11044 /* Inspect DIE in CU for a namespace alias. If one exists, record
11045 a new symbol for it.
11046
11047 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11048
11049 static int
11050 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11051 {
11052 struct attribute *attr;
11053
11054 /* If the die does not have a name, this is not a namespace
11055 alias. */
11056 attr = dwarf2_attr (die, DW_AT_name, cu);
11057 if (attr != NULL)
11058 {
11059 int num;
11060 struct die_info *d = die;
11061 struct dwarf2_cu *imported_cu = cu;
11062
11063 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11064 keep inspecting DIEs until we hit the underlying import. */
11065 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11066 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11067 {
11068 attr = dwarf2_attr (d, DW_AT_import, cu);
11069 if (attr == NULL)
11070 break;
11071
11072 d = follow_die_ref (d, attr, &imported_cu);
11073 if (d->tag != DW_TAG_imported_declaration)
11074 break;
11075 }
11076
11077 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11078 {
11079 complaint (_("DIE at %s has too many recursively imported "
11080 "declarations"), sect_offset_str (d->sect_off));
11081 return 0;
11082 }
11083
11084 if (attr != NULL)
11085 {
11086 struct type *type;
11087 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11088
11089 type = get_die_type_at_offset (sect_off, cu->per_cu);
11090 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11091 {
11092 /* This declaration is a global namespace alias. Add
11093 a symbol for it whose type is the aliased namespace. */
11094 new_symbol (die, type, cu);
11095 return 1;
11096 }
11097 }
11098 }
11099
11100 return 0;
11101 }
11102
11103 /* Return the using directives repository (global or local?) to use in the
11104 current context for LANGUAGE.
11105
11106 For Ada, imported declarations can materialize renamings, which *may* be
11107 global. However it is impossible (for now?) in DWARF to distinguish
11108 "external" imported declarations and "static" ones. As all imported
11109 declarations seem to be static in all other languages, make them all CU-wide
11110 global only in Ada. */
11111
11112 static struct using_direct **
11113 using_directives (enum language language)
11114 {
11115 if (language == language_ada && context_stack_depth == 0)
11116 return &global_using_directives;
11117 else
11118 return &local_using_directives;
11119 }
11120
11121 /* Read the import statement specified by the given die and record it. */
11122
11123 static void
11124 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11125 {
11126 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11127 struct attribute *import_attr;
11128 struct die_info *imported_die, *child_die;
11129 struct dwarf2_cu *imported_cu;
11130 const char *imported_name;
11131 const char *imported_name_prefix;
11132 const char *canonical_name;
11133 const char *import_alias;
11134 const char *imported_declaration = NULL;
11135 const char *import_prefix;
11136 std::vector<const char *> excludes;
11137
11138 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11139 if (import_attr == NULL)
11140 {
11141 complaint (_("Tag '%s' has no DW_AT_import"),
11142 dwarf_tag_name (die->tag));
11143 return;
11144 }
11145
11146 imported_cu = cu;
11147 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11148 imported_name = dwarf2_name (imported_die, imported_cu);
11149 if (imported_name == NULL)
11150 {
11151 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11152
11153 The import in the following code:
11154 namespace A
11155 {
11156 typedef int B;
11157 }
11158
11159 int main ()
11160 {
11161 using A::B;
11162 B b;
11163 return b;
11164 }
11165
11166 ...
11167 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11168 <52> DW_AT_decl_file : 1
11169 <53> DW_AT_decl_line : 6
11170 <54> DW_AT_import : <0x75>
11171 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11172 <59> DW_AT_name : B
11173 <5b> DW_AT_decl_file : 1
11174 <5c> DW_AT_decl_line : 2
11175 <5d> DW_AT_type : <0x6e>
11176 ...
11177 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11178 <76> DW_AT_byte_size : 4
11179 <77> DW_AT_encoding : 5 (signed)
11180
11181 imports the wrong die ( 0x75 instead of 0x58 ).
11182 This case will be ignored until the gcc bug is fixed. */
11183 return;
11184 }
11185
11186 /* Figure out the local name after import. */
11187 import_alias = dwarf2_name (die, cu);
11188
11189 /* Figure out where the statement is being imported to. */
11190 import_prefix = determine_prefix (die, cu);
11191
11192 /* Figure out what the scope of the imported die is and prepend it
11193 to the name of the imported die. */
11194 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11195
11196 if (imported_die->tag != DW_TAG_namespace
11197 && imported_die->tag != DW_TAG_module)
11198 {
11199 imported_declaration = imported_name;
11200 canonical_name = imported_name_prefix;
11201 }
11202 else if (strlen (imported_name_prefix) > 0)
11203 canonical_name = obconcat (&objfile->objfile_obstack,
11204 imported_name_prefix,
11205 (cu->language == language_d ? "." : "::"),
11206 imported_name, (char *) NULL);
11207 else
11208 canonical_name = imported_name;
11209
11210 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11211 for (child_die = die->child; child_die && child_die->tag;
11212 child_die = sibling_die (child_die))
11213 {
11214 /* DWARF-4: A Fortran use statement with a “rename list” may be
11215 represented by an imported module entry with an import attribute
11216 referring to the module and owned entries corresponding to those
11217 entities that are renamed as part of being imported. */
11218
11219 if (child_die->tag != DW_TAG_imported_declaration)
11220 {
11221 complaint (_("child DW_TAG_imported_declaration expected "
11222 "- DIE at %s [in module %s]"),
11223 sect_offset_str (child_die->sect_off),
11224 objfile_name (objfile));
11225 continue;
11226 }
11227
11228 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11229 if (import_attr == NULL)
11230 {
11231 complaint (_("Tag '%s' has no DW_AT_import"),
11232 dwarf_tag_name (child_die->tag));
11233 continue;
11234 }
11235
11236 imported_cu = cu;
11237 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11238 &imported_cu);
11239 imported_name = dwarf2_name (imported_die, imported_cu);
11240 if (imported_name == NULL)
11241 {
11242 complaint (_("child DW_TAG_imported_declaration has unknown "
11243 "imported name - DIE at %s [in module %s]"),
11244 sect_offset_str (child_die->sect_off),
11245 objfile_name (objfile));
11246 continue;
11247 }
11248
11249 excludes.push_back (imported_name);
11250
11251 process_die (child_die, cu);
11252 }
11253
11254 add_using_directive (using_directives (cu->language),
11255 import_prefix,
11256 canonical_name,
11257 import_alias,
11258 imported_declaration,
11259 excludes,
11260 0,
11261 &objfile->objfile_obstack);
11262 }
11263
11264 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11265 types, but gives them a size of zero. Starting with version 14,
11266 ICC is compatible with GCC. */
11267
11268 static int
11269 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11270 {
11271 if (!cu->checked_producer)
11272 check_producer (cu);
11273
11274 return cu->producer_is_icc_lt_14;
11275 }
11276
11277 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11278 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11279 this, it was first present in GCC release 4.3.0. */
11280
11281 static int
11282 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11283 {
11284 if (!cu->checked_producer)
11285 check_producer (cu);
11286
11287 return cu->producer_is_gcc_lt_4_3;
11288 }
11289
11290 static file_and_directory
11291 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11292 {
11293 file_and_directory res;
11294
11295 /* Find the filename. Do not use dwarf2_name here, since the filename
11296 is not a source language identifier. */
11297 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11298 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11299
11300 if (res.comp_dir == NULL
11301 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11302 && IS_ABSOLUTE_PATH (res.name))
11303 {
11304 res.comp_dir_storage = ldirname (res.name);
11305 if (!res.comp_dir_storage.empty ())
11306 res.comp_dir = res.comp_dir_storage.c_str ();
11307 }
11308 if (res.comp_dir != NULL)
11309 {
11310 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11311 directory, get rid of it. */
11312 const char *cp = strchr (res.comp_dir, ':');
11313
11314 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11315 res.comp_dir = cp + 1;
11316 }
11317
11318 if (res.name == NULL)
11319 res.name = "<unknown>";
11320
11321 return res;
11322 }
11323
11324 /* Handle DW_AT_stmt_list for a compilation unit.
11325 DIE is the DW_TAG_compile_unit die for CU.
11326 COMP_DIR is the compilation directory. LOWPC is passed to
11327 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11328
11329 static void
11330 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11331 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11332 {
11333 struct dwarf2_per_objfile *dwarf2_per_objfile
11334 = cu->per_cu->dwarf2_per_objfile;
11335 struct objfile *objfile = dwarf2_per_objfile->objfile;
11336 struct attribute *attr;
11337 struct line_header line_header_local;
11338 hashval_t line_header_local_hash;
11339 void **slot;
11340 int decode_mapping;
11341
11342 gdb_assert (! cu->per_cu->is_debug_types);
11343
11344 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11345 if (attr == NULL)
11346 return;
11347
11348 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11349
11350 /* The line header hash table is only created if needed (it exists to
11351 prevent redundant reading of the line table for partial_units).
11352 If we're given a partial_unit, we'll need it. If we're given a
11353 compile_unit, then use the line header hash table if it's already
11354 created, but don't create one just yet. */
11355
11356 if (dwarf2_per_objfile->line_header_hash == NULL
11357 && die->tag == DW_TAG_partial_unit)
11358 {
11359 dwarf2_per_objfile->line_header_hash
11360 = htab_create_alloc_ex (127, line_header_hash_voidp,
11361 line_header_eq_voidp,
11362 free_line_header_voidp,
11363 &objfile->objfile_obstack,
11364 hashtab_obstack_allocate,
11365 dummy_obstack_deallocate);
11366 }
11367
11368 line_header_local.sect_off = line_offset;
11369 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11370 line_header_local_hash = line_header_hash (&line_header_local);
11371 if (dwarf2_per_objfile->line_header_hash != NULL)
11372 {
11373 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11374 &line_header_local,
11375 line_header_local_hash, NO_INSERT);
11376
11377 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11378 is not present in *SLOT (since if there is something in *SLOT then
11379 it will be for a partial_unit). */
11380 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11381 {
11382 gdb_assert (*slot != NULL);
11383 cu->line_header = (struct line_header *) *slot;
11384 return;
11385 }
11386 }
11387
11388 /* dwarf_decode_line_header does not yet provide sufficient information.
11389 We always have to call also dwarf_decode_lines for it. */
11390 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11391 if (lh == NULL)
11392 return;
11393
11394 cu->line_header = lh.release ();
11395 cu->line_header_die_owner = die;
11396
11397 if (dwarf2_per_objfile->line_header_hash == NULL)
11398 slot = NULL;
11399 else
11400 {
11401 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11402 &line_header_local,
11403 line_header_local_hash, INSERT);
11404 gdb_assert (slot != NULL);
11405 }
11406 if (slot != NULL && *slot == NULL)
11407 {
11408 /* This newly decoded line number information unit will be owned
11409 by line_header_hash hash table. */
11410 *slot = cu->line_header;
11411 cu->line_header_die_owner = NULL;
11412 }
11413 else
11414 {
11415 /* We cannot free any current entry in (*slot) as that struct line_header
11416 may be already used by multiple CUs. Create only temporary decoded
11417 line_header for this CU - it may happen at most once for each line
11418 number information unit. And if we're not using line_header_hash
11419 then this is what we want as well. */
11420 gdb_assert (die->tag != DW_TAG_partial_unit);
11421 }
11422 decode_mapping = (die->tag != DW_TAG_partial_unit);
11423 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11424 decode_mapping);
11425
11426 }
11427
11428 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11429
11430 static void
11431 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11432 {
11433 struct dwarf2_per_objfile *dwarf2_per_objfile
11434 = cu->per_cu->dwarf2_per_objfile;
11435 struct objfile *objfile = dwarf2_per_objfile->objfile;
11436 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11437 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11438 CORE_ADDR highpc = ((CORE_ADDR) 0);
11439 struct attribute *attr;
11440 struct die_info *child_die;
11441 CORE_ADDR baseaddr;
11442
11443 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11444
11445 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11446
11447 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11448 from finish_block. */
11449 if (lowpc == ((CORE_ADDR) -1))
11450 lowpc = highpc;
11451 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11452
11453 file_and_directory fnd = find_file_and_directory (die, cu);
11454
11455 prepare_one_comp_unit (cu, die, cu->language);
11456
11457 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11458 standardised yet. As a workaround for the language detection we fall
11459 back to the DW_AT_producer string. */
11460 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11461 cu->language = language_opencl;
11462
11463 /* Similar hack for Go. */
11464 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11465 set_cu_language (DW_LANG_Go, cu);
11466
11467 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11468
11469 /* Decode line number information if present. We do this before
11470 processing child DIEs, so that the line header table is available
11471 for DW_AT_decl_file. */
11472 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11473
11474 /* Process all dies in compilation unit. */
11475 if (die->child != NULL)
11476 {
11477 child_die = die->child;
11478 while (child_die && child_die->tag)
11479 {
11480 process_die (child_die, cu);
11481 child_die = sibling_die (child_die);
11482 }
11483 }
11484
11485 /* Decode macro information, if present. Dwarf 2 macro information
11486 refers to information in the line number info statement program
11487 header, so we can only read it if we've read the header
11488 successfully. */
11489 attr = dwarf2_attr (die, DW_AT_macros, cu);
11490 if (attr == NULL)
11491 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11492 if (attr && cu->line_header)
11493 {
11494 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11495 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11496
11497 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11498 }
11499 else
11500 {
11501 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11502 if (attr && cu->line_header)
11503 {
11504 unsigned int macro_offset = DW_UNSND (attr);
11505
11506 dwarf_decode_macros (cu, macro_offset, 0);
11507 }
11508 }
11509 }
11510
11511 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11512 Create the set of symtabs used by this TU, or if this TU is sharing
11513 symtabs with another TU and the symtabs have already been created
11514 then restore those symtabs in the line header.
11515 We don't need the pc/line-number mapping for type units. */
11516
11517 static void
11518 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11519 {
11520 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11521 struct type_unit_group *tu_group;
11522 int first_time;
11523 struct attribute *attr;
11524 unsigned int i;
11525 struct signatured_type *sig_type;
11526
11527 gdb_assert (per_cu->is_debug_types);
11528 sig_type = (struct signatured_type *) per_cu;
11529
11530 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11531
11532 /* If we're using .gdb_index (includes -readnow) then
11533 per_cu->type_unit_group may not have been set up yet. */
11534 if (sig_type->type_unit_group == NULL)
11535 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11536 tu_group = sig_type->type_unit_group;
11537
11538 /* If we've already processed this stmt_list there's no real need to
11539 do it again, we could fake it and just recreate the part we need
11540 (file name,index -> symtab mapping). If data shows this optimization
11541 is useful we can do it then. */
11542 first_time = tu_group->compunit_symtab == NULL;
11543
11544 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11545 debug info. */
11546 line_header_up lh;
11547 if (attr != NULL)
11548 {
11549 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11550 lh = dwarf_decode_line_header (line_offset, cu);
11551 }
11552 if (lh == NULL)
11553 {
11554 if (first_time)
11555 dwarf2_start_symtab (cu, "", NULL, 0);
11556 else
11557 {
11558 gdb_assert (tu_group->symtabs == NULL);
11559 restart_symtab (tu_group->compunit_symtab, "", 0);
11560 }
11561 return;
11562 }
11563
11564 cu->line_header = lh.release ();
11565 cu->line_header_die_owner = die;
11566
11567 if (first_time)
11568 {
11569 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11570
11571 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11572 still initializing it, and our caller (a few levels up)
11573 process_full_type_unit still needs to know if this is the first
11574 time. */
11575
11576 tu_group->num_symtabs = cu->line_header->file_names.size ();
11577 tu_group->symtabs = XNEWVEC (struct symtab *,
11578 cu->line_header->file_names.size ());
11579
11580 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11581 {
11582 file_entry &fe = cu->line_header->file_names[i];
11583
11584 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11585
11586 if (current_subfile->symtab == NULL)
11587 {
11588 /* NOTE: start_subfile will recognize when it's been
11589 passed a file it has already seen. So we can't
11590 assume there's a simple mapping from
11591 cu->line_header->file_names to subfiles, plus
11592 cu->line_header->file_names may contain dups. */
11593 current_subfile->symtab
11594 = allocate_symtab (cust, current_subfile->name);
11595 }
11596
11597 fe.symtab = current_subfile->symtab;
11598 tu_group->symtabs[i] = fe.symtab;
11599 }
11600 }
11601 else
11602 {
11603 restart_symtab (tu_group->compunit_symtab, "", 0);
11604
11605 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11606 {
11607 file_entry &fe = cu->line_header->file_names[i];
11608
11609 fe.symtab = tu_group->symtabs[i];
11610 }
11611 }
11612
11613 /* The main symtab is allocated last. Type units don't have DW_AT_name
11614 so they don't have a "real" (so to speak) symtab anyway.
11615 There is later code that will assign the main symtab to all symbols
11616 that don't have one. We need to handle the case of a symbol with a
11617 missing symtab (DW_AT_decl_file) anyway. */
11618 }
11619
11620 /* Process DW_TAG_type_unit.
11621 For TUs we want to skip the first top level sibling if it's not the
11622 actual type being defined by this TU. In this case the first top
11623 level sibling is there to provide context only. */
11624
11625 static void
11626 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11627 {
11628 struct die_info *child_die;
11629
11630 prepare_one_comp_unit (cu, die, language_minimal);
11631
11632 /* Initialize (or reinitialize) the machinery for building symtabs.
11633 We do this before processing child DIEs, so that the line header table
11634 is available for DW_AT_decl_file. */
11635 setup_type_unit_groups (die, cu);
11636
11637 if (die->child != NULL)
11638 {
11639 child_die = die->child;
11640 while (child_die && child_die->tag)
11641 {
11642 process_die (child_die, cu);
11643 child_die = sibling_die (child_die);
11644 }
11645 }
11646 }
11647 \f
11648 /* DWO/DWP files.
11649
11650 http://gcc.gnu.org/wiki/DebugFission
11651 http://gcc.gnu.org/wiki/DebugFissionDWP
11652
11653 To simplify handling of both DWO files ("object" files with the DWARF info)
11654 and DWP files (a file with the DWOs packaged up into one file), we treat
11655 DWP files as having a collection of virtual DWO files. */
11656
11657 static hashval_t
11658 hash_dwo_file (const void *item)
11659 {
11660 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11661 hashval_t hash;
11662
11663 hash = htab_hash_string (dwo_file->dwo_name);
11664 if (dwo_file->comp_dir != NULL)
11665 hash += htab_hash_string (dwo_file->comp_dir);
11666 return hash;
11667 }
11668
11669 static int
11670 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11671 {
11672 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11673 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11674
11675 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11676 return 0;
11677 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11678 return lhs->comp_dir == rhs->comp_dir;
11679 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11680 }
11681
11682 /* Allocate a hash table for DWO files. */
11683
11684 static htab_t
11685 allocate_dwo_file_hash_table (struct objfile *objfile)
11686 {
11687 return htab_create_alloc_ex (41,
11688 hash_dwo_file,
11689 eq_dwo_file,
11690 NULL,
11691 &objfile->objfile_obstack,
11692 hashtab_obstack_allocate,
11693 dummy_obstack_deallocate);
11694 }
11695
11696 /* Lookup DWO file DWO_NAME. */
11697
11698 static void **
11699 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11700 const char *dwo_name,
11701 const char *comp_dir)
11702 {
11703 struct dwo_file find_entry;
11704 void **slot;
11705
11706 if (dwarf2_per_objfile->dwo_files == NULL)
11707 dwarf2_per_objfile->dwo_files
11708 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11709
11710 memset (&find_entry, 0, sizeof (find_entry));
11711 find_entry.dwo_name = dwo_name;
11712 find_entry.comp_dir = comp_dir;
11713 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11714
11715 return slot;
11716 }
11717
11718 static hashval_t
11719 hash_dwo_unit (const void *item)
11720 {
11721 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11722
11723 /* This drops the top 32 bits of the id, but is ok for a hash. */
11724 return dwo_unit->signature;
11725 }
11726
11727 static int
11728 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11729 {
11730 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11731 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11732
11733 /* The signature is assumed to be unique within the DWO file.
11734 So while object file CU dwo_id's always have the value zero,
11735 that's OK, assuming each object file DWO file has only one CU,
11736 and that's the rule for now. */
11737 return lhs->signature == rhs->signature;
11738 }
11739
11740 /* Allocate a hash table for DWO CUs,TUs.
11741 There is one of these tables for each of CUs,TUs for each DWO file. */
11742
11743 static htab_t
11744 allocate_dwo_unit_table (struct objfile *objfile)
11745 {
11746 /* Start out with a pretty small number.
11747 Generally DWO files contain only one CU and maybe some TUs. */
11748 return htab_create_alloc_ex (3,
11749 hash_dwo_unit,
11750 eq_dwo_unit,
11751 NULL,
11752 &objfile->objfile_obstack,
11753 hashtab_obstack_allocate,
11754 dummy_obstack_deallocate);
11755 }
11756
11757 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11758
11759 struct create_dwo_cu_data
11760 {
11761 struct dwo_file *dwo_file;
11762 struct dwo_unit dwo_unit;
11763 };
11764
11765 /* die_reader_func for create_dwo_cu. */
11766
11767 static void
11768 create_dwo_cu_reader (const struct die_reader_specs *reader,
11769 const gdb_byte *info_ptr,
11770 struct die_info *comp_unit_die,
11771 int has_children,
11772 void *datap)
11773 {
11774 struct dwarf2_cu *cu = reader->cu;
11775 sect_offset sect_off = cu->per_cu->sect_off;
11776 struct dwarf2_section_info *section = cu->per_cu->section;
11777 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11778 struct dwo_file *dwo_file = data->dwo_file;
11779 struct dwo_unit *dwo_unit = &data->dwo_unit;
11780 struct attribute *attr;
11781
11782 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11783 if (attr == NULL)
11784 {
11785 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11786 " its dwo_id [in module %s]"),
11787 sect_offset_str (sect_off), dwo_file->dwo_name);
11788 return;
11789 }
11790
11791 dwo_unit->dwo_file = dwo_file;
11792 dwo_unit->signature = DW_UNSND (attr);
11793 dwo_unit->section = section;
11794 dwo_unit->sect_off = sect_off;
11795 dwo_unit->length = cu->per_cu->length;
11796
11797 if (dwarf_read_debug)
11798 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11799 sect_offset_str (sect_off),
11800 hex_string (dwo_unit->signature));
11801 }
11802
11803 /* Create the dwo_units for the CUs in a DWO_FILE.
11804 Note: This function processes DWO files only, not DWP files. */
11805
11806 static void
11807 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11808 struct dwo_file &dwo_file, dwarf2_section_info &section,
11809 htab_t &cus_htab)
11810 {
11811 struct objfile *objfile = dwarf2_per_objfile->objfile;
11812 const gdb_byte *info_ptr, *end_ptr;
11813
11814 dwarf2_read_section (objfile, &section);
11815 info_ptr = section.buffer;
11816
11817 if (info_ptr == NULL)
11818 return;
11819
11820 if (dwarf_read_debug)
11821 {
11822 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11823 get_section_name (&section),
11824 get_section_file_name (&section));
11825 }
11826
11827 end_ptr = info_ptr + section.size;
11828 while (info_ptr < end_ptr)
11829 {
11830 struct dwarf2_per_cu_data per_cu;
11831 struct create_dwo_cu_data create_dwo_cu_data;
11832 struct dwo_unit *dwo_unit;
11833 void **slot;
11834 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11835
11836 memset (&create_dwo_cu_data.dwo_unit, 0,
11837 sizeof (create_dwo_cu_data.dwo_unit));
11838 memset (&per_cu, 0, sizeof (per_cu));
11839 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11840 per_cu.is_debug_types = 0;
11841 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11842 per_cu.section = &section;
11843 create_dwo_cu_data.dwo_file = &dwo_file;
11844
11845 init_cutu_and_read_dies_no_follow (
11846 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11847 info_ptr += per_cu.length;
11848
11849 // If the unit could not be parsed, skip it.
11850 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11851 continue;
11852
11853 if (cus_htab == NULL)
11854 cus_htab = allocate_dwo_unit_table (objfile);
11855
11856 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11857 *dwo_unit = create_dwo_cu_data.dwo_unit;
11858 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11859 gdb_assert (slot != NULL);
11860 if (*slot != NULL)
11861 {
11862 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11863 sect_offset dup_sect_off = dup_cu->sect_off;
11864
11865 complaint (_("debug cu entry at offset %s is duplicate to"
11866 " the entry at offset %s, signature %s"),
11867 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11868 hex_string (dwo_unit->signature));
11869 }
11870 *slot = (void *)dwo_unit;
11871 }
11872 }
11873
11874 /* DWP file .debug_{cu,tu}_index section format:
11875 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11876
11877 DWP Version 1:
11878
11879 Both index sections have the same format, and serve to map a 64-bit
11880 signature to a set of section numbers. Each section begins with a header,
11881 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11882 indexes, and a pool of 32-bit section numbers. The index sections will be
11883 aligned at 8-byte boundaries in the file.
11884
11885 The index section header consists of:
11886
11887 V, 32 bit version number
11888 -, 32 bits unused
11889 N, 32 bit number of compilation units or type units in the index
11890 M, 32 bit number of slots in the hash table
11891
11892 Numbers are recorded using the byte order of the application binary.
11893
11894 The hash table begins at offset 16 in the section, and consists of an array
11895 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11896 order of the application binary). Unused slots in the hash table are 0.
11897 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11898
11899 The parallel table begins immediately after the hash table
11900 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11901 array of 32-bit indexes (using the byte order of the application binary),
11902 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11903 table contains a 32-bit index into the pool of section numbers. For unused
11904 hash table slots, the corresponding entry in the parallel table will be 0.
11905
11906 The pool of section numbers begins immediately following the hash table
11907 (at offset 16 + 12 * M from the beginning of the section). The pool of
11908 section numbers consists of an array of 32-bit words (using the byte order
11909 of the application binary). Each item in the array is indexed starting
11910 from 0. The hash table entry provides the index of the first section
11911 number in the set. Additional section numbers in the set follow, and the
11912 set is terminated by a 0 entry (section number 0 is not used in ELF).
11913
11914 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11915 section must be the first entry in the set, and the .debug_abbrev.dwo must
11916 be the second entry. Other members of the set may follow in any order.
11917
11918 ---
11919
11920 DWP Version 2:
11921
11922 DWP Version 2 combines all the .debug_info, etc. sections into one,
11923 and the entries in the index tables are now offsets into these sections.
11924 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11925 section.
11926
11927 Index Section Contents:
11928 Header
11929 Hash Table of Signatures dwp_hash_table.hash_table
11930 Parallel Table of Indices dwp_hash_table.unit_table
11931 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11932 Table of Section Sizes dwp_hash_table.v2.sizes
11933
11934 The index section header consists of:
11935
11936 V, 32 bit version number
11937 L, 32 bit number of columns in the table of section offsets
11938 N, 32 bit number of compilation units or type units in the index
11939 M, 32 bit number of slots in the hash table
11940
11941 Numbers are recorded using the byte order of the application binary.
11942
11943 The hash table has the same format as version 1.
11944 The parallel table of indices has the same format as version 1,
11945 except that the entries are origin-1 indices into the table of sections
11946 offsets and the table of section sizes.
11947
11948 The table of offsets begins immediately following the parallel table
11949 (at offset 16 + 12 * M from the beginning of the section). The table is
11950 a two-dimensional array of 32-bit words (using the byte order of the
11951 application binary), with L columns and N+1 rows, in row-major order.
11952 Each row in the array is indexed starting from 0. The first row provides
11953 a key to the remaining rows: each column in this row provides an identifier
11954 for a debug section, and the offsets in the same column of subsequent rows
11955 refer to that section. The section identifiers are:
11956
11957 DW_SECT_INFO 1 .debug_info.dwo
11958 DW_SECT_TYPES 2 .debug_types.dwo
11959 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11960 DW_SECT_LINE 4 .debug_line.dwo
11961 DW_SECT_LOC 5 .debug_loc.dwo
11962 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11963 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11964 DW_SECT_MACRO 8 .debug_macro.dwo
11965
11966 The offsets provided by the CU and TU index sections are the base offsets
11967 for the contributions made by each CU or TU to the corresponding section
11968 in the package file. Each CU and TU header contains an abbrev_offset
11969 field, used to find the abbreviations table for that CU or TU within the
11970 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11971 be interpreted as relative to the base offset given in the index section.
11972 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11973 should be interpreted as relative to the base offset for .debug_line.dwo,
11974 and offsets into other debug sections obtained from DWARF attributes should
11975 also be interpreted as relative to the corresponding base offset.
11976
11977 The table of sizes begins immediately following the table of offsets.
11978 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11979 with L columns and N rows, in row-major order. Each row in the array is
11980 indexed starting from 1 (row 0 is shared by the two tables).
11981
11982 ---
11983
11984 Hash table lookup is handled the same in version 1 and 2:
11985
11986 We assume that N and M will not exceed 2^32 - 1.
11987 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11988
11989 Given a 64-bit compilation unit signature or a type signature S, an entry
11990 in the hash table is located as follows:
11991
11992 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11993 the low-order k bits all set to 1.
11994
11995 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11996
11997 3) If the hash table entry at index H matches the signature, use that
11998 entry. If the hash table entry at index H is unused (all zeroes),
11999 terminate the search: the signature is not present in the table.
12000
12001 4) Let H = (H + H') modulo M. Repeat at Step 3.
12002
12003 Because M > N and H' and M are relatively prime, the search is guaranteed
12004 to stop at an unused slot or find the match. */
12005
12006 /* Create a hash table to map DWO IDs to their CU/TU entry in
12007 .debug_{info,types}.dwo in DWP_FILE.
12008 Returns NULL if there isn't one.
12009 Note: This function processes DWP files only, not DWO files. */
12010
12011 static struct dwp_hash_table *
12012 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12013 struct dwp_file *dwp_file, int is_debug_types)
12014 {
12015 struct objfile *objfile = dwarf2_per_objfile->objfile;
12016 bfd *dbfd = dwp_file->dbfd.get ();
12017 const gdb_byte *index_ptr, *index_end;
12018 struct dwarf2_section_info *index;
12019 uint32_t version, nr_columns, nr_units, nr_slots;
12020 struct dwp_hash_table *htab;
12021
12022 if (is_debug_types)
12023 index = &dwp_file->sections.tu_index;
12024 else
12025 index = &dwp_file->sections.cu_index;
12026
12027 if (dwarf2_section_empty_p (index))
12028 return NULL;
12029 dwarf2_read_section (objfile, index);
12030
12031 index_ptr = index->buffer;
12032 index_end = index_ptr + index->size;
12033
12034 version = read_4_bytes (dbfd, index_ptr);
12035 index_ptr += 4;
12036 if (version == 2)
12037 nr_columns = read_4_bytes (dbfd, index_ptr);
12038 else
12039 nr_columns = 0;
12040 index_ptr += 4;
12041 nr_units = read_4_bytes (dbfd, index_ptr);
12042 index_ptr += 4;
12043 nr_slots = read_4_bytes (dbfd, index_ptr);
12044 index_ptr += 4;
12045
12046 if (version != 1 && version != 2)
12047 {
12048 error (_("Dwarf Error: unsupported DWP file version (%s)"
12049 " [in module %s]"),
12050 pulongest (version), dwp_file->name);
12051 }
12052 if (nr_slots != (nr_slots & -nr_slots))
12053 {
12054 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12055 " is not power of 2 [in module %s]"),
12056 pulongest (nr_slots), dwp_file->name);
12057 }
12058
12059 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12060 htab->version = version;
12061 htab->nr_columns = nr_columns;
12062 htab->nr_units = nr_units;
12063 htab->nr_slots = nr_slots;
12064 htab->hash_table = index_ptr;
12065 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12066
12067 /* Exit early if the table is empty. */
12068 if (nr_slots == 0 || nr_units == 0
12069 || (version == 2 && nr_columns == 0))
12070 {
12071 /* All must be zero. */
12072 if (nr_slots != 0 || nr_units != 0
12073 || (version == 2 && nr_columns != 0))
12074 {
12075 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12076 " all zero [in modules %s]"),
12077 dwp_file->name);
12078 }
12079 return htab;
12080 }
12081
12082 if (version == 1)
12083 {
12084 htab->section_pool.v1.indices =
12085 htab->unit_table + sizeof (uint32_t) * nr_slots;
12086 /* It's harder to decide whether the section is too small in v1.
12087 V1 is deprecated anyway so we punt. */
12088 }
12089 else
12090 {
12091 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12092 int *ids = htab->section_pool.v2.section_ids;
12093 /* Reverse map for error checking. */
12094 int ids_seen[DW_SECT_MAX + 1];
12095 int i;
12096
12097 if (nr_columns < 2)
12098 {
12099 error (_("Dwarf Error: bad DWP hash table, too few columns"
12100 " in section table [in module %s]"),
12101 dwp_file->name);
12102 }
12103 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12104 {
12105 error (_("Dwarf Error: bad DWP hash table, too many columns"
12106 " in section table [in module %s]"),
12107 dwp_file->name);
12108 }
12109 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12110 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12111 for (i = 0; i < nr_columns; ++i)
12112 {
12113 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12114
12115 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12116 {
12117 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12118 " in section table [in module %s]"),
12119 id, dwp_file->name);
12120 }
12121 if (ids_seen[id] != -1)
12122 {
12123 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12124 " id %d in section table [in module %s]"),
12125 id, dwp_file->name);
12126 }
12127 ids_seen[id] = i;
12128 ids[i] = id;
12129 }
12130 /* Must have exactly one info or types section. */
12131 if (((ids_seen[DW_SECT_INFO] != -1)
12132 + (ids_seen[DW_SECT_TYPES] != -1))
12133 != 1)
12134 {
12135 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12136 " DWO info/types section [in module %s]"),
12137 dwp_file->name);
12138 }
12139 /* Must have an abbrev section. */
12140 if (ids_seen[DW_SECT_ABBREV] == -1)
12141 {
12142 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12143 " section [in module %s]"),
12144 dwp_file->name);
12145 }
12146 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12147 htab->section_pool.v2.sizes =
12148 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12149 * nr_units * nr_columns);
12150 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12151 * nr_units * nr_columns))
12152 > index_end)
12153 {
12154 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12155 " [in module %s]"),
12156 dwp_file->name);
12157 }
12158 }
12159
12160 return htab;
12161 }
12162
12163 /* Update SECTIONS with the data from SECTP.
12164
12165 This function is like the other "locate" section routines that are
12166 passed to bfd_map_over_sections, but in this context the sections to
12167 read comes from the DWP V1 hash table, not the full ELF section table.
12168
12169 The result is non-zero for success, or zero if an error was found. */
12170
12171 static int
12172 locate_v1_virtual_dwo_sections (asection *sectp,
12173 struct virtual_v1_dwo_sections *sections)
12174 {
12175 const struct dwop_section_names *names = &dwop_section_names;
12176
12177 if (section_is_p (sectp->name, &names->abbrev_dwo))
12178 {
12179 /* There can be only one. */
12180 if (sections->abbrev.s.section != NULL)
12181 return 0;
12182 sections->abbrev.s.section = sectp;
12183 sections->abbrev.size = bfd_get_section_size (sectp);
12184 }
12185 else if (section_is_p (sectp->name, &names->info_dwo)
12186 || section_is_p (sectp->name, &names->types_dwo))
12187 {
12188 /* There can be only one. */
12189 if (sections->info_or_types.s.section != NULL)
12190 return 0;
12191 sections->info_or_types.s.section = sectp;
12192 sections->info_or_types.size = bfd_get_section_size (sectp);
12193 }
12194 else if (section_is_p (sectp->name, &names->line_dwo))
12195 {
12196 /* There can be only one. */
12197 if (sections->line.s.section != NULL)
12198 return 0;
12199 sections->line.s.section = sectp;
12200 sections->line.size = bfd_get_section_size (sectp);
12201 }
12202 else if (section_is_p (sectp->name, &names->loc_dwo))
12203 {
12204 /* There can be only one. */
12205 if (sections->loc.s.section != NULL)
12206 return 0;
12207 sections->loc.s.section = sectp;
12208 sections->loc.size = bfd_get_section_size (sectp);
12209 }
12210 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12211 {
12212 /* There can be only one. */
12213 if (sections->macinfo.s.section != NULL)
12214 return 0;
12215 sections->macinfo.s.section = sectp;
12216 sections->macinfo.size = bfd_get_section_size (sectp);
12217 }
12218 else if (section_is_p (sectp->name, &names->macro_dwo))
12219 {
12220 /* There can be only one. */
12221 if (sections->macro.s.section != NULL)
12222 return 0;
12223 sections->macro.s.section = sectp;
12224 sections->macro.size = bfd_get_section_size (sectp);
12225 }
12226 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12227 {
12228 /* There can be only one. */
12229 if (sections->str_offsets.s.section != NULL)
12230 return 0;
12231 sections->str_offsets.s.section = sectp;
12232 sections->str_offsets.size = bfd_get_section_size (sectp);
12233 }
12234 else
12235 {
12236 /* No other kind of section is valid. */
12237 return 0;
12238 }
12239
12240 return 1;
12241 }
12242
12243 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12244 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12245 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12246 This is for DWP version 1 files. */
12247
12248 static struct dwo_unit *
12249 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12250 struct dwp_file *dwp_file,
12251 uint32_t unit_index,
12252 const char *comp_dir,
12253 ULONGEST signature, int is_debug_types)
12254 {
12255 struct objfile *objfile = dwarf2_per_objfile->objfile;
12256 const struct dwp_hash_table *dwp_htab =
12257 is_debug_types ? dwp_file->tus : dwp_file->cus;
12258 bfd *dbfd = dwp_file->dbfd.get ();
12259 const char *kind = is_debug_types ? "TU" : "CU";
12260 struct dwo_file *dwo_file;
12261 struct dwo_unit *dwo_unit;
12262 struct virtual_v1_dwo_sections sections;
12263 void **dwo_file_slot;
12264 int i;
12265
12266 gdb_assert (dwp_file->version == 1);
12267
12268 if (dwarf_read_debug)
12269 {
12270 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12271 kind,
12272 pulongest (unit_index), hex_string (signature),
12273 dwp_file->name);
12274 }
12275
12276 /* Fetch the sections of this DWO unit.
12277 Put a limit on the number of sections we look for so that bad data
12278 doesn't cause us to loop forever. */
12279
12280 #define MAX_NR_V1_DWO_SECTIONS \
12281 (1 /* .debug_info or .debug_types */ \
12282 + 1 /* .debug_abbrev */ \
12283 + 1 /* .debug_line */ \
12284 + 1 /* .debug_loc */ \
12285 + 1 /* .debug_str_offsets */ \
12286 + 1 /* .debug_macro or .debug_macinfo */ \
12287 + 1 /* trailing zero */)
12288
12289 memset (&sections, 0, sizeof (sections));
12290
12291 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12292 {
12293 asection *sectp;
12294 uint32_t section_nr =
12295 read_4_bytes (dbfd,
12296 dwp_htab->section_pool.v1.indices
12297 + (unit_index + i) * sizeof (uint32_t));
12298
12299 if (section_nr == 0)
12300 break;
12301 if (section_nr >= dwp_file->num_sections)
12302 {
12303 error (_("Dwarf Error: bad DWP hash table, section number too large"
12304 " [in module %s]"),
12305 dwp_file->name);
12306 }
12307
12308 sectp = dwp_file->elf_sections[section_nr];
12309 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12310 {
12311 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12312 " [in module %s]"),
12313 dwp_file->name);
12314 }
12315 }
12316
12317 if (i < 2
12318 || dwarf2_section_empty_p (&sections.info_or_types)
12319 || dwarf2_section_empty_p (&sections.abbrev))
12320 {
12321 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12322 " [in module %s]"),
12323 dwp_file->name);
12324 }
12325 if (i == MAX_NR_V1_DWO_SECTIONS)
12326 {
12327 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12328 " [in module %s]"),
12329 dwp_file->name);
12330 }
12331
12332 /* It's easier for the rest of the code if we fake a struct dwo_file and
12333 have dwo_unit "live" in that. At least for now.
12334
12335 The DWP file can be made up of a random collection of CUs and TUs.
12336 However, for each CU + set of TUs that came from the same original DWO
12337 file, we can combine them back into a virtual DWO file to save space
12338 (fewer struct dwo_file objects to allocate). Remember that for really
12339 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12340
12341 std::string virtual_dwo_name =
12342 string_printf ("virtual-dwo/%d-%d-%d-%d",
12343 get_section_id (&sections.abbrev),
12344 get_section_id (&sections.line),
12345 get_section_id (&sections.loc),
12346 get_section_id (&sections.str_offsets));
12347 /* Can we use an existing virtual DWO file? */
12348 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12349 virtual_dwo_name.c_str (),
12350 comp_dir);
12351 /* Create one if necessary. */
12352 if (*dwo_file_slot == NULL)
12353 {
12354 if (dwarf_read_debug)
12355 {
12356 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12357 virtual_dwo_name.c_str ());
12358 }
12359 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12360 dwo_file->dwo_name
12361 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12362 virtual_dwo_name.c_str (),
12363 virtual_dwo_name.size ());
12364 dwo_file->comp_dir = comp_dir;
12365 dwo_file->sections.abbrev = sections.abbrev;
12366 dwo_file->sections.line = sections.line;
12367 dwo_file->sections.loc = sections.loc;
12368 dwo_file->sections.macinfo = sections.macinfo;
12369 dwo_file->sections.macro = sections.macro;
12370 dwo_file->sections.str_offsets = sections.str_offsets;
12371 /* The "str" section is global to the entire DWP file. */
12372 dwo_file->sections.str = dwp_file->sections.str;
12373 /* The info or types section is assigned below to dwo_unit,
12374 there's no need to record it in dwo_file.
12375 Also, we can't simply record type sections in dwo_file because
12376 we record a pointer into the vector in dwo_unit. As we collect more
12377 types we'll grow the vector and eventually have to reallocate space
12378 for it, invalidating all copies of pointers into the previous
12379 contents. */
12380 *dwo_file_slot = dwo_file;
12381 }
12382 else
12383 {
12384 if (dwarf_read_debug)
12385 {
12386 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12387 virtual_dwo_name.c_str ());
12388 }
12389 dwo_file = (struct dwo_file *) *dwo_file_slot;
12390 }
12391
12392 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12393 dwo_unit->dwo_file = dwo_file;
12394 dwo_unit->signature = signature;
12395 dwo_unit->section =
12396 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12397 *dwo_unit->section = sections.info_or_types;
12398 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12399
12400 return dwo_unit;
12401 }
12402
12403 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12404 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12405 piece within that section used by a TU/CU, return a virtual section
12406 of just that piece. */
12407
12408 static struct dwarf2_section_info
12409 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12410 struct dwarf2_section_info *section,
12411 bfd_size_type offset, bfd_size_type size)
12412 {
12413 struct dwarf2_section_info result;
12414 asection *sectp;
12415
12416 gdb_assert (section != NULL);
12417 gdb_assert (!section->is_virtual);
12418
12419 memset (&result, 0, sizeof (result));
12420 result.s.containing_section = section;
12421 result.is_virtual = 1;
12422
12423 if (size == 0)
12424 return result;
12425
12426 sectp = get_section_bfd_section (section);
12427
12428 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12429 bounds of the real section. This is a pretty-rare event, so just
12430 flag an error (easier) instead of a warning and trying to cope. */
12431 if (sectp == NULL
12432 || offset + size > bfd_get_section_size (sectp))
12433 {
12434 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12435 " in section %s [in module %s]"),
12436 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12437 objfile_name (dwarf2_per_objfile->objfile));
12438 }
12439
12440 result.virtual_offset = offset;
12441 result.size = size;
12442 return result;
12443 }
12444
12445 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12446 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12447 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12448 This is for DWP version 2 files. */
12449
12450 static struct dwo_unit *
12451 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12452 struct dwp_file *dwp_file,
12453 uint32_t unit_index,
12454 const char *comp_dir,
12455 ULONGEST signature, int is_debug_types)
12456 {
12457 struct objfile *objfile = dwarf2_per_objfile->objfile;
12458 const struct dwp_hash_table *dwp_htab =
12459 is_debug_types ? dwp_file->tus : dwp_file->cus;
12460 bfd *dbfd = dwp_file->dbfd.get ();
12461 const char *kind = is_debug_types ? "TU" : "CU";
12462 struct dwo_file *dwo_file;
12463 struct dwo_unit *dwo_unit;
12464 struct virtual_v2_dwo_sections sections;
12465 void **dwo_file_slot;
12466 int i;
12467
12468 gdb_assert (dwp_file->version == 2);
12469
12470 if (dwarf_read_debug)
12471 {
12472 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12473 kind,
12474 pulongest (unit_index), hex_string (signature),
12475 dwp_file->name);
12476 }
12477
12478 /* Fetch the section offsets of this DWO unit. */
12479
12480 memset (&sections, 0, sizeof (sections));
12481
12482 for (i = 0; i < dwp_htab->nr_columns; ++i)
12483 {
12484 uint32_t offset = read_4_bytes (dbfd,
12485 dwp_htab->section_pool.v2.offsets
12486 + (((unit_index - 1) * dwp_htab->nr_columns
12487 + i)
12488 * sizeof (uint32_t)));
12489 uint32_t size = read_4_bytes (dbfd,
12490 dwp_htab->section_pool.v2.sizes
12491 + (((unit_index - 1) * dwp_htab->nr_columns
12492 + i)
12493 * sizeof (uint32_t)));
12494
12495 switch (dwp_htab->section_pool.v2.section_ids[i])
12496 {
12497 case DW_SECT_INFO:
12498 case DW_SECT_TYPES:
12499 sections.info_or_types_offset = offset;
12500 sections.info_or_types_size = size;
12501 break;
12502 case DW_SECT_ABBREV:
12503 sections.abbrev_offset = offset;
12504 sections.abbrev_size = size;
12505 break;
12506 case DW_SECT_LINE:
12507 sections.line_offset = offset;
12508 sections.line_size = size;
12509 break;
12510 case DW_SECT_LOC:
12511 sections.loc_offset = offset;
12512 sections.loc_size = size;
12513 break;
12514 case DW_SECT_STR_OFFSETS:
12515 sections.str_offsets_offset = offset;
12516 sections.str_offsets_size = size;
12517 break;
12518 case DW_SECT_MACINFO:
12519 sections.macinfo_offset = offset;
12520 sections.macinfo_size = size;
12521 break;
12522 case DW_SECT_MACRO:
12523 sections.macro_offset = offset;
12524 sections.macro_size = size;
12525 break;
12526 }
12527 }
12528
12529 /* It's easier for the rest of the code if we fake a struct dwo_file and
12530 have dwo_unit "live" in that. At least for now.
12531
12532 The DWP file can be made up of a random collection of CUs and TUs.
12533 However, for each CU + set of TUs that came from the same original DWO
12534 file, we can combine them back into a virtual DWO file to save space
12535 (fewer struct dwo_file objects to allocate). Remember that for really
12536 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12537
12538 std::string virtual_dwo_name =
12539 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12540 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12541 (long) (sections.line_size ? sections.line_offset : 0),
12542 (long) (sections.loc_size ? sections.loc_offset : 0),
12543 (long) (sections.str_offsets_size
12544 ? sections.str_offsets_offset : 0));
12545 /* Can we use an existing virtual DWO file? */
12546 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12547 virtual_dwo_name.c_str (),
12548 comp_dir);
12549 /* Create one if necessary. */
12550 if (*dwo_file_slot == NULL)
12551 {
12552 if (dwarf_read_debug)
12553 {
12554 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12555 virtual_dwo_name.c_str ());
12556 }
12557 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12558 dwo_file->dwo_name
12559 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12560 virtual_dwo_name.c_str (),
12561 virtual_dwo_name.size ());
12562 dwo_file->comp_dir = comp_dir;
12563 dwo_file->sections.abbrev =
12564 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12565 sections.abbrev_offset, sections.abbrev_size);
12566 dwo_file->sections.line =
12567 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12568 sections.line_offset, sections.line_size);
12569 dwo_file->sections.loc =
12570 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12571 sections.loc_offset, sections.loc_size);
12572 dwo_file->sections.macinfo =
12573 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12574 sections.macinfo_offset, sections.macinfo_size);
12575 dwo_file->sections.macro =
12576 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12577 sections.macro_offset, sections.macro_size);
12578 dwo_file->sections.str_offsets =
12579 create_dwp_v2_section (dwarf2_per_objfile,
12580 &dwp_file->sections.str_offsets,
12581 sections.str_offsets_offset,
12582 sections.str_offsets_size);
12583 /* The "str" section is global to the entire DWP file. */
12584 dwo_file->sections.str = dwp_file->sections.str;
12585 /* The info or types section is assigned below to dwo_unit,
12586 there's no need to record it in dwo_file.
12587 Also, we can't simply record type sections in dwo_file because
12588 we record a pointer into the vector in dwo_unit. As we collect more
12589 types we'll grow the vector and eventually have to reallocate space
12590 for it, invalidating all copies of pointers into the previous
12591 contents. */
12592 *dwo_file_slot = dwo_file;
12593 }
12594 else
12595 {
12596 if (dwarf_read_debug)
12597 {
12598 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12599 virtual_dwo_name.c_str ());
12600 }
12601 dwo_file = (struct dwo_file *) *dwo_file_slot;
12602 }
12603
12604 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12605 dwo_unit->dwo_file = dwo_file;
12606 dwo_unit->signature = signature;
12607 dwo_unit->section =
12608 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12609 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12610 is_debug_types
12611 ? &dwp_file->sections.types
12612 : &dwp_file->sections.info,
12613 sections.info_or_types_offset,
12614 sections.info_or_types_size);
12615 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12616
12617 return dwo_unit;
12618 }
12619
12620 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12621 Returns NULL if the signature isn't found. */
12622
12623 static struct dwo_unit *
12624 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12625 struct dwp_file *dwp_file, const char *comp_dir,
12626 ULONGEST signature, int is_debug_types)
12627 {
12628 const struct dwp_hash_table *dwp_htab =
12629 is_debug_types ? dwp_file->tus : dwp_file->cus;
12630 bfd *dbfd = dwp_file->dbfd.get ();
12631 uint32_t mask = dwp_htab->nr_slots - 1;
12632 uint32_t hash = signature & mask;
12633 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12634 unsigned int i;
12635 void **slot;
12636 struct dwo_unit find_dwo_cu;
12637
12638 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12639 find_dwo_cu.signature = signature;
12640 slot = htab_find_slot (is_debug_types
12641 ? dwp_file->loaded_tus
12642 : dwp_file->loaded_cus,
12643 &find_dwo_cu, INSERT);
12644
12645 if (*slot != NULL)
12646 return (struct dwo_unit *) *slot;
12647
12648 /* Use a for loop so that we don't loop forever on bad debug info. */
12649 for (i = 0; i < dwp_htab->nr_slots; ++i)
12650 {
12651 ULONGEST signature_in_table;
12652
12653 signature_in_table =
12654 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12655 if (signature_in_table == signature)
12656 {
12657 uint32_t unit_index =
12658 read_4_bytes (dbfd,
12659 dwp_htab->unit_table + hash * sizeof (uint32_t));
12660
12661 if (dwp_file->version == 1)
12662 {
12663 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12664 dwp_file, unit_index,
12665 comp_dir, signature,
12666 is_debug_types);
12667 }
12668 else
12669 {
12670 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12671 dwp_file, unit_index,
12672 comp_dir, signature,
12673 is_debug_types);
12674 }
12675 return (struct dwo_unit *) *slot;
12676 }
12677 if (signature_in_table == 0)
12678 return NULL;
12679 hash = (hash + hash2) & mask;
12680 }
12681
12682 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12683 " [in module %s]"),
12684 dwp_file->name);
12685 }
12686
12687 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12688 Open the file specified by FILE_NAME and hand it off to BFD for
12689 preliminary analysis. Return a newly initialized bfd *, which
12690 includes a canonicalized copy of FILE_NAME.
12691 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12692 SEARCH_CWD is true if the current directory is to be searched.
12693 It will be searched before debug-file-directory.
12694 If successful, the file is added to the bfd include table of the
12695 objfile's bfd (see gdb_bfd_record_inclusion).
12696 If unable to find/open the file, return NULL.
12697 NOTE: This function is derived from symfile_bfd_open. */
12698
12699 static gdb_bfd_ref_ptr
12700 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12701 const char *file_name, int is_dwp, int search_cwd)
12702 {
12703 int desc;
12704 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12705 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12706 to debug_file_directory. */
12707 const char *search_path;
12708 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12709
12710 gdb::unique_xmalloc_ptr<char> search_path_holder;
12711 if (search_cwd)
12712 {
12713 if (*debug_file_directory != '\0')
12714 {
12715 search_path_holder.reset (concat (".", dirname_separator_string,
12716 debug_file_directory,
12717 (char *) NULL));
12718 search_path = search_path_holder.get ();
12719 }
12720 else
12721 search_path = ".";
12722 }
12723 else
12724 search_path = debug_file_directory;
12725
12726 openp_flags flags = OPF_RETURN_REALPATH;
12727 if (is_dwp)
12728 flags |= OPF_SEARCH_IN_PATH;
12729
12730 gdb::unique_xmalloc_ptr<char> absolute_name;
12731 desc = openp (search_path, flags, file_name,
12732 O_RDONLY | O_BINARY, &absolute_name);
12733 if (desc < 0)
12734 return NULL;
12735
12736 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12737 gnutarget, desc));
12738 if (sym_bfd == NULL)
12739 return NULL;
12740 bfd_set_cacheable (sym_bfd.get (), 1);
12741
12742 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12743 return NULL;
12744
12745 /* Success. Record the bfd as having been included by the objfile's bfd.
12746 This is important because things like demangled_names_hash lives in the
12747 objfile's per_bfd space and may have references to things like symbol
12748 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12749 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12750
12751 return sym_bfd;
12752 }
12753
12754 /* Try to open DWO file FILE_NAME.
12755 COMP_DIR is the DW_AT_comp_dir attribute.
12756 The result is the bfd handle of the file.
12757 If there is a problem finding or opening the file, return NULL.
12758 Upon success, the canonicalized path of the file is stored in the bfd,
12759 same as symfile_bfd_open. */
12760
12761 static gdb_bfd_ref_ptr
12762 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12763 const char *file_name, const char *comp_dir)
12764 {
12765 if (IS_ABSOLUTE_PATH (file_name))
12766 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12767 0 /*is_dwp*/, 0 /*search_cwd*/);
12768
12769 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12770
12771 if (comp_dir != NULL)
12772 {
12773 char *path_to_try = concat (comp_dir, SLASH_STRING,
12774 file_name, (char *) NULL);
12775
12776 /* NOTE: If comp_dir is a relative path, this will also try the
12777 search path, which seems useful. */
12778 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12779 path_to_try,
12780 0 /*is_dwp*/,
12781 1 /*search_cwd*/));
12782 xfree (path_to_try);
12783 if (abfd != NULL)
12784 return abfd;
12785 }
12786
12787 /* That didn't work, try debug-file-directory, which, despite its name,
12788 is a list of paths. */
12789
12790 if (*debug_file_directory == '\0')
12791 return NULL;
12792
12793 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12794 0 /*is_dwp*/, 1 /*search_cwd*/);
12795 }
12796
12797 /* This function is mapped across the sections and remembers the offset and
12798 size of each of the DWO debugging sections we are interested in. */
12799
12800 static void
12801 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12802 {
12803 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12804 const struct dwop_section_names *names = &dwop_section_names;
12805
12806 if (section_is_p (sectp->name, &names->abbrev_dwo))
12807 {
12808 dwo_sections->abbrev.s.section = sectp;
12809 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12810 }
12811 else if (section_is_p (sectp->name, &names->info_dwo))
12812 {
12813 dwo_sections->info.s.section = sectp;
12814 dwo_sections->info.size = bfd_get_section_size (sectp);
12815 }
12816 else if (section_is_p (sectp->name, &names->line_dwo))
12817 {
12818 dwo_sections->line.s.section = sectp;
12819 dwo_sections->line.size = bfd_get_section_size (sectp);
12820 }
12821 else if (section_is_p (sectp->name, &names->loc_dwo))
12822 {
12823 dwo_sections->loc.s.section = sectp;
12824 dwo_sections->loc.size = bfd_get_section_size (sectp);
12825 }
12826 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12827 {
12828 dwo_sections->macinfo.s.section = sectp;
12829 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12830 }
12831 else if (section_is_p (sectp->name, &names->macro_dwo))
12832 {
12833 dwo_sections->macro.s.section = sectp;
12834 dwo_sections->macro.size = bfd_get_section_size (sectp);
12835 }
12836 else if (section_is_p (sectp->name, &names->str_dwo))
12837 {
12838 dwo_sections->str.s.section = sectp;
12839 dwo_sections->str.size = bfd_get_section_size (sectp);
12840 }
12841 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12842 {
12843 dwo_sections->str_offsets.s.section = sectp;
12844 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12845 }
12846 else if (section_is_p (sectp->name, &names->types_dwo))
12847 {
12848 struct dwarf2_section_info type_section;
12849
12850 memset (&type_section, 0, sizeof (type_section));
12851 type_section.s.section = sectp;
12852 type_section.size = bfd_get_section_size (sectp);
12853 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12854 &type_section);
12855 }
12856 }
12857
12858 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12859 by PER_CU. This is for the non-DWP case.
12860 The result is NULL if DWO_NAME can't be found. */
12861
12862 static struct dwo_file *
12863 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12864 const char *dwo_name, const char *comp_dir)
12865 {
12866 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12867 struct objfile *objfile = dwarf2_per_objfile->objfile;
12868
12869 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12870 if (dbfd == NULL)
12871 {
12872 if (dwarf_read_debug)
12873 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12874 return NULL;
12875 }
12876
12877 /* We use a unique pointer here, despite the obstack allocation,
12878 because a dwo_file needs some cleanup if it is abandoned. */
12879 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12880 struct dwo_file));
12881 dwo_file->dwo_name = dwo_name;
12882 dwo_file->comp_dir = comp_dir;
12883 dwo_file->dbfd = dbfd.release ();
12884
12885 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12886 &dwo_file->sections);
12887
12888 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12889 dwo_file->cus);
12890
12891 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12892 dwo_file->sections.types, dwo_file->tus);
12893
12894 if (dwarf_read_debug)
12895 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12896
12897 return dwo_file.release ();
12898 }
12899
12900 /* This function is mapped across the sections and remembers the offset and
12901 size of each of the DWP debugging sections common to version 1 and 2 that
12902 we are interested in. */
12903
12904 static void
12905 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12906 void *dwp_file_ptr)
12907 {
12908 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12909 const struct dwop_section_names *names = &dwop_section_names;
12910 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12911
12912 /* Record the ELF section number for later lookup: this is what the
12913 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12914 gdb_assert (elf_section_nr < dwp_file->num_sections);
12915 dwp_file->elf_sections[elf_section_nr] = sectp;
12916
12917 /* Look for specific sections that we need. */
12918 if (section_is_p (sectp->name, &names->str_dwo))
12919 {
12920 dwp_file->sections.str.s.section = sectp;
12921 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12922 }
12923 else if (section_is_p (sectp->name, &names->cu_index))
12924 {
12925 dwp_file->sections.cu_index.s.section = sectp;
12926 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12927 }
12928 else if (section_is_p (sectp->name, &names->tu_index))
12929 {
12930 dwp_file->sections.tu_index.s.section = sectp;
12931 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12932 }
12933 }
12934
12935 /* This function is mapped across the sections and remembers the offset and
12936 size of each of the DWP version 2 debugging sections that we are interested
12937 in. This is split into a separate function because we don't know if we
12938 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12939
12940 static void
12941 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12942 {
12943 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12944 const struct dwop_section_names *names = &dwop_section_names;
12945 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12946
12947 /* Record the ELF section number for later lookup: this is what the
12948 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12949 gdb_assert (elf_section_nr < dwp_file->num_sections);
12950 dwp_file->elf_sections[elf_section_nr] = sectp;
12951
12952 /* Look for specific sections that we need. */
12953 if (section_is_p (sectp->name, &names->abbrev_dwo))
12954 {
12955 dwp_file->sections.abbrev.s.section = sectp;
12956 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12957 }
12958 else if (section_is_p (sectp->name, &names->info_dwo))
12959 {
12960 dwp_file->sections.info.s.section = sectp;
12961 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12962 }
12963 else if (section_is_p (sectp->name, &names->line_dwo))
12964 {
12965 dwp_file->sections.line.s.section = sectp;
12966 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12967 }
12968 else if (section_is_p (sectp->name, &names->loc_dwo))
12969 {
12970 dwp_file->sections.loc.s.section = sectp;
12971 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12972 }
12973 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12974 {
12975 dwp_file->sections.macinfo.s.section = sectp;
12976 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12977 }
12978 else if (section_is_p (sectp->name, &names->macro_dwo))
12979 {
12980 dwp_file->sections.macro.s.section = sectp;
12981 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
12982 }
12983 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12984 {
12985 dwp_file->sections.str_offsets.s.section = sectp;
12986 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
12987 }
12988 else if (section_is_p (sectp->name, &names->types_dwo))
12989 {
12990 dwp_file->sections.types.s.section = sectp;
12991 dwp_file->sections.types.size = bfd_get_section_size (sectp);
12992 }
12993 }
12994
12995 /* Hash function for dwp_file loaded CUs/TUs. */
12996
12997 static hashval_t
12998 hash_dwp_loaded_cutus (const void *item)
12999 {
13000 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13001
13002 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13003 return dwo_unit->signature;
13004 }
13005
13006 /* Equality function for dwp_file loaded CUs/TUs. */
13007
13008 static int
13009 eq_dwp_loaded_cutus (const void *a, const void *b)
13010 {
13011 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13012 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13013
13014 return dua->signature == dub->signature;
13015 }
13016
13017 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13018
13019 static htab_t
13020 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13021 {
13022 return htab_create_alloc_ex (3,
13023 hash_dwp_loaded_cutus,
13024 eq_dwp_loaded_cutus,
13025 NULL,
13026 &objfile->objfile_obstack,
13027 hashtab_obstack_allocate,
13028 dummy_obstack_deallocate);
13029 }
13030
13031 /* Try to open DWP file FILE_NAME.
13032 The result is the bfd handle of the file.
13033 If there is a problem finding or opening the file, return NULL.
13034 Upon success, the canonicalized path of the file is stored in the bfd,
13035 same as symfile_bfd_open. */
13036
13037 static gdb_bfd_ref_ptr
13038 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13039 const char *file_name)
13040 {
13041 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13042 1 /*is_dwp*/,
13043 1 /*search_cwd*/));
13044 if (abfd != NULL)
13045 return abfd;
13046
13047 /* Work around upstream bug 15652.
13048 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13049 [Whether that's a "bug" is debatable, but it is getting in our way.]
13050 We have no real idea where the dwp file is, because gdb's realpath-ing
13051 of the executable's path may have discarded the needed info.
13052 [IWBN if the dwp file name was recorded in the executable, akin to
13053 .gnu_debuglink, but that doesn't exist yet.]
13054 Strip the directory from FILE_NAME and search again. */
13055 if (*debug_file_directory != '\0')
13056 {
13057 /* Don't implicitly search the current directory here.
13058 If the user wants to search "." to handle this case,
13059 it must be added to debug-file-directory. */
13060 return try_open_dwop_file (dwarf2_per_objfile,
13061 lbasename (file_name), 1 /*is_dwp*/,
13062 0 /*search_cwd*/);
13063 }
13064
13065 return NULL;
13066 }
13067
13068 /* Initialize the use of the DWP file for the current objfile.
13069 By convention the name of the DWP file is ${objfile}.dwp.
13070 The result is NULL if it can't be found. */
13071
13072 static std::unique_ptr<struct dwp_file>
13073 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13074 {
13075 struct objfile *objfile = dwarf2_per_objfile->objfile;
13076
13077 /* Try to find first .dwp for the binary file before any symbolic links
13078 resolving. */
13079
13080 /* If the objfile is a debug file, find the name of the real binary
13081 file and get the name of dwp file from there. */
13082 std::string dwp_name;
13083 if (objfile->separate_debug_objfile_backlink != NULL)
13084 {
13085 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13086 const char *backlink_basename = lbasename (backlink->original_name);
13087
13088 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13089 }
13090 else
13091 dwp_name = objfile->original_name;
13092
13093 dwp_name += ".dwp";
13094
13095 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13096 if (dbfd == NULL
13097 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13098 {
13099 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13100 dwp_name = objfile_name (objfile);
13101 dwp_name += ".dwp";
13102 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13103 }
13104
13105 if (dbfd == NULL)
13106 {
13107 if (dwarf_read_debug)
13108 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13109 return std::unique_ptr<dwp_file> ();
13110 }
13111
13112 const char *name = bfd_get_filename (dbfd.get ());
13113 std::unique_ptr<struct dwp_file> dwp_file
13114 (new struct dwp_file (name, std::move (dbfd)));
13115
13116 /* +1: section 0 is unused */
13117 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13118 dwp_file->elf_sections =
13119 OBSTACK_CALLOC (&objfile->objfile_obstack,
13120 dwp_file->num_sections, asection *);
13121
13122 bfd_map_over_sections (dwp_file->dbfd.get (),
13123 dwarf2_locate_common_dwp_sections,
13124 dwp_file.get ());
13125
13126 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13127 0);
13128
13129 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13130 1);
13131
13132 /* The DWP file version is stored in the hash table. Oh well. */
13133 if (dwp_file->cus && dwp_file->tus
13134 && dwp_file->cus->version != dwp_file->tus->version)
13135 {
13136 /* Technically speaking, we should try to limp along, but this is
13137 pretty bizarre. We use pulongest here because that's the established
13138 portability solution (e.g, we cannot use %u for uint32_t). */
13139 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13140 " TU version %s [in DWP file %s]"),
13141 pulongest (dwp_file->cus->version),
13142 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13143 }
13144
13145 if (dwp_file->cus)
13146 dwp_file->version = dwp_file->cus->version;
13147 else if (dwp_file->tus)
13148 dwp_file->version = dwp_file->tus->version;
13149 else
13150 dwp_file->version = 2;
13151
13152 if (dwp_file->version == 2)
13153 bfd_map_over_sections (dwp_file->dbfd.get (),
13154 dwarf2_locate_v2_dwp_sections,
13155 dwp_file.get ());
13156
13157 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13158 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13159
13160 if (dwarf_read_debug)
13161 {
13162 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13163 fprintf_unfiltered (gdb_stdlog,
13164 " %s CUs, %s TUs\n",
13165 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13166 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13167 }
13168
13169 return dwp_file;
13170 }
13171
13172 /* Wrapper around open_and_init_dwp_file, only open it once. */
13173
13174 static struct dwp_file *
13175 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13176 {
13177 if (! dwarf2_per_objfile->dwp_checked)
13178 {
13179 dwarf2_per_objfile->dwp_file
13180 = open_and_init_dwp_file (dwarf2_per_objfile);
13181 dwarf2_per_objfile->dwp_checked = 1;
13182 }
13183 return dwarf2_per_objfile->dwp_file.get ();
13184 }
13185
13186 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13187 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13188 or in the DWP file for the objfile, referenced by THIS_UNIT.
13189 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13190 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13191
13192 This is called, for example, when wanting to read a variable with a
13193 complex location. Therefore we don't want to do file i/o for every call.
13194 Therefore we don't want to look for a DWO file on every call.
13195 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13196 then we check if we've already seen DWO_NAME, and only THEN do we check
13197 for a DWO file.
13198
13199 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13200 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13201
13202 static struct dwo_unit *
13203 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13204 const char *dwo_name, const char *comp_dir,
13205 ULONGEST signature, int is_debug_types)
13206 {
13207 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13208 struct objfile *objfile = dwarf2_per_objfile->objfile;
13209 const char *kind = is_debug_types ? "TU" : "CU";
13210 void **dwo_file_slot;
13211 struct dwo_file *dwo_file;
13212 struct dwp_file *dwp_file;
13213
13214 /* First see if there's a DWP file.
13215 If we have a DWP file but didn't find the DWO inside it, don't
13216 look for the original DWO file. It makes gdb behave differently
13217 depending on whether one is debugging in the build tree. */
13218
13219 dwp_file = get_dwp_file (dwarf2_per_objfile);
13220 if (dwp_file != NULL)
13221 {
13222 const struct dwp_hash_table *dwp_htab =
13223 is_debug_types ? dwp_file->tus : dwp_file->cus;
13224
13225 if (dwp_htab != NULL)
13226 {
13227 struct dwo_unit *dwo_cutu =
13228 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13229 signature, is_debug_types);
13230
13231 if (dwo_cutu != NULL)
13232 {
13233 if (dwarf_read_debug)
13234 {
13235 fprintf_unfiltered (gdb_stdlog,
13236 "Virtual DWO %s %s found: @%s\n",
13237 kind, hex_string (signature),
13238 host_address_to_string (dwo_cutu));
13239 }
13240 return dwo_cutu;
13241 }
13242 }
13243 }
13244 else
13245 {
13246 /* No DWP file, look for the DWO file. */
13247
13248 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13249 dwo_name, comp_dir);
13250 if (*dwo_file_slot == NULL)
13251 {
13252 /* Read in the file and build a table of the CUs/TUs it contains. */
13253 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13254 }
13255 /* NOTE: This will be NULL if unable to open the file. */
13256 dwo_file = (struct dwo_file *) *dwo_file_slot;
13257
13258 if (dwo_file != NULL)
13259 {
13260 struct dwo_unit *dwo_cutu = NULL;
13261
13262 if (is_debug_types && dwo_file->tus)
13263 {
13264 struct dwo_unit find_dwo_cutu;
13265
13266 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13267 find_dwo_cutu.signature = signature;
13268 dwo_cutu
13269 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13270 }
13271 else if (!is_debug_types && dwo_file->cus)
13272 {
13273 struct dwo_unit find_dwo_cutu;
13274
13275 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13276 find_dwo_cutu.signature = signature;
13277 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13278 &find_dwo_cutu);
13279 }
13280
13281 if (dwo_cutu != NULL)
13282 {
13283 if (dwarf_read_debug)
13284 {
13285 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13286 kind, dwo_name, hex_string (signature),
13287 host_address_to_string (dwo_cutu));
13288 }
13289 return dwo_cutu;
13290 }
13291 }
13292 }
13293
13294 /* We didn't find it. This could mean a dwo_id mismatch, or
13295 someone deleted the DWO/DWP file, or the search path isn't set up
13296 correctly to find the file. */
13297
13298 if (dwarf_read_debug)
13299 {
13300 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13301 kind, dwo_name, hex_string (signature));
13302 }
13303
13304 /* This is a warning and not a complaint because it can be caused by
13305 pilot error (e.g., user accidentally deleting the DWO). */
13306 {
13307 /* Print the name of the DWP file if we looked there, helps the user
13308 better diagnose the problem. */
13309 std::string dwp_text;
13310
13311 if (dwp_file != NULL)
13312 dwp_text = string_printf (" [in DWP file %s]",
13313 lbasename (dwp_file->name));
13314
13315 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13316 " [in module %s]"),
13317 kind, dwo_name, hex_string (signature),
13318 dwp_text.c_str (),
13319 this_unit->is_debug_types ? "TU" : "CU",
13320 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13321 }
13322 return NULL;
13323 }
13324
13325 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13326 See lookup_dwo_cutu_unit for details. */
13327
13328 static struct dwo_unit *
13329 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13330 const char *dwo_name, const char *comp_dir,
13331 ULONGEST signature)
13332 {
13333 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13334 }
13335
13336 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13337 See lookup_dwo_cutu_unit for details. */
13338
13339 static struct dwo_unit *
13340 lookup_dwo_type_unit (struct signatured_type *this_tu,
13341 const char *dwo_name, const char *comp_dir)
13342 {
13343 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13344 }
13345
13346 /* Traversal function for queue_and_load_all_dwo_tus. */
13347
13348 static int
13349 queue_and_load_dwo_tu (void **slot, void *info)
13350 {
13351 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13352 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13353 ULONGEST signature = dwo_unit->signature;
13354 struct signatured_type *sig_type =
13355 lookup_dwo_signatured_type (per_cu->cu, signature);
13356
13357 if (sig_type != NULL)
13358 {
13359 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13360
13361 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13362 a real dependency of PER_CU on SIG_TYPE. That is detected later
13363 while processing PER_CU. */
13364 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13365 load_full_type_unit (sig_cu);
13366 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13367 }
13368
13369 return 1;
13370 }
13371
13372 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13373 The DWO may have the only definition of the type, though it may not be
13374 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13375 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13376
13377 static void
13378 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13379 {
13380 struct dwo_unit *dwo_unit;
13381 struct dwo_file *dwo_file;
13382
13383 gdb_assert (!per_cu->is_debug_types);
13384 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13385 gdb_assert (per_cu->cu != NULL);
13386
13387 dwo_unit = per_cu->cu->dwo_unit;
13388 gdb_assert (dwo_unit != NULL);
13389
13390 dwo_file = dwo_unit->dwo_file;
13391 if (dwo_file->tus != NULL)
13392 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13393 }
13394
13395 /* Free all resources associated with DWO_FILE.
13396 Close the DWO file and munmap the sections. */
13397
13398 static void
13399 free_dwo_file (struct dwo_file *dwo_file)
13400 {
13401 /* Note: dbfd is NULL for virtual DWO files. */
13402 gdb_bfd_unref (dwo_file->dbfd);
13403
13404 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13405 }
13406
13407 /* Traversal function for free_dwo_files. */
13408
13409 static int
13410 free_dwo_file_from_slot (void **slot, void *info)
13411 {
13412 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13413
13414 free_dwo_file (dwo_file);
13415
13416 return 1;
13417 }
13418
13419 /* Free all resources associated with DWO_FILES. */
13420
13421 static void
13422 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13423 {
13424 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13425 }
13426 \f
13427 /* Read in various DIEs. */
13428
13429 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13430 Inherit only the children of the DW_AT_abstract_origin DIE not being
13431 already referenced by DW_AT_abstract_origin from the children of the
13432 current DIE. */
13433
13434 static void
13435 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13436 {
13437 struct die_info *child_die;
13438 sect_offset *offsetp;
13439 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13440 struct die_info *origin_die;
13441 /* Iterator of the ORIGIN_DIE children. */
13442 struct die_info *origin_child_die;
13443 struct attribute *attr;
13444 struct dwarf2_cu *origin_cu;
13445 struct pending **origin_previous_list_in_scope;
13446
13447 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13448 if (!attr)
13449 return;
13450
13451 /* Note that following die references may follow to a die in a
13452 different cu. */
13453
13454 origin_cu = cu;
13455 origin_die = follow_die_ref (die, attr, &origin_cu);
13456
13457 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13458 symbols in. */
13459 origin_previous_list_in_scope = origin_cu->list_in_scope;
13460 origin_cu->list_in_scope = cu->list_in_scope;
13461
13462 if (die->tag != origin_die->tag
13463 && !(die->tag == DW_TAG_inlined_subroutine
13464 && origin_die->tag == DW_TAG_subprogram))
13465 complaint (_("DIE %s and its abstract origin %s have different tags"),
13466 sect_offset_str (die->sect_off),
13467 sect_offset_str (origin_die->sect_off));
13468
13469 std::vector<sect_offset> offsets;
13470
13471 for (child_die = die->child;
13472 child_die && child_die->tag;
13473 child_die = sibling_die (child_die))
13474 {
13475 struct die_info *child_origin_die;
13476 struct dwarf2_cu *child_origin_cu;
13477
13478 /* We are trying to process concrete instance entries:
13479 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13480 it's not relevant to our analysis here. i.e. detecting DIEs that are
13481 present in the abstract instance but not referenced in the concrete
13482 one. */
13483 if (child_die->tag == DW_TAG_call_site
13484 || child_die->tag == DW_TAG_GNU_call_site)
13485 continue;
13486
13487 /* For each CHILD_DIE, find the corresponding child of
13488 ORIGIN_DIE. If there is more than one layer of
13489 DW_AT_abstract_origin, follow them all; there shouldn't be,
13490 but GCC versions at least through 4.4 generate this (GCC PR
13491 40573). */
13492 child_origin_die = child_die;
13493 child_origin_cu = cu;
13494 while (1)
13495 {
13496 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13497 child_origin_cu);
13498 if (attr == NULL)
13499 break;
13500 child_origin_die = follow_die_ref (child_origin_die, attr,
13501 &child_origin_cu);
13502 }
13503
13504 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13505 counterpart may exist. */
13506 if (child_origin_die != child_die)
13507 {
13508 if (child_die->tag != child_origin_die->tag
13509 && !(child_die->tag == DW_TAG_inlined_subroutine
13510 && child_origin_die->tag == DW_TAG_subprogram))
13511 complaint (_("Child DIE %s and its abstract origin %s have "
13512 "different tags"),
13513 sect_offset_str (child_die->sect_off),
13514 sect_offset_str (child_origin_die->sect_off));
13515 if (child_origin_die->parent != origin_die)
13516 complaint (_("Child DIE %s and its abstract origin %s have "
13517 "different parents"),
13518 sect_offset_str (child_die->sect_off),
13519 sect_offset_str (child_origin_die->sect_off));
13520 else
13521 offsets.push_back (child_origin_die->sect_off);
13522 }
13523 }
13524 std::sort (offsets.begin (), offsets.end ());
13525 sect_offset *offsets_end = offsets.data () + offsets.size ();
13526 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13527 if (offsetp[-1] == *offsetp)
13528 complaint (_("Multiple children of DIE %s refer "
13529 "to DIE %s as their abstract origin"),
13530 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13531
13532 offsetp = offsets.data ();
13533 origin_child_die = origin_die->child;
13534 while (origin_child_die && origin_child_die->tag)
13535 {
13536 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13537 while (offsetp < offsets_end
13538 && *offsetp < origin_child_die->sect_off)
13539 offsetp++;
13540 if (offsetp >= offsets_end
13541 || *offsetp > origin_child_die->sect_off)
13542 {
13543 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13544 Check whether we're already processing ORIGIN_CHILD_DIE.
13545 This can happen with mutually referenced abstract_origins.
13546 PR 16581. */
13547 if (!origin_child_die->in_process)
13548 process_die (origin_child_die, origin_cu);
13549 }
13550 origin_child_die = sibling_die (origin_child_die);
13551 }
13552 origin_cu->list_in_scope = origin_previous_list_in_scope;
13553 }
13554
13555 static void
13556 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13557 {
13558 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13559 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13560 struct context_stack *newobj;
13561 CORE_ADDR lowpc;
13562 CORE_ADDR highpc;
13563 struct die_info *child_die;
13564 struct attribute *attr, *call_line, *call_file;
13565 const char *name;
13566 CORE_ADDR baseaddr;
13567 struct block *block;
13568 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13569 std::vector<struct symbol *> template_args;
13570 struct template_symbol *templ_func = NULL;
13571
13572 if (inlined_func)
13573 {
13574 /* If we do not have call site information, we can't show the
13575 caller of this inlined function. That's too confusing, so
13576 only use the scope for local variables. */
13577 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13578 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13579 if (call_line == NULL || call_file == NULL)
13580 {
13581 read_lexical_block_scope (die, cu);
13582 return;
13583 }
13584 }
13585
13586 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13587
13588 name = dwarf2_name (die, cu);
13589
13590 /* Ignore functions with missing or empty names. These are actually
13591 illegal according to the DWARF standard. */
13592 if (name == NULL)
13593 {
13594 complaint (_("missing name for subprogram DIE at %s"),
13595 sect_offset_str (die->sect_off));
13596 return;
13597 }
13598
13599 /* Ignore functions with missing or invalid low and high pc attributes. */
13600 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13601 <= PC_BOUNDS_INVALID)
13602 {
13603 attr = dwarf2_attr (die, DW_AT_external, cu);
13604 if (!attr || !DW_UNSND (attr))
13605 complaint (_("cannot get low and high bounds "
13606 "for subprogram DIE at %s"),
13607 sect_offset_str (die->sect_off));
13608 return;
13609 }
13610
13611 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13612 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13613
13614 /* If we have any template arguments, then we must allocate a
13615 different sort of symbol. */
13616 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13617 {
13618 if (child_die->tag == DW_TAG_template_type_param
13619 || child_die->tag == DW_TAG_template_value_param)
13620 {
13621 templ_func = allocate_template_symbol (objfile);
13622 templ_func->subclass = SYMBOL_TEMPLATE;
13623 break;
13624 }
13625 }
13626
13627 newobj = push_context (0, lowpc);
13628 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13629 (struct symbol *) templ_func);
13630
13631 /* If there is a location expression for DW_AT_frame_base, record
13632 it. */
13633 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13634 if (attr)
13635 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13636
13637 /* If there is a location for the static link, record it. */
13638 newobj->static_link = NULL;
13639 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13640 if (attr)
13641 {
13642 newobj->static_link
13643 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13644 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13645 }
13646
13647 cu->list_in_scope = &local_symbols;
13648
13649 if (die->child != NULL)
13650 {
13651 child_die = die->child;
13652 while (child_die && child_die->tag)
13653 {
13654 if (child_die->tag == DW_TAG_template_type_param
13655 || child_die->tag == DW_TAG_template_value_param)
13656 {
13657 struct symbol *arg = new_symbol (child_die, NULL, cu);
13658
13659 if (arg != NULL)
13660 template_args.push_back (arg);
13661 }
13662 else
13663 process_die (child_die, cu);
13664 child_die = sibling_die (child_die);
13665 }
13666 }
13667
13668 inherit_abstract_dies (die, cu);
13669
13670 /* If we have a DW_AT_specification, we might need to import using
13671 directives from the context of the specification DIE. See the
13672 comment in determine_prefix. */
13673 if (cu->language == language_cplus
13674 && dwarf2_attr (die, DW_AT_specification, cu))
13675 {
13676 struct dwarf2_cu *spec_cu = cu;
13677 struct die_info *spec_die = die_specification (die, &spec_cu);
13678
13679 while (spec_die)
13680 {
13681 child_die = spec_die->child;
13682 while (child_die && child_die->tag)
13683 {
13684 if (child_die->tag == DW_TAG_imported_module)
13685 process_die (child_die, spec_cu);
13686 child_die = sibling_die (child_die);
13687 }
13688
13689 /* In some cases, GCC generates specification DIEs that
13690 themselves contain DW_AT_specification attributes. */
13691 spec_die = die_specification (spec_die, &spec_cu);
13692 }
13693 }
13694
13695 newobj = pop_context ();
13696 /* Make a block for the local symbols within. */
13697 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13698 newobj->static_link, lowpc, highpc);
13699
13700 /* For C++, set the block's scope. */
13701 if ((cu->language == language_cplus
13702 || cu->language == language_fortran
13703 || cu->language == language_d
13704 || cu->language == language_rust)
13705 && cu->processing_has_namespace_info)
13706 block_set_scope (block, determine_prefix (die, cu),
13707 &objfile->objfile_obstack);
13708
13709 /* If we have address ranges, record them. */
13710 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13711
13712 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13713
13714 /* Attach template arguments to function. */
13715 if (!template_args.empty ())
13716 {
13717 gdb_assert (templ_func != NULL);
13718
13719 templ_func->n_template_arguments = template_args.size ();
13720 templ_func->template_arguments
13721 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13722 templ_func->n_template_arguments);
13723 memcpy (templ_func->template_arguments,
13724 template_args.data (),
13725 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13726 }
13727
13728 /* In C++, we can have functions nested inside functions (e.g., when
13729 a function declares a class that has methods). This means that
13730 when we finish processing a function scope, we may need to go
13731 back to building a containing block's symbol lists. */
13732 local_symbols = newobj->locals;
13733 local_using_directives = newobj->local_using_directives;
13734
13735 /* If we've finished processing a top-level function, subsequent
13736 symbols go in the file symbol list. */
13737 if (outermost_context_p ())
13738 cu->list_in_scope = &file_symbols;
13739 }
13740
13741 /* Process all the DIES contained within a lexical block scope. Start
13742 a new scope, process the dies, and then close the scope. */
13743
13744 static void
13745 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13746 {
13747 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13748 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13749 struct context_stack *newobj;
13750 CORE_ADDR lowpc, highpc;
13751 struct die_info *child_die;
13752 CORE_ADDR baseaddr;
13753
13754 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13755
13756 /* Ignore blocks with missing or invalid low and high pc attributes. */
13757 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13758 as multiple lexical blocks? Handling children in a sane way would
13759 be nasty. Might be easier to properly extend generic blocks to
13760 describe ranges. */
13761 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13762 {
13763 case PC_BOUNDS_NOT_PRESENT:
13764 /* DW_TAG_lexical_block has no attributes, process its children as if
13765 there was no wrapping by that DW_TAG_lexical_block.
13766 GCC does no longer produces such DWARF since GCC r224161. */
13767 for (child_die = die->child;
13768 child_die != NULL && child_die->tag;
13769 child_die = sibling_die (child_die))
13770 process_die (child_die, cu);
13771 return;
13772 case PC_BOUNDS_INVALID:
13773 return;
13774 }
13775 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13776 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13777
13778 push_context (0, lowpc);
13779 if (die->child != NULL)
13780 {
13781 child_die = die->child;
13782 while (child_die && child_die->tag)
13783 {
13784 process_die (child_die, cu);
13785 child_die = sibling_die (child_die);
13786 }
13787 }
13788 inherit_abstract_dies (die, cu);
13789 newobj = pop_context ();
13790
13791 if (local_symbols != NULL || local_using_directives != NULL)
13792 {
13793 struct block *block
13794 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13795 newobj->start_addr, highpc);
13796
13797 /* Note that recording ranges after traversing children, as we
13798 do here, means that recording a parent's ranges entails
13799 walking across all its children's ranges as they appear in
13800 the address map, which is quadratic behavior.
13801
13802 It would be nicer to record the parent's ranges before
13803 traversing its children, simply overriding whatever you find
13804 there. But since we don't even decide whether to create a
13805 block until after we've traversed its children, that's hard
13806 to do. */
13807 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13808 }
13809 local_symbols = newobj->locals;
13810 local_using_directives = newobj->local_using_directives;
13811 }
13812
13813 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13814
13815 static void
13816 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13817 {
13818 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13819 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13820 CORE_ADDR pc, baseaddr;
13821 struct attribute *attr;
13822 struct call_site *call_site, call_site_local;
13823 void **slot;
13824 int nparams;
13825 struct die_info *child_die;
13826
13827 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13828
13829 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13830 if (attr == NULL)
13831 {
13832 /* This was a pre-DWARF-5 GNU extension alias
13833 for DW_AT_call_return_pc. */
13834 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13835 }
13836 if (!attr)
13837 {
13838 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13839 "DIE %s [in module %s]"),
13840 sect_offset_str (die->sect_off), objfile_name (objfile));
13841 return;
13842 }
13843 pc = attr_value_as_address (attr) + baseaddr;
13844 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13845
13846 if (cu->call_site_htab == NULL)
13847 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13848 NULL, &objfile->objfile_obstack,
13849 hashtab_obstack_allocate, NULL);
13850 call_site_local.pc = pc;
13851 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13852 if (*slot != NULL)
13853 {
13854 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13855 "DIE %s [in module %s]"),
13856 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13857 objfile_name (objfile));
13858 return;
13859 }
13860
13861 /* Count parameters at the caller. */
13862
13863 nparams = 0;
13864 for (child_die = die->child; child_die && child_die->tag;
13865 child_die = sibling_die (child_die))
13866 {
13867 if (child_die->tag != DW_TAG_call_site_parameter
13868 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13869 {
13870 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13871 "DW_TAG_call_site child DIE %s [in module %s]"),
13872 child_die->tag, sect_offset_str (child_die->sect_off),
13873 objfile_name (objfile));
13874 continue;
13875 }
13876
13877 nparams++;
13878 }
13879
13880 call_site
13881 = ((struct call_site *)
13882 obstack_alloc (&objfile->objfile_obstack,
13883 sizeof (*call_site)
13884 + (sizeof (*call_site->parameter) * (nparams - 1))));
13885 *slot = call_site;
13886 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13887 call_site->pc = pc;
13888
13889 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13890 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13891 {
13892 struct die_info *func_die;
13893
13894 /* Skip also over DW_TAG_inlined_subroutine. */
13895 for (func_die = die->parent;
13896 func_die && func_die->tag != DW_TAG_subprogram
13897 && func_die->tag != DW_TAG_subroutine_type;
13898 func_die = func_die->parent);
13899
13900 /* DW_AT_call_all_calls is a superset
13901 of DW_AT_call_all_tail_calls. */
13902 if (func_die
13903 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13904 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13905 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13906 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13907 {
13908 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13909 not complete. But keep CALL_SITE for look ups via call_site_htab,
13910 both the initial caller containing the real return address PC and
13911 the final callee containing the current PC of a chain of tail
13912 calls do not need to have the tail call list complete. But any
13913 function candidate for a virtual tail call frame searched via
13914 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13915 determined unambiguously. */
13916 }
13917 else
13918 {
13919 struct type *func_type = NULL;
13920
13921 if (func_die)
13922 func_type = get_die_type (func_die, cu);
13923 if (func_type != NULL)
13924 {
13925 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13926
13927 /* Enlist this call site to the function. */
13928 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13929 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13930 }
13931 else
13932 complaint (_("Cannot find function owning DW_TAG_call_site "
13933 "DIE %s [in module %s]"),
13934 sect_offset_str (die->sect_off), objfile_name (objfile));
13935 }
13936 }
13937
13938 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13939 if (attr == NULL)
13940 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13941 if (attr == NULL)
13942 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13943 if (attr == NULL)
13944 {
13945 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13946 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13947 }
13948 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13949 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13950 /* Keep NULL DWARF_BLOCK. */;
13951 else if (attr_form_is_block (attr))
13952 {
13953 struct dwarf2_locexpr_baton *dlbaton;
13954
13955 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13956 dlbaton->data = DW_BLOCK (attr)->data;
13957 dlbaton->size = DW_BLOCK (attr)->size;
13958 dlbaton->per_cu = cu->per_cu;
13959
13960 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13961 }
13962 else if (attr_form_is_ref (attr))
13963 {
13964 struct dwarf2_cu *target_cu = cu;
13965 struct die_info *target_die;
13966
13967 target_die = follow_die_ref (die, attr, &target_cu);
13968 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13969 if (die_is_declaration (target_die, target_cu))
13970 {
13971 const char *target_physname;
13972
13973 /* Prefer the mangled name; otherwise compute the demangled one. */
13974 target_physname = dw2_linkage_name (target_die, target_cu);
13975 if (target_physname == NULL)
13976 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13977 if (target_physname == NULL)
13978 complaint (_("DW_AT_call_target target DIE has invalid "
13979 "physname, for referencing DIE %s [in module %s]"),
13980 sect_offset_str (die->sect_off), objfile_name (objfile));
13981 else
13982 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13983 }
13984 else
13985 {
13986 CORE_ADDR lowpc;
13987
13988 /* DW_AT_entry_pc should be preferred. */
13989 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13990 <= PC_BOUNDS_INVALID)
13991 complaint (_("DW_AT_call_target target DIE has invalid "
13992 "low pc, for referencing DIE %s [in module %s]"),
13993 sect_offset_str (die->sect_off), objfile_name (objfile));
13994 else
13995 {
13996 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13997 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13998 }
13999 }
14000 }
14001 else
14002 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14003 "block nor reference, for DIE %s [in module %s]"),
14004 sect_offset_str (die->sect_off), objfile_name (objfile));
14005
14006 call_site->per_cu = cu->per_cu;
14007
14008 for (child_die = die->child;
14009 child_die && child_die->tag;
14010 child_die = sibling_die (child_die))
14011 {
14012 struct call_site_parameter *parameter;
14013 struct attribute *loc, *origin;
14014
14015 if (child_die->tag != DW_TAG_call_site_parameter
14016 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14017 {
14018 /* Already printed the complaint above. */
14019 continue;
14020 }
14021
14022 gdb_assert (call_site->parameter_count < nparams);
14023 parameter = &call_site->parameter[call_site->parameter_count];
14024
14025 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14026 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14027 register is contained in DW_AT_call_value. */
14028
14029 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14030 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14031 if (origin == NULL)
14032 {
14033 /* This was a pre-DWARF-5 GNU extension alias
14034 for DW_AT_call_parameter. */
14035 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14036 }
14037 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14038 {
14039 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14040
14041 sect_offset sect_off
14042 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14043 if (!offset_in_cu_p (&cu->header, sect_off))
14044 {
14045 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14046 binding can be done only inside one CU. Such referenced DIE
14047 therefore cannot be even moved to DW_TAG_partial_unit. */
14048 complaint (_("DW_AT_call_parameter offset is not in CU for "
14049 "DW_TAG_call_site child DIE %s [in module %s]"),
14050 sect_offset_str (child_die->sect_off),
14051 objfile_name (objfile));
14052 continue;
14053 }
14054 parameter->u.param_cu_off
14055 = (cu_offset) (sect_off - cu->header.sect_off);
14056 }
14057 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14058 {
14059 complaint (_("No DW_FORM_block* DW_AT_location for "
14060 "DW_TAG_call_site child DIE %s [in module %s]"),
14061 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14062 continue;
14063 }
14064 else
14065 {
14066 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14067 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14068 if (parameter->u.dwarf_reg != -1)
14069 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14070 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14071 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14072 &parameter->u.fb_offset))
14073 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14074 else
14075 {
14076 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14077 "for DW_FORM_block* DW_AT_location is supported for "
14078 "DW_TAG_call_site child DIE %s "
14079 "[in module %s]"),
14080 sect_offset_str (child_die->sect_off),
14081 objfile_name (objfile));
14082 continue;
14083 }
14084 }
14085
14086 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14087 if (attr == NULL)
14088 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14089 if (!attr_form_is_block (attr))
14090 {
14091 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14092 "DW_TAG_call_site child DIE %s [in module %s]"),
14093 sect_offset_str (child_die->sect_off),
14094 objfile_name (objfile));
14095 continue;
14096 }
14097 parameter->value = DW_BLOCK (attr)->data;
14098 parameter->value_size = DW_BLOCK (attr)->size;
14099
14100 /* Parameters are not pre-cleared by memset above. */
14101 parameter->data_value = NULL;
14102 parameter->data_value_size = 0;
14103 call_site->parameter_count++;
14104
14105 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14106 if (attr == NULL)
14107 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14108 if (attr)
14109 {
14110 if (!attr_form_is_block (attr))
14111 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14112 "DW_TAG_call_site child DIE %s [in module %s]"),
14113 sect_offset_str (child_die->sect_off),
14114 objfile_name (objfile));
14115 else
14116 {
14117 parameter->data_value = DW_BLOCK (attr)->data;
14118 parameter->data_value_size = DW_BLOCK (attr)->size;
14119 }
14120 }
14121 }
14122 }
14123
14124 /* Helper function for read_variable. If DIE represents a virtual
14125 table, then return the type of the concrete object that is
14126 associated with the virtual table. Otherwise, return NULL. */
14127
14128 static struct type *
14129 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14130 {
14131 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14132 if (attr == NULL)
14133 return NULL;
14134
14135 /* Find the type DIE. */
14136 struct die_info *type_die = NULL;
14137 struct dwarf2_cu *type_cu = cu;
14138
14139 if (attr_form_is_ref (attr))
14140 type_die = follow_die_ref (die, attr, &type_cu);
14141 if (type_die == NULL)
14142 return NULL;
14143
14144 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14145 return NULL;
14146 return die_containing_type (type_die, type_cu);
14147 }
14148
14149 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14150
14151 static void
14152 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14153 {
14154 struct rust_vtable_symbol *storage = NULL;
14155
14156 if (cu->language == language_rust)
14157 {
14158 struct type *containing_type = rust_containing_type (die, cu);
14159
14160 if (containing_type != NULL)
14161 {
14162 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14163
14164 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14165 struct rust_vtable_symbol);
14166 initialize_objfile_symbol (storage);
14167 storage->concrete_type = containing_type;
14168 storage->subclass = SYMBOL_RUST_VTABLE;
14169 }
14170 }
14171
14172 new_symbol (die, NULL, cu, storage);
14173 }
14174
14175 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14176 reading .debug_rnglists.
14177 Callback's type should be:
14178 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14179 Return true if the attributes are present and valid, otherwise,
14180 return false. */
14181
14182 template <typename Callback>
14183 static bool
14184 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14185 Callback &&callback)
14186 {
14187 struct dwarf2_per_objfile *dwarf2_per_objfile
14188 = cu->per_cu->dwarf2_per_objfile;
14189 struct objfile *objfile = dwarf2_per_objfile->objfile;
14190 bfd *obfd = objfile->obfd;
14191 /* Base address selection entry. */
14192 CORE_ADDR base;
14193 int found_base;
14194 const gdb_byte *buffer;
14195 CORE_ADDR baseaddr;
14196 bool overflow = false;
14197
14198 found_base = cu->base_known;
14199 base = cu->base_address;
14200
14201 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14202 if (offset >= dwarf2_per_objfile->rnglists.size)
14203 {
14204 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14205 offset);
14206 return false;
14207 }
14208 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14209
14210 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14211
14212 while (1)
14213 {
14214 /* Initialize it due to a false compiler warning. */
14215 CORE_ADDR range_beginning = 0, range_end = 0;
14216 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14217 + dwarf2_per_objfile->rnglists.size);
14218 unsigned int bytes_read;
14219
14220 if (buffer == buf_end)
14221 {
14222 overflow = true;
14223 break;
14224 }
14225 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14226 switch (rlet)
14227 {
14228 case DW_RLE_end_of_list:
14229 break;
14230 case DW_RLE_base_address:
14231 if (buffer + cu->header.addr_size > buf_end)
14232 {
14233 overflow = true;
14234 break;
14235 }
14236 base = read_address (obfd, buffer, cu, &bytes_read);
14237 found_base = 1;
14238 buffer += bytes_read;
14239 break;
14240 case DW_RLE_start_length:
14241 if (buffer + cu->header.addr_size > buf_end)
14242 {
14243 overflow = true;
14244 break;
14245 }
14246 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14247 buffer += bytes_read;
14248 range_end = (range_beginning
14249 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14250 buffer += bytes_read;
14251 if (buffer > buf_end)
14252 {
14253 overflow = true;
14254 break;
14255 }
14256 break;
14257 case DW_RLE_offset_pair:
14258 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14259 buffer += bytes_read;
14260 if (buffer > buf_end)
14261 {
14262 overflow = true;
14263 break;
14264 }
14265 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14266 buffer += bytes_read;
14267 if (buffer > buf_end)
14268 {
14269 overflow = true;
14270 break;
14271 }
14272 break;
14273 case DW_RLE_start_end:
14274 if (buffer + 2 * cu->header.addr_size > buf_end)
14275 {
14276 overflow = true;
14277 break;
14278 }
14279 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14280 buffer += bytes_read;
14281 range_end = read_address (obfd, buffer, cu, &bytes_read);
14282 buffer += bytes_read;
14283 break;
14284 default:
14285 complaint (_("Invalid .debug_rnglists data (no base address)"));
14286 return false;
14287 }
14288 if (rlet == DW_RLE_end_of_list || overflow)
14289 break;
14290 if (rlet == DW_RLE_base_address)
14291 continue;
14292
14293 if (!found_base)
14294 {
14295 /* We have no valid base address for the ranges
14296 data. */
14297 complaint (_("Invalid .debug_rnglists data (no base address)"));
14298 return false;
14299 }
14300
14301 if (range_beginning > range_end)
14302 {
14303 /* Inverted range entries are invalid. */
14304 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14305 return false;
14306 }
14307
14308 /* Empty range entries have no effect. */
14309 if (range_beginning == range_end)
14310 continue;
14311
14312 range_beginning += base;
14313 range_end += base;
14314
14315 /* A not-uncommon case of bad debug info.
14316 Don't pollute the addrmap with bad data. */
14317 if (range_beginning + baseaddr == 0
14318 && !dwarf2_per_objfile->has_section_at_zero)
14319 {
14320 complaint (_(".debug_rnglists entry has start address of zero"
14321 " [in module %s]"), objfile_name (objfile));
14322 continue;
14323 }
14324
14325 callback (range_beginning, range_end);
14326 }
14327
14328 if (overflow)
14329 {
14330 complaint (_("Offset %d is not terminated "
14331 "for DW_AT_ranges attribute"),
14332 offset);
14333 return false;
14334 }
14335
14336 return true;
14337 }
14338
14339 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14340 Callback's type should be:
14341 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14342 Return 1 if the attributes are present and valid, otherwise, return 0. */
14343
14344 template <typename Callback>
14345 static int
14346 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14347 Callback &&callback)
14348 {
14349 struct dwarf2_per_objfile *dwarf2_per_objfile
14350 = cu->per_cu->dwarf2_per_objfile;
14351 struct objfile *objfile = dwarf2_per_objfile->objfile;
14352 struct comp_unit_head *cu_header = &cu->header;
14353 bfd *obfd = objfile->obfd;
14354 unsigned int addr_size = cu_header->addr_size;
14355 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14356 /* Base address selection entry. */
14357 CORE_ADDR base;
14358 int found_base;
14359 unsigned int dummy;
14360 const gdb_byte *buffer;
14361 CORE_ADDR baseaddr;
14362
14363 if (cu_header->version >= 5)
14364 return dwarf2_rnglists_process (offset, cu, callback);
14365
14366 found_base = cu->base_known;
14367 base = cu->base_address;
14368
14369 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14370 if (offset >= dwarf2_per_objfile->ranges.size)
14371 {
14372 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14373 offset);
14374 return 0;
14375 }
14376 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14377
14378 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14379
14380 while (1)
14381 {
14382 CORE_ADDR range_beginning, range_end;
14383
14384 range_beginning = read_address (obfd, buffer, cu, &dummy);
14385 buffer += addr_size;
14386 range_end = read_address (obfd, buffer, cu, &dummy);
14387 buffer += addr_size;
14388 offset += 2 * addr_size;
14389
14390 /* An end of list marker is a pair of zero addresses. */
14391 if (range_beginning == 0 && range_end == 0)
14392 /* Found the end of list entry. */
14393 break;
14394
14395 /* Each base address selection entry is a pair of 2 values.
14396 The first is the largest possible address, the second is
14397 the base address. Check for a base address here. */
14398 if ((range_beginning & mask) == mask)
14399 {
14400 /* If we found the largest possible address, then we already
14401 have the base address in range_end. */
14402 base = range_end;
14403 found_base = 1;
14404 continue;
14405 }
14406
14407 if (!found_base)
14408 {
14409 /* We have no valid base address for the ranges
14410 data. */
14411 complaint (_("Invalid .debug_ranges data (no base address)"));
14412 return 0;
14413 }
14414
14415 if (range_beginning > range_end)
14416 {
14417 /* Inverted range entries are invalid. */
14418 complaint (_("Invalid .debug_ranges data (inverted range)"));
14419 return 0;
14420 }
14421
14422 /* Empty range entries have no effect. */
14423 if (range_beginning == range_end)
14424 continue;
14425
14426 range_beginning += base;
14427 range_end += base;
14428
14429 /* A not-uncommon case of bad debug info.
14430 Don't pollute the addrmap with bad data. */
14431 if (range_beginning + baseaddr == 0
14432 && !dwarf2_per_objfile->has_section_at_zero)
14433 {
14434 complaint (_(".debug_ranges entry has start address of zero"
14435 " [in module %s]"), objfile_name (objfile));
14436 continue;
14437 }
14438
14439 callback (range_beginning, range_end);
14440 }
14441
14442 return 1;
14443 }
14444
14445 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14446 Return 1 if the attributes are present and valid, otherwise, return 0.
14447 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14448
14449 static int
14450 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14451 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14452 struct partial_symtab *ranges_pst)
14453 {
14454 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14455 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14456 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14457 SECT_OFF_TEXT (objfile));
14458 int low_set = 0;
14459 CORE_ADDR low = 0;
14460 CORE_ADDR high = 0;
14461 int retval;
14462
14463 retval = dwarf2_ranges_process (offset, cu,
14464 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14465 {
14466 if (ranges_pst != NULL)
14467 {
14468 CORE_ADDR lowpc;
14469 CORE_ADDR highpc;
14470
14471 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14472 range_beginning + baseaddr);
14473 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14474 range_end + baseaddr);
14475 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14476 ranges_pst);
14477 }
14478
14479 /* FIXME: This is recording everything as a low-high
14480 segment of consecutive addresses. We should have a
14481 data structure for discontiguous block ranges
14482 instead. */
14483 if (! low_set)
14484 {
14485 low = range_beginning;
14486 high = range_end;
14487 low_set = 1;
14488 }
14489 else
14490 {
14491 if (range_beginning < low)
14492 low = range_beginning;
14493 if (range_end > high)
14494 high = range_end;
14495 }
14496 });
14497 if (!retval)
14498 return 0;
14499
14500 if (! low_set)
14501 /* If the first entry is an end-of-list marker, the range
14502 describes an empty scope, i.e. no instructions. */
14503 return 0;
14504
14505 if (low_return)
14506 *low_return = low;
14507 if (high_return)
14508 *high_return = high;
14509 return 1;
14510 }
14511
14512 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14513 definition for the return value. *LOWPC and *HIGHPC are set iff
14514 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14515
14516 static enum pc_bounds_kind
14517 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14518 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14519 struct partial_symtab *pst)
14520 {
14521 struct dwarf2_per_objfile *dwarf2_per_objfile
14522 = cu->per_cu->dwarf2_per_objfile;
14523 struct attribute *attr;
14524 struct attribute *attr_high;
14525 CORE_ADDR low = 0;
14526 CORE_ADDR high = 0;
14527 enum pc_bounds_kind ret;
14528
14529 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14530 if (attr_high)
14531 {
14532 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14533 if (attr)
14534 {
14535 low = attr_value_as_address (attr);
14536 high = attr_value_as_address (attr_high);
14537 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14538 high += low;
14539 }
14540 else
14541 /* Found high w/o low attribute. */
14542 return PC_BOUNDS_INVALID;
14543
14544 /* Found consecutive range of addresses. */
14545 ret = PC_BOUNDS_HIGH_LOW;
14546 }
14547 else
14548 {
14549 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14550 if (attr != NULL)
14551 {
14552 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14553 We take advantage of the fact that DW_AT_ranges does not appear
14554 in DW_TAG_compile_unit of DWO files. */
14555 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14556 unsigned int ranges_offset = (DW_UNSND (attr)
14557 + (need_ranges_base
14558 ? cu->ranges_base
14559 : 0));
14560
14561 /* Value of the DW_AT_ranges attribute is the offset in the
14562 .debug_ranges section. */
14563 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14564 return PC_BOUNDS_INVALID;
14565 /* Found discontinuous range of addresses. */
14566 ret = PC_BOUNDS_RANGES;
14567 }
14568 else
14569 return PC_BOUNDS_NOT_PRESENT;
14570 }
14571
14572 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14573 if (high <= low)
14574 return PC_BOUNDS_INVALID;
14575
14576 /* When using the GNU linker, .gnu.linkonce. sections are used to
14577 eliminate duplicate copies of functions and vtables and such.
14578 The linker will arbitrarily choose one and discard the others.
14579 The AT_*_pc values for such functions refer to local labels in
14580 these sections. If the section from that file was discarded, the
14581 labels are not in the output, so the relocs get a value of 0.
14582 If this is a discarded function, mark the pc bounds as invalid,
14583 so that GDB will ignore it. */
14584 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14585 return PC_BOUNDS_INVALID;
14586
14587 *lowpc = low;
14588 if (highpc)
14589 *highpc = high;
14590 return ret;
14591 }
14592
14593 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14594 its low and high PC addresses. Do nothing if these addresses could not
14595 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14596 and HIGHPC to the high address if greater than HIGHPC. */
14597
14598 static void
14599 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14600 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14601 struct dwarf2_cu *cu)
14602 {
14603 CORE_ADDR low, high;
14604 struct die_info *child = die->child;
14605
14606 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14607 {
14608 *lowpc = std::min (*lowpc, low);
14609 *highpc = std::max (*highpc, high);
14610 }
14611
14612 /* If the language does not allow nested subprograms (either inside
14613 subprograms or lexical blocks), we're done. */
14614 if (cu->language != language_ada)
14615 return;
14616
14617 /* Check all the children of the given DIE. If it contains nested
14618 subprograms, then check their pc bounds. Likewise, we need to
14619 check lexical blocks as well, as they may also contain subprogram
14620 definitions. */
14621 while (child && child->tag)
14622 {
14623 if (child->tag == DW_TAG_subprogram
14624 || child->tag == DW_TAG_lexical_block)
14625 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14626 child = sibling_die (child);
14627 }
14628 }
14629
14630 /* Get the low and high pc's represented by the scope DIE, and store
14631 them in *LOWPC and *HIGHPC. If the correct values can't be
14632 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14633
14634 static void
14635 get_scope_pc_bounds (struct die_info *die,
14636 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14637 struct dwarf2_cu *cu)
14638 {
14639 CORE_ADDR best_low = (CORE_ADDR) -1;
14640 CORE_ADDR best_high = (CORE_ADDR) 0;
14641 CORE_ADDR current_low, current_high;
14642
14643 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14644 >= PC_BOUNDS_RANGES)
14645 {
14646 best_low = current_low;
14647 best_high = current_high;
14648 }
14649 else
14650 {
14651 struct die_info *child = die->child;
14652
14653 while (child && child->tag)
14654 {
14655 switch (child->tag) {
14656 case DW_TAG_subprogram:
14657 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14658 break;
14659 case DW_TAG_namespace:
14660 case DW_TAG_module:
14661 /* FIXME: carlton/2004-01-16: Should we do this for
14662 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14663 that current GCC's always emit the DIEs corresponding
14664 to definitions of methods of classes as children of a
14665 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14666 the DIEs giving the declarations, which could be
14667 anywhere). But I don't see any reason why the
14668 standards says that they have to be there. */
14669 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14670
14671 if (current_low != ((CORE_ADDR) -1))
14672 {
14673 best_low = std::min (best_low, current_low);
14674 best_high = std::max (best_high, current_high);
14675 }
14676 break;
14677 default:
14678 /* Ignore. */
14679 break;
14680 }
14681
14682 child = sibling_die (child);
14683 }
14684 }
14685
14686 *lowpc = best_low;
14687 *highpc = best_high;
14688 }
14689
14690 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14691 in DIE. */
14692
14693 static void
14694 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14695 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14696 {
14697 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14698 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14699 struct attribute *attr;
14700 struct attribute *attr_high;
14701
14702 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14703 if (attr_high)
14704 {
14705 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14706 if (attr)
14707 {
14708 CORE_ADDR low = attr_value_as_address (attr);
14709 CORE_ADDR high = attr_value_as_address (attr_high);
14710
14711 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14712 high += low;
14713
14714 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14715 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14716 record_block_range (block, low, high - 1);
14717 }
14718 }
14719
14720 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14721 if (attr)
14722 {
14723 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14724 We take advantage of the fact that DW_AT_ranges does not appear
14725 in DW_TAG_compile_unit of DWO files. */
14726 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14727
14728 /* The value of the DW_AT_ranges attribute is the offset of the
14729 address range list in the .debug_ranges section. */
14730 unsigned long offset = (DW_UNSND (attr)
14731 + (need_ranges_base ? cu->ranges_base : 0));
14732
14733 dwarf2_ranges_process (offset, cu,
14734 [&] (CORE_ADDR start, CORE_ADDR end)
14735 {
14736 start += baseaddr;
14737 end += baseaddr;
14738 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14739 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14740 record_block_range (block, start, end - 1);
14741 });
14742 }
14743 }
14744
14745 /* Check whether the producer field indicates either of GCC < 4.6, or the
14746 Intel C/C++ compiler, and cache the result in CU. */
14747
14748 static void
14749 check_producer (struct dwarf2_cu *cu)
14750 {
14751 int major, minor;
14752
14753 if (cu->producer == NULL)
14754 {
14755 /* For unknown compilers expect their behavior is DWARF version
14756 compliant.
14757
14758 GCC started to support .debug_types sections by -gdwarf-4 since
14759 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14760 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14761 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14762 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14763 }
14764 else if (producer_is_gcc (cu->producer, &major, &minor))
14765 {
14766 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14767 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14768 }
14769 else if (producer_is_icc (cu->producer, &major, &minor))
14770 cu->producer_is_icc_lt_14 = major < 14;
14771 else
14772 {
14773 /* For other non-GCC compilers, expect their behavior is DWARF version
14774 compliant. */
14775 }
14776
14777 cu->checked_producer = 1;
14778 }
14779
14780 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14781 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14782 during 4.6.0 experimental. */
14783
14784 static int
14785 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14786 {
14787 if (!cu->checked_producer)
14788 check_producer (cu);
14789
14790 return cu->producer_is_gxx_lt_4_6;
14791 }
14792
14793 /* Return the default accessibility type if it is not overriden by
14794 DW_AT_accessibility. */
14795
14796 static enum dwarf_access_attribute
14797 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14798 {
14799 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14800 {
14801 /* The default DWARF 2 accessibility for members is public, the default
14802 accessibility for inheritance is private. */
14803
14804 if (die->tag != DW_TAG_inheritance)
14805 return DW_ACCESS_public;
14806 else
14807 return DW_ACCESS_private;
14808 }
14809 else
14810 {
14811 /* DWARF 3+ defines the default accessibility a different way. The same
14812 rules apply now for DW_TAG_inheritance as for the members and it only
14813 depends on the container kind. */
14814
14815 if (die->parent->tag == DW_TAG_class_type)
14816 return DW_ACCESS_private;
14817 else
14818 return DW_ACCESS_public;
14819 }
14820 }
14821
14822 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14823 offset. If the attribute was not found return 0, otherwise return
14824 1. If it was found but could not properly be handled, set *OFFSET
14825 to 0. */
14826
14827 static int
14828 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14829 LONGEST *offset)
14830 {
14831 struct attribute *attr;
14832
14833 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14834 if (attr != NULL)
14835 {
14836 *offset = 0;
14837
14838 /* Note that we do not check for a section offset first here.
14839 This is because DW_AT_data_member_location is new in DWARF 4,
14840 so if we see it, we can assume that a constant form is really
14841 a constant and not a section offset. */
14842 if (attr_form_is_constant (attr))
14843 *offset = dwarf2_get_attr_constant_value (attr, 0);
14844 else if (attr_form_is_section_offset (attr))
14845 dwarf2_complex_location_expr_complaint ();
14846 else if (attr_form_is_block (attr))
14847 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14848 else
14849 dwarf2_complex_location_expr_complaint ();
14850
14851 return 1;
14852 }
14853
14854 return 0;
14855 }
14856
14857 /* Add an aggregate field to the field list. */
14858
14859 static void
14860 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14861 struct dwarf2_cu *cu)
14862 {
14863 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14864 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14865 struct nextfield *new_field;
14866 struct attribute *attr;
14867 struct field *fp;
14868 const char *fieldname = "";
14869
14870 if (die->tag == DW_TAG_inheritance)
14871 {
14872 fip->baseclasses.emplace_back ();
14873 new_field = &fip->baseclasses.back ();
14874 }
14875 else
14876 {
14877 fip->fields.emplace_back ();
14878 new_field = &fip->fields.back ();
14879 }
14880
14881 fip->nfields++;
14882
14883 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14884 if (attr)
14885 new_field->accessibility = DW_UNSND (attr);
14886 else
14887 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14888 if (new_field->accessibility != DW_ACCESS_public)
14889 fip->non_public_fields = 1;
14890
14891 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14892 if (attr)
14893 new_field->virtuality = DW_UNSND (attr);
14894 else
14895 new_field->virtuality = DW_VIRTUALITY_none;
14896
14897 fp = &new_field->field;
14898
14899 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14900 {
14901 LONGEST offset;
14902
14903 /* Data member other than a C++ static data member. */
14904
14905 /* Get type of field. */
14906 fp->type = die_type (die, cu);
14907
14908 SET_FIELD_BITPOS (*fp, 0);
14909
14910 /* Get bit size of field (zero if none). */
14911 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14912 if (attr)
14913 {
14914 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14915 }
14916 else
14917 {
14918 FIELD_BITSIZE (*fp) = 0;
14919 }
14920
14921 /* Get bit offset of field. */
14922 if (handle_data_member_location (die, cu, &offset))
14923 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14924 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14925 if (attr)
14926 {
14927 if (gdbarch_bits_big_endian (gdbarch))
14928 {
14929 /* For big endian bits, the DW_AT_bit_offset gives the
14930 additional bit offset from the MSB of the containing
14931 anonymous object to the MSB of the field. We don't
14932 have to do anything special since we don't need to
14933 know the size of the anonymous object. */
14934 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14935 }
14936 else
14937 {
14938 /* For little endian bits, compute the bit offset to the
14939 MSB of the anonymous object, subtract off the number of
14940 bits from the MSB of the field to the MSB of the
14941 object, and then subtract off the number of bits of
14942 the field itself. The result is the bit offset of
14943 the LSB of the field. */
14944 int anonymous_size;
14945 int bit_offset = DW_UNSND (attr);
14946
14947 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14948 if (attr)
14949 {
14950 /* The size of the anonymous object containing
14951 the bit field is explicit, so use the
14952 indicated size (in bytes). */
14953 anonymous_size = DW_UNSND (attr);
14954 }
14955 else
14956 {
14957 /* The size of the anonymous object containing
14958 the bit field must be inferred from the type
14959 attribute of the data member containing the
14960 bit field. */
14961 anonymous_size = TYPE_LENGTH (fp->type);
14962 }
14963 SET_FIELD_BITPOS (*fp,
14964 (FIELD_BITPOS (*fp)
14965 + anonymous_size * bits_per_byte
14966 - bit_offset - FIELD_BITSIZE (*fp)));
14967 }
14968 }
14969 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14970 if (attr != NULL)
14971 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14972 + dwarf2_get_attr_constant_value (attr, 0)));
14973
14974 /* Get name of field. */
14975 fieldname = dwarf2_name (die, cu);
14976 if (fieldname == NULL)
14977 fieldname = "";
14978
14979 /* The name is already allocated along with this objfile, so we don't
14980 need to duplicate it for the type. */
14981 fp->name = fieldname;
14982
14983 /* Change accessibility for artificial fields (e.g. virtual table
14984 pointer or virtual base class pointer) to private. */
14985 if (dwarf2_attr (die, DW_AT_artificial, cu))
14986 {
14987 FIELD_ARTIFICIAL (*fp) = 1;
14988 new_field->accessibility = DW_ACCESS_private;
14989 fip->non_public_fields = 1;
14990 }
14991 }
14992 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14993 {
14994 /* C++ static member. */
14995
14996 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14997 is a declaration, but all versions of G++ as of this writing
14998 (so through at least 3.2.1) incorrectly generate
14999 DW_TAG_variable tags. */
15000
15001 const char *physname;
15002
15003 /* Get name of field. */
15004 fieldname = dwarf2_name (die, cu);
15005 if (fieldname == NULL)
15006 return;
15007
15008 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15009 if (attr
15010 /* Only create a symbol if this is an external value.
15011 new_symbol checks this and puts the value in the global symbol
15012 table, which we want. If it is not external, new_symbol
15013 will try to put the value in cu->list_in_scope which is wrong. */
15014 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15015 {
15016 /* A static const member, not much different than an enum as far as
15017 we're concerned, except that we can support more types. */
15018 new_symbol (die, NULL, cu);
15019 }
15020
15021 /* Get physical name. */
15022 physname = dwarf2_physname (fieldname, die, cu);
15023
15024 /* The name is already allocated along with this objfile, so we don't
15025 need to duplicate it for the type. */
15026 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15027 FIELD_TYPE (*fp) = die_type (die, cu);
15028 FIELD_NAME (*fp) = fieldname;
15029 }
15030 else if (die->tag == DW_TAG_inheritance)
15031 {
15032 LONGEST offset;
15033
15034 /* C++ base class field. */
15035 if (handle_data_member_location (die, cu, &offset))
15036 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15037 FIELD_BITSIZE (*fp) = 0;
15038 FIELD_TYPE (*fp) = die_type (die, cu);
15039 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15040 }
15041 else if (die->tag == DW_TAG_variant_part)
15042 {
15043 /* process_structure_scope will treat this DIE as a union. */
15044 process_structure_scope (die, cu);
15045
15046 /* The variant part is relative to the start of the enclosing
15047 structure. */
15048 SET_FIELD_BITPOS (*fp, 0);
15049 fp->type = get_die_type (die, cu);
15050 fp->artificial = 1;
15051 fp->name = "<<variant>>";
15052 }
15053 else
15054 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15055 }
15056
15057 /* Can the type given by DIE define another type? */
15058
15059 static bool
15060 type_can_define_types (const struct die_info *die)
15061 {
15062 switch (die->tag)
15063 {
15064 case DW_TAG_typedef:
15065 case DW_TAG_class_type:
15066 case DW_TAG_structure_type:
15067 case DW_TAG_union_type:
15068 case DW_TAG_enumeration_type:
15069 return true;
15070
15071 default:
15072 return false;
15073 }
15074 }
15075
15076 /* Add a type definition defined in the scope of the FIP's class. */
15077
15078 static void
15079 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15080 struct dwarf2_cu *cu)
15081 {
15082 struct decl_field fp;
15083 memset (&fp, 0, sizeof (fp));
15084
15085 gdb_assert (type_can_define_types (die));
15086
15087 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15088 fp.name = dwarf2_name (die, cu);
15089 fp.type = read_type_die (die, cu);
15090
15091 /* Save accessibility. */
15092 enum dwarf_access_attribute accessibility;
15093 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15094 if (attr != NULL)
15095 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15096 else
15097 accessibility = dwarf2_default_access_attribute (die, cu);
15098 switch (accessibility)
15099 {
15100 case DW_ACCESS_public:
15101 /* The assumed value if neither private nor protected. */
15102 break;
15103 case DW_ACCESS_private:
15104 fp.is_private = 1;
15105 break;
15106 case DW_ACCESS_protected:
15107 fp.is_protected = 1;
15108 break;
15109 default:
15110 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15111 }
15112
15113 if (die->tag == DW_TAG_typedef)
15114 fip->typedef_field_list.push_back (fp);
15115 else
15116 fip->nested_types_list.push_back (fp);
15117 }
15118
15119 /* Create the vector of fields, and attach it to the type. */
15120
15121 static void
15122 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15123 struct dwarf2_cu *cu)
15124 {
15125 int nfields = fip->nfields;
15126
15127 /* Record the field count, allocate space for the array of fields,
15128 and create blank accessibility bitfields if necessary. */
15129 TYPE_NFIELDS (type) = nfields;
15130 TYPE_FIELDS (type) = (struct field *)
15131 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15132
15133 if (fip->non_public_fields && cu->language != language_ada)
15134 {
15135 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15136
15137 TYPE_FIELD_PRIVATE_BITS (type) =
15138 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15139 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15140
15141 TYPE_FIELD_PROTECTED_BITS (type) =
15142 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15143 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15144
15145 TYPE_FIELD_IGNORE_BITS (type) =
15146 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15147 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15148 }
15149
15150 /* If the type has baseclasses, allocate and clear a bit vector for
15151 TYPE_FIELD_VIRTUAL_BITS. */
15152 if (!fip->baseclasses.empty () && cu->language != language_ada)
15153 {
15154 int num_bytes = B_BYTES (fip->baseclasses.size ());
15155 unsigned char *pointer;
15156
15157 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15158 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15159 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15160 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15161 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15162 }
15163
15164 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15165 {
15166 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15167
15168 for (int index = 0; index < nfields; ++index)
15169 {
15170 struct nextfield &field = fip->fields[index];
15171
15172 if (field.variant.is_discriminant)
15173 di->discriminant_index = index;
15174 else if (field.variant.default_branch)
15175 di->default_index = index;
15176 else
15177 di->discriminants[index] = field.variant.discriminant_value;
15178 }
15179 }
15180
15181 /* Copy the saved-up fields into the field vector. */
15182 for (int i = 0; i < nfields; ++i)
15183 {
15184 struct nextfield &field
15185 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15186 : fip->fields[i - fip->baseclasses.size ()]);
15187
15188 TYPE_FIELD (type, i) = field.field;
15189 switch (field.accessibility)
15190 {
15191 case DW_ACCESS_private:
15192 if (cu->language != language_ada)
15193 SET_TYPE_FIELD_PRIVATE (type, i);
15194 break;
15195
15196 case DW_ACCESS_protected:
15197 if (cu->language != language_ada)
15198 SET_TYPE_FIELD_PROTECTED (type, i);
15199 break;
15200
15201 case DW_ACCESS_public:
15202 break;
15203
15204 default:
15205 /* Unknown accessibility. Complain and treat it as public. */
15206 {
15207 complaint (_("unsupported accessibility %d"),
15208 field.accessibility);
15209 }
15210 break;
15211 }
15212 if (i < fip->baseclasses.size ())
15213 {
15214 switch (field.virtuality)
15215 {
15216 case DW_VIRTUALITY_virtual:
15217 case DW_VIRTUALITY_pure_virtual:
15218 if (cu->language == language_ada)
15219 error (_("unexpected virtuality in component of Ada type"));
15220 SET_TYPE_FIELD_VIRTUAL (type, i);
15221 break;
15222 }
15223 }
15224 }
15225 }
15226
15227 /* Return true if this member function is a constructor, false
15228 otherwise. */
15229
15230 static int
15231 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15232 {
15233 const char *fieldname;
15234 const char *type_name;
15235 int len;
15236
15237 if (die->parent == NULL)
15238 return 0;
15239
15240 if (die->parent->tag != DW_TAG_structure_type
15241 && die->parent->tag != DW_TAG_union_type
15242 && die->parent->tag != DW_TAG_class_type)
15243 return 0;
15244
15245 fieldname = dwarf2_name (die, cu);
15246 type_name = dwarf2_name (die->parent, cu);
15247 if (fieldname == NULL || type_name == NULL)
15248 return 0;
15249
15250 len = strlen (fieldname);
15251 return (strncmp (fieldname, type_name, len) == 0
15252 && (type_name[len] == '\0' || type_name[len] == '<'));
15253 }
15254
15255 /* Add a member function to the proper fieldlist. */
15256
15257 static void
15258 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15259 struct type *type, struct dwarf2_cu *cu)
15260 {
15261 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15262 struct attribute *attr;
15263 int i;
15264 struct fnfieldlist *flp = nullptr;
15265 struct fn_field *fnp;
15266 const char *fieldname;
15267 struct type *this_type;
15268 enum dwarf_access_attribute accessibility;
15269
15270 if (cu->language == language_ada)
15271 error (_("unexpected member function in Ada type"));
15272
15273 /* Get name of member function. */
15274 fieldname = dwarf2_name (die, cu);
15275 if (fieldname == NULL)
15276 return;
15277
15278 /* Look up member function name in fieldlist. */
15279 for (i = 0; i < fip->fnfieldlists.size (); i++)
15280 {
15281 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15282 {
15283 flp = &fip->fnfieldlists[i];
15284 break;
15285 }
15286 }
15287
15288 /* Create a new fnfieldlist if necessary. */
15289 if (flp == nullptr)
15290 {
15291 fip->fnfieldlists.emplace_back ();
15292 flp = &fip->fnfieldlists.back ();
15293 flp->name = fieldname;
15294 i = fip->fnfieldlists.size () - 1;
15295 }
15296
15297 /* Create a new member function field and add it to the vector of
15298 fnfieldlists. */
15299 flp->fnfields.emplace_back ();
15300 fnp = &flp->fnfields.back ();
15301
15302 /* Delay processing of the physname until later. */
15303 if (cu->language == language_cplus)
15304 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15305 die, cu);
15306 else
15307 {
15308 const char *physname = dwarf2_physname (fieldname, die, cu);
15309 fnp->physname = physname ? physname : "";
15310 }
15311
15312 fnp->type = alloc_type (objfile);
15313 this_type = read_type_die (die, cu);
15314 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15315 {
15316 int nparams = TYPE_NFIELDS (this_type);
15317
15318 /* TYPE is the domain of this method, and THIS_TYPE is the type
15319 of the method itself (TYPE_CODE_METHOD). */
15320 smash_to_method_type (fnp->type, type,
15321 TYPE_TARGET_TYPE (this_type),
15322 TYPE_FIELDS (this_type),
15323 TYPE_NFIELDS (this_type),
15324 TYPE_VARARGS (this_type));
15325
15326 /* Handle static member functions.
15327 Dwarf2 has no clean way to discern C++ static and non-static
15328 member functions. G++ helps GDB by marking the first
15329 parameter for non-static member functions (which is the this
15330 pointer) as artificial. We obtain this information from
15331 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15332 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15333 fnp->voffset = VOFFSET_STATIC;
15334 }
15335 else
15336 complaint (_("member function type missing for '%s'"),
15337 dwarf2_full_name (fieldname, die, cu));
15338
15339 /* Get fcontext from DW_AT_containing_type if present. */
15340 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15341 fnp->fcontext = die_containing_type (die, cu);
15342
15343 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15344 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15345
15346 /* Get accessibility. */
15347 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15348 if (attr)
15349 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15350 else
15351 accessibility = dwarf2_default_access_attribute (die, cu);
15352 switch (accessibility)
15353 {
15354 case DW_ACCESS_private:
15355 fnp->is_private = 1;
15356 break;
15357 case DW_ACCESS_protected:
15358 fnp->is_protected = 1;
15359 break;
15360 }
15361
15362 /* Check for artificial methods. */
15363 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15364 if (attr && DW_UNSND (attr) != 0)
15365 fnp->is_artificial = 1;
15366
15367 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15368
15369 /* Get index in virtual function table if it is a virtual member
15370 function. For older versions of GCC, this is an offset in the
15371 appropriate virtual table, as specified by DW_AT_containing_type.
15372 For everyone else, it is an expression to be evaluated relative
15373 to the object address. */
15374
15375 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15376 if (attr)
15377 {
15378 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15379 {
15380 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15381 {
15382 /* Old-style GCC. */
15383 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15384 }
15385 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15386 || (DW_BLOCK (attr)->size > 1
15387 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15388 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15389 {
15390 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15391 if ((fnp->voffset % cu->header.addr_size) != 0)
15392 dwarf2_complex_location_expr_complaint ();
15393 else
15394 fnp->voffset /= cu->header.addr_size;
15395 fnp->voffset += 2;
15396 }
15397 else
15398 dwarf2_complex_location_expr_complaint ();
15399
15400 if (!fnp->fcontext)
15401 {
15402 /* If there is no `this' field and no DW_AT_containing_type,
15403 we cannot actually find a base class context for the
15404 vtable! */
15405 if (TYPE_NFIELDS (this_type) == 0
15406 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15407 {
15408 complaint (_("cannot determine context for virtual member "
15409 "function \"%s\" (offset %s)"),
15410 fieldname, sect_offset_str (die->sect_off));
15411 }
15412 else
15413 {
15414 fnp->fcontext
15415 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15416 }
15417 }
15418 }
15419 else if (attr_form_is_section_offset (attr))
15420 {
15421 dwarf2_complex_location_expr_complaint ();
15422 }
15423 else
15424 {
15425 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15426 fieldname);
15427 }
15428 }
15429 else
15430 {
15431 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15432 if (attr && DW_UNSND (attr))
15433 {
15434 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15435 complaint (_("Member function \"%s\" (offset %s) is virtual "
15436 "but the vtable offset is not specified"),
15437 fieldname, sect_offset_str (die->sect_off));
15438 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15439 TYPE_CPLUS_DYNAMIC (type) = 1;
15440 }
15441 }
15442 }
15443
15444 /* Create the vector of member function fields, and attach it to the type. */
15445
15446 static void
15447 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15448 struct dwarf2_cu *cu)
15449 {
15450 if (cu->language == language_ada)
15451 error (_("unexpected member functions in Ada type"));
15452
15453 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15454 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15455 TYPE_ALLOC (type,
15456 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15457
15458 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15459 {
15460 struct fnfieldlist &nf = fip->fnfieldlists[i];
15461 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15462
15463 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15464 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15465 fn_flp->fn_fields = (struct fn_field *)
15466 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15467
15468 for (int k = 0; k < nf.fnfields.size (); ++k)
15469 fn_flp->fn_fields[k] = nf.fnfields[k];
15470 }
15471
15472 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15473 }
15474
15475 /* Returns non-zero if NAME is the name of a vtable member in CU's
15476 language, zero otherwise. */
15477 static int
15478 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15479 {
15480 static const char vptr[] = "_vptr";
15481
15482 /* Look for the C++ form of the vtable. */
15483 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15484 return 1;
15485
15486 return 0;
15487 }
15488
15489 /* GCC outputs unnamed structures that are really pointers to member
15490 functions, with the ABI-specified layout. If TYPE describes
15491 such a structure, smash it into a member function type.
15492
15493 GCC shouldn't do this; it should just output pointer to member DIEs.
15494 This is GCC PR debug/28767. */
15495
15496 static void
15497 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15498 {
15499 struct type *pfn_type, *self_type, *new_type;
15500
15501 /* Check for a structure with no name and two children. */
15502 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15503 return;
15504
15505 /* Check for __pfn and __delta members. */
15506 if (TYPE_FIELD_NAME (type, 0) == NULL
15507 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15508 || TYPE_FIELD_NAME (type, 1) == NULL
15509 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15510 return;
15511
15512 /* Find the type of the method. */
15513 pfn_type = TYPE_FIELD_TYPE (type, 0);
15514 if (pfn_type == NULL
15515 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15516 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15517 return;
15518
15519 /* Look for the "this" argument. */
15520 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15521 if (TYPE_NFIELDS (pfn_type) == 0
15522 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15523 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15524 return;
15525
15526 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15527 new_type = alloc_type (objfile);
15528 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15529 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15530 TYPE_VARARGS (pfn_type));
15531 smash_to_methodptr_type (type, new_type);
15532 }
15533
15534 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15535 appropriate error checking and issuing complaints if there is a
15536 problem. */
15537
15538 static ULONGEST
15539 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15540 {
15541 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15542
15543 if (attr == nullptr)
15544 return 0;
15545
15546 if (!attr_form_is_constant (attr))
15547 {
15548 complaint (_("DW_AT_alignment must have constant form"
15549 " - DIE at %s [in module %s]"),
15550 sect_offset_str (die->sect_off),
15551 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15552 return 0;
15553 }
15554
15555 ULONGEST align;
15556 if (attr->form == DW_FORM_sdata)
15557 {
15558 LONGEST val = DW_SND (attr);
15559 if (val < 0)
15560 {
15561 complaint (_("DW_AT_alignment value must not be negative"
15562 " - DIE at %s [in module %s]"),
15563 sect_offset_str (die->sect_off),
15564 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15565 return 0;
15566 }
15567 align = val;
15568 }
15569 else
15570 align = DW_UNSND (attr);
15571
15572 if (align == 0)
15573 {
15574 complaint (_("DW_AT_alignment value must not be zero"
15575 " - DIE at %s [in module %s]"),
15576 sect_offset_str (die->sect_off),
15577 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15578 return 0;
15579 }
15580 if ((align & (align - 1)) != 0)
15581 {
15582 complaint (_("DW_AT_alignment value must be a power of 2"
15583 " - DIE at %s [in module %s]"),
15584 sect_offset_str (die->sect_off),
15585 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15586 return 0;
15587 }
15588
15589 return align;
15590 }
15591
15592 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15593 the alignment for TYPE. */
15594
15595 static void
15596 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15597 struct type *type)
15598 {
15599 if (!set_type_align (type, get_alignment (cu, die)))
15600 complaint (_("DW_AT_alignment value too large"
15601 " - DIE at %s [in module %s]"),
15602 sect_offset_str (die->sect_off),
15603 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15604 }
15605
15606 /* Called when we find the DIE that starts a structure or union scope
15607 (definition) to create a type for the structure or union. Fill in
15608 the type's name and general properties; the members will not be
15609 processed until process_structure_scope. A symbol table entry for
15610 the type will also not be done until process_structure_scope (assuming
15611 the type has a name).
15612
15613 NOTE: we need to call these functions regardless of whether or not the
15614 DIE has a DW_AT_name attribute, since it might be an anonymous
15615 structure or union. This gets the type entered into our set of
15616 user defined types. */
15617
15618 static struct type *
15619 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15620 {
15621 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15622 struct type *type;
15623 struct attribute *attr;
15624 const char *name;
15625
15626 /* If the definition of this type lives in .debug_types, read that type.
15627 Don't follow DW_AT_specification though, that will take us back up
15628 the chain and we want to go down. */
15629 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15630 if (attr)
15631 {
15632 type = get_DW_AT_signature_type (die, attr, cu);
15633
15634 /* The type's CU may not be the same as CU.
15635 Ensure TYPE is recorded with CU in die_type_hash. */
15636 return set_die_type (die, type, cu);
15637 }
15638
15639 type = alloc_type (objfile);
15640 INIT_CPLUS_SPECIFIC (type);
15641
15642 name = dwarf2_name (die, cu);
15643 if (name != NULL)
15644 {
15645 if (cu->language == language_cplus
15646 || cu->language == language_d
15647 || cu->language == language_rust)
15648 {
15649 const char *full_name = dwarf2_full_name (name, die, cu);
15650
15651 /* dwarf2_full_name might have already finished building the DIE's
15652 type. If so, there is no need to continue. */
15653 if (get_die_type (die, cu) != NULL)
15654 return get_die_type (die, cu);
15655
15656 TYPE_TAG_NAME (type) = full_name;
15657 if (die->tag == DW_TAG_structure_type
15658 || die->tag == DW_TAG_class_type)
15659 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15660 }
15661 else
15662 {
15663 /* The name is already allocated along with this objfile, so
15664 we don't need to duplicate it for the type. */
15665 TYPE_TAG_NAME (type) = name;
15666 if (die->tag == DW_TAG_class_type)
15667 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15668 }
15669 }
15670
15671 if (die->tag == DW_TAG_structure_type)
15672 {
15673 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15674 }
15675 else if (die->tag == DW_TAG_union_type)
15676 {
15677 TYPE_CODE (type) = TYPE_CODE_UNION;
15678 }
15679 else if (die->tag == DW_TAG_variant_part)
15680 {
15681 TYPE_CODE (type) = TYPE_CODE_UNION;
15682 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15683 }
15684 else
15685 {
15686 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15687 }
15688
15689 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15690 TYPE_DECLARED_CLASS (type) = 1;
15691
15692 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15693 if (attr)
15694 {
15695 if (attr_form_is_constant (attr))
15696 TYPE_LENGTH (type) = DW_UNSND (attr);
15697 else
15698 {
15699 /* For the moment, dynamic type sizes are not supported
15700 by GDB's struct type. The actual size is determined
15701 on-demand when resolving the type of a given object,
15702 so set the type's length to zero for now. Otherwise,
15703 we record an expression as the length, and that expression
15704 could lead to a very large value, which could eventually
15705 lead to us trying to allocate that much memory when creating
15706 a value of that type. */
15707 TYPE_LENGTH (type) = 0;
15708 }
15709 }
15710 else
15711 {
15712 TYPE_LENGTH (type) = 0;
15713 }
15714
15715 maybe_set_alignment (cu, die, type);
15716
15717 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15718 {
15719 /* ICC<14 does not output the required DW_AT_declaration on
15720 incomplete types, but gives them a size of zero. */
15721 TYPE_STUB (type) = 1;
15722 }
15723 else
15724 TYPE_STUB_SUPPORTED (type) = 1;
15725
15726 if (die_is_declaration (die, cu))
15727 TYPE_STUB (type) = 1;
15728 else if (attr == NULL && die->child == NULL
15729 && producer_is_realview (cu->producer))
15730 /* RealView does not output the required DW_AT_declaration
15731 on incomplete types. */
15732 TYPE_STUB (type) = 1;
15733
15734 /* We need to add the type field to the die immediately so we don't
15735 infinitely recurse when dealing with pointers to the structure
15736 type within the structure itself. */
15737 set_die_type (die, type, cu);
15738
15739 /* set_die_type should be already done. */
15740 set_descriptive_type (type, die, cu);
15741
15742 return type;
15743 }
15744
15745 /* A helper for process_structure_scope that handles a single member
15746 DIE. */
15747
15748 static void
15749 handle_struct_member_die (struct die_info *child_die, struct type *type,
15750 struct field_info *fi,
15751 std::vector<struct symbol *> *template_args,
15752 struct dwarf2_cu *cu)
15753 {
15754 if (child_die->tag == DW_TAG_member
15755 || child_die->tag == DW_TAG_variable
15756 || child_die->tag == DW_TAG_variant_part)
15757 {
15758 /* NOTE: carlton/2002-11-05: A C++ static data member
15759 should be a DW_TAG_member that is a declaration, but
15760 all versions of G++ as of this writing (so through at
15761 least 3.2.1) incorrectly generate DW_TAG_variable
15762 tags for them instead. */
15763 dwarf2_add_field (fi, child_die, cu);
15764 }
15765 else if (child_die->tag == DW_TAG_subprogram)
15766 {
15767 /* Rust doesn't have member functions in the C++ sense.
15768 However, it does emit ordinary functions as children
15769 of a struct DIE. */
15770 if (cu->language == language_rust)
15771 read_func_scope (child_die, cu);
15772 else
15773 {
15774 /* C++ member function. */
15775 dwarf2_add_member_fn (fi, child_die, type, cu);
15776 }
15777 }
15778 else if (child_die->tag == DW_TAG_inheritance)
15779 {
15780 /* C++ base class field. */
15781 dwarf2_add_field (fi, child_die, cu);
15782 }
15783 else if (type_can_define_types (child_die))
15784 dwarf2_add_type_defn (fi, child_die, cu);
15785 else if (child_die->tag == DW_TAG_template_type_param
15786 || child_die->tag == DW_TAG_template_value_param)
15787 {
15788 struct symbol *arg = new_symbol (child_die, NULL, cu);
15789
15790 if (arg != NULL)
15791 template_args->push_back (arg);
15792 }
15793 else if (child_die->tag == DW_TAG_variant)
15794 {
15795 /* In a variant we want to get the discriminant and also add a
15796 field for our sole member child. */
15797 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15798
15799 for (struct die_info *variant_child = child_die->child;
15800 variant_child != NULL;
15801 variant_child = sibling_die (variant_child))
15802 {
15803 if (variant_child->tag == DW_TAG_member)
15804 {
15805 handle_struct_member_die (variant_child, type, fi,
15806 template_args, cu);
15807 /* Only handle the one. */
15808 break;
15809 }
15810 }
15811
15812 /* We don't handle this but we might as well report it if we see
15813 it. */
15814 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15815 complaint (_("DW_AT_discr_list is not supported yet"
15816 " - DIE at %s [in module %s]"),
15817 sect_offset_str (child_die->sect_off),
15818 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15819
15820 /* The first field was just added, so we can stash the
15821 discriminant there. */
15822 gdb_assert (!fi->fields.empty ());
15823 if (discr == NULL)
15824 fi->fields.back ().variant.default_branch = true;
15825 else
15826 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15827 }
15828 }
15829
15830 /* Finish creating a structure or union type, including filling in
15831 its members and creating a symbol for it. */
15832
15833 static void
15834 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15835 {
15836 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15837 struct die_info *child_die;
15838 struct type *type;
15839
15840 type = get_die_type (die, cu);
15841 if (type == NULL)
15842 type = read_structure_type (die, cu);
15843
15844 /* When reading a DW_TAG_variant_part, we need to notice when we
15845 read the discriminant member, so we can record it later in the
15846 discriminant_info. */
15847 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15848 sect_offset discr_offset;
15849
15850 if (is_variant_part)
15851 {
15852 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15853 if (discr == NULL)
15854 {
15855 /* Maybe it's a univariant form, an extension we support.
15856 In this case arrange not to check the offset. */
15857 is_variant_part = false;
15858 }
15859 else if (attr_form_is_ref (discr))
15860 {
15861 struct dwarf2_cu *target_cu = cu;
15862 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15863
15864 discr_offset = target_die->sect_off;
15865 }
15866 else
15867 {
15868 complaint (_("DW_AT_discr does not have DIE reference form"
15869 " - DIE at %s [in module %s]"),
15870 sect_offset_str (die->sect_off),
15871 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15872 is_variant_part = false;
15873 }
15874 }
15875
15876 if (die->child != NULL && ! die_is_declaration (die, cu))
15877 {
15878 struct field_info fi;
15879 std::vector<struct symbol *> template_args;
15880
15881 child_die = die->child;
15882
15883 while (child_die && child_die->tag)
15884 {
15885 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15886
15887 if (is_variant_part && discr_offset == child_die->sect_off)
15888 fi.fields.back ().variant.is_discriminant = true;
15889
15890 child_die = sibling_die (child_die);
15891 }
15892
15893 /* Attach template arguments to type. */
15894 if (!template_args.empty ())
15895 {
15896 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15897 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15898 TYPE_TEMPLATE_ARGUMENTS (type)
15899 = XOBNEWVEC (&objfile->objfile_obstack,
15900 struct symbol *,
15901 TYPE_N_TEMPLATE_ARGUMENTS (type));
15902 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15903 template_args.data (),
15904 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15905 * sizeof (struct symbol *)));
15906 }
15907
15908 /* Attach fields and member functions to the type. */
15909 if (fi.nfields)
15910 dwarf2_attach_fields_to_type (&fi, type, cu);
15911 if (!fi.fnfieldlists.empty ())
15912 {
15913 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15914
15915 /* Get the type which refers to the base class (possibly this
15916 class itself) which contains the vtable pointer for the current
15917 class from the DW_AT_containing_type attribute. This use of
15918 DW_AT_containing_type is a GNU extension. */
15919
15920 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15921 {
15922 struct type *t = die_containing_type (die, cu);
15923
15924 set_type_vptr_basetype (type, t);
15925 if (type == t)
15926 {
15927 int i;
15928
15929 /* Our own class provides vtbl ptr. */
15930 for (i = TYPE_NFIELDS (t) - 1;
15931 i >= TYPE_N_BASECLASSES (t);
15932 --i)
15933 {
15934 const char *fieldname = TYPE_FIELD_NAME (t, i);
15935
15936 if (is_vtable_name (fieldname, cu))
15937 {
15938 set_type_vptr_fieldno (type, i);
15939 break;
15940 }
15941 }
15942
15943 /* Complain if virtual function table field not found. */
15944 if (i < TYPE_N_BASECLASSES (t))
15945 complaint (_("virtual function table pointer "
15946 "not found when defining class '%s'"),
15947 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
15948 "");
15949 }
15950 else
15951 {
15952 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15953 }
15954 }
15955 else if (cu->producer
15956 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15957 {
15958 /* The IBM XLC compiler does not provide direct indication
15959 of the containing type, but the vtable pointer is
15960 always named __vfp. */
15961
15962 int i;
15963
15964 for (i = TYPE_NFIELDS (type) - 1;
15965 i >= TYPE_N_BASECLASSES (type);
15966 --i)
15967 {
15968 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15969 {
15970 set_type_vptr_fieldno (type, i);
15971 set_type_vptr_basetype (type, type);
15972 break;
15973 }
15974 }
15975 }
15976 }
15977
15978 /* Copy fi.typedef_field_list linked list elements content into the
15979 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15980 if (!fi.typedef_field_list.empty ())
15981 {
15982 int count = fi.typedef_field_list.size ();
15983
15984 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15985 TYPE_TYPEDEF_FIELD_ARRAY (type)
15986 = ((struct decl_field *)
15987 TYPE_ALLOC (type,
15988 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15989 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15990
15991 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15992 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15993 }
15994
15995 /* Copy fi.nested_types_list linked list elements content into the
15996 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15997 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15998 {
15999 int count = fi.nested_types_list.size ();
16000
16001 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16002 TYPE_NESTED_TYPES_ARRAY (type)
16003 = ((struct decl_field *)
16004 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16005 TYPE_NESTED_TYPES_COUNT (type) = count;
16006
16007 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16008 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16009 }
16010 }
16011
16012 quirk_gcc_member_function_pointer (type, objfile);
16013 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16014 cu->rust_unions.push_back (type);
16015
16016 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16017 snapshots) has been known to create a die giving a declaration
16018 for a class that has, as a child, a die giving a definition for a
16019 nested class. So we have to process our children even if the
16020 current die is a declaration. Normally, of course, a declaration
16021 won't have any children at all. */
16022
16023 child_die = die->child;
16024
16025 while (child_die != NULL && child_die->tag)
16026 {
16027 if (child_die->tag == DW_TAG_member
16028 || child_die->tag == DW_TAG_variable
16029 || child_die->tag == DW_TAG_inheritance
16030 || child_die->tag == DW_TAG_template_value_param
16031 || child_die->tag == DW_TAG_template_type_param)
16032 {
16033 /* Do nothing. */
16034 }
16035 else
16036 process_die (child_die, cu);
16037
16038 child_die = sibling_die (child_die);
16039 }
16040
16041 /* Do not consider external references. According to the DWARF standard,
16042 these DIEs are identified by the fact that they have no byte_size
16043 attribute, and a declaration attribute. */
16044 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16045 || !die_is_declaration (die, cu))
16046 new_symbol (die, type, cu);
16047 }
16048
16049 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16050 update TYPE using some information only available in DIE's children. */
16051
16052 static void
16053 update_enumeration_type_from_children (struct die_info *die,
16054 struct type *type,
16055 struct dwarf2_cu *cu)
16056 {
16057 struct die_info *child_die;
16058 int unsigned_enum = 1;
16059 int flag_enum = 1;
16060 ULONGEST mask = 0;
16061
16062 auto_obstack obstack;
16063
16064 for (child_die = die->child;
16065 child_die != NULL && child_die->tag;
16066 child_die = sibling_die (child_die))
16067 {
16068 struct attribute *attr;
16069 LONGEST value;
16070 const gdb_byte *bytes;
16071 struct dwarf2_locexpr_baton *baton;
16072 const char *name;
16073
16074 if (child_die->tag != DW_TAG_enumerator)
16075 continue;
16076
16077 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16078 if (attr == NULL)
16079 continue;
16080
16081 name = dwarf2_name (child_die, cu);
16082 if (name == NULL)
16083 name = "<anonymous enumerator>";
16084
16085 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16086 &value, &bytes, &baton);
16087 if (value < 0)
16088 {
16089 unsigned_enum = 0;
16090 flag_enum = 0;
16091 }
16092 else if ((mask & value) != 0)
16093 flag_enum = 0;
16094 else
16095 mask |= value;
16096
16097 /* If we already know that the enum type is neither unsigned, nor
16098 a flag type, no need to look at the rest of the enumerates. */
16099 if (!unsigned_enum && !flag_enum)
16100 break;
16101 }
16102
16103 if (unsigned_enum)
16104 TYPE_UNSIGNED (type) = 1;
16105 if (flag_enum)
16106 TYPE_FLAG_ENUM (type) = 1;
16107 }
16108
16109 /* Given a DW_AT_enumeration_type die, set its type. We do not
16110 complete the type's fields yet, or create any symbols. */
16111
16112 static struct type *
16113 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16114 {
16115 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16116 struct type *type;
16117 struct attribute *attr;
16118 const char *name;
16119
16120 /* If the definition of this type lives in .debug_types, read that type.
16121 Don't follow DW_AT_specification though, that will take us back up
16122 the chain and we want to go down. */
16123 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16124 if (attr)
16125 {
16126 type = get_DW_AT_signature_type (die, attr, cu);
16127
16128 /* The type's CU may not be the same as CU.
16129 Ensure TYPE is recorded with CU in die_type_hash. */
16130 return set_die_type (die, type, cu);
16131 }
16132
16133 type = alloc_type (objfile);
16134
16135 TYPE_CODE (type) = TYPE_CODE_ENUM;
16136 name = dwarf2_full_name (NULL, die, cu);
16137 if (name != NULL)
16138 TYPE_TAG_NAME (type) = name;
16139
16140 attr = dwarf2_attr (die, DW_AT_type, cu);
16141 if (attr != NULL)
16142 {
16143 struct type *underlying_type = die_type (die, cu);
16144
16145 TYPE_TARGET_TYPE (type) = underlying_type;
16146 }
16147
16148 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16149 if (attr)
16150 {
16151 TYPE_LENGTH (type) = DW_UNSND (attr);
16152 }
16153 else
16154 {
16155 TYPE_LENGTH (type) = 0;
16156 }
16157
16158 maybe_set_alignment (cu, die, type);
16159
16160 /* The enumeration DIE can be incomplete. In Ada, any type can be
16161 declared as private in the package spec, and then defined only
16162 inside the package body. Such types are known as Taft Amendment
16163 Types. When another package uses such a type, an incomplete DIE
16164 may be generated by the compiler. */
16165 if (die_is_declaration (die, cu))
16166 TYPE_STUB (type) = 1;
16167
16168 /* Finish the creation of this type by using the enum's children.
16169 We must call this even when the underlying type has been provided
16170 so that we can determine if we're looking at a "flag" enum. */
16171 update_enumeration_type_from_children (die, type, cu);
16172
16173 /* If this type has an underlying type that is not a stub, then we
16174 may use its attributes. We always use the "unsigned" attribute
16175 in this situation, because ordinarily we guess whether the type
16176 is unsigned -- but the guess can be wrong and the underlying type
16177 can tell us the reality. However, we defer to a local size
16178 attribute if one exists, because this lets the compiler override
16179 the underlying type if needed. */
16180 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16181 {
16182 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16183 if (TYPE_LENGTH (type) == 0)
16184 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16185 if (TYPE_RAW_ALIGN (type) == 0
16186 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16187 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16188 }
16189
16190 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16191
16192 return set_die_type (die, type, cu);
16193 }
16194
16195 /* Given a pointer to a die which begins an enumeration, process all
16196 the dies that define the members of the enumeration, and create the
16197 symbol for the enumeration type.
16198
16199 NOTE: We reverse the order of the element list. */
16200
16201 static void
16202 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16203 {
16204 struct type *this_type;
16205
16206 this_type = get_die_type (die, cu);
16207 if (this_type == NULL)
16208 this_type = read_enumeration_type (die, cu);
16209
16210 if (die->child != NULL)
16211 {
16212 struct die_info *child_die;
16213 struct symbol *sym;
16214 struct field *fields = NULL;
16215 int num_fields = 0;
16216 const char *name;
16217
16218 child_die = die->child;
16219 while (child_die && child_die->tag)
16220 {
16221 if (child_die->tag != DW_TAG_enumerator)
16222 {
16223 process_die (child_die, cu);
16224 }
16225 else
16226 {
16227 name = dwarf2_name (child_die, cu);
16228 if (name)
16229 {
16230 sym = new_symbol (child_die, this_type, cu);
16231
16232 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16233 {
16234 fields = (struct field *)
16235 xrealloc (fields,
16236 (num_fields + DW_FIELD_ALLOC_CHUNK)
16237 * sizeof (struct field));
16238 }
16239
16240 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16241 FIELD_TYPE (fields[num_fields]) = NULL;
16242 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16243 FIELD_BITSIZE (fields[num_fields]) = 0;
16244
16245 num_fields++;
16246 }
16247 }
16248
16249 child_die = sibling_die (child_die);
16250 }
16251
16252 if (num_fields)
16253 {
16254 TYPE_NFIELDS (this_type) = num_fields;
16255 TYPE_FIELDS (this_type) = (struct field *)
16256 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16257 memcpy (TYPE_FIELDS (this_type), fields,
16258 sizeof (struct field) * num_fields);
16259 xfree (fields);
16260 }
16261 }
16262
16263 /* If we are reading an enum from a .debug_types unit, and the enum
16264 is a declaration, and the enum is not the signatured type in the
16265 unit, then we do not want to add a symbol for it. Adding a
16266 symbol would in some cases obscure the true definition of the
16267 enum, giving users an incomplete type when the definition is
16268 actually available. Note that we do not want to do this for all
16269 enums which are just declarations, because C++0x allows forward
16270 enum declarations. */
16271 if (cu->per_cu->is_debug_types
16272 && die_is_declaration (die, cu))
16273 {
16274 struct signatured_type *sig_type;
16275
16276 sig_type = (struct signatured_type *) cu->per_cu;
16277 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16278 if (sig_type->type_offset_in_section != die->sect_off)
16279 return;
16280 }
16281
16282 new_symbol (die, this_type, cu);
16283 }
16284
16285 /* Extract all information from a DW_TAG_array_type DIE and put it in
16286 the DIE's type field. For now, this only handles one dimensional
16287 arrays. */
16288
16289 static struct type *
16290 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16291 {
16292 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16293 struct die_info *child_die;
16294 struct type *type;
16295 struct type *element_type, *range_type, *index_type;
16296 struct attribute *attr;
16297 const char *name;
16298 struct dynamic_prop *byte_stride_prop = NULL;
16299 unsigned int bit_stride = 0;
16300
16301 element_type = die_type (die, cu);
16302
16303 /* The die_type call above may have already set the type for this DIE. */
16304 type = get_die_type (die, cu);
16305 if (type)
16306 return type;
16307
16308 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16309 if (attr != NULL)
16310 {
16311 int stride_ok;
16312
16313 byte_stride_prop
16314 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16315 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16316 if (!stride_ok)
16317 {
16318 complaint (_("unable to read array DW_AT_byte_stride "
16319 " - DIE at %s [in module %s]"),
16320 sect_offset_str (die->sect_off),
16321 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16322 /* Ignore this attribute. We will likely not be able to print
16323 arrays of this type correctly, but there is little we can do
16324 to help if we cannot read the attribute's value. */
16325 byte_stride_prop = NULL;
16326 }
16327 }
16328
16329 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16330 if (attr != NULL)
16331 bit_stride = DW_UNSND (attr);
16332
16333 /* Irix 6.2 native cc creates array types without children for
16334 arrays with unspecified length. */
16335 if (die->child == NULL)
16336 {
16337 index_type = objfile_type (objfile)->builtin_int;
16338 range_type = create_static_range_type (NULL, index_type, 0, -1);
16339 type = create_array_type_with_stride (NULL, element_type, range_type,
16340 byte_stride_prop, bit_stride);
16341 return set_die_type (die, type, cu);
16342 }
16343
16344 std::vector<struct type *> range_types;
16345 child_die = die->child;
16346 while (child_die && child_die->tag)
16347 {
16348 if (child_die->tag == DW_TAG_subrange_type)
16349 {
16350 struct type *child_type = read_type_die (child_die, cu);
16351
16352 if (child_type != NULL)
16353 {
16354 /* The range type was succesfully read. Save it for the
16355 array type creation. */
16356 range_types.push_back (child_type);
16357 }
16358 }
16359 child_die = sibling_die (child_die);
16360 }
16361
16362 /* Dwarf2 dimensions are output from left to right, create the
16363 necessary array types in backwards order. */
16364
16365 type = element_type;
16366
16367 if (read_array_order (die, cu) == DW_ORD_col_major)
16368 {
16369 int i = 0;
16370
16371 while (i < range_types.size ())
16372 type = create_array_type_with_stride (NULL, type, range_types[i++],
16373 byte_stride_prop, bit_stride);
16374 }
16375 else
16376 {
16377 size_t ndim = range_types.size ();
16378 while (ndim-- > 0)
16379 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16380 byte_stride_prop, bit_stride);
16381 }
16382
16383 /* Understand Dwarf2 support for vector types (like they occur on
16384 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16385 array type. This is not part of the Dwarf2/3 standard yet, but a
16386 custom vendor extension. The main difference between a regular
16387 array and the vector variant is that vectors are passed by value
16388 to functions. */
16389 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16390 if (attr)
16391 make_vector_type (type);
16392
16393 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16394 implementation may choose to implement triple vectors using this
16395 attribute. */
16396 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16397 if (attr)
16398 {
16399 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16400 TYPE_LENGTH (type) = DW_UNSND (attr);
16401 else
16402 complaint (_("DW_AT_byte_size for array type smaller "
16403 "than the total size of elements"));
16404 }
16405
16406 name = dwarf2_name (die, cu);
16407 if (name)
16408 TYPE_NAME (type) = name;
16409
16410 maybe_set_alignment (cu, die, type);
16411
16412 /* Install the type in the die. */
16413 set_die_type (die, type, cu);
16414
16415 /* set_die_type should be already done. */
16416 set_descriptive_type (type, die, cu);
16417
16418 return type;
16419 }
16420
16421 static enum dwarf_array_dim_ordering
16422 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16423 {
16424 struct attribute *attr;
16425
16426 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16427
16428 if (attr)
16429 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16430
16431 /* GNU F77 is a special case, as at 08/2004 array type info is the
16432 opposite order to the dwarf2 specification, but data is still
16433 laid out as per normal fortran.
16434
16435 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16436 version checking. */
16437
16438 if (cu->language == language_fortran
16439 && cu->producer && strstr (cu->producer, "GNU F77"))
16440 {
16441 return DW_ORD_row_major;
16442 }
16443
16444 switch (cu->language_defn->la_array_ordering)
16445 {
16446 case array_column_major:
16447 return DW_ORD_col_major;
16448 case array_row_major:
16449 default:
16450 return DW_ORD_row_major;
16451 };
16452 }
16453
16454 /* Extract all information from a DW_TAG_set_type DIE and put it in
16455 the DIE's type field. */
16456
16457 static struct type *
16458 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16459 {
16460 struct type *domain_type, *set_type;
16461 struct attribute *attr;
16462
16463 domain_type = die_type (die, cu);
16464
16465 /* The die_type call above may have already set the type for this DIE. */
16466 set_type = get_die_type (die, cu);
16467 if (set_type)
16468 return set_type;
16469
16470 set_type = create_set_type (NULL, domain_type);
16471
16472 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16473 if (attr)
16474 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16475
16476 maybe_set_alignment (cu, die, set_type);
16477
16478 return set_die_type (die, set_type, cu);
16479 }
16480
16481 /* A helper for read_common_block that creates a locexpr baton.
16482 SYM is the symbol which we are marking as computed.
16483 COMMON_DIE is the DIE for the common block.
16484 COMMON_LOC is the location expression attribute for the common
16485 block itself.
16486 MEMBER_LOC is the location expression attribute for the particular
16487 member of the common block that we are processing.
16488 CU is the CU from which the above come. */
16489
16490 static void
16491 mark_common_block_symbol_computed (struct symbol *sym,
16492 struct die_info *common_die,
16493 struct attribute *common_loc,
16494 struct attribute *member_loc,
16495 struct dwarf2_cu *cu)
16496 {
16497 struct dwarf2_per_objfile *dwarf2_per_objfile
16498 = cu->per_cu->dwarf2_per_objfile;
16499 struct objfile *objfile = dwarf2_per_objfile->objfile;
16500 struct dwarf2_locexpr_baton *baton;
16501 gdb_byte *ptr;
16502 unsigned int cu_off;
16503 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16504 LONGEST offset = 0;
16505
16506 gdb_assert (common_loc && member_loc);
16507 gdb_assert (attr_form_is_block (common_loc));
16508 gdb_assert (attr_form_is_block (member_loc)
16509 || attr_form_is_constant (member_loc));
16510
16511 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16512 baton->per_cu = cu->per_cu;
16513 gdb_assert (baton->per_cu);
16514
16515 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16516
16517 if (attr_form_is_constant (member_loc))
16518 {
16519 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16520 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16521 }
16522 else
16523 baton->size += DW_BLOCK (member_loc)->size;
16524
16525 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16526 baton->data = ptr;
16527
16528 *ptr++ = DW_OP_call4;
16529 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16530 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16531 ptr += 4;
16532
16533 if (attr_form_is_constant (member_loc))
16534 {
16535 *ptr++ = DW_OP_addr;
16536 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16537 ptr += cu->header.addr_size;
16538 }
16539 else
16540 {
16541 /* We have to copy the data here, because DW_OP_call4 will only
16542 use a DW_AT_location attribute. */
16543 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16544 ptr += DW_BLOCK (member_loc)->size;
16545 }
16546
16547 *ptr++ = DW_OP_plus;
16548 gdb_assert (ptr - baton->data == baton->size);
16549
16550 SYMBOL_LOCATION_BATON (sym) = baton;
16551 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16552 }
16553
16554 /* Create appropriate locally-scoped variables for all the
16555 DW_TAG_common_block entries. Also create a struct common_block
16556 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16557 is used to sepate the common blocks name namespace from regular
16558 variable names. */
16559
16560 static void
16561 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16562 {
16563 struct attribute *attr;
16564
16565 attr = dwarf2_attr (die, DW_AT_location, cu);
16566 if (attr)
16567 {
16568 /* Support the .debug_loc offsets. */
16569 if (attr_form_is_block (attr))
16570 {
16571 /* Ok. */
16572 }
16573 else if (attr_form_is_section_offset (attr))
16574 {
16575 dwarf2_complex_location_expr_complaint ();
16576 attr = NULL;
16577 }
16578 else
16579 {
16580 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16581 "common block member");
16582 attr = NULL;
16583 }
16584 }
16585
16586 if (die->child != NULL)
16587 {
16588 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16589 struct die_info *child_die;
16590 size_t n_entries = 0, size;
16591 struct common_block *common_block;
16592 struct symbol *sym;
16593
16594 for (child_die = die->child;
16595 child_die && child_die->tag;
16596 child_die = sibling_die (child_die))
16597 ++n_entries;
16598
16599 size = (sizeof (struct common_block)
16600 + (n_entries - 1) * sizeof (struct symbol *));
16601 common_block
16602 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16603 size);
16604 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16605 common_block->n_entries = 0;
16606
16607 for (child_die = die->child;
16608 child_die && child_die->tag;
16609 child_die = sibling_die (child_die))
16610 {
16611 /* Create the symbol in the DW_TAG_common_block block in the current
16612 symbol scope. */
16613 sym = new_symbol (child_die, NULL, cu);
16614 if (sym != NULL)
16615 {
16616 struct attribute *member_loc;
16617
16618 common_block->contents[common_block->n_entries++] = sym;
16619
16620 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16621 cu);
16622 if (member_loc)
16623 {
16624 /* GDB has handled this for a long time, but it is
16625 not specified by DWARF. It seems to have been
16626 emitted by gfortran at least as recently as:
16627 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16628 complaint (_("Variable in common block has "
16629 "DW_AT_data_member_location "
16630 "- DIE at %s [in module %s]"),
16631 sect_offset_str (child_die->sect_off),
16632 objfile_name (objfile));
16633
16634 if (attr_form_is_section_offset (member_loc))
16635 dwarf2_complex_location_expr_complaint ();
16636 else if (attr_form_is_constant (member_loc)
16637 || attr_form_is_block (member_loc))
16638 {
16639 if (attr)
16640 mark_common_block_symbol_computed (sym, die, attr,
16641 member_loc, cu);
16642 }
16643 else
16644 dwarf2_complex_location_expr_complaint ();
16645 }
16646 }
16647 }
16648
16649 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16650 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16651 }
16652 }
16653
16654 /* Create a type for a C++ namespace. */
16655
16656 static struct type *
16657 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16658 {
16659 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16660 const char *previous_prefix, *name;
16661 int is_anonymous;
16662 struct type *type;
16663
16664 /* For extensions, reuse the type of the original namespace. */
16665 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16666 {
16667 struct die_info *ext_die;
16668 struct dwarf2_cu *ext_cu = cu;
16669
16670 ext_die = dwarf2_extension (die, &ext_cu);
16671 type = read_type_die (ext_die, ext_cu);
16672
16673 /* EXT_CU may not be the same as CU.
16674 Ensure TYPE is recorded with CU in die_type_hash. */
16675 return set_die_type (die, type, cu);
16676 }
16677
16678 name = namespace_name (die, &is_anonymous, cu);
16679
16680 /* Now build the name of the current namespace. */
16681
16682 previous_prefix = determine_prefix (die, cu);
16683 if (previous_prefix[0] != '\0')
16684 name = typename_concat (&objfile->objfile_obstack,
16685 previous_prefix, name, 0, cu);
16686
16687 /* Create the type. */
16688 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16689 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16690
16691 return set_die_type (die, type, cu);
16692 }
16693
16694 /* Read a namespace scope. */
16695
16696 static void
16697 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16698 {
16699 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16700 int is_anonymous;
16701
16702 /* Add a symbol associated to this if we haven't seen the namespace
16703 before. Also, add a using directive if it's an anonymous
16704 namespace. */
16705
16706 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16707 {
16708 struct type *type;
16709
16710 type = read_type_die (die, cu);
16711 new_symbol (die, type, cu);
16712
16713 namespace_name (die, &is_anonymous, cu);
16714 if (is_anonymous)
16715 {
16716 const char *previous_prefix = determine_prefix (die, cu);
16717
16718 std::vector<const char *> excludes;
16719 add_using_directive (using_directives (cu->language),
16720 previous_prefix, TYPE_NAME (type), NULL,
16721 NULL, excludes, 0, &objfile->objfile_obstack);
16722 }
16723 }
16724
16725 if (die->child != NULL)
16726 {
16727 struct die_info *child_die = die->child;
16728
16729 while (child_die && child_die->tag)
16730 {
16731 process_die (child_die, cu);
16732 child_die = sibling_die (child_die);
16733 }
16734 }
16735 }
16736
16737 /* Read a Fortran module as type. This DIE can be only a declaration used for
16738 imported module. Still we need that type as local Fortran "use ... only"
16739 declaration imports depend on the created type in determine_prefix. */
16740
16741 static struct type *
16742 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16743 {
16744 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16745 const char *module_name;
16746 struct type *type;
16747
16748 module_name = dwarf2_name (die, cu);
16749 if (!module_name)
16750 complaint (_("DW_TAG_module has no name, offset %s"),
16751 sect_offset_str (die->sect_off));
16752 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16753
16754 /* determine_prefix uses TYPE_TAG_NAME. */
16755 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16756
16757 return set_die_type (die, type, cu);
16758 }
16759
16760 /* Read a Fortran module. */
16761
16762 static void
16763 read_module (struct die_info *die, struct dwarf2_cu *cu)
16764 {
16765 struct die_info *child_die = die->child;
16766 struct type *type;
16767
16768 type = read_type_die (die, cu);
16769 new_symbol (die, type, cu);
16770
16771 while (child_die && child_die->tag)
16772 {
16773 process_die (child_die, cu);
16774 child_die = sibling_die (child_die);
16775 }
16776 }
16777
16778 /* Return the name of the namespace represented by DIE. Set
16779 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16780 namespace. */
16781
16782 static const char *
16783 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16784 {
16785 struct die_info *current_die;
16786 const char *name = NULL;
16787
16788 /* Loop through the extensions until we find a name. */
16789
16790 for (current_die = die;
16791 current_die != NULL;
16792 current_die = dwarf2_extension (die, &cu))
16793 {
16794 /* We don't use dwarf2_name here so that we can detect the absence
16795 of a name -> anonymous namespace. */
16796 name = dwarf2_string_attr (die, DW_AT_name, cu);
16797
16798 if (name != NULL)
16799 break;
16800 }
16801
16802 /* Is it an anonymous namespace? */
16803
16804 *is_anonymous = (name == NULL);
16805 if (*is_anonymous)
16806 name = CP_ANONYMOUS_NAMESPACE_STR;
16807
16808 return name;
16809 }
16810
16811 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16812 the user defined type vector. */
16813
16814 static struct type *
16815 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16816 {
16817 struct gdbarch *gdbarch
16818 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16819 struct comp_unit_head *cu_header = &cu->header;
16820 struct type *type;
16821 struct attribute *attr_byte_size;
16822 struct attribute *attr_address_class;
16823 int byte_size, addr_class;
16824 struct type *target_type;
16825
16826 target_type = die_type (die, cu);
16827
16828 /* The die_type call above may have already set the type for this DIE. */
16829 type = get_die_type (die, cu);
16830 if (type)
16831 return type;
16832
16833 type = lookup_pointer_type (target_type);
16834
16835 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16836 if (attr_byte_size)
16837 byte_size = DW_UNSND (attr_byte_size);
16838 else
16839 byte_size = cu_header->addr_size;
16840
16841 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16842 if (attr_address_class)
16843 addr_class = DW_UNSND (attr_address_class);
16844 else
16845 addr_class = DW_ADDR_none;
16846
16847 ULONGEST alignment = get_alignment (cu, die);
16848
16849 /* If the pointer size, alignment, or address class is different
16850 than the default, create a type variant marked as such and set
16851 the length accordingly. */
16852 if (TYPE_LENGTH (type) != byte_size
16853 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16854 && alignment != TYPE_RAW_ALIGN (type))
16855 || addr_class != DW_ADDR_none)
16856 {
16857 if (gdbarch_address_class_type_flags_p (gdbarch))
16858 {
16859 int type_flags;
16860
16861 type_flags = gdbarch_address_class_type_flags
16862 (gdbarch, byte_size, addr_class);
16863 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16864 == 0);
16865 type = make_type_with_address_space (type, type_flags);
16866 }
16867 else if (TYPE_LENGTH (type) != byte_size)
16868 {
16869 complaint (_("invalid pointer size %d"), byte_size);
16870 }
16871 else if (TYPE_RAW_ALIGN (type) != alignment)
16872 {
16873 complaint (_("Invalid DW_AT_alignment"
16874 " - DIE at %s [in module %s]"),
16875 sect_offset_str (die->sect_off),
16876 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16877 }
16878 else
16879 {
16880 /* Should we also complain about unhandled address classes? */
16881 }
16882 }
16883
16884 TYPE_LENGTH (type) = byte_size;
16885 set_type_align (type, alignment);
16886 return set_die_type (die, type, cu);
16887 }
16888
16889 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16890 the user defined type vector. */
16891
16892 static struct type *
16893 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16894 {
16895 struct type *type;
16896 struct type *to_type;
16897 struct type *domain;
16898
16899 to_type = die_type (die, cu);
16900 domain = die_containing_type (die, cu);
16901
16902 /* The calls above may have already set the type for this DIE. */
16903 type = get_die_type (die, cu);
16904 if (type)
16905 return type;
16906
16907 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16908 type = lookup_methodptr_type (to_type);
16909 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16910 {
16911 struct type *new_type
16912 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16913
16914 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16915 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16916 TYPE_VARARGS (to_type));
16917 type = lookup_methodptr_type (new_type);
16918 }
16919 else
16920 type = lookup_memberptr_type (to_type, domain);
16921
16922 return set_die_type (die, type, cu);
16923 }
16924
16925 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16926 the user defined type vector. */
16927
16928 static struct type *
16929 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16930 enum type_code refcode)
16931 {
16932 struct comp_unit_head *cu_header = &cu->header;
16933 struct type *type, *target_type;
16934 struct attribute *attr;
16935
16936 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16937
16938 target_type = die_type (die, cu);
16939
16940 /* The die_type call above may have already set the type for this DIE. */
16941 type = get_die_type (die, cu);
16942 if (type)
16943 return type;
16944
16945 type = lookup_reference_type (target_type, refcode);
16946 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16947 if (attr)
16948 {
16949 TYPE_LENGTH (type) = DW_UNSND (attr);
16950 }
16951 else
16952 {
16953 TYPE_LENGTH (type) = cu_header->addr_size;
16954 }
16955 maybe_set_alignment (cu, die, type);
16956 return set_die_type (die, type, cu);
16957 }
16958
16959 /* Add the given cv-qualifiers to the element type of the array. GCC
16960 outputs DWARF type qualifiers that apply to an array, not the
16961 element type. But GDB relies on the array element type to carry
16962 the cv-qualifiers. This mimics section 6.7.3 of the C99
16963 specification. */
16964
16965 static struct type *
16966 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16967 struct type *base_type, int cnst, int voltl)
16968 {
16969 struct type *el_type, *inner_array;
16970
16971 base_type = copy_type (base_type);
16972 inner_array = base_type;
16973
16974 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16975 {
16976 TYPE_TARGET_TYPE (inner_array) =
16977 copy_type (TYPE_TARGET_TYPE (inner_array));
16978 inner_array = TYPE_TARGET_TYPE (inner_array);
16979 }
16980
16981 el_type = TYPE_TARGET_TYPE (inner_array);
16982 cnst |= TYPE_CONST (el_type);
16983 voltl |= TYPE_VOLATILE (el_type);
16984 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16985
16986 return set_die_type (die, base_type, cu);
16987 }
16988
16989 static struct type *
16990 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16991 {
16992 struct type *base_type, *cv_type;
16993
16994 base_type = die_type (die, cu);
16995
16996 /* The die_type call above may have already set the type for this DIE. */
16997 cv_type = get_die_type (die, cu);
16998 if (cv_type)
16999 return cv_type;
17000
17001 /* In case the const qualifier is applied to an array type, the element type
17002 is so qualified, not the array type (section 6.7.3 of C99). */
17003 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17004 return add_array_cv_type (die, cu, base_type, 1, 0);
17005
17006 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17007 return set_die_type (die, cv_type, cu);
17008 }
17009
17010 static struct type *
17011 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17012 {
17013 struct type *base_type, *cv_type;
17014
17015 base_type = die_type (die, cu);
17016
17017 /* The die_type call above may have already set the type for this DIE. */
17018 cv_type = get_die_type (die, cu);
17019 if (cv_type)
17020 return cv_type;
17021
17022 /* In case the volatile qualifier is applied to an array type, the
17023 element type is so qualified, not the array type (section 6.7.3
17024 of C99). */
17025 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17026 return add_array_cv_type (die, cu, base_type, 0, 1);
17027
17028 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17029 return set_die_type (die, cv_type, cu);
17030 }
17031
17032 /* Handle DW_TAG_restrict_type. */
17033
17034 static struct type *
17035 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17036 {
17037 struct type *base_type, *cv_type;
17038
17039 base_type = die_type (die, cu);
17040
17041 /* The die_type call above may have already set the type for this DIE. */
17042 cv_type = get_die_type (die, cu);
17043 if (cv_type)
17044 return cv_type;
17045
17046 cv_type = make_restrict_type (base_type);
17047 return set_die_type (die, cv_type, cu);
17048 }
17049
17050 /* Handle DW_TAG_atomic_type. */
17051
17052 static struct type *
17053 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17054 {
17055 struct type *base_type, *cv_type;
17056
17057 base_type = die_type (die, cu);
17058
17059 /* The die_type call above may have already set the type for this DIE. */
17060 cv_type = get_die_type (die, cu);
17061 if (cv_type)
17062 return cv_type;
17063
17064 cv_type = make_atomic_type (base_type);
17065 return set_die_type (die, cv_type, cu);
17066 }
17067
17068 /* Extract all information from a DW_TAG_string_type DIE and add to
17069 the user defined type vector. It isn't really a user defined type,
17070 but it behaves like one, with other DIE's using an AT_user_def_type
17071 attribute to reference it. */
17072
17073 static struct type *
17074 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17075 {
17076 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17077 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17078 struct type *type, *range_type, *index_type, *char_type;
17079 struct attribute *attr;
17080 unsigned int length;
17081
17082 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17083 if (attr)
17084 {
17085 length = DW_UNSND (attr);
17086 }
17087 else
17088 {
17089 /* Check for the DW_AT_byte_size attribute. */
17090 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17091 if (attr)
17092 {
17093 length = DW_UNSND (attr);
17094 }
17095 else
17096 {
17097 length = 1;
17098 }
17099 }
17100
17101 index_type = objfile_type (objfile)->builtin_int;
17102 range_type = create_static_range_type (NULL, index_type, 1, length);
17103 char_type = language_string_char_type (cu->language_defn, gdbarch);
17104 type = create_string_type (NULL, char_type, range_type);
17105
17106 return set_die_type (die, type, cu);
17107 }
17108
17109 /* Assuming that DIE corresponds to a function, returns nonzero
17110 if the function is prototyped. */
17111
17112 static int
17113 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17114 {
17115 struct attribute *attr;
17116
17117 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17118 if (attr && (DW_UNSND (attr) != 0))
17119 return 1;
17120
17121 /* The DWARF standard implies that the DW_AT_prototyped attribute
17122 is only meaninful for C, but the concept also extends to other
17123 languages that allow unprototyped functions (Eg: Objective C).
17124 For all other languages, assume that functions are always
17125 prototyped. */
17126 if (cu->language != language_c
17127 && cu->language != language_objc
17128 && cu->language != language_opencl)
17129 return 1;
17130
17131 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17132 prototyped and unprototyped functions; default to prototyped,
17133 since that is more common in modern code (and RealView warns
17134 about unprototyped functions). */
17135 if (producer_is_realview (cu->producer))
17136 return 1;
17137
17138 return 0;
17139 }
17140
17141 /* Handle DIES due to C code like:
17142
17143 struct foo
17144 {
17145 int (*funcp)(int a, long l);
17146 int b;
17147 };
17148
17149 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17150
17151 static struct type *
17152 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17153 {
17154 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17155 struct type *type; /* Type that this function returns. */
17156 struct type *ftype; /* Function that returns above type. */
17157 struct attribute *attr;
17158
17159 type = die_type (die, cu);
17160
17161 /* The die_type call above may have already set the type for this DIE. */
17162 ftype = get_die_type (die, cu);
17163 if (ftype)
17164 return ftype;
17165
17166 ftype = lookup_function_type (type);
17167
17168 if (prototyped_function_p (die, cu))
17169 TYPE_PROTOTYPED (ftype) = 1;
17170
17171 /* Store the calling convention in the type if it's available in
17172 the subroutine die. Otherwise set the calling convention to
17173 the default value DW_CC_normal. */
17174 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17175 if (attr)
17176 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17177 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17178 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17179 else
17180 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17181
17182 /* Record whether the function returns normally to its caller or not
17183 if the DWARF producer set that information. */
17184 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17185 if (attr && (DW_UNSND (attr) != 0))
17186 TYPE_NO_RETURN (ftype) = 1;
17187
17188 /* We need to add the subroutine type to the die immediately so
17189 we don't infinitely recurse when dealing with parameters
17190 declared as the same subroutine type. */
17191 set_die_type (die, ftype, cu);
17192
17193 if (die->child != NULL)
17194 {
17195 struct type *void_type = objfile_type (objfile)->builtin_void;
17196 struct die_info *child_die;
17197 int nparams, iparams;
17198
17199 /* Count the number of parameters.
17200 FIXME: GDB currently ignores vararg functions, but knows about
17201 vararg member functions. */
17202 nparams = 0;
17203 child_die = die->child;
17204 while (child_die && child_die->tag)
17205 {
17206 if (child_die->tag == DW_TAG_formal_parameter)
17207 nparams++;
17208 else if (child_die->tag == DW_TAG_unspecified_parameters)
17209 TYPE_VARARGS (ftype) = 1;
17210 child_die = sibling_die (child_die);
17211 }
17212
17213 /* Allocate storage for parameters and fill them in. */
17214 TYPE_NFIELDS (ftype) = nparams;
17215 TYPE_FIELDS (ftype) = (struct field *)
17216 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17217
17218 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17219 even if we error out during the parameters reading below. */
17220 for (iparams = 0; iparams < nparams; iparams++)
17221 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17222
17223 iparams = 0;
17224 child_die = die->child;
17225 while (child_die && child_die->tag)
17226 {
17227 if (child_die->tag == DW_TAG_formal_parameter)
17228 {
17229 struct type *arg_type;
17230
17231 /* DWARF version 2 has no clean way to discern C++
17232 static and non-static member functions. G++ helps
17233 GDB by marking the first parameter for non-static
17234 member functions (which is the this pointer) as
17235 artificial. We pass this information to
17236 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17237
17238 DWARF version 3 added DW_AT_object_pointer, which GCC
17239 4.5 does not yet generate. */
17240 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17241 if (attr)
17242 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17243 else
17244 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17245 arg_type = die_type (child_die, cu);
17246
17247 /* RealView does not mark THIS as const, which the testsuite
17248 expects. GCC marks THIS as const in method definitions,
17249 but not in the class specifications (GCC PR 43053). */
17250 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17251 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17252 {
17253 int is_this = 0;
17254 struct dwarf2_cu *arg_cu = cu;
17255 const char *name = dwarf2_name (child_die, cu);
17256
17257 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17258 if (attr)
17259 {
17260 /* If the compiler emits this, use it. */
17261 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17262 is_this = 1;
17263 }
17264 else if (name && strcmp (name, "this") == 0)
17265 /* Function definitions will have the argument names. */
17266 is_this = 1;
17267 else if (name == NULL && iparams == 0)
17268 /* Declarations may not have the names, so like
17269 elsewhere in GDB, assume an artificial first
17270 argument is "this". */
17271 is_this = 1;
17272
17273 if (is_this)
17274 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17275 arg_type, 0);
17276 }
17277
17278 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17279 iparams++;
17280 }
17281 child_die = sibling_die (child_die);
17282 }
17283 }
17284
17285 return ftype;
17286 }
17287
17288 static struct type *
17289 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17290 {
17291 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17292 const char *name = NULL;
17293 struct type *this_type, *target_type;
17294
17295 name = dwarf2_full_name (NULL, die, cu);
17296 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17297 TYPE_TARGET_STUB (this_type) = 1;
17298 set_die_type (die, this_type, cu);
17299 target_type = die_type (die, cu);
17300 if (target_type != this_type)
17301 TYPE_TARGET_TYPE (this_type) = target_type;
17302 else
17303 {
17304 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17305 spec and cause infinite loops in GDB. */
17306 complaint (_("Self-referential DW_TAG_typedef "
17307 "- DIE at %s [in module %s]"),
17308 sect_offset_str (die->sect_off), objfile_name (objfile));
17309 TYPE_TARGET_TYPE (this_type) = NULL;
17310 }
17311 return this_type;
17312 }
17313
17314 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17315 (which may be different from NAME) to the architecture back-end to allow
17316 it to guess the correct format if necessary. */
17317
17318 static struct type *
17319 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17320 const char *name_hint)
17321 {
17322 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17323 const struct floatformat **format;
17324 struct type *type;
17325
17326 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17327 if (format)
17328 type = init_float_type (objfile, bits, name, format);
17329 else
17330 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17331
17332 return type;
17333 }
17334
17335 /* Find a representation of a given base type and install
17336 it in the TYPE field of the die. */
17337
17338 static struct type *
17339 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17340 {
17341 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17342 struct type *type;
17343 struct attribute *attr;
17344 int encoding = 0, bits = 0;
17345 const char *name;
17346
17347 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17348 if (attr)
17349 {
17350 encoding = DW_UNSND (attr);
17351 }
17352 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17353 if (attr)
17354 {
17355 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17356 }
17357 name = dwarf2_name (die, cu);
17358 if (!name)
17359 {
17360 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17361 }
17362
17363 switch (encoding)
17364 {
17365 case DW_ATE_address:
17366 /* Turn DW_ATE_address into a void * pointer. */
17367 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17368 type = init_pointer_type (objfile, bits, name, type);
17369 break;
17370 case DW_ATE_boolean:
17371 type = init_boolean_type (objfile, bits, 1, name);
17372 break;
17373 case DW_ATE_complex_float:
17374 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17375 type = init_complex_type (objfile, name, type);
17376 break;
17377 case DW_ATE_decimal_float:
17378 type = init_decfloat_type (objfile, bits, name);
17379 break;
17380 case DW_ATE_float:
17381 type = dwarf2_init_float_type (objfile, bits, name, name);
17382 break;
17383 case DW_ATE_signed:
17384 type = init_integer_type (objfile, bits, 0, name);
17385 break;
17386 case DW_ATE_unsigned:
17387 if (cu->language == language_fortran
17388 && name
17389 && startswith (name, "character("))
17390 type = init_character_type (objfile, bits, 1, name);
17391 else
17392 type = init_integer_type (objfile, bits, 1, name);
17393 break;
17394 case DW_ATE_signed_char:
17395 if (cu->language == language_ada || cu->language == language_m2
17396 || cu->language == language_pascal
17397 || cu->language == language_fortran)
17398 type = init_character_type (objfile, bits, 0, name);
17399 else
17400 type = init_integer_type (objfile, bits, 0, name);
17401 break;
17402 case DW_ATE_unsigned_char:
17403 if (cu->language == language_ada || cu->language == language_m2
17404 || cu->language == language_pascal
17405 || cu->language == language_fortran
17406 || cu->language == language_rust)
17407 type = init_character_type (objfile, bits, 1, name);
17408 else
17409 type = init_integer_type (objfile, bits, 1, name);
17410 break;
17411 case DW_ATE_UTF:
17412 {
17413 gdbarch *arch = get_objfile_arch (objfile);
17414
17415 if (bits == 16)
17416 type = builtin_type (arch)->builtin_char16;
17417 else if (bits == 32)
17418 type = builtin_type (arch)->builtin_char32;
17419 else
17420 {
17421 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17422 bits);
17423 type = init_integer_type (objfile, bits, 1, name);
17424 }
17425 return set_die_type (die, type, cu);
17426 }
17427 break;
17428
17429 default:
17430 complaint (_("unsupported DW_AT_encoding: '%s'"),
17431 dwarf_type_encoding_name (encoding));
17432 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17433 break;
17434 }
17435
17436 if (name && strcmp (name, "char") == 0)
17437 TYPE_NOSIGN (type) = 1;
17438
17439 maybe_set_alignment (cu, die, type);
17440
17441 return set_die_type (die, type, cu);
17442 }
17443
17444 /* Parse dwarf attribute if it's a block, reference or constant and put the
17445 resulting value of the attribute into struct bound_prop.
17446 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17447
17448 static int
17449 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17450 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17451 {
17452 struct dwarf2_property_baton *baton;
17453 struct obstack *obstack
17454 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17455
17456 if (attr == NULL || prop == NULL)
17457 return 0;
17458
17459 if (attr_form_is_block (attr))
17460 {
17461 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17462 baton->referenced_type = NULL;
17463 baton->locexpr.per_cu = cu->per_cu;
17464 baton->locexpr.size = DW_BLOCK (attr)->size;
17465 baton->locexpr.data = DW_BLOCK (attr)->data;
17466 prop->data.baton = baton;
17467 prop->kind = PROP_LOCEXPR;
17468 gdb_assert (prop->data.baton != NULL);
17469 }
17470 else if (attr_form_is_ref (attr))
17471 {
17472 struct dwarf2_cu *target_cu = cu;
17473 struct die_info *target_die;
17474 struct attribute *target_attr;
17475
17476 target_die = follow_die_ref (die, attr, &target_cu);
17477 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17478 if (target_attr == NULL)
17479 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17480 target_cu);
17481 if (target_attr == NULL)
17482 return 0;
17483
17484 switch (target_attr->name)
17485 {
17486 case DW_AT_location:
17487 if (attr_form_is_section_offset (target_attr))
17488 {
17489 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17490 baton->referenced_type = die_type (target_die, target_cu);
17491 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17492 prop->data.baton = baton;
17493 prop->kind = PROP_LOCLIST;
17494 gdb_assert (prop->data.baton != NULL);
17495 }
17496 else if (attr_form_is_block (target_attr))
17497 {
17498 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17499 baton->referenced_type = die_type (target_die, target_cu);
17500 baton->locexpr.per_cu = cu->per_cu;
17501 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17502 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17503 prop->data.baton = baton;
17504 prop->kind = PROP_LOCEXPR;
17505 gdb_assert (prop->data.baton != NULL);
17506 }
17507 else
17508 {
17509 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17510 "dynamic property");
17511 return 0;
17512 }
17513 break;
17514 case DW_AT_data_member_location:
17515 {
17516 LONGEST offset;
17517
17518 if (!handle_data_member_location (target_die, target_cu,
17519 &offset))
17520 return 0;
17521
17522 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17523 baton->referenced_type = read_type_die (target_die->parent,
17524 target_cu);
17525 baton->offset_info.offset = offset;
17526 baton->offset_info.type = die_type (target_die, target_cu);
17527 prop->data.baton = baton;
17528 prop->kind = PROP_ADDR_OFFSET;
17529 break;
17530 }
17531 }
17532 }
17533 else if (attr_form_is_constant (attr))
17534 {
17535 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17536 prop->kind = PROP_CONST;
17537 }
17538 else
17539 {
17540 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17541 dwarf2_name (die, cu));
17542 return 0;
17543 }
17544
17545 return 1;
17546 }
17547
17548 /* Read the given DW_AT_subrange DIE. */
17549
17550 static struct type *
17551 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17552 {
17553 struct type *base_type, *orig_base_type;
17554 struct type *range_type;
17555 struct attribute *attr;
17556 struct dynamic_prop low, high;
17557 int low_default_is_valid;
17558 int high_bound_is_count = 0;
17559 const char *name;
17560 LONGEST negative_mask;
17561
17562 orig_base_type = die_type (die, cu);
17563 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17564 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17565 creating the range type, but we use the result of check_typedef
17566 when examining properties of the type. */
17567 base_type = check_typedef (orig_base_type);
17568
17569 /* The die_type call above may have already set the type for this DIE. */
17570 range_type = get_die_type (die, cu);
17571 if (range_type)
17572 return range_type;
17573
17574 low.kind = PROP_CONST;
17575 high.kind = PROP_CONST;
17576 high.data.const_val = 0;
17577
17578 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17579 omitting DW_AT_lower_bound. */
17580 switch (cu->language)
17581 {
17582 case language_c:
17583 case language_cplus:
17584 low.data.const_val = 0;
17585 low_default_is_valid = 1;
17586 break;
17587 case language_fortran:
17588 low.data.const_val = 1;
17589 low_default_is_valid = 1;
17590 break;
17591 case language_d:
17592 case language_objc:
17593 case language_rust:
17594 low.data.const_val = 0;
17595 low_default_is_valid = (cu->header.version >= 4);
17596 break;
17597 case language_ada:
17598 case language_m2:
17599 case language_pascal:
17600 low.data.const_val = 1;
17601 low_default_is_valid = (cu->header.version >= 4);
17602 break;
17603 default:
17604 low.data.const_val = 0;
17605 low_default_is_valid = 0;
17606 break;
17607 }
17608
17609 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17610 if (attr)
17611 attr_to_dynamic_prop (attr, die, cu, &low);
17612 else if (!low_default_is_valid)
17613 complaint (_("Missing DW_AT_lower_bound "
17614 "- DIE at %s [in module %s]"),
17615 sect_offset_str (die->sect_off),
17616 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17617
17618 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17619 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17620 {
17621 attr = dwarf2_attr (die, DW_AT_count, cu);
17622 if (attr_to_dynamic_prop (attr, die, cu, &high))
17623 {
17624 /* If bounds are constant do the final calculation here. */
17625 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17626 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17627 else
17628 high_bound_is_count = 1;
17629 }
17630 }
17631
17632 /* Dwarf-2 specifications explicitly allows to create subrange types
17633 without specifying a base type.
17634 In that case, the base type must be set to the type of
17635 the lower bound, upper bound or count, in that order, if any of these
17636 three attributes references an object that has a type.
17637 If no base type is found, the Dwarf-2 specifications say that
17638 a signed integer type of size equal to the size of an address should
17639 be used.
17640 For the following C code: `extern char gdb_int [];'
17641 GCC produces an empty range DIE.
17642 FIXME: muller/2010-05-28: Possible references to object for low bound,
17643 high bound or count are not yet handled by this code. */
17644 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17645 {
17646 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17647 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17648 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17649 struct type *int_type = objfile_type (objfile)->builtin_int;
17650
17651 /* Test "int", "long int", and "long long int" objfile types,
17652 and select the first one having a size above or equal to the
17653 architecture address size. */
17654 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17655 base_type = int_type;
17656 else
17657 {
17658 int_type = objfile_type (objfile)->builtin_long;
17659 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17660 base_type = int_type;
17661 else
17662 {
17663 int_type = objfile_type (objfile)->builtin_long_long;
17664 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17665 base_type = int_type;
17666 }
17667 }
17668 }
17669
17670 /* Normally, the DWARF producers are expected to use a signed
17671 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17672 But this is unfortunately not always the case, as witnessed
17673 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17674 is used instead. To work around that ambiguity, we treat
17675 the bounds as signed, and thus sign-extend their values, when
17676 the base type is signed. */
17677 negative_mask =
17678 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17679 if (low.kind == PROP_CONST
17680 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17681 low.data.const_val |= negative_mask;
17682 if (high.kind == PROP_CONST
17683 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17684 high.data.const_val |= negative_mask;
17685
17686 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17687
17688 if (high_bound_is_count)
17689 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17690
17691 /* Ada expects an empty array on no boundary attributes. */
17692 if (attr == NULL && cu->language != language_ada)
17693 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17694
17695 name = dwarf2_name (die, cu);
17696 if (name)
17697 TYPE_NAME (range_type) = name;
17698
17699 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17700 if (attr)
17701 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17702
17703 maybe_set_alignment (cu, die, range_type);
17704
17705 set_die_type (die, range_type, cu);
17706
17707 /* set_die_type should be already done. */
17708 set_descriptive_type (range_type, die, cu);
17709
17710 return range_type;
17711 }
17712
17713 static struct type *
17714 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17715 {
17716 struct type *type;
17717
17718 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17719 NULL);
17720 TYPE_NAME (type) = dwarf2_name (die, cu);
17721
17722 /* In Ada, an unspecified type is typically used when the description
17723 of the type is defered to a different unit. When encountering
17724 such a type, we treat it as a stub, and try to resolve it later on,
17725 when needed. */
17726 if (cu->language == language_ada)
17727 TYPE_STUB (type) = 1;
17728
17729 return set_die_type (die, type, cu);
17730 }
17731
17732 /* Read a single die and all its descendents. Set the die's sibling
17733 field to NULL; set other fields in the die correctly, and set all
17734 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17735 location of the info_ptr after reading all of those dies. PARENT
17736 is the parent of the die in question. */
17737
17738 static struct die_info *
17739 read_die_and_children (const struct die_reader_specs *reader,
17740 const gdb_byte *info_ptr,
17741 const gdb_byte **new_info_ptr,
17742 struct die_info *parent)
17743 {
17744 struct die_info *die;
17745 const gdb_byte *cur_ptr;
17746 int has_children;
17747
17748 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17749 if (die == NULL)
17750 {
17751 *new_info_ptr = cur_ptr;
17752 return NULL;
17753 }
17754 store_in_ref_table (die, reader->cu);
17755
17756 if (has_children)
17757 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17758 else
17759 {
17760 die->child = NULL;
17761 *new_info_ptr = cur_ptr;
17762 }
17763
17764 die->sibling = NULL;
17765 die->parent = parent;
17766 return die;
17767 }
17768
17769 /* Read a die, all of its descendents, and all of its siblings; set
17770 all of the fields of all of the dies correctly. Arguments are as
17771 in read_die_and_children. */
17772
17773 static struct die_info *
17774 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17775 const gdb_byte *info_ptr,
17776 const gdb_byte **new_info_ptr,
17777 struct die_info *parent)
17778 {
17779 struct die_info *first_die, *last_sibling;
17780 const gdb_byte *cur_ptr;
17781
17782 cur_ptr = info_ptr;
17783 first_die = last_sibling = NULL;
17784
17785 while (1)
17786 {
17787 struct die_info *die
17788 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17789
17790 if (die == NULL)
17791 {
17792 *new_info_ptr = cur_ptr;
17793 return first_die;
17794 }
17795
17796 if (!first_die)
17797 first_die = die;
17798 else
17799 last_sibling->sibling = die;
17800
17801 last_sibling = die;
17802 }
17803 }
17804
17805 /* Read a die, all of its descendents, and all of its siblings; set
17806 all of the fields of all of the dies correctly. Arguments are as
17807 in read_die_and_children.
17808 This the main entry point for reading a DIE and all its children. */
17809
17810 static struct die_info *
17811 read_die_and_siblings (const struct die_reader_specs *reader,
17812 const gdb_byte *info_ptr,
17813 const gdb_byte **new_info_ptr,
17814 struct die_info *parent)
17815 {
17816 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17817 new_info_ptr, parent);
17818
17819 if (dwarf_die_debug)
17820 {
17821 fprintf_unfiltered (gdb_stdlog,
17822 "Read die from %s@0x%x of %s:\n",
17823 get_section_name (reader->die_section),
17824 (unsigned) (info_ptr - reader->die_section->buffer),
17825 bfd_get_filename (reader->abfd));
17826 dump_die (die, dwarf_die_debug);
17827 }
17828
17829 return die;
17830 }
17831
17832 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17833 attributes.
17834 The caller is responsible for filling in the extra attributes
17835 and updating (*DIEP)->num_attrs.
17836 Set DIEP to point to a newly allocated die with its information,
17837 except for its child, sibling, and parent fields.
17838 Set HAS_CHILDREN to tell whether the die has children or not. */
17839
17840 static const gdb_byte *
17841 read_full_die_1 (const struct die_reader_specs *reader,
17842 struct die_info **diep, const gdb_byte *info_ptr,
17843 int *has_children, int num_extra_attrs)
17844 {
17845 unsigned int abbrev_number, bytes_read, i;
17846 struct abbrev_info *abbrev;
17847 struct die_info *die;
17848 struct dwarf2_cu *cu = reader->cu;
17849 bfd *abfd = reader->abfd;
17850
17851 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17852 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17853 info_ptr += bytes_read;
17854 if (!abbrev_number)
17855 {
17856 *diep = NULL;
17857 *has_children = 0;
17858 return info_ptr;
17859 }
17860
17861 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17862 if (!abbrev)
17863 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17864 abbrev_number,
17865 bfd_get_filename (abfd));
17866
17867 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17868 die->sect_off = sect_off;
17869 die->tag = abbrev->tag;
17870 die->abbrev = abbrev_number;
17871
17872 /* Make the result usable.
17873 The caller needs to update num_attrs after adding the extra
17874 attributes. */
17875 die->num_attrs = abbrev->num_attrs;
17876
17877 for (i = 0; i < abbrev->num_attrs; ++i)
17878 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17879 info_ptr);
17880
17881 *diep = die;
17882 *has_children = abbrev->has_children;
17883 return info_ptr;
17884 }
17885
17886 /* Read a die and all its attributes.
17887 Set DIEP to point to a newly allocated die with its information,
17888 except for its child, sibling, and parent fields.
17889 Set HAS_CHILDREN to tell whether the die has children or not. */
17890
17891 static const gdb_byte *
17892 read_full_die (const struct die_reader_specs *reader,
17893 struct die_info **diep, const gdb_byte *info_ptr,
17894 int *has_children)
17895 {
17896 const gdb_byte *result;
17897
17898 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17899
17900 if (dwarf_die_debug)
17901 {
17902 fprintf_unfiltered (gdb_stdlog,
17903 "Read die from %s@0x%x of %s:\n",
17904 get_section_name (reader->die_section),
17905 (unsigned) (info_ptr - reader->die_section->buffer),
17906 bfd_get_filename (reader->abfd));
17907 dump_die (*diep, dwarf_die_debug);
17908 }
17909
17910 return result;
17911 }
17912 \f
17913 /* Abbreviation tables.
17914
17915 In DWARF version 2, the description of the debugging information is
17916 stored in a separate .debug_abbrev section. Before we read any
17917 dies from a section we read in all abbreviations and install them
17918 in a hash table. */
17919
17920 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17921
17922 struct abbrev_info *
17923 abbrev_table::alloc_abbrev ()
17924 {
17925 struct abbrev_info *abbrev;
17926
17927 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17928 memset (abbrev, 0, sizeof (struct abbrev_info));
17929
17930 return abbrev;
17931 }
17932
17933 /* Add an abbreviation to the table. */
17934
17935 void
17936 abbrev_table::add_abbrev (unsigned int abbrev_number,
17937 struct abbrev_info *abbrev)
17938 {
17939 unsigned int hash_number;
17940
17941 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17942 abbrev->next = m_abbrevs[hash_number];
17943 m_abbrevs[hash_number] = abbrev;
17944 }
17945
17946 /* Look up an abbrev in the table.
17947 Returns NULL if the abbrev is not found. */
17948
17949 struct abbrev_info *
17950 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17951 {
17952 unsigned int hash_number;
17953 struct abbrev_info *abbrev;
17954
17955 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17956 abbrev = m_abbrevs[hash_number];
17957
17958 while (abbrev)
17959 {
17960 if (abbrev->number == abbrev_number)
17961 return abbrev;
17962 abbrev = abbrev->next;
17963 }
17964 return NULL;
17965 }
17966
17967 /* Read in an abbrev table. */
17968
17969 static abbrev_table_up
17970 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17971 struct dwarf2_section_info *section,
17972 sect_offset sect_off)
17973 {
17974 struct objfile *objfile = dwarf2_per_objfile->objfile;
17975 bfd *abfd = get_section_bfd_owner (section);
17976 const gdb_byte *abbrev_ptr;
17977 struct abbrev_info *cur_abbrev;
17978 unsigned int abbrev_number, bytes_read, abbrev_name;
17979 unsigned int abbrev_form;
17980 struct attr_abbrev *cur_attrs;
17981 unsigned int allocated_attrs;
17982
17983 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
17984
17985 dwarf2_read_section (objfile, section);
17986 abbrev_ptr = section->buffer + to_underlying (sect_off);
17987 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17988 abbrev_ptr += bytes_read;
17989
17990 allocated_attrs = ATTR_ALLOC_CHUNK;
17991 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17992
17993 /* Loop until we reach an abbrev number of 0. */
17994 while (abbrev_number)
17995 {
17996 cur_abbrev = abbrev_table->alloc_abbrev ();
17997
17998 /* read in abbrev header */
17999 cur_abbrev->number = abbrev_number;
18000 cur_abbrev->tag
18001 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18002 abbrev_ptr += bytes_read;
18003 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18004 abbrev_ptr += 1;
18005
18006 /* now read in declarations */
18007 for (;;)
18008 {
18009 LONGEST implicit_const;
18010
18011 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18012 abbrev_ptr += bytes_read;
18013 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18014 abbrev_ptr += bytes_read;
18015 if (abbrev_form == DW_FORM_implicit_const)
18016 {
18017 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18018 &bytes_read);
18019 abbrev_ptr += bytes_read;
18020 }
18021 else
18022 {
18023 /* Initialize it due to a false compiler warning. */
18024 implicit_const = -1;
18025 }
18026
18027 if (abbrev_name == 0)
18028 break;
18029
18030 if (cur_abbrev->num_attrs == allocated_attrs)
18031 {
18032 allocated_attrs += ATTR_ALLOC_CHUNK;
18033 cur_attrs
18034 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18035 }
18036
18037 cur_attrs[cur_abbrev->num_attrs].name
18038 = (enum dwarf_attribute) abbrev_name;
18039 cur_attrs[cur_abbrev->num_attrs].form
18040 = (enum dwarf_form) abbrev_form;
18041 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18042 ++cur_abbrev->num_attrs;
18043 }
18044
18045 cur_abbrev->attrs =
18046 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18047 cur_abbrev->num_attrs);
18048 memcpy (cur_abbrev->attrs, cur_attrs,
18049 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18050
18051 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18052
18053 /* Get next abbreviation.
18054 Under Irix6 the abbreviations for a compilation unit are not
18055 always properly terminated with an abbrev number of 0.
18056 Exit loop if we encounter an abbreviation which we have
18057 already read (which means we are about to read the abbreviations
18058 for the next compile unit) or if the end of the abbreviation
18059 table is reached. */
18060 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18061 break;
18062 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18063 abbrev_ptr += bytes_read;
18064 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18065 break;
18066 }
18067
18068 xfree (cur_attrs);
18069 return abbrev_table;
18070 }
18071
18072 /* Returns nonzero if TAG represents a type that we might generate a partial
18073 symbol for. */
18074
18075 static int
18076 is_type_tag_for_partial (int tag)
18077 {
18078 switch (tag)
18079 {
18080 #if 0
18081 /* Some types that would be reasonable to generate partial symbols for,
18082 that we don't at present. */
18083 case DW_TAG_array_type:
18084 case DW_TAG_file_type:
18085 case DW_TAG_ptr_to_member_type:
18086 case DW_TAG_set_type:
18087 case DW_TAG_string_type:
18088 case DW_TAG_subroutine_type:
18089 #endif
18090 case DW_TAG_base_type:
18091 case DW_TAG_class_type:
18092 case DW_TAG_interface_type:
18093 case DW_TAG_enumeration_type:
18094 case DW_TAG_structure_type:
18095 case DW_TAG_subrange_type:
18096 case DW_TAG_typedef:
18097 case DW_TAG_union_type:
18098 return 1;
18099 default:
18100 return 0;
18101 }
18102 }
18103
18104 /* Load all DIEs that are interesting for partial symbols into memory. */
18105
18106 static struct partial_die_info *
18107 load_partial_dies (const struct die_reader_specs *reader,
18108 const gdb_byte *info_ptr, int building_psymtab)
18109 {
18110 struct dwarf2_cu *cu = reader->cu;
18111 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18112 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18113 unsigned int bytes_read;
18114 unsigned int load_all = 0;
18115 int nesting_level = 1;
18116
18117 parent_die = NULL;
18118 last_die = NULL;
18119
18120 gdb_assert (cu->per_cu != NULL);
18121 if (cu->per_cu->load_all_dies)
18122 load_all = 1;
18123
18124 cu->partial_dies
18125 = htab_create_alloc_ex (cu->header.length / 12,
18126 partial_die_hash,
18127 partial_die_eq,
18128 NULL,
18129 &cu->comp_unit_obstack,
18130 hashtab_obstack_allocate,
18131 dummy_obstack_deallocate);
18132
18133 while (1)
18134 {
18135 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18136
18137 /* A NULL abbrev means the end of a series of children. */
18138 if (abbrev == NULL)
18139 {
18140 if (--nesting_level == 0)
18141 return first_die;
18142
18143 info_ptr += bytes_read;
18144 last_die = parent_die;
18145 parent_die = parent_die->die_parent;
18146 continue;
18147 }
18148
18149 /* Check for template arguments. We never save these; if
18150 they're seen, we just mark the parent, and go on our way. */
18151 if (parent_die != NULL
18152 && cu->language == language_cplus
18153 && (abbrev->tag == DW_TAG_template_type_param
18154 || abbrev->tag == DW_TAG_template_value_param))
18155 {
18156 parent_die->has_template_arguments = 1;
18157
18158 if (!load_all)
18159 {
18160 /* We don't need a partial DIE for the template argument. */
18161 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18162 continue;
18163 }
18164 }
18165
18166 /* We only recurse into c++ subprograms looking for template arguments.
18167 Skip their other children. */
18168 if (!load_all
18169 && cu->language == language_cplus
18170 && parent_die != NULL
18171 && parent_die->tag == DW_TAG_subprogram)
18172 {
18173 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18174 continue;
18175 }
18176
18177 /* Check whether this DIE is interesting enough to save. Normally
18178 we would not be interested in members here, but there may be
18179 later variables referencing them via DW_AT_specification (for
18180 static members). */
18181 if (!load_all
18182 && !is_type_tag_for_partial (abbrev->tag)
18183 && abbrev->tag != DW_TAG_constant
18184 && abbrev->tag != DW_TAG_enumerator
18185 && abbrev->tag != DW_TAG_subprogram
18186 && abbrev->tag != DW_TAG_inlined_subroutine
18187 && abbrev->tag != DW_TAG_lexical_block
18188 && abbrev->tag != DW_TAG_variable
18189 && abbrev->tag != DW_TAG_namespace
18190 && abbrev->tag != DW_TAG_module
18191 && abbrev->tag != DW_TAG_member
18192 && abbrev->tag != DW_TAG_imported_unit
18193 && abbrev->tag != DW_TAG_imported_declaration)
18194 {
18195 /* Otherwise we skip to the next sibling, if any. */
18196 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18197 continue;
18198 }
18199
18200 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18201 abbrev);
18202
18203 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18204
18205 /* This two-pass algorithm for processing partial symbols has a
18206 high cost in cache pressure. Thus, handle some simple cases
18207 here which cover the majority of C partial symbols. DIEs
18208 which neither have specification tags in them, nor could have
18209 specification tags elsewhere pointing at them, can simply be
18210 processed and discarded.
18211
18212 This segment is also optional; scan_partial_symbols and
18213 add_partial_symbol will handle these DIEs if we chain
18214 them in normally. When compilers which do not emit large
18215 quantities of duplicate debug information are more common,
18216 this code can probably be removed. */
18217
18218 /* Any complete simple types at the top level (pretty much all
18219 of them, for a language without namespaces), can be processed
18220 directly. */
18221 if (parent_die == NULL
18222 && pdi.has_specification == 0
18223 && pdi.is_declaration == 0
18224 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18225 || pdi.tag == DW_TAG_base_type
18226 || pdi.tag == DW_TAG_subrange_type))
18227 {
18228 if (building_psymtab && pdi.name != NULL)
18229 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18230 VAR_DOMAIN, LOC_TYPEDEF,
18231 &objfile->static_psymbols,
18232 0, cu->language, objfile);
18233 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18234 continue;
18235 }
18236
18237 /* The exception for DW_TAG_typedef with has_children above is
18238 a workaround of GCC PR debug/47510. In the case of this complaint
18239 type_name_no_tag_or_error will error on such types later.
18240
18241 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18242 it could not find the child DIEs referenced later, this is checked
18243 above. In correct DWARF DW_TAG_typedef should have no children. */
18244
18245 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18246 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18247 "- DIE at %s [in module %s]"),
18248 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18249
18250 /* If we're at the second level, and we're an enumerator, and
18251 our parent has no specification (meaning possibly lives in a
18252 namespace elsewhere), then we can add the partial symbol now
18253 instead of queueing it. */
18254 if (pdi.tag == DW_TAG_enumerator
18255 && parent_die != NULL
18256 && parent_die->die_parent == NULL
18257 && parent_die->tag == DW_TAG_enumeration_type
18258 && parent_die->has_specification == 0)
18259 {
18260 if (pdi.name == NULL)
18261 complaint (_("malformed enumerator DIE ignored"));
18262 else if (building_psymtab)
18263 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18264 VAR_DOMAIN, LOC_CONST,
18265 cu->language == language_cplus
18266 ? &objfile->global_psymbols
18267 : &objfile->static_psymbols,
18268 0, cu->language, objfile);
18269
18270 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18271 continue;
18272 }
18273
18274 struct partial_die_info *part_die
18275 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18276
18277 /* We'll save this DIE so link it in. */
18278 part_die->die_parent = parent_die;
18279 part_die->die_sibling = NULL;
18280 part_die->die_child = NULL;
18281
18282 if (last_die && last_die == parent_die)
18283 last_die->die_child = part_die;
18284 else if (last_die)
18285 last_die->die_sibling = part_die;
18286
18287 last_die = part_die;
18288
18289 if (first_die == NULL)
18290 first_die = part_die;
18291
18292 /* Maybe add the DIE to the hash table. Not all DIEs that we
18293 find interesting need to be in the hash table, because we
18294 also have the parent/sibling/child chains; only those that we
18295 might refer to by offset later during partial symbol reading.
18296
18297 For now this means things that might have be the target of a
18298 DW_AT_specification, DW_AT_abstract_origin, or
18299 DW_AT_extension. DW_AT_extension will refer only to
18300 namespaces; DW_AT_abstract_origin refers to functions (and
18301 many things under the function DIE, but we do not recurse
18302 into function DIEs during partial symbol reading) and
18303 possibly variables as well; DW_AT_specification refers to
18304 declarations. Declarations ought to have the DW_AT_declaration
18305 flag. It happens that GCC forgets to put it in sometimes, but
18306 only for functions, not for types.
18307
18308 Adding more things than necessary to the hash table is harmless
18309 except for the performance cost. Adding too few will result in
18310 wasted time in find_partial_die, when we reread the compilation
18311 unit with load_all_dies set. */
18312
18313 if (load_all
18314 || abbrev->tag == DW_TAG_constant
18315 || abbrev->tag == DW_TAG_subprogram
18316 || abbrev->tag == DW_TAG_variable
18317 || abbrev->tag == DW_TAG_namespace
18318 || part_die->is_declaration)
18319 {
18320 void **slot;
18321
18322 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18323 to_underlying (part_die->sect_off),
18324 INSERT);
18325 *slot = part_die;
18326 }
18327
18328 /* For some DIEs we want to follow their children (if any). For C
18329 we have no reason to follow the children of structures; for other
18330 languages we have to, so that we can get at method physnames
18331 to infer fully qualified class names, for DW_AT_specification,
18332 and for C++ template arguments. For C++, we also look one level
18333 inside functions to find template arguments (if the name of the
18334 function does not already contain the template arguments).
18335
18336 For Ada, we need to scan the children of subprograms and lexical
18337 blocks as well because Ada allows the definition of nested
18338 entities that could be interesting for the debugger, such as
18339 nested subprograms for instance. */
18340 if (last_die->has_children
18341 && (load_all
18342 || last_die->tag == DW_TAG_namespace
18343 || last_die->tag == DW_TAG_module
18344 || last_die->tag == DW_TAG_enumeration_type
18345 || (cu->language == language_cplus
18346 && last_die->tag == DW_TAG_subprogram
18347 && (last_die->name == NULL
18348 || strchr (last_die->name, '<') == NULL))
18349 || (cu->language != language_c
18350 && (last_die->tag == DW_TAG_class_type
18351 || last_die->tag == DW_TAG_interface_type
18352 || last_die->tag == DW_TAG_structure_type
18353 || last_die->tag == DW_TAG_union_type))
18354 || (cu->language == language_ada
18355 && (last_die->tag == DW_TAG_subprogram
18356 || last_die->tag == DW_TAG_lexical_block))))
18357 {
18358 nesting_level++;
18359 parent_die = last_die;
18360 continue;
18361 }
18362
18363 /* Otherwise we skip to the next sibling, if any. */
18364 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18365
18366 /* Back to the top, do it again. */
18367 }
18368 }
18369
18370 partial_die_info::partial_die_info (sect_offset sect_off_,
18371 struct abbrev_info *abbrev)
18372 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18373 {
18374 }
18375
18376 /* Read a minimal amount of information into the minimal die structure.
18377 INFO_PTR should point just after the initial uleb128 of a DIE. */
18378
18379 const gdb_byte *
18380 partial_die_info::read (const struct die_reader_specs *reader,
18381 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18382 {
18383 struct dwarf2_cu *cu = reader->cu;
18384 struct dwarf2_per_objfile *dwarf2_per_objfile
18385 = cu->per_cu->dwarf2_per_objfile;
18386 unsigned int i;
18387 int has_low_pc_attr = 0;
18388 int has_high_pc_attr = 0;
18389 int high_pc_relative = 0;
18390
18391 for (i = 0; i < abbrev.num_attrs; ++i)
18392 {
18393 struct attribute attr;
18394
18395 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18396
18397 /* Store the data if it is of an attribute we want to keep in a
18398 partial symbol table. */
18399 switch (attr.name)
18400 {
18401 case DW_AT_name:
18402 switch (tag)
18403 {
18404 case DW_TAG_compile_unit:
18405 case DW_TAG_partial_unit:
18406 case DW_TAG_type_unit:
18407 /* Compilation units have a DW_AT_name that is a filename, not
18408 a source language identifier. */
18409 case DW_TAG_enumeration_type:
18410 case DW_TAG_enumerator:
18411 /* These tags always have simple identifiers already; no need
18412 to canonicalize them. */
18413 name = DW_STRING (&attr);
18414 break;
18415 default:
18416 {
18417 struct objfile *objfile = dwarf2_per_objfile->objfile;
18418
18419 name
18420 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18421 &objfile->per_bfd->storage_obstack);
18422 }
18423 break;
18424 }
18425 break;
18426 case DW_AT_linkage_name:
18427 case DW_AT_MIPS_linkage_name:
18428 /* Note that both forms of linkage name might appear. We
18429 assume they will be the same, and we only store the last
18430 one we see. */
18431 if (cu->language == language_ada)
18432 name = DW_STRING (&attr);
18433 linkage_name = DW_STRING (&attr);
18434 break;
18435 case DW_AT_low_pc:
18436 has_low_pc_attr = 1;
18437 lowpc = attr_value_as_address (&attr);
18438 break;
18439 case DW_AT_high_pc:
18440 has_high_pc_attr = 1;
18441 highpc = attr_value_as_address (&attr);
18442 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18443 high_pc_relative = 1;
18444 break;
18445 case DW_AT_location:
18446 /* Support the .debug_loc offsets. */
18447 if (attr_form_is_block (&attr))
18448 {
18449 d.locdesc = DW_BLOCK (&attr);
18450 }
18451 else if (attr_form_is_section_offset (&attr))
18452 {
18453 dwarf2_complex_location_expr_complaint ();
18454 }
18455 else
18456 {
18457 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18458 "partial symbol information");
18459 }
18460 break;
18461 case DW_AT_external:
18462 is_external = DW_UNSND (&attr);
18463 break;
18464 case DW_AT_declaration:
18465 is_declaration = DW_UNSND (&attr);
18466 break;
18467 case DW_AT_type:
18468 has_type = 1;
18469 break;
18470 case DW_AT_abstract_origin:
18471 case DW_AT_specification:
18472 case DW_AT_extension:
18473 has_specification = 1;
18474 spec_offset = dwarf2_get_ref_die_offset (&attr);
18475 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18476 || cu->per_cu->is_dwz);
18477 break;
18478 case DW_AT_sibling:
18479 /* Ignore absolute siblings, they might point outside of
18480 the current compile unit. */
18481 if (attr.form == DW_FORM_ref_addr)
18482 complaint (_("ignoring absolute DW_AT_sibling"));
18483 else
18484 {
18485 const gdb_byte *buffer = reader->buffer;
18486 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18487 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18488
18489 if (sibling_ptr < info_ptr)
18490 complaint (_("DW_AT_sibling points backwards"));
18491 else if (sibling_ptr > reader->buffer_end)
18492 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18493 else
18494 sibling = sibling_ptr;
18495 }
18496 break;
18497 case DW_AT_byte_size:
18498 has_byte_size = 1;
18499 break;
18500 case DW_AT_const_value:
18501 has_const_value = 1;
18502 break;
18503 case DW_AT_calling_convention:
18504 /* DWARF doesn't provide a way to identify a program's source-level
18505 entry point. DW_AT_calling_convention attributes are only meant
18506 to describe functions' calling conventions.
18507
18508 However, because it's a necessary piece of information in
18509 Fortran, and before DWARF 4 DW_CC_program was the only
18510 piece of debugging information whose definition refers to
18511 a 'main program' at all, several compilers marked Fortran
18512 main programs with DW_CC_program --- even when those
18513 functions use the standard calling conventions.
18514
18515 Although DWARF now specifies a way to provide this
18516 information, we support this practice for backward
18517 compatibility. */
18518 if (DW_UNSND (&attr) == DW_CC_program
18519 && cu->language == language_fortran)
18520 main_subprogram = 1;
18521 break;
18522 case DW_AT_inline:
18523 if (DW_UNSND (&attr) == DW_INL_inlined
18524 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18525 may_be_inlined = 1;
18526 break;
18527
18528 case DW_AT_import:
18529 if (tag == DW_TAG_imported_unit)
18530 {
18531 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18532 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18533 || cu->per_cu->is_dwz);
18534 }
18535 break;
18536
18537 case DW_AT_main_subprogram:
18538 main_subprogram = DW_UNSND (&attr);
18539 break;
18540
18541 default:
18542 break;
18543 }
18544 }
18545
18546 if (high_pc_relative)
18547 highpc += lowpc;
18548
18549 if (has_low_pc_attr && has_high_pc_attr)
18550 {
18551 /* When using the GNU linker, .gnu.linkonce. sections are used to
18552 eliminate duplicate copies of functions and vtables and such.
18553 The linker will arbitrarily choose one and discard the others.
18554 The AT_*_pc values for such functions refer to local labels in
18555 these sections. If the section from that file was discarded, the
18556 labels are not in the output, so the relocs get a value of 0.
18557 If this is a discarded function, mark the pc bounds as invalid,
18558 so that GDB will ignore it. */
18559 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18560 {
18561 struct objfile *objfile = dwarf2_per_objfile->objfile;
18562 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18563
18564 complaint (_("DW_AT_low_pc %s is zero "
18565 "for DIE at %s [in module %s]"),
18566 paddress (gdbarch, lowpc),
18567 sect_offset_str (sect_off),
18568 objfile_name (objfile));
18569 }
18570 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18571 else if (lowpc >= highpc)
18572 {
18573 struct objfile *objfile = dwarf2_per_objfile->objfile;
18574 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18575
18576 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18577 "for DIE at %s [in module %s]"),
18578 paddress (gdbarch, lowpc),
18579 paddress (gdbarch, highpc),
18580 sect_offset_str (sect_off),
18581 objfile_name (objfile));
18582 }
18583 else
18584 has_pc_info = 1;
18585 }
18586
18587 return info_ptr;
18588 }
18589
18590 /* Find a cached partial DIE at OFFSET in CU. */
18591
18592 struct partial_die_info *
18593 dwarf2_cu::find_partial_die (sect_offset sect_off)
18594 {
18595 struct partial_die_info *lookup_die = NULL;
18596 struct partial_die_info part_die (sect_off);
18597
18598 lookup_die = ((struct partial_die_info *)
18599 htab_find_with_hash (partial_dies, &part_die,
18600 to_underlying (sect_off)));
18601
18602 return lookup_die;
18603 }
18604
18605 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18606 except in the case of .debug_types DIEs which do not reference
18607 outside their CU (they do however referencing other types via
18608 DW_FORM_ref_sig8). */
18609
18610 static struct partial_die_info *
18611 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18612 {
18613 struct dwarf2_per_objfile *dwarf2_per_objfile
18614 = cu->per_cu->dwarf2_per_objfile;
18615 struct objfile *objfile = dwarf2_per_objfile->objfile;
18616 struct dwarf2_per_cu_data *per_cu = NULL;
18617 struct partial_die_info *pd = NULL;
18618
18619 if (offset_in_dwz == cu->per_cu->is_dwz
18620 && offset_in_cu_p (&cu->header, sect_off))
18621 {
18622 pd = cu->find_partial_die (sect_off);
18623 if (pd != NULL)
18624 return pd;
18625 /* We missed recording what we needed.
18626 Load all dies and try again. */
18627 per_cu = cu->per_cu;
18628 }
18629 else
18630 {
18631 /* TUs don't reference other CUs/TUs (except via type signatures). */
18632 if (cu->per_cu->is_debug_types)
18633 {
18634 error (_("Dwarf Error: Type Unit at offset %s contains"
18635 " external reference to offset %s [in module %s].\n"),
18636 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18637 bfd_get_filename (objfile->obfd));
18638 }
18639 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18640 dwarf2_per_objfile);
18641
18642 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18643 load_partial_comp_unit (per_cu);
18644
18645 per_cu->cu->last_used = 0;
18646 pd = per_cu->cu->find_partial_die (sect_off);
18647 }
18648
18649 /* If we didn't find it, and not all dies have been loaded,
18650 load them all and try again. */
18651
18652 if (pd == NULL && per_cu->load_all_dies == 0)
18653 {
18654 per_cu->load_all_dies = 1;
18655
18656 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18657 THIS_CU->cu may already be in use. So we can't just free it and
18658 replace its DIEs with the ones we read in. Instead, we leave those
18659 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18660 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18661 set. */
18662 load_partial_comp_unit (per_cu);
18663
18664 pd = per_cu->cu->find_partial_die (sect_off);
18665 }
18666
18667 if (pd == NULL)
18668 internal_error (__FILE__, __LINE__,
18669 _("could not find partial DIE %s "
18670 "in cache [from module %s]\n"),
18671 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18672 return pd;
18673 }
18674
18675 /* See if we can figure out if the class lives in a namespace. We do
18676 this by looking for a member function; its demangled name will
18677 contain namespace info, if there is any. */
18678
18679 static void
18680 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18681 struct dwarf2_cu *cu)
18682 {
18683 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18684 what template types look like, because the demangler
18685 frequently doesn't give the same name as the debug info. We
18686 could fix this by only using the demangled name to get the
18687 prefix (but see comment in read_structure_type). */
18688
18689 struct partial_die_info *real_pdi;
18690 struct partial_die_info *child_pdi;
18691
18692 /* If this DIE (this DIE's specification, if any) has a parent, then
18693 we should not do this. We'll prepend the parent's fully qualified
18694 name when we create the partial symbol. */
18695
18696 real_pdi = struct_pdi;
18697 while (real_pdi->has_specification)
18698 real_pdi = find_partial_die (real_pdi->spec_offset,
18699 real_pdi->spec_is_dwz, cu);
18700
18701 if (real_pdi->die_parent != NULL)
18702 return;
18703
18704 for (child_pdi = struct_pdi->die_child;
18705 child_pdi != NULL;
18706 child_pdi = child_pdi->die_sibling)
18707 {
18708 if (child_pdi->tag == DW_TAG_subprogram
18709 && child_pdi->linkage_name != NULL)
18710 {
18711 char *actual_class_name
18712 = language_class_name_from_physname (cu->language_defn,
18713 child_pdi->linkage_name);
18714 if (actual_class_name != NULL)
18715 {
18716 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18717 struct_pdi->name
18718 = ((const char *)
18719 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18720 actual_class_name,
18721 strlen (actual_class_name)));
18722 xfree (actual_class_name);
18723 }
18724 break;
18725 }
18726 }
18727 }
18728
18729 void
18730 partial_die_info::fixup (struct dwarf2_cu *cu)
18731 {
18732 /* Once we've fixed up a die, there's no point in doing so again.
18733 This also avoids a memory leak if we were to call
18734 guess_partial_die_structure_name multiple times. */
18735 if (fixup_called)
18736 return;
18737
18738 /* If we found a reference attribute and the DIE has no name, try
18739 to find a name in the referred to DIE. */
18740
18741 if (name == NULL && has_specification)
18742 {
18743 struct partial_die_info *spec_die;
18744
18745 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18746
18747 spec_die->fixup (cu);
18748
18749 if (spec_die->name)
18750 {
18751 name = spec_die->name;
18752
18753 /* Copy DW_AT_external attribute if it is set. */
18754 if (spec_die->is_external)
18755 is_external = spec_die->is_external;
18756 }
18757 }
18758
18759 /* Set default names for some unnamed DIEs. */
18760
18761 if (name == NULL && tag == DW_TAG_namespace)
18762 name = CP_ANONYMOUS_NAMESPACE_STR;
18763
18764 /* If there is no parent die to provide a namespace, and there are
18765 children, see if we can determine the namespace from their linkage
18766 name. */
18767 if (cu->language == language_cplus
18768 && !VEC_empty (dwarf2_section_info_def,
18769 cu->per_cu->dwarf2_per_objfile->types)
18770 && die_parent == NULL
18771 && has_children
18772 && (tag == DW_TAG_class_type
18773 || tag == DW_TAG_structure_type
18774 || tag == DW_TAG_union_type))
18775 guess_partial_die_structure_name (this, cu);
18776
18777 /* GCC might emit a nameless struct or union that has a linkage
18778 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18779 if (name == NULL
18780 && (tag == DW_TAG_class_type
18781 || tag == DW_TAG_interface_type
18782 || tag == DW_TAG_structure_type
18783 || tag == DW_TAG_union_type)
18784 && linkage_name != NULL)
18785 {
18786 char *demangled;
18787
18788 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18789 if (demangled)
18790 {
18791 const char *base;
18792
18793 /* Strip any leading namespaces/classes, keep only the base name.
18794 DW_AT_name for named DIEs does not contain the prefixes. */
18795 base = strrchr (demangled, ':');
18796 if (base && base > demangled && base[-1] == ':')
18797 base++;
18798 else
18799 base = demangled;
18800
18801 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18802 name
18803 = ((const char *)
18804 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18805 base, strlen (base)));
18806 xfree (demangled);
18807 }
18808 }
18809
18810 fixup_called = 1;
18811 }
18812
18813 /* Read an attribute value described by an attribute form. */
18814
18815 static const gdb_byte *
18816 read_attribute_value (const struct die_reader_specs *reader,
18817 struct attribute *attr, unsigned form,
18818 LONGEST implicit_const, const gdb_byte *info_ptr)
18819 {
18820 struct dwarf2_cu *cu = reader->cu;
18821 struct dwarf2_per_objfile *dwarf2_per_objfile
18822 = cu->per_cu->dwarf2_per_objfile;
18823 struct objfile *objfile = dwarf2_per_objfile->objfile;
18824 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18825 bfd *abfd = reader->abfd;
18826 struct comp_unit_head *cu_header = &cu->header;
18827 unsigned int bytes_read;
18828 struct dwarf_block *blk;
18829
18830 attr->form = (enum dwarf_form) form;
18831 switch (form)
18832 {
18833 case DW_FORM_ref_addr:
18834 if (cu->header.version == 2)
18835 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18836 else
18837 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18838 &cu->header, &bytes_read);
18839 info_ptr += bytes_read;
18840 break;
18841 case DW_FORM_GNU_ref_alt:
18842 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18843 info_ptr += bytes_read;
18844 break;
18845 case DW_FORM_addr:
18846 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18847 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18848 info_ptr += bytes_read;
18849 break;
18850 case DW_FORM_block2:
18851 blk = dwarf_alloc_block (cu);
18852 blk->size = read_2_bytes (abfd, info_ptr);
18853 info_ptr += 2;
18854 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18855 info_ptr += blk->size;
18856 DW_BLOCK (attr) = blk;
18857 break;
18858 case DW_FORM_block4:
18859 blk = dwarf_alloc_block (cu);
18860 blk->size = read_4_bytes (abfd, info_ptr);
18861 info_ptr += 4;
18862 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18863 info_ptr += blk->size;
18864 DW_BLOCK (attr) = blk;
18865 break;
18866 case DW_FORM_data2:
18867 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18868 info_ptr += 2;
18869 break;
18870 case DW_FORM_data4:
18871 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18872 info_ptr += 4;
18873 break;
18874 case DW_FORM_data8:
18875 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18876 info_ptr += 8;
18877 break;
18878 case DW_FORM_data16:
18879 blk = dwarf_alloc_block (cu);
18880 blk->size = 16;
18881 blk->data = read_n_bytes (abfd, info_ptr, 16);
18882 info_ptr += 16;
18883 DW_BLOCK (attr) = blk;
18884 break;
18885 case DW_FORM_sec_offset:
18886 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18887 info_ptr += bytes_read;
18888 break;
18889 case DW_FORM_string:
18890 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18891 DW_STRING_IS_CANONICAL (attr) = 0;
18892 info_ptr += bytes_read;
18893 break;
18894 case DW_FORM_strp:
18895 if (!cu->per_cu->is_dwz)
18896 {
18897 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18898 abfd, info_ptr, cu_header,
18899 &bytes_read);
18900 DW_STRING_IS_CANONICAL (attr) = 0;
18901 info_ptr += bytes_read;
18902 break;
18903 }
18904 /* FALLTHROUGH */
18905 case DW_FORM_line_strp:
18906 if (!cu->per_cu->is_dwz)
18907 {
18908 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18909 abfd, info_ptr,
18910 cu_header, &bytes_read);
18911 DW_STRING_IS_CANONICAL (attr) = 0;
18912 info_ptr += bytes_read;
18913 break;
18914 }
18915 /* FALLTHROUGH */
18916 case DW_FORM_GNU_strp_alt:
18917 {
18918 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18919 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18920 &bytes_read);
18921
18922 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18923 dwz, str_offset);
18924 DW_STRING_IS_CANONICAL (attr) = 0;
18925 info_ptr += bytes_read;
18926 }
18927 break;
18928 case DW_FORM_exprloc:
18929 case DW_FORM_block:
18930 blk = dwarf_alloc_block (cu);
18931 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18932 info_ptr += bytes_read;
18933 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18934 info_ptr += blk->size;
18935 DW_BLOCK (attr) = blk;
18936 break;
18937 case DW_FORM_block1:
18938 blk = dwarf_alloc_block (cu);
18939 blk->size = read_1_byte (abfd, info_ptr);
18940 info_ptr += 1;
18941 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18942 info_ptr += blk->size;
18943 DW_BLOCK (attr) = blk;
18944 break;
18945 case DW_FORM_data1:
18946 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18947 info_ptr += 1;
18948 break;
18949 case DW_FORM_flag:
18950 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18951 info_ptr += 1;
18952 break;
18953 case DW_FORM_flag_present:
18954 DW_UNSND (attr) = 1;
18955 break;
18956 case DW_FORM_sdata:
18957 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18958 info_ptr += bytes_read;
18959 break;
18960 case DW_FORM_udata:
18961 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18962 info_ptr += bytes_read;
18963 break;
18964 case DW_FORM_ref1:
18965 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18966 + read_1_byte (abfd, info_ptr));
18967 info_ptr += 1;
18968 break;
18969 case DW_FORM_ref2:
18970 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18971 + read_2_bytes (abfd, info_ptr));
18972 info_ptr += 2;
18973 break;
18974 case DW_FORM_ref4:
18975 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18976 + read_4_bytes (abfd, info_ptr));
18977 info_ptr += 4;
18978 break;
18979 case DW_FORM_ref8:
18980 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18981 + read_8_bytes (abfd, info_ptr));
18982 info_ptr += 8;
18983 break;
18984 case DW_FORM_ref_sig8:
18985 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18986 info_ptr += 8;
18987 break;
18988 case DW_FORM_ref_udata:
18989 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18990 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18991 info_ptr += bytes_read;
18992 break;
18993 case DW_FORM_indirect:
18994 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18995 info_ptr += bytes_read;
18996 if (form == DW_FORM_implicit_const)
18997 {
18998 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18999 info_ptr += bytes_read;
19000 }
19001 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19002 info_ptr);
19003 break;
19004 case DW_FORM_implicit_const:
19005 DW_SND (attr) = implicit_const;
19006 break;
19007 case DW_FORM_GNU_addr_index:
19008 if (reader->dwo_file == NULL)
19009 {
19010 /* For now flag a hard error.
19011 Later we can turn this into a complaint. */
19012 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19013 dwarf_form_name (form),
19014 bfd_get_filename (abfd));
19015 }
19016 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19017 info_ptr += bytes_read;
19018 break;
19019 case DW_FORM_GNU_str_index:
19020 if (reader->dwo_file == NULL)
19021 {
19022 /* For now flag a hard error.
19023 Later we can turn this into a complaint if warranted. */
19024 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19025 dwarf_form_name (form),
19026 bfd_get_filename (abfd));
19027 }
19028 {
19029 ULONGEST str_index =
19030 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19031
19032 DW_STRING (attr) = read_str_index (reader, str_index);
19033 DW_STRING_IS_CANONICAL (attr) = 0;
19034 info_ptr += bytes_read;
19035 }
19036 break;
19037 default:
19038 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19039 dwarf_form_name (form),
19040 bfd_get_filename (abfd));
19041 }
19042
19043 /* Super hack. */
19044 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19045 attr->form = DW_FORM_GNU_ref_alt;
19046
19047 /* We have seen instances where the compiler tried to emit a byte
19048 size attribute of -1 which ended up being encoded as an unsigned
19049 0xffffffff. Although 0xffffffff is technically a valid size value,
19050 an object of this size seems pretty unlikely so we can relatively
19051 safely treat these cases as if the size attribute was invalid and
19052 treat them as zero by default. */
19053 if (attr->name == DW_AT_byte_size
19054 && form == DW_FORM_data4
19055 && DW_UNSND (attr) >= 0xffffffff)
19056 {
19057 complaint
19058 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19059 hex_string (DW_UNSND (attr)));
19060 DW_UNSND (attr) = 0;
19061 }
19062
19063 return info_ptr;
19064 }
19065
19066 /* Read an attribute described by an abbreviated attribute. */
19067
19068 static const gdb_byte *
19069 read_attribute (const struct die_reader_specs *reader,
19070 struct attribute *attr, struct attr_abbrev *abbrev,
19071 const gdb_byte *info_ptr)
19072 {
19073 attr->name = abbrev->name;
19074 return read_attribute_value (reader, attr, abbrev->form,
19075 abbrev->implicit_const, info_ptr);
19076 }
19077
19078 /* Read dwarf information from a buffer. */
19079
19080 static unsigned int
19081 read_1_byte (bfd *abfd, const gdb_byte *buf)
19082 {
19083 return bfd_get_8 (abfd, buf);
19084 }
19085
19086 static int
19087 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19088 {
19089 return bfd_get_signed_8 (abfd, buf);
19090 }
19091
19092 static unsigned int
19093 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19094 {
19095 return bfd_get_16 (abfd, buf);
19096 }
19097
19098 static int
19099 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19100 {
19101 return bfd_get_signed_16 (abfd, buf);
19102 }
19103
19104 static unsigned int
19105 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19106 {
19107 return bfd_get_32 (abfd, buf);
19108 }
19109
19110 static int
19111 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19112 {
19113 return bfd_get_signed_32 (abfd, buf);
19114 }
19115
19116 static ULONGEST
19117 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19118 {
19119 return bfd_get_64 (abfd, buf);
19120 }
19121
19122 static CORE_ADDR
19123 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19124 unsigned int *bytes_read)
19125 {
19126 struct comp_unit_head *cu_header = &cu->header;
19127 CORE_ADDR retval = 0;
19128
19129 if (cu_header->signed_addr_p)
19130 {
19131 switch (cu_header->addr_size)
19132 {
19133 case 2:
19134 retval = bfd_get_signed_16 (abfd, buf);
19135 break;
19136 case 4:
19137 retval = bfd_get_signed_32 (abfd, buf);
19138 break;
19139 case 8:
19140 retval = bfd_get_signed_64 (abfd, buf);
19141 break;
19142 default:
19143 internal_error (__FILE__, __LINE__,
19144 _("read_address: bad switch, signed [in module %s]"),
19145 bfd_get_filename (abfd));
19146 }
19147 }
19148 else
19149 {
19150 switch (cu_header->addr_size)
19151 {
19152 case 2:
19153 retval = bfd_get_16 (abfd, buf);
19154 break;
19155 case 4:
19156 retval = bfd_get_32 (abfd, buf);
19157 break;
19158 case 8:
19159 retval = bfd_get_64 (abfd, buf);
19160 break;
19161 default:
19162 internal_error (__FILE__, __LINE__,
19163 _("read_address: bad switch, "
19164 "unsigned [in module %s]"),
19165 bfd_get_filename (abfd));
19166 }
19167 }
19168
19169 *bytes_read = cu_header->addr_size;
19170 return retval;
19171 }
19172
19173 /* Read the initial length from a section. The (draft) DWARF 3
19174 specification allows the initial length to take up either 4 bytes
19175 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19176 bytes describe the length and all offsets will be 8 bytes in length
19177 instead of 4.
19178
19179 An older, non-standard 64-bit format is also handled by this
19180 function. The older format in question stores the initial length
19181 as an 8-byte quantity without an escape value. Lengths greater
19182 than 2^32 aren't very common which means that the initial 4 bytes
19183 is almost always zero. Since a length value of zero doesn't make
19184 sense for the 32-bit format, this initial zero can be considered to
19185 be an escape value which indicates the presence of the older 64-bit
19186 format. As written, the code can't detect (old format) lengths
19187 greater than 4GB. If it becomes necessary to handle lengths
19188 somewhat larger than 4GB, we could allow other small values (such
19189 as the non-sensical values of 1, 2, and 3) to also be used as
19190 escape values indicating the presence of the old format.
19191
19192 The value returned via bytes_read should be used to increment the
19193 relevant pointer after calling read_initial_length().
19194
19195 [ Note: read_initial_length() and read_offset() are based on the
19196 document entitled "DWARF Debugging Information Format", revision
19197 3, draft 8, dated November 19, 2001. This document was obtained
19198 from:
19199
19200 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19201
19202 This document is only a draft and is subject to change. (So beware.)
19203
19204 Details regarding the older, non-standard 64-bit format were
19205 determined empirically by examining 64-bit ELF files produced by
19206 the SGI toolchain on an IRIX 6.5 machine.
19207
19208 - Kevin, July 16, 2002
19209 ] */
19210
19211 static LONGEST
19212 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19213 {
19214 LONGEST length = bfd_get_32 (abfd, buf);
19215
19216 if (length == 0xffffffff)
19217 {
19218 length = bfd_get_64 (abfd, buf + 4);
19219 *bytes_read = 12;
19220 }
19221 else if (length == 0)
19222 {
19223 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19224 length = bfd_get_64 (abfd, buf);
19225 *bytes_read = 8;
19226 }
19227 else
19228 {
19229 *bytes_read = 4;
19230 }
19231
19232 return length;
19233 }
19234
19235 /* Cover function for read_initial_length.
19236 Returns the length of the object at BUF, and stores the size of the
19237 initial length in *BYTES_READ and stores the size that offsets will be in
19238 *OFFSET_SIZE.
19239 If the initial length size is not equivalent to that specified in
19240 CU_HEADER then issue a complaint.
19241 This is useful when reading non-comp-unit headers. */
19242
19243 static LONGEST
19244 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19245 const struct comp_unit_head *cu_header,
19246 unsigned int *bytes_read,
19247 unsigned int *offset_size)
19248 {
19249 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19250
19251 gdb_assert (cu_header->initial_length_size == 4
19252 || cu_header->initial_length_size == 8
19253 || cu_header->initial_length_size == 12);
19254
19255 if (cu_header->initial_length_size != *bytes_read)
19256 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19257
19258 *offset_size = (*bytes_read == 4) ? 4 : 8;
19259 return length;
19260 }
19261
19262 /* Read an offset from the data stream. The size of the offset is
19263 given by cu_header->offset_size. */
19264
19265 static LONGEST
19266 read_offset (bfd *abfd, const gdb_byte *buf,
19267 const struct comp_unit_head *cu_header,
19268 unsigned int *bytes_read)
19269 {
19270 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19271
19272 *bytes_read = cu_header->offset_size;
19273 return offset;
19274 }
19275
19276 /* Read an offset from the data stream. */
19277
19278 static LONGEST
19279 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19280 {
19281 LONGEST retval = 0;
19282
19283 switch (offset_size)
19284 {
19285 case 4:
19286 retval = bfd_get_32 (abfd, buf);
19287 break;
19288 case 8:
19289 retval = bfd_get_64 (abfd, buf);
19290 break;
19291 default:
19292 internal_error (__FILE__, __LINE__,
19293 _("read_offset_1: bad switch [in module %s]"),
19294 bfd_get_filename (abfd));
19295 }
19296
19297 return retval;
19298 }
19299
19300 static const gdb_byte *
19301 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19302 {
19303 /* If the size of a host char is 8 bits, we can return a pointer
19304 to the buffer, otherwise we have to copy the data to a buffer
19305 allocated on the temporary obstack. */
19306 gdb_assert (HOST_CHAR_BIT == 8);
19307 return buf;
19308 }
19309
19310 static const char *
19311 read_direct_string (bfd *abfd, const gdb_byte *buf,
19312 unsigned int *bytes_read_ptr)
19313 {
19314 /* If the size of a host char is 8 bits, we can return a pointer
19315 to the string, otherwise we have to copy the string to a buffer
19316 allocated on the temporary obstack. */
19317 gdb_assert (HOST_CHAR_BIT == 8);
19318 if (*buf == '\0')
19319 {
19320 *bytes_read_ptr = 1;
19321 return NULL;
19322 }
19323 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19324 return (const char *) buf;
19325 }
19326
19327 /* Return pointer to string at section SECT offset STR_OFFSET with error
19328 reporting strings FORM_NAME and SECT_NAME. */
19329
19330 static const char *
19331 read_indirect_string_at_offset_from (struct objfile *objfile,
19332 bfd *abfd, LONGEST str_offset,
19333 struct dwarf2_section_info *sect,
19334 const char *form_name,
19335 const char *sect_name)
19336 {
19337 dwarf2_read_section (objfile, sect);
19338 if (sect->buffer == NULL)
19339 error (_("%s used without %s section [in module %s]"),
19340 form_name, sect_name, bfd_get_filename (abfd));
19341 if (str_offset >= sect->size)
19342 error (_("%s pointing outside of %s section [in module %s]"),
19343 form_name, sect_name, bfd_get_filename (abfd));
19344 gdb_assert (HOST_CHAR_BIT == 8);
19345 if (sect->buffer[str_offset] == '\0')
19346 return NULL;
19347 return (const char *) (sect->buffer + str_offset);
19348 }
19349
19350 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19351
19352 static const char *
19353 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19354 bfd *abfd, LONGEST str_offset)
19355 {
19356 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19357 abfd, str_offset,
19358 &dwarf2_per_objfile->str,
19359 "DW_FORM_strp", ".debug_str");
19360 }
19361
19362 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19363
19364 static const char *
19365 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19366 bfd *abfd, LONGEST str_offset)
19367 {
19368 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19369 abfd, str_offset,
19370 &dwarf2_per_objfile->line_str,
19371 "DW_FORM_line_strp",
19372 ".debug_line_str");
19373 }
19374
19375 /* Read a string at offset STR_OFFSET in the .debug_str section from
19376 the .dwz file DWZ. Throw an error if the offset is too large. If
19377 the string consists of a single NUL byte, return NULL; otherwise
19378 return a pointer to the string. */
19379
19380 static const char *
19381 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19382 LONGEST str_offset)
19383 {
19384 dwarf2_read_section (objfile, &dwz->str);
19385
19386 if (dwz->str.buffer == NULL)
19387 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19388 "section [in module %s]"),
19389 bfd_get_filename (dwz->dwz_bfd));
19390 if (str_offset >= dwz->str.size)
19391 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19392 ".debug_str section [in module %s]"),
19393 bfd_get_filename (dwz->dwz_bfd));
19394 gdb_assert (HOST_CHAR_BIT == 8);
19395 if (dwz->str.buffer[str_offset] == '\0')
19396 return NULL;
19397 return (const char *) (dwz->str.buffer + str_offset);
19398 }
19399
19400 /* Return pointer to string at .debug_str offset as read from BUF.
19401 BUF is assumed to be in a compilation unit described by CU_HEADER.
19402 Return *BYTES_READ_PTR count of bytes read from BUF. */
19403
19404 static const char *
19405 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19406 const gdb_byte *buf,
19407 const struct comp_unit_head *cu_header,
19408 unsigned int *bytes_read_ptr)
19409 {
19410 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19411
19412 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19413 }
19414
19415 /* Return pointer to string at .debug_line_str offset as read from BUF.
19416 BUF is assumed to be in a compilation unit described by CU_HEADER.
19417 Return *BYTES_READ_PTR count of bytes read from BUF. */
19418
19419 static const char *
19420 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19421 bfd *abfd, const gdb_byte *buf,
19422 const struct comp_unit_head *cu_header,
19423 unsigned int *bytes_read_ptr)
19424 {
19425 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19426
19427 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19428 str_offset);
19429 }
19430
19431 ULONGEST
19432 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19433 unsigned int *bytes_read_ptr)
19434 {
19435 ULONGEST result;
19436 unsigned int num_read;
19437 int shift;
19438 unsigned char byte;
19439
19440 result = 0;
19441 shift = 0;
19442 num_read = 0;
19443 while (1)
19444 {
19445 byte = bfd_get_8 (abfd, buf);
19446 buf++;
19447 num_read++;
19448 result |= ((ULONGEST) (byte & 127) << shift);
19449 if ((byte & 128) == 0)
19450 {
19451 break;
19452 }
19453 shift += 7;
19454 }
19455 *bytes_read_ptr = num_read;
19456 return result;
19457 }
19458
19459 static LONGEST
19460 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19461 unsigned int *bytes_read_ptr)
19462 {
19463 LONGEST result;
19464 int shift, num_read;
19465 unsigned char byte;
19466
19467 result = 0;
19468 shift = 0;
19469 num_read = 0;
19470 while (1)
19471 {
19472 byte = bfd_get_8 (abfd, buf);
19473 buf++;
19474 num_read++;
19475 result |= ((LONGEST) (byte & 127) << shift);
19476 shift += 7;
19477 if ((byte & 128) == 0)
19478 {
19479 break;
19480 }
19481 }
19482 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19483 result |= -(((LONGEST) 1) << shift);
19484 *bytes_read_ptr = num_read;
19485 return result;
19486 }
19487
19488 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19489 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19490 ADDR_SIZE is the size of addresses from the CU header. */
19491
19492 static CORE_ADDR
19493 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19494 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19495 {
19496 struct objfile *objfile = dwarf2_per_objfile->objfile;
19497 bfd *abfd = objfile->obfd;
19498 const gdb_byte *info_ptr;
19499
19500 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19501 if (dwarf2_per_objfile->addr.buffer == NULL)
19502 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19503 objfile_name (objfile));
19504 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19505 error (_("DW_FORM_addr_index pointing outside of "
19506 ".debug_addr section [in module %s]"),
19507 objfile_name (objfile));
19508 info_ptr = (dwarf2_per_objfile->addr.buffer
19509 + addr_base + addr_index * addr_size);
19510 if (addr_size == 4)
19511 return bfd_get_32 (abfd, info_ptr);
19512 else
19513 return bfd_get_64 (abfd, info_ptr);
19514 }
19515
19516 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19517
19518 static CORE_ADDR
19519 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19520 {
19521 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19522 cu->addr_base, cu->header.addr_size);
19523 }
19524
19525 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19526
19527 static CORE_ADDR
19528 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19529 unsigned int *bytes_read)
19530 {
19531 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19532 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19533
19534 return read_addr_index (cu, addr_index);
19535 }
19536
19537 /* Data structure to pass results from dwarf2_read_addr_index_reader
19538 back to dwarf2_read_addr_index. */
19539
19540 struct dwarf2_read_addr_index_data
19541 {
19542 ULONGEST addr_base;
19543 int addr_size;
19544 };
19545
19546 /* die_reader_func for dwarf2_read_addr_index. */
19547
19548 static void
19549 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19550 const gdb_byte *info_ptr,
19551 struct die_info *comp_unit_die,
19552 int has_children,
19553 void *data)
19554 {
19555 struct dwarf2_cu *cu = reader->cu;
19556 struct dwarf2_read_addr_index_data *aidata =
19557 (struct dwarf2_read_addr_index_data *) data;
19558
19559 aidata->addr_base = cu->addr_base;
19560 aidata->addr_size = cu->header.addr_size;
19561 }
19562
19563 /* Given an index in .debug_addr, fetch the value.
19564 NOTE: This can be called during dwarf expression evaluation,
19565 long after the debug information has been read, and thus per_cu->cu
19566 may no longer exist. */
19567
19568 CORE_ADDR
19569 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19570 unsigned int addr_index)
19571 {
19572 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19573 struct dwarf2_cu *cu = per_cu->cu;
19574 ULONGEST addr_base;
19575 int addr_size;
19576
19577 /* We need addr_base and addr_size.
19578 If we don't have PER_CU->cu, we have to get it.
19579 Nasty, but the alternative is storing the needed info in PER_CU,
19580 which at this point doesn't seem justified: it's not clear how frequently
19581 it would get used and it would increase the size of every PER_CU.
19582 Entry points like dwarf2_per_cu_addr_size do a similar thing
19583 so we're not in uncharted territory here.
19584 Alas we need to be a bit more complicated as addr_base is contained
19585 in the DIE.
19586
19587 We don't need to read the entire CU(/TU).
19588 We just need the header and top level die.
19589
19590 IWBN to use the aging mechanism to let us lazily later discard the CU.
19591 For now we skip this optimization. */
19592
19593 if (cu != NULL)
19594 {
19595 addr_base = cu->addr_base;
19596 addr_size = cu->header.addr_size;
19597 }
19598 else
19599 {
19600 struct dwarf2_read_addr_index_data aidata;
19601
19602 /* Note: We can't use init_cutu_and_read_dies_simple here,
19603 we need addr_base. */
19604 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19605 dwarf2_read_addr_index_reader, &aidata);
19606 addr_base = aidata.addr_base;
19607 addr_size = aidata.addr_size;
19608 }
19609
19610 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19611 addr_size);
19612 }
19613
19614 /* Given a DW_FORM_GNU_str_index, fetch the string.
19615 This is only used by the Fission support. */
19616
19617 static const char *
19618 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19619 {
19620 struct dwarf2_cu *cu = reader->cu;
19621 struct dwarf2_per_objfile *dwarf2_per_objfile
19622 = cu->per_cu->dwarf2_per_objfile;
19623 struct objfile *objfile = dwarf2_per_objfile->objfile;
19624 const char *objf_name = objfile_name (objfile);
19625 bfd *abfd = objfile->obfd;
19626 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19627 struct dwarf2_section_info *str_offsets_section =
19628 &reader->dwo_file->sections.str_offsets;
19629 const gdb_byte *info_ptr;
19630 ULONGEST str_offset;
19631 static const char form_name[] = "DW_FORM_GNU_str_index";
19632
19633 dwarf2_read_section (objfile, str_section);
19634 dwarf2_read_section (objfile, str_offsets_section);
19635 if (str_section->buffer == NULL)
19636 error (_("%s used without .debug_str.dwo section"
19637 " in CU at offset %s [in module %s]"),
19638 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19639 if (str_offsets_section->buffer == NULL)
19640 error (_("%s used without .debug_str_offsets.dwo section"
19641 " in CU at offset %s [in module %s]"),
19642 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19643 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19644 error (_("%s pointing outside of .debug_str_offsets.dwo"
19645 " section in CU at offset %s [in module %s]"),
19646 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19647 info_ptr = (str_offsets_section->buffer
19648 + str_index * cu->header.offset_size);
19649 if (cu->header.offset_size == 4)
19650 str_offset = bfd_get_32 (abfd, info_ptr);
19651 else
19652 str_offset = bfd_get_64 (abfd, info_ptr);
19653 if (str_offset >= str_section->size)
19654 error (_("Offset from %s pointing outside of"
19655 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19656 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19657 return (const char *) (str_section->buffer + str_offset);
19658 }
19659
19660 /* Return the length of an LEB128 number in BUF. */
19661
19662 static int
19663 leb128_size (const gdb_byte *buf)
19664 {
19665 const gdb_byte *begin = buf;
19666 gdb_byte byte;
19667
19668 while (1)
19669 {
19670 byte = *buf++;
19671 if ((byte & 128) == 0)
19672 return buf - begin;
19673 }
19674 }
19675
19676 static void
19677 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19678 {
19679 switch (lang)
19680 {
19681 case DW_LANG_C89:
19682 case DW_LANG_C99:
19683 case DW_LANG_C11:
19684 case DW_LANG_C:
19685 case DW_LANG_UPC:
19686 cu->language = language_c;
19687 break;
19688 case DW_LANG_Java:
19689 case DW_LANG_C_plus_plus:
19690 case DW_LANG_C_plus_plus_11:
19691 case DW_LANG_C_plus_plus_14:
19692 cu->language = language_cplus;
19693 break;
19694 case DW_LANG_D:
19695 cu->language = language_d;
19696 break;
19697 case DW_LANG_Fortran77:
19698 case DW_LANG_Fortran90:
19699 case DW_LANG_Fortran95:
19700 case DW_LANG_Fortran03:
19701 case DW_LANG_Fortran08:
19702 cu->language = language_fortran;
19703 break;
19704 case DW_LANG_Go:
19705 cu->language = language_go;
19706 break;
19707 case DW_LANG_Mips_Assembler:
19708 cu->language = language_asm;
19709 break;
19710 case DW_LANG_Ada83:
19711 case DW_LANG_Ada95:
19712 cu->language = language_ada;
19713 break;
19714 case DW_LANG_Modula2:
19715 cu->language = language_m2;
19716 break;
19717 case DW_LANG_Pascal83:
19718 cu->language = language_pascal;
19719 break;
19720 case DW_LANG_ObjC:
19721 cu->language = language_objc;
19722 break;
19723 case DW_LANG_Rust:
19724 case DW_LANG_Rust_old:
19725 cu->language = language_rust;
19726 break;
19727 case DW_LANG_Cobol74:
19728 case DW_LANG_Cobol85:
19729 default:
19730 cu->language = language_minimal;
19731 break;
19732 }
19733 cu->language_defn = language_def (cu->language);
19734 }
19735
19736 /* Return the named attribute or NULL if not there. */
19737
19738 static struct attribute *
19739 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19740 {
19741 for (;;)
19742 {
19743 unsigned int i;
19744 struct attribute *spec = NULL;
19745
19746 for (i = 0; i < die->num_attrs; ++i)
19747 {
19748 if (die->attrs[i].name == name)
19749 return &die->attrs[i];
19750 if (die->attrs[i].name == DW_AT_specification
19751 || die->attrs[i].name == DW_AT_abstract_origin)
19752 spec = &die->attrs[i];
19753 }
19754
19755 if (!spec)
19756 break;
19757
19758 die = follow_die_ref (die, spec, &cu);
19759 }
19760
19761 return NULL;
19762 }
19763
19764 /* Return the named attribute or NULL if not there,
19765 but do not follow DW_AT_specification, etc.
19766 This is for use in contexts where we're reading .debug_types dies.
19767 Following DW_AT_specification, DW_AT_abstract_origin will take us
19768 back up the chain, and we want to go down. */
19769
19770 static struct attribute *
19771 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19772 {
19773 unsigned int i;
19774
19775 for (i = 0; i < die->num_attrs; ++i)
19776 if (die->attrs[i].name == name)
19777 return &die->attrs[i];
19778
19779 return NULL;
19780 }
19781
19782 /* Return the string associated with a string-typed attribute, or NULL if it
19783 is either not found or is of an incorrect type. */
19784
19785 static const char *
19786 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19787 {
19788 struct attribute *attr;
19789 const char *str = NULL;
19790
19791 attr = dwarf2_attr (die, name, cu);
19792
19793 if (attr != NULL)
19794 {
19795 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19796 || attr->form == DW_FORM_string
19797 || attr->form == DW_FORM_GNU_str_index
19798 || attr->form == DW_FORM_GNU_strp_alt)
19799 str = DW_STRING (attr);
19800 else
19801 complaint (_("string type expected for attribute %s for "
19802 "DIE at %s in module %s"),
19803 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19804 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19805 }
19806
19807 return str;
19808 }
19809
19810 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19811 and holds a non-zero value. This function should only be used for
19812 DW_FORM_flag or DW_FORM_flag_present attributes. */
19813
19814 static int
19815 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19816 {
19817 struct attribute *attr = dwarf2_attr (die, name, cu);
19818
19819 return (attr && DW_UNSND (attr));
19820 }
19821
19822 static int
19823 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19824 {
19825 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19826 which value is non-zero. However, we have to be careful with
19827 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19828 (via dwarf2_flag_true_p) follows this attribute. So we may
19829 end up accidently finding a declaration attribute that belongs
19830 to a different DIE referenced by the specification attribute,
19831 even though the given DIE does not have a declaration attribute. */
19832 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19833 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19834 }
19835
19836 /* Return the die giving the specification for DIE, if there is
19837 one. *SPEC_CU is the CU containing DIE on input, and the CU
19838 containing the return value on output. If there is no
19839 specification, but there is an abstract origin, that is
19840 returned. */
19841
19842 static struct die_info *
19843 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19844 {
19845 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19846 *spec_cu);
19847
19848 if (spec_attr == NULL)
19849 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19850
19851 if (spec_attr == NULL)
19852 return NULL;
19853 else
19854 return follow_die_ref (die, spec_attr, spec_cu);
19855 }
19856
19857 /* Stub for free_line_header to match void * callback types. */
19858
19859 static void
19860 free_line_header_voidp (void *arg)
19861 {
19862 struct line_header *lh = (struct line_header *) arg;
19863
19864 delete lh;
19865 }
19866
19867 void
19868 line_header::add_include_dir (const char *include_dir)
19869 {
19870 if (dwarf_line_debug >= 2)
19871 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19872 include_dirs.size () + 1, include_dir);
19873
19874 include_dirs.push_back (include_dir);
19875 }
19876
19877 void
19878 line_header::add_file_name (const char *name,
19879 dir_index d_index,
19880 unsigned int mod_time,
19881 unsigned int length)
19882 {
19883 if (dwarf_line_debug >= 2)
19884 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19885 (unsigned) file_names.size () + 1, name);
19886
19887 file_names.emplace_back (name, d_index, mod_time, length);
19888 }
19889
19890 /* A convenience function to find the proper .debug_line section for a CU. */
19891
19892 static struct dwarf2_section_info *
19893 get_debug_line_section (struct dwarf2_cu *cu)
19894 {
19895 struct dwarf2_section_info *section;
19896 struct dwarf2_per_objfile *dwarf2_per_objfile
19897 = cu->per_cu->dwarf2_per_objfile;
19898
19899 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19900 DWO file. */
19901 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19902 section = &cu->dwo_unit->dwo_file->sections.line;
19903 else if (cu->per_cu->is_dwz)
19904 {
19905 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19906
19907 section = &dwz->line;
19908 }
19909 else
19910 section = &dwarf2_per_objfile->line;
19911
19912 return section;
19913 }
19914
19915 /* Read directory or file name entry format, starting with byte of
19916 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19917 entries count and the entries themselves in the described entry
19918 format. */
19919
19920 static void
19921 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19922 bfd *abfd, const gdb_byte **bufp,
19923 struct line_header *lh,
19924 const struct comp_unit_head *cu_header,
19925 void (*callback) (struct line_header *lh,
19926 const char *name,
19927 dir_index d_index,
19928 unsigned int mod_time,
19929 unsigned int length))
19930 {
19931 gdb_byte format_count, formati;
19932 ULONGEST data_count, datai;
19933 const gdb_byte *buf = *bufp;
19934 const gdb_byte *format_header_data;
19935 unsigned int bytes_read;
19936
19937 format_count = read_1_byte (abfd, buf);
19938 buf += 1;
19939 format_header_data = buf;
19940 for (formati = 0; formati < format_count; formati++)
19941 {
19942 read_unsigned_leb128 (abfd, buf, &bytes_read);
19943 buf += bytes_read;
19944 read_unsigned_leb128 (abfd, buf, &bytes_read);
19945 buf += bytes_read;
19946 }
19947
19948 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19949 buf += bytes_read;
19950 for (datai = 0; datai < data_count; datai++)
19951 {
19952 const gdb_byte *format = format_header_data;
19953 struct file_entry fe;
19954
19955 for (formati = 0; formati < format_count; formati++)
19956 {
19957 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19958 format += bytes_read;
19959
19960 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19961 format += bytes_read;
19962
19963 gdb::optional<const char *> string;
19964 gdb::optional<unsigned int> uint;
19965
19966 switch (form)
19967 {
19968 case DW_FORM_string:
19969 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19970 buf += bytes_read;
19971 break;
19972
19973 case DW_FORM_line_strp:
19974 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19975 abfd, buf,
19976 cu_header,
19977 &bytes_read));
19978 buf += bytes_read;
19979 break;
19980
19981 case DW_FORM_data1:
19982 uint.emplace (read_1_byte (abfd, buf));
19983 buf += 1;
19984 break;
19985
19986 case DW_FORM_data2:
19987 uint.emplace (read_2_bytes (abfd, buf));
19988 buf += 2;
19989 break;
19990
19991 case DW_FORM_data4:
19992 uint.emplace (read_4_bytes (abfd, buf));
19993 buf += 4;
19994 break;
19995
19996 case DW_FORM_data8:
19997 uint.emplace (read_8_bytes (abfd, buf));
19998 buf += 8;
19999 break;
20000
20001 case DW_FORM_udata:
20002 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20003 buf += bytes_read;
20004 break;
20005
20006 case DW_FORM_block:
20007 /* It is valid only for DW_LNCT_timestamp which is ignored by
20008 current GDB. */
20009 break;
20010 }
20011
20012 switch (content_type)
20013 {
20014 case DW_LNCT_path:
20015 if (string.has_value ())
20016 fe.name = *string;
20017 break;
20018 case DW_LNCT_directory_index:
20019 if (uint.has_value ())
20020 fe.d_index = (dir_index) *uint;
20021 break;
20022 case DW_LNCT_timestamp:
20023 if (uint.has_value ())
20024 fe.mod_time = *uint;
20025 break;
20026 case DW_LNCT_size:
20027 if (uint.has_value ())
20028 fe.length = *uint;
20029 break;
20030 case DW_LNCT_MD5:
20031 break;
20032 default:
20033 complaint (_("Unknown format content type %s"),
20034 pulongest (content_type));
20035 }
20036 }
20037
20038 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20039 }
20040
20041 *bufp = buf;
20042 }
20043
20044 /* Read the statement program header starting at OFFSET in
20045 .debug_line, or .debug_line.dwo. Return a pointer
20046 to a struct line_header, allocated using xmalloc.
20047 Returns NULL if there is a problem reading the header, e.g., if it
20048 has a version we don't understand.
20049
20050 NOTE: the strings in the include directory and file name tables of
20051 the returned object point into the dwarf line section buffer,
20052 and must not be freed. */
20053
20054 static line_header_up
20055 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20056 {
20057 const gdb_byte *line_ptr;
20058 unsigned int bytes_read, offset_size;
20059 int i;
20060 const char *cur_dir, *cur_file;
20061 struct dwarf2_section_info *section;
20062 bfd *abfd;
20063 struct dwarf2_per_objfile *dwarf2_per_objfile
20064 = cu->per_cu->dwarf2_per_objfile;
20065
20066 section = get_debug_line_section (cu);
20067 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20068 if (section->buffer == NULL)
20069 {
20070 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20071 complaint (_("missing .debug_line.dwo section"));
20072 else
20073 complaint (_("missing .debug_line section"));
20074 return 0;
20075 }
20076
20077 /* We can't do this until we know the section is non-empty.
20078 Only then do we know we have such a section. */
20079 abfd = get_section_bfd_owner (section);
20080
20081 /* Make sure that at least there's room for the total_length field.
20082 That could be 12 bytes long, but we're just going to fudge that. */
20083 if (to_underlying (sect_off) + 4 >= section->size)
20084 {
20085 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20086 return 0;
20087 }
20088
20089 line_header_up lh (new line_header ());
20090
20091 lh->sect_off = sect_off;
20092 lh->offset_in_dwz = cu->per_cu->is_dwz;
20093
20094 line_ptr = section->buffer + to_underlying (sect_off);
20095
20096 /* Read in the header. */
20097 lh->total_length =
20098 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20099 &bytes_read, &offset_size);
20100 line_ptr += bytes_read;
20101 if (line_ptr + lh->total_length > (section->buffer + section->size))
20102 {
20103 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20104 return 0;
20105 }
20106 lh->statement_program_end = line_ptr + lh->total_length;
20107 lh->version = read_2_bytes (abfd, line_ptr);
20108 line_ptr += 2;
20109 if (lh->version > 5)
20110 {
20111 /* This is a version we don't understand. The format could have
20112 changed in ways we don't handle properly so just punt. */
20113 complaint (_("unsupported version in .debug_line section"));
20114 return NULL;
20115 }
20116 if (lh->version >= 5)
20117 {
20118 gdb_byte segment_selector_size;
20119
20120 /* Skip address size. */
20121 read_1_byte (abfd, line_ptr);
20122 line_ptr += 1;
20123
20124 segment_selector_size = read_1_byte (abfd, line_ptr);
20125 line_ptr += 1;
20126 if (segment_selector_size != 0)
20127 {
20128 complaint (_("unsupported segment selector size %u "
20129 "in .debug_line section"),
20130 segment_selector_size);
20131 return NULL;
20132 }
20133 }
20134 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20135 line_ptr += offset_size;
20136 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20137 line_ptr += 1;
20138 if (lh->version >= 4)
20139 {
20140 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20141 line_ptr += 1;
20142 }
20143 else
20144 lh->maximum_ops_per_instruction = 1;
20145
20146 if (lh->maximum_ops_per_instruction == 0)
20147 {
20148 lh->maximum_ops_per_instruction = 1;
20149 complaint (_("invalid maximum_ops_per_instruction "
20150 "in `.debug_line' section"));
20151 }
20152
20153 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20154 line_ptr += 1;
20155 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20156 line_ptr += 1;
20157 lh->line_range = read_1_byte (abfd, line_ptr);
20158 line_ptr += 1;
20159 lh->opcode_base = read_1_byte (abfd, line_ptr);
20160 line_ptr += 1;
20161 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20162
20163 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20164 for (i = 1; i < lh->opcode_base; ++i)
20165 {
20166 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20167 line_ptr += 1;
20168 }
20169
20170 if (lh->version >= 5)
20171 {
20172 /* Read directory table. */
20173 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20174 &cu->header,
20175 [] (struct line_header *lh, const char *name,
20176 dir_index d_index, unsigned int mod_time,
20177 unsigned int length)
20178 {
20179 lh->add_include_dir (name);
20180 });
20181
20182 /* Read file name table. */
20183 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20184 &cu->header,
20185 [] (struct line_header *lh, const char *name,
20186 dir_index d_index, unsigned int mod_time,
20187 unsigned int length)
20188 {
20189 lh->add_file_name (name, d_index, mod_time, length);
20190 });
20191 }
20192 else
20193 {
20194 /* Read directory table. */
20195 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20196 {
20197 line_ptr += bytes_read;
20198 lh->add_include_dir (cur_dir);
20199 }
20200 line_ptr += bytes_read;
20201
20202 /* Read file name table. */
20203 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20204 {
20205 unsigned int mod_time, length;
20206 dir_index d_index;
20207
20208 line_ptr += bytes_read;
20209 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20210 line_ptr += bytes_read;
20211 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20212 line_ptr += bytes_read;
20213 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20214 line_ptr += bytes_read;
20215
20216 lh->add_file_name (cur_file, d_index, mod_time, length);
20217 }
20218 line_ptr += bytes_read;
20219 }
20220 lh->statement_program_start = line_ptr;
20221
20222 if (line_ptr > (section->buffer + section->size))
20223 complaint (_("line number info header doesn't "
20224 "fit in `.debug_line' section"));
20225
20226 return lh;
20227 }
20228
20229 /* Subroutine of dwarf_decode_lines to simplify it.
20230 Return the file name of the psymtab for included file FILE_INDEX
20231 in line header LH of PST.
20232 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20233 If space for the result is malloc'd, *NAME_HOLDER will be set.
20234 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20235
20236 static const char *
20237 psymtab_include_file_name (const struct line_header *lh, int file_index,
20238 const struct partial_symtab *pst,
20239 const char *comp_dir,
20240 gdb::unique_xmalloc_ptr<char> *name_holder)
20241 {
20242 const file_entry &fe = lh->file_names[file_index];
20243 const char *include_name = fe.name;
20244 const char *include_name_to_compare = include_name;
20245 const char *pst_filename;
20246 int file_is_pst;
20247
20248 const char *dir_name = fe.include_dir (lh);
20249
20250 gdb::unique_xmalloc_ptr<char> hold_compare;
20251 if (!IS_ABSOLUTE_PATH (include_name)
20252 && (dir_name != NULL || comp_dir != NULL))
20253 {
20254 /* Avoid creating a duplicate psymtab for PST.
20255 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20256 Before we do the comparison, however, we need to account
20257 for DIR_NAME and COMP_DIR.
20258 First prepend dir_name (if non-NULL). If we still don't
20259 have an absolute path prepend comp_dir (if non-NULL).
20260 However, the directory we record in the include-file's
20261 psymtab does not contain COMP_DIR (to match the
20262 corresponding symtab(s)).
20263
20264 Example:
20265
20266 bash$ cd /tmp
20267 bash$ gcc -g ./hello.c
20268 include_name = "hello.c"
20269 dir_name = "."
20270 DW_AT_comp_dir = comp_dir = "/tmp"
20271 DW_AT_name = "./hello.c"
20272
20273 */
20274
20275 if (dir_name != NULL)
20276 {
20277 name_holder->reset (concat (dir_name, SLASH_STRING,
20278 include_name, (char *) NULL));
20279 include_name = name_holder->get ();
20280 include_name_to_compare = include_name;
20281 }
20282 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20283 {
20284 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20285 include_name, (char *) NULL));
20286 include_name_to_compare = hold_compare.get ();
20287 }
20288 }
20289
20290 pst_filename = pst->filename;
20291 gdb::unique_xmalloc_ptr<char> copied_name;
20292 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20293 {
20294 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20295 pst_filename, (char *) NULL));
20296 pst_filename = copied_name.get ();
20297 }
20298
20299 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20300
20301 if (file_is_pst)
20302 return NULL;
20303 return include_name;
20304 }
20305
20306 /* State machine to track the state of the line number program. */
20307
20308 class lnp_state_machine
20309 {
20310 public:
20311 /* Initialize a machine state for the start of a line number
20312 program. */
20313 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20314
20315 file_entry *current_file ()
20316 {
20317 /* lh->file_names is 0-based, but the file name numbers in the
20318 statement program are 1-based. */
20319 return m_line_header->file_name_at (m_file);
20320 }
20321
20322 /* Record the line in the state machine. END_SEQUENCE is true if
20323 we're processing the end of a sequence. */
20324 void record_line (bool end_sequence);
20325
20326 /* Check address and if invalid nop-out the rest of the lines in this
20327 sequence. */
20328 void check_line_address (struct dwarf2_cu *cu,
20329 const gdb_byte *line_ptr,
20330 CORE_ADDR lowpc, CORE_ADDR address);
20331
20332 void handle_set_discriminator (unsigned int discriminator)
20333 {
20334 m_discriminator = discriminator;
20335 m_line_has_non_zero_discriminator |= discriminator != 0;
20336 }
20337
20338 /* Handle DW_LNE_set_address. */
20339 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20340 {
20341 m_op_index = 0;
20342 address += baseaddr;
20343 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20344 }
20345
20346 /* Handle DW_LNS_advance_pc. */
20347 void handle_advance_pc (CORE_ADDR adjust);
20348
20349 /* Handle a special opcode. */
20350 void handle_special_opcode (unsigned char op_code);
20351
20352 /* Handle DW_LNS_advance_line. */
20353 void handle_advance_line (int line_delta)
20354 {
20355 advance_line (line_delta);
20356 }
20357
20358 /* Handle DW_LNS_set_file. */
20359 void handle_set_file (file_name_index file);
20360
20361 /* Handle DW_LNS_negate_stmt. */
20362 void handle_negate_stmt ()
20363 {
20364 m_is_stmt = !m_is_stmt;
20365 }
20366
20367 /* Handle DW_LNS_const_add_pc. */
20368 void handle_const_add_pc ();
20369
20370 /* Handle DW_LNS_fixed_advance_pc. */
20371 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20372 {
20373 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20374 m_op_index = 0;
20375 }
20376
20377 /* Handle DW_LNS_copy. */
20378 void handle_copy ()
20379 {
20380 record_line (false);
20381 m_discriminator = 0;
20382 }
20383
20384 /* Handle DW_LNE_end_sequence. */
20385 void handle_end_sequence ()
20386 {
20387 m_record_line_callback = ::record_line;
20388 }
20389
20390 private:
20391 /* Advance the line by LINE_DELTA. */
20392 void advance_line (int line_delta)
20393 {
20394 m_line += line_delta;
20395
20396 if (line_delta != 0)
20397 m_line_has_non_zero_discriminator = m_discriminator != 0;
20398 }
20399
20400 gdbarch *m_gdbarch;
20401
20402 /* True if we're recording lines.
20403 Otherwise we're building partial symtabs and are just interested in
20404 finding include files mentioned by the line number program. */
20405 bool m_record_lines_p;
20406
20407 /* The line number header. */
20408 line_header *m_line_header;
20409
20410 /* These are part of the standard DWARF line number state machine,
20411 and initialized according to the DWARF spec. */
20412
20413 unsigned char m_op_index = 0;
20414 /* The line table index (1-based) of the current file. */
20415 file_name_index m_file = (file_name_index) 1;
20416 unsigned int m_line = 1;
20417
20418 /* These are initialized in the constructor. */
20419
20420 CORE_ADDR m_address;
20421 bool m_is_stmt;
20422 unsigned int m_discriminator;
20423
20424 /* Additional bits of state we need to track. */
20425
20426 /* The last file that we called dwarf2_start_subfile for.
20427 This is only used for TLLs. */
20428 unsigned int m_last_file = 0;
20429 /* The last file a line number was recorded for. */
20430 struct subfile *m_last_subfile = NULL;
20431
20432 /* The function to call to record a line. */
20433 record_line_ftype *m_record_line_callback = NULL;
20434
20435 /* The last line number that was recorded, used to coalesce
20436 consecutive entries for the same line. This can happen, for
20437 example, when discriminators are present. PR 17276. */
20438 unsigned int m_last_line = 0;
20439 bool m_line_has_non_zero_discriminator = false;
20440 };
20441
20442 void
20443 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20444 {
20445 CORE_ADDR addr_adj = (((m_op_index + adjust)
20446 / m_line_header->maximum_ops_per_instruction)
20447 * m_line_header->minimum_instruction_length);
20448 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20449 m_op_index = ((m_op_index + adjust)
20450 % m_line_header->maximum_ops_per_instruction);
20451 }
20452
20453 void
20454 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20455 {
20456 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20457 CORE_ADDR addr_adj = (((m_op_index
20458 + (adj_opcode / m_line_header->line_range))
20459 / m_line_header->maximum_ops_per_instruction)
20460 * m_line_header->minimum_instruction_length);
20461 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20462 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20463 % m_line_header->maximum_ops_per_instruction);
20464
20465 int line_delta = (m_line_header->line_base
20466 + (adj_opcode % m_line_header->line_range));
20467 advance_line (line_delta);
20468 record_line (false);
20469 m_discriminator = 0;
20470 }
20471
20472 void
20473 lnp_state_machine::handle_set_file (file_name_index file)
20474 {
20475 m_file = file;
20476
20477 const file_entry *fe = current_file ();
20478 if (fe == NULL)
20479 dwarf2_debug_line_missing_file_complaint ();
20480 else if (m_record_lines_p)
20481 {
20482 const char *dir = fe->include_dir (m_line_header);
20483
20484 m_last_subfile = current_subfile;
20485 m_line_has_non_zero_discriminator = m_discriminator != 0;
20486 dwarf2_start_subfile (fe->name, dir);
20487 }
20488 }
20489
20490 void
20491 lnp_state_machine::handle_const_add_pc ()
20492 {
20493 CORE_ADDR adjust
20494 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20495
20496 CORE_ADDR addr_adj
20497 = (((m_op_index + adjust)
20498 / m_line_header->maximum_ops_per_instruction)
20499 * m_line_header->minimum_instruction_length);
20500
20501 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20502 m_op_index = ((m_op_index + adjust)
20503 % m_line_header->maximum_ops_per_instruction);
20504 }
20505
20506 /* Ignore this record_line request. */
20507
20508 static void
20509 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20510 {
20511 return;
20512 }
20513
20514 /* Return non-zero if we should add LINE to the line number table.
20515 LINE is the line to add, LAST_LINE is the last line that was added,
20516 LAST_SUBFILE is the subfile for LAST_LINE.
20517 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20518 had a non-zero discriminator.
20519
20520 We have to be careful in the presence of discriminators.
20521 E.g., for this line:
20522
20523 for (i = 0; i < 100000; i++);
20524
20525 clang can emit four line number entries for that one line,
20526 each with a different discriminator.
20527 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20528
20529 However, we want gdb to coalesce all four entries into one.
20530 Otherwise the user could stepi into the middle of the line and
20531 gdb would get confused about whether the pc really was in the
20532 middle of the line.
20533
20534 Things are further complicated by the fact that two consecutive
20535 line number entries for the same line is a heuristic used by gcc
20536 to denote the end of the prologue. So we can't just discard duplicate
20537 entries, we have to be selective about it. The heuristic we use is
20538 that we only collapse consecutive entries for the same line if at least
20539 one of those entries has a non-zero discriminator. PR 17276.
20540
20541 Note: Addresses in the line number state machine can never go backwards
20542 within one sequence, thus this coalescing is ok. */
20543
20544 static int
20545 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20546 int line_has_non_zero_discriminator,
20547 struct subfile *last_subfile)
20548 {
20549 if (current_subfile != last_subfile)
20550 return 1;
20551 if (line != last_line)
20552 return 1;
20553 /* Same line for the same file that we've seen already.
20554 As a last check, for pr 17276, only record the line if the line
20555 has never had a non-zero discriminator. */
20556 if (!line_has_non_zero_discriminator)
20557 return 1;
20558 return 0;
20559 }
20560
20561 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20562 in the line table of subfile SUBFILE. */
20563
20564 static void
20565 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20566 unsigned int line, CORE_ADDR address,
20567 record_line_ftype p_record_line)
20568 {
20569 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20570
20571 if (dwarf_line_debug)
20572 {
20573 fprintf_unfiltered (gdb_stdlog,
20574 "Recording line %u, file %s, address %s\n",
20575 line, lbasename (subfile->name),
20576 paddress (gdbarch, address));
20577 }
20578
20579 (*p_record_line) (subfile, line, addr);
20580 }
20581
20582 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20583 Mark the end of a set of line number records.
20584 The arguments are the same as for dwarf_record_line_1.
20585 If SUBFILE is NULL the request is ignored. */
20586
20587 static void
20588 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20589 CORE_ADDR address, record_line_ftype p_record_line)
20590 {
20591 if (subfile == NULL)
20592 return;
20593
20594 if (dwarf_line_debug)
20595 {
20596 fprintf_unfiltered (gdb_stdlog,
20597 "Finishing current line, file %s, address %s\n",
20598 lbasename (subfile->name),
20599 paddress (gdbarch, address));
20600 }
20601
20602 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20603 }
20604
20605 void
20606 lnp_state_machine::record_line (bool end_sequence)
20607 {
20608 if (dwarf_line_debug)
20609 {
20610 fprintf_unfiltered (gdb_stdlog,
20611 "Processing actual line %u: file %u,"
20612 " address %s, is_stmt %u, discrim %u\n",
20613 m_line, to_underlying (m_file),
20614 paddress (m_gdbarch, m_address),
20615 m_is_stmt, m_discriminator);
20616 }
20617
20618 file_entry *fe = current_file ();
20619
20620 if (fe == NULL)
20621 dwarf2_debug_line_missing_file_complaint ();
20622 /* For now we ignore lines not starting on an instruction boundary.
20623 But not when processing end_sequence for compatibility with the
20624 previous version of the code. */
20625 else if (m_op_index == 0 || end_sequence)
20626 {
20627 fe->included_p = 1;
20628 if (m_record_lines_p && m_is_stmt)
20629 {
20630 if (m_last_subfile != current_subfile || end_sequence)
20631 {
20632 dwarf_finish_line (m_gdbarch, m_last_subfile,
20633 m_address, m_record_line_callback);
20634 }
20635
20636 if (!end_sequence)
20637 {
20638 if (dwarf_record_line_p (m_line, m_last_line,
20639 m_line_has_non_zero_discriminator,
20640 m_last_subfile))
20641 {
20642 dwarf_record_line_1 (m_gdbarch, current_subfile,
20643 m_line, m_address,
20644 m_record_line_callback);
20645 }
20646 m_last_subfile = current_subfile;
20647 m_last_line = m_line;
20648 }
20649 }
20650 }
20651 }
20652
20653 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20654 bool record_lines_p)
20655 {
20656 m_gdbarch = arch;
20657 m_record_lines_p = record_lines_p;
20658 m_line_header = lh;
20659
20660 m_record_line_callback = ::record_line;
20661
20662 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20663 was a line entry for it so that the backend has a chance to adjust it
20664 and also record it in case it needs it. This is currently used by MIPS
20665 code, cf. `mips_adjust_dwarf2_line'. */
20666 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20667 m_is_stmt = lh->default_is_stmt;
20668 m_discriminator = 0;
20669 }
20670
20671 void
20672 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20673 const gdb_byte *line_ptr,
20674 CORE_ADDR lowpc, CORE_ADDR address)
20675 {
20676 /* If address < lowpc then it's not a usable value, it's outside the
20677 pc range of the CU. However, we restrict the test to only address
20678 values of zero to preserve GDB's previous behaviour which is to
20679 handle the specific case of a function being GC'd by the linker. */
20680
20681 if (address == 0 && address < lowpc)
20682 {
20683 /* This line table is for a function which has been
20684 GCd by the linker. Ignore it. PR gdb/12528 */
20685
20686 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20687 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20688
20689 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20690 line_offset, objfile_name (objfile));
20691 m_record_line_callback = noop_record_line;
20692 /* Note: record_line_callback is left as noop_record_line until
20693 we see DW_LNE_end_sequence. */
20694 }
20695 }
20696
20697 /* Subroutine of dwarf_decode_lines to simplify it.
20698 Process the line number information in LH.
20699 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20700 program in order to set included_p for every referenced header. */
20701
20702 static void
20703 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20704 const int decode_for_pst_p, CORE_ADDR lowpc)
20705 {
20706 const gdb_byte *line_ptr, *extended_end;
20707 const gdb_byte *line_end;
20708 unsigned int bytes_read, extended_len;
20709 unsigned char op_code, extended_op;
20710 CORE_ADDR baseaddr;
20711 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20712 bfd *abfd = objfile->obfd;
20713 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20714 /* True if we're recording line info (as opposed to building partial
20715 symtabs and just interested in finding include files mentioned by
20716 the line number program). */
20717 bool record_lines_p = !decode_for_pst_p;
20718
20719 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20720
20721 line_ptr = lh->statement_program_start;
20722 line_end = lh->statement_program_end;
20723
20724 /* Read the statement sequences until there's nothing left. */
20725 while (line_ptr < line_end)
20726 {
20727 /* The DWARF line number program state machine. Reset the state
20728 machine at the start of each sequence. */
20729 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20730 bool end_sequence = false;
20731
20732 if (record_lines_p)
20733 {
20734 /* Start a subfile for the current file of the state
20735 machine. */
20736 const file_entry *fe = state_machine.current_file ();
20737
20738 if (fe != NULL)
20739 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20740 }
20741
20742 /* Decode the table. */
20743 while (line_ptr < line_end && !end_sequence)
20744 {
20745 op_code = read_1_byte (abfd, line_ptr);
20746 line_ptr += 1;
20747
20748 if (op_code >= lh->opcode_base)
20749 {
20750 /* Special opcode. */
20751 state_machine.handle_special_opcode (op_code);
20752 }
20753 else switch (op_code)
20754 {
20755 case DW_LNS_extended_op:
20756 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20757 &bytes_read);
20758 line_ptr += bytes_read;
20759 extended_end = line_ptr + extended_len;
20760 extended_op = read_1_byte (abfd, line_ptr);
20761 line_ptr += 1;
20762 switch (extended_op)
20763 {
20764 case DW_LNE_end_sequence:
20765 state_machine.handle_end_sequence ();
20766 end_sequence = true;
20767 break;
20768 case DW_LNE_set_address:
20769 {
20770 CORE_ADDR address
20771 = read_address (abfd, line_ptr, cu, &bytes_read);
20772 line_ptr += bytes_read;
20773
20774 state_machine.check_line_address (cu, line_ptr,
20775 lowpc, address);
20776 state_machine.handle_set_address (baseaddr, address);
20777 }
20778 break;
20779 case DW_LNE_define_file:
20780 {
20781 const char *cur_file;
20782 unsigned int mod_time, length;
20783 dir_index dindex;
20784
20785 cur_file = read_direct_string (abfd, line_ptr,
20786 &bytes_read);
20787 line_ptr += bytes_read;
20788 dindex = (dir_index)
20789 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20790 line_ptr += bytes_read;
20791 mod_time =
20792 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20793 line_ptr += bytes_read;
20794 length =
20795 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20796 line_ptr += bytes_read;
20797 lh->add_file_name (cur_file, dindex, mod_time, length);
20798 }
20799 break;
20800 case DW_LNE_set_discriminator:
20801 {
20802 /* The discriminator is not interesting to the
20803 debugger; just ignore it. We still need to
20804 check its value though:
20805 if there are consecutive entries for the same
20806 (non-prologue) line we want to coalesce them.
20807 PR 17276. */
20808 unsigned int discr
20809 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20810 line_ptr += bytes_read;
20811
20812 state_machine.handle_set_discriminator (discr);
20813 }
20814 break;
20815 default:
20816 complaint (_("mangled .debug_line section"));
20817 return;
20818 }
20819 /* Make sure that we parsed the extended op correctly. If e.g.
20820 we expected a different address size than the producer used,
20821 we may have read the wrong number of bytes. */
20822 if (line_ptr != extended_end)
20823 {
20824 complaint (_("mangled .debug_line section"));
20825 return;
20826 }
20827 break;
20828 case DW_LNS_copy:
20829 state_machine.handle_copy ();
20830 break;
20831 case DW_LNS_advance_pc:
20832 {
20833 CORE_ADDR adjust
20834 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20835 line_ptr += bytes_read;
20836
20837 state_machine.handle_advance_pc (adjust);
20838 }
20839 break;
20840 case DW_LNS_advance_line:
20841 {
20842 int line_delta
20843 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20844 line_ptr += bytes_read;
20845
20846 state_machine.handle_advance_line (line_delta);
20847 }
20848 break;
20849 case DW_LNS_set_file:
20850 {
20851 file_name_index file
20852 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20853 &bytes_read);
20854 line_ptr += bytes_read;
20855
20856 state_machine.handle_set_file (file);
20857 }
20858 break;
20859 case DW_LNS_set_column:
20860 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20861 line_ptr += bytes_read;
20862 break;
20863 case DW_LNS_negate_stmt:
20864 state_machine.handle_negate_stmt ();
20865 break;
20866 case DW_LNS_set_basic_block:
20867 break;
20868 /* Add to the address register of the state machine the
20869 address increment value corresponding to special opcode
20870 255. I.e., this value is scaled by the minimum
20871 instruction length since special opcode 255 would have
20872 scaled the increment. */
20873 case DW_LNS_const_add_pc:
20874 state_machine.handle_const_add_pc ();
20875 break;
20876 case DW_LNS_fixed_advance_pc:
20877 {
20878 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20879 line_ptr += 2;
20880
20881 state_machine.handle_fixed_advance_pc (addr_adj);
20882 }
20883 break;
20884 default:
20885 {
20886 /* Unknown standard opcode, ignore it. */
20887 int i;
20888
20889 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20890 {
20891 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20892 line_ptr += bytes_read;
20893 }
20894 }
20895 }
20896 }
20897
20898 if (!end_sequence)
20899 dwarf2_debug_line_missing_end_sequence_complaint ();
20900
20901 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20902 in which case we still finish recording the last line). */
20903 state_machine.record_line (true);
20904 }
20905 }
20906
20907 /* Decode the Line Number Program (LNP) for the given line_header
20908 structure and CU. The actual information extracted and the type
20909 of structures created from the LNP depends on the value of PST.
20910
20911 1. If PST is NULL, then this procedure uses the data from the program
20912 to create all necessary symbol tables, and their linetables.
20913
20914 2. If PST is not NULL, this procedure reads the program to determine
20915 the list of files included by the unit represented by PST, and
20916 builds all the associated partial symbol tables.
20917
20918 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20919 It is used for relative paths in the line table.
20920 NOTE: When processing partial symtabs (pst != NULL),
20921 comp_dir == pst->dirname.
20922
20923 NOTE: It is important that psymtabs have the same file name (via strcmp)
20924 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20925 symtab we don't use it in the name of the psymtabs we create.
20926 E.g. expand_line_sal requires this when finding psymtabs to expand.
20927 A good testcase for this is mb-inline.exp.
20928
20929 LOWPC is the lowest address in CU (or 0 if not known).
20930
20931 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20932 for its PC<->lines mapping information. Otherwise only the filename
20933 table is read in. */
20934
20935 static void
20936 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20937 struct dwarf2_cu *cu, struct partial_symtab *pst,
20938 CORE_ADDR lowpc, int decode_mapping)
20939 {
20940 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20941 const int decode_for_pst_p = (pst != NULL);
20942
20943 if (decode_mapping)
20944 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20945
20946 if (decode_for_pst_p)
20947 {
20948 int file_index;
20949
20950 /* Now that we're done scanning the Line Header Program, we can
20951 create the psymtab of each included file. */
20952 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20953 if (lh->file_names[file_index].included_p == 1)
20954 {
20955 gdb::unique_xmalloc_ptr<char> name_holder;
20956 const char *include_name =
20957 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20958 &name_holder);
20959 if (include_name != NULL)
20960 dwarf2_create_include_psymtab (include_name, pst, objfile);
20961 }
20962 }
20963 else
20964 {
20965 /* Make sure a symtab is created for every file, even files
20966 which contain only variables (i.e. no code with associated
20967 line numbers). */
20968 struct compunit_symtab *cust = buildsym_compunit_symtab ();
20969 int i;
20970
20971 for (i = 0; i < lh->file_names.size (); i++)
20972 {
20973 file_entry &fe = lh->file_names[i];
20974
20975 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
20976
20977 if (current_subfile->symtab == NULL)
20978 {
20979 current_subfile->symtab
20980 = allocate_symtab (cust, current_subfile->name);
20981 }
20982 fe.symtab = current_subfile->symtab;
20983 }
20984 }
20985 }
20986
20987 /* Start a subfile for DWARF. FILENAME is the name of the file and
20988 DIRNAME the name of the source directory which contains FILENAME
20989 or NULL if not known.
20990 This routine tries to keep line numbers from identical absolute and
20991 relative file names in a common subfile.
20992
20993 Using the `list' example from the GDB testsuite, which resides in
20994 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20995 of /srcdir/list0.c yields the following debugging information for list0.c:
20996
20997 DW_AT_name: /srcdir/list0.c
20998 DW_AT_comp_dir: /compdir
20999 files.files[0].name: list0.h
21000 files.files[0].dir: /srcdir
21001 files.files[1].name: list0.c
21002 files.files[1].dir: /srcdir
21003
21004 The line number information for list0.c has to end up in a single
21005 subfile, so that `break /srcdir/list0.c:1' works as expected.
21006 start_subfile will ensure that this happens provided that we pass the
21007 concatenation of files.files[1].dir and files.files[1].name as the
21008 subfile's name. */
21009
21010 static void
21011 dwarf2_start_subfile (const char *filename, const char *dirname)
21012 {
21013 char *copy = NULL;
21014
21015 /* In order not to lose the line information directory,
21016 we concatenate it to the filename when it makes sense.
21017 Note that the Dwarf3 standard says (speaking of filenames in line
21018 information): ``The directory index is ignored for file names
21019 that represent full path names''. Thus ignoring dirname in the
21020 `else' branch below isn't an issue. */
21021
21022 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21023 {
21024 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21025 filename = copy;
21026 }
21027
21028 start_subfile (filename);
21029
21030 if (copy != NULL)
21031 xfree (copy);
21032 }
21033
21034 /* Start a symtab for DWARF.
21035 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21036
21037 static struct compunit_symtab *
21038 dwarf2_start_symtab (struct dwarf2_cu *cu,
21039 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21040 {
21041 struct compunit_symtab *cust
21042 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21043 low_pc, cu->language);
21044
21045 record_debugformat ("DWARF 2");
21046 record_producer (cu->producer);
21047
21048 /* We assume that we're processing GCC output. */
21049 processing_gcc_compilation = 2;
21050
21051 cu->processing_has_namespace_info = 0;
21052
21053 return cust;
21054 }
21055
21056 static void
21057 var_decode_location (struct attribute *attr, struct symbol *sym,
21058 struct dwarf2_cu *cu)
21059 {
21060 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21061 struct comp_unit_head *cu_header = &cu->header;
21062
21063 /* NOTE drow/2003-01-30: There used to be a comment and some special
21064 code here to turn a symbol with DW_AT_external and a
21065 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21066 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21067 with some versions of binutils) where shared libraries could have
21068 relocations against symbols in their debug information - the
21069 minimal symbol would have the right address, but the debug info
21070 would not. It's no longer necessary, because we will explicitly
21071 apply relocations when we read in the debug information now. */
21072
21073 /* A DW_AT_location attribute with no contents indicates that a
21074 variable has been optimized away. */
21075 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21076 {
21077 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21078 return;
21079 }
21080
21081 /* Handle one degenerate form of location expression specially, to
21082 preserve GDB's previous behavior when section offsets are
21083 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21084 then mark this symbol as LOC_STATIC. */
21085
21086 if (attr_form_is_block (attr)
21087 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21088 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21089 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21090 && (DW_BLOCK (attr)->size
21091 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21092 {
21093 unsigned int dummy;
21094
21095 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21096 SYMBOL_VALUE_ADDRESS (sym) =
21097 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21098 else
21099 SYMBOL_VALUE_ADDRESS (sym) =
21100 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21101 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21102 fixup_symbol_section (sym, objfile);
21103 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21104 SYMBOL_SECTION (sym));
21105 return;
21106 }
21107
21108 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21109 expression evaluator, and use LOC_COMPUTED only when necessary
21110 (i.e. when the value of a register or memory location is
21111 referenced, or a thread-local block, etc.). Then again, it might
21112 not be worthwhile. I'm assuming that it isn't unless performance
21113 or memory numbers show me otherwise. */
21114
21115 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21116
21117 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21118 cu->has_loclist = 1;
21119 }
21120
21121 /* Given a pointer to a DWARF information entry, figure out if we need
21122 to make a symbol table entry for it, and if so, create a new entry
21123 and return a pointer to it.
21124 If TYPE is NULL, determine symbol type from the die, otherwise
21125 used the passed type.
21126 If SPACE is not NULL, use it to hold the new symbol. If it is
21127 NULL, allocate a new symbol on the objfile's obstack. */
21128
21129 static struct symbol *
21130 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21131 struct symbol *space)
21132 {
21133 struct dwarf2_per_objfile *dwarf2_per_objfile
21134 = cu->per_cu->dwarf2_per_objfile;
21135 struct objfile *objfile = dwarf2_per_objfile->objfile;
21136 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21137 struct symbol *sym = NULL;
21138 const char *name;
21139 struct attribute *attr = NULL;
21140 struct attribute *attr2 = NULL;
21141 CORE_ADDR baseaddr;
21142 struct pending **list_to_add = NULL;
21143
21144 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21145
21146 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21147
21148 name = dwarf2_name (die, cu);
21149 if (name)
21150 {
21151 const char *linkagename;
21152 int suppress_add = 0;
21153
21154 if (space)
21155 sym = space;
21156 else
21157 sym = allocate_symbol (objfile);
21158 OBJSTAT (objfile, n_syms++);
21159
21160 /* Cache this symbol's name and the name's demangled form (if any). */
21161 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21162 linkagename = dwarf2_physname (name, die, cu);
21163 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21164
21165 /* Fortran does not have mangling standard and the mangling does differ
21166 between gfortran, iFort etc. */
21167 if (cu->language == language_fortran
21168 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21169 symbol_set_demangled_name (&(sym->ginfo),
21170 dwarf2_full_name (name, die, cu),
21171 NULL);
21172
21173 /* Default assumptions.
21174 Use the passed type or decode it from the die. */
21175 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21176 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21177 if (type != NULL)
21178 SYMBOL_TYPE (sym) = type;
21179 else
21180 SYMBOL_TYPE (sym) = die_type (die, cu);
21181 attr = dwarf2_attr (die,
21182 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21183 cu);
21184 if (attr)
21185 {
21186 SYMBOL_LINE (sym) = DW_UNSND (attr);
21187 }
21188
21189 attr = dwarf2_attr (die,
21190 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21191 cu);
21192 if (attr)
21193 {
21194 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21195 struct file_entry *fe;
21196
21197 if (cu->line_header != NULL)
21198 fe = cu->line_header->file_name_at (file_index);
21199 else
21200 fe = NULL;
21201
21202 if (fe == NULL)
21203 complaint (_("file index out of range"));
21204 else
21205 symbol_set_symtab (sym, fe->symtab);
21206 }
21207
21208 switch (die->tag)
21209 {
21210 case DW_TAG_label:
21211 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21212 if (attr)
21213 {
21214 CORE_ADDR addr;
21215
21216 addr = attr_value_as_address (attr);
21217 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21218 SYMBOL_VALUE_ADDRESS (sym) = addr;
21219 }
21220 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21221 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21222 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21223 add_symbol_to_list (sym, cu->list_in_scope);
21224 break;
21225 case DW_TAG_subprogram:
21226 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21227 finish_block. */
21228 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21229 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21230 if ((attr2 && (DW_UNSND (attr2) != 0))
21231 || cu->language == language_ada)
21232 {
21233 /* Subprograms marked external are stored as a global symbol.
21234 Ada subprograms, whether marked external or not, are always
21235 stored as a global symbol, because we want to be able to
21236 access them globally. For instance, we want to be able
21237 to break on a nested subprogram without having to
21238 specify the context. */
21239 list_to_add = &global_symbols;
21240 }
21241 else
21242 {
21243 list_to_add = cu->list_in_scope;
21244 }
21245 break;
21246 case DW_TAG_inlined_subroutine:
21247 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21248 finish_block. */
21249 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21250 SYMBOL_INLINED (sym) = 1;
21251 list_to_add = cu->list_in_scope;
21252 break;
21253 case DW_TAG_template_value_param:
21254 suppress_add = 1;
21255 /* Fall through. */
21256 case DW_TAG_constant:
21257 case DW_TAG_variable:
21258 case DW_TAG_member:
21259 /* Compilation with minimal debug info may result in
21260 variables with missing type entries. Change the
21261 misleading `void' type to something sensible. */
21262 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21263 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21264
21265 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21266 /* In the case of DW_TAG_member, we should only be called for
21267 static const members. */
21268 if (die->tag == DW_TAG_member)
21269 {
21270 /* dwarf2_add_field uses die_is_declaration,
21271 so we do the same. */
21272 gdb_assert (die_is_declaration (die, cu));
21273 gdb_assert (attr);
21274 }
21275 if (attr)
21276 {
21277 dwarf2_const_value (attr, sym, cu);
21278 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21279 if (!suppress_add)
21280 {
21281 if (attr2 && (DW_UNSND (attr2) != 0))
21282 list_to_add = &global_symbols;
21283 else
21284 list_to_add = cu->list_in_scope;
21285 }
21286 break;
21287 }
21288 attr = dwarf2_attr (die, DW_AT_location, cu);
21289 if (attr)
21290 {
21291 var_decode_location (attr, sym, cu);
21292 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21293
21294 /* Fortran explicitly imports any global symbols to the local
21295 scope by DW_TAG_common_block. */
21296 if (cu->language == language_fortran && die->parent
21297 && die->parent->tag == DW_TAG_common_block)
21298 attr2 = NULL;
21299
21300 if (SYMBOL_CLASS (sym) == LOC_STATIC
21301 && SYMBOL_VALUE_ADDRESS (sym) == 0
21302 && !dwarf2_per_objfile->has_section_at_zero)
21303 {
21304 /* When a static variable is eliminated by the linker,
21305 the corresponding debug information is not stripped
21306 out, but the variable address is set to null;
21307 do not add such variables into symbol table. */
21308 }
21309 else if (attr2 && (DW_UNSND (attr2) != 0))
21310 {
21311 /* Workaround gfortran PR debug/40040 - it uses
21312 DW_AT_location for variables in -fPIC libraries which may
21313 get overriden by other libraries/executable and get
21314 a different address. Resolve it by the minimal symbol
21315 which may come from inferior's executable using copy
21316 relocation. Make this workaround only for gfortran as for
21317 other compilers GDB cannot guess the minimal symbol
21318 Fortran mangling kind. */
21319 if (cu->language == language_fortran && die->parent
21320 && die->parent->tag == DW_TAG_module
21321 && cu->producer
21322 && startswith (cu->producer, "GNU Fortran"))
21323 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21324
21325 /* A variable with DW_AT_external is never static,
21326 but it may be block-scoped. */
21327 list_to_add = (cu->list_in_scope == &file_symbols
21328 ? &global_symbols : cu->list_in_scope);
21329 }
21330 else
21331 list_to_add = cu->list_in_scope;
21332 }
21333 else
21334 {
21335 /* We do not know the address of this symbol.
21336 If it is an external symbol and we have type information
21337 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21338 The address of the variable will then be determined from
21339 the minimal symbol table whenever the variable is
21340 referenced. */
21341 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21342
21343 /* Fortran explicitly imports any global symbols to the local
21344 scope by DW_TAG_common_block. */
21345 if (cu->language == language_fortran && die->parent
21346 && die->parent->tag == DW_TAG_common_block)
21347 {
21348 /* SYMBOL_CLASS doesn't matter here because
21349 read_common_block is going to reset it. */
21350 if (!suppress_add)
21351 list_to_add = cu->list_in_scope;
21352 }
21353 else if (attr2 && (DW_UNSND (attr2) != 0)
21354 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21355 {
21356 /* A variable with DW_AT_external is never static, but it
21357 may be block-scoped. */
21358 list_to_add = (cu->list_in_scope == &file_symbols
21359 ? &global_symbols : cu->list_in_scope);
21360
21361 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21362 }
21363 else if (!die_is_declaration (die, cu))
21364 {
21365 /* Use the default LOC_OPTIMIZED_OUT class. */
21366 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21367 if (!suppress_add)
21368 list_to_add = cu->list_in_scope;
21369 }
21370 }
21371 break;
21372 case DW_TAG_formal_parameter:
21373 /* If we are inside a function, mark this as an argument. If
21374 not, we might be looking at an argument to an inlined function
21375 when we do not have enough information to show inlined frames;
21376 pretend it's a local variable in that case so that the user can
21377 still see it. */
21378 if (context_stack_depth > 0
21379 && context_stack[context_stack_depth - 1].name != NULL)
21380 SYMBOL_IS_ARGUMENT (sym) = 1;
21381 attr = dwarf2_attr (die, DW_AT_location, cu);
21382 if (attr)
21383 {
21384 var_decode_location (attr, sym, cu);
21385 }
21386 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21387 if (attr)
21388 {
21389 dwarf2_const_value (attr, sym, cu);
21390 }
21391
21392 list_to_add = cu->list_in_scope;
21393 break;
21394 case DW_TAG_unspecified_parameters:
21395 /* From varargs functions; gdb doesn't seem to have any
21396 interest in this information, so just ignore it for now.
21397 (FIXME?) */
21398 break;
21399 case DW_TAG_template_type_param:
21400 suppress_add = 1;
21401 /* Fall through. */
21402 case DW_TAG_class_type:
21403 case DW_TAG_interface_type:
21404 case DW_TAG_structure_type:
21405 case DW_TAG_union_type:
21406 case DW_TAG_set_type:
21407 case DW_TAG_enumeration_type:
21408 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21409 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21410
21411 {
21412 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21413 really ever be static objects: otherwise, if you try
21414 to, say, break of a class's method and you're in a file
21415 which doesn't mention that class, it won't work unless
21416 the check for all static symbols in lookup_symbol_aux
21417 saves you. See the OtherFileClass tests in
21418 gdb.c++/namespace.exp. */
21419
21420 if (!suppress_add)
21421 {
21422 list_to_add = (cu->list_in_scope == &file_symbols
21423 && cu->language == language_cplus
21424 ? &global_symbols : cu->list_in_scope);
21425
21426 /* The semantics of C++ state that "struct foo {
21427 ... }" also defines a typedef for "foo". */
21428 if (cu->language == language_cplus
21429 || cu->language == language_ada
21430 || cu->language == language_d
21431 || cu->language == language_rust)
21432 {
21433 /* The symbol's name is already allocated along
21434 with this objfile, so we don't need to
21435 duplicate it for the type. */
21436 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21437 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21438 }
21439 }
21440 }
21441 break;
21442 case DW_TAG_typedef:
21443 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21444 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21445 list_to_add = cu->list_in_scope;
21446 break;
21447 case DW_TAG_base_type:
21448 case DW_TAG_subrange_type:
21449 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21450 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21451 list_to_add = cu->list_in_scope;
21452 break;
21453 case DW_TAG_enumerator:
21454 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21455 if (attr)
21456 {
21457 dwarf2_const_value (attr, sym, cu);
21458 }
21459 {
21460 /* NOTE: carlton/2003-11-10: See comment above in the
21461 DW_TAG_class_type, etc. block. */
21462
21463 list_to_add = (cu->list_in_scope == &file_symbols
21464 && cu->language == language_cplus
21465 ? &global_symbols : cu->list_in_scope);
21466 }
21467 break;
21468 case DW_TAG_imported_declaration:
21469 case DW_TAG_namespace:
21470 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21471 list_to_add = &global_symbols;
21472 break;
21473 case DW_TAG_module:
21474 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21475 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21476 list_to_add = &global_symbols;
21477 break;
21478 case DW_TAG_common_block:
21479 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21480 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21481 add_symbol_to_list (sym, cu->list_in_scope);
21482 break;
21483 default:
21484 /* Not a tag we recognize. Hopefully we aren't processing
21485 trash data, but since we must specifically ignore things
21486 we don't recognize, there is nothing else we should do at
21487 this point. */
21488 complaint (_("unsupported tag: '%s'"),
21489 dwarf_tag_name (die->tag));
21490 break;
21491 }
21492
21493 if (suppress_add)
21494 {
21495 sym->hash_next = objfile->template_symbols;
21496 objfile->template_symbols = sym;
21497 list_to_add = NULL;
21498 }
21499
21500 if (list_to_add != NULL)
21501 add_symbol_to_list (sym, list_to_add);
21502
21503 /* For the benefit of old versions of GCC, check for anonymous
21504 namespaces based on the demangled name. */
21505 if (!cu->processing_has_namespace_info
21506 && cu->language == language_cplus)
21507 cp_scan_for_anonymous_namespaces (sym, objfile);
21508 }
21509 return (sym);
21510 }
21511
21512 /* Given an attr with a DW_FORM_dataN value in host byte order,
21513 zero-extend it as appropriate for the symbol's type. The DWARF
21514 standard (v4) is not entirely clear about the meaning of using
21515 DW_FORM_dataN for a constant with a signed type, where the type is
21516 wider than the data. The conclusion of a discussion on the DWARF
21517 list was that this is unspecified. We choose to always zero-extend
21518 because that is the interpretation long in use by GCC. */
21519
21520 static gdb_byte *
21521 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21522 struct dwarf2_cu *cu, LONGEST *value, int bits)
21523 {
21524 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21525 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21526 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21527 LONGEST l = DW_UNSND (attr);
21528
21529 if (bits < sizeof (*value) * 8)
21530 {
21531 l &= ((LONGEST) 1 << bits) - 1;
21532 *value = l;
21533 }
21534 else if (bits == sizeof (*value) * 8)
21535 *value = l;
21536 else
21537 {
21538 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21539 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21540 return bytes;
21541 }
21542
21543 return NULL;
21544 }
21545
21546 /* Read a constant value from an attribute. Either set *VALUE, or if
21547 the value does not fit in *VALUE, set *BYTES - either already
21548 allocated on the objfile obstack, or newly allocated on OBSTACK,
21549 or, set *BATON, if we translated the constant to a location
21550 expression. */
21551
21552 static void
21553 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21554 const char *name, struct obstack *obstack,
21555 struct dwarf2_cu *cu,
21556 LONGEST *value, const gdb_byte **bytes,
21557 struct dwarf2_locexpr_baton **baton)
21558 {
21559 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21560 struct comp_unit_head *cu_header = &cu->header;
21561 struct dwarf_block *blk;
21562 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21563 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21564
21565 *value = 0;
21566 *bytes = NULL;
21567 *baton = NULL;
21568
21569 switch (attr->form)
21570 {
21571 case DW_FORM_addr:
21572 case DW_FORM_GNU_addr_index:
21573 {
21574 gdb_byte *data;
21575
21576 if (TYPE_LENGTH (type) != cu_header->addr_size)
21577 dwarf2_const_value_length_mismatch_complaint (name,
21578 cu_header->addr_size,
21579 TYPE_LENGTH (type));
21580 /* Symbols of this form are reasonably rare, so we just
21581 piggyback on the existing location code rather than writing
21582 a new implementation of symbol_computed_ops. */
21583 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21584 (*baton)->per_cu = cu->per_cu;
21585 gdb_assert ((*baton)->per_cu);
21586
21587 (*baton)->size = 2 + cu_header->addr_size;
21588 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21589 (*baton)->data = data;
21590
21591 data[0] = DW_OP_addr;
21592 store_unsigned_integer (&data[1], cu_header->addr_size,
21593 byte_order, DW_ADDR (attr));
21594 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21595 }
21596 break;
21597 case DW_FORM_string:
21598 case DW_FORM_strp:
21599 case DW_FORM_GNU_str_index:
21600 case DW_FORM_GNU_strp_alt:
21601 /* DW_STRING is already allocated on the objfile obstack, point
21602 directly to it. */
21603 *bytes = (const gdb_byte *) DW_STRING (attr);
21604 break;
21605 case DW_FORM_block1:
21606 case DW_FORM_block2:
21607 case DW_FORM_block4:
21608 case DW_FORM_block:
21609 case DW_FORM_exprloc:
21610 case DW_FORM_data16:
21611 blk = DW_BLOCK (attr);
21612 if (TYPE_LENGTH (type) != blk->size)
21613 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21614 TYPE_LENGTH (type));
21615 *bytes = blk->data;
21616 break;
21617
21618 /* The DW_AT_const_value attributes are supposed to carry the
21619 symbol's value "represented as it would be on the target
21620 architecture." By the time we get here, it's already been
21621 converted to host endianness, so we just need to sign- or
21622 zero-extend it as appropriate. */
21623 case DW_FORM_data1:
21624 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21625 break;
21626 case DW_FORM_data2:
21627 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21628 break;
21629 case DW_FORM_data4:
21630 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21631 break;
21632 case DW_FORM_data8:
21633 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21634 break;
21635
21636 case DW_FORM_sdata:
21637 case DW_FORM_implicit_const:
21638 *value = DW_SND (attr);
21639 break;
21640
21641 case DW_FORM_udata:
21642 *value = DW_UNSND (attr);
21643 break;
21644
21645 default:
21646 complaint (_("unsupported const value attribute form: '%s'"),
21647 dwarf_form_name (attr->form));
21648 *value = 0;
21649 break;
21650 }
21651 }
21652
21653
21654 /* Copy constant value from an attribute to a symbol. */
21655
21656 static void
21657 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21658 struct dwarf2_cu *cu)
21659 {
21660 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21661 LONGEST value;
21662 const gdb_byte *bytes;
21663 struct dwarf2_locexpr_baton *baton;
21664
21665 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21666 SYMBOL_PRINT_NAME (sym),
21667 &objfile->objfile_obstack, cu,
21668 &value, &bytes, &baton);
21669
21670 if (baton != NULL)
21671 {
21672 SYMBOL_LOCATION_BATON (sym) = baton;
21673 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21674 }
21675 else if (bytes != NULL)
21676 {
21677 SYMBOL_VALUE_BYTES (sym) = bytes;
21678 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21679 }
21680 else
21681 {
21682 SYMBOL_VALUE (sym) = value;
21683 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21684 }
21685 }
21686
21687 /* Return the type of the die in question using its DW_AT_type attribute. */
21688
21689 static struct type *
21690 die_type (struct die_info *die, struct dwarf2_cu *cu)
21691 {
21692 struct attribute *type_attr;
21693
21694 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21695 if (!type_attr)
21696 {
21697 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21698 /* A missing DW_AT_type represents a void type. */
21699 return objfile_type (objfile)->builtin_void;
21700 }
21701
21702 return lookup_die_type (die, type_attr, cu);
21703 }
21704
21705 /* True iff CU's producer generates GNAT Ada auxiliary information
21706 that allows to find parallel types through that information instead
21707 of having to do expensive parallel lookups by type name. */
21708
21709 static int
21710 need_gnat_info (struct dwarf2_cu *cu)
21711 {
21712 /* Assume that the Ada compiler was GNAT, which always produces
21713 the auxiliary information. */
21714 return (cu->language == language_ada);
21715 }
21716
21717 /* Return the auxiliary type of the die in question using its
21718 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21719 attribute is not present. */
21720
21721 static struct type *
21722 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21723 {
21724 struct attribute *type_attr;
21725
21726 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21727 if (!type_attr)
21728 return NULL;
21729
21730 return lookup_die_type (die, type_attr, cu);
21731 }
21732
21733 /* If DIE has a descriptive_type attribute, then set the TYPE's
21734 descriptive type accordingly. */
21735
21736 static void
21737 set_descriptive_type (struct type *type, struct die_info *die,
21738 struct dwarf2_cu *cu)
21739 {
21740 struct type *descriptive_type = die_descriptive_type (die, cu);
21741
21742 if (descriptive_type)
21743 {
21744 ALLOCATE_GNAT_AUX_TYPE (type);
21745 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21746 }
21747 }
21748
21749 /* Return the containing type of the die in question using its
21750 DW_AT_containing_type attribute. */
21751
21752 static struct type *
21753 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21754 {
21755 struct attribute *type_attr;
21756 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21757
21758 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21759 if (!type_attr)
21760 error (_("Dwarf Error: Problem turning containing type into gdb type "
21761 "[in module %s]"), objfile_name (objfile));
21762
21763 return lookup_die_type (die, type_attr, cu);
21764 }
21765
21766 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21767
21768 static struct type *
21769 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21770 {
21771 struct dwarf2_per_objfile *dwarf2_per_objfile
21772 = cu->per_cu->dwarf2_per_objfile;
21773 struct objfile *objfile = dwarf2_per_objfile->objfile;
21774 char *message, *saved;
21775
21776 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21777 objfile_name (objfile),
21778 sect_offset_str (cu->header.sect_off),
21779 sect_offset_str (die->sect_off));
21780 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21781 message, strlen (message));
21782 xfree (message);
21783
21784 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21785 }
21786
21787 /* Look up the type of DIE in CU using its type attribute ATTR.
21788 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21789 DW_AT_containing_type.
21790 If there is no type substitute an error marker. */
21791
21792 static struct type *
21793 lookup_die_type (struct die_info *die, const struct attribute *attr,
21794 struct dwarf2_cu *cu)
21795 {
21796 struct dwarf2_per_objfile *dwarf2_per_objfile
21797 = cu->per_cu->dwarf2_per_objfile;
21798 struct objfile *objfile = dwarf2_per_objfile->objfile;
21799 struct type *this_type;
21800
21801 gdb_assert (attr->name == DW_AT_type
21802 || attr->name == DW_AT_GNAT_descriptive_type
21803 || attr->name == DW_AT_containing_type);
21804
21805 /* First see if we have it cached. */
21806
21807 if (attr->form == DW_FORM_GNU_ref_alt)
21808 {
21809 struct dwarf2_per_cu_data *per_cu;
21810 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21811
21812 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21813 dwarf2_per_objfile);
21814 this_type = get_die_type_at_offset (sect_off, per_cu);
21815 }
21816 else if (attr_form_is_ref (attr))
21817 {
21818 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21819
21820 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21821 }
21822 else if (attr->form == DW_FORM_ref_sig8)
21823 {
21824 ULONGEST signature = DW_SIGNATURE (attr);
21825
21826 return get_signatured_type (die, signature, cu);
21827 }
21828 else
21829 {
21830 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21831 " at %s [in module %s]"),
21832 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21833 objfile_name (objfile));
21834 return build_error_marker_type (cu, die);
21835 }
21836
21837 /* If not cached we need to read it in. */
21838
21839 if (this_type == NULL)
21840 {
21841 struct die_info *type_die = NULL;
21842 struct dwarf2_cu *type_cu = cu;
21843
21844 if (attr_form_is_ref (attr))
21845 type_die = follow_die_ref (die, attr, &type_cu);
21846 if (type_die == NULL)
21847 return build_error_marker_type (cu, die);
21848 /* If we find the type now, it's probably because the type came
21849 from an inter-CU reference and the type's CU got expanded before
21850 ours. */
21851 this_type = read_type_die (type_die, type_cu);
21852 }
21853
21854 /* If we still don't have a type use an error marker. */
21855
21856 if (this_type == NULL)
21857 return build_error_marker_type (cu, die);
21858
21859 return this_type;
21860 }
21861
21862 /* Return the type in DIE, CU.
21863 Returns NULL for invalid types.
21864
21865 This first does a lookup in die_type_hash,
21866 and only reads the die in if necessary.
21867
21868 NOTE: This can be called when reading in partial or full symbols. */
21869
21870 static struct type *
21871 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21872 {
21873 struct type *this_type;
21874
21875 this_type = get_die_type (die, cu);
21876 if (this_type)
21877 return this_type;
21878
21879 return read_type_die_1 (die, cu);
21880 }
21881
21882 /* Read the type in DIE, CU.
21883 Returns NULL for invalid types. */
21884
21885 static struct type *
21886 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21887 {
21888 struct type *this_type = NULL;
21889
21890 switch (die->tag)
21891 {
21892 case DW_TAG_class_type:
21893 case DW_TAG_interface_type:
21894 case DW_TAG_structure_type:
21895 case DW_TAG_union_type:
21896 this_type = read_structure_type (die, cu);
21897 break;
21898 case DW_TAG_enumeration_type:
21899 this_type = read_enumeration_type (die, cu);
21900 break;
21901 case DW_TAG_subprogram:
21902 case DW_TAG_subroutine_type:
21903 case DW_TAG_inlined_subroutine:
21904 this_type = read_subroutine_type (die, cu);
21905 break;
21906 case DW_TAG_array_type:
21907 this_type = read_array_type (die, cu);
21908 break;
21909 case DW_TAG_set_type:
21910 this_type = read_set_type (die, cu);
21911 break;
21912 case DW_TAG_pointer_type:
21913 this_type = read_tag_pointer_type (die, cu);
21914 break;
21915 case DW_TAG_ptr_to_member_type:
21916 this_type = read_tag_ptr_to_member_type (die, cu);
21917 break;
21918 case DW_TAG_reference_type:
21919 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21920 break;
21921 case DW_TAG_rvalue_reference_type:
21922 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21923 break;
21924 case DW_TAG_const_type:
21925 this_type = read_tag_const_type (die, cu);
21926 break;
21927 case DW_TAG_volatile_type:
21928 this_type = read_tag_volatile_type (die, cu);
21929 break;
21930 case DW_TAG_restrict_type:
21931 this_type = read_tag_restrict_type (die, cu);
21932 break;
21933 case DW_TAG_string_type:
21934 this_type = read_tag_string_type (die, cu);
21935 break;
21936 case DW_TAG_typedef:
21937 this_type = read_typedef (die, cu);
21938 break;
21939 case DW_TAG_subrange_type:
21940 this_type = read_subrange_type (die, cu);
21941 break;
21942 case DW_TAG_base_type:
21943 this_type = read_base_type (die, cu);
21944 break;
21945 case DW_TAG_unspecified_type:
21946 this_type = read_unspecified_type (die, cu);
21947 break;
21948 case DW_TAG_namespace:
21949 this_type = read_namespace_type (die, cu);
21950 break;
21951 case DW_TAG_module:
21952 this_type = read_module_type (die, cu);
21953 break;
21954 case DW_TAG_atomic_type:
21955 this_type = read_tag_atomic_type (die, cu);
21956 break;
21957 default:
21958 complaint (_("unexpected tag in read_type_die: '%s'"),
21959 dwarf_tag_name (die->tag));
21960 break;
21961 }
21962
21963 return this_type;
21964 }
21965
21966 /* See if we can figure out if the class lives in a namespace. We do
21967 this by looking for a member function; its demangled name will
21968 contain namespace info, if there is any.
21969 Return the computed name or NULL.
21970 Space for the result is allocated on the objfile's obstack.
21971 This is the full-die version of guess_partial_die_structure_name.
21972 In this case we know DIE has no useful parent. */
21973
21974 static char *
21975 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21976 {
21977 struct die_info *spec_die;
21978 struct dwarf2_cu *spec_cu;
21979 struct die_info *child;
21980 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21981
21982 spec_cu = cu;
21983 spec_die = die_specification (die, &spec_cu);
21984 if (spec_die != NULL)
21985 {
21986 die = spec_die;
21987 cu = spec_cu;
21988 }
21989
21990 for (child = die->child;
21991 child != NULL;
21992 child = child->sibling)
21993 {
21994 if (child->tag == DW_TAG_subprogram)
21995 {
21996 const char *linkage_name = dw2_linkage_name (child, cu);
21997
21998 if (linkage_name != NULL)
21999 {
22000 char *actual_name
22001 = language_class_name_from_physname (cu->language_defn,
22002 linkage_name);
22003 char *name = NULL;
22004
22005 if (actual_name != NULL)
22006 {
22007 const char *die_name = dwarf2_name (die, cu);
22008
22009 if (die_name != NULL
22010 && strcmp (die_name, actual_name) != 0)
22011 {
22012 /* Strip off the class name from the full name.
22013 We want the prefix. */
22014 int die_name_len = strlen (die_name);
22015 int actual_name_len = strlen (actual_name);
22016
22017 /* Test for '::' as a sanity check. */
22018 if (actual_name_len > die_name_len + 2
22019 && actual_name[actual_name_len
22020 - die_name_len - 1] == ':')
22021 name = (char *) obstack_copy0 (
22022 &objfile->per_bfd->storage_obstack,
22023 actual_name, actual_name_len - die_name_len - 2);
22024 }
22025 }
22026 xfree (actual_name);
22027 return name;
22028 }
22029 }
22030 }
22031
22032 return NULL;
22033 }
22034
22035 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22036 prefix part in such case. See
22037 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22038
22039 static const char *
22040 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22041 {
22042 struct attribute *attr;
22043 const char *base;
22044
22045 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22046 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22047 return NULL;
22048
22049 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22050 return NULL;
22051
22052 attr = dw2_linkage_name_attr (die, cu);
22053 if (attr == NULL || DW_STRING (attr) == NULL)
22054 return NULL;
22055
22056 /* dwarf2_name had to be already called. */
22057 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22058
22059 /* Strip the base name, keep any leading namespaces/classes. */
22060 base = strrchr (DW_STRING (attr), ':');
22061 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22062 return "";
22063
22064 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22065 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22066 DW_STRING (attr),
22067 &base[-1] - DW_STRING (attr));
22068 }
22069
22070 /* Return the name of the namespace/class that DIE is defined within,
22071 or "" if we can't tell. The caller should not xfree the result.
22072
22073 For example, if we're within the method foo() in the following
22074 code:
22075
22076 namespace N {
22077 class C {
22078 void foo () {
22079 }
22080 };
22081 }
22082
22083 then determine_prefix on foo's die will return "N::C". */
22084
22085 static const char *
22086 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22087 {
22088 struct dwarf2_per_objfile *dwarf2_per_objfile
22089 = cu->per_cu->dwarf2_per_objfile;
22090 struct die_info *parent, *spec_die;
22091 struct dwarf2_cu *spec_cu;
22092 struct type *parent_type;
22093 const char *retval;
22094
22095 if (cu->language != language_cplus
22096 && cu->language != language_fortran && cu->language != language_d
22097 && cu->language != language_rust)
22098 return "";
22099
22100 retval = anonymous_struct_prefix (die, cu);
22101 if (retval)
22102 return retval;
22103
22104 /* We have to be careful in the presence of DW_AT_specification.
22105 For example, with GCC 3.4, given the code
22106
22107 namespace N {
22108 void foo() {
22109 // Definition of N::foo.
22110 }
22111 }
22112
22113 then we'll have a tree of DIEs like this:
22114
22115 1: DW_TAG_compile_unit
22116 2: DW_TAG_namespace // N
22117 3: DW_TAG_subprogram // declaration of N::foo
22118 4: DW_TAG_subprogram // definition of N::foo
22119 DW_AT_specification // refers to die #3
22120
22121 Thus, when processing die #4, we have to pretend that we're in
22122 the context of its DW_AT_specification, namely the contex of die
22123 #3. */
22124 spec_cu = cu;
22125 spec_die = die_specification (die, &spec_cu);
22126 if (spec_die == NULL)
22127 parent = die->parent;
22128 else
22129 {
22130 parent = spec_die->parent;
22131 cu = spec_cu;
22132 }
22133
22134 if (parent == NULL)
22135 return "";
22136 else if (parent->building_fullname)
22137 {
22138 const char *name;
22139 const char *parent_name;
22140
22141 /* It has been seen on RealView 2.2 built binaries,
22142 DW_TAG_template_type_param types actually _defined_ as
22143 children of the parent class:
22144
22145 enum E {};
22146 template class <class Enum> Class{};
22147 Class<enum E> class_e;
22148
22149 1: DW_TAG_class_type (Class)
22150 2: DW_TAG_enumeration_type (E)
22151 3: DW_TAG_enumerator (enum1:0)
22152 3: DW_TAG_enumerator (enum2:1)
22153 ...
22154 2: DW_TAG_template_type_param
22155 DW_AT_type DW_FORM_ref_udata (E)
22156
22157 Besides being broken debug info, it can put GDB into an
22158 infinite loop. Consider:
22159
22160 When we're building the full name for Class<E>, we'll start
22161 at Class, and go look over its template type parameters,
22162 finding E. We'll then try to build the full name of E, and
22163 reach here. We're now trying to build the full name of E,
22164 and look over the parent DIE for containing scope. In the
22165 broken case, if we followed the parent DIE of E, we'd again
22166 find Class, and once again go look at its template type
22167 arguments, etc., etc. Simply don't consider such parent die
22168 as source-level parent of this die (it can't be, the language
22169 doesn't allow it), and break the loop here. */
22170 name = dwarf2_name (die, cu);
22171 parent_name = dwarf2_name (parent, cu);
22172 complaint (_("template param type '%s' defined within parent '%s'"),
22173 name ? name : "<unknown>",
22174 parent_name ? parent_name : "<unknown>");
22175 return "";
22176 }
22177 else
22178 switch (parent->tag)
22179 {
22180 case DW_TAG_namespace:
22181 parent_type = read_type_die (parent, cu);
22182 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22183 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22184 Work around this problem here. */
22185 if (cu->language == language_cplus
22186 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22187 return "";
22188 /* We give a name to even anonymous namespaces. */
22189 return TYPE_TAG_NAME (parent_type);
22190 case DW_TAG_class_type:
22191 case DW_TAG_interface_type:
22192 case DW_TAG_structure_type:
22193 case DW_TAG_union_type:
22194 case DW_TAG_module:
22195 parent_type = read_type_die (parent, cu);
22196 if (TYPE_TAG_NAME (parent_type) != NULL)
22197 return TYPE_TAG_NAME (parent_type);
22198 else
22199 /* An anonymous structure is only allowed non-static data
22200 members; no typedefs, no member functions, et cetera.
22201 So it does not need a prefix. */
22202 return "";
22203 case DW_TAG_compile_unit:
22204 case DW_TAG_partial_unit:
22205 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22206 if (cu->language == language_cplus
22207 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22208 && die->child != NULL
22209 && (die->tag == DW_TAG_class_type
22210 || die->tag == DW_TAG_structure_type
22211 || die->tag == DW_TAG_union_type))
22212 {
22213 char *name = guess_full_die_structure_name (die, cu);
22214 if (name != NULL)
22215 return name;
22216 }
22217 return "";
22218 case DW_TAG_enumeration_type:
22219 parent_type = read_type_die (parent, cu);
22220 if (TYPE_DECLARED_CLASS (parent_type))
22221 {
22222 if (TYPE_TAG_NAME (parent_type) != NULL)
22223 return TYPE_TAG_NAME (parent_type);
22224 return "";
22225 }
22226 /* Fall through. */
22227 default:
22228 return determine_prefix (parent, cu);
22229 }
22230 }
22231
22232 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22233 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22234 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22235 an obconcat, otherwise allocate storage for the result. The CU argument is
22236 used to determine the language and hence, the appropriate separator. */
22237
22238 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22239
22240 static char *
22241 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22242 int physname, struct dwarf2_cu *cu)
22243 {
22244 const char *lead = "";
22245 const char *sep;
22246
22247 if (suffix == NULL || suffix[0] == '\0'
22248 || prefix == NULL || prefix[0] == '\0')
22249 sep = "";
22250 else if (cu->language == language_d)
22251 {
22252 /* For D, the 'main' function could be defined in any module, but it
22253 should never be prefixed. */
22254 if (strcmp (suffix, "D main") == 0)
22255 {
22256 prefix = "";
22257 sep = "";
22258 }
22259 else
22260 sep = ".";
22261 }
22262 else if (cu->language == language_fortran && physname)
22263 {
22264 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22265 DW_AT_MIPS_linkage_name is preferred and used instead. */
22266
22267 lead = "__";
22268 sep = "_MOD_";
22269 }
22270 else
22271 sep = "::";
22272
22273 if (prefix == NULL)
22274 prefix = "";
22275 if (suffix == NULL)
22276 suffix = "";
22277
22278 if (obs == NULL)
22279 {
22280 char *retval
22281 = ((char *)
22282 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22283
22284 strcpy (retval, lead);
22285 strcat (retval, prefix);
22286 strcat (retval, sep);
22287 strcat (retval, suffix);
22288 return retval;
22289 }
22290 else
22291 {
22292 /* We have an obstack. */
22293 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22294 }
22295 }
22296
22297 /* Return sibling of die, NULL if no sibling. */
22298
22299 static struct die_info *
22300 sibling_die (struct die_info *die)
22301 {
22302 return die->sibling;
22303 }
22304
22305 /* Get name of a die, return NULL if not found. */
22306
22307 static const char *
22308 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22309 struct obstack *obstack)
22310 {
22311 if (name && cu->language == language_cplus)
22312 {
22313 std::string canon_name = cp_canonicalize_string (name);
22314
22315 if (!canon_name.empty ())
22316 {
22317 if (canon_name != name)
22318 name = (const char *) obstack_copy0 (obstack,
22319 canon_name.c_str (),
22320 canon_name.length ());
22321 }
22322 }
22323
22324 return name;
22325 }
22326
22327 /* Get name of a die, return NULL if not found.
22328 Anonymous namespaces are converted to their magic string. */
22329
22330 static const char *
22331 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22332 {
22333 struct attribute *attr;
22334 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22335
22336 attr = dwarf2_attr (die, DW_AT_name, cu);
22337 if ((!attr || !DW_STRING (attr))
22338 && die->tag != DW_TAG_namespace
22339 && die->tag != DW_TAG_class_type
22340 && die->tag != DW_TAG_interface_type
22341 && die->tag != DW_TAG_structure_type
22342 && die->tag != DW_TAG_union_type)
22343 return NULL;
22344
22345 switch (die->tag)
22346 {
22347 case DW_TAG_compile_unit:
22348 case DW_TAG_partial_unit:
22349 /* Compilation units have a DW_AT_name that is a filename, not
22350 a source language identifier. */
22351 case DW_TAG_enumeration_type:
22352 case DW_TAG_enumerator:
22353 /* These tags always have simple identifiers already; no need
22354 to canonicalize them. */
22355 return DW_STRING (attr);
22356
22357 case DW_TAG_namespace:
22358 if (attr != NULL && DW_STRING (attr) != NULL)
22359 return DW_STRING (attr);
22360 return CP_ANONYMOUS_NAMESPACE_STR;
22361
22362 case DW_TAG_class_type:
22363 case DW_TAG_interface_type:
22364 case DW_TAG_structure_type:
22365 case DW_TAG_union_type:
22366 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22367 structures or unions. These were of the form "._%d" in GCC 4.1,
22368 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22369 and GCC 4.4. We work around this problem by ignoring these. */
22370 if (attr && DW_STRING (attr)
22371 && (startswith (DW_STRING (attr), "._")
22372 || startswith (DW_STRING (attr), "<anonymous")))
22373 return NULL;
22374
22375 /* GCC might emit a nameless typedef that has a linkage name. See
22376 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22377 if (!attr || DW_STRING (attr) == NULL)
22378 {
22379 char *demangled = NULL;
22380
22381 attr = dw2_linkage_name_attr (die, cu);
22382 if (attr == NULL || DW_STRING (attr) == NULL)
22383 return NULL;
22384
22385 /* Avoid demangling DW_STRING (attr) the second time on a second
22386 call for the same DIE. */
22387 if (!DW_STRING_IS_CANONICAL (attr))
22388 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22389
22390 if (demangled)
22391 {
22392 const char *base;
22393
22394 /* FIXME: we already did this for the partial symbol... */
22395 DW_STRING (attr)
22396 = ((const char *)
22397 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22398 demangled, strlen (demangled)));
22399 DW_STRING_IS_CANONICAL (attr) = 1;
22400 xfree (demangled);
22401
22402 /* Strip any leading namespaces/classes, keep only the base name.
22403 DW_AT_name for named DIEs does not contain the prefixes. */
22404 base = strrchr (DW_STRING (attr), ':');
22405 if (base && base > DW_STRING (attr) && base[-1] == ':')
22406 return &base[1];
22407 else
22408 return DW_STRING (attr);
22409 }
22410 }
22411 break;
22412
22413 default:
22414 break;
22415 }
22416
22417 if (!DW_STRING_IS_CANONICAL (attr))
22418 {
22419 DW_STRING (attr)
22420 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22421 &objfile->per_bfd->storage_obstack);
22422 DW_STRING_IS_CANONICAL (attr) = 1;
22423 }
22424 return DW_STRING (attr);
22425 }
22426
22427 /* Return the die that this die in an extension of, or NULL if there
22428 is none. *EXT_CU is the CU containing DIE on input, and the CU
22429 containing the return value on output. */
22430
22431 static struct die_info *
22432 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22433 {
22434 struct attribute *attr;
22435
22436 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22437 if (attr == NULL)
22438 return NULL;
22439
22440 return follow_die_ref (die, attr, ext_cu);
22441 }
22442
22443 /* Convert a DIE tag into its string name. */
22444
22445 static const char *
22446 dwarf_tag_name (unsigned tag)
22447 {
22448 const char *name = get_DW_TAG_name (tag);
22449
22450 if (name == NULL)
22451 return "DW_TAG_<unknown>";
22452
22453 return name;
22454 }
22455
22456 /* Convert a DWARF attribute code into its string name. */
22457
22458 static const char *
22459 dwarf_attr_name (unsigned attr)
22460 {
22461 const char *name;
22462
22463 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22464 if (attr == DW_AT_MIPS_fde)
22465 return "DW_AT_MIPS_fde";
22466 #else
22467 if (attr == DW_AT_HP_block_index)
22468 return "DW_AT_HP_block_index";
22469 #endif
22470
22471 name = get_DW_AT_name (attr);
22472
22473 if (name == NULL)
22474 return "DW_AT_<unknown>";
22475
22476 return name;
22477 }
22478
22479 /* Convert a DWARF value form code into its string name. */
22480
22481 static const char *
22482 dwarf_form_name (unsigned form)
22483 {
22484 const char *name = get_DW_FORM_name (form);
22485
22486 if (name == NULL)
22487 return "DW_FORM_<unknown>";
22488
22489 return name;
22490 }
22491
22492 static const char *
22493 dwarf_bool_name (unsigned mybool)
22494 {
22495 if (mybool)
22496 return "TRUE";
22497 else
22498 return "FALSE";
22499 }
22500
22501 /* Convert a DWARF type code into its string name. */
22502
22503 static const char *
22504 dwarf_type_encoding_name (unsigned enc)
22505 {
22506 const char *name = get_DW_ATE_name (enc);
22507
22508 if (name == NULL)
22509 return "DW_ATE_<unknown>";
22510
22511 return name;
22512 }
22513
22514 static void
22515 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22516 {
22517 unsigned int i;
22518
22519 print_spaces (indent, f);
22520 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22521 dwarf_tag_name (die->tag), die->abbrev,
22522 sect_offset_str (die->sect_off));
22523
22524 if (die->parent != NULL)
22525 {
22526 print_spaces (indent, f);
22527 fprintf_unfiltered (f, " parent at offset: %s\n",
22528 sect_offset_str (die->parent->sect_off));
22529 }
22530
22531 print_spaces (indent, f);
22532 fprintf_unfiltered (f, " has children: %s\n",
22533 dwarf_bool_name (die->child != NULL));
22534
22535 print_spaces (indent, f);
22536 fprintf_unfiltered (f, " attributes:\n");
22537
22538 for (i = 0; i < die->num_attrs; ++i)
22539 {
22540 print_spaces (indent, f);
22541 fprintf_unfiltered (f, " %s (%s) ",
22542 dwarf_attr_name (die->attrs[i].name),
22543 dwarf_form_name (die->attrs[i].form));
22544
22545 switch (die->attrs[i].form)
22546 {
22547 case DW_FORM_addr:
22548 case DW_FORM_GNU_addr_index:
22549 fprintf_unfiltered (f, "address: ");
22550 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22551 break;
22552 case DW_FORM_block2:
22553 case DW_FORM_block4:
22554 case DW_FORM_block:
22555 case DW_FORM_block1:
22556 fprintf_unfiltered (f, "block: size %s",
22557 pulongest (DW_BLOCK (&die->attrs[i])->size));
22558 break;
22559 case DW_FORM_exprloc:
22560 fprintf_unfiltered (f, "expression: size %s",
22561 pulongest (DW_BLOCK (&die->attrs[i])->size));
22562 break;
22563 case DW_FORM_data16:
22564 fprintf_unfiltered (f, "constant of 16 bytes");
22565 break;
22566 case DW_FORM_ref_addr:
22567 fprintf_unfiltered (f, "ref address: ");
22568 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22569 break;
22570 case DW_FORM_GNU_ref_alt:
22571 fprintf_unfiltered (f, "alt ref address: ");
22572 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22573 break;
22574 case DW_FORM_ref1:
22575 case DW_FORM_ref2:
22576 case DW_FORM_ref4:
22577 case DW_FORM_ref8:
22578 case DW_FORM_ref_udata:
22579 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22580 (long) (DW_UNSND (&die->attrs[i])));
22581 break;
22582 case DW_FORM_data1:
22583 case DW_FORM_data2:
22584 case DW_FORM_data4:
22585 case DW_FORM_data8:
22586 case DW_FORM_udata:
22587 case DW_FORM_sdata:
22588 fprintf_unfiltered (f, "constant: %s",
22589 pulongest (DW_UNSND (&die->attrs[i])));
22590 break;
22591 case DW_FORM_sec_offset:
22592 fprintf_unfiltered (f, "section offset: %s",
22593 pulongest (DW_UNSND (&die->attrs[i])));
22594 break;
22595 case DW_FORM_ref_sig8:
22596 fprintf_unfiltered (f, "signature: %s",
22597 hex_string (DW_SIGNATURE (&die->attrs[i])));
22598 break;
22599 case DW_FORM_string:
22600 case DW_FORM_strp:
22601 case DW_FORM_line_strp:
22602 case DW_FORM_GNU_str_index:
22603 case DW_FORM_GNU_strp_alt:
22604 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22605 DW_STRING (&die->attrs[i])
22606 ? DW_STRING (&die->attrs[i]) : "",
22607 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22608 break;
22609 case DW_FORM_flag:
22610 if (DW_UNSND (&die->attrs[i]))
22611 fprintf_unfiltered (f, "flag: TRUE");
22612 else
22613 fprintf_unfiltered (f, "flag: FALSE");
22614 break;
22615 case DW_FORM_flag_present:
22616 fprintf_unfiltered (f, "flag: TRUE");
22617 break;
22618 case DW_FORM_indirect:
22619 /* The reader will have reduced the indirect form to
22620 the "base form" so this form should not occur. */
22621 fprintf_unfiltered (f,
22622 "unexpected attribute form: DW_FORM_indirect");
22623 break;
22624 case DW_FORM_implicit_const:
22625 fprintf_unfiltered (f, "constant: %s",
22626 plongest (DW_SND (&die->attrs[i])));
22627 break;
22628 default:
22629 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22630 die->attrs[i].form);
22631 break;
22632 }
22633 fprintf_unfiltered (f, "\n");
22634 }
22635 }
22636
22637 static void
22638 dump_die_for_error (struct die_info *die)
22639 {
22640 dump_die_shallow (gdb_stderr, 0, die);
22641 }
22642
22643 static void
22644 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22645 {
22646 int indent = level * 4;
22647
22648 gdb_assert (die != NULL);
22649
22650 if (level >= max_level)
22651 return;
22652
22653 dump_die_shallow (f, indent, die);
22654
22655 if (die->child != NULL)
22656 {
22657 print_spaces (indent, f);
22658 fprintf_unfiltered (f, " Children:");
22659 if (level + 1 < max_level)
22660 {
22661 fprintf_unfiltered (f, "\n");
22662 dump_die_1 (f, level + 1, max_level, die->child);
22663 }
22664 else
22665 {
22666 fprintf_unfiltered (f,
22667 " [not printed, max nesting level reached]\n");
22668 }
22669 }
22670
22671 if (die->sibling != NULL && level > 0)
22672 {
22673 dump_die_1 (f, level, max_level, die->sibling);
22674 }
22675 }
22676
22677 /* This is called from the pdie macro in gdbinit.in.
22678 It's not static so gcc will keep a copy callable from gdb. */
22679
22680 void
22681 dump_die (struct die_info *die, int max_level)
22682 {
22683 dump_die_1 (gdb_stdlog, 0, max_level, die);
22684 }
22685
22686 static void
22687 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22688 {
22689 void **slot;
22690
22691 slot = htab_find_slot_with_hash (cu->die_hash, die,
22692 to_underlying (die->sect_off),
22693 INSERT);
22694
22695 *slot = die;
22696 }
22697
22698 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22699 required kind. */
22700
22701 static sect_offset
22702 dwarf2_get_ref_die_offset (const struct attribute *attr)
22703 {
22704 if (attr_form_is_ref (attr))
22705 return (sect_offset) DW_UNSND (attr);
22706
22707 complaint (_("unsupported die ref attribute form: '%s'"),
22708 dwarf_form_name (attr->form));
22709 return {};
22710 }
22711
22712 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22713 * the value held by the attribute is not constant. */
22714
22715 static LONGEST
22716 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22717 {
22718 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22719 return DW_SND (attr);
22720 else if (attr->form == DW_FORM_udata
22721 || attr->form == DW_FORM_data1
22722 || attr->form == DW_FORM_data2
22723 || attr->form == DW_FORM_data4
22724 || attr->form == DW_FORM_data8)
22725 return DW_UNSND (attr);
22726 else
22727 {
22728 /* For DW_FORM_data16 see attr_form_is_constant. */
22729 complaint (_("Attribute value is not a constant (%s)"),
22730 dwarf_form_name (attr->form));
22731 return default_value;
22732 }
22733 }
22734
22735 /* Follow reference or signature attribute ATTR of SRC_DIE.
22736 On entry *REF_CU is the CU of SRC_DIE.
22737 On exit *REF_CU is the CU of the result. */
22738
22739 static struct die_info *
22740 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22741 struct dwarf2_cu **ref_cu)
22742 {
22743 struct die_info *die;
22744
22745 if (attr_form_is_ref (attr))
22746 die = follow_die_ref (src_die, attr, ref_cu);
22747 else if (attr->form == DW_FORM_ref_sig8)
22748 die = follow_die_sig (src_die, attr, ref_cu);
22749 else
22750 {
22751 dump_die_for_error (src_die);
22752 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22753 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22754 }
22755
22756 return die;
22757 }
22758
22759 /* Follow reference OFFSET.
22760 On entry *REF_CU is the CU of the source die referencing OFFSET.
22761 On exit *REF_CU is the CU of the result.
22762 Returns NULL if OFFSET is invalid. */
22763
22764 static struct die_info *
22765 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22766 struct dwarf2_cu **ref_cu)
22767 {
22768 struct die_info temp_die;
22769 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22770 struct dwarf2_per_objfile *dwarf2_per_objfile
22771 = cu->per_cu->dwarf2_per_objfile;
22772
22773 gdb_assert (cu->per_cu != NULL);
22774
22775 target_cu = cu;
22776
22777 if (cu->per_cu->is_debug_types)
22778 {
22779 /* .debug_types CUs cannot reference anything outside their CU.
22780 If they need to, they have to reference a signatured type via
22781 DW_FORM_ref_sig8. */
22782 if (!offset_in_cu_p (&cu->header, sect_off))
22783 return NULL;
22784 }
22785 else if (offset_in_dwz != cu->per_cu->is_dwz
22786 || !offset_in_cu_p (&cu->header, sect_off))
22787 {
22788 struct dwarf2_per_cu_data *per_cu;
22789
22790 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22791 dwarf2_per_objfile);
22792
22793 /* If necessary, add it to the queue and load its DIEs. */
22794 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22795 load_full_comp_unit (per_cu, false, cu->language);
22796
22797 target_cu = per_cu->cu;
22798 }
22799 else if (cu->dies == NULL)
22800 {
22801 /* We're loading full DIEs during partial symbol reading. */
22802 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22803 load_full_comp_unit (cu->per_cu, false, language_minimal);
22804 }
22805
22806 *ref_cu = target_cu;
22807 temp_die.sect_off = sect_off;
22808 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22809 &temp_die,
22810 to_underlying (sect_off));
22811 }
22812
22813 /* Follow reference attribute ATTR of SRC_DIE.
22814 On entry *REF_CU is the CU of SRC_DIE.
22815 On exit *REF_CU is the CU of the result. */
22816
22817 static struct die_info *
22818 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22819 struct dwarf2_cu **ref_cu)
22820 {
22821 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22822 struct dwarf2_cu *cu = *ref_cu;
22823 struct die_info *die;
22824
22825 die = follow_die_offset (sect_off,
22826 (attr->form == DW_FORM_GNU_ref_alt
22827 || cu->per_cu->is_dwz),
22828 ref_cu);
22829 if (!die)
22830 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22831 "at %s [in module %s]"),
22832 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22833 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22834
22835 return die;
22836 }
22837
22838 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22839 Returned value is intended for DW_OP_call*. Returned
22840 dwarf2_locexpr_baton->data has lifetime of
22841 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22842
22843 struct dwarf2_locexpr_baton
22844 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22845 struct dwarf2_per_cu_data *per_cu,
22846 CORE_ADDR (*get_frame_pc) (void *baton),
22847 void *baton)
22848 {
22849 struct dwarf2_cu *cu;
22850 struct die_info *die;
22851 struct attribute *attr;
22852 struct dwarf2_locexpr_baton retval;
22853 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22854 struct objfile *objfile = dwarf2_per_objfile->objfile;
22855
22856 if (per_cu->cu == NULL)
22857 load_cu (per_cu, false);
22858 cu = per_cu->cu;
22859 if (cu == NULL)
22860 {
22861 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22862 Instead just throw an error, not much else we can do. */
22863 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22864 sect_offset_str (sect_off), objfile_name (objfile));
22865 }
22866
22867 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22868 if (!die)
22869 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22870 sect_offset_str (sect_off), objfile_name (objfile));
22871
22872 attr = dwarf2_attr (die, DW_AT_location, cu);
22873 if (!attr)
22874 {
22875 /* DWARF: "If there is no such attribute, then there is no effect.".
22876 DATA is ignored if SIZE is 0. */
22877
22878 retval.data = NULL;
22879 retval.size = 0;
22880 }
22881 else if (attr_form_is_section_offset (attr))
22882 {
22883 struct dwarf2_loclist_baton loclist_baton;
22884 CORE_ADDR pc = (*get_frame_pc) (baton);
22885 size_t size;
22886
22887 fill_in_loclist_baton (cu, &loclist_baton, attr);
22888
22889 retval.data = dwarf2_find_location_expression (&loclist_baton,
22890 &size, pc);
22891 retval.size = size;
22892 }
22893 else
22894 {
22895 if (!attr_form_is_block (attr))
22896 error (_("Dwarf Error: DIE at %s referenced in module %s "
22897 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22898 sect_offset_str (sect_off), objfile_name (objfile));
22899
22900 retval.data = DW_BLOCK (attr)->data;
22901 retval.size = DW_BLOCK (attr)->size;
22902 }
22903 retval.per_cu = cu->per_cu;
22904
22905 age_cached_comp_units (dwarf2_per_objfile);
22906
22907 return retval;
22908 }
22909
22910 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22911 offset. */
22912
22913 struct dwarf2_locexpr_baton
22914 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22915 struct dwarf2_per_cu_data *per_cu,
22916 CORE_ADDR (*get_frame_pc) (void *baton),
22917 void *baton)
22918 {
22919 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22920
22921 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22922 }
22923
22924 /* Write a constant of a given type as target-ordered bytes into
22925 OBSTACK. */
22926
22927 static const gdb_byte *
22928 write_constant_as_bytes (struct obstack *obstack,
22929 enum bfd_endian byte_order,
22930 struct type *type,
22931 ULONGEST value,
22932 LONGEST *len)
22933 {
22934 gdb_byte *result;
22935
22936 *len = TYPE_LENGTH (type);
22937 result = (gdb_byte *) obstack_alloc (obstack, *len);
22938 store_unsigned_integer (result, *len, byte_order, value);
22939
22940 return result;
22941 }
22942
22943 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22944 pointer to the constant bytes and set LEN to the length of the
22945 data. If memory is needed, allocate it on OBSTACK. If the DIE
22946 does not have a DW_AT_const_value, return NULL. */
22947
22948 const gdb_byte *
22949 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22950 struct dwarf2_per_cu_data *per_cu,
22951 struct obstack *obstack,
22952 LONGEST *len)
22953 {
22954 struct dwarf2_cu *cu;
22955 struct die_info *die;
22956 struct attribute *attr;
22957 const gdb_byte *result = NULL;
22958 struct type *type;
22959 LONGEST value;
22960 enum bfd_endian byte_order;
22961 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22962
22963 if (per_cu->cu == NULL)
22964 load_cu (per_cu, false);
22965 cu = per_cu->cu;
22966 if (cu == NULL)
22967 {
22968 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22969 Instead just throw an error, not much else we can do. */
22970 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22971 sect_offset_str (sect_off), objfile_name (objfile));
22972 }
22973
22974 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22975 if (!die)
22976 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22977 sect_offset_str (sect_off), objfile_name (objfile));
22978
22979 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22980 if (attr == NULL)
22981 return NULL;
22982
22983 byte_order = (bfd_big_endian (objfile->obfd)
22984 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22985
22986 switch (attr->form)
22987 {
22988 case DW_FORM_addr:
22989 case DW_FORM_GNU_addr_index:
22990 {
22991 gdb_byte *tem;
22992
22993 *len = cu->header.addr_size;
22994 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22995 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22996 result = tem;
22997 }
22998 break;
22999 case DW_FORM_string:
23000 case DW_FORM_strp:
23001 case DW_FORM_GNU_str_index:
23002 case DW_FORM_GNU_strp_alt:
23003 /* DW_STRING is already allocated on the objfile obstack, point
23004 directly to it. */
23005 result = (const gdb_byte *) DW_STRING (attr);
23006 *len = strlen (DW_STRING (attr));
23007 break;
23008 case DW_FORM_block1:
23009 case DW_FORM_block2:
23010 case DW_FORM_block4:
23011 case DW_FORM_block:
23012 case DW_FORM_exprloc:
23013 case DW_FORM_data16:
23014 result = DW_BLOCK (attr)->data;
23015 *len = DW_BLOCK (attr)->size;
23016 break;
23017
23018 /* The DW_AT_const_value attributes are supposed to carry the
23019 symbol's value "represented as it would be on the target
23020 architecture." By the time we get here, it's already been
23021 converted to host endianness, so we just need to sign- or
23022 zero-extend it as appropriate. */
23023 case DW_FORM_data1:
23024 type = die_type (die, cu);
23025 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23026 if (result == NULL)
23027 result = write_constant_as_bytes (obstack, byte_order,
23028 type, value, len);
23029 break;
23030 case DW_FORM_data2:
23031 type = die_type (die, cu);
23032 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23033 if (result == NULL)
23034 result = write_constant_as_bytes (obstack, byte_order,
23035 type, value, len);
23036 break;
23037 case DW_FORM_data4:
23038 type = die_type (die, cu);
23039 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23040 if (result == NULL)
23041 result = write_constant_as_bytes (obstack, byte_order,
23042 type, value, len);
23043 break;
23044 case DW_FORM_data8:
23045 type = die_type (die, cu);
23046 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23047 if (result == NULL)
23048 result = write_constant_as_bytes (obstack, byte_order,
23049 type, value, len);
23050 break;
23051
23052 case DW_FORM_sdata:
23053 case DW_FORM_implicit_const:
23054 type = die_type (die, cu);
23055 result = write_constant_as_bytes (obstack, byte_order,
23056 type, DW_SND (attr), len);
23057 break;
23058
23059 case DW_FORM_udata:
23060 type = die_type (die, cu);
23061 result = write_constant_as_bytes (obstack, byte_order,
23062 type, DW_UNSND (attr), len);
23063 break;
23064
23065 default:
23066 complaint (_("unsupported const value attribute form: '%s'"),
23067 dwarf_form_name (attr->form));
23068 break;
23069 }
23070
23071 return result;
23072 }
23073
23074 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23075 valid type for this die is found. */
23076
23077 struct type *
23078 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23079 struct dwarf2_per_cu_data *per_cu)
23080 {
23081 struct dwarf2_cu *cu;
23082 struct die_info *die;
23083
23084 if (per_cu->cu == NULL)
23085 load_cu (per_cu, false);
23086 cu = per_cu->cu;
23087 if (!cu)
23088 return NULL;
23089
23090 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23091 if (!die)
23092 return NULL;
23093
23094 return die_type (die, cu);
23095 }
23096
23097 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23098 PER_CU. */
23099
23100 struct type *
23101 dwarf2_get_die_type (cu_offset die_offset,
23102 struct dwarf2_per_cu_data *per_cu)
23103 {
23104 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23105 return get_die_type_at_offset (die_offset_sect, per_cu);
23106 }
23107
23108 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23109 On entry *REF_CU is the CU of SRC_DIE.
23110 On exit *REF_CU is the CU of the result.
23111 Returns NULL if the referenced DIE isn't found. */
23112
23113 static struct die_info *
23114 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23115 struct dwarf2_cu **ref_cu)
23116 {
23117 struct die_info temp_die;
23118 struct dwarf2_cu *sig_cu;
23119 struct die_info *die;
23120
23121 /* While it might be nice to assert sig_type->type == NULL here,
23122 we can get here for DW_AT_imported_declaration where we need
23123 the DIE not the type. */
23124
23125 /* If necessary, add it to the queue and load its DIEs. */
23126
23127 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23128 read_signatured_type (sig_type);
23129
23130 sig_cu = sig_type->per_cu.cu;
23131 gdb_assert (sig_cu != NULL);
23132 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23133 temp_die.sect_off = sig_type->type_offset_in_section;
23134 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23135 to_underlying (temp_die.sect_off));
23136 if (die)
23137 {
23138 struct dwarf2_per_objfile *dwarf2_per_objfile
23139 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23140
23141 /* For .gdb_index version 7 keep track of included TUs.
23142 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23143 if (dwarf2_per_objfile->index_table != NULL
23144 && dwarf2_per_objfile->index_table->version <= 7)
23145 {
23146 VEC_safe_push (dwarf2_per_cu_ptr,
23147 (*ref_cu)->per_cu->imported_symtabs,
23148 sig_cu->per_cu);
23149 }
23150
23151 *ref_cu = sig_cu;
23152 return die;
23153 }
23154
23155 return NULL;
23156 }
23157
23158 /* Follow signatured type referenced by ATTR in SRC_DIE.
23159 On entry *REF_CU is the CU of SRC_DIE.
23160 On exit *REF_CU is the CU of the result.
23161 The result is the DIE of the type.
23162 If the referenced type cannot be found an error is thrown. */
23163
23164 static struct die_info *
23165 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23166 struct dwarf2_cu **ref_cu)
23167 {
23168 ULONGEST signature = DW_SIGNATURE (attr);
23169 struct signatured_type *sig_type;
23170 struct die_info *die;
23171
23172 gdb_assert (attr->form == DW_FORM_ref_sig8);
23173
23174 sig_type = lookup_signatured_type (*ref_cu, signature);
23175 /* sig_type will be NULL if the signatured type is missing from
23176 the debug info. */
23177 if (sig_type == NULL)
23178 {
23179 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23180 " from DIE at %s [in module %s]"),
23181 hex_string (signature), sect_offset_str (src_die->sect_off),
23182 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23183 }
23184
23185 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23186 if (die == NULL)
23187 {
23188 dump_die_for_error (src_die);
23189 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23190 " from DIE at %s [in module %s]"),
23191 hex_string (signature), sect_offset_str (src_die->sect_off),
23192 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23193 }
23194
23195 return die;
23196 }
23197
23198 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23199 reading in and processing the type unit if necessary. */
23200
23201 static struct type *
23202 get_signatured_type (struct die_info *die, ULONGEST signature,
23203 struct dwarf2_cu *cu)
23204 {
23205 struct dwarf2_per_objfile *dwarf2_per_objfile
23206 = cu->per_cu->dwarf2_per_objfile;
23207 struct signatured_type *sig_type;
23208 struct dwarf2_cu *type_cu;
23209 struct die_info *type_die;
23210 struct type *type;
23211
23212 sig_type = lookup_signatured_type (cu, signature);
23213 /* sig_type will be NULL if the signatured type is missing from
23214 the debug info. */
23215 if (sig_type == NULL)
23216 {
23217 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23218 " from DIE at %s [in module %s]"),
23219 hex_string (signature), sect_offset_str (die->sect_off),
23220 objfile_name (dwarf2_per_objfile->objfile));
23221 return build_error_marker_type (cu, die);
23222 }
23223
23224 /* If we already know the type we're done. */
23225 if (sig_type->type != NULL)
23226 return sig_type->type;
23227
23228 type_cu = cu;
23229 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23230 if (type_die != NULL)
23231 {
23232 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23233 is created. This is important, for example, because for c++ classes
23234 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23235 type = read_type_die (type_die, type_cu);
23236 if (type == NULL)
23237 {
23238 complaint (_("Dwarf Error: Cannot build signatured type %s"
23239 " referenced from DIE at %s [in module %s]"),
23240 hex_string (signature), sect_offset_str (die->sect_off),
23241 objfile_name (dwarf2_per_objfile->objfile));
23242 type = build_error_marker_type (cu, die);
23243 }
23244 }
23245 else
23246 {
23247 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23248 " from DIE at %s [in module %s]"),
23249 hex_string (signature), sect_offset_str (die->sect_off),
23250 objfile_name (dwarf2_per_objfile->objfile));
23251 type = build_error_marker_type (cu, die);
23252 }
23253 sig_type->type = type;
23254
23255 return type;
23256 }
23257
23258 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23259 reading in and processing the type unit if necessary. */
23260
23261 static struct type *
23262 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23263 struct dwarf2_cu *cu) /* ARI: editCase function */
23264 {
23265 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23266 if (attr_form_is_ref (attr))
23267 {
23268 struct dwarf2_cu *type_cu = cu;
23269 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23270
23271 return read_type_die (type_die, type_cu);
23272 }
23273 else if (attr->form == DW_FORM_ref_sig8)
23274 {
23275 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23276 }
23277 else
23278 {
23279 struct dwarf2_per_objfile *dwarf2_per_objfile
23280 = cu->per_cu->dwarf2_per_objfile;
23281
23282 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23283 " at %s [in module %s]"),
23284 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23285 objfile_name (dwarf2_per_objfile->objfile));
23286 return build_error_marker_type (cu, die);
23287 }
23288 }
23289
23290 /* Load the DIEs associated with type unit PER_CU into memory. */
23291
23292 static void
23293 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23294 {
23295 struct signatured_type *sig_type;
23296
23297 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23298 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23299
23300 /* We have the per_cu, but we need the signatured_type.
23301 Fortunately this is an easy translation. */
23302 gdb_assert (per_cu->is_debug_types);
23303 sig_type = (struct signatured_type *) per_cu;
23304
23305 gdb_assert (per_cu->cu == NULL);
23306
23307 read_signatured_type (sig_type);
23308
23309 gdb_assert (per_cu->cu != NULL);
23310 }
23311
23312 /* die_reader_func for read_signatured_type.
23313 This is identical to load_full_comp_unit_reader,
23314 but is kept separate for now. */
23315
23316 static void
23317 read_signatured_type_reader (const struct die_reader_specs *reader,
23318 const gdb_byte *info_ptr,
23319 struct die_info *comp_unit_die,
23320 int has_children,
23321 void *data)
23322 {
23323 struct dwarf2_cu *cu = reader->cu;
23324
23325 gdb_assert (cu->die_hash == NULL);
23326 cu->die_hash =
23327 htab_create_alloc_ex (cu->header.length / 12,
23328 die_hash,
23329 die_eq,
23330 NULL,
23331 &cu->comp_unit_obstack,
23332 hashtab_obstack_allocate,
23333 dummy_obstack_deallocate);
23334
23335 if (has_children)
23336 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23337 &info_ptr, comp_unit_die);
23338 cu->dies = comp_unit_die;
23339 /* comp_unit_die is not stored in die_hash, no need. */
23340
23341 /* We try not to read any attributes in this function, because not
23342 all CUs needed for references have been loaded yet, and symbol
23343 table processing isn't initialized. But we have to set the CU language,
23344 or we won't be able to build types correctly.
23345 Similarly, if we do not read the producer, we can not apply
23346 producer-specific interpretation. */
23347 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23348 }
23349
23350 /* Read in a signatured type and build its CU and DIEs.
23351 If the type is a stub for the real type in a DWO file,
23352 read in the real type from the DWO file as well. */
23353
23354 static void
23355 read_signatured_type (struct signatured_type *sig_type)
23356 {
23357 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23358
23359 gdb_assert (per_cu->is_debug_types);
23360 gdb_assert (per_cu->cu == NULL);
23361
23362 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23363 read_signatured_type_reader, NULL);
23364 sig_type->per_cu.tu_read = 1;
23365 }
23366
23367 /* Decode simple location descriptions.
23368 Given a pointer to a dwarf block that defines a location, compute
23369 the location and return the value.
23370
23371 NOTE drow/2003-11-18: This function is called in two situations
23372 now: for the address of static or global variables (partial symbols
23373 only) and for offsets into structures which are expected to be
23374 (more or less) constant. The partial symbol case should go away,
23375 and only the constant case should remain. That will let this
23376 function complain more accurately. A few special modes are allowed
23377 without complaint for global variables (for instance, global
23378 register values and thread-local values).
23379
23380 A location description containing no operations indicates that the
23381 object is optimized out. The return value is 0 for that case.
23382 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23383 callers will only want a very basic result and this can become a
23384 complaint.
23385
23386 Note that stack[0] is unused except as a default error return. */
23387
23388 static CORE_ADDR
23389 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23390 {
23391 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23392 size_t i;
23393 size_t size = blk->size;
23394 const gdb_byte *data = blk->data;
23395 CORE_ADDR stack[64];
23396 int stacki;
23397 unsigned int bytes_read, unsnd;
23398 gdb_byte op;
23399
23400 i = 0;
23401 stacki = 0;
23402 stack[stacki] = 0;
23403 stack[++stacki] = 0;
23404
23405 while (i < size)
23406 {
23407 op = data[i++];
23408 switch (op)
23409 {
23410 case DW_OP_lit0:
23411 case DW_OP_lit1:
23412 case DW_OP_lit2:
23413 case DW_OP_lit3:
23414 case DW_OP_lit4:
23415 case DW_OP_lit5:
23416 case DW_OP_lit6:
23417 case DW_OP_lit7:
23418 case DW_OP_lit8:
23419 case DW_OP_lit9:
23420 case DW_OP_lit10:
23421 case DW_OP_lit11:
23422 case DW_OP_lit12:
23423 case DW_OP_lit13:
23424 case DW_OP_lit14:
23425 case DW_OP_lit15:
23426 case DW_OP_lit16:
23427 case DW_OP_lit17:
23428 case DW_OP_lit18:
23429 case DW_OP_lit19:
23430 case DW_OP_lit20:
23431 case DW_OP_lit21:
23432 case DW_OP_lit22:
23433 case DW_OP_lit23:
23434 case DW_OP_lit24:
23435 case DW_OP_lit25:
23436 case DW_OP_lit26:
23437 case DW_OP_lit27:
23438 case DW_OP_lit28:
23439 case DW_OP_lit29:
23440 case DW_OP_lit30:
23441 case DW_OP_lit31:
23442 stack[++stacki] = op - DW_OP_lit0;
23443 break;
23444
23445 case DW_OP_reg0:
23446 case DW_OP_reg1:
23447 case DW_OP_reg2:
23448 case DW_OP_reg3:
23449 case DW_OP_reg4:
23450 case DW_OP_reg5:
23451 case DW_OP_reg6:
23452 case DW_OP_reg7:
23453 case DW_OP_reg8:
23454 case DW_OP_reg9:
23455 case DW_OP_reg10:
23456 case DW_OP_reg11:
23457 case DW_OP_reg12:
23458 case DW_OP_reg13:
23459 case DW_OP_reg14:
23460 case DW_OP_reg15:
23461 case DW_OP_reg16:
23462 case DW_OP_reg17:
23463 case DW_OP_reg18:
23464 case DW_OP_reg19:
23465 case DW_OP_reg20:
23466 case DW_OP_reg21:
23467 case DW_OP_reg22:
23468 case DW_OP_reg23:
23469 case DW_OP_reg24:
23470 case DW_OP_reg25:
23471 case DW_OP_reg26:
23472 case DW_OP_reg27:
23473 case DW_OP_reg28:
23474 case DW_OP_reg29:
23475 case DW_OP_reg30:
23476 case DW_OP_reg31:
23477 stack[++stacki] = op - DW_OP_reg0;
23478 if (i < size)
23479 dwarf2_complex_location_expr_complaint ();
23480 break;
23481
23482 case DW_OP_regx:
23483 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23484 i += bytes_read;
23485 stack[++stacki] = unsnd;
23486 if (i < size)
23487 dwarf2_complex_location_expr_complaint ();
23488 break;
23489
23490 case DW_OP_addr:
23491 stack[++stacki] = read_address (objfile->obfd, &data[i],
23492 cu, &bytes_read);
23493 i += bytes_read;
23494 break;
23495
23496 case DW_OP_const1u:
23497 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23498 i += 1;
23499 break;
23500
23501 case DW_OP_const1s:
23502 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23503 i += 1;
23504 break;
23505
23506 case DW_OP_const2u:
23507 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23508 i += 2;
23509 break;
23510
23511 case DW_OP_const2s:
23512 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23513 i += 2;
23514 break;
23515
23516 case DW_OP_const4u:
23517 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23518 i += 4;
23519 break;
23520
23521 case DW_OP_const4s:
23522 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23523 i += 4;
23524 break;
23525
23526 case DW_OP_const8u:
23527 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23528 i += 8;
23529 break;
23530
23531 case DW_OP_constu:
23532 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23533 &bytes_read);
23534 i += bytes_read;
23535 break;
23536
23537 case DW_OP_consts:
23538 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23539 i += bytes_read;
23540 break;
23541
23542 case DW_OP_dup:
23543 stack[stacki + 1] = stack[stacki];
23544 stacki++;
23545 break;
23546
23547 case DW_OP_plus:
23548 stack[stacki - 1] += stack[stacki];
23549 stacki--;
23550 break;
23551
23552 case DW_OP_plus_uconst:
23553 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23554 &bytes_read);
23555 i += bytes_read;
23556 break;
23557
23558 case DW_OP_minus:
23559 stack[stacki - 1] -= stack[stacki];
23560 stacki--;
23561 break;
23562
23563 case DW_OP_deref:
23564 /* If we're not the last op, then we definitely can't encode
23565 this using GDB's address_class enum. This is valid for partial
23566 global symbols, although the variable's address will be bogus
23567 in the psymtab. */
23568 if (i < size)
23569 dwarf2_complex_location_expr_complaint ();
23570 break;
23571
23572 case DW_OP_GNU_push_tls_address:
23573 case DW_OP_form_tls_address:
23574 /* The top of the stack has the offset from the beginning
23575 of the thread control block at which the variable is located. */
23576 /* Nothing should follow this operator, so the top of stack would
23577 be returned. */
23578 /* This is valid for partial global symbols, but the variable's
23579 address will be bogus in the psymtab. Make it always at least
23580 non-zero to not look as a variable garbage collected by linker
23581 which have DW_OP_addr 0. */
23582 if (i < size)
23583 dwarf2_complex_location_expr_complaint ();
23584 stack[stacki]++;
23585 break;
23586
23587 case DW_OP_GNU_uninit:
23588 break;
23589
23590 case DW_OP_GNU_addr_index:
23591 case DW_OP_GNU_const_index:
23592 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23593 &bytes_read);
23594 i += bytes_read;
23595 break;
23596
23597 default:
23598 {
23599 const char *name = get_DW_OP_name (op);
23600
23601 if (name)
23602 complaint (_("unsupported stack op: '%s'"),
23603 name);
23604 else
23605 complaint (_("unsupported stack op: '%02x'"),
23606 op);
23607 }
23608
23609 return (stack[stacki]);
23610 }
23611
23612 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23613 outside of the allocated space. Also enforce minimum>0. */
23614 if (stacki >= ARRAY_SIZE (stack) - 1)
23615 {
23616 complaint (_("location description stack overflow"));
23617 return 0;
23618 }
23619
23620 if (stacki <= 0)
23621 {
23622 complaint (_("location description stack underflow"));
23623 return 0;
23624 }
23625 }
23626 return (stack[stacki]);
23627 }
23628
23629 /* memory allocation interface */
23630
23631 static struct dwarf_block *
23632 dwarf_alloc_block (struct dwarf2_cu *cu)
23633 {
23634 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23635 }
23636
23637 static struct die_info *
23638 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23639 {
23640 struct die_info *die;
23641 size_t size = sizeof (struct die_info);
23642
23643 if (num_attrs > 1)
23644 size += (num_attrs - 1) * sizeof (struct attribute);
23645
23646 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23647 memset (die, 0, sizeof (struct die_info));
23648 return (die);
23649 }
23650
23651 \f
23652 /* Macro support. */
23653
23654 /* Return file name relative to the compilation directory of file number I in
23655 *LH's file name table. The result is allocated using xmalloc; the caller is
23656 responsible for freeing it. */
23657
23658 static char *
23659 file_file_name (int file, struct line_header *lh)
23660 {
23661 /* Is the file number a valid index into the line header's file name
23662 table? Remember that file numbers start with one, not zero. */
23663 if (1 <= file && file <= lh->file_names.size ())
23664 {
23665 const file_entry &fe = lh->file_names[file - 1];
23666
23667 if (!IS_ABSOLUTE_PATH (fe.name))
23668 {
23669 const char *dir = fe.include_dir (lh);
23670 if (dir != NULL)
23671 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23672 }
23673 return xstrdup (fe.name);
23674 }
23675 else
23676 {
23677 /* The compiler produced a bogus file number. We can at least
23678 record the macro definitions made in the file, even if we
23679 won't be able to find the file by name. */
23680 char fake_name[80];
23681
23682 xsnprintf (fake_name, sizeof (fake_name),
23683 "<bad macro file number %d>", file);
23684
23685 complaint (_("bad file number in macro information (%d)"),
23686 file);
23687
23688 return xstrdup (fake_name);
23689 }
23690 }
23691
23692 /* Return the full name of file number I in *LH's file name table.
23693 Use COMP_DIR as the name of the current directory of the
23694 compilation. The result is allocated using xmalloc; the caller is
23695 responsible for freeing it. */
23696 static char *
23697 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23698 {
23699 /* Is the file number a valid index into the line header's file name
23700 table? Remember that file numbers start with one, not zero. */
23701 if (1 <= file && file <= lh->file_names.size ())
23702 {
23703 char *relative = file_file_name (file, lh);
23704
23705 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23706 return relative;
23707 return reconcat (relative, comp_dir, SLASH_STRING,
23708 relative, (char *) NULL);
23709 }
23710 else
23711 return file_file_name (file, lh);
23712 }
23713
23714
23715 static struct macro_source_file *
23716 macro_start_file (int file, int line,
23717 struct macro_source_file *current_file,
23718 struct line_header *lh)
23719 {
23720 /* File name relative to the compilation directory of this source file. */
23721 char *file_name = file_file_name (file, lh);
23722
23723 if (! current_file)
23724 {
23725 /* Note: We don't create a macro table for this compilation unit
23726 at all until we actually get a filename. */
23727 struct macro_table *macro_table = get_macro_table ();
23728
23729 /* If we have no current file, then this must be the start_file
23730 directive for the compilation unit's main source file. */
23731 current_file = macro_set_main (macro_table, file_name);
23732 macro_define_special (macro_table);
23733 }
23734 else
23735 current_file = macro_include (current_file, line, file_name);
23736
23737 xfree (file_name);
23738
23739 return current_file;
23740 }
23741
23742 static const char *
23743 consume_improper_spaces (const char *p, const char *body)
23744 {
23745 if (*p == ' ')
23746 {
23747 complaint (_("macro definition contains spaces "
23748 "in formal argument list:\n`%s'"),
23749 body);
23750
23751 while (*p == ' ')
23752 p++;
23753 }
23754
23755 return p;
23756 }
23757
23758
23759 static void
23760 parse_macro_definition (struct macro_source_file *file, int line,
23761 const char *body)
23762 {
23763 const char *p;
23764
23765 /* The body string takes one of two forms. For object-like macro
23766 definitions, it should be:
23767
23768 <macro name> " " <definition>
23769
23770 For function-like macro definitions, it should be:
23771
23772 <macro name> "() " <definition>
23773 or
23774 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23775
23776 Spaces may appear only where explicitly indicated, and in the
23777 <definition>.
23778
23779 The Dwarf 2 spec says that an object-like macro's name is always
23780 followed by a space, but versions of GCC around March 2002 omit
23781 the space when the macro's definition is the empty string.
23782
23783 The Dwarf 2 spec says that there should be no spaces between the
23784 formal arguments in a function-like macro's formal argument list,
23785 but versions of GCC around March 2002 include spaces after the
23786 commas. */
23787
23788
23789 /* Find the extent of the macro name. The macro name is terminated
23790 by either a space or null character (for an object-like macro) or
23791 an opening paren (for a function-like macro). */
23792 for (p = body; *p; p++)
23793 if (*p == ' ' || *p == '(')
23794 break;
23795
23796 if (*p == ' ' || *p == '\0')
23797 {
23798 /* It's an object-like macro. */
23799 int name_len = p - body;
23800 char *name = savestring (body, name_len);
23801 const char *replacement;
23802
23803 if (*p == ' ')
23804 replacement = body + name_len + 1;
23805 else
23806 {
23807 dwarf2_macro_malformed_definition_complaint (body);
23808 replacement = body + name_len;
23809 }
23810
23811 macro_define_object (file, line, name, replacement);
23812
23813 xfree (name);
23814 }
23815 else if (*p == '(')
23816 {
23817 /* It's a function-like macro. */
23818 char *name = savestring (body, p - body);
23819 int argc = 0;
23820 int argv_size = 1;
23821 char **argv = XNEWVEC (char *, argv_size);
23822
23823 p++;
23824
23825 p = consume_improper_spaces (p, body);
23826
23827 /* Parse the formal argument list. */
23828 while (*p && *p != ')')
23829 {
23830 /* Find the extent of the current argument name. */
23831 const char *arg_start = p;
23832
23833 while (*p && *p != ',' && *p != ')' && *p != ' ')
23834 p++;
23835
23836 if (! *p || p == arg_start)
23837 dwarf2_macro_malformed_definition_complaint (body);
23838 else
23839 {
23840 /* Make sure argv has room for the new argument. */
23841 if (argc >= argv_size)
23842 {
23843 argv_size *= 2;
23844 argv = XRESIZEVEC (char *, argv, argv_size);
23845 }
23846
23847 argv[argc++] = savestring (arg_start, p - arg_start);
23848 }
23849
23850 p = consume_improper_spaces (p, body);
23851
23852 /* Consume the comma, if present. */
23853 if (*p == ',')
23854 {
23855 p++;
23856
23857 p = consume_improper_spaces (p, body);
23858 }
23859 }
23860
23861 if (*p == ')')
23862 {
23863 p++;
23864
23865 if (*p == ' ')
23866 /* Perfectly formed definition, no complaints. */
23867 macro_define_function (file, line, name,
23868 argc, (const char **) argv,
23869 p + 1);
23870 else if (*p == '\0')
23871 {
23872 /* Complain, but do define it. */
23873 dwarf2_macro_malformed_definition_complaint (body);
23874 macro_define_function (file, line, name,
23875 argc, (const char **) argv,
23876 p);
23877 }
23878 else
23879 /* Just complain. */
23880 dwarf2_macro_malformed_definition_complaint (body);
23881 }
23882 else
23883 /* Just complain. */
23884 dwarf2_macro_malformed_definition_complaint (body);
23885
23886 xfree (name);
23887 {
23888 int i;
23889
23890 for (i = 0; i < argc; i++)
23891 xfree (argv[i]);
23892 }
23893 xfree (argv);
23894 }
23895 else
23896 dwarf2_macro_malformed_definition_complaint (body);
23897 }
23898
23899 /* Skip some bytes from BYTES according to the form given in FORM.
23900 Returns the new pointer. */
23901
23902 static const gdb_byte *
23903 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23904 enum dwarf_form form,
23905 unsigned int offset_size,
23906 struct dwarf2_section_info *section)
23907 {
23908 unsigned int bytes_read;
23909
23910 switch (form)
23911 {
23912 case DW_FORM_data1:
23913 case DW_FORM_flag:
23914 ++bytes;
23915 break;
23916
23917 case DW_FORM_data2:
23918 bytes += 2;
23919 break;
23920
23921 case DW_FORM_data4:
23922 bytes += 4;
23923 break;
23924
23925 case DW_FORM_data8:
23926 bytes += 8;
23927 break;
23928
23929 case DW_FORM_data16:
23930 bytes += 16;
23931 break;
23932
23933 case DW_FORM_string:
23934 read_direct_string (abfd, bytes, &bytes_read);
23935 bytes += bytes_read;
23936 break;
23937
23938 case DW_FORM_sec_offset:
23939 case DW_FORM_strp:
23940 case DW_FORM_GNU_strp_alt:
23941 bytes += offset_size;
23942 break;
23943
23944 case DW_FORM_block:
23945 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23946 bytes += bytes_read;
23947 break;
23948
23949 case DW_FORM_block1:
23950 bytes += 1 + read_1_byte (abfd, bytes);
23951 break;
23952 case DW_FORM_block2:
23953 bytes += 2 + read_2_bytes (abfd, bytes);
23954 break;
23955 case DW_FORM_block4:
23956 bytes += 4 + read_4_bytes (abfd, bytes);
23957 break;
23958
23959 case DW_FORM_sdata:
23960 case DW_FORM_udata:
23961 case DW_FORM_GNU_addr_index:
23962 case DW_FORM_GNU_str_index:
23963 bytes = gdb_skip_leb128 (bytes, buffer_end);
23964 if (bytes == NULL)
23965 {
23966 dwarf2_section_buffer_overflow_complaint (section);
23967 return NULL;
23968 }
23969 break;
23970
23971 case DW_FORM_implicit_const:
23972 break;
23973
23974 default:
23975 {
23976 complaint (_("invalid form 0x%x in `%s'"),
23977 form, get_section_name (section));
23978 return NULL;
23979 }
23980 }
23981
23982 return bytes;
23983 }
23984
23985 /* A helper for dwarf_decode_macros that handles skipping an unknown
23986 opcode. Returns an updated pointer to the macro data buffer; or,
23987 on error, issues a complaint and returns NULL. */
23988
23989 static const gdb_byte *
23990 skip_unknown_opcode (unsigned int opcode,
23991 const gdb_byte **opcode_definitions,
23992 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23993 bfd *abfd,
23994 unsigned int offset_size,
23995 struct dwarf2_section_info *section)
23996 {
23997 unsigned int bytes_read, i;
23998 unsigned long arg;
23999 const gdb_byte *defn;
24000
24001 if (opcode_definitions[opcode] == NULL)
24002 {
24003 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24004 opcode);
24005 return NULL;
24006 }
24007
24008 defn = opcode_definitions[opcode];
24009 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24010 defn += bytes_read;
24011
24012 for (i = 0; i < arg; ++i)
24013 {
24014 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24015 (enum dwarf_form) defn[i], offset_size,
24016 section);
24017 if (mac_ptr == NULL)
24018 {
24019 /* skip_form_bytes already issued the complaint. */
24020 return NULL;
24021 }
24022 }
24023
24024 return mac_ptr;
24025 }
24026
24027 /* A helper function which parses the header of a macro section.
24028 If the macro section is the extended (for now called "GNU") type,
24029 then this updates *OFFSET_SIZE. Returns a pointer to just after
24030 the header, or issues a complaint and returns NULL on error. */
24031
24032 static const gdb_byte *
24033 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24034 bfd *abfd,
24035 const gdb_byte *mac_ptr,
24036 unsigned int *offset_size,
24037 int section_is_gnu)
24038 {
24039 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24040
24041 if (section_is_gnu)
24042 {
24043 unsigned int version, flags;
24044
24045 version = read_2_bytes (abfd, mac_ptr);
24046 if (version != 4 && version != 5)
24047 {
24048 complaint (_("unrecognized version `%d' in .debug_macro section"),
24049 version);
24050 return NULL;
24051 }
24052 mac_ptr += 2;
24053
24054 flags = read_1_byte (abfd, mac_ptr);
24055 ++mac_ptr;
24056 *offset_size = (flags & 1) ? 8 : 4;
24057
24058 if ((flags & 2) != 0)
24059 /* We don't need the line table offset. */
24060 mac_ptr += *offset_size;
24061
24062 /* Vendor opcode descriptions. */
24063 if ((flags & 4) != 0)
24064 {
24065 unsigned int i, count;
24066
24067 count = read_1_byte (abfd, mac_ptr);
24068 ++mac_ptr;
24069 for (i = 0; i < count; ++i)
24070 {
24071 unsigned int opcode, bytes_read;
24072 unsigned long arg;
24073
24074 opcode = read_1_byte (abfd, mac_ptr);
24075 ++mac_ptr;
24076 opcode_definitions[opcode] = mac_ptr;
24077 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24078 mac_ptr += bytes_read;
24079 mac_ptr += arg;
24080 }
24081 }
24082 }
24083
24084 return mac_ptr;
24085 }
24086
24087 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24088 including DW_MACRO_import. */
24089
24090 static void
24091 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24092 bfd *abfd,
24093 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24094 struct macro_source_file *current_file,
24095 struct line_header *lh,
24096 struct dwarf2_section_info *section,
24097 int section_is_gnu, int section_is_dwz,
24098 unsigned int offset_size,
24099 htab_t include_hash)
24100 {
24101 struct objfile *objfile = dwarf2_per_objfile->objfile;
24102 enum dwarf_macro_record_type macinfo_type;
24103 int at_commandline;
24104 const gdb_byte *opcode_definitions[256];
24105
24106 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24107 &offset_size, section_is_gnu);
24108 if (mac_ptr == NULL)
24109 {
24110 /* We already issued a complaint. */
24111 return;
24112 }
24113
24114 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24115 GDB is still reading the definitions from command line. First
24116 DW_MACINFO_start_file will need to be ignored as it was already executed
24117 to create CURRENT_FILE for the main source holding also the command line
24118 definitions. On first met DW_MACINFO_start_file this flag is reset to
24119 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24120
24121 at_commandline = 1;
24122
24123 do
24124 {
24125 /* Do we at least have room for a macinfo type byte? */
24126 if (mac_ptr >= mac_end)
24127 {
24128 dwarf2_section_buffer_overflow_complaint (section);
24129 break;
24130 }
24131
24132 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24133 mac_ptr++;
24134
24135 /* Note that we rely on the fact that the corresponding GNU and
24136 DWARF constants are the same. */
24137 DIAGNOSTIC_PUSH
24138 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24139 switch (macinfo_type)
24140 {
24141 /* A zero macinfo type indicates the end of the macro
24142 information. */
24143 case 0:
24144 break;
24145
24146 case DW_MACRO_define:
24147 case DW_MACRO_undef:
24148 case DW_MACRO_define_strp:
24149 case DW_MACRO_undef_strp:
24150 case DW_MACRO_define_sup:
24151 case DW_MACRO_undef_sup:
24152 {
24153 unsigned int bytes_read;
24154 int line;
24155 const char *body;
24156 int is_define;
24157
24158 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24159 mac_ptr += bytes_read;
24160
24161 if (macinfo_type == DW_MACRO_define
24162 || macinfo_type == DW_MACRO_undef)
24163 {
24164 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24165 mac_ptr += bytes_read;
24166 }
24167 else
24168 {
24169 LONGEST str_offset;
24170
24171 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24172 mac_ptr += offset_size;
24173
24174 if (macinfo_type == DW_MACRO_define_sup
24175 || macinfo_type == DW_MACRO_undef_sup
24176 || section_is_dwz)
24177 {
24178 struct dwz_file *dwz
24179 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24180
24181 body = read_indirect_string_from_dwz (objfile,
24182 dwz, str_offset);
24183 }
24184 else
24185 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24186 abfd, str_offset);
24187 }
24188
24189 is_define = (macinfo_type == DW_MACRO_define
24190 || macinfo_type == DW_MACRO_define_strp
24191 || macinfo_type == DW_MACRO_define_sup);
24192 if (! current_file)
24193 {
24194 /* DWARF violation as no main source is present. */
24195 complaint (_("debug info with no main source gives macro %s "
24196 "on line %d: %s"),
24197 is_define ? _("definition") : _("undefinition"),
24198 line, body);
24199 break;
24200 }
24201 if ((line == 0 && !at_commandline)
24202 || (line != 0 && at_commandline))
24203 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24204 at_commandline ? _("command-line") : _("in-file"),
24205 is_define ? _("definition") : _("undefinition"),
24206 line == 0 ? _("zero") : _("non-zero"), line, body);
24207
24208 if (is_define)
24209 parse_macro_definition (current_file, line, body);
24210 else
24211 {
24212 gdb_assert (macinfo_type == DW_MACRO_undef
24213 || macinfo_type == DW_MACRO_undef_strp
24214 || macinfo_type == DW_MACRO_undef_sup);
24215 macro_undef (current_file, line, body);
24216 }
24217 }
24218 break;
24219
24220 case DW_MACRO_start_file:
24221 {
24222 unsigned int bytes_read;
24223 int line, file;
24224
24225 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24226 mac_ptr += bytes_read;
24227 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24228 mac_ptr += bytes_read;
24229
24230 if ((line == 0 && !at_commandline)
24231 || (line != 0 && at_commandline))
24232 complaint (_("debug info gives source %d included "
24233 "from %s at %s line %d"),
24234 file, at_commandline ? _("command-line") : _("file"),
24235 line == 0 ? _("zero") : _("non-zero"), line);
24236
24237 if (at_commandline)
24238 {
24239 /* This DW_MACRO_start_file was executed in the
24240 pass one. */
24241 at_commandline = 0;
24242 }
24243 else
24244 current_file = macro_start_file (file, line, current_file, lh);
24245 }
24246 break;
24247
24248 case DW_MACRO_end_file:
24249 if (! current_file)
24250 complaint (_("macro debug info has an unmatched "
24251 "`close_file' directive"));
24252 else
24253 {
24254 current_file = current_file->included_by;
24255 if (! current_file)
24256 {
24257 enum dwarf_macro_record_type next_type;
24258
24259 /* GCC circa March 2002 doesn't produce the zero
24260 type byte marking the end of the compilation
24261 unit. Complain if it's not there, but exit no
24262 matter what. */
24263
24264 /* Do we at least have room for a macinfo type byte? */
24265 if (mac_ptr >= mac_end)
24266 {
24267 dwarf2_section_buffer_overflow_complaint (section);
24268 return;
24269 }
24270
24271 /* We don't increment mac_ptr here, so this is just
24272 a look-ahead. */
24273 next_type
24274 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24275 mac_ptr);
24276 if (next_type != 0)
24277 complaint (_("no terminating 0-type entry for "
24278 "macros in `.debug_macinfo' section"));
24279
24280 return;
24281 }
24282 }
24283 break;
24284
24285 case DW_MACRO_import:
24286 case DW_MACRO_import_sup:
24287 {
24288 LONGEST offset;
24289 void **slot;
24290 bfd *include_bfd = abfd;
24291 struct dwarf2_section_info *include_section = section;
24292 const gdb_byte *include_mac_end = mac_end;
24293 int is_dwz = section_is_dwz;
24294 const gdb_byte *new_mac_ptr;
24295
24296 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24297 mac_ptr += offset_size;
24298
24299 if (macinfo_type == DW_MACRO_import_sup)
24300 {
24301 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24302
24303 dwarf2_read_section (objfile, &dwz->macro);
24304
24305 include_section = &dwz->macro;
24306 include_bfd = get_section_bfd_owner (include_section);
24307 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24308 is_dwz = 1;
24309 }
24310
24311 new_mac_ptr = include_section->buffer + offset;
24312 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24313
24314 if (*slot != NULL)
24315 {
24316 /* This has actually happened; see
24317 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24318 complaint (_("recursive DW_MACRO_import in "
24319 ".debug_macro section"));
24320 }
24321 else
24322 {
24323 *slot = (void *) new_mac_ptr;
24324
24325 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24326 include_bfd, new_mac_ptr,
24327 include_mac_end, current_file, lh,
24328 section, section_is_gnu, is_dwz,
24329 offset_size, include_hash);
24330
24331 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24332 }
24333 }
24334 break;
24335
24336 case DW_MACINFO_vendor_ext:
24337 if (!section_is_gnu)
24338 {
24339 unsigned int bytes_read;
24340
24341 /* This reads the constant, but since we don't recognize
24342 any vendor extensions, we ignore it. */
24343 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24344 mac_ptr += bytes_read;
24345 read_direct_string (abfd, mac_ptr, &bytes_read);
24346 mac_ptr += bytes_read;
24347
24348 /* We don't recognize any vendor extensions. */
24349 break;
24350 }
24351 /* FALLTHROUGH */
24352
24353 default:
24354 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24355 mac_ptr, mac_end, abfd, offset_size,
24356 section);
24357 if (mac_ptr == NULL)
24358 return;
24359 break;
24360 }
24361 DIAGNOSTIC_POP
24362 } while (macinfo_type != 0);
24363 }
24364
24365 static void
24366 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24367 int section_is_gnu)
24368 {
24369 struct dwarf2_per_objfile *dwarf2_per_objfile
24370 = cu->per_cu->dwarf2_per_objfile;
24371 struct objfile *objfile = dwarf2_per_objfile->objfile;
24372 struct line_header *lh = cu->line_header;
24373 bfd *abfd;
24374 const gdb_byte *mac_ptr, *mac_end;
24375 struct macro_source_file *current_file = 0;
24376 enum dwarf_macro_record_type macinfo_type;
24377 unsigned int offset_size = cu->header.offset_size;
24378 const gdb_byte *opcode_definitions[256];
24379 void **slot;
24380 struct dwarf2_section_info *section;
24381 const char *section_name;
24382
24383 if (cu->dwo_unit != NULL)
24384 {
24385 if (section_is_gnu)
24386 {
24387 section = &cu->dwo_unit->dwo_file->sections.macro;
24388 section_name = ".debug_macro.dwo";
24389 }
24390 else
24391 {
24392 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24393 section_name = ".debug_macinfo.dwo";
24394 }
24395 }
24396 else
24397 {
24398 if (section_is_gnu)
24399 {
24400 section = &dwarf2_per_objfile->macro;
24401 section_name = ".debug_macro";
24402 }
24403 else
24404 {
24405 section = &dwarf2_per_objfile->macinfo;
24406 section_name = ".debug_macinfo";
24407 }
24408 }
24409
24410 dwarf2_read_section (objfile, section);
24411 if (section->buffer == NULL)
24412 {
24413 complaint (_("missing %s section"), section_name);
24414 return;
24415 }
24416 abfd = get_section_bfd_owner (section);
24417
24418 /* First pass: Find the name of the base filename.
24419 This filename is needed in order to process all macros whose definition
24420 (or undefinition) comes from the command line. These macros are defined
24421 before the first DW_MACINFO_start_file entry, and yet still need to be
24422 associated to the base file.
24423
24424 To determine the base file name, we scan the macro definitions until we
24425 reach the first DW_MACINFO_start_file entry. We then initialize
24426 CURRENT_FILE accordingly so that any macro definition found before the
24427 first DW_MACINFO_start_file can still be associated to the base file. */
24428
24429 mac_ptr = section->buffer + offset;
24430 mac_end = section->buffer + section->size;
24431
24432 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24433 &offset_size, section_is_gnu);
24434 if (mac_ptr == NULL)
24435 {
24436 /* We already issued a complaint. */
24437 return;
24438 }
24439
24440 do
24441 {
24442 /* Do we at least have room for a macinfo type byte? */
24443 if (mac_ptr >= mac_end)
24444 {
24445 /* Complaint is printed during the second pass as GDB will probably
24446 stop the first pass earlier upon finding
24447 DW_MACINFO_start_file. */
24448 break;
24449 }
24450
24451 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24452 mac_ptr++;
24453
24454 /* Note that we rely on the fact that the corresponding GNU and
24455 DWARF constants are the same. */
24456 DIAGNOSTIC_PUSH
24457 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24458 switch (macinfo_type)
24459 {
24460 /* A zero macinfo type indicates the end of the macro
24461 information. */
24462 case 0:
24463 break;
24464
24465 case DW_MACRO_define:
24466 case DW_MACRO_undef:
24467 /* Only skip the data by MAC_PTR. */
24468 {
24469 unsigned int bytes_read;
24470
24471 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24472 mac_ptr += bytes_read;
24473 read_direct_string (abfd, mac_ptr, &bytes_read);
24474 mac_ptr += bytes_read;
24475 }
24476 break;
24477
24478 case DW_MACRO_start_file:
24479 {
24480 unsigned int bytes_read;
24481 int line, file;
24482
24483 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24484 mac_ptr += bytes_read;
24485 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24486 mac_ptr += bytes_read;
24487
24488 current_file = macro_start_file (file, line, current_file, lh);
24489 }
24490 break;
24491
24492 case DW_MACRO_end_file:
24493 /* No data to skip by MAC_PTR. */
24494 break;
24495
24496 case DW_MACRO_define_strp:
24497 case DW_MACRO_undef_strp:
24498 case DW_MACRO_define_sup:
24499 case DW_MACRO_undef_sup:
24500 {
24501 unsigned int bytes_read;
24502
24503 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24504 mac_ptr += bytes_read;
24505 mac_ptr += offset_size;
24506 }
24507 break;
24508
24509 case DW_MACRO_import:
24510 case DW_MACRO_import_sup:
24511 /* Note that, according to the spec, a transparent include
24512 chain cannot call DW_MACRO_start_file. So, we can just
24513 skip this opcode. */
24514 mac_ptr += offset_size;
24515 break;
24516
24517 case DW_MACINFO_vendor_ext:
24518 /* Only skip the data by MAC_PTR. */
24519 if (!section_is_gnu)
24520 {
24521 unsigned int bytes_read;
24522
24523 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24524 mac_ptr += bytes_read;
24525 read_direct_string (abfd, mac_ptr, &bytes_read);
24526 mac_ptr += bytes_read;
24527 }
24528 /* FALLTHROUGH */
24529
24530 default:
24531 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24532 mac_ptr, mac_end, abfd, offset_size,
24533 section);
24534 if (mac_ptr == NULL)
24535 return;
24536 break;
24537 }
24538 DIAGNOSTIC_POP
24539 } while (macinfo_type != 0 && current_file == NULL);
24540
24541 /* Second pass: Process all entries.
24542
24543 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24544 command-line macro definitions/undefinitions. This flag is unset when we
24545 reach the first DW_MACINFO_start_file entry. */
24546
24547 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24548 htab_eq_pointer,
24549 NULL, xcalloc, xfree));
24550 mac_ptr = section->buffer + offset;
24551 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24552 *slot = (void *) mac_ptr;
24553 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24554 abfd, mac_ptr, mac_end,
24555 current_file, lh, section,
24556 section_is_gnu, 0, offset_size,
24557 include_hash.get ());
24558 }
24559
24560 /* Check if the attribute's form is a DW_FORM_block*
24561 if so return true else false. */
24562
24563 static int
24564 attr_form_is_block (const struct attribute *attr)
24565 {
24566 return (attr == NULL ? 0 :
24567 attr->form == DW_FORM_block1
24568 || attr->form == DW_FORM_block2
24569 || attr->form == DW_FORM_block4
24570 || attr->form == DW_FORM_block
24571 || attr->form == DW_FORM_exprloc);
24572 }
24573
24574 /* Return non-zero if ATTR's value is a section offset --- classes
24575 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24576 You may use DW_UNSND (attr) to retrieve such offsets.
24577
24578 Section 7.5.4, "Attribute Encodings", explains that no attribute
24579 may have a value that belongs to more than one of these classes; it
24580 would be ambiguous if we did, because we use the same forms for all
24581 of them. */
24582
24583 static int
24584 attr_form_is_section_offset (const struct attribute *attr)
24585 {
24586 return (attr->form == DW_FORM_data4
24587 || attr->form == DW_FORM_data8
24588 || attr->form == DW_FORM_sec_offset);
24589 }
24590
24591 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24592 zero otherwise. When this function returns true, you can apply
24593 dwarf2_get_attr_constant_value to it.
24594
24595 However, note that for some attributes you must check
24596 attr_form_is_section_offset before using this test. DW_FORM_data4
24597 and DW_FORM_data8 are members of both the constant class, and of
24598 the classes that contain offsets into other debug sections
24599 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24600 that, if an attribute's can be either a constant or one of the
24601 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24602 taken as section offsets, not constants.
24603
24604 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24605 cannot handle that. */
24606
24607 static int
24608 attr_form_is_constant (const struct attribute *attr)
24609 {
24610 switch (attr->form)
24611 {
24612 case DW_FORM_sdata:
24613 case DW_FORM_udata:
24614 case DW_FORM_data1:
24615 case DW_FORM_data2:
24616 case DW_FORM_data4:
24617 case DW_FORM_data8:
24618 case DW_FORM_implicit_const:
24619 return 1;
24620 default:
24621 return 0;
24622 }
24623 }
24624
24625
24626 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24627 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24628
24629 static int
24630 attr_form_is_ref (const struct attribute *attr)
24631 {
24632 switch (attr->form)
24633 {
24634 case DW_FORM_ref_addr:
24635 case DW_FORM_ref1:
24636 case DW_FORM_ref2:
24637 case DW_FORM_ref4:
24638 case DW_FORM_ref8:
24639 case DW_FORM_ref_udata:
24640 case DW_FORM_GNU_ref_alt:
24641 return 1;
24642 default:
24643 return 0;
24644 }
24645 }
24646
24647 /* Return the .debug_loc section to use for CU.
24648 For DWO files use .debug_loc.dwo. */
24649
24650 static struct dwarf2_section_info *
24651 cu_debug_loc_section (struct dwarf2_cu *cu)
24652 {
24653 struct dwarf2_per_objfile *dwarf2_per_objfile
24654 = cu->per_cu->dwarf2_per_objfile;
24655
24656 if (cu->dwo_unit)
24657 {
24658 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24659
24660 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24661 }
24662 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24663 : &dwarf2_per_objfile->loc);
24664 }
24665
24666 /* A helper function that fills in a dwarf2_loclist_baton. */
24667
24668 static void
24669 fill_in_loclist_baton (struct dwarf2_cu *cu,
24670 struct dwarf2_loclist_baton *baton,
24671 const struct attribute *attr)
24672 {
24673 struct dwarf2_per_objfile *dwarf2_per_objfile
24674 = cu->per_cu->dwarf2_per_objfile;
24675 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24676
24677 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24678
24679 baton->per_cu = cu->per_cu;
24680 gdb_assert (baton->per_cu);
24681 /* We don't know how long the location list is, but make sure we
24682 don't run off the edge of the section. */
24683 baton->size = section->size - DW_UNSND (attr);
24684 baton->data = section->buffer + DW_UNSND (attr);
24685 baton->base_address = cu->base_address;
24686 baton->from_dwo = cu->dwo_unit != NULL;
24687 }
24688
24689 static void
24690 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24691 struct dwarf2_cu *cu, int is_block)
24692 {
24693 struct dwarf2_per_objfile *dwarf2_per_objfile
24694 = cu->per_cu->dwarf2_per_objfile;
24695 struct objfile *objfile = dwarf2_per_objfile->objfile;
24696 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24697
24698 if (attr_form_is_section_offset (attr)
24699 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24700 the section. If so, fall through to the complaint in the
24701 other branch. */
24702 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24703 {
24704 struct dwarf2_loclist_baton *baton;
24705
24706 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24707
24708 fill_in_loclist_baton (cu, baton, attr);
24709
24710 if (cu->base_known == 0)
24711 complaint (_("Location list used without "
24712 "specifying the CU base address."));
24713
24714 SYMBOL_ACLASS_INDEX (sym) = (is_block
24715 ? dwarf2_loclist_block_index
24716 : dwarf2_loclist_index);
24717 SYMBOL_LOCATION_BATON (sym) = baton;
24718 }
24719 else
24720 {
24721 struct dwarf2_locexpr_baton *baton;
24722
24723 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24724 baton->per_cu = cu->per_cu;
24725 gdb_assert (baton->per_cu);
24726
24727 if (attr_form_is_block (attr))
24728 {
24729 /* Note that we're just copying the block's data pointer
24730 here, not the actual data. We're still pointing into the
24731 info_buffer for SYM's objfile; right now we never release
24732 that buffer, but when we do clean up properly this may
24733 need to change. */
24734 baton->size = DW_BLOCK (attr)->size;
24735 baton->data = DW_BLOCK (attr)->data;
24736 }
24737 else
24738 {
24739 dwarf2_invalid_attrib_class_complaint ("location description",
24740 SYMBOL_NATURAL_NAME (sym));
24741 baton->size = 0;
24742 }
24743
24744 SYMBOL_ACLASS_INDEX (sym) = (is_block
24745 ? dwarf2_locexpr_block_index
24746 : dwarf2_locexpr_index);
24747 SYMBOL_LOCATION_BATON (sym) = baton;
24748 }
24749 }
24750
24751 /* Return the OBJFILE associated with the compilation unit CU. If CU
24752 came from a separate debuginfo file, then the master objfile is
24753 returned. */
24754
24755 struct objfile *
24756 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24757 {
24758 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24759
24760 /* Return the master objfile, so that we can report and look up the
24761 correct file containing this variable. */
24762 if (objfile->separate_debug_objfile_backlink)
24763 objfile = objfile->separate_debug_objfile_backlink;
24764
24765 return objfile;
24766 }
24767
24768 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24769 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24770 CU_HEADERP first. */
24771
24772 static const struct comp_unit_head *
24773 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24774 struct dwarf2_per_cu_data *per_cu)
24775 {
24776 const gdb_byte *info_ptr;
24777
24778 if (per_cu->cu)
24779 return &per_cu->cu->header;
24780
24781 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24782
24783 memset (cu_headerp, 0, sizeof (*cu_headerp));
24784 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24785 rcuh_kind::COMPILE);
24786
24787 return cu_headerp;
24788 }
24789
24790 /* Return the address size given in the compilation unit header for CU. */
24791
24792 int
24793 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24794 {
24795 struct comp_unit_head cu_header_local;
24796 const struct comp_unit_head *cu_headerp;
24797
24798 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24799
24800 return cu_headerp->addr_size;
24801 }
24802
24803 /* Return the offset size given in the compilation unit header for CU. */
24804
24805 int
24806 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24807 {
24808 struct comp_unit_head cu_header_local;
24809 const struct comp_unit_head *cu_headerp;
24810
24811 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24812
24813 return cu_headerp->offset_size;
24814 }
24815
24816 /* See its dwarf2loc.h declaration. */
24817
24818 int
24819 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24820 {
24821 struct comp_unit_head cu_header_local;
24822 const struct comp_unit_head *cu_headerp;
24823
24824 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24825
24826 if (cu_headerp->version == 2)
24827 return cu_headerp->addr_size;
24828 else
24829 return cu_headerp->offset_size;
24830 }
24831
24832 /* Return the text offset of the CU. The returned offset comes from
24833 this CU's objfile. If this objfile came from a separate debuginfo
24834 file, then the offset may be different from the corresponding
24835 offset in the parent objfile. */
24836
24837 CORE_ADDR
24838 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24839 {
24840 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24841
24842 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24843 }
24844
24845 /* Return DWARF version number of PER_CU. */
24846
24847 short
24848 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24849 {
24850 return per_cu->dwarf_version;
24851 }
24852
24853 /* Locate the .debug_info compilation unit from CU's objfile which contains
24854 the DIE at OFFSET. Raises an error on failure. */
24855
24856 static struct dwarf2_per_cu_data *
24857 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24858 unsigned int offset_in_dwz,
24859 struct dwarf2_per_objfile *dwarf2_per_objfile)
24860 {
24861 struct dwarf2_per_cu_data *this_cu;
24862 int low, high;
24863 const sect_offset *cu_off;
24864
24865 low = 0;
24866 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24867 while (high > low)
24868 {
24869 struct dwarf2_per_cu_data *mid_cu;
24870 int mid = low + (high - low) / 2;
24871
24872 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24873 cu_off = &mid_cu->sect_off;
24874 if (mid_cu->is_dwz > offset_in_dwz
24875 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24876 high = mid;
24877 else
24878 low = mid + 1;
24879 }
24880 gdb_assert (low == high);
24881 this_cu = dwarf2_per_objfile->all_comp_units[low];
24882 cu_off = &this_cu->sect_off;
24883 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24884 {
24885 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24886 error (_("Dwarf Error: could not find partial DIE containing "
24887 "offset %s [in module %s]"),
24888 sect_offset_str (sect_off),
24889 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24890
24891 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24892 <= sect_off);
24893 return dwarf2_per_objfile->all_comp_units[low-1];
24894 }
24895 else
24896 {
24897 this_cu = dwarf2_per_objfile->all_comp_units[low];
24898 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24899 && sect_off >= this_cu->sect_off + this_cu->length)
24900 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24901 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24902 return this_cu;
24903 }
24904 }
24905
24906 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24907
24908 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24909 : per_cu (per_cu_),
24910 mark (0),
24911 has_loclist (0),
24912 checked_producer (0),
24913 producer_is_gxx_lt_4_6 (0),
24914 producer_is_gcc_lt_4_3 (0),
24915 producer_is_icc_lt_14 (0),
24916 processing_has_namespace_info (0)
24917 {
24918 per_cu->cu = this;
24919 }
24920
24921 /* Destroy a dwarf2_cu. */
24922
24923 dwarf2_cu::~dwarf2_cu ()
24924 {
24925 per_cu->cu = NULL;
24926 }
24927
24928 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24929
24930 static void
24931 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24932 enum language pretend_language)
24933 {
24934 struct attribute *attr;
24935
24936 /* Set the language we're debugging. */
24937 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24938 if (attr)
24939 set_cu_language (DW_UNSND (attr), cu);
24940 else
24941 {
24942 cu->language = pretend_language;
24943 cu->language_defn = language_def (cu->language);
24944 }
24945
24946 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24947 }
24948
24949 /* Increase the age counter on each cached compilation unit, and free
24950 any that are too old. */
24951
24952 static void
24953 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24954 {
24955 struct dwarf2_per_cu_data *per_cu, **last_chain;
24956
24957 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24958 per_cu = dwarf2_per_objfile->read_in_chain;
24959 while (per_cu != NULL)
24960 {
24961 per_cu->cu->last_used ++;
24962 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24963 dwarf2_mark (per_cu->cu);
24964 per_cu = per_cu->cu->read_in_chain;
24965 }
24966
24967 per_cu = dwarf2_per_objfile->read_in_chain;
24968 last_chain = &dwarf2_per_objfile->read_in_chain;
24969 while (per_cu != NULL)
24970 {
24971 struct dwarf2_per_cu_data *next_cu;
24972
24973 next_cu = per_cu->cu->read_in_chain;
24974
24975 if (!per_cu->cu->mark)
24976 {
24977 delete per_cu->cu;
24978 *last_chain = next_cu;
24979 }
24980 else
24981 last_chain = &per_cu->cu->read_in_chain;
24982
24983 per_cu = next_cu;
24984 }
24985 }
24986
24987 /* Remove a single compilation unit from the cache. */
24988
24989 static void
24990 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24991 {
24992 struct dwarf2_per_cu_data *per_cu, **last_chain;
24993 struct dwarf2_per_objfile *dwarf2_per_objfile
24994 = target_per_cu->dwarf2_per_objfile;
24995
24996 per_cu = dwarf2_per_objfile->read_in_chain;
24997 last_chain = &dwarf2_per_objfile->read_in_chain;
24998 while (per_cu != NULL)
24999 {
25000 struct dwarf2_per_cu_data *next_cu;
25001
25002 next_cu = per_cu->cu->read_in_chain;
25003
25004 if (per_cu == target_per_cu)
25005 {
25006 delete per_cu->cu;
25007 per_cu->cu = NULL;
25008 *last_chain = next_cu;
25009 break;
25010 }
25011 else
25012 last_chain = &per_cu->cu->read_in_chain;
25013
25014 per_cu = next_cu;
25015 }
25016 }
25017
25018 /* Release all extra memory associated with OBJFILE. */
25019
25020 void
25021 dwarf2_free_objfile (struct objfile *objfile)
25022 {
25023 struct dwarf2_per_objfile *dwarf2_per_objfile
25024 = get_dwarf2_per_objfile (objfile);
25025
25026 delete dwarf2_per_objfile;
25027 }
25028
25029 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25030 We store these in a hash table separate from the DIEs, and preserve them
25031 when the DIEs are flushed out of cache.
25032
25033 The CU "per_cu" pointer is needed because offset alone is not enough to
25034 uniquely identify the type. A file may have multiple .debug_types sections,
25035 or the type may come from a DWO file. Furthermore, while it's more logical
25036 to use per_cu->section+offset, with Fission the section with the data is in
25037 the DWO file but we don't know that section at the point we need it.
25038 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25039 because we can enter the lookup routine, get_die_type_at_offset, from
25040 outside this file, and thus won't necessarily have PER_CU->cu.
25041 Fortunately, PER_CU is stable for the life of the objfile. */
25042
25043 struct dwarf2_per_cu_offset_and_type
25044 {
25045 const struct dwarf2_per_cu_data *per_cu;
25046 sect_offset sect_off;
25047 struct type *type;
25048 };
25049
25050 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25051
25052 static hashval_t
25053 per_cu_offset_and_type_hash (const void *item)
25054 {
25055 const struct dwarf2_per_cu_offset_and_type *ofs
25056 = (const struct dwarf2_per_cu_offset_and_type *) item;
25057
25058 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25059 }
25060
25061 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25062
25063 static int
25064 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25065 {
25066 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25067 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25068 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25069 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25070
25071 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25072 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25073 }
25074
25075 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25076 table if necessary. For convenience, return TYPE.
25077
25078 The DIEs reading must have careful ordering to:
25079 * Not cause infite loops trying to read in DIEs as a prerequisite for
25080 reading current DIE.
25081 * Not trying to dereference contents of still incompletely read in types
25082 while reading in other DIEs.
25083 * Enable referencing still incompletely read in types just by a pointer to
25084 the type without accessing its fields.
25085
25086 Therefore caller should follow these rules:
25087 * Try to fetch any prerequisite types we may need to build this DIE type
25088 before building the type and calling set_die_type.
25089 * After building type call set_die_type for current DIE as soon as
25090 possible before fetching more types to complete the current type.
25091 * Make the type as complete as possible before fetching more types. */
25092
25093 static struct type *
25094 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25095 {
25096 struct dwarf2_per_objfile *dwarf2_per_objfile
25097 = cu->per_cu->dwarf2_per_objfile;
25098 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25099 struct objfile *objfile = dwarf2_per_objfile->objfile;
25100 struct attribute *attr;
25101 struct dynamic_prop prop;
25102
25103 /* For Ada types, make sure that the gnat-specific data is always
25104 initialized (if not already set). There are a few types where
25105 we should not be doing so, because the type-specific area is
25106 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25107 where the type-specific area is used to store the floatformat).
25108 But this is not a problem, because the gnat-specific information
25109 is actually not needed for these types. */
25110 if (need_gnat_info (cu)
25111 && TYPE_CODE (type) != TYPE_CODE_FUNC
25112 && TYPE_CODE (type) != TYPE_CODE_FLT
25113 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25114 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25115 && TYPE_CODE (type) != TYPE_CODE_METHOD
25116 && !HAVE_GNAT_AUX_INFO (type))
25117 INIT_GNAT_SPECIFIC (type);
25118
25119 /* Read DW_AT_allocated and set in type. */
25120 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25121 if (attr_form_is_block (attr))
25122 {
25123 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25124 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25125 }
25126 else if (attr != NULL)
25127 {
25128 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25129 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25130 sect_offset_str (die->sect_off));
25131 }
25132
25133 /* Read DW_AT_associated and set in type. */
25134 attr = dwarf2_attr (die, DW_AT_associated, cu);
25135 if (attr_form_is_block (attr))
25136 {
25137 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25138 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25139 }
25140 else if (attr != NULL)
25141 {
25142 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25143 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25144 sect_offset_str (die->sect_off));
25145 }
25146
25147 /* Read DW_AT_data_location and set in type. */
25148 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25149 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25150 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25151
25152 if (dwarf2_per_objfile->die_type_hash == NULL)
25153 {
25154 dwarf2_per_objfile->die_type_hash =
25155 htab_create_alloc_ex (127,
25156 per_cu_offset_and_type_hash,
25157 per_cu_offset_and_type_eq,
25158 NULL,
25159 &objfile->objfile_obstack,
25160 hashtab_obstack_allocate,
25161 dummy_obstack_deallocate);
25162 }
25163
25164 ofs.per_cu = cu->per_cu;
25165 ofs.sect_off = die->sect_off;
25166 ofs.type = type;
25167 slot = (struct dwarf2_per_cu_offset_and_type **)
25168 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25169 if (*slot)
25170 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25171 sect_offset_str (die->sect_off));
25172 *slot = XOBNEW (&objfile->objfile_obstack,
25173 struct dwarf2_per_cu_offset_and_type);
25174 **slot = ofs;
25175 return type;
25176 }
25177
25178 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25179 or return NULL if the die does not have a saved type. */
25180
25181 static struct type *
25182 get_die_type_at_offset (sect_offset sect_off,
25183 struct dwarf2_per_cu_data *per_cu)
25184 {
25185 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25186 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25187
25188 if (dwarf2_per_objfile->die_type_hash == NULL)
25189 return NULL;
25190
25191 ofs.per_cu = per_cu;
25192 ofs.sect_off = sect_off;
25193 slot = ((struct dwarf2_per_cu_offset_and_type *)
25194 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25195 if (slot)
25196 return slot->type;
25197 else
25198 return NULL;
25199 }
25200
25201 /* Look up the type for DIE in CU in die_type_hash,
25202 or return NULL if DIE does not have a saved type. */
25203
25204 static struct type *
25205 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25206 {
25207 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25208 }
25209
25210 /* Add a dependence relationship from CU to REF_PER_CU. */
25211
25212 static void
25213 dwarf2_add_dependence (struct dwarf2_cu *cu,
25214 struct dwarf2_per_cu_data *ref_per_cu)
25215 {
25216 void **slot;
25217
25218 if (cu->dependencies == NULL)
25219 cu->dependencies
25220 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25221 NULL, &cu->comp_unit_obstack,
25222 hashtab_obstack_allocate,
25223 dummy_obstack_deallocate);
25224
25225 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25226 if (*slot == NULL)
25227 *slot = ref_per_cu;
25228 }
25229
25230 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25231 Set the mark field in every compilation unit in the
25232 cache that we must keep because we are keeping CU. */
25233
25234 static int
25235 dwarf2_mark_helper (void **slot, void *data)
25236 {
25237 struct dwarf2_per_cu_data *per_cu;
25238
25239 per_cu = (struct dwarf2_per_cu_data *) *slot;
25240
25241 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25242 reading of the chain. As such dependencies remain valid it is not much
25243 useful to track and undo them during QUIT cleanups. */
25244 if (per_cu->cu == NULL)
25245 return 1;
25246
25247 if (per_cu->cu->mark)
25248 return 1;
25249 per_cu->cu->mark = 1;
25250
25251 if (per_cu->cu->dependencies != NULL)
25252 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25253
25254 return 1;
25255 }
25256
25257 /* Set the mark field in CU and in every other compilation unit in the
25258 cache that we must keep because we are keeping CU. */
25259
25260 static void
25261 dwarf2_mark (struct dwarf2_cu *cu)
25262 {
25263 if (cu->mark)
25264 return;
25265 cu->mark = 1;
25266 if (cu->dependencies != NULL)
25267 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25268 }
25269
25270 static void
25271 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25272 {
25273 while (per_cu)
25274 {
25275 per_cu->cu->mark = 0;
25276 per_cu = per_cu->cu->read_in_chain;
25277 }
25278 }
25279
25280 /* Trivial hash function for partial_die_info: the hash value of a DIE
25281 is its offset in .debug_info for this objfile. */
25282
25283 static hashval_t
25284 partial_die_hash (const void *item)
25285 {
25286 const struct partial_die_info *part_die
25287 = (const struct partial_die_info *) item;
25288
25289 return to_underlying (part_die->sect_off);
25290 }
25291
25292 /* Trivial comparison function for partial_die_info structures: two DIEs
25293 are equal if they have the same offset. */
25294
25295 static int
25296 partial_die_eq (const void *item_lhs, const void *item_rhs)
25297 {
25298 const struct partial_die_info *part_die_lhs
25299 = (const struct partial_die_info *) item_lhs;
25300 const struct partial_die_info *part_die_rhs
25301 = (const struct partial_die_info *) item_rhs;
25302
25303 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25304 }
25305
25306 static struct cmd_list_element *set_dwarf_cmdlist;
25307 static struct cmd_list_element *show_dwarf_cmdlist;
25308
25309 static void
25310 set_dwarf_cmd (const char *args, int from_tty)
25311 {
25312 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25313 gdb_stdout);
25314 }
25315
25316 static void
25317 show_dwarf_cmd (const char *args, int from_tty)
25318 {
25319 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25320 }
25321
25322 int dwarf_always_disassemble;
25323
25324 static void
25325 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25326 struct cmd_list_element *c, const char *value)
25327 {
25328 fprintf_filtered (file,
25329 _("Whether to always disassemble "
25330 "DWARF expressions is %s.\n"),
25331 value);
25332 }
25333
25334 static void
25335 show_check_physname (struct ui_file *file, int from_tty,
25336 struct cmd_list_element *c, const char *value)
25337 {
25338 fprintf_filtered (file,
25339 _("Whether to check \"physname\" is %s.\n"),
25340 value);
25341 }
25342
25343 void
25344 _initialize_dwarf2_read (void)
25345 {
25346
25347 dwarf2_objfile_data_key = register_objfile_data ();
25348
25349 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25350 Set DWARF specific variables.\n\
25351 Configure DWARF variables such as the cache size"),
25352 &set_dwarf_cmdlist, "maintenance set dwarf ",
25353 0/*allow-unknown*/, &maintenance_set_cmdlist);
25354
25355 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25356 Show DWARF specific variables\n\
25357 Show DWARF variables such as the cache size"),
25358 &show_dwarf_cmdlist, "maintenance show dwarf ",
25359 0/*allow-unknown*/, &maintenance_show_cmdlist);
25360
25361 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25362 &dwarf_max_cache_age, _("\
25363 Set the upper bound on the age of cached DWARF compilation units."), _("\
25364 Show the upper bound on the age of cached DWARF compilation units."), _("\
25365 A higher limit means that cached compilation units will be stored\n\
25366 in memory longer, and more total memory will be used. Zero disables\n\
25367 caching, which can slow down startup."),
25368 NULL,
25369 show_dwarf_max_cache_age,
25370 &set_dwarf_cmdlist,
25371 &show_dwarf_cmdlist);
25372
25373 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25374 &dwarf_always_disassemble, _("\
25375 Set whether `info address' always disassembles DWARF expressions."), _("\
25376 Show whether `info address' always disassembles DWARF expressions."), _("\
25377 When enabled, DWARF expressions are always printed in an assembly-like\n\
25378 syntax. When disabled, expressions will be printed in a more\n\
25379 conversational style, when possible."),
25380 NULL,
25381 show_dwarf_always_disassemble,
25382 &set_dwarf_cmdlist,
25383 &show_dwarf_cmdlist);
25384
25385 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25386 Set debugging of the DWARF reader."), _("\
25387 Show debugging of the DWARF reader."), _("\
25388 When enabled (non-zero), debugging messages are printed during DWARF\n\
25389 reading and symtab expansion. A value of 1 (one) provides basic\n\
25390 information. A value greater than 1 provides more verbose information."),
25391 NULL,
25392 NULL,
25393 &setdebuglist, &showdebuglist);
25394
25395 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25396 Set debugging of the DWARF DIE reader."), _("\
25397 Show debugging of the DWARF DIE reader."), _("\
25398 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25399 The value is the maximum depth to print."),
25400 NULL,
25401 NULL,
25402 &setdebuglist, &showdebuglist);
25403
25404 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25405 Set debugging of the dwarf line reader."), _("\
25406 Show debugging of the dwarf line reader."), _("\
25407 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25408 A value of 1 (one) provides basic information.\n\
25409 A value greater than 1 provides more verbose information."),
25410 NULL,
25411 NULL,
25412 &setdebuglist, &showdebuglist);
25413
25414 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25415 Set cross-checking of \"physname\" code against demangler."), _("\
25416 Show cross-checking of \"physname\" code against demangler."), _("\
25417 When enabled, GDB's internal \"physname\" code is checked against\n\
25418 the demangler."),
25419 NULL, show_check_physname,
25420 &setdebuglist, &showdebuglist);
25421
25422 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25423 no_class, &use_deprecated_index_sections, _("\
25424 Set whether to use deprecated gdb_index sections."), _("\
25425 Show whether to use deprecated gdb_index sections."), _("\
25426 When enabled, deprecated .gdb_index sections are used anyway.\n\
25427 Normally they are ignored either because of a missing feature or\n\
25428 performance issue.\n\
25429 Warning: This option must be enabled before gdb reads the file."),
25430 NULL,
25431 NULL,
25432 &setlist, &showlist);
25433
25434 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25435 &dwarf2_locexpr_funcs);
25436 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25437 &dwarf2_loclist_funcs);
25438
25439 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25440 &dwarf2_block_frame_base_locexpr_funcs);
25441 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25442 &dwarf2_block_frame_base_loclist_funcs);
25443
25444 #if GDB_SELF_TEST
25445 selftests::register_test ("dw2_expand_symtabs_matching",
25446 selftests::dw2_expand_symtabs_matching::run_test);
25447 #endif
25448 }
This page took 0.510797 seconds and 5 git commands to generate.