Convert Rust to use discriminated unions
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "common/hash_enum.h"
78 #include "filename-seen-cache.h"
79 #include "producer.h"
80 #include <fcntl.h>
81 #include <sys/types.h>
82 #include <algorithm>
83 #include <unordered_set>
84 #include <unordered_map>
85 #include "selftest.h"
86 #include <cmath>
87 #include <set>
88 #include <forward_list>
89 #include "rust-lang.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 static unsigned int dwarf_line_debug = 0;
101
102 /* When non-zero, cross-check physname against demangler. */
103 static int check_physname = 0;
104
105 /* When non-zero, do not reject deprecated .gdb_index sections. */
106 static int use_deprecated_index_sections = 0;
107
108 static const struct objfile_data *dwarf2_objfile_data_key;
109
110 /* The "aclass" indices for various kinds of computed DWARF symbols. */
111
112 static int dwarf2_locexpr_index;
113 static int dwarf2_loclist_index;
114 static int dwarf2_locexpr_block_index;
115 static int dwarf2_loclist_block_index;
116
117 /* A descriptor for dwarf sections.
118
119 S.ASECTION, SIZE are typically initialized when the objfile is first
120 scanned. BUFFER, READIN are filled in later when the section is read.
121 If the section contained compressed data then SIZE is updated to record
122 the uncompressed size of the section.
123
124 DWP file format V2 introduces a wrinkle that is easiest to handle by
125 creating the concept of virtual sections contained within a real section.
126 In DWP V2 the sections of the input DWO files are concatenated together
127 into one section, but section offsets are kept relative to the original
128 input section.
129 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
130 the real section this "virtual" section is contained in, and BUFFER,SIZE
131 describe the virtual section. */
132
133 struct dwarf2_section_info
134 {
135 union
136 {
137 /* If this is a real section, the bfd section. */
138 asection *section;
139 /* If this is a virtual section, pointer to the containing ("real")
140 section. */
141 struct dwarf2_section_info *containing_section;
142 } s;
143 /* Pointer to section data, only valid if readin. */
144 const gdb_byte *buffer;
145 /* The size of the section, real or virtual. */
146 bfd_size_type size;
147 /* If this is a virtual section, the offset in the real section.
148 Only valid if is_virtual. */
149 bfd_size_type virtual_offset;
150 /* True if we have tried to read this section. */
151 char readin;
152 /* True if this is a virtual section, False otherwise.
153 This specifies which of s.section and s.containing_section to use. */
154 char is_virtual;
155 };
156
157 typedef struct dwarf2_section_info dwarf2_section_info_def;
158 DEF_VEC_O (dwarf2_section_info_def);
159
160 /* All offsets in the index are of this type. It must be
161 architecture-independent. */
162 typedef uint32_t offset_type;
163
164 DEF_VEC_I (offset_type);
165
166 /* Ensure only legit values are used. */
167 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert ((unsigned int) (value) <= 1); \
170 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* Ensure only legit values are used. */
174 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
175 do { \
176 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
177 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
178 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
179 } while (0)
180
181 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
182 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
183 do { \
184 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
185 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
186 } while (0)
187
188 #if WORDS_BIGENDIAN
189
190 /* Convert VALUE between big- and little-endian. */
191
192 static offset_type
193 byte_swap (offset_type value)
194 {
195 offset_type result;
196
197 result = (value & 0xff) << 24;
198 result |= (value & 0xff00) << 8;
199 result |= (value & 0xff0000) >> 8;
200 result |= (value & 0xff000000) >> 24;
201 return result;
202 }
203
204 #define MAYBE_SWAP(V) byte_swap (V)
205
206 #else
207 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
208 #endif /* WORDS_BIGENDIAN */
209
210 /* An index into a (C++) symbol name component in a symbol name as
211 recorded in the mapped_index's symbol table. For each C++ symbol
212 in the symbol table, we record one entry for the start of each
213 component in the symbol in a table of name components, and then
214 sort the table, in order to be able to binary search symbol names,
215 ignoring leading namespaces, both completion and regular look up.
216 For example, for symbol "A::B::C", we'll have an entry that points
217 to "A::B::C", another that points to "B::C", and another for "C".
218 Note that function symbols in GDB index have no parameter
219 information, just the function/method names. You can convert a
220 name_component to a "const char *" using the
221 'mapped_index::symbol_name_at(offset_type)' method. */
222
223 struct name_component
224 {
225 /* Offset in the symbol name where the component starts. Stored as
226 a (32-bit) offset instead of a pointer to save memory and improve
227 locality on 64-bit architectures. */
228 offset_type name_offset;
229
230 /* The symbol's index in the symbol and constant pool tables of a
231 mapped_index. */
232 offset_type idx;
233 };
234
235 /* Base class containing bits shared by both .gdb_index and
236 .debug_name indexes. */
237
238 struct mapped_index_base
239 {
240 /* The name_component table (a sorted vector). See name_component's
241 description above. */
242 std::vector<name_component> name_components;
243
244 /* How NAME_COMPONENTS is sorted. */
245 enum case_sensitivity name_components_casing;
246
247 /* Return the number of names in the symbol table. */
248 virtual size_t symbol_name_count () const = 0;
249
250 /* Get the name of the symbol at IDX in the symbol table. */
251 virtual const char *symbol_name_at (offset_type idx) const = 0;
252
253 /* Return whether the name at IDX in the symbol table should be
254 ignored. */
255 virtual bool symbol_name_slot_invalid (offset_type idx) const
256 {
257 return false;
258 }
259
260 /* Build the symbol name component sorted vector, if we haven't
261 yet. */
262 void build_name_components ();
263
264 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
265 possible matches for LN_NO_PARAMS in the name component
266 vector. */
267 std::pair<std::vector<name_component>::const_iterator,
268 std::vector<name_component>::const_iterator>
269 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
270
271 /* Prevent deleting/destroying via a base class pointer. */
272 protected:
273 ~mapped_index_base() = default;
274 };
275
276 /* A description of the mapped index. The file format is described in
277 a comment by the code that writes the index. */
278 struct mapped_index final : public mapped_index_base
279 {
280 /* A slot/bucket in the symbol table hash. */
281 struct symbol_table_slot
282 {
283 const offset_type name;
284 const offset_type vec;
285 };
286
287 /* Index data format version. */
288 int version;
289
290 /* The total length of the buffer. */
291 off_t total_size;
292
293 /* The address table data. */
294 gdb::array_view<const gdb_byte> address_table;
295
296 /* The symbol table, implemented as a hash table. */
297 gdb::array_view<symbol_table_slot> symbol_table;
298
299 /* A pointer to the constant pool. */
300 const char *constant_pool;
301
302 bool symbol_name_slot_invalid (offset_type idx) const override
303 {
304 const auto &bucket = this->symbol_table[idx];
305 return bucket.name == 0 && bucket.vec;
306 }
307
308 /* Convenience method to get at the name of the symbol at IDX in the
309 symbol table. */
310 const char *symbol_name_at (offset_type idx) const override
311 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
312
313 size_t symbol_name_count () const override
314 { return this->symbol_table.size (); }
315 };
316
317 /* A description of the mapped .debug_names.
318 Uninitialized map has CU_COUNT 0. */
319 struct mapped_debug_names final : public mapped_index_base
320 {
321 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
322 : dwarf2_per_objfile (dwarf2_per_objfile_)
323 {}
324
325 struct dwarf2_per_objfile *dwarf2_per_objfile;
326 bfd_endian dwarf5_byte_order;
327 bool dwarf5_is_dwarf64;
328 bool augmentation_is_gdb;
329 uint8_t offset_size;
330 uint32_t cu_count = 0;
331 uint32_t tu_count, bucket_count, name_count;
332 const gdb_byte *cu_table_reordered, *tu_table_reordered;
333 const uint32_t *bucket_table_reordered, *hash_table_reordered;
334 const gdb_byte *name_table_string_offs_reordered;
335 const gdb_byte *name_table_entry_offs_reordered;
336 const gdb_byte *entry_pool;
337
338 struct index_val
339 {
340 ULONGEST dwarf_tag;
341 struct attr
342 {
343 /* Attribute name DW_IDX_*. */
344 ULONGEST dw_idx;
345
346 /* Attribute form DW_FORM_*. */
347 ULONGEST form;
348
349 /* Value if FORM is DW_FORM_implicit_const. */
350 LONGEST implicit_const;
351 };
352 std::vector<attr> attr_vec;
353 };
354
355 std::unordered_map<ULONGEST, index_val> abbrev_map;
356
357 const char *namei_to_name (uint32_t namei) const;
358
359 /* Implementation of the mapped_index_base virtual interface, for
360 the name_components cache. */
361
362 const char *symbol_name_at (offset_type idx) const override
363 { return namei_to_name (idx); }
364
365 size_t symbol_name_count () const override
366 { return this->name_count; }
367 };
368
369 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
370 DEF_VEC_P (dwarf2_per_cu_ptr);
371
372 struct tu_stats
373 {
374 int nr_uniq_abbrev_tables;
375 int nr_symtabs;
376 int nr_symtab_sharers;
377 int nr_stmt_less_type_units;
378 int nr_all_type_units_reallocs;
379 };
380
381 /* Collection of data recorded per objfile.
382 This hangs off of dwarf2_objfile_data_key. */
383
384 struct dwarf2_per_objfile : public allocate_on_obstack
385 {
386 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
387 dwarf2 section names, or is NULL if the standard ELF names are
388 used. */
389 dwarf2_per_objfile (struct objfile *objfile,
390 const dwarf2_debug_sections *names);
391
392 ~dwarf2_per_objfile ();
393
394 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
395
396 /* Free all cached compilation units. */
397 void free_cached_comp_units ();
398 private:
399 /* This function is mapped across the sections and remembers the
400 offset and size of each of the debugging sections we are
401 interested in. */
402 void locate_sections (bfd *abfd, asection *sectp,
403 const dwarf2_debug_sections &names);
404
405 public:
406 dwarf2_section_info info {};
407 dwarf2_section_info abbrev {};
408 dwarf2_section_info line {};
409 dwarf2_section_info loc {};
410 dwarf2_section_info loclists {};
411 dwarf2_section_info macinfo {};
412 dwarf2_section_info macro {};
413 dwarf2_section_info str {};
414 dwarf2_section_info line_str {};
415 dwarf2_section_info ranges {};
416 dwarf2_section_info rnglists {};
417 dwarf2_section_info addr {};
418 dwarf2_section_info frame {};
419 dwarf2_section_info eh_frame {};
420 dwarf2_section_info gdb_index {};
421 dwarf2_section_info debug_names {};
422 dwarf2_section_info debug_aranges {};
423
424 VEC (dwarf2_section_info_def) *types = NULL;
425
426 /* Back link. */
427 struct objfile *objfile = NULL;
428
429 /* Table of all the compilation units. This is used to locate
430 the target compilation unit of a particular reference. */
431 struct dwarf2_per_cu_data **all_comp_units = NULL;
432
433 /* The number of compilation units in ALL_COMP_UNITS. */
434 int n_comp_units = 0;
435
436 /* The number of .debug_types-related CUs. */
437 int n_type_units = 0;
438
439 /* The number of elements allocated in all_type_units.
440 If there are skeleton-less TUs, we add them to all_type_units lazily. */
441 int n_allocated_type_units = 0;
442
443 /* The .debug_types-related CUs (TUs).
444 This is stored in malloc space because we may realloc it. */
445 struct signatured_type **all_type_units = NULL;
446
447 /* Table of struct type_unit_group objects.
448 The hash key is the DW_AT_stmt_list value. */
449 htab_t type_unit_groups {};
450
451 /* A table mapping .debug_types signatures to its signatured_type entry.
452 This is NULL if the .debug_types section hasn't been read in yet. */
453 htab_t signatured_types {};
454
455 /* Type unit statistics, to see how well the scaling improvements
456 are doing. */
457 struct tu_stats tu_stats {};
458
459 /* A chain of compilation units that are currently read in, so that
460 they can be freed later. */
461 dwarf2_per_cu_data *read_in_chain = NULL;
462
463 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
464 This is NULL if the table hasn't been allocated yet. */
465 htab_t dwo_files {};
466
467 /* True if we've checked for whether there is a DWP file. */
468 bool dwp_checked = false;
469
470 /* The DWP file if there is one, or NULL. */
471 struct dwp_file *dwp_file = NULL;
472
473 /* The shared '.dwz' file, if one exists. This is used when the
474 original data was compressed using 'dwz -m'. */
475 struct dwz_file *dwz_file = NULL;
476
477 /* A flag indicating whether this objfile has a section loaded at a
478 VMA of 0. */
479 bool has_section_at_zero = false;
480
481 /* True if we are using the mapped index,
482 or we are faking it for OBJF_READNOW's sake. */
483 bool using_index = false;
484
485 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
486 mapped_index *index_table = NULL;
487
488 /* The mapped index, or NULL if .debug_names is missing or not being used. */
489 std::unique_ptr<mapped_debug_names> debug_names_table;
490
491 /* When using index_table, this keeps track of all quick_file_names entries.
492 TUs typically share line table entries with a CU, so we maintain a
493 separate table of all line table entries to support the sharing.
494 Note that while there can be way more TUs than CUs, we've already
495 sorted all the TUs into "type unit groups", grouped by their
496 DW_AT_stmt_list value. Therefore the only sharing done here is with a
497 CU and its associated TU group if there is one. */
498 htab_t quick_file_names_table {};
499
500 /* Set during partial symbol reading, to prevent queueing of full
501 symbols. */
502 bool reading_partial_symbols = false;
503
504 /* Table mapping type DIEs to their struct type *.
505 This is NULL if not allocated yet.
506 The mapping is done via (CU/TU + DIE offset) -> type. */
507 htab_t die_type_hash {};
508
509 /* The CUs we recently read. */
510 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
511
512 /* Table containing line_header indexed by offset and offset_in_dwz. */
513 htab_t line_header_hash {};
514
515 /* Table containing all filenames. This is an optional because the
516 table is lazily constructed on first access. */
517 gdb::optional<filename_seen_cache> filenames_cache;
518 };
519
520 /* Get the dwarf2_per_objfile associated to OBJFILE. */
521
522 struct dwarf2_per_objfile *
523 get_dwarf2_per_objfile (struct objfile *objfile)
524 {
525 return ((struct dwarf2_per_objfile *)
526 objfile_data (objfile, dwarf2_objfile_data_key));
527 }
528
529 /* Set the dwarf2_per_objfile associated to OBJFILE. */
530
531 void
532 set_dwarf2_per_objfile (struct objfile *objfile,
533 struct dwarf2_per_objfile *dwarf2_per_objfile)
534 {
535 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
536 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
537 }
538
539 /* Default names of the debugging sections. */
540
541 /* Note that if the debugging section has been compressed, it might
542 have a name like .zdebug_info. */
543
544 static const struct dwarf2_debug_sections dwarf2_elf_names =
545 {
546 { ".debug_info", ".zdebug_info" },
547 { ".debug_abbrev", ".zdebug_abbrev" },
548 { ".debug_line", ".zdebug_line" },
549 { ".debug_loc", ".zdebug_loc" },
550 { ".debug_loclists", ".zdebug_loclists" },
551 { ".debug_macinfo", ".zdebug_macinfo" },
552 { ".debug_macro", ".zdebug_macro" },
553 { ".debug_str", ".zdebug_str" },
554 { ".debug_line_str", ".zdebug_line_str" },
555 { ".debug_ranges", ".zdebug_ranges" },
556 { ".debug_rnglists", ".zdebug_rnglists" },
557 { ".debug_types", ".zdebug_types" },
558 { ".debug_addr", ".zdebug_addr" },
559 { ".debug_frame", ".zdebug_frame" },
560 { ".eh_frame", NULL },
561 { ".gdb_index", ".zgdb_index" },
562 { ".debug_names", ".zdebug_names" },
563 { ".debug_aranges", ".zdebug_aranges" },
564 23
565 };
566
567 /* List of DWO/DWP sections. */
568
569 static const struct dwop_section_names
570 {
571 struct dwarf2_section_names abbrev_dwo;
572 struct dwarf2_section_names info_dwo;
573 struct dwarf2_section_names line_dwo;
574 struct dwarf2_section_names loc_dwo;
575 struct dwarf2_section_names loclists_dwo;
576 struct dwarf2_section_names macinfo_dwo;
577 struct dwarf2_section_names macro_dwo;
578 struct dwarf2_section_names str_dwo;
579 struct dwarf2_section_names str_offsets_dwo;
580 struct dwarf2_section_names types_dwo;
581 struct dwarf2_section_names cu_index;
582 struct dwarf2_section_names tu_index;
583 }
584 dwop_section_names =
585 {
586 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
587 { ".debug_info.dwo", ".zdebug_info.dwo" },
588 { ".debug_line.dwo", ".zdebug_line.dwo" },
589 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
590 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
591 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
592 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
593 { ".debug_str.dwo", ".zdebug_str.dwo" },
594 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
595 { ".debug_types.dwo", ".zdebug_types.dwo" },
596 { ".debug_cu_index", ".zdebug_cu_index" },
597 { ".debug_tu_index", ".zdebug_tu_index" },
598 };
599
600 /* local data types */
601
602 /* The data in a compilation unit header, after target2host
603 translation, looks like this. */
604 struct comp_unit_head
605 {
606 unsigned int length;
607 short version;
608 unsigned char addr_size;
609 unsigned char signed_addr_p;
610 sect_offset abbrev_sect_off;
611
612 /* Size of file offsets; either 4 or 8. */
613 unsigned int offset_size;
614
615 /* Size of the length field; either 4 or 12. */
616 unsigned int initial_length_size;
617
618 enum dwarf_unit_type unit_type;
619
620 /* Offset to the first byte of this compilation unit header in the
621 .debug_info section, for resolving relative reference dies. */
622 sect_offset sect_off;
623
624 /* Offset to first die in this cu from the start of the cu.
625 This will be the first byte following the compilation unit header. */
626 cu_offset first_die_cu_offset;
627
628 /* 64-bit signature of this type unit - it is valid only for
629 UNIT_TYPE DW_UT_type. */
630 ULONGEST signature;
631
632 /* For types, offset in the type's DIE of the type defined by this TU. */
633 cu_offset type_cu_offset_in_tu;
634 };
635
636 /* Type used for delaying computation of method physnames.
637 See comments for compute_delayed_physnames. */
638 struct delayed_method_info
639 {
640 /* The type to which the method is attached, i.e., its parent class. */
641 struct type *type;
642
643 /* The index of the method in the type's function fieldlists. */
644 int fnfield_index;
645
646 /* The index of the method in the fieldlist. */
647 int index;
648
649 /* The name of the DIE. */
650 const char *name;
651
652 /* The DIE associated with this method. */
653 struct die_info *die;
654 };
655
656 /* Internal state when decoding a particular compilation unit. */
657 struct dwarf2_cu
658 {
659 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
660 ~dwarf2_cu ();
661
662 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
663
664 /* The header of the compilation unit. */
665 struct comp_unit_head header {};
666
667 /* Base address of this compilation unit. */
668 CORE_ADDR base_address = 0;
669
670 /* Non-zero if base_address has been set. */
671 int base_known = 0;
672
673 /* The language we are debugging. */
674 enum language language = language_unknown;
675 const struct language_defn *language_defn = nullptr;
676
677 const char *producer = nullptr;
678
679 /* The generic symbol table building routines have separate lists for
680 file scope symbols and all all other scopes (local scopes). So
681 we need to select the right one to pass to add_symbol_to_list().
682 We do it by keeping a pointer to the correct list in list_in_scope.
683
684 FIXME: The original dwarf code just treated the file scope as the
685 first local scope, and all other local scopes as nested local
686 scopes, and worked fine. Check to see if we really need to
687 distinguish these in buildsym.c. */
688 struct pending **list_in_scope = nullptr;
689
690 /* Hash table holding all the loaded partial DIEs
691 with partial_die->offset.SECT_OFF as hash. */
692 htab_t partial_dies = nullptr;
693
694 /* Storage for things with the same lifetime as this read-in compilation
695 unit, including partial DIEs. */
696 auto_obstack comp_unit_obstack;
697
698 /* When multiple dwarf2_cu structures are living in memory, this field
699 chains them all together, so that they can be released efficiently.
700 We will probably also want a generation counter so that most-recently-used
701 compilation units are cached... */
702 struct dwarf2_per_cu_data *read_in_chain = nullptr;
703
704 /* Backlink to our per_cu entry. */
705 struct dwarf2_per_cu_data *per_cu;
706
707 /* How many compilation units ago was this CU last referenced? */
708 int last_used = 0;
709
710 /* A hash table of DIE cu_offset for following references with
711 die_info->offset.sect_off as hash. */
712 htab_t die_hash = nullptr;
713
714 /* Full DIEs if read in. */
715 struct die_info *dies = nullptr;
716
717 /* A set of pointers to dwarf2_per_cu_data objects for compilation
718 units referenced by this one. Only set during full symbol processing;
719 partial symbol tables do not have dependencies. */
720 htab_t dependencies = nullptr;
721
722 /* Header data from the line table, during full symbol processing. */
723 struct line_header *line_header = nullptr;
724 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
725 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
726 this is the DW_TAG_compile_unit die for this CU. We'll hold on
727 to the line header as long as this DIE is being processed. See
728 process_die_scope. */
729 die_info *line_header_die_owner = nullptr;
730
731 /* A list of methods which need to have physnames computed
732 after all type information has been read. */
733 std::vector<delayed_method_info> method_list;
734
735 /* To be copied to symtab->call_site_htab. */
736 htab_t call_site_htab = nullptr;
737
738 /* Non-NULL if this CU came from a DWO file.
739 There is an invariant here that is important to remember:
740 Except for attributes copied from the top level DIE in the "main"
741 (or "stub") file in preparation for reading the DWO file
742 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
743 Either there isn't a DWO file (in which case this is NULL and the point
744 is moot), or there is and either we're not going to read it (in which
745 case this is NULL) or there is and we are reading it (in which case this
746 is non-NULL). */
747 struct dwo_unit *dwo_unit = nullptr;
748
749 /* The DW_AT_addr_base attribute if present, zero otherwise
750 (zero is a valid value though).
751 Note this value comes from the Fission stub CU/TU's DIE. */
752 ULONGEST addr_base = 0;
753
754 /* The DW_AT_ranges_base attribute if present, zero otherwise
755 (zero is a valid value though).
756 Note this value comes from the Fission stub CU/TU's DIE.
757 Also note that the value is zero in the non-DWO case so this value can
758 be used without needing to know whether DWO files are in use or not.
759 N.B. This does not apply to DW_AT_ranges appearing in
760 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
761 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
762 DW_AT_ranges_base *would* have to be applied, and we'd have to care
763 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
764 ULONGEST ranges_base = 0;
765
766 /* When reading debug info generated by older versions of rustc, we
767 have to rewrite some union types to be struct types with a
768 variant part. This rewriting must be done after the CU is fully
769 read in, because otherwise at the point of rewriting some struct
770 type might not have been fully processed. So, we keep a list of
771 all such types here and process them after expansion. */
772 std::vector<struct type *> rust_unions;
773
774 /* Mark used when releasing cached dies. */
775 unsigned int mark : 1;
776
777 /* This CU references .debug_loc. See the symtab->locations_valid field.
778 This test is imperfect as there may exist optimized debug code not using
779 any location list and still facing inlining issues if handled as
780 unoptimized code. For a future better test see GCC PR other/32998. */
781 unsigned int has_loclist : 1;
782
783 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
784 if all the producer_is_* fields are valid. This information is cached
785 because profiling CU expansion showed excessive time spent in
786 producer_is_gxx_lt_4_6. */
787 unsigned int checked_producer : 1;
788 unsigned int producer_is_gxx_lt_4_6 : 1;
789 unsigned int producer_is_gcc_lt_4_3 : 1;
790 unsigned int producer_is_icc_lt_14 : 1;
791
792 /* When set, the file that we're processing is known to have
793 debugging info for C++ namespaces. GCC 3.3.x did not produce
794 this information, but later versions do. */
795
796 unsigned int processing_has_namespace_info : 1;
797
798 struct partial_die_info *find_partial_die (sect_offset sect_off);
799 };
800
801 /* Persistent data held for a compilation unit, even when not
802 processing it. We put a pointer to this structure in the
803 read_symtab_private field of the psymtab. */
804
805 struct dwarf2_per_cu_data
806 {
807 /* The start offset and length of this compilation unit.
808 NOTE: Unlike comp_unit_head.length, this length includes
809 initial_length_size.
810 If the DIE refers to a DWO file, this is always of the original die,
811 not the DWO file. */
812 sect_offset sect_off;
813 unsigned int length;
814
815 /* DWARF standard version this data has been read from (such as 4 or 5). */
816 short dwarf_version;
817
818 /* Flag indicating this compilation unit will be read in before
819 any of the current compilation units are processed. */
820 unsigned int queued : 1;
821
822 /* This flag will be set when reading partial DIEs if we need to load
823 absolutely all DIEs for this compilation unit, instead of just the ones
824 we think are interesting. It gets set if we look for a DIE in the
825 hash table and don't find it. */
826 unsigned int load_all_dies : 1;
827
828 /* Non-zero if this CU is from .debug_types.
829 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
830 this is non-zero. */
831 unsigned int is_debug_types : 1;
832
833 /* Non-zero if this CU is from the .dwz file. */
834 unsigned int is_dwz : 1;
835
836 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
837 This flag is only valid if is_debug_types is true.
838 We can't read a CU directly from a DWO file: There are required
839 attributes in the stub. */
840 unsigned int reading_dwo_directly : 1;
841
842 /* Non-zero if the TU has been read.
843 This is used to assist the "Stay in DWO Optimization" for Fission:
844 When reading a DWO, it's faster to read TUs from the DWO instead of
845 fetching them from random other DWOs (due to comdat folding).
846 If the TU has already been read, the optimization is unnecessary
847 (and unwise - we don't want to change where gdb thinks the TU lives
848 "midflight").
849 This flag is only valid if is_debug_types is true. */
850 unsigned int tu_read : 1;
851
852 /* The section this CU/TU lives in.
853 If the DIE refers to a DWO file, this is always the original die,
854 not the DWO file. */
855 struct dwarf2_section_info *section;
856
857 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
858 of the CU cache it gets reset to NULL again. This is left as NULL for
859 dummy CUs (a CU header, but nothing else). */
860 struct dwarf2_cu *cu;
861
862 /* The corresponding dwarf2_per_objfile. */
863 struct dwarf2_per_objfile *dwarf2_per_objfile;
864
865 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
866 is active. Otherwise, the 'psymtab' field is active. */
867 union
868 {
869 /* The partial symbol table associated with this compilation unit,
870 or NULL for unread partial units. */
871 struct partial_symtab *psymtab;
872
873 /* Data needed by the "quick" functions. */
874 struct dwarf2_per_cu_quick_data *quick;
875 } v;
876
877 /* The CUs we import using DW_TAG_imported_unit. This is filled in
878 while reading psymtabs, used to compute the psymtab dependencies,
879 and then cleared. Then it is filled in again while reading full
880 symbols, and only deleted when the objfile is destroyed.
881
882 This is also used to work around a difference between the way gold
883 generates .gdb_index version <=7 and the way gdb does. Arguably this
884 is a gold bug. For symbols coming from TUs, gold records in the index
885 the CU that includes the TU instead of the TU itself. This breaks
886 dw2_lookup_symbol: It assumes that if the index says symbol X lives
887 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
888 will find X. Alas TUs live in their own symtab, so after expanding CU Y
889 we need to look in TU Z to find X. Fortunately, this is akin to
890 DW_TAG_imported_unit, so we just use the same mechanism: For
891 .gdb_index version <=7 this also records the TUs that the CU referred
892 to. Concurrently with this change gdb was modified to emit version 8
893 indices so we only pay a price for gold generated indices.
894 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
895 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
896 };
897
898 /* Entry in the signatured_types hash table. */
899
900 struct signatured_type
901 {
902 /* The "per_cu" object of this type.
903 This struct is used iff per_cu.is_debug_types.
904 N.B.: This is the first member so that it's easy to convert pointers
905 between them. */
906 struct dwarf2_per_cu_data per_cu;
907
908 /* The type's signature. */
909 ULONGEST signature;
910
911 /* Offset in the TU of the type's DIE, as read from the TU header.
912 If this TU is a DWO stub and the definition lives in a DWO file
913 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
914 cu_offset type_offset_in_tu;
915
916 /* Offset in the section of the type's DIE.
917 If the definition lives in a DWO file, this is the offset in the
918 .debug_types.dwo section.
919 The value is zero until the actual value is known.
920 Zero is otherwise not a valid section offset. */
921 sect_offset type_offset_in_section;
922
923 /* Type units are grouped by their DW_AT_stmt_list entry so that they
924 can share them. This points to the containing symtab. */
925 struct type_unit_group *type_unit_group;
926
927 /* The type.
928 The first time we encounter this type we fully read it in and install it
929 in the symbol tables. Subsequent times we only need the type. */
930 struct type *type;
931
932 /* Containing DWO unit.
933 This field is valid iff per_cu.reading_dwo_directly. */
934 struct dwo_unit *dwo_unit;
935 };
936
937 typedef struct signatured_type *sig_type_ptr;
938 DEF_VEC_P (sig_type_ptr);
939
940 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
941 This includes type_unit_group and quick_file_names. */
942
943 struct stmt_list_hash
944 {
945 /* The DWO unit this table is from or NULL if there is none. */
946 struct dwo_unit *dwo_unit;
947
948 /* Offset in .debug_line or .debug_line.dwo. */
949 sect_offset line_sect_off;
950 };
951
952 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
953 an object of this type. */
954
955 struct type_unit_group
956 {
957 /* dwarf2read.c's main "handle" on a TU symtab.
958 To simplify things we create an artificial CU that "includes" all the
959 type units using this stmt_list so that the rest of the code still has
960 a "per_cu" handle on the symtab.
961 This PER_CU is recognized by having no section. */
962 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
963 struct dwarf2_per_cu_data per_cu;
964
965 /* The TUs that share this DW_AT_stmt_list entry.
966 This is added to while parsing type units to build partial symtabs,
967 and is deleted afterwards and not used again. */
968 VEC (sig_type_ptr) *tus;
969
970 /* The compunit symtab.
971 Type units in a group needn't all be defined in the same source file,
972 so we create an essentially anonymous symtab as the compunit symtab. */
973 struct compunit_symtab *compunit_symtab;
974
975 /* The data used to construct the hash key. */
976 struct stmt_list_hash hash;
977
978 /* The number of symtabs from the line header.
979 The value here must match line_header.num_file_names. */
980 unsigned int num_symtabs;
981
982 /* The symbol tables for this TU (obtained from the files listed in
983 DW_AT_stmt_list).
984 WARNING: The order of entries here must match the order of entries
985 in the line header. After the first TU using this type_unit_group, the
986 line header for the subsequent TUs is recreated from this. This is done
987 because we need to use the same symtabs for each TU using the same
988 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
989 there's no guarantee the line header doesn't have duplicate entries. */
990 struct symtab **symtabs;
991 };
992
993 /* These sections are what may appear in a (real or virtual) DWO file. */
994
995 struct dwo_sections
996 {
997 struct dwarf2_section_info abbrev;
998 struct dwarf2_section_info line;
999 struct dwarf2_section_info loc;
1000 struct dwarf2_section_info loclists;
1001 struct dwarf2_section_info macinfo;
1002 struct dwarf2_section_info macro;
1003 struct dwarf2_section_info str;
1004 struct dwarf2_section_info str_offsets;
1005 /* In the case of a virtual DWO file, these two are unused. */
1006 struct dwarf2_section_info info;
1007 VEC (dwarf2_section_info_def) *types;
1008 };
1009
1010 /* CUs/TUs in DWP/DWO files. */
1011
1012 struct dwo_unit
1013 {
1014 /* Backlink to the containing struct dwo_file. */
1015 struct dwo_file *dwo_file;
1016
1017 /* The "id" that distinguishes this CU/TU.
1018 .debug_info calls this "dwo_id", .debug_types calls this "signature".
1019 Since signatures came first, we stick with it for consistency. */
1020 ULONGEST signature;
1021
1022 /* The section this CU/TU lives in, in the DWO file. */
1023 struct dwarf2_section_info *section;
1024
1025 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
1026 sect_offset sect_off;
1027 unsigned int length;
1028
1029 /* For types, offset in the type's DIE of the type defined by this TU. */
1030 cu_offset type_offset_in_tu;
1031 };
1032
1033 /* include/dwarf2.h defines the DWP section codes.
1034 It defines a max value but it doesn't define a min value, which we
1035 use for error checking, so provide one. */
1036
1037 enum dwp_v2_section_ids
1038 {
1039 DW_SECT_MIN = 1
1040 };
1041
1042 /* Data for one DWO file.
1043
1044 This includes virtual DWO files (a virtual DWO file is a DWO file as it
1045 appears in a DWP file). DWP files don't really have DWO files per se -
1046 comdat folding of types "loses" the DWO file they came from, and from
1047 a high level view DWP files appear to contain a mass of random types.
1048 However, to maintain consistency with the non-DWP case we pretend DWP
1049 files contain virtual DWO files, and we assign each TU with one virtual
1050 DWO file (generally based on the line and abbrev section offsets -
1051 a heuristic that seems to work in practice). */
1052
1053 struct dwo_file
1054 {
1055 /* The DW_AT_GNU_dwo_name attribute.
1056 For virtual DWO files the name is constructed from the section offsets
1057 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
1058 from related CU+TUs. */
1059 const char *dwo_name;
1060
1061 /* The DW_AT_comp_dir attribute. */
1062 const char *comp_dir;
1063
1064 /* The bfd, when the file is open. Otherwise this is NULL.
1065 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
1066 bfd *dbfd;
1067
1068 /* The sections that make up this DWO file.
1069 Remember that for virtual DWO files in DWP V2, these are virtual
1070 sections (for lack of a better name). */
1071 struct dwo_sections sections;
1072
1073 /* The CUs in the file.
1074 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
1075 an extension to handle LLVM's Link Time Optimization output (where
1076 multiple source files may be compiled into a single object/dwo pair). */
1077 htab_t cus;
1078
1079 /* Table of TUs in the file.
1080 Each element is a struct dwo_unit. */
1081 htab_t tus;
1082 };
1083
1084 /* These sections are what may appear in a DWP file. */
1085
1086 struct dwp_sections
1087 {
1088 /* These are used by both DWP version 1 and 2. */
1089 struct dwarf2_section_info str;
1090 struct dwarf2_section_info cu_index;
1091 struct dwarf2_section_info tu_index;
1092
1093 /* These are only used by DWP version 2 files.
1094 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
1095 sections are referenced by section number, and are not recorded here.
1096 In DWP version 2 there is at most one copy of all these sections, each
1097 section being (effectively) comprised of the concatenation of all of the
1098 individual sections that exist in the version 1 format.
1099 To keep the code simple we treat each of these concatenated pieces as a
1100 section itself (a virtual section?). */
1101 struct dwarf2_section_info abbrev;
1102 struct dwarf2_section_info info;
1103 struct dwarf2_section_info line;
1104 struct dwarf2_section_info loc;
1105 struct dwarf2_section_info macinfo;
1106 struct dwarf2_section_info macro;
1107 struct dwarf2_section_info str_offsets;
1108 struct dwarf2_section_info types;
1109 };
1110
1111 /* These sections are what may appear in a virtual DWO file in DWP version 1.
1112 A virtual DWO file is a DWO file as it appears in a DWP file. */
1113
1114 struct virtual_v1_dwo_sections
1115 {
1116 struct dwarf2_section_info abbrev;
1117 struct dwarf2_section_info line;
1118 struct dwarf2_section_info loc;
1119 struct dwarf2_section_info macinfo;
1120 struct dwarf2_section_info macro;
1121 struct dwarf2_section_info str_offsets;
1122 /* Each DWP hash table entry records one CU or one TU.
1123 That is recorded here, and copied to dwo_unit.section. */
1124 struct dwarf2_section_info info_or_types;
1125 };
1126
1127 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
1128 In version 2, the sections of the DWO files are concatenated together
1129 and stored in one section of that name. Thus each ELF section contains
1130 several "virtual" sections. */
1131
1132 struct virtual_v2_dwo_sections
1133 {
1134 bfd_size_type abbrev_offset;
1135 bfd_size_type abbrev_size;
1136
1137 bfd_size_type line_offset;
1138 bfd_size_type line_size;
1139
1140 bfd_size_type loc_offset;
1141 bfd_size_type loc_size;
1142
1143 bfd_size_type macinfo_offset;
1144 bfd_size_type macinfo_size;
1145
1146 bfd_size_type macro_offset;
1147 bfd_size_type macro_size;
1148
1149 bfd_size_type str_offsets_offset;
1150 bfd_size_type str_offsets_size;
1151
1152 /* Each DWP hash table entry records one CU or one TU.
1153 That is recorded here, and copied to dwo_unit.section. */
1154 bfd_size_type info_or_types_offset;
1155 bfd_size_type info_or_types_size;
1156 };
1157
1158 /* Contents of DWP hash tables. */
1159
1160 struct dwp_hash_table
1161 {
1162 uint32_t version, nr_columns;
1163 uint32_t nr_units, nr_slots;
1164 const gdb_byte *hash_table, *unit_table;
1165 union
1166 {
1167 struct
1168 {
1169 const gdb_byte *indices;
1170 } v1;
1171 struct
1172 {
1173 /* This is indexed by column number and gives the id of the section
1174 in that column. */
1175 #define MAX_NR_V2_DWO_SECTIONS \
1176 (1 /* .debug_info or .debug_types */ \
1177 + 1 /* .debug_abbrev */ \
1178 + 1 /* .debug_line */ \
1179 + 1 /* .debug_loc */ \
1180 + 1 /* .debug_str_offsets */ \
1181 + 1 /* .debug_macro or .debug_macinfo */)
1182 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1183 const gdb_byte *offsets;
1184 const gdb_byte *sizes;
1185 } v2;
1186 } section_pool;
1187 };
1188
1189 /* Data for one DWP file. */
1190
1191 struct dwp_file
1192 {
1193 /* Name of the file. */
1194 const char *name;
1195
1196 /* File format version. */
1197 int version;
1198
1199 /* The bfd. */
1200 bfd *dbfd;
1201
1202 /* Section info for this file. */
1203 struct dwp_sections sections;
1204
1205 /* Table of CUs in the file. */
1206 const struct dwp_hash_table *cus;
1207
1208 /* Table of TUs in the file. */
1209 const struct dwp_hash_table *tus;
1210
1211 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1212 htab_t loaded_cus;
1213 htab_t loaded_tus;
1214
1215 /* Table to map ELF section numbers to their sections.
1216 This is only needed for the DWP V1 file format. */
1217 unsigned int num_sections;
1218 asection **elf_sections;
1219 };
1220
1221 /* This represents a '.dwz' file. */
1222
1223 struct dwz_file
1224 {
1225 /* A dwz file can only contain a few sections. */
1226 struct dwarf2_section_info abbrev;
1227 struct dwarf2_section_info info;
1228 struct dwarf2_section_info str;
1229 struct dwarf2_section_info line;
1230 struct dwarf2_section_info macro;
1231 struct dwarf2_section_info gdb_index;
1232 struct dwarf2_section_info debug_names;
1233
1234 /* The dwz's BFD. */
1235 bfd *dwz_bfd;
1236 };
1237
1238 /* Struct used to pass misc. parameters to read_die_and_children, et
1239 al. which are used for both .debug_info and .debug_types dies.
1240 All parameters here are unchanging for the life of the call. This
1241 struct exists to abstract away the constant parameters of die reading. */
1242
1243 struct die_reader_specs
1244 {
1245 /* The bfd of die_section. */
1246 bfd* abfd;
1247
1248 /* The CU of the DIE we are parsing. */
1249 struct dwarf2_cu *cu;
1250
1251 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1252 struct dwo_file *dwo_file;
1253
1254 /* The section the die comes from.
1255 This is either .debug_info or .debug_types, or the .dwo variants. */
1256 struct dwarf2_section_info *die_section;
1257
1258 /* die_section->buffer. */
1259 const gdb_byte *buffer;
1260
1261 /* The end of the buffer. */
1262 const gdb_byte *buffer_end;
1263
1264 /* The value of the DW_AT_comp_dir attribute. */
1265 const char *comp_dir;
1266
1267 /* The abbreviation table to use when reading the DIEs. */
1268 struct abbrev_table *abbrev_table;
1269 };
1270
1271 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1272 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1273 const gdb_byte *info_ptr,
1274 struct die_info *comp_unit_die,
1275 int has_children,
1276 void *data);
1277
1278 /* A 1-based directory index. This is a strong typedef to prevent
1279 accidentally using a directory index as a 0-based index into an
1280 array/vector. */
1281 enum class dir_index : unsigned int {};
1282
1283 /* Likewise, a 1-based file name index. */
1284 enum class file_name_index : unsigned int {};
1285
1286 struct file_entry
1287 {
1288 file_entry () = default;
1289
1290 file_entry (const char *name_, dir_index d_index_,
1291 unsigned int mod_time_, unsigned int length_)
1292 : name (name_),
1293 d_index (d_index_),
1294 mod_time (mod_time_),
1295 length (length_)
1296 {}
1297
1298 /* Return the include directory at D_INDEX stored in LH. Returns
1299 NULL if D_INDEX is out of bounds. */
1300 const char *include_dir (const line_header *lh) const;
1301
1302 /* The file name. Note this is an observing pointer. The memory is
1303 owned by debug_line_buffer. */
1304 const char *name {};
1305
1306 /* The directory index (1-based). */
1307 dir_index d_index {};
1308
1309 unsigned int mod_time {};
1310
1311 unsigned int length {};
1312
1313 /* True if referenced by the Line Number Program. */
1314 bool included_p {};
1315
1316 /* The associated symbol table, if any. */
1317 struct symtab *symtab {};
1318 };
1319
1320 /* The line number information for a compilation unit (found in the
1321 .debug_line section) begins with a "statement program header",
1322 which contains the following information. */
1323 struct line_header
1324 {
1325 line_header ()
1326 : offset_in_dwz {}
1327 {}
1328
1329 /* Add an entry to the include directory table. */
1330 void add_include_dir (const char *include_dir);
1331
1332 /* Add an entry to the file name table. */
1333 void add_file_name (const char *name, dir_index d_index,
1334 unsigned int mod_time, unsigned int length);
1335
1336 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1337 is out of bounds. */
1338 const char *include_dir_at (dir_index index) const
1339 {
1340 /* Convert directory index number (1-based) to vector index
1341 (0-based). */
1342 size_t vec_index = to_underlying (index) - 1;
1343
1344 if (vec_index >= include_dirs.size ())
1345 return NULL;
1346 return include_dirs[vec_index];
1347 }
1348
1349 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1350 is out of bounds. */
1351 file_entry *file_name_at (file_name_index index)
1352 {
1353 /* Convert file name index number (1-based) to vector index
1354 (0-based). */
1355 size_t vec_index = to_underlying (index) - 1;
1356
1357 if (vec_index >= file_names.size ())
1358 return NULL;
1359 return &file_names[vec_index];
1360 }
1361
1362 /* Const version of the above. */
1363 const file_entry *file_name_at (unsigned int index) const
1364 {
1365 if (index >= file_names.size ())
1366 return NULL;
1367 return &file_names[index];
1368 }
1369
1370 /* Offset of line number information in .debug_line section. */
1371 sect_offset sect_off {};
1372
1373 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1374 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1375
1376 unsigned int total_length {};
1377 unsigned short version {};
1378 unsigned int header_length {};
1379 unsigned char minimum_instruction_length {};
1380 unsigned char maximum_ops_per_instruction {};
1381 unsigned char default_is_stmt {};
1382 int line_base {};
1383 unsigned char line_range {};
1384 unsigned char opcode_base {};
1385
1386 /* standard_opcode_lengths[i] is the number of operands for the
1387 standard opcode whose value is i. This means that
1388 standard_opcode_lengths[0] is unused, and the last meaningful
1389 element is standard_opcode_lengths[opcode_base - 1]. */
1390 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1391
1392 /* The include_directories table. Note these are observing
1393 pointers. The memory is owned by debug_line_buffer. */
1394 std::vector<const char *> include_dirs;
1395
1396 /* The file_names table. */
1397 std::vector<file_entry> file_names;
1398
1399 /* The start and end of the statement program following this
1400 header. These point into dwarf2_per_objfile->line_buffer. */
1401 const gdb_byte *statement_program_start {}, *statement_program_end {};
1402 };
1403
1404 typedef std::unique_ptr<line_header> line_header_up;
1405
1406 const char *
1407 file_entry::include_dir (const line_header *lh) const
1408 {
1409 return lh->include_dir_at (d_index);
1410 }
1411
1412 /* When we construct a partial symbol table entry we only
1413 need this much information. */
1414 struct partial_die_info : public allocate_on_obstack
1415 {
1416 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1417
1418 /* Disable assign but still keep copy ctor, which is needed
1419 load_partial_dies. */
1420 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1421
1422 /* Adjust the partial die before generating a symbol for it. This
1423 function may set the is_external flag or change the DIE's
1424 name. */
1425 void fixup (struct dwarf2_cu *cu);
1426
1427 /* Read a minimal amount of information into the minimal die
1428 structure. */
1429 const gdb_byte *read (const struct die_reader_specs *reader,
1430 const struct abbrev_info &abbrev,
1431 const gdb_byte *info_ptr);
1432
1433 /* Offset of this DIE. */
1434 const sect_offset sect_off;
1435
1436 /* DWARF-2 tag for this DIE. */
1437 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1438
1439 /* Assorted flags describing the data found in this DIE. */
1440 const unsigned int has_children : 1;
1441
1442 unsigned int is_external : 1;
1443 unsigned int is_declaration : 1;
1444 unsigned int has_type : 1;
1445 unsigned int has_specification : 1;
1446 unsigned int has_pc_info : 1;
1447 unsigned int may_be_inlined : 1;
1448
1449 /* This DIE has been marked DW_AT_main_subprogram. */
1450 unsigned int main_subprogram : 1;
1451
1452 /* Flag set if the SCOPE field of this structure has been
1453 computed. */
1454 unsigned int scope_set : 1;
1455
1456 /* Flag set if the DIE has a byte_size attribute. */
1457 unsigned int has_byte_size : 1;
1458
1459 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1460 unsigned int has_const_value : 1;
1461
1462 /* Flag set if any of the DIE's children are template arguments. */
1463 unsigned int has_template_arguments : 1;
1464
1465 /* Flag set if fixup has been called on this die. */
1466 unsigned int fixup_called : 1;
1467
1468 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1469 unsigned int is_dwz : 1;
1470
1471 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1472 unsigned int spec_is_dwz : 1;
1473
1474 /* The name of this DIE. Normally the value of DW_AT_name, but
1475 sometimes a default name for unnamed DIEs. */
1476 const char *name = nullptr;
1477
1478 /* The linkage name, if present. */
1479 const char *linkage_name = nullptr;
1480
1481 /* The scope to prepend to our children. This is generally
1482 allocated on the comp_unit_obstack, so will disappear
1483 when this compilation unit leaves the cache. */
1484 const char *scope = nullptr;
1485
1486 /* Some data associated with the partial DIE. The tag determines
1487 which field is live. */
1488 union
1489 {
1490 /* The location description associated with this DIE, if any. */
1491 struct dwarf_block *locdesc;
1492 /* The offset of an import, for DW_TAG_imported_unit. */
1493 sect_offset sect_off;
1494 } d {};
1495
1496 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1497 CORE_ADDR lowpc = 0;
1498 CORE_ADDR highpc = 0;
1499
1500 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1501 DW_AT_sibling, if any. */
1502 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1503 could return DW_AT_sibling values to its caller load_partial_dies. */
1504 const gdb_byte *sibling = nullptr;
1505
1506 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1507 DW_AT_specification (or DW_AT_abstract_origin or
1508 DW_AT_extension). */
1509 sect_offset spec_offset {};
1510
1511 /* Pointers to this DIE's parent, first child, and next sibling,
1512 if any. */
1513 struct partial_die_info *die_parent = nullptr;
1514 struct partial_die_info *die_child = nullptr;
1515 struct partial_die_info *die_sibling = nullptr;
1516
1517 friend struct partial_die_info *
1518 dwarf2_cu::find_partial_die (sect_offset sect_off);
1519
1520 private:
1521 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1522 partial_die_info (sect_offset sect_off)
1523 : partial_die_info (sect_off, DW_TAG_padding, 0)
1524 {
1525 }
1526
1527 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1528 int has_children_)
1529 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1530 {
1531 is_external = 0;
1532 is_declaration = 0;
1533 has_type = 0;
1534 has_specification = 0;
1535 has_pc_info = 0;
1536 may_be_inlined = 0;
1537 main_subprogram = 0;
1538 scope_set = 0;
1539 has_byte_size = 0;
1540 has_const_value = 0;
1541 has_template_arguments = 0;
1542 fixup_called = 0;
1543 is_dwz = 0;
1544 spec_is_dwz = 0;
1545 }
1546 };
1547
1548 /* This data structure holds the information of an abbrev. */
1549 struct abbrev_info
1550 {
1551 unsigned int number; /* number identifying abbrev */
1552 enum dwarf_tag tag; /* dwarf tag */
1553 unsigned short has_children; /* boolean */
1554 unsigned short num_attrs; /* number of attributes */
1555 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1556 struct abbrev_info *next; /* next in chain */
1557 };
1558
1559 struct attr_abbrev
1560 {
1561 ENUM_BITFIELD(dwarf_attribute) name : 16;
1562 ENUM_BITFIELD(dwarf_form) form : 16;
1563
1564 /* It is valid only if FORM is DW_FORM_implicit_const. */
1565 LONGEST implicit_const;
1566 };
1567
1568 /* Size of abbrev_table.abbrev_hash_table. */
1569 #define ABBREV_HASH_SIZE 121
1570
1571 /* Top level data structure to contain an abbreviation table. */
1572
1573 struct abbrev_table
1574 {
1575 explicit abbrev_table (sect_offset off)
1576 : sect_off (off)
1577 {
1578 m_abbrevs =
1579 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1580 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1581 }
1582
1583 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1584
1585 /* Allocate space for a struct abbrev_info object in
1586 ABBREV_TABLE. */
1587 struct abbrev_info *alloc_abbrev ();
1588
1589 /* Add an abbreviation to the table. */
1590 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1591
1592 /* Look up an abbrev in the table.
1593 Returns NULL if the abbrev is not found. */
1594
1595 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1596
1597
1598 /* Where the abbrev table came from.
1599 This is used as a sanity check when the table is used. */
1600 const sect_offset sect_off;
1601
1602 /* Storage for the abbrev table. */
1603 auto_obstack abbrev_obstack;
1604
1605 private:
1606
1607 /* Hash table of abbrevs.
1608 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1609 It could be statically allocated, but the previous code didn't so we
1610 don't either. */
1611 struct abbrev_info **m_abbrevs;
1612 };
1613
1614 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1615
1616 /* Attributes have a name and a value. */
1617 struct attribute
1618 {
1619 ENUM_BITFIELD(dwarf_attribute) name : 16;
1620 ENUM_BITFIELD(dwarf_form) form : 15;
1621
1622 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1623 field should be in u.str (existing only for DW_STRING) but it is kept
1624 here for better struct attribute alignment. */
1625 unsigned int string_is_canonical : 1;
1626
1627 union
1628 {
1629 const char *str;
1630 struct dwarf_block *blk;
1631 ULONGEST unsnd;
1632 LONGEST snd;
1633 CORE_ADDR addr;
1634 ULONGEST signature;
1635 }
1636 u;
1637 };
1638
1639 /* This data structure holds a complete die structure. */
1640 struct die_info
1641 {
1642 /* DWARF-2 tag for this DIE. */
1643 ENUM_BITFIELD(dwarf_tag) tag : 16;
1644
1645 /* Number of attributes */
1646 unsigned char num_attrs;
1647
1648 /* True if we're presently building the full type name for the
1649 type derived from this DIE. */
1650 unsigned char building_fullname : 1;
1651
1652 /* True if this die is in process. PR 16581. */
1653 unsigned char in_process : 1;
1654
1655 /* Abbrev number */
1656 unsigned int abbrev;
1657
1658 /* Offset in .debug_info or .debug_types section. */
1659 sect_offset sect_off;
1660
1661 /* The dies in a compilation unit form an n-ary tree. PARENT
1662 points to this die's parent; CHILD points to the first child of
1663 this node; and all the children of a given node are chained
1664 together via their SIBLING fields. */
1665 struct die_info *child; /* Its first child, if any. */
1666 struct die_info *sibling; /* Its next sibling, if any. */
1667 struct die_info *parent; /* Its parent, if any. */
1668
1669 /* An array of attributes, with NUM_ATTRS elements. There may be
1670 zero, but it's not common and zero-sized arrays are not
1671 sufficiently portable C. */
1672 struct attribute attrs[1];
1673 };
1674
1675 /* Get at parts of an attribute structure. */
1676
1677 #define DW_STRING(attr) ((attr)->u.str)
1678 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1679 #define DW_UNSND(attr) ((attr)->u.unsnd)
1680 #define DW_BLOCK(attr) ((attr)->u.blk)
1681 #define DW_SND(attr) ((attr)->u.snd)
1682 #define DW_ADDR(attr) ((attr)->u.addr)
1683 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1684
1685 /* Blocks are a bunch of untyped bytes. */
1686 struct dwarf_block
1687 {
1688 size_t size;
1689
1690 /* Valid only if SIZE is not zero. */
1691 const gdb_byte *data;
1692 };
1693
1694 #ifndef ATTR_ALLOC_CHUNK
1695 #define ATTR_ALLOC_CHUNK 4
1696 #endif
1697
1698 /* Allocate fields for structs, unions and enums in this size. */
1699 #ifndef DW_FIELD_ALLOC_CHUNK
1700 #define DW_FIELD_ALLOC_CHUNK 4
1701 #endif
1702
1703 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1704 but this would require a corresponding change in unpack_field_as_long
1705 and friends. */
1706 static int bits_per_byte = 8;
1707
1708 struct nextfield
1709 {
1710 struct nextfield *next;
1711 int accessibility;
1712 int virtuality;
1713 struct field field;
1714 };
1715
1716 struct nextfnfield
1717 {
1718 struct nextfnfield *next;
1719 struct fn_field fnfield;
1720 };
1721
1722 struct fnfieldlist
1723 {
1724 const char *name;
1725 int length;
1726 struct nextfnfield *head;
1727 };
1728
1729 struct decl_field_list
1730 {
1731 struct decl_field field;
1732 struct decl_field_list *next;
1733 };
1734
1735 /* The routines that read and process dies for a C struct or C++ class
1736 pass lists of data member fields and lists of member function fields
1737 in an instance of a field_info structure, as defined below. */
1738 struct field_info
1739 {
1740 /* List of data member and baseclasses fields. */
1741 struct nextfield *fields, *baseclasses;
1742
1743 /* Number of fields (including baseclasses). */
1744 int nfields;
1745
1746 /* Number of baseclasses. */
1747 int nbaseclasses;
1748
1749 /* Set if the accesibility of one of the fields is not public. */
1750 int non_public_fields;
1751
1752 /* Member function fieldlist array, contains name of possibly overloaded
1753 member function, number of overloaded member functions and a pointer
1754 to the head of the member function field chain. */
1755 struct fnfieldlist *fnfieldlists;
1756
1757 /* Number of entries in the fnfieldlists array. */
1758 int nfnfields;
1759
1760 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1761 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1762 struct decl_field_list *typedef_field_list;
1763 unsigned typedef_field_list_count;
1764
1765 /* Nested types defined by this class and the number of elements in this
1766 list. */
1767 struct decl_field_list *nested_types_list;
1768 unsigned nested_types_list_count;
1769 };
1770
1771 /* One item on the queue of compilation units to read in full symbols
1772 for. */
1773 struct dwarf2_queue_item
1774 {
1775 struct dwarf2_per_cu_data *per_cu;
1776 enum language pretend_language;
1777 struct dwarf2_queue_item *next;
1778 };
1779
1780 /* The current queue. */
1781 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1782
1783 /* Loaded secondary compilation units are kept in memory until they
1784 have not been referenced for the processing of this many
1785 compilation units. Set this to zero to disable caching. Cache
1786 sizes of up to at least twenty will improve startup time for
1787 typical inter-CU-reference binaries, at an obvious memory cost. */
1788 static int dwarf_max_cache_age = 5;
1789 static void
1790 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1791 struct cmd_list_element *c, const char *value)
1792 {
1793 fprintf_filtered (file, _("The upper bound on the age of cached "
1794 "DWARF compilation units is %s.\n"),
1795 value);
1796 }
1797 \f
1798 /* local function prototypes */
1799
1800 static const char *get_section_name (const struct dwarf2_section_info *);
1801
1802 static const char *get_section_file_name (const struct dwarf2_section_info *);
1803
1804 static void dwarf2_find_base_address (struct die_info *die,
1805 struct dwarf2_cu *cu);
1806
1807 static struct partial_symtab *create_partial_symtab
1808 (struct dwarf2_per_cu_data *per_cu, const char *name);
1809
1810 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1811 const gdb_byte *info_ptr,
1812 struct die_info *type_unit_die,
1813 int has_children, void *data);
1814
1815 static void dwarf2_build_psymtabs_hard
1816 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1817
1818 static void scan_partial_symbols (struct partial_die_info *,
1819 CORE_ADDR *, CORE_ADDR *,
1820 int, struct dwarf2_cu *);
1821
1822 static void add_partial_symbol (struct partial_die_info *,
1823 struct dwarf2_cu *);
1824
1825 static void add_partial_namespace (struct partial_die_info *pdi,
1826 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1827 int set_addrmap, struct dwarf2_cu *cu);
1828
1829 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1830 CORE_ADDR *highpc, int set_addrmap,
1831 struct dwarf2_cu *cu);
1832
1833 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1834 struct dwarf2_cu *cu);
1835
1836 static void add_partial_subprogram (struct partial_die_info *pdi,
1837 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1838 int need_pc, struct dwarf2_cu *cu);
1839
1840 static void dwarf2_read_symtab (struct partial_symtab *,
1841 struct objfile *);
1842
1843 static void psymtab_to_symtab_1 (struct partial_symtab *);
1844
1845 static abbrev_table_up abbrev_table_read_table
1846 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1847 sect_offset);
1848
1849 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1850
1851 static struct partial_die_info *load_partial_dies
1852 (const struct die_reader_specs *, const gdb_byte *, int);
1853
1854 static struct partial_die_info *find_partial_die (sect_offset, int,
1855 struct dwarf2_cu *);
1856
1857 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1858 struct attribute *, struct attr_abbrev *,
1859 const gdb_byte *);
1860
1861 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1862
1863 static int read_1_signed_byte (bfd *, const gdb_byte *);
1864
1865 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1866
1867 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1868
1869 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1870
1871 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1872 unsigned int *);
1873
1874 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1875
1876 static LONGEST read_checked_initial_length_and_offset
1877 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1878 unsigned int *, unsigned int *);
1879
1880 static LONGEST read_offset (bfd *, const gdb_byte *,
1881 const struct comp_unit_head *,
1882 unsigned int *);
1883
1884 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1885
1886 static sect_offset read_abbrev_offset
1887 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1888 struct dwarf2_section_info *, sect_offset);
1889
1890 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1891
1892 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1893
1894 static const char *read_indirect_string
1895 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1896 const struct comp_unit_head *, unsigned int *);
1897
1898 static const char *read_indirect_line_string
1899 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1900 const struct comp_unit_head *, unsigned int *);
1901
1902 static const char *read_indirect_string_at_offset
1903 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1904 LONGEST str_offset);
1905
1906 static const char *read_indirect_string_from_dwz
1907 (struct objfile *objfile, struct dwz_file *, LONGEST);
1908
1909 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1910
1911 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1912 const gdb_byte *,
1913 unsigned int *);
1914
1915 static const char *read_str_index (const struct die_reader_specs *reader,
1916 ULONGEST str_index);
1917
1918 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1919
1920 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1921 struct dwarf2_cu *);
1922
1923 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1924 unsigned int);
1925
1926 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1927 struct dwarf2_cu *cu);
1928
1929 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1930 struct dwarf2_cu *cu);
1931
1932 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1933
1934 static struct die_info *die_specification (struct die_info *die,
1935 struct dwarf2_cu **);
1936
1937 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1938 struct dwarf2_cu *cu);
1939
1940 static void dwarf_decode_lines (struct line_header *, const char *,
1941 struct dwarf2_cu *, struct partial_symtab *,
1942 CORE_ADDR, int decode_mapping);
1943
1944 static void dwarf2_start_subfile (const char *, const char *);
1945
1946 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1947 const char *, const char *,
1948 CORE_ADDR);
1949
1950 static struct symbol *new_symbol (struct die_info *, struct type *,
1951 struct dwarf2_cu *, struct symbol * = NULL);
1952
1953 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1954 struct dwarf2_cu *);
1955
1956 static void dwarf2_const_value_attr (const struct attribute *attr,
1957 struct type *type,
1958 const char *name,
1959 struct obstack *obstack,
1960 struct dwarf2_cu *cu, LONGEST *value,
1961 const gdb_byte **bytes,
1962 struct dwarf2_locexpr_baton **baton);
1963
1964 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1965
1966 static int need_gnat_info (struct dwarf2_cu *);
1967
1968 static struct type *die_descriptive_type (struct die_info *,
1969 struct dwarf2_cu *);
1970
1971 static void set_descriptive_type (struct type *, struct die_info *,
1972 struct dwarf2_cu *);
1973
1974 static struct type *die_containing_type (struct die_info *,
1975 struct dwarf2_cu *);
1976
1977 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1978 struct dwarf2_cu *);
1979
1980 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1981
1982 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1983
1984 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1985
1986 static char *typename_concat (struct obstack *obs, const char *prefix,
1987 const char *suffix, int physname,
1988 struct dwarf2_cu *cu);
1989
1990 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1991
1992 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1993
1994 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1995
1996 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1997
1998 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1999
2000 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
2001
2002 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
2003 struct dwarf2_cu *, struct partial_symtab *);
2004
2005 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
2006 values. Keep the items ordered with increasing constraints compliance. */
2007 enum pc_bounds_kind
2008 {
2009 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
2010 PC_BOUNDS_NOT_PRESENT,
2011
2012 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
2013 were present but they do not form a valid range of PC addresses. */
2014 PC_BOUNDS_INVALID,
2015
2016 /* Discontiguous range was found - that is DW_AT_ranges was found. */
2017 PC_BOUNDS_RANGES,
2018
2019 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
2020 PC_BOUNDS_HIGH_LOW,
2021 };
2022
2023 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
2024 CORE_ADDR *, CORE_ADDR *,
2025 struct dwarf2_cu *,
2026 struct partial_symtab *);
2027
2028 static void get_scope_pc_bounds (struct die_info *,
2029 CORE_ADDR *, CORE_ADDR *,
2030 struct dwarf2_cu *);
2031
2032 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
2033 CORE_ADDR, struct dwarf2_cu *);
2034
2035 static void dwarf2_add_field (struct field_info *, struct die_info *,
2036 struct dwarf2_cu *);
2037
2038 static void dwarf2_attach_fields_to_type (struct field_info *,
2039 struct type *, struct dwarf2_cu *);
2040
2041 static void dwarf2_add_member_fn (struct field_info *,
2042 struct die_info *, struct type *,
2043 struct dwarf2_cu *);
2044
2045 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
2046 struct type *,
2047 struct dwarf2_cu *);
2048
2049 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
2050
2051 static void read_common_block (struct die_info *, struct dwarf2_cu *);
2052
2053 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
2054
2055 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
2056
2057 static struct using_direct **using_directives (enum language);
2058
2059 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
2060
2061 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
2062
2063 static struct type *read_module_type (struct die_info *die,
2064 struct dwarf2_cu *cu);
2065
2066 static const char *namespace_name (struct die_info *die,
2067 int *is_anonymous, struct dwarf2_cu *);
2068
2069 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
2070
2071 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
2072
2073 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
2074 struct dwarf2_cu *);
2075
2076 static struct die_info *read_die_and_siblings_1
2077 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
2078 struct die_info *);
2079
2080 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
2081 const gdb_byte *info_ptr,
2082 const gdb_byte **new_info_ptr,
2083 struct die_info *parent);
2084
2085 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
2086 struct die_info **, const gdb_byte *,
2087 int *, int);
2088
2089 static const gdb_byte *read_full_die (const struct die_reader_specs *,
2090 struct die_info **, const gdb_byte *,
2091 int *);
2092
2093 static void process_die (struct die_info *, struct dwarf2_cu *);
2094
2095 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
2096 struct obstack *);
2097
2098 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
2099
2100 static const char *dwarf2_full_name (const char *name,
2101 struct die_info *die,
2102 struct dwarf2_cu *cu);
2103
2104 static const char *dwarf2_physname (const char *name, struct die_info *die,
2105 struct dwarf2_cu *cu);
2106
2107 static struct die_info *dwarf2_extension (struct die_info *die,
2108 struct dwarf2_cu **);
2109
2110 static const char *dwarf_tag_name (unsigned int);
2111
2112 static const char *dwarf_attr_name (unsigned int);
2113
2114 static const char *dwarf_form_name (unsigned int);
2115
2116 static const char *dwarf_bool_name (unsigned int);
2117
2118 static const char *dwarf_type_encoding_name (unsigned int);
2119
2120 static struct die_info *sibling_die (struct die_info *);
2121
2122 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
2123
2124 static void dump_die_for_error (struct die_info *);
2125
2126 static void dump_die_1 (struct ui_file *, int level, int max_level,
2127 struct die_info *);
2128
2129 /*static*/ void dump_die (struct die_info *, int max_level);
2130
2131 static void store_in_ref_table (struct die_info *,
2132 struct dwarf2_cu *);
2133
2134 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
2135
2136 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
2137
2138 static struct die_info *follow_die_ref_or_sig (struct die_info *,
2139 const struct attribute *,
2140 struct dwarf2_cu **);
2141
2142 static struct die_info *follow_die_ref (struct die_info *,
2143 const struct attribute *,
2144 struct dwarf2_cu **);
2145
2146 static struct die_info *follow_die_sig (struct die_info *,
2147 const struct attribute *,
2148 struct dwarf2_cu **);
2149
2150 static struct type *get_signatured_type (struct die_info *, ULONGEST,
2151 struct dwarf2_cu *);
2152
2153 static struct type *get_DW_AT_signature_type (struct die_info *,
2154 const struct attribute *,
2155 struct dwarf2_cu *);
2156
2157 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
2158
2159 static void read_signatured_type (struct signatured_type *);
2160
2161 static int attr_to_dynamic_prop (const struct attribute *attr,
2162 struct die_info *die, struct dwarf2_cu *cu,
2163 struct dynamic_prop *prop);
2164
2165 /* memory allocation interface */
2166
2167 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
2168
2169 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
2170
2171 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2172
2173 static int attr_form_is_block (const struct attribute *);
2174
2175 static int attr_form_is_section_offset (const struct attribute *);
2176
2177 static int attr_form_is_constant (const struct attribute *);
2178
2179 static int attr_form_is_ref (const struct attribute *);
2180
2181 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
2182 struct dwarf2_loclist_baton *baton,
2183 const struct attribute *attr);
2184
2185 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
2186 struct symbol *sym,
2187 struct dwarf2_cu *cu,
2188 int is_block);
2189
2190 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
2191 const gdb_byte *info_ptr,
2192 struct abbrev_info *abbrev);
2193
2194 static hashval_t partial_die_hash (const void *item);
2195
2196 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
2197
2198 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
2199 (sect_offset sect_off, unsigned int offset_in_dwz,
2200 struct dwarf2_per_objfile *dwarf2_per_objfile);
2201
2202 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2203 struct die_info *comp_unit_die,
2204 enum language pretend_language);
2205
2206 static void free_cached_comp_units (void *);
2207
2208 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2209
2210 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2211
2212 static struct type *set_die_type (struct die_info *, struct type *,
2213 struct dwarf2_cu *);
2214
2215 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2216
2217 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2218
2219 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2220 enum language);
2221
2222 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2223 enum language);
2224
2225 static void process_full_type_unit (struct dwarf2_per_cu_data *,
2226 enum language);
2227
2228 static void dwarf2_add_dependence (struct dwarf2_cu *,
2229 struct dwarf2_per_cu_data *);
2230
2231 static void dwarf2_mark (struct dwarf2_cu *);
2232
2233 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2234
2235 static struct type *get_die_type_at_offset (sect_offset,
2236 struct dwarf2_per_cu_data *);
2237
2238 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2239
2240 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2241 enum language pretend_language);
2242
2243 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
2244
2245 /* Class, the destructor of which frees all allocated queue entries. This
2246 will only have work to do if an error was thrown while processing the
2247 dwarf. If no error was thrown then the queue entries should have all
2248 been processed, and freed, as we went along. */
2249
2250 class dwarf2_queue_guard
2251 {
2252 public:
2253 dwarf2_queue_guard () = default;
2254
2255 /* Free any entries remaining on the queue. There should only be
2256 entries left if we hit an error while processing the dwarf. */
2257 ~dwarf2_queue_guard ()
2258 {
2259 struct dwarf2_queue_item *item, *last;
2260
2261 item = dwarf2_queue;
2262 while (item)
2263 {
2264 /* Anything still marked queued is likely to be in an
2265 inconsistent state, so discard it. */
2266 if (item->per_cu->queued)
2267 {
2268 if (item->per_cu->cu != NULL)
2269 free_one_cached_comp_unit (item->per_cu);
2270 item->per_cu->queued = 0;
2271 }
2272
2273 last = item;
2274 item = item->next;
2275 xfree (last);
2276 }
2277
2278 dwarf2_queue = dwarf2_queue_tail = NULL;
2279 }
2280 };
2281
2282 /* The return type of find_file_and_directory. Note, the enclosed
2283 string pointers are only valid while this object is valid. */
2284
2285 struct file_and_directory
2286 {
2287 /* The filename. This is never NULL. */
2288 const char *name;
2289
2290 /* The compilation directory. NULL if not known. If we needed to
2291 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2292 points directly to the DW_AT_comp_dir string attribute owned by
2293 the obstack that owns the DIE. */
2294 const char *comp_dir;
2295
2296 /* If we needed to build a new string for comp_dir, this is what
2297 owns the storage. */
2298 std::string comp_dir_storage;
2299 };
2300
2301 static file_and_directory find_file_and_directory (struct die_info *die,
2302 struct dwarf2_cu *cu);
2303
2304 static char *file_full_name (int file, struct line_header *lh,
2305 const char *comp_dir);
2306
2307 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2308 enum class rcuh_kind { COMPILE, TYPE };
2309
2310 static const gdb_byte *read_and_check_comp_unit_head
2311 (struct dwarf2_per_objfile* dwarf2_per_objfile,
2312 struct comp_unit_head *header,
2313 struct dwarf2_section_info *section,
2314 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2315 rcuh_kind section_kind);
2316
2317 static void init_cutu_and_read_dies
2318 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2319 int use_existing_cu, int keep,
2320 die_reader_func_ftype *die_reader_func, void *data);
2321
2322 static void init_cutu_and_read_dies_simple
2323 (struct dwarf2_per_cu_data *this_cu,
2324 die_reader_func_ftype *die_reader_func, void *data);
2325
2326 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2327
2328 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2329
2330 static struct dwo_unit *lookup_dwo_unit_in_dwp
2331 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2332 struct dwp_file *dwp_file, const char *comp_dir,
2333 ULONGEST signature, int is_debug_types);
2334
2335 static struct dwp_file *get_dwp_file
2336 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2337
2338 static struct dwo_unit *lookup_dwo_comp_unit
2339 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2340
2341 static struct dwo_unit *lookup_dwo_type_unit
2342 (struct signatured_type *, const char *, const char *);
2343
2344 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2345
2346 static void free_dwo_file_cleanup (void *);
2347
2348 struct free_dwo_file_cleanup_data
2349 {
2350 struct dwo_file *dwo_file;
2351 struct dwarf2_per_objfile *dwarf2_per_objfile;
2352 };
2353
2354 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2355
2356 static void check_producer (struct dwarf2_cu *cu);
2357
2358 static void free_line_header_voidp (void *arg);
2359 \f
2360 /* Various complaints about symbol reading that don't abort the process. */
2361
2362 static void
2363 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2364 {
2365 complaint (&symfile_complaints,
2366 _("statement list doesn't fit in .debug_line section"));
2367 }
2368
2369 static void
2370 dwarf2_debug_line_missing_file_complaint (void)
2371 {
2372 complaint (&symfile_complaints,
2373 _(".debug_line section has line data without a file"));
2374 }
2375
2376 static void
2377 dwarf2_debug_line_missing_end_sequence_complaint (void)
2378 {
2379 complaint (&symfile_complaints,
2380 _(".debug_line section has line "
2381 "program sequence without an end"));
2382 }
2383
2384 static void
2385 dwarf2_complex_location_expr_complaint (void)
2386 {
2387 complaint (&symfile_complaints, _("location expression too complex"));
2388 }
2389
2390 static void
2391 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2392 int arg3)
2393 {
2394 complaint (&symfile_complaints,
2395 _("const value length mismatch for '%s', got %d, expected %d"),
2396 arg1, arg2, arg3);
2397 }
2398
2399 static void
2400 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2401 {
2402 complaint (&symfile_complaints,
2403 _("debug info runs off end of %s section"
2404 " [in module %s]"),
2405 get_section_name (section),
2406 get_section_file_name (section));
2407 }
2408
2409 static void
2410 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2411 {
2412 complaint (&symfile_complaints,
2413 _("macro debug info contains a "
2414 "malformed macro definition:\n`%s'"),
2415 arg1);
2416 }
2417
2418 static void
2419 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2420 {
2421 complaint (&symfile_complaints,
2422 _("invalid attribute class or form for '%s' in '%s'"),
2423 arg1, arg2);
2424 }
2425
2426 /* Hash function for line_header_hash. */
2427
2428 static hashval_t
2429 line_header_hash (const struct line_header *ofs)
2430 {
2431 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2432 }
2433
2434 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2435
2436 static hashval_t
2437 line_header_hash_voidp (const void *item)
2438 {
2439 const struct line_header *ofs = (const struct line_header *) item;
2440
2441 return line_header_hash (ofs);
2442 }
2443
2444 /* Equality function for line_header_hash. */
2445
2446 static int
2447 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2448 {
2449 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2450 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2451
2452 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2453 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2454 }
2455
2456 \f
2457
2458 /* Read the given attribute value as an address, taking the attribute's
2459 form into account. */
2460
2461 static CORE_ADDR
2462 attr_value_as_address (struct attribute *attr)
2463 {
2464 CORE_ADDR addr;
2465
2466 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2467 {
2468 /* Aside from a few clearly defined exceptions, attributes that
2469 contain an address must always be in DW_FORM_addr form.
2470 Unfortunately, some compilers happen to be violating this
2471 requirement by encoding addresses using other forms, such
2472 as DW_FORM_data4 for example. For those broken compilers,
2473 we try to do our best, without any guarantee of success,
2474 to interpret the address correctly. It would also be nice
2475 to generate a complaint, but that would require us to maintain
2476 a list of legitimate cases where a non-address form is allowed,
2477 as well as update callers to pass in at least the CU's DWARF
2478 version. This is more overhead than what we're willing to
2479 expand for a pretty rare case. */
2480 addr = DW_UNSND (attr);
2481 }
2482 else
2483 addr = DW_ADDR (attr);
2484
2485 return addr;
2486 }
2487
2488 /* The suffix for an index file. */
2489 #define INDEX4_SUFFIX ".gdb-index"
2490 #define INDEX5_SUFFIX ".debug_names"
2491 #define DEBUG_STR_SUFFIX ".debug_str"
2492
2493 /* See declaration. */
2494
2495 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2496 const dwarf2_debug_sections *names)
2497 : objfile (objfile_)
2498 {
2499 if (names == NULL)
2500 names = &dwarf2_elf_names;
2501
2502 bfd *obfd = objfile->obfd;
2503
2504 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2505 locate_sections (obfd, sec, *names);
2506 }
2507
2508 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2509
2510 dwarf2_per_objfile::~dwarf2_per_objfile ()
2511 {
2512 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2513 free_cached_comp_units ();
2514
2515 if (quick_file_names_table)
2516 htab_delete (quick_file_names_table);
2517
2518 if (line_header_hash)
2519 htab_delete (line_header_hash);
2520
2521 for (int ix = 0; ix < n_comp_units; ++ix)
2522 VEC_free (dwarf2_per_cu_ptr, all_comp_units[ix]->imported_symtabs);
2523
2524 for (int ix = 0; ix < n_type_units; ++ix)
2525 VEC_free (dwarf2_per_cu_ptr,
2526 all_type_units[ix]->per_cu.imported_symtabs);
2527 xfree (all_type_units);
2528
2529 VEC_free (dwarf2_section_info_def, types);
2530
2531 if (dwo_files != NULL)
2532 free_dwo_files (dwo_files, objfile);
2533 if (dwp_file != NULL)
2534 gdb_bfd_unref (dwp_file->dbfd);
2535
2536 if (dwz_file != NULL && dwz_file->dwz_bfd)
2537 gdb_bfd_unref (dwz_file->dwz_bfd);
2538
2539 if (index_table != NULL)
2540 index_table->~mapped_index ();
2541
2542 /* Everything else should be on the objfile obstack. */
2543 }
2544
2545 /* See declaration. */
2546
2547 void
2548 dwarf2_per_objfile::free_cached_comp_units ()
2549 {
2550 dwarf2_per_cu_data *per_cu = read_in_chain;
2551 dwarf2_per_cu_data **last_chain = &read_in_chain;
2552 while (per_cu != NULL)
2553 {
2554 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2555
2556 delete per_cu->cu;
2557 *last_chain = next_cu;
2558 per_cu = next_cu;
2559 }
2560 }
2561
2562 /* Try to locate the sections we need for DWARF 2 debugging
2563 information and return true if we have enough to do something.
2564 NAMES points to the dwarf2 section names, or is NULL if the standard
2565 ELF names are used. */
2566
2567 int
2568 dwarf2_has_info (struct objfile *objfile,
2569 const struct dwarf2_debug_sections *names)
2570 {
2571 if (objfile->flags & OBJF_READNEVER)
2572 return 0;
2573
2574 struct dwarf2_per_objfile *dwarf2_per_objfile
2575 = get_dwarf2_per_objfile (objfile);
2576
2577 if (dwarf2_per_objfile == NULL)
2578 {
2579 /* Initialize per-objfile state. */
2580 dwarf2_per_objfile
2581 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2582 names);
2583 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2584 }
2585 return (!dwarf2_per_objfile->info.is_virtual
2586 && dwarf2_per_objfile->info.s.section != NULL
2587 && !dwarf2_per_objfile->abbrev.is_virtual
2588 && dwarf2_per_objfile->abbrev.s.section != NULL);
2589 }
2590
2591 /* Return the containing section of virtual section SECTION. */
2592
2593 static struct dwarf2_section_info *
2594 get_containing_section (const struct dwarf2_section_info *section)
2595 {
2596 gdb_assert (section->is_virtual);
2597 return section->s.containing_section;
2598 }
2599
2600 /* Return the bfd owner of SECTION. */
2601
2602 static struct bfd *
2603 get_section_bfd_owner (const struct dwarf2_section_info *section)
2604 {
2605 if (section->is_virtual)
2606 {
2607 section = get_containing_section (section);
2608 gdb_assert (!section->is_virtual);
2609 }
2610 return section->s.section->owner;
2611 }
2612
2613 /* Return the bfd section of SECTION.
2614 Returns NULL if the section is not present. */
2615
2616 static asection *
2617 get_section_bfd_section (const struct dwarf2_section_info *section)
2618 {
2619 if (section->is_virtual)
2620 {
2621 section = get_containing_section (section);
2622 gdb_assert (!section->is_virtual);
2623 }
2624 return section->s.section;
2625 }
2626
2627 /* Return the name of SECTION. */
2628
2629 static const char *
2630 get_section_name (const struct dwarf2_section_info *section)
2631 {
2632 asection *sectp = get_section_bfd_section (section);
2633
2634 gdb_assert (sectp != NULL);
2635 return bfd_section_name (get_section_bfd_owner (section), sectp);
2636 }
2637
2638 /* Return the name of the file SECTION is in. */
2639
2640 static const char *
2641 get_section_file_name (const struct dwarf2_section_info *section)
2642 {
2643 bfd *abfd = get_section_bfd_owner (section);
2644
2645 return bfd_get_filename (abfd);
2646 }
2647
2648 /* Return the id of SECTION.
2649 Returns 0 if SECTION doesn't exist. */
2650
2651 static int
2652 get_section_id (const struct dwarf2_section_info *section)
2653 {
2654 asection *sectp = get_section_bfd_section (section);
2655
2656 if (sectp == NULL)
2657 return 0;
2658 return sectp->id;
2659 }
2660
2661 /* Return the flags of SECTION.
2662 SECTION (or containing section if this is a virtual section) must exist. */
2663
2664 static int
2665 get_section_flags (const struct dwarf2_section_info *section)
2666 {
2667 asection *sectp = get_section_bfd_section (section);
2668
2669 gdb_assert (sectp != NULL);
2670 return bfd_get_section_flags (sectp->owner, sectp);
2671 }
2672
2673 /* When loading sections, we look either for uncompressed section or for
2674 compressed section names. */
2675
2676 static int
2677 section_is_p (const char *section_name,
2678 const struct dwarf2_section_names *names)
2679 {
2680 if (names->normal != NULL
2681 && strcmp (section_name, names->normal) == 0)
2682 return 1;
2683 if (names->compressed != NULL
2684 && strcmp (section_name, names->compressed) == 0)
2685 return 1;
2686 return 0;
2687 }
2688
2689 /* See declaration. */
2690
2691 void
2692 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2693 const dwarf2_debug_sections &names)
2694 {
2695 flagword aflag = bfd_get_section_flags (abfd, sectp);
2696
2697 if ((aflag & SEC_HAS_CONTENTS) == 0)
2698 {
2699 }
2700 else if (section_is_p (sectp->name, &names.info))
2701 {
2702 this->info.s.section = sectp;
2703 this->info.size = bfd_get_section_size (sectp);
2704 }
2705 else if (section_is_p (sectp->name, &names.abbrev))
2706 {
2707 this->abbrev.s.section = sectp;
2708 this->abbrev.size = bfd_get_section_size (sectp);
2709 }
2710 else if (section_is_p (sectp->name, &names.line))
2711 {
2712 this->line.s.section = sectp;
2713 this->line.size = bfd_get_section_size (sectp);
2714 }
2715 else if (section_is_p (sectp->name, &names.loc))
2716 {
2717 this->loc.s.section = sectp;
2718 this->loc.size = bfd_get_section_size (sectp);
2719 }
2720 else if (section_is_p (sectp->name, &names.loclists))
2721 {
2722 this->loclists.s.section = sectp;
2723 this->loclists.size = bfd_get_section_size (sectp);
2724 }
2725 else if (section_is_p (sectp->name, &names.macinfo))
2726 {
2727 this->macinfo.s.section = sectp;
2728 this->macinfo.size = bfd_get_section_size (sectp);
2729 }
2730 else if (section_is_p (sectp->name, &names.macro))
2731 {
2732 this->macro.s.section = sectp;
2733 this->macro.size = bfd_get_section_size (sectp);
2734 }
2735 else if (section_is_p (sectp->name, &names.str))
2736 {
2737 this->str.s.section = sectp;
2738 this->str.size = bfd_get_section_size (sectp);
2739 }
2740 else if (section_is_p (sectp->name, &names.line_str))
2741 {
2742 this->line_str.s.section = sectp;
2743 this->line_str.size = bfd_get_section_size (sectp);
2744 }
2745 else if (section_is_p (sectp->name, &names.addr))
2746 {
2747 this->addr.s.section = sectp;
2748 this->addr.size = bfd_get_section_size (sectp);
2749 }
2750 else if (section_is_p (sectp->name, &names.frame))
2751 {
2752 this->frame.s.section = sectp;
2753 this->frame.size = bfd_get_section_size (sectp);
2754 }
2755 else if (section_is_p (sectp->name, &names.eh_frame))
2756 {
2757 this->eh_frame.s.section = sectp;
2758 this->eh_frame.size = bfd_get_section_size (sectp);
2759 }
2760 else if (section_is_p (sectp->name, &names.ranges))
2761 {
2762 this->ranges.s.section = sectp;
2763 this->ranges.size = bfd_get_section_size (sectp);
2764 }
2765 else if (section_is_p (sectp->name, &names.rnglists))
2766 {
2767 this->rnglists.s.section = sectp;
2768 this->rnglists.size = bfd_get_section_size (sectp);
2769 }
2770 else if (section_is_p (sectp->name, &names.types))
2771 {
2772 struct dwarf2_section_info type_section;
2773
2774 memset (&type_section, 0, sizeof (type_section));
2775 type_section.s.section = sectp;
2776 type_section.size = bfd_get_section_size (sectp);
2777
2778 VEC_safe_push (dwarf2_section_info_def, this->types,
2779 &type_section);
2780 }
2781 else if (section_is_p (sectp->name, &names.gdb_index))
2782 {
2783 this->gdb_index.s.section = sectp;
2784 this->gdb_index.size = bfd_get_section_size (sectp);
2785 }
2786 else if (section_is_p (sectp->name, &names.debug_names))
2787 {
2788 this->debug_names.s.section = sectp;
2789 this->debug_names.size = bfd_get_section_size (sectp);
2790 }
2791 else if (section_is_p (sectp->name, &names.debug_aranges))
2792 {
2793 this->debug_aranges.s.section = sectp;
2794 this->debug_aranges.size = bfd_get_section_size (sectp);
2795 }
2796
2797 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2798 && bfd_section_vma (abfd, sectp) == 0)
2799 this->has_section_at_zero = true;
2800 }
2801
2802 /* A helper function that decides whether a section is empty,
2803 or not present. */
2804
2805 static int
2806 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2807 {
2808 if (section->is_virtual)
2809 return section->size == 0;
2810 return section->s.section == NULL || section->size == 0;
2811 }
2812
2813 /* Read the contents of the section INFO.
2814 OBJFILE is the main object file, but not necessarily the file where
2815 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2816 of the DWO file.
2817 If the section is compressed, uncompress it before returning. */
2818
2819 static void
2820 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2821 {
2822 asection *sectp;
2823 bfd *abfd;
2824 gdb_byte *buf, *retbuf;
2825
2826 if (info->readin)
2827 return;
2828 info->buffer = NULL;
2829 info->readin = 1;
2830
2831 if (dwarf2_section_empty_p (info))
2832 return;
2833
2834 sectp = get_section_bfd_section (info);
2835
2836 /* If this is a virtual section we need to read in the real one first. */
2837 if (info->is_virtual)
2838 {
2839 struct dwarf2_section_info *containing_section =
2840 get_containing_section (info);
2841
2842 gdb_assert (sectp != NULL);
2843 if ((sectp->flags & SEC_RELOC) != 0)
2844 {
2845 error (_("Dwarf Error: DWP format V2 with relocations is not"
2846 " supported in section %s [in module %s]"),
2847 get_section_name (info), get_section_file_name (info));
2848 }
2849 dwarf2_read_section (objfile, containing_section);
2850 /* Other code should have already caught virtual sections that don't
2851 fit. */
2852 gdb_assert (info->virtual_offset + info->size
2853 <= containing_section->size);
2854 /* If the real section is empty or there was a problem reading the
2855 section we shouldn't get here. */
2856 gdb_assert (containing_section->buffer != NULL);
2857 info->buffer = containing_section->buffer + info->virtual_offset;
2858 return;
2859 }
2860
2861 /* If the section has relocations, we must read it ourselves.
2862 Otherwise we attach it to the BFD. */
2863 if ((sectp->flags & SEC_RELOC) == 0)
2864 {
2865 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2866 return;
2867 }
2868
2869 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2870 info->buffer = buf;
2871
2872 /* When debugging .o files, we may need to apply relocations; see
2873 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2874 We never compress sections in .o files, so we only need to
2875 try this when the section is not compressed. */
2876 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2877 if (retbuf != NULL)
2878 {
2879 info->buffer = retbuf;
2880 return;
2881 }
2882
2883 abfd = get_section_bfd_owner (info);
2884 gdb_assert (abfd != NULL);
2885
2886 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2887 || bfd_bread (buf, info->size, abfd) != info->size)
2888 {
2889 error (_("Dwarf Error: Can't read DWARF data"
2890 " in section %s [in module %s]"),
2891 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2892 }
2893 }
2894
2895 /* A helper function that returns the size of a section in a safe way.
2896 If you are positive that the section has been read before using the
2897 size, then it is safe to refer to the dwarf2_section_info object's
2898 "size" field directly. In other cases, you must call this
2899 function, because for compressed sections the size field is not set
2900 correctly until the section has been read. */
2901
2902 static bfd_size_type
2903 dwarf2_section_size (struct objfile *objfile,
2904 struct dwarf2_section_info *info)
2905 {
2906 if (!info->readin)
2907 dwarf2_read_section (objfile, info);
2908 return info->size;
2909 }
2910
2911 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2912 SECTION_NAME. */
2913
2914 void
2915 dwarf2_get_section_info (struct objfile *objfile,
2916 enum dwarf2_section_enum sect,
2917 asection **sectp, const gdb_byte **bufp,
2918 bfd_size_type *sizep)
2919 {
2920 struct dwarf2_per_objfile *data
2921 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2922 dwarf2_objfile_data_key);
2923 struct dwarf2_section_info *info;
2924
2925 /* We may see an objfile without any DWARF, in which case we just
2926 return nothing. */
2927 if (data == NULL)
2928 {
2929 *sectp = NULL;
2930 *bufp = NULL;
2931 *sizep = 0;
2932 return;
2933 }
2934 switch (sect)
2935 {
2936 case DWARF2_DEBUG_FRAME:
2937 info = &data->frame;
2938 break;
2939 case DWARF2_EH_FRAME:
2940 info = &data->eh_frame;
2941 break;
2942 default:
2943 gdb_assert_not_reached ("unexpected section");
2944 }
2945
2946 dwarf2_read_section (objfile, info);
2947
2948 *sectp = get_section_bfd_section (info);
2949 *bufp = info->buffer;
2950 *sizep = info->size;
2951 }
2952
2953 /* A helper function to find the sections for a .dwz file. */
2954
2955 static void
2956 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2957 {
2958 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2959
2960 /* Note that we only support the standard ELF names, because .dwz
2961 is ELF-only (at the time of writing). */
2962 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2963 {
2964 dwz_file->abbrev.s.section = sectp;
2965 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2966 }
2967 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2968 {
2969 dwz_file->info.s.section = sectp;
2970 dwz_file->info.size = bfd_get_section_size (sectp);
2971 }
2972 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2973 {
2974 dwz_file->str.s.section = sectp;
2975 dwz_file->str.size = bfd_get_section_size (sectp);
2976 }
2977 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2978 {
2979 dwz_file->line.s.section = sectp;
2980 dwz_file->line.size = bfd_get_section_size (sectp);
2981 }
2982 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2983 {
2984 dwz_file->macro.s.section = sectp;
2985 dwz_file->macro.size = bfd_get_section_size (sectp);
2986 }
2987 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2988 {
2989 dwz_file->gdb_index.s.section = sectp;
2990 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2991 }
2992 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2993 {
2994 dwz_file->debug_names.s.section = sectp;
2995 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2996 }
2997 }
2998
2999 /* Open the separate '.dwz' debug file, if needed. Return NULL if
3000 there is no .gnu_debugaltlink section in the file. Error if there
3001 is such a section but the file cannot be found. */
3002
3003 static struct dwz_file *
3004 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
3005 {
3006 const char *filename;
3007 struct dwz_file *result;
3008 bfd_size_type buildid_len_arg;
3009 size_t buildid_len;
3010 bfd_byte *buildid;
3011
3012 if (dwarf2_per_objfile->dwz_file != NULL)
3013 return dwarf2_per_objfile->dwz_file;
3014
3015 bfd_set_error (bfd_error_no_error);
3016 gdb::unique_xmalloc_ptr<char> data
3017 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
3018 &buildid_len_arg, &buildid));
3019 if (data == NULL)
3020 {
3021 if (bfd_get_error () == bfd_error_no_error)
3022 return NULL;
3023 error (_("could not read '.gnu_debugaltlink' section: %s"),
3024 bfd_errmsg (bfd_get_error ()));
3025 }
3026
3027 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
3028
3029 buildid_len = (size_t) buildid_len_arg;
3030
3031 filename = data.get ();
3032
3033 std::string abs_storage;
3034 if (!IS_ABSOLUTE_PATH (filename))
3035 {
3036 gdb::unique_xmalloc_ptr<char> abs
3037 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
3038
3039 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
3040 filename = abs_storage.c_str ();
3041 }
3042
3043 /* First try the file name given in the section. If that doesn't
3044 work, try to use the build-id instead. */
3045 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
3046 if (dwz_bfd != NULL)
3047 {
3048 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
3049 dwz_bfd.release ();
3050 }
3051
3052 if (dwz_bfd == NULL)
3053 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
3054
3055 if (dwz_bfd == NULL)
3056 error (_("could not find '.gnu_debugaltlink' file for %s"),
3057 objfile_name (dwarf2_per_objfile->objfile));
3058
3059 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
3060 struct dwz_file);
3061 result->dwz_bfd = dwz_bfd.release ();
3062
3063 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
3064
3065 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
3066 dwarf2_per_objfile->dwz_file = result;
3067 return result;
3068 }
3069 \f
3070 /* DWARF quick_symbols_functions support. */
3071
3072 /* TUs can share .debug_line entries, and there can be a lot more TUs than
3073 unique line tables, so we maintain a separate table of all .debug_line
3074 derived entries to support the sharing.
3075 All the quick functions need is the list of file names. We discard the
3076 line_header when we're done and don't need to record it here. */
3077 struct quick_file_names
3078 {
3079 /* The data used to construct the hash key. */
3080 struct stmt_list_hash hash;
3081
3082 /* The number of entries in file_names, real_names. */
3083 unsigned int num_file_names;
3084
3085 /* The file names from the line table, after being run through
3086 file_full_name. */
3087 const char **file_names;
3088
3089 /* The file names from the line table after being run through
3090 gdb_realpath. These are computed lazily. */
3091 const char **real_names;
3092 };
3093
3094 /* When using the index (and thus not using psymtabs), each CU has an
3095 object of this type. This is used to hold information needed by
3096 the various "quick" methods. */
3097 struct dwarf2_per_cu_quick_data
3098 {
3099 /* The file table. This can be NULL if there was no file table
3100 or it's currently not read in.
3101 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
3102 struct quick_file_names *file_names;
3103
3104 /* The corresponding symbol table. This is NULL if symbols for this
3105 CU have not yet been read. */
3106 struct compunit_symtab *compunit_symtab;
3107
3108 /* A temporary mark bit used when iterating over all CUs in
3109 expand_symtabs_matching. */
3110 unsigned int mark : 1;
3111
3112 /* True if we've tried to read the file table and found there isn't one.
3113 There will be no point in trying to read it again next time. */
3114 unsigned int no_file_data : 1;
3115 };
3116
3117 /* Utility hash function for a stmt_list_hash. */
3118
3119 static hashval_t
3120 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
3121 {
3122 hashval_t v = 0;
3123
3124 if (stmt_list_hash->dwo_unit != NULL)
3125 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
3126 v += to_underlying (stmt_list_hash->line_sect_off);
3127 return v;
3128 }
3129
3130 /* Utility equality function for a stmt_list_hash. */
3131
3132 static int
3133 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
3134 const struct stmt_list_hash *rhs)
3135 {
3136 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
3137 return 0;
3138 if (lhs->dwo_unit != NULL
3139 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
3140 return 0;
3141
3142 return lhs->line_sect_off == rhs->line_sect_off;
3143 }
3144
3145 /* Hash function for a quick_file_names. */
3146
3147 static hashval_t
3148 hash_file_name_entry (const void *e)
3149 {
3150 const struct quick_file_names *file_data
3151 = (const struct quick_file_names *) e;
3152
3153 return hash_stmt_list_entry (&file_data->hash);
3154 }
3155
3156 /* Equality function for a quick_file_names. */
3157
3158 static int
3159 eq_file_name_entry (const void *a, const void *b)
3160 {
3161 const struct quick_file_names *ea = (const struct quick_file_names *) a;
3162 const struct quick_file_names *eb = (const struct quick_file_names *) b;
3163
3164 return eq_stmt_list_entry (&ea->hash, &eb->hash);
3165 }
3166
3167 /* Delete function for a quick_file_names. */
3168
3169 static void
3170 delete_file_name_entry (void *e)
3171 {
3172 struct quick_file_names *file_data = (struct quick_file_names *) e;
3173 int i;
3174
3175 for (i = 0; i < file_data->num_file_names; ++i)
3176 {
3177 xfree ((void*) file_data->file_names[i]);
3178 if (file_data->real_names)
3179 xfree ((void*) file_data->real_names[i]);
3180 }
3181
3182 /* The space for the struct itself lives on objfile_obstack,
3183 so we don't free it here. */
3184 }
3185
3186 /* Create a quick_file_names hash table. */
3187
3188 static htab_t
3189 create_quick_file_names_table (unsigned int nr_initial_entries)
3190 {
3191 return htab_create_alloc (nr_initial_entries,
3192 hash_file_name_entry, eq_file_name_entry,
3193 delete_file_name_entry, xcalloc, xfree);
3194 }
3195
3196 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
3197 have to be created afterwards. You should call age_cached_comp_units after
3198 processing PER_CU->CU. dw2_setup must have been already called. */
3199
3200 static void
3201 load_cu (struct dwarf2_per_cu_data *per_cu)
3202 {
3203 if (per_cu->is_debug_types)
3204 load_full_type_unit (per_cu);
3205 else
3206 load_full_comp_unit (per_cu, language_minimal);
3207
3208 if (per_cu->cu == NULL)
3209 return; /* Dummy CU. */
3210
3211 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
3212 }
3213
3214 /* Read in the symbols for PER_CU. */
3215
3216 static void
3217 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3218 {
3219 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3220
3221 /* Skip type_unit_groups, reading the type units they contain
3222 is handled elsewhere. */
3223 if (IS_TYPE_UNIT_GROUP (per_cu))
3224 return;
3225
3226 /* The destructor of dwarf2_queue_guard frees any entries left on
3227 the queue. After this point we're guaranteed to leave this function
3228 with the dwarf queue empty. */
3229 dwarf2_queue_guard q_guard;
3230
3231 if (dwarf2_per_objfile->using_index
3232 ? per_cu->v.quick->compunit_symtab == NULL
3233 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
3234 {
3235 queue_comp_unit (per_cu, language_minimal);
3236 load_cu (per_cu);
3237
3238 /* If we just loaded a CU from a DWO, and we're working with an index
3239 that may badly handle TUs, load all the TUs in that DWO as well.
3240 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
3241 if (!per_cu->is_debug_types
3242 && per_cu->cu != NULL
3243 && per_cu->cu->dwo_unit != NULL
3244 && dwarf2_per_objfile->index_table != NULL
3245 && dwarf2_per_objfile->index_table->version <= 7
3246 /* DWP files aren't supported yet. */
3247 && get_dwp_file (dwarf2_per_objfile) == NULL)
3248 queue_and_load_all_dwo_tus (per_cu);
3249 }
3250
3251 process_queue (dwarf2_per_objfile);
3252
3253 /* Age the cache, releasing compilation units that have not
3254 been used recently. */
3255 age_cached_comp_units (dwarf2_per_objfile);
3256 }
3257
3258 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
3259 the objfile from which this CU came. Returns the resulting symbol
3260 table. */
3261
3262 static struct compunit_symtab *
3263 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3264 {
3265 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3266
3267 gdb_assert (dwarf2_per_objfile->using_index);
3268 if (!per_cu->v.quick->compunit_symtab)
3269 {
3270 struct cleanup *back_to = make_cleanup (free_cached_comp_units,
3271 dwarf2_per_objfile);
3272 scoped_restore decrementer = increment_reading_symtab ();
3273 dw2_do_instantiate_symtab (per_cu);
3274 process_cu_includes (dwarf2_per_objfile);
3275 do_cleanups (back_to);
3276 }
3277
3278 return per_cu->v.quick->compunit_symtab;
3279 }
3280
3281 /* Return the CU/TU given its index.
3282
3283 This is intended for loops like:
3284
3285 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3286 + dwarf2_per_objfile->n_type_units); ++i)
3287 {
3288 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3289
3290 ...;
3291 }
3292 */
3293
3294 static struct dwarf2_per_cu_data *
3295 dw2_get_cutu (struct dwarf2_per_objfile *dwarf2_per_objfile,
3296 int index)
3297 {
3298 if (index >= dwarf2_per_objfile->n_comp_units)
3299 {
3300 index -= dwarf2_per_objfile->n_comp_units;
3301 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3302 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3303 }
3304
3305 return dwarf2_per_objfile->all_comp_units[index];
3306 }
3307
3308 /* Return the CU given its index.
3309 This differs from dw2_get_cutu in that it's for when you know INDEX
3310 refers to a CU. */
3311
3312 static struct dwarf2_per_cu_data *
3313 dw2_get_cu (struct dwarf2_per_objfile *dwarf2_per_objfile, int index)
3314 {
3315 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3316
3317 return dwarf2_per_objfile->all_comp_units[index];
3318 }
3319
3320 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
3321 objfile_obstack, and constructed with the specified field
3322 values. */
3323
3324 static dwarf2_per_cu_data *
3325 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3326 struct dwarf2_section_info *section,
3327 int is_dwz,
3328 sect_offset sect_off, ULONGEST length)
3329 {
3330 struct objfile *objfile = dwarf2_per_objfile->objfile;
3331 dwarf2_per_cu_data *the_cu
3332 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3333 struct dwarf2_per_cu_data);
3334 the_cu->sect_off = sect_off;
3335 the_cu->length = length;
3336 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3337 the_cu->section = section;
3338 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3339 struct dwarf2_per_cu_quick_data);
3340 the_cu->is_dwz = is_dwz;
3341 return the_cu;
3342 }
3343
3344 /* A helper for create_cus_from_index that handles a given list of
3345 CUs. */
3346
3347 static void
3348 create_cus_from_index_list (struct objfile *objfile,
3349 const gdb_byte *cu_list, offset_type n_elements,
3350 struct dwarf2_section_info *section,
3351 int is_dwz,
3352 int base_offset)
3353 {
3354 offset_type i;
3355 struct dwarf2_per_objfile *dwarf2_per_objfile
3356 = get_dwarf2_per_objfile (objfile);
3357
3358 for (i = 0; i < n_elements; i += 2)
3359 {
3360 gdb_static_assert (sizeof (ULONGEST) >= 8);
3361
3362 sect_offset sect_off
3363 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3364 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3365 cu_list += 2 * 8;
3366
3367 dwarf2_per_objfile->all_comp_units[base_offset + i / 2]
3368 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3369 sect_off, length);
3370 }
3371 }
3372
3373 /* Read the CU list from the mapped index, and use it to create all
3374 the CU objects for this objfile. */
3375
3376 static void
3377 create_cus_from_index (struct objfile *objfile,
3378 const gdb_byte *cu_list, offset_type cu_list_elements,
3379 const gdb_byte *dwz_list, offset_type dwz_elements)
3380 {
3381 struct dwz_file *dwz;
3382 struct dwarf2_per_objfile *dwarf2_per_objfile
3383 = get_dwarf2_per_objfile (objfile);
3384
3385 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3386 dwarf2_per_objfile->all_comp_units =
3387 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3388 dwarf2_per_objfile->n_comp_units);
3389
3390 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3391 &dwarf2_per_objfile->info, 0, 0);
3392
3393 if (dwz_elements == 0)
3394 return;
3395
3396 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3397 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3398 cu_list_elements / 2);
3399 }
3400
3401 /* Create the signatured type hash table from the index. */
3402
3403 static void
3404 create_signatured_type_table_from_index (struct objfile *objfile,
3405 struct dwarf2_section_info *section,
3406 const gdb_byte *bytes,
3407 offset_type elements)
3408 {
3409 offset_type i;
3410 htab_t sig_types_hash;
3411 struct dwarf2_per_objfile *dwarf2_per_objfile
3412 = get_dwarf2_per_objfile (objfile);
3413
3414 dwarf2_per_objfile->n_type_units
3415 = dwarf2_per_objfile->n_allocated_type_units
3416 = elements / 3;
3417 dwarf2_per_objfile->all_type_units =
3418 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3419
3420 sig_types_hash = allocate_signatured_type_table (objfile);
3421
3422 for (i = 0; i < elements; i += 3)
3423 {
3424 struct signatured_type *sig_type;
3425 ULONGEST signature;
3426 void **slot;
3427 cu_offset type_offset_in_tu;
3428
3429 gdb_static_assert (sizeof (ULONGEST) >= 8);
3430 sect_offset sect_off
3431 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3432 type_offset_in_tu
3433 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3434 BFD_ENDIAN_LITTLE);
3435 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3436 bytes += 3 * 8;
3437
3438 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3439 struct signatured_type);
3440 sig_type->signature = signature;
3441 sig_type->type_offset_in_tu = type_offset_in_tu;
3442 sig_type->per_cu.is_debug_types = 1;
3443 sig_type->per_cu.section = section;
3444 sig_type->per_cu.sect_off = sect_off;
3445 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3446 sig_type->per_cu.v.quick
3447 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3448 struct dwarf2_per_cu_quick_data);
3449
3450 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3451 *slot = sig_type;
3452
3453 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3454 }
3455
3456 dwarf2_per_objfile->signatured_types = sig_types_hash;
3457 }
3458
3459 /* Create the signatured type hash table from .debug_names. */
3460
3461 static void
3462 create_signatured_type_table_from_debug_names
3463 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3464 const mapped_debug_names &map,
3465 struct dwarf2_section_info *section,
3466 struct dwarf2_section_info *abbrev_section)
3467 {
3468 struct objfile *objfile = dwarf2_per_objfile->objfile;
3469
3470 dwarf2_read_section (objfile, section);
3471 dwarf2_read_section (objfile, abbrev_section);
3472
3473 dwarf2_per_objfile->n_type_units
3474 = dwarf2_per_objfile->n_allocated_type_units
3475 = map.tu_count;
3476 dwarf2_per_objfile->all_type_units
3477 = XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3478
3479 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3480
3481 for (uint32_t i = 0; i < map.tu_count; ++i)
3482 {
3483 struct signatured_type *sig_type;
3484 ULONGEST signature;
3485 void **slot;
3486 cu_offset type_offset_in_tu;
3487
3488 sect_offset sect_off
3489 = (sect_offset) (extract_unsigned_integer
3490 (map.tu_table_reordered + i * map.offset_size,
3491 map.offset_size,
3492 map.dwarf5_byte_order));
3493
3494 comp_unit_head cu_header;
3495 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3496 abbrev_section,
3497 section->buffer + to_underlying (sect_off),
3498 rcuh_kind::TYPE);
3499
3500 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3501 struct signatured_type);
3502 sig_type->signature = cu_header.signature;
3503 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3504 sig_type->per_cu.is_debug_types = 1;
3505 sig_type->per_cu.section = section;
3506 sig_type->per_cu.sect_off = sect_off;
3507 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3508 sig_type->per_cu.v.quick
3509 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3510 struct dwarf2_per_cu_quick_data);
3511
3512 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3513 *slot = sig_type;
3514
3515 dwarf2_per_objfile->all_type_units[i] = sig_type;
3516 }
3517
3518 dwarf2_per_objfile->signatured_types = sig_types_hash;
3519 }
3520
3521 /* Read the address map data from the mapped index, and use it to
3522 populate the objfile's psymtabs_addrmap. */
3523
3524 static void
3525 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3526 struct mapped_index *index)
3527 {
3528 struct objfile *objfile = dwarf2_per_objfile->objfile;
3529 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3530 const gdb_byte *iter, *end;
3531 struct addrmap *mutable_map;
3532 CORE_ADDR baseaddr;
3533
3534 auto_obstack temp_obstack;
3535
3536 mutable_map = addrmap_create_mutable (&temp_obstack);
3537
3538 iter = index->address_table.data ();
3539 end = iter + index->address_table.size ();
3540
3541 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3542
3543 while (iter < end)
3544 {
3545 ULONGEST hi, lo, cu_index;
3546 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3547 iter += 8;
3548 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3549 iter += 8;
3550 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3551 iter += 4;
3552
3553 if (lo > hi)
3554 {
3555 complaint (&symfile_complaints,
3556 _(".gdb_index address table has invalid range (%s - %s)"),
3557 hex_string (lo), hex_string (hi));
3558 continue;
3559 }
3560
3561 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3562 {
3563 complaint (&symfile_complaints,
3564 _(".gdb_index address table has invalid CU number %u"),
3565 (unsigned) cu_index);
3566 continue;
3567 }
3568
3569 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3570 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3571 addrmap_set_empty (mutable_map, lo, hi - 1,
3572 dw2_get_cutu (dwarf2_per_objfile, cu_index));
3573 }
3574
3575 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3576 &objfile->objfile_obstack);
3577 }
3578
3579 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3580 populate the objfile's psymtabs_addrmap. */
3581
3582 static void
3583 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3584 struct dwarf2_section_info *section)
3585 {
3586 struct objfile *objfile = dwarf2_per_objfile->objfile;
3587 bfd *abfd = objfile->obfd;
3588 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3589 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3590 SECT_OFF_TEXT (objfile));
3591
3592 auto_obstack temp_obstack;
3593 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3594
3595 std::unordered_map<sect_offset,
3596 dwarf2_per_cu_data *,
3597 gdb::hash_enum<sect_offset>>
3598 debug_info_offset_to_per_cu;
3599 for (int cui = 0; cui < dwarf2_per_objfile->n_comp_units; ++cui)
3600 {
3601 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, cui);
3602 const auto insertpair
3603 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3604 if (!insertpair.second)
3605 {
3606 warning (_("Section .debug_aranges in %s has duplicate "
3607 "debug_info_offset %s, ignoring .debug_aranges."),
3608 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3609 return;
3610 }
3611 }
3612
3613 dwarf2_read_section (objfile, section);
3614
3615 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3616
3617 const gdb_byte *addr = section->buffer;
3618
3619 while (addr < section->buffer + section->size)
3620 {
3621 const gdb_byte *const entry_addr = addr;
3622 unsigned int bytes_read;
3623
3624 const LONGEST entry_length = read_initial_length (abfd, addr,
3625 &bytes_read);
3626 addr += bytes_read;
3627
3628 const gdb_byte *const entry_end = addr + entry_length;
3629 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3630 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3631 if (addr + entry_length > section->buffer + section->size)
3632 {
3633 warning (_("Section .debug_aranges in %s entry at offset %zu "
3634 "length %s exceeds section length %s, "
3635 "ignoring .debug_aranges."),
3636 objfile_name (objfile), entry_addr - section->buffer,
3637 plongest (bytes_read + entry_length),
3638 pulongest (section->size));
3639 return;
3640 }
3641
3642 /* The version number. */
3643 const uint16_t version = read_2_bytes (abfd, addr);
3644 addr += 2;
3645 if (version != 2)
3646 {
3647 warning (_("Section .debug_aranges in %s entry at offset %zu "
3648 "has unsupported version %d, ignoring .debug_aranges."),
3649 objfile_name (objfile), entry_addr - section->buffer,
3650 version);
3651 return;
3652 }
3653
3654 const uint64_t debug_info_offset
3655 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3656 addr += offset_size;
3657 const auto per_cu_it
3658 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3659 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3660 {
3661 warning (_("Section .debug_aranges in %s entry at offset %zu "
3662 "debug_info_offset %s does not exists, "
3663 "ignoring .debug_aranges."),
3664 objfile_name (objfile), entry_addr - section->buffer,
3665 pulongest (debug_info_offset));
3666 return;
3667 }
3668 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3669
3670 const uint8_t address_size = *addr++;
3671 if (address_size < 1 || address_size > 8)
3672 {
3673 warning (_("Section .debug_aranges in %s entry at offset %zu "
3674 "address_size %u is invalid, ignoring .debug_aranges."),
3675 objfile_name (objfile), entry_addr - section->buffer,
3676 address_size);
3677 return;
3678 }
3679
3680 const uint8_t segment_selector_size = *addr++;
3681 if (segment_selector_size != 0)
3682 {
3683 warning (_("Section .debug_aranges in %s entry at offset %zu "
3684 "segment_selector_size %u is not supported, "
3685 "ignoring .debug_aranges."),
3686 objfile_name (objfile), entry_addr - section->buffer,
3687 segment_selector_size);
3688 return;
3689 }
3690
3691 /* Must pad to an alignment boundary that is twice the address
3692 size. It is undocumented by the DWARF standard but GCC does
3693 use it. */
3694 for (size_t padding = ((-(addr - section->buffer))
3695 & (2 * address_size - 1));
3696 padding > 0; padding--)
3697 if (*addr++ != 0)
3698 {
3699 warning (_("Section .debug_aranges in %s entry at offset %zu "
3700 "padding is not zero, ignoring .debug_aranges."),
3701 objfile_name (objfile), entry_addr - section->buffer);
3702 return;
3703 }
3704
3705 for (;;)
3706 {
3707 if (addr + 2 * address_size > entry_end)
3708 {
3709 warning (_("Section .debug_aranges in %s entry at offset %zu "
3710 "address list is not properly terminated, "
3711 "ignoring .debug_aranges."),
3712 objfile_name (objfile), entry_addr - section->buffer);
3713 return;
3714 }
3715 ULONGEST start = extract_unsigned_integer (addr, address_size,
3716 dwarf5_byte_order);
3717 addr += address_size;
3718 ULONGEST length = extract_unsigned_integer (addr, address_size,
3719 dwarf5_byte_order);
3720 addr += address_size;
3721 if (start == 0 && length == 0)
3722 break;
3723 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3724 {
3725 /* Symbol was eliminated due to a COMDAT group. */
3726 continue;
3727 }
3728 ULONGEST end = start + length;
3729 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3730 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3731 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3732 }
3733 }
3734
3735 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3736 &objfile->objfile_obstack);
3737 }
3738
3739 /* The hash function for strings in the mapped index. This is the same as
3740 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3741 implementation. This is necessary because the hash function is tied to the
3742 format of the mapped index file. The hash values do not have to match with
3743 SYMBOL_HASH_NEXT.
3744
3745 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3746
3747 static hashval_t
3748 mapped_index_string_hash (int index_version, const void *p)
3749 {
3750 const unsigned char *str = (const unsigned char *) p;
3751 hashval_t r = 0;
3752 unsigned char c;
3753
3754 while ((c = *str++) != 0)
3755 {
3756 if (index_version >= 5)
3757 c = tolower (c);
3758 r = r * 67 + c - 113;
3759 }
3760
3761 return r;
3762 }
3763
3764 /* Find a slot in the mapped index INDEX for the object named NAME.
3765 If NAME is found, set *VEC_OUT to point to the CU vector in the
3766 constant pool and return true. If NAME cannot be found, return
3767 false. */
3768
3769 static bool
3770 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3771 offset_type **vec_out)
3772 {
3773 offset_type hash;
3774 offset_type slot, step;
3775 int (*cmp) (const char *, const char *);
3776
3777 gdb::unique_xmalloc_ptr<char> without_params;
3778 if (current_language->la_language == language_cplus
3779 || current_language->la_language == language_fortran
3780 || current_language->la_language == language_d)
3781 {
3782 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3783 not contain any. */
3784
3785 if (strchr (name, '(') != NULL)
3786 {
3787 without_params = cp_remove_params (name);
3788
3789 if (without_params != NULL)
3790 name = without_params.get ();
3791 }
3792 }
3793
3794 /* Index version 4 did not support case insensitive searches. But the
3795 indices for case insensitive languages are built in lowercase, therefore
3796 simulate our NAME being searched is also lowercased. */
3797 hash = mapped_index_string_hash ((index->version == 4
3798 && case_sensitivity == case_sensitive_off
3799 ? 5 : index->version),
3800 name);
3801
3802 slot = hash & (index->symbol_table.size () - 1);
3803 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3804 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3805
3806 for (;;)
3807 {
3808 const char *str;
3809
3810 const auto &bucket = index->symbol_table[slot];
3811 if (bucket.name == 0 && bucket.vec == 0)
3812 return false;
3813
3814 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3815 if (!cmp (name, str))
3816 {
3817 *vec_out = (offset_type *) (index->constant_pool
3818 + MAYBE_SWAP (bucket.vec));
3819 return true;
3820 }
3821
3822 slot = (slot + step) & (index->symbol_table.size () - 1);
3823 }
3824 }
3825
3826 /* A helper function that reads the .gdb_index from SECTION and fills
3827 in MAP. FILENAME is the name of the file containing the section;
3828 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3829 ok to use deprecated sections.
3830
3831 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3832 out parameters that are filled in with information about the CU and
3833 TU lists in the section.
3834
3835 Returns 1 if all went well, 0 otherwise. */
3836
3837 static int
3838 read_index_from_section (struct objfile *objfile,
3839 const char *filename,
3840 int deprecated_ok,
3841 struct dwarf2_section_info *section,
3842 struct mapped_index *map,
3843 const gdb_byte **cu_list,
3844 offset_type *cu_list_elements,
3845 const gdb_byte **types_list,
3846 offset_type *types_list_elements)
3847 {
3848 const gdb_byte *addr;
3849 offset_type version;
3850 offset_type *metadata;
3851 int i;
3852
3853 if (dwarf2_section_empty_p (section))
3854 return 0;
3855
3856 /* Older elfutils strip versions could keep the section in the main
3857 executable while splitting it for the separate debug info file. */
3858 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3859 return 0;
3860
3861 dwarf2_read_section (objfile, section);
3862
3863 addr = section->buffer;
3864 /* Version check. */
3865 version = MAYBE_SWAP (*(offset_type *) addr);
3866 /* Versions earlier than 3 emitted every copy of a psymbol. This
3867 causes the index to behave very poorly for certain requests. Version 3
3868 contained incomplete addrmap. So, it seems better to just ignore such
3869 indices. */
3870 if (version < 4)
3871 {
3872 static int warning_printed = 0;
3873 if (!warning_printed)
3874 {
3875 warning (_("Skipping obsolete .gdb_index section in %s."),
3876 filename);
3877 warning_printed = 1;
3878 }
3879 return 0;
3880 }
3881 /* Index version 4 uses a different hash function than index version
3882 5 and later.
3883
3884 Versions earlier than 6 did not emit psymbols for inlined
3885 functions. Using these files will cause GDB not to be able to
3886 set breakpoints on inlined functions by name, so we ignore these
3887 indices unless the user has done
3888 "set use-deprecated-index-sections on". */
3889 if (version < 6 && !deprecated_ok)
3890 {
3891 static int warning_printed = 0;
3892 if (!warning_printed)
3893 {
3894 warning (_("\
3895 Skipping deprecated .gdb_index section in %s.\n\
3896 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3897 to use the section anyway."),
3898 filename);
3899 warning_printed = 1;
3900 }
3901 return 0;
3902 }
3903 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3904 of the TU (for symbols coming from TUs),
3905 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3906 Plus gold-generated indices can have duplicate entries for global symbols,
3907 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3908 These are just performance bugs, and we can't distinguish gdb-generated
3909 indices from gold-generated ones, so issue no warning here. */
3910
3911 /* Indexes with higher version than the one supported by GDB may be no
3912 longer backward compatible. */
3913 if (version > 8)
3914 return 0;
3915
3916 map->version = version;
3917 map->total_size = section->size;
3918
3919 metadata = (offset_type *) (addr + sizeof (offset_type));
3920
3921 i = 0;
3922 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3923 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3924 / 8);
3925 ++i;
3926
3927 *types_list = addr + MAYBE_SWAP (metadata[i]);
3928 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3929 - MAYBE_SWAP (metadata[i]))
3930 / 8);
3931 ++i;
3932
3933 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3934 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3935 map->address_table
3936 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3937 ++i;
3938
3939 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3940 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3941 map->symbol_table
3942 = gdb::array_view<mapped_index::symbol_table_slot>
3943 ((mapped_index::symbol_table_slot *) symbol_table,
3944 (mapped_index::symbol_table_slot *) symbol_table_end);
3945
3946 ++i;
3947 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3948
3949 return 1;
3950 }
3951
3952 /* Read .gdb_index. If everything went ok, initialize the "quick"
3953 elements of all the CUs and return 1. Otherwise, return 0. */
3954
3955 static int
3956 dwarf2_read_index (struct objfile *objfile)
3957 {
3958 struct mapped_index local_map, *map;
3959 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3960 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3961 struct dwz_file *dwz;
3962 struct dwarf2_per_objfile *dwarf2_per_objfile
3963 = get_dwarf2_per_objfile (objfile);
3964
3965 if (!read_index_from_section (objfile, objfile_name (objfile),
3966 use_deprecated_index_sections,
3967 &dwarf2_per_objfile->gdb_index, &local_map,
3968 &cu_list, &cu_list_elements,
3969 &types_list, &types_list_elements))
3970 return 0;
3971
3972 /* Don't use the index if it's empty. */
3973 if (local_map.symbol_table.empty ())
3974 return 0;
3975
3976 /* If there is a .dwz file, read it so we can get its CU list as
3977 well. */
3978 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3979 if (dwz != NULL)
3980 {
3981 struct mapped_index dwz_map;
3982 const gdb_byte *dwz_types_ignore;
3983 offset_type dwz_types_elements_ignore;
3984
3985 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3986 1,
3987 &dwz->gdb_index, &dwz_map,
3988 &dwz_list, &dwz_list_elements,
3989 &dwz_types_ignore,
3990 &dwz_types_elements_ignore))
3991 {
3992 warning (_("could not read '.gdb_index' section from %s; skipping"),
3993 bfd_get_filename (dwz->dwz_bfd));
3994 return 0;
3995 }
3996 }
3997
3998 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3999 dwz_list_elements);
4000
4001 if (types_list_elements)
4002 {
4003 struct dwarf2_section_info *section;
4004
4005 /* We can only handle a single .debug_types when we have an
4006 index. */
4007 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
4008 return 0;
4009
4010 section = VEC_index (dwarf2_section_info_def,
4011 dwarf2_per_objfile->types, 0);
4012
4013 create_signatured_type_table_from_index (objfile, section, types_list,
4014 types_list_elements);
4015 }
4016
4017 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
4018
4019 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
4020 map = new (map) mapped_index ();
4021 *map = local_map;
4022
4023 dwarf2_per_objfile->index_table = map;
4024 dwarf2_per_objfile->using_index = 1;
4025 dwarf2_per_objfile->quick_file_names_table =
4026 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4027
4028 return 1;
4029 }
4030
4031 /* die_reader_func for dw2_get_file_names. */
4032
4033 static void
4034 dw2_get_file_names_reader (const struct die_reader_specs *reader,
4035 const gdb_byte *info_ptr,
4036 struct die_info *comp_unit_die,
4037 int has_children,
4038 void *data)
4039 {
4040 struct dwarf2_cu *cu = reader->cu;
4041 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
4042 struct dwarf2_per_objfile *dwarf2_per_objfile
4043 = cu->per_cu->dwarf2_per_objfile;
4044 struct objfile *objfile = dwarf2_per_objfile->objfile;
4045 struct dwarf2_per_cu_data *lh_cu;
4046 struct attribute *attr;
4047 int i;
4048 void **slot;
4049 struct quick_file_names *qfn;
4050
4051 gdb_assert (! this_cu->is_debug_types);
4052
4053 /* Our callers never want to match partial units -- instead they
4054 will match the enclosing full CU. */
4055 if (comp_unit_die->tag == DW_TAG_partial_unit)
4056 {
4057 this_cu->v.quick->no_file_data = 1;
4058 return;
4059 }
4060
4061 lh_cu = this_cu;
4062 slot = NULL;
4063
4064 line_header_up lh;
4065 sect_offset line_offset {};
4066
4067 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4068 if (attr)
4069 {
4070 struct quick_file_names find_entry;
4071
4072 line_offset = (sect_offset) DW_UNSND (attr);
4073
4074 /* We may have already read in this line header (TU line header sharing).
4075 If we have we're done. */
4076 find_entry.hash.dwo_unit = cu->dwo_unit;
4077 find_entry.hash.line_sect_off = line_offset;
4078 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
4079 &find_entry, INSERT);
4080 if (*slot != NULL)
4081 {
4082 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
4083 return;
4084 }
4085
4086 lh = dwarf_decode_line_header (line_offset, cu);
4087 }
4088 if (lh == NULL)
4089 {
4090 lh_cu->v.quick->no_file_data = 1;
4091 return;
4092 }
4093
4094 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
4095 qfn->hash.dwo_unit = cu->dwo_unit;
4096 qfn->hash.line_sect_off = line_offset;
4097 gdb_assert (slot != NULL);
4098 *slot = qfn;
4099
4100 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
4101
4102 qfn->num_file_names = lh->file_names.size ();
4103 qfn->file_names =
4104 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
4105 for (i = 0; i < lh->file_names.size (); ++i)
4106 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
4107 qfn->real_names = NULL;
4108
4109 lh_cu->v.quick->file_names = qfn;
4110 }
4111
4112 /* A helper for the "quick" functions which attempts to read the line
4113 table for THIS_CU. */
4114
4115 static struct quick_file_names *
4116 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
4117 {
4118 /* This should never be called for TUs. */
4119 gdb_assert (! this_cu->is_debug_types);
4120 /* Nor type unit groups. */
4121 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
4122
4123 if (this_cu->v.quick->file_names != NULL)
4124 return this_cu->v.quick->file_names;
4125 /* If we know there is no line data, no point in looking again. */
4126 if (this_cu->v.quick->no_file_data)
4127 return NULL;
4128
4129 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
4130
4131 if (this_cu->v.quick->no_file_data)
4132 return NULL;
4133 return this_cu->v.quick->file_names;
4134 }
4135
4136 /* A helper for the "quick" functions which computes and caches the
4137 real path for a given file name from the line table. */
4138
4139 static const char *
4140 dw2_get_real_path (struct objfile *objfile,
4141 struct quick_file_names *qfn, int index)
4142 {
4143 if (qfn->real_names == NULL)
4144 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
4145 qfn->num_file_names, const char *);
4146
4147 if (qfn->real_names[index] == NULL)
4148 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
4149
4150 return qfn->real_names[index];
4151 }
4152
4153 static struct symtab *
4154 dw2_find_last_source_symtab (struct objfile *objfile)
4155 {
4156 struct dwarf2_per_objfile *dwarf2_per_objfile
4157 = get_dwarf2_per_objfile (objfile);
4158 int index = dwarf2_per_objfile->n_comp_units - 1;
4159 dwarf2_per_cu_data *dwarf_cu = dw2_get_cutu (dwarf2_per_objfile, index);
4160 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
4161
4162 if (cust == NULL)
4163 return NULL;
4164
4165 return compunit_primary_filetab (cust);
4166 }
4167
4168 /* Traversal function for dw2_forget_cached_source_info. */
4169
4170 static int
4171 dw2_free_cached_file_names (void **slot, void *info)
4172 {
4173 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
4174
4175 if (file_data->real_names)
4176 {
4177 int i;
4178
4179 for (i = 0; i < file_data->num_file_names; ++i)
4180 {
4181 xfree ((void*) file_data->real_names[i]);
4182 file_data->real_names[i] = NULL;
4183 }
4184 }
4185
4186 return 1;
4187 }
4188
4189 static void
4190 dw2_forget_cached_source_info (struct objfile *objfile)
4191 {
4192 struct dwarf2_per_objfile *dwarf2_per_objfile
4193 = get_dwarf2_per_objfile (objfile);
4194
4195 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
4196 dw2_free_cached_file_names, NULL);
4197 }
4198
4199 /* Helper function for dw2_map_symtabs_matching_filename that expands
4200 the symtabs and calls the iterator. */
4201
4202 static int
4203 dw2_map_expand_apply (struct objfile *objfile,
4204 struct dwarf2_per_cu_data *per_cu,
4205 const char *name, const char *real_path,
4206 gdb::function_view<bool (symtab *)> callback)
4207 {
4208 struct compunit_symtab *last_made = objfile->compunit_symtabs;
4209
4210 /* Don't visit already-expanded CUs. */
4211 if (per_cu->v.quick->compunit_symtab)
4212 return 0;
4213
4214 /* This may expand more than one symtab, and we want to iterate over
4215 all of them. */
4216 dw2_instantiate_symtab (per_cu);
4217
4218 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
4219 last_made, callback);
4220 }
4221
4222 /* Implementation of the map_symtabs_matching_filename method. */
4223
4224 static bool
4225 dw2_map_symtabs_matching_filename
4226 (struct objfile *objfile, const char *name, const char *real_path,
4227 gdb::function_view<bool (symtab *)> callback)
4228 {
4229 int i;
4230 const char *name_basename = lbasename (name);
4231 struct dwarf2_per_objfile *dwarf2_per_objfile
4232 = get_dwarf2_per_objfile (objfile);
4233
4234 /* The rule is CUs specify all the files, including those used by
4235 any TU, so there's no need to scan TUs here. */
4236
4237 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4238 {
4239 int j;
4240 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
4241 struct quick_file_names *file_data;
4242
4243 /* We only need to look at symtabs not already expanded. */
4244 if (per_cu->v.quick->compunit_symtab)
4245 continue;
4246
4247 file_data = dw2_get_file_names (per_cu);
4248 if (file_data == NULL)
4249 continue;
4250
4251 for (j = 0; j < file_data->num_file_names; ++j)
4252 {
4253 const char *this_name = file_data->file_names[j];
4254 const char *this_real_name;
4255
4256 if (compare_filenames_for_search (this_name, name))
4257 {
4258 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4259 callback))
4260 return true;
4261 continue;
4262 }
4263
4264 /* Before we invoke realpath, which can get expensive when many
4265 files are involved, do a quick comparison of the basenames. */
4266 if (! basenames_may_differ
4267 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
4268 continue;
4269
4270 this_real_name = dw2_get_real_path (objfile, file_data, j);
4271 if (compare_filenames_for_search (this_real_name, name))
4272 {
4273 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4274 callback))
4275 return true;
4276 continue;
4277 }
4278
4279 if (real_path != NULL)
4280 {
4281 gdb_assert (IS_ABSOLUTE_PATH (real_path));
4282 gdb_assert (IS_ABSOLUTE_PATH (name));
4283 if (this_real_name != NULL
4284 && FILENAME_CMP (real_path, this_real_name) == 0)
4285 {
4286 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4287 callback))
4288 return true;
4289 continue;
4290 }
4291 }
4292 }
4293 }
4294
4295 return false;
4296 }
4297
4298 /* Struct used to manage iterating over all CUs looking for a symbol. */
4299
4300 struct dw2_symtab_iterator
4301 {
4302 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
4303 struct dwarf2_per_objfile *dwarf2_per_objfile;
4304 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
4305 int want_specific_block;
4306 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
4307 Unused if !WANT_SPECIFIC_BLOCK. */
4308 int block_index;
4309 /* The kind of symbol we're looking for. */
4310 domain_enum domain;
4311 /* The list of CUs from the index entry of the symbol,
4312 or NULL if not found. */
4313 offset_type *vec;
4314 /* The next element in VEC to look at. */
4315 int next;
4316 /* The number of elements in VEC, or zero if there is no match. */
4317 int length;
4318 /* Have we seen a global version of the symbol?
4319 If so we can ignore all further global instances.
4320 This is to work around gold/15646, inefficient gold-generated
4321 indices. */
4322 int global_seen;
4323 };
4324
4325 /* Initialize the index symtab iterator ITER.
4326 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
4327 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
4328
4329 static void
4330 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
4331 struct dwarf2_per_objfile *dwarf2_per_objfile,
4332 int want_specific_block,
4333 int block_index,
4334 domain_enum domain,
4335 const char *name)
4336 {
4337 iter->dwarf2_per_objfile = dwarf2_per_objfile;
4338 iter->want_specific_block = want_specific_block;
4339 iter->block_index = block_index;
4340 iter->domain = domain;
4341 iter->next = 0;
4342 iter->global_seen = 0;
4343
4344 mapped_index *index = dwarf2_per_objfile->index_table;
4345
4346 /* index is NULL if OBJF_READNOW. */
4347 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
4348 iter->length = MAYBE_SWAP (*iter->vec);
4349 else
4350 {
4351 iter->vec = NULL;
4352 iter->length = 0;
4353 }
4354 }
4355
4356 /* Return the next matching CU or NULL if there are no more. */
4357
4358 static struct dwarf2_per_cu_data *
4359 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
4360 {
4361 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
4362
4363 for ( ; iter->next < iter->length; ++iter->next)
4364 {
4365 offset_type cu_index_and_attrs =
4366 MAYBE_SWAP (iter->vec[iter->next + 1]);
4367 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4368 struct dwarf2_per_cu_data *per_cu;
4369 int want_static = iter->block_index != GLOBAL_BLOCK;
4370 /* This value is only valid for index versions >= 7. */
4371 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4372 gdb_index_symbol_kind symbol_kind =
4373 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4374 /* Only check the symbol attributes if they're present.
4375 Indices prior to version 7 don't record them,
4376 and indices >= 7 may elide them for certain symbols
4377 (gold does this). */
4378 int attrs_valid =
4379 (dwarf2_per_objfile->index_table->version >= 7
4380 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4381
4382 /* Don't crash on bad data. */
4383 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4384 + dwarf2_per_objfile->n_type_units))
4385 {
4386 complaint (&symfile_complaints,
4387 _(".gdb_index entry has bad CU index"
4388 " [in module %s]"),
4389 objfile_name (dwarf2_per_objfile->objfile));
4390 continue;
4391 }
4392
4393 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
4394
4395 /* Skip if already read in. */
4396 if (per_cu->v.quick->compunit_symtab)
4397 continue;
4398
4399 /* Check static vs global. */
4400 if (attrs_valid)
4401 {
4402 if (iter->want_specific_block
4403 && want_static != is_static)
4404 continue;
4405 /* Work around gold/15646. */
4406 if (!is_static && iter->global_seen)
4407 continue;
4408 if (!is_static)
4409 iter->global_seen = 1;
4410 }
4411
4412 /* Only check the symbol's kind if it has one. */
4413 if (attrs_valid)
4414 {
4415 switch (iter->domain)
4416 {
4417 case VAR_DOMAIN:
4418 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4419 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4420 /* Some types are also in VAR_DOMAIN. */
4421 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4422 continue;
4423 break;
4424 case STRUCT_DOMAIN:
4425 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4426 continue;
4427 break;
4428 case LABEL_DOMAIN:
4429 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4430 continue;
4431 break;
4432 default:
4433 break;
4434 }
4435 }
4436
4437 ++iter->next;
4438 return per_cu;
4439 }
4440
4441 return NULL;
4442 }
4443
4444 static struct compunit_symtab *
4445 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4446 const char *name, domain_enum domain)
4447 {
4448 struct compunit_symtab *stab_best = NULL;
4449 struct dwarf2_per_objfile *dwarf2_per_objfile
4450 = get_dwarf2_per_objfile (objfile);
4451
4452 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4453
4454 struct dw2_symtab_iterator iter;
4455 struct dwarf2_per_cu_data *per_cu;
4456
4457 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4458
4459 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4460 {
4461 struct symbol *sym, *with_opaque = NULL;
4462 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4463 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4464 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4465
4466 sym = block_find_symbol (block, name, domain,
4467 block_find_non_opaque_type_preferred,
4468 &with_opaque);
4469
4470 /* Some caution must be observed with overloaded functions
4471 and methods, since the index will not contain any overload
4472 information (but NAME might contain it). */
4473
4474 if (sym != NULL
4475 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4476 return stab;
4477 if (with_opaque != NULL
4478 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4479 stab_best = stab;
4480
4481 /* Keep looking through other CUs. */
4482 }
4483
4484 return stab_best;
4485 }
4486
4487 static void
4488 dw2_print_stats (struct objfile *objfile)
4489 {
4490 struct dwarf2_per_objfile *dwarf2_per_objfile
4491 = get_dwarf2_per_objfile (objfile);
4492 int total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
4493 int count = 0;
4494
4495 for (int i = 0; i < total; ++i)
4496 {
4497 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4498
4499 if (!per_cu->v.quick->compunit_symtab)
4500 ++count;
4501 }
4502 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4503 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4504 }
4505
4506 /* This dumps minimal information about the index.
4507 It is called via "mt print objfiles".
4508 One use is to verify .gdb_index has been loaded by the
4509 gdb.dwarf2/gdb-index.exp testcase. */
4510
4511 static void
4512 dw2_dump (struct objfile *objfile)
4513 {
4514 struct dwarf2_per_objfile *dwarf2_per_objfile
4515 = get_dwarf2_per_objfile (objfile);
4516
4517 gdb_assert (dwarf2_per_objfile->using_index);
4518 printf_filtered (".gdb_index:");
4519 if (dwarf2_per_objfile->index_table != NULL)
4520 {
4521 printf_filtered (" version %d\n",
4522 dwarf2_per_objfile->index_table->version);
4523 }
4524 else
4525 printf_filtered (" faked for \"readnow\"\n");
4526 printf_filtered ("\n");
4527 }
4528
4529 static void
4530 dw2_relocate (struct objfile *objfile,
4531 const struct section_offsets *new_offsets,
4532 const struct section_offsets *delta)
4533 {
4534 /* There's nothing to relocate here. */
4535 }
4536
4537 static void
4538 dw2_expand_symtabs_for_function (struct objfile *objfile,
4539 const char *func_name)
4540 {
4541 struct dwarf2_per_objfile *dwarf2_per_objfile
4542 = get_dwarf2_per_objfile (objfile);
4543
4544 struct dw2_symtab_iterator iter;
4545 struct dwarf2_per_cu_data *per_cu;
4546
4547 /* Note: It doesn't matter what we pass for block_index here. */
4548 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4549 func_name);
4550
4551 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4552 dw2_instantiate_symtab (per_cu);
4553
4554 }
4555
4556 static void
4557 dw2_expand_all_symtabs (struct objfile *objfile)
4558 {
4559 struct dwarf2_per_objfile *dwarf2_per_objfile
4560 = get_dwarf2_per_objfile (objfile);
4561 int total_units = (dwarf2_per_objfile->n_comp_units
4562 + dwarf2_per_objfile->n_type_units);
4563
4564 for (int i = 0; i < total_units; ++i)
4565 {
4566 struct dwarf2_per_cu_data *per_cu
4567 = dw2_get_cutu (dwarf2_per_objfile, i);
4568
4569 dw2_instantiate_symtab (per_cu);
4570 }
4571 }
4572
4573 static void
4574 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4575 const char *fullname)
4576 {
4577 struct dwarf2_per_objfile *dwarf2_per_objfile
4578 = get_dwarf2_per_objfile (objfile);
4579
4580 /* We don't need to consider type units here.
4581 This is only called for examining code, e.g. expand_line_sal.
4582 There can be an order of magnitude (or more) more type units
4583 than comp units, and we avoid them if we can. */
4584
4585 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4586 {
4587 int j;
4588 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4589 struct quick_file_names *file_data;
4590
4591 /* We only need to look at symtabs not already expanded. */
4592 if (per_cu->v.quick->compunit_symtab)
4593 continue;
4594
4595 file_data = dw2_get_file_names (per_cu);
4596 if (file_data == NULL)
4597 continue;
4598
4599 for (j = 0; j < file_data->num_file_names; ++j)
4600 {
4601 const char *this_fullname = file_data->file_names[j];
4602
4603 if (filename_cmp (this_fullname, fullname) == 0)
4604 {
4605 dw2_instantiate_symtab (per_cu);
4606 break;
4607 }
4608 }
4609 }
4610 }
4611
4612 static void
4613 dw2_map_matching_symbols (struct objfile *objfile,
4614 const char * name, domain_enum domain,
4615 int global,
4616 int (*callback) (struct block *,
4617 struct symbol *, void *),
4618 void *data, symbol_name_match_type match,
4619 symbol_compare_ftype *ordered_compare)
4620 {
4621 /* Currently unimplemented; used for Ada. The function can be called if the
4622 current language is Ada for a non-Ada objfile using GNU index. As Ada
4623 does not look for non-Ada symbols this function should just return. */
4624 }
4625
4626 /* Symbol name matcher for .gdb_index names.
4627
4628 Symbol names in .gdb_index have a few particularities:
4629
4630 - There's no indication of which is the language of each symbol.
4631
4632 Since each language has its own symbol name matching algorithm,
4633 and we don't know which language is the right one, we must match
4634 each symbol against all languages. This would be a potential
4635 performance problem if it were not mitigated by the
4636 mapped_index::name_components lookup table, which significantly
4637 reduces the number of times we need to call into this matcher,
4638 making it a non-issue.
4639
4640 - Symbol names in the index have no overload (parameter)
4641 information. I.e., in C++, "foo(int)" and "foo(long)" both
4642 appear as "foo" in the index, for example.
4643
4644 This means that the lookup names passed to the symbol name
4645 matcher functions must have no parameter information either
4646 because (e.g.) symbol search name "foo" does not match
4647 lookup-name "foo(int)" [while swapping search name for lookup
4648 name would match].
4649 */
4650 class gdb_index_symbol_name_matcher
4651 {
4652 public:
4653 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4654 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4655
4656 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4657 Returns true if any matcher matches. */
4658 bool matches (const char *symbol_name);
4659
4660 private:
4661 /* A reference to the lookup name we're matching against. */
4662 const lookup_name_info &m_lookup_name;
4663
4664 /* A vector holding all the different symbol name matchers, for all
4665 languages. */
4666 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4667 };
4668
4669 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4670 (const lookup_name_info &lookup_name)
4671 : m_lookup_name (lookup_name)
4672 {
4673 /* Prepare the vector of comparison functions upfront, to avoid
4674 doing the same work for each symbol. Care is taken to avoid
4675 matching with the same matcher more than once if/when multiple
4676 languages use the same matcher function. */
4677 auto &matchers = m_symbol_name_matcher_funcs;
4678 matchers.reserve (nr_languages);
4679
4680 matchers.push_back (default_symbol_name_matcher);
4681
4682 for (int i = 0; i < nr_languages; i++)
4683 {
4684 const language_defn *lang = language_def ((enum language) i);
4685 symbol_name_matcher_ftype *name_matcher
4686 = get_symbol_name_matcher (lang, m_lookup_name);
4687
4688 /* Don't insert the same comparison routine more than once.
4689 Note that we do this linear walk instead of a seemingly
4690 cheaper sorted insert, or use a std::set or something like
4691 that, because relative order of function addresses is not
4692 stable. This is not a problem in practice because the number
4693 of supported languages is low, and the cost here is tiny
4694 compared to the number of searches we'll do afterwards using
4695 this object. */
4696 if (name_matcher != default_symbol_name_matcher
4697 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4698 == matchers.end ()))
4699 matchers.push_back (name_matcher);
4700 }
4701 }
4702
4703 bool
4704 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4705 {
4706 for (auto matches_name : m_symbol_name_matcher_funcs)
4707 if (matches_name (symbol_name, m_lookup_name, NULL))
4708 return true;
4709
4710 return false;
4711 }
4712
4713 /* Starting from a search name, return the string that finds the upper
4714 bound of all strings that start with SEARCH_NAME in a sorted name
4715 list. Returns the empty string to indicate that the upper bound is
4716 the end of the list. */
4717
4718 static std::string
4719 make_sort_after_prefix_name (const char *search_name)
4720 {
4721 /* When looking to complete "func", we find the upper bound of all
4722 symbols that start with "func" by looking for where we'd insert
4723 the closest string that would follow "func" in lexicographical
4724 order. Usually, that's "func"-with-last-character-incremented,
4725 i.e. "fund". Mind non-ASCII characters, though. Usually those
4726 will be UTF-8 multi-byte sequences, but we can't be certain.
4727 Especially mind the 0xff character, which is a valid character in
4728 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4729 rule out compilers allowing it in identifiers. Note that
4730 conveniently, strcmp/strcasecmp are specified to compare
4731 characters interpreted as unsigned char. So what we do is treat
4732 the whole string as a base 256 number composed of a sequence of
4733 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4734 to 0, and carries 1 to the following more-significant position.
4735 If the very first character in SEARCH_NAME ends up incremented
4736 and carries/overflows, then the upper bound is the end of the
4737 list. The string after the empty string is also the empty
4738 string.
4739
4740 Some examples of this operation:
4741
4742 SEARCH_NAME => "+1" RESULT
4743
4744 "abc" => "abd"
4745 "ab\xff" => "ac"
4746 "\xff" "a" "\xff" => "\xff" "b"
4747 "\xff" => ""
4748 "\xff\xff" => ""
4749 "" => ""
4750
4751 Then, with these symbols for example:
4752
4753 func
4754 func1
4755 fund
4756
4757 completing "func" looks for symbols between "func" and
4758 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4759 which finds "func" and "func1", but not "fund".
4760
4761 And with:
4762
4763 funcÿ (Latin1 'ÿ' [0xff])
4764 funcÿ1
4765 fund
4766
4767 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4768 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4769
4770 And with:
4771
4772 ÿÿ (Latin1 'ÿ' [0xff])
4773 ÿÿ1
4774
4775 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4776 the end of the list.
4777 */
4778 std::string after = search_name;
4779 while (!after.empty () && (unsigned char) after.back () == 0xff)
4780 after.pop_back ();
4781 if (!after.empty ())
4782 after.back () = (unsigned char) after.back () + 1;
4783 return after;
4784 }
4785
4786 /* See declaration. */
4787
4788 std::pair<std::vector<name_component>::const_iterator,
4789 std::vector<name_component>::const_iterator>
4790 mapped_index_base::find_name_components_bounds
4791 (const lookup_name_info &lookup_name_without_params) const
4792 {
4793 auto *name_cmp
4794 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4795
4796 const char *cplus
4797 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4798
4799 /* Comparison function object for lower_bound that matches against a
4800 given symbol name. */
4801 auto lookup_compare_lower = [&] (const name_component &elem,
4802 const char *name)
4803 {
4804 const char *elem_qualified = this->symbol_name_at (elem.idx);
4805 const char *elem_name = elem_qualified + elem.name_offset;
4806 return name_cmp (elem_name, name) < 0;
4807 };
4808
4809 /* Comparison function object for upper_bound that matches against a
4810 given symbol name. */
4811 auto lookup_compare_upper = [&] (const char *name,
4812 const name_component &elem)
4813 {
4814 const char *elem_qualified = this->symbol_name_at (elem.idx);
4815 const char *elem_name = elem_qualified + elem.name_offset;
4816 return name_cmp (name, elem_name) < 0;
4817 };
4818
4819 auto begin = this->name_components.begin ();
4820 auto end = this->name_components.end ();
4821
4822 /* Find the lower bound. */
4823 auto lower = [&] ()
4824 {
4825 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4826 return begin;
4827 else
4828 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4829 } ();
4830
4831 /* Find the upper bound. */
4832 auto upper = [&] ()
4833 {
4834 if (lookup_name_without_params.completion_mode ())
4835 {
4836 /* In completion mode, we want UPPER to point past all
4837 symbols names that have the same prefix. I.e., with
4838 these symbols, and completing "func":
4839
4840 function << lower bound
4841 function1
4842 other_function << upper bound
4843
4844 We find the upper bound by looking for the insertion
4845 point of "func"-with-last-character-incremented,
4846 i.e. "fund". */
4847 std::string after = make_sort_after_prefix_name (cplus);
4848 if (after.empty ())
4849 return end;
4850 return std::lower_bound (lower, end, after.c_str (),
4851 lookup_compare_lower);
4852 }
4853 else
4854 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4855 } ();
4856
4857 return {lower, upper};
4858 }
4859
4860 /* See declaration. */
4861
4862 void
4863 mapped_index_base::build_name_components ()
4864 {
4865 if (!this->name_components.empty ())
4866 return;
4867
4868 this->name_components_casing = case_sensitivity;
4869 auto *name_cmp
4870 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4871
4872 /* The code below only knows how to break apart components of C++
4873 symbol names (and other languages that use '::' as
4874 namespace/module separator). If we add support for wild matching
4875 to some language that uses some other operator (E.g., Ada, Go and
4876 D use '.'), then we'll need to try splitting the symbol name
4877 according to that language too. Note that Ada does support wild
4878 matching, but doesn't currently support .gdb_index. */
4879 auto count = this->symbol_name_count ();
4880 for (offset_type idx = 0; idx < count; idx++)
4881 {
4882 if (this->symbol_name_slot_invalid (idx))
4883 continue;
4884
4885 const char *name = this->symbol_name_at (idx);
4886
4887 /* Add each name component to the name component table. */
4888 unsigned int previous_len = 0;
4889 for (unsigned int current_len = cp_find_first_component (name);
4890 name[current_len] != '\0';
4891 current_len += cp_find_first_component (name + current_len))
4892 {
4893 gdb_assert (name[current_len] == ':');
4894 this->name_components.push_back ({previous_len, idx});
4895 /* Skip the '::'. */
4896 current_len += 2;
4897 previous_len = current_len;
4898 }
4899 this->name_components.push_back ({previous_len, idx});
4900 }
4901
4902 /* Sort name_components elements by name. */
4903 auto name_comp_compare = [&] (const name_component &left,
4904 const name_component &right)
4905 {
4906 const char *left_qualified = this->symbol_name_at (left.idx);
4907 const char *right_qualified = this->symbol_name_at (right.idx);
4908
4909 const char *left_name = left_qualified + left.name_offset;
4910 const char *right_name = right_qualified + right.name_offset;
4911
4912 return name_cmp (left_name, right_name) < 0;
4913 };
4914
4915 std::sort (this->name_components.begin (),
4916 this->name_components.end (),
4917 name_comp_compare);
4918 }
4919
4920 /* Helper for dw2_expand_symtabs_matching that works with a
4921 mapped_index_base instead of the containing objfile. This is split
4922 to a separate function in order to be able to unit test the
4923 name_components matching using a mock mapped_index_base. For each
4924 symbol name that matches, calls MATCH_CALLBACK, passing it the
4925 symbol's index in the mapped_index_base symbol table. */
4926
4927 static void
4928 dw2_expand_symtabs_matching_symbol
4929 (mapped_index_base &index,
4930 const lookup_name_info &lookup_name_in,
4931 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4932 enum search_domain kind,
4933 gdb::function_view<void (offset_type)> match_callback)
4934 {
4935 lookup_name_info lookup_name_without_params
4936 = lookup_name_in.make_ignore_params ();
4937 gdb_index_symbol_name_matcher lookup_name_matcher
4938 (lookup_name_without_params);
4939
4940 /* Build the symbol name component sorted vector, if we haven't
4941 yet. */
4942 index.build_name_components ();
4943
4944 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4945
4946 /* Now for each symbol name in range, check to see if we have a name
4947 match, and if so, call the MATCH_CALLBACK callback. */
4948
4949 /* The same symbol may appear more than once in the range though.
4950 E.g., if we're looking for symbols that complete "w", and we have
4951 a symbol named "w1::w2", we'll find the two name components for
4952 that same symbol in the range. To be sure we only call the
4953 callback once per symbol, we first collect the symbol name
4954 indexes that matched in a temporary vector and ignore
4955 duplicates. */
4956 std::vector<offset_type> matches;
4957 matches.reserve (std::distance (bounds.first, bounds.second));
4958
4959 for (; bounds.first != bounds.second; ++bounds.first)
4960 {
4961 const char *qualified = index.symbol_name_at (bounds.first->idx);
4962
4963 if (!lookup_name_matcher.matches (qualified)
4964 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4965 continue;
4966
4967 matches.push_back (bounds.first->idx);
4968 }
4969
4970 std::sort (matches.begin (), matches.end ());
4971
4972 /* Finally call the callback, once per match. */
4973 ULONGEST prev = -1;
4974 for (offset_type idx : matches)
4975 {
4976 if (prev != idx)
4977 {
4978 match_callback (idx);
4979 prev = idx;
4980 }
4981 }
4982
4983 /* Above we use a type wider than idx's for 'prev', since 0 and
4984 (offset_type)-1 are both possible values. */
4985 static_assert (sizeof (prev) > sizeof (offset_type), "");
4986 }
4987
4988 #if GDB_SELF_TEST
4989
4990 namespace selftests { namespace dw2_expand_symtabs_matching {
4991
4992 /* A mock .gdb_index/.debug_names-like name index table, enough to
4993 exercise dw2_expand_symtabs_matching_symbol, which works with the
4994 mapped_index_base interface. Builds an index from the symbol list
4995 passed as parameter to the constructor. */
4996 class mock_mapped_index : public mapped_index_base
4997 {
4998 public:
4999 mock_mapped_index (gdb::array_view<const char *> symbols)
5000 : m_symbol_table (symbols)
5001 {}
5002
5003 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
5004
5005 /* Return the number of names in the symbol table. */
5006 virtual size_t symbol_name_count () const
5007 {
5008 return m_symbol_table.size ();
5009 }
5010
5011 /* Get the name of the symbol at IDX in the symbol table. */
5012 virtual const char *symbol_name_at (offset_type idx) const
5013 {
5014 return m_symbol_table[idx];
5015 }
5016
5017 private:
5018 gdb::array_view<const char *> m_symbol_table;
5019 };
5020
5021 /* Convenience function that converts a NULL pointer to a "<null>"
5022 string, to pass to print routines. */
5023
5024 static const char *
5025 string_or_null (const char *str)
5026 {
5027 return str != NULL ? str : "<null>";
5028 }
5029
5030 /* Check if a lookup_name_info built from
5031 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
5032 index. EXPECTED_LIST is the list of expected matches, in expected
5033 matching order. If no match expected, then an empty list is
5034 specified. Returns true on success. On failure prints a warning
5035 indicating the file:line that failed, and returns false. */
5036
5037 static bool
5038 check_match (const char *file, int line,
5039 mock_mapped_index &mock_index,
5040 const char *name, symbol_name_match_type match_type,
5041 bool completion_mode,
5042 std::initializer_list<const char *> expected_list)
5043 {
5044 lookup_name_info lookup_name (name, match_type, completion_mode);
5045
5046 bool matched = true;
5047
5048 auto mismatch = [&] (const char *expected_str,
5049 const char *got)
5050 {
5051 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
5052 "expected=\"%s\", got=\"%s\"\n"),
5053 file, line,
5054 (match_type == symbol_name_match_type::FULL
5055 ? "FULL" : "WILD"),
5056 name, string_or_null (expected_str), string_or_null (got));
5057 matched = false;
5058 };
5059
5060 auto expected_it = expected_list.begin ();
5061 auto expected_end = expected_list.end ();
5062
5063 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
5064 NULL, ALL_DOMAIN,
5065 [&] (offset_type idx)
5066 {
5067 const char *matched_name = mock_index.symbol_name_at (idx);
5068 const char *expected_str
5069 = expected_it == expected_end ? NULL : *expected_it++;
5070
5071 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
5072 mismatch (expected_str, matched_name);
5073 });
5074
5075 const char *expected_str
5076 = expected_it == expected_end ? NULL : *expected_it++;
5077 if (expected_str != NULL)
5078 mismatch (expected_str, NULL);
5079
5080 return matched;
5081 }
5082
5083 /* The symbols added to the mock mapped_index for testing (in
5084 canonical form). */
5085 static const char *test_symbols[] = {
5086 "function",
5087 "std::bar",
5088 "std::zfunction",
5089 "std::zfunction2",
5090 "w1::w2",
5091 "ns::foo<char*>",
5092 "ns::foo<int>",
5093 "ns::foo<long>",
5094 "ns2::tmpl<int>::foo2",
5095 "(anonymous namespace)::A::B::C",
5096
5097 /* These are used to check that the increment-last-char in the
5098 matching algorithm for completion doesn't match "t1_fund" when
5099 completing "t1_func". */
5100 "t1_func",
5101 "t1_func1",
5102 "t1_fund",
5103 "t1_fund1",
5104
5105 /* A UTF-8 name with multi-byte sequences to make sure that
5106 cp-name-parser understands this as a single identifier ("função"
5107 is "function" in PT). */
5108 u8"u8função",
5109
5110 /* \377 (0xff) is Latin1 'ÿ'. */
5111 "yfunc\377",
5112
5113 /* \377 (0xff) is Latin1 'ÿ'. */
5114 "\377",
5115 "\377\377123",
5116
5117 /* A name with all sorts of complications. Starts with "z" to make
5118 it easier for the completion tests below. */
5119 #define Z_SYM_NAME \
5120 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
5121 "::tuple<(anonymous namespace)::ui*, " \
5122 "std::default_delete<(anonymous namespace)::ui>, void>"
5123
5124 Z_SYM_NAME
5125 };
5126
5127 /* Returns true if the mapped_index_base::find_name_component_bounds
5128 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
5129 in completion mode. */
5130
5131 static bool
5132 check_find_bounds_finds (mapped_index_base &index,
5133 const char *search_name,
5134 gdb::array_view<const char *> expected_syms)
5135 {
5136 lookup_name_info lookup_name (search_name,
5137 symbol_name_match_type::FULL, true);
5138
5139 auto bounds = index.find_name_components_bounds (lookup_name);
5140
5141 size_t distance = std::distance (bounds.first, bounds.second);
5142 if (distance != expected_syms.size ())
5143 return false;
5144
5145 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
5146 {
5147 auto nc_elem = bounds.first + exp_elem;
5148 const char *qualified = index.symbol_name_at (nc_elem->idx);
5149 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
5150 return false;
5151 }
5152
5153 return true;
5154 }
5155
5156 /* Test the lower-level mapped_index::find_name_component_bounds
5157 method. */
5158
5159 static void
5160 test_mapped_index_find_name_component_bounds ()
5161 {
5162 mock_mapped_index mock_index (test_symbols);
5163
5164 mock_index.build_name_components ();
5165
5166 /* Test the lower-level mapped_index::find_name_component_bounds
5167 method in completion mode. */
5168 {
5169 static const char *expected_syms[] = {
5170 "t1_func",
5171 "t1_func1",
5172 };
5173
5174 SELF_CHECK (check_find_bounds_finds (mock_index,
5175 "t1_func", expected_syms));
5176 }
5177
5178 /* Check that the increment-last-char in the name matching algorithm
5179 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
5180 {
5181 static const char *expected_syms1[] = {
5182 "\377",
5183 "\377\377123",
5184 };
5185 SELF_CHECK (check_find_bounds_finds (mock_index,
5186 "\377", expected_syms1));
5187
5188 static const char *expected_syms2[] = {
5189 "\377\377123",
5190 };
5191 SELF_CHECK (check_find_bounds_finds (mock_index,
5192 "\377\377", expected_syms2));
5193 }
5194 }
5195
5196 /* Test dw2_expand_symtabs_matching_symbol. */
5197
5198 static void
5199 test_dw2_expand_symtabs_matching_symbol ()
5200 {
5201 mock_mapped_index mock_index (test_symbols);
5202
5203 /* We let all tests run until the end even if some fails, for debug
5204 convenience. */
5205 bool any_mismatch = false;
5206
5207 /* Create the expected symbols list (an initializer_list). Needed
5208 because lists have commas, and we need to pass them to CHECK,
5209 which is a macro. */
5210 #define EXPECT(...) { __VA_ARGS__ }
5211
5212 /* Wrapper for check_match that passes down the current
5213 __FILE__/__LINE__. */
5214 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
5215 any_mismatch |= !check_match (__FILE__, __LINE__, \
5216 mock_index, \
5217 NAME, MATCH_TYPE, COMPLETION_MODE, \
5218 EXPECTED_LIST)
5219
5220 /* Identity checks. */
5221 for (const char *sym : test_symbols)
5222 {
5223 /* Should be able to match all existing symbols. */
5224 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
5225 EXPECT (sym));
5226
5227 /* Should be able to match all existing symbols with
5228 parameters. */
5229 std::string with_params = std::string (sym) + "(int)";
5230 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5231 EXPECT (sym));
5232
5233 /* Should be able to match all existing symbols with
5234 parameters and qualifiers. */
5235 with_params = std::string (sym) + " ( int ) const";
5236 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5237 EXPECT (sym));
5238
5239 /* This should really find sym, but cp-name-parser.y doesn't
5240 know about lvalue/rvalue qualifiers yet. */
5241 with_params = std::string (sym) + " ( int ) &&";
5242 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5243 {});
5244 }
5245
5246 /* Check that the name matching algorithm for completion doesn't get
5247 confused with Latin1 'ÿ' / 0xff. */
5248 {
5249 static const char str[] = "\377";
5250 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5251 EXPECT ("\377", "\377\377123"));
5252 }
5253
5254 /* Check that the increment-last-char in the matching algorithm for
5255 completion doesn't match "t1_fund" when completing "t1_func". */
5256 {
5257 static const char str[] = "t1_func";
5258 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5259 EXPECT ("t1_func", "t1_func1"));
5260 }
5261
5262 /* Check that completion mode works at each prefix of the expected
5263 symbol name. */
5264 {
5265 static const char str[] = "function(int)";
5266 size_t len = strlen (str);
5267 std::string lookup;
5268
5269 for (size_t i = 1; i < len; i++)
5270 {
5271 lookup.assign (str, i);
5272 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5273 EXPECT ("function"));
5274 }
5275 }
5276
5277 /* While "w" is a prefix of both components, the match function
5278 should still only be called once. */
5279 {
5280 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
5281 EXPECT ("w1::w2"));
5282 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
5283 EXPECT ("w1::w2"));
5284 }
5285
5286 /* Same, with a "complicated" symbol. */
5287 {
5288 static const char str[] = Z_SYM_NAME;
5289 size_t len = strlen (str);
5290 std::string lookup;
5291
5292 for (size_t i = 1; i < len; i++)
5293 {
5294 lookup.assign (str, i);
5295 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5296 EXPECT (Z_SYM_NAME));
5297 }
5298 }
5299
5300 /* In FULL mode, an incomplete symbol doesn't match. */
5301 {
5302 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
5303 {});
5304 }
5305
5306 /* A complete symbol with parameters matches any overload, since the
5307 index has no overload info. */
5308 {
5309 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
5310 EXPECT ("std::zfunction", "std::zfunction2"));
5311 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
5312 EXPECT ("std::zfunction", "std::zfunction2"));
5313 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
5314 EXPECT ("std::zfunction", "std::zfunction2"));
5315 }
5316
5317 /* Check that whitespace is ignored appropriately. A symbol with a
5318 template argument list. */
5319 {
5320 static const char expected[] = "ns::foo<int>";
5321 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
5322 EXPECT (expected));
5323 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
5324 EXPECT (expected));
5325 }
5326
5327 /* Check that whitespace is ignored appropriately. A symbol with a
5328 template argument list that includes a pointer. */
5329 {
5330 static const char expected[] = "ns::foo<char*>";
5331 /* Try both completion and non-completion modes. */
5332 static const bool completion_mode[2] = {false, true};
5333 for (size_t i = 0; i < 2; i++)
5334 {
5335 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
5336 completion_mode[i], EXPECT (expected));
5337 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
5338 completion_mode[i], EXPECT (expected));
5339
5340 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
5341 completion_mode[i], EXPECT (expected));
5342 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
5343 completion_mode[i], EXPECT (expected));
5344 }
5345 }
5346
5347 {
5348 /* Check method qualifiers are ignored. */
5349 static const char expected[] = "ns::foo<char*>";
5350 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
5351 symbol_name_match_type::FULL, true, EXPECT (expected));
5352 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
5353 symbol_name_match_type::FULL, true, EXPECT (expected));
5354 CHECK_MATCH ("foo < char * > ( int ) const",
5355 symbol_name_match_type::WILD, true, EXPECT (expected));
5356 CHECK_MATCH ("foo < char * > ( int ) &&",
5357 symbol_name_match_type::WILD, true, EXPECT (expected));
5358 }
5359
5360 /* Test lookup names that don't match anything. */
5361 {
5362 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
5363 {});
5364
5365 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
5366 {});
5367 }
5368
5369 /* Some wild matching tests, exercising "(anonymous namespace)",
5370 which should not be confused with a parameter list. */
5371 {
5372 static const char *syms[] = {
5373 "A::B::C",
5374 "B::C",
5375 "C",
5376 "A :: B :: C ( int )",
5377 "B :: C ( int )",
5378 "C ( int )",
5379 };
5380
5381 for (const char *s : syms)
5382 {
5383 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
5384 EXPECT ("(anonymous namespace)::A::B::C"));
5385 }
5386 }
5387
5388 {
5389 static const char expected[] = "ns2::tmpl<int>::foo2";
5390 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5391 EXPECT (expected));
5392 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5393 EXPECT (expected));
5394 }
5395
5396 SELF_CHECK (!any_mismatch);
5397
5398 #undef EXPECT
5399 #undef CHECK_MATCH
5400 }
5401
5402 static void
5403 run_test ()
5404 {
5405 test_mapped_index_find_name_component_bounds ();
5406 test_dw2_expand_symtabs_matching_symbol ();
5407 }
5408
5409 }} // namespace selftests::dw2_expand_symtabs_matching
5410
5411 #endif /* GDB_SELF_TEST */
5412
5413 /* If FILE_MATCHER is NULL or if PER_CU has
5414 dwarf2_per_cu_quick_data::MARK set (see
5415 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5416 EXPANSION_NOTIFY on it. */
5417
5418 static void
5419 dw2_expand_symtabs_matching_one
5420 (struct dwarf2_per_cu_data *per_cu,
5421 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5422 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5423 {
5424 if (file_matcher == NULL || per_cu->v.quick->mark)
5425 {
5426 bool symtab_was_null
5427 = (per_cu->v.quick->compunit_symtab == NULL);
5428
5429 dw2_instantiate_symtab (per_cu);
5430
5431 if (expansion_notify != NULL
5432 && symtab_was_null
5433 && per_cu->v.quick->compunit_symtab != NULL)
5434 expansion_notify (per_cu->v.quick->compunit_symtab);
5435 }
5436 }
5437
5438 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5439 matched, to expand corresponding CUs that were marked. IDX is the
5440 index of the symbol name that matched. */
5441
5442 static void
5443 dw2_expand_marked_cus
5444 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5445 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5446 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5447 search_domain kind)
5448 {
5449 offset_type *vec, vec_len, vec_idx;
5450 bool global_seen = false;
5451 mapped_index &index = *dwarf2_per_objfile->index_table;
5452
5453 vec = (offset_type *) (index.constant_pool
5454 + MAYBE_SWAP (index.symbol_table[idx].vec));
5455 vec_len = MAYBE_SWAP (vec[0]);
5456 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5457 {
5458 struct dwarf2_per_cu_data *per_cu;
5459 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5460 /* This value is only valid for index versions >= 7. */
5461 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5462 gdb_index_symbol_kind symbol_kind =
5463 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5464 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5465 /* Only check the symbol attributes if they're present.
5466 Indices prior to version 7 don't record them,
5467 and indices >= 7 may elide them for certain symbols
5468 (gold does this). */
5469 int attrs_valid =
5470 (index.version >= 7
5471 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5472
5473 /* Work around gold/15646. */
5474 if (attrs_valid)
5475 {
5476 if (!is_static && global_seen)
5477 continue;
5478 if (!is_static)
5479 global_seen = true;
5480 }
5481
5482 /* Only check the symbol's kind if it has one. */
5483 if (attrs_valid)
5484 {
5485 switch (kind)
5486 {
5487 case VARIABLES_DOMAIN:
5488 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5489 continue;
5490 break;
5491 case FUNCTIONS_DOMAIN:
5492 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5493 continue;
5494 break;
5495 case TYPES_DOMAIN:
5496 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5497 continue;
5498 break;
5499 default:
5500 break;
5501 }
5502 }
5503
5504 /* Don't crash on bad data. */
5505 if (cu_index >= (dwarf2_per_objfile->n_comp_units
5506 + dwarf2_per_objfile->n_type_units))
5507 {
5508 complaint (&symfile_complaints,
5509 _(".gdb_index entry has bad CU index"
5510 " [in module %s]"),
5511 objfile_name (dwarf2_per_objfile->objfile));
5512 continue;
5513 }
5514
5515 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
5516 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5517 expansion_notify);
5518 }
5519 }
5520
5521 /* If FILE_MATCHER is non-NULL, set all the
5522 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5523 that match FILE_MATCHER. */
5524
5525 static void
5526 dw_expand_symtabs_matching_file_matcher
5527 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5528 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5529 {
5530 if (file_matcher == NULL)
5531 return;
5532
5533 objfile *const objfile = dwarf2_per_objfile->objfile;
5534
5535 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5536 htab_eq_pointer,
5537 NULL, xcalloc, xfree));
5538 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5539 htab_eq_pointer,
5540 NULL, xcalloc, xfree));
5541
5542 /* The rule is CUs specify all the files, including those used by
5543 any TU, so there's no need to scan TUs here. */
5544
5545 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5546 {
5547 int j;
5548 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5549 struct quick_file_names *file_data;
5550 void **slot;
5551
5552 QUIT;
5553
5554 per_cu->v.quick->mark = 0;
5555
5556 /* We only need to look at symtabs not already expanded. */
5557 if (per_cu->v.quick->compunit_symtab)
5558 continue;
5559
5560 file_data = dw2_get_file_names (per_cu);
5561 if (file_data == NULL)
5562 continue;
5563
5564 if (htab_find (visited_not_found.get (), file_data) != NULL)
5565 continue;
5566 else if (htab_find (visited_found.get (), file_data) != NULL)
5567 {
5568 per_cu->v.quick->mark = 1;
5569 continue;
5570 }
5571
5572 for (j = 0; j < file_data->num_file_names; ++j)
5573 {
5574 const char *this_real_name;
5575
5576 if (file_matcher (file_data->file_names[j], false))
5577 {
5578 per_cu->v.quick->mark = 1;
5579 break;
5580 }
5581
5582 /* Before we invoke realpath, which can get expensive when many
5583 files are involved, do a quick comparison of the basenames. */
5584 if (!basenames_may_differ
5585 && !file_matcher (lbasename (file_data->file_names[j]),
5586 true))
5587 continue;
5588
5589 this_real_name = dw2_get_real_path (objfile, file_data, j);
5590 if (file_matcher (this_real_name, false))
5591 {
5592 per_cu->v.quick->mark = 1;
5593 break;
5594 }
5595 }
5596
5597 slot = htab_find_slot (per_cu->v.quick->mark
5598 ? visited_found.get ()
5599 : visited_not_found.get (),
5600 file_data, INSERT);
5601 *slot = file_data;
5602 }
5603 }
5604
5605 static void
5606 dw2_expand_symtabs_matching
5607 (struct objfile *objfile,
5608 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5609 const lookup_name_info &lookup_name,
5610 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5611 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5612 enum search_domain kind)
5613 {
5614 struct dwarf2_per_objfile *dwarf2_per_objfile
5615 = get_dwarf2_per_objfile (objfile);
5616
5617 /* index_table is NULL if OBJF_READNOW. */
5618 if (!dwarf2_per_objfile->index_table)
5619 return;
5620
5621 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5622
5623 mapped_index &index = *dwarf2_per_objfile->index_table;
5624
5625 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5626 symbol_matcher,
5627 kind, [&] (offset_type idx)
5628 {
5629 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5630 expansion_notify, kind);
5631 });
5632 }
5633
5634 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5635 symtab. */
5636
5637 static struct compunit_symtab *
5638 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5639 CORE_ADDR pc)
5640 {
5641 int i;
5642
5643 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5644 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5645 return cust;
5646
5647 if (cust->includes == NULL)
5648 return NULL;
5649
5650 for (i = 0; cust->includes[i]; ++i)
5651 {
5652 struct compunit_symtab *s = cust->includes[i];
5653
5654 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5655 if (s != NULL)
5656 return s;
5657 }
5658
5659 return NULL;
5660 }
5661
5662 static struct compunit_symtab *
5663 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5664 struct bound_minimal_symbol msymbol,
5665 CORE_ADDR pc,
5666 struct obj_section *section,
5667 int warn_if_readin)
5668 {
5669 struct dwarf2_per_cu_data *data;
5670 struct compunit_symtab *result;
5671
5672 if (!objfile->psymtabs_addrmap)
5673 return NULL;
5674
5675 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5676 pc);
5677 if (!data)
5678 return NULL;
5679
5680 if (warn_if_readin && data->v.quick->compunit_symtab)
5681 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5682 paddress (get_objfile_arch (objfile), pc));
5683
5684 result
5685 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5686 pc);
5687 gdb_assert (result != NULL);
5688 return result;
5689 }
5690
5691 static void
5692 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5693 void *data, int need_fullname)
5694 {
5695 struct dwarf2_per_objfile *dwarf2_per_objfile
5696 = get_dwarf2_per_objfile (objfile);
5697
5698 if (!dwarf2_per_objfile->filenames_cache)
5699 {
5700 dwarf2_per_objfile->filenames_cache.emplace ();
5701
5702 htab_up visited (htab_create_alloc (10,
5703 htab_hash_pointer, htab_eq_pointer,
5704 NULL, xcalloc, xfree));
5705
5706 /* The rule is CUs specify all the files, including those used
5707 by any TU, so there's no need to scan TUs here. We can
5708 ignore file names coming from already-expanded CUs. */
5709
5710 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5711 {
5712 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
5713
5714 if (per_cu->v.quick->compunit_symtab)
5715 {
5716 void **slot = htab_find_slot (visited.get (),
5717 per_cu->v.quick->file_names,
5718 INSERT);
5719
5720 *slot = per_cu->v.quick->file_names;
5721 }
5722 }
5723
5724 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5725 {
5726 dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5727 struct quick_file_names *file_data;
5728 void **slot;
5729
5730 /* We only need to look at symtabs not already expanded. */
5731 if (per_cu->v.quick->compunit_symtab)
5732 continue;
5733
5734 file_data = dw2_get_file_names (per_cu);
5735 if (file_data == NULL)
5736 continue;
5737
5738 slot = htab_find_slot (visited.get (), file_data, INSERT);
5739 if (*slot)
5740 {
5741 /* Already visited. */
5742 continue;
5743 }
5744 *slot = file_data;
5745
5746 for (int j = 0; j < file_data->num_file_names; ++j)
5747 {
5748 const char *filename = file_data->file_names[j];
5749 dwarf2_per_objfile->filenames_cache->seen (filename);
5750 }
5751 }
5752 }
5753
5754 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5755 {
5756 gdb::unique_xmalloc_ptr<char> this_real_name;
5757
5758 if (need_fullname)
5759 this_real_name = gdb_realpath (filename);
5760 (*fun) (filename, this_real_name.get (), data);
5761 });
5762 }
5763
5764 static int
5765 dw2_has_symbols (struct objfile *objfile)
5766 {
5767 return 1;
5768 }
5769
5770 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5771 {
5772 dw2_has_symbols,
5773 dw2_find_last_source_symtab,
5774 dw2_forget_cached_source_info,
5775 dw2_map_symtabs_matching_filename,
5776 dw2_lookup_symbol,
5777 dw2_print_stats,
5778 dw2_dump,
5779 dw2_relocate,
5780 dw2_expand_symtabs_for_function,
5781 dw2_expand_all_symtabs,
5782 dw2_expand_symtabs_with_fullname,
5783 dw2_map_matching_symbols,
5784 dw2_expand_symtabs_matching,
5785 dw2_find_pc_sect_compunit_symtab,
5786 NULL,
5787 dw2_map_symbol_filenames
5788 };
5789
5790 /* DWARF-5 debug_names reader. */
5791
5792 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5793 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5794
5795 /* A helper function that reads the .debug_names section in SECTION
5796 and fills in MAP. FILENAME is the name of the file containing the
5797 section; it is used for error reporting.
5798
5799 Returns true if all went well, false otherwise. */
5800
5801 static bool
5802 read_debug_names_from_section (struct objfile *objfile,
5803 const char *filename,
5804 struct dwarf2_section_info *section,
5805 mapped_debug_names &map)
5806 {
5807 if (dwarf2_section_empty_p (section))
5808 return false;
5809
5810 /* Older elfutils strip versions could keep the section in the main
5811 executable while splitting it for the separate debug info file. */
5812 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5813 return false;
5814
5815 dwarf2_read_section (objfile, section);
5816
5817 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5818
5819 const gdb_byte *addr = section->buffer;
5820
5821 bfd *const abfd = get_section_bfd_owner (section);
5822
5823 unsigned int bytes_read;
5824 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5825 addr += bytes_read;
5826
5827 map.dwarf5_is_dwarf64 = bytes_read != 4;
5828 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5829 if (bytes_read + length != section->size)
5830 {
5831 /* There may be multiple per-CU indices. */
5832 warning (_("Section .debug_names in %s length %s does not match "
5833 "section length %s, ignoring .debug_names."),
5834 filename, plongest (bytes_read + length),
5835 pulongest (section->size));
5836 return false;
5837 }
5838
5839 /* The version number. */
5840 uint16_t version = read_2_bytes (abfd, addr);
5841 addr += 2;
5842 if (version != 5)
5843 {
5844 warning (_("Section .debug_names in %s has unsupported version %d, "
5845 "ignoring .debug_names."),
5846 filename, version);
5847 return false;
5848 }
5849
5850 /* Padding. */
5851 uint16_t padding = read_2_bytes (abfd, addr);
5852 addr += 2;
5853 if (padding != 0)
5854 {
5855 warning (_("Section .debug_names in %s has unsupported padding %d, "
5856 "ignoring .debug_names."),
5857 filename, padding);
5858 return false;
5859 }
5860
5861 /* comp_unit_count - The number of CUs in the CU list. */
5862 map.cu_count = read_4_bytes (abfd, addr);
5863 addr += 4;
5864
5865 /* local_type_unit_count - The number of TUs in the local TU
5866 list. */
5867 map.tu_count = read_4_bytes (abfd, addr);
5868 addr += 4;
5869
5870 /* foreign_type_unit_count - The number of TUs in the foreign TU
5871 list. */
5872 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5873 addr += 4;
5874 if (foreign_tu_count != 0)
5875 {
5876 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5877 "ignoring .debug_names."),
5878 filename, static_cast<unsigned long> (foreign_tu_count));
5879 return false;
5880 }
5881
5882 /* bucket_count - The number of hash buckets in the hash lookup
5883 table. */
5884 map.bucket_count = read_4_bytes (abfd, addr);
5885 addr += 4;
5886
5887 /* name_count - The number of unique names in the index. */
5888 map.name_count = read_4_bytes (abfd, addr);
5889 addr += 4;
5890
5891 /* abbrev_table_size - The size in bytes of the abbreviations
5892 table. */
5893 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5894 addr += 4;
5895
5896 /* augmentation_string_size - The size in bytes of the augmentation
5897 string. This value is rounded up to a multiple of 4. */
5898 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5899 addr += 4;
5900 map.augmentation_is_gdb = ((augmentation_string_size
5901 == sizeof (dwarf5_augmentation))
5902 && memcmp (addr, dwarf5_augmentation,
5903 sizeof (dwarf5_augmentation)) == 0);
5904 augmentation_string_size += (-augmentation_string_size) & 3;
5905 addr += augmentation_string_size;
5906
5907 /* List of CUs */
5908 map.cu_table_reordered = addr;
5909 addr += map.cu_count * map.offset_size;
5910
5911 /* List of Local TUs */
5912 map.tu_table_reordered = addr;
5913 addr += map.tu_count * map.offset_size;
5914
5915 /* Hash Lookup Table */
5916 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5917 addr += map.bucket_count * 4;
5918 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5919 addr += map.name_count * 4;
5920
5921 /* Name Table */
5922 map.name_table_string_offs_reordered = addr;
5923 addr += map.name_count * map.offset_size;
5924 map.name_table_entry_offs_reordered = addr;
5925 addr += map.name_count * map.offset_size;
5926
5927 const gdb_byte *abbrev_table_start = addr;
5928 for (;;)
5929 {
5930 unsigned int bytes_read;
5931 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5932 addr += bytes_read;
5933 if (index_num == 0)
5934 break;
5935
5936 const auto insertpair
5937 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5938 if (!insertpair.second)
5939 {
5940 warning (_("Section .debug_names in %s has duplicate index %s, "
5941 "ignoring .debug_names."),
5942 filename, pulongest (index_num));
5943 return false;
5944 }
5945 mapped_debug_names::index_val &indexval = insertpair.first->second;
5946 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5947 addr += bytes_read;
5948
5949 for (;;)
5950 {
5951 mapped_debug_names::index_val::attr attr;
5952 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5953 addr += bytes_read;
5954 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5955 addr += bytes_read;
5956 if (attr.form == DW_FORM_implicit_const)
5957 {
5958 attr.implicit_const = read_signed_leb128 (abfd, addr,
5959 &bytes_read);
5960 addr += bytes_read;
5961 }
5962 if (attr.dw_idx == 0 && attr.form == 0)
5963 break;
5964 indexval.attr_vec.push_back (std::move (attr));
5965 }
5966 }
5967 if (addr != abbrev_table_start + abbrev_table_size)
5968 {
5969 warning (_("Section .debug_names in %s has abbreviation_table "
5970 "of size %zu vs. written as %u, ignoring .debug_names."),
5971 filename, addr - abbrev_table_start, abbrev_table_size);
5972 return false;
5973 }
5974 map.entry_pool = addr;
5975
5976 return true;
5977 }
5978
5979 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5980 list. */
5981
5982 static void
5983 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5984 const mapped_debug_names &map,
5985 dwarf2_section_info &section,
5986 bool is_dwz, int base_offset)
5987 {
5988 sect_offset sect_off_prev;
5989 for (uint32_t i = 0; i <= map.cu_count; ++i)
5990 {
5991 sect_offset sect_off_next;
5992 if (i < map.cu_count)
5993 {
5994 sect_off_next
5995 = (sect_offset) (extract_unsigned_integer
5996 (map.cu_table_reordered + i * map.offset_size,
5997 map.offset_size,
5998 map.dwarf5_byte_order));
5999 }
6000 else
6001 sect_off_next = (sect_offset) section.size;
6002 if (i >= 1)
6003 {
6004 const ULONGEST length = sect_off_next - sect_off_prev;
6005 dwarf2_per_objfile->all_comp_units[base_offset + (i - 1)]
6006 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
6007 sect_off_prev, length);
6008 }
6009 sect_off_prev = sect_off_next;
6010 }
6011 }
6012
6013 /* Read the CU list from the mapped index, and use it to create all
6014 the CU objects for this dwarf2_per_objfile. */
6015
6016 static void
6017 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
6018 const mapped_debug_names &map,
6019 const mapped_debug_names &dwz_map)
6020 {
6021 struct objfile *objfile = dwarf2_per_objfile->objfile;
6022
6023 dwarf2_per_objfile->n_comp_units = map.cu_count + dwz_map.cu_count;
6024 dwarf2_per_objfile->all_comp_units
6025 = XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
6026 dwarf2_per_objfile->n_comp_units);
6027
6028 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
6029 dwarf2_per_objfile->info,
6030 false /* is_dwz */,
6031 0 /* base_offset */);
6032
6033 if (dwz_map.cu_count == 0)
6034 return;
6035
6036 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
6037 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
6038 true /* is_dwz */,
6039 map.cu_count /* base_offset */);
6040 }
6041
6042 /* Read .debug_names. If everything went ok, initialize the "quick"
6043 elements of all the CUs and return true. Otherwise, return false. */
6044
6045 static bool
6046 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
6047 {
6048 mapped_debug_names local_map (dwarf2_per_objfile);
6049 mapped_debug_names dwz_map (dwarf2_per_objfile);
6050 struct objfile *objfile = dwarf2_per_objfile->objfile;
6051
6052 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
6053 &dwarf2_per_objfile->debug_names,
6054 local_map))
6055 return false;
6056
6057 /* Don't use the index if it's empty. */
6058 if (local_map.name_count == 0)
6059 return false;
6060
6061 /* If there is a .dwz file, read it so we can get its CU list as
6062 well. */
6063 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
6064 if (dwz != NULL)
6065 {
6066 if (!read_debug_names_from_section (objfile,
6067 bfd_get_filename (dwz->dwz_bfd),
6068 &dwz->debug_names, dwz_map))
6069 {
6070 warning (_("could not read '.debug_names' section from %s; skipping"),
6071 bfd_get_filename (dwz->dwz_bfd));
6072 return false;
6073 }
6074 }
6075
6076 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
6077
6078 if (local_map.tu_count != 0)
6079 {
6080 /* We can only handle a single .debug_types when we have an
6081 index. */
6082 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
6083 return false;
6084
6085 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
6086 dwarf2_per_objfile->types, 0);
6087
6088 create_signatured_type_table_from_debug_names
6089 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
6090 }
6091
6092 create_addrmap_from_aranges (dwarf2_per_objfile,
6093 &dwarf2_per_objfile->debug_aranges);
6094
6095 dwarf2_per_objfile->debug_names_table.reset
6096 (new mapped_debug_names (dwarf2_per_objfile));
6097 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
6098 dwarf2_per_objfile->using_index = 1;
6099 dwarf2_per_objfile->quick_file_names_table =
6100 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6101
6102 return true;
6103 }
6104
6105 /* Symbol name hashing function as specified by DWARF-5. */
6106
6107 static uint32_t
6108 dwarf5_djb_hash (const char *str_)
6109 {
6110 const unsigned char *str = (const unsigned char *) str_;
6111
6112 /* Note: tolower here ignores UTF-8, which isn't fully compliant.
6113 See http://dwarfstd.org/ShowIssue.php?issue=161027.1. */
6114
6115 uint32_t hash = 5381;
6116 while (int c = *str++)
6117 hash = hash * 33 + tolower (c);
6118 return hash;
6119 }
6120
6121 /* Type used to manage iterating over all CUs looking for a symbol for
6122 .debug_names. */
6123
6124 class dw2_debug_names_iterator
6125 {
6126 public:
6127 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
6128 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
6129 dw2_debug_names_iterator (const mapped_debug_names &map,
6130 bool want_specific_block,
6131 block_enum block_index, domain_enum domain,
6132 const char *name)
6133 : m_map (map), m_want_specific_block (want_specific_block),
6134 m_block_index (block_index), m_domain (domain),
6135 m_addr (find_vec_in_debug_names (map, name))
6136 {}
6137
6138 dw2_debug_names_iterator (const mapped_debug_names &map,
6139 search_domain search, uint32_t namei)
6140 : m_map (map),
6141 m_search (search),
6142 m_addr (find_vec_in_debug_names (map, namei))
6143 {}
6144
6145 /* Return the next matching CU or NULL if there are no more. */
6146 dwarf2_per_cu_data *next ();
6147
6148 private:
6149 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6150 const char *name);
6151 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6152 uint32_t namei);
6153
6154 /* The internalized form of .debug_names. */
6155 const mapped_debug_names &m_map;
6156
6157 /* If true, only look for symbols that match BLOCK_INDEX. */
6158 const bool m_want_specific_block = false;
6159
6160 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
6161 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
6162 value. */
6163 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
6164
6165 /* The kind of symbol we're looking for. */
6166 const domain_enum m_domain = UNDEF_DOMAIN;
6167 const search_domain m_search = ALL_DOMAIN;
6168
6169 /* The list of CUs from the index entry of the symbol, or NULL if
6170 not found. */
6171 const gdb_byte *m_addr;
6172 };
6173
6174 const char *
6175 mapped_debug_names::namei_to_name (uint32_t namei) const
6176 {
6177 const ULONGEST namei_string_offs
6178 = extract_unsigned_integer ((name_table_string_offs_reordered
6179 + namei * offset_size),
6180 offset_size,
6181 dwarf5_byte_order);
6182 return read_indirect_string_at_offset
6183 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
6184 }
6185
6186 /* Find a slot in .debug_names for the object named NAME. If NAME is
6187 found, return pointer to its pool data. If NAME cannot be found,
6188 return NULL. */
6189
6190 const gdb_byte *
6191 dw2_debug_names_iterator::find_vec_in_debug_names
6192 (const mapped_debug_names &map, const char *name)
6193 {
6194 int (*cmp) (const char *, const char *);
6195
6196 if (current_language->la_language == language_cplus
6197 || current_language->la_language == language_fortran
6198 || current_language->la_language == language_d)
6199 {
6200 /* NAME is already canonical. Drop any qualifiers as
6201 .debug_names does not contain any. */
6202
6203 if (strchr (name, '(') != NULL)
6204 {
6205 gdb::unique_xmalloc_ptr<char> without_params
6206 = cp_remove_params (name);
6207
6208 if (without_params != NULL)
6209 {
6210 name = without_params.get();
6211 }
6212 }
6213 }
6214
6215 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
6216
6217 const uint32_t full_hash = dwarf5_djb_hash (name);
6218 uint32_t namei
6219 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6220 (map.bucket_table_reordered
6221 + (full_hash % map.bucket_count)), 4,
6222 map.dwarf5_byte_order);
6223 if (namei == 0)
6224 return NULL;
6225 --namei;
6226 if (namei >= map.name_count)
6227 {
6228 complaint (&symfile_complaints,
6229 _("Wrong .debug_names with name index %u but name_count=%u "
6230 "[in module %s]"),
6231 namei, map.name_count,
6232 objfile_name (map.dwarf2_per_objfile->objfile));
6233 return NULL;
6234 }
6235
6236 for (;;)
6237 {
6238 const uint32_t namei_full_hash
6239 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6240 (map.hash_table_reordered + namei), 4,
6241 map.dwarf5_byte_order);
6242 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
6243 return NULL;
6244
6245 if (full_hash == namei_full_hash)
6246 {
6247 const char *const namei_string = map.namei_to_name (namei);
6248
6249 #if 0 /* An expensive sanity check. */
6250 if (namei_full_hash != dwarf5_djb_hash (namei_string))
6251 {
6252 complaint (&symfile_complaints,
6253 _("Wrong .debug_names hash for string at index %u "
6254 "[in module %s]"),
6255 namei, objfile_name (dwarf2_per_objfile->objfile));
6256 return NULL;
6257 }
6258 #endif
6259
6260 if (cmp (namei_string, name) == 0)
6261 {
6262 const ULONGEST namei_entry_offs
6263 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6264 + namei * map.offset_size),
6265 map.offset_size, map.dwarf5_byte_order);
6266 return map.entry_pool + namei_entry_offs;
6267 }
6268 }
6269
6270 ++namei;
6271 if (namei >= map.name_count)
6272 return NULL;
6273 }
6274 }
6275
6276 const gdb_byte *
6277 dw2_debug_names_iterator::find_vec_in_debug_names
6278 (const mapped_debug_names &map, uint32_t namei)
6279 {
6280 if (namei >= map.name_count)
6281 {
6282 complaint (&symfile_complaints,
6283 _("Wrong .debug_names with name index %u but name_count=%u "
6284 "[in module %s]"),
6285 namei, map.name_count,
6286 objfile_name (map.dwarf2_per_objfile->objfile));
6287 return NULL;
6288 }
6289
6290 const ULONGEST namei_entry_offs
6291 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6292 + namei * map.offset_size),
6293 map.offset_size, map.dwarf5_byte_order);
6294 return map.entry_pool + namei_entry_offs;
6295 }
6296
6297 /* See dw2_debug_names_iterator. */
6298
6299 dwarf2_per_cu_data *
6300 dw2_debug_names_iterator::next ()
6301 {
6302 if (m_addr == NULL)
6303 return NULL;
6304
6305 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
6306 struct objfile *objfile = dwarf2_per_objfile->objfile;
6307 bfd *const abfd = objfile->obfd;
6308
6309 again:
6310
6311 unsigned int bytes_read;
6312 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6313 m_addr += bytes_read;
6314 if (abbrev == 0)
6315 return NULL;
6316
6317 const auto indexval_it = m_map.abbrev_map.find (abbrev);
6318 if (indexval_it == m_map.abbrev_map.cend ())
6319 {
6320 complaint (&symfile_complaints,
6321 _("Wrong .debug_names undefined abbrev code %s "
6322 "[in module %s]"),
6323 pulongest (abbrev), objfile_name (objfile));
6324 return NULL;
6325 }
6326 const mapped_debug_names::index_val &indexval = indexval_it->second;
6327 bool have_is_static = false;
6328 bool is_static;
6329 dwarf2_per_cu_data *per_cu = NULL;
6330 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
6331 {
6332 ULONGEST ull;
6333 switch (attr.form)
6334 {
6335 case DW_FORM_implicit_const:
6336 ull = attr.implicit_const;
6337 break;
6338 case DW_FORM_flag_present:
6339 ull = 1;
6340 break;
6341 case DW_FORM_udata:
6342 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6343 m_addr += bytes_read;
6344 break;
6345 default:
6346 complaint (&symfile_complaints,
6347 _("Unsupported .debug_names form %s [in module %s]"),
6348 dwarf_form_name (attr.form),
6349 objfile_name (objfile));
6350 return NULL;
6351 }
6352 switch (attr.dw_idx)
6353 {
6354 case DW_IDX_compile_unit:
6355 /* Don't crash on bad data. */
6356 if (ull >= dwarf2_per_objfile->n_comp_units)
6357 {
6358 complaint (&symfile_complaints,
6359 _(".debug_names entry has bad CU index %s"
6360 " [in module %s]"),
6361 pulongest (ull),
6362 objfile_name (dwarf2_per_objfile->objfile));
6363 continue;
6364 }
6365 per_cu = dw2_get_cutu (dwarf2_per_objfile, ull);
6366 break;
6367 case DW_IDX_type_unit:
6368 /* Don't crash on bad data. */
6369 if (ull >= dwarf2_per_objfile->n_type_units)
6370 {
6371 complaint (&symfile_complaints,
6372 _(".debug_names entry has bad TU index %s"
6373 " [in module %s]"),
6374 pulongest (ull),
6375 objfile_name (dwarf2_per_objfile->objfile));
6376 continue;
6377 }
6378 per_cu = dw2_get_cutu (dwarf2_per_objfile,
6379 dwarf2_per_objfile->n_comp_units + ull);
6380 break;
6381 case DW_IDX_GNU_internal:
6382 if (!m_map.augmentation_is_gdb)
6383 break;
6384 have_is_static = true;
6385 is_static = true;
6386 break;
6387 case DW_IDX_GNU_external:
6388 if (!m_map.augmentation_is_gdb)
6389 break;
6390 have_is_static = true;
6391 is_static = false;
6392 break;
6393 }
6394 }
6395
6396 /* Skip if already read in. */
6397 if (per_cu->v.quick->compunit_symtab)
6398 goto again;
6399
6400 /* Check static vs global. */
6401 if (have_is_static)
6402 {
6403 const bool want_static = m_block_index != GLOBAL_BLOCK;
6404 if (m_want_specific_block && want_static != is_static)
6405 goto again;
6406 }
6407
6408 /* Match dw2_symtab_iter_next, symbol_kind
6409 and debug_names::psymbol_tag. */
6410 switch (m_domain)
6411 {
6412 case VAR_DOMAIN:
6413 switch (indexval.dwarf_tag)
6414 {
6415 case DW_TAG_variable:
6416 case DW_TAG_subprogram:
6417 /* Some types are also in VAR_DOMAIN. */
6418 case DW_TAG_typedef:
6419 case DW_TAG_structure_type:
6420 break;
6421 default:
6422 goto again;
6423 }
6424 break;
6425 case STRUCT_DOMAIN:
6426 switch (indexval.dwarf_tag)
6427 {
6428 case DW_TAG_typedef:
6429 case DW_TAG_structure_type:
6430 break;
6431 default:
6432 goto again;
6433 }
6434 break;
6435 case LABEL_DOMAIN:
6436 switch (indexval.dwarf_tag)
6437 {
6438 case 0:
6439 case DW_TAG_variable:
6440 break;
6441 default:
6442 goto again;
6443 }
6444 break;
6445 default:
6446 break;
6447 }
6448
6449 /* Match dw2_expand_symtabs_matching, symbol_kind and
6450 debug_names::psymbol_tag. */
6451 switch (m_search)
6452 {
6453 case VARIABLES_DOMAIN:
6454 switch (indexval.dwarf_tag)
6455 {
6456 case DW_TAG_variable:
6457 break;
6458 default:
6459 goto again;
6460 }
6461 break;
6462 case FUNCTIONS_DOMAIN:
6463 switch (indexval.dwarf_tag)
6464 {
6465 case DW_TAG_subprogram:
6466 break;
6467 default:
6468 goto again;
6469 }
6470 break;
6471 case TYPES_DOMAIN:
6472 switch (indexval.dwarf_tag)
6473 {
6474 case DW_TAG_typedef:
6475 case DW_TAG_structure_type:
6476 break;
6477 default:
6478 goto again;
6479 }
6480 break;
6481 default:
6482 break;
6483 }
6484
6485 return per_cu;
6486 }
6487
6488 static struct compunit_symtab *
6489 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6490 const char *name, domain_enum domain)
6491 {
6492 const block_enum block_index = static_cast<block_enum> (block_index_int);
6493 struct dwarf2_per_objfile *dwarf2_per_objfile
6494 = get_dwarf2_per_objfile (objfile);
6495
6496 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6497 if (!mapp)
6498 {
6499 /* index is NULL if OBJF_READNOW. */
6500 return NULL;
6501 }
6502 const auto &map = *mapp;
6503
6504 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6505 block_index, domain, name);
6506
6507 struct compunit_symtab *stab_best = NULL;
6508 struct dwarf2_per_cu_data *per_cu;
6509 while ((per_cu = iter.next ()) != NULL)
6510 {
6511 struct symbol *sym, *with_opaque = NULL;
6512 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6513 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6514 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6515
6516 sym = block_find_symbol (block, name, domain,
6517 block_find_non_opaque_type_preferred,
6518 &with_opaque);
6519
6520 /* Some caution must be observed with overloaded functions and
6521 methods, since the index will not contain any overload
6522 information (but NAME might contain it). */
6523
6524 if (sym != NULL
6525 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6526 return stab;
6527 if (with_opaque != NULL
6528 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6529 stab_best = stab;
6530
6531 /* Keep looking through other CUs. */
6532 }
6533
6534 return stab_best;
6535 }
6536
6537 /* This dumps minimal information about .debug_names. It is called
6538 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6539 uses this to verify that .debug_names has been loaded. */
6540
6541 static void
6542 dw2_debug_names_dump (struct objfile *objfile)
6543 {
6544 struct dwarf2_per_objfile *dwarf2_per_objfile
6545 = get_dwarf2_per_objfile (objfile);
6546
6547 gdb_assert (dwarf2_per_objfile->using_index);
6548 printf_filtered (".debug_names:");
6549 if (dwarf2_per_objfile->debug_names_table)
6550 printf_filtered (" exists\n");
6551 else
6552 printf_filtered (" faked for \"readnow\"\n");
6553 printf_filtered ("\n");
6554 }
6555
6556 static void
6557 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6558 const char *func_name)
6559 {
6560 struct dwarf2_per_objfile *dwarf2_per_objfile
6561 = get_dwarf2_per_objfile (objfile);
6562
6563 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6564 if (dwarf2_per_objfile->debug_names_table)
6565 {
6566 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6567
6568 /* Note: It doesn't matter what we pass for block_index here. */
6569 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6570 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6571
6572 struct dwarf2_per_cu_data *per_cu;
6573 while ((per_cu = iter.next ()) != NULL)
6574 dw2_instantiate_symtab (per_cu);
6575 }
6576 }
6577
6578 static void
6579 dw2_debug_names_expand_symtabs_matching
6580 (struct objfile *objfile,
6581 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6582 const lookup_name_info &lookup_name,
6583 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6584 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6585 enum search_domain kind)
6586 {
6587 struct dwarf2_per_objfile *dwarf2_per_objfile
6588 = get_dwarf2_per_objfile (objfile);
6589
6590 /* debug_names_table is NULL if OBJF_READNOW. */
6591 if (!dwarf2_per_objfile->debug_names_table)
6592 return;
6593
6594 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6595
6596 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6597
6598 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6599 symbol_matcher,
6600 kind, [&] (offset_type namei)
6601 {
6602 /* The name was matched, now expand corresponding CUs that were
6603 marked. */
6604 dw2_debug_names_iterator iter (map, kind, namei);
6605
6606 struct dwarf2_per_cu_data *per_cu;
6607 while ((per_cu = iter.next ()) != NULL)
6608 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6609 expansion_notify);
6610 });
6611 }
6612
6613 const struct quick_symbol_functions dwarf2_debug_names_functions =
6614 {
6615 dw2_has_symbols,
6616 dw2_find_last_source_symtab,
6617 dw2_forget_cached_source_info,
6618 dw2_map_symtabs_matching_filename,
6619 dw2_debug_names_lookup_symbol,
6620 dw2_print_stats,
6621 dw2_debug_names_dump,
6622 dw2_relocate,
6623 dw2_debug_names_expand_symtabs_for_function,
6624 dw2_expand_all_symtabs,
6625 dw2_expand_symtabs_with_fullname,
6626 dw2_map_matching_symbols,
6627 dw2_debug_names_expand_symtabs_matching,
6628 dw2_find_pc_sect_compunit_symtab,
6629 NULL,
6630 dw2_map_symbol_filenames
6631 };
6632
6633 /* See symfile.h. */
6634
6635 bool
6636 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6637 {
6638 struct dwarf2_per_objfile *dwarf2_per_objfile
6639 = get_dwarf2_per_objfile (objfile);
6640
6641 /* If we're about to read full symbols, don't bother with the
6642 indices. In this case we also don't care if some other debug
6643 format is making psymtabs, because they are all about to be
6644 expanded anyway. */
6645 if ((objfile->flags & OBJF_READNOW))
6646 {
6647 int i;
6648
6649 dwarf2_per_objfile->using_index = 1;
6650 create_all_comp_units (dwarf2_per_objfile);
6651 create_all_type_units (dwarf2_per_objfile);
6652 dwarf2_per_objfile->quick_file_names_table =
6653 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6654
6655 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
6656 + dwarf2_per_objfile->n_type_units); ++i)
6657 {
6658 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
6659
6660 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6661 struct dwarf2_per_cu_quick_data);
6662 }
6663
6664 /* Return 1 so that gdb sees the "quick" functions. However,
6665 these functions will be no-ops because we will have expanded
6666 all symtabs. */
6667 *index_kind = dw_index_kind::GDB_INDEX;
6668 return true;
6669 }
6670
6671 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6672 {
6673 *index_kind = dw_index_kind::DEBUG_NAMES;
6674 return true;
6675 }
6676
6677 if (dwarf2_read_index (objfile))
6678 {
6679 *index_kind = dw_index_kind::GDB_INDEX;
6680 return true;
6681 }
6682
6683 return false;
6684 }
6685
6686 \f
6687
6688 /* Build a partial symbol table. */
6689
6690 void
6691 dwarf2_build_psymtabs (struct objfile *objfile)
6692 {
6693 struct dwarf2_per_objfile *dwarf2_per_objfile
6694 = get_dwarf2_per_objfile (objfile);
6695
6696 if (objfile->global_psymbols.capacity () == 0
6697 && objfile->static_psymbols.capacity () == 0)
6698 init_psymbol_list (objfile, 1024);
6699
6700 TRY
6701 {
6702 /* This isn't really ideal: all the data we allocate on the
6703 objfile's obstack is still uselessly kept around. However,
6704 freeing it seems unsafe. */
6705 psymtab_discarder psymtabs (objfile);
6706 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6707 psymtabs.keep ();
6708 }
6709 CATCH (except, RETURN_MASK_ERROR)
6710 {
6711 exception_print (gdb_stderr, except);
6712 }
6713 END_CATCH
6714 }
6715
6716 /* Return the total length of the CU described by HEADER. */
6717
6718 static unsigned int
6719 get_cu_length (const struct comp_unit_head *header)
6720 {
6721 return header->initial_length_size + header->length;
6722 }
6723
6724 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6725
6726 static inline bool
6727 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6728 {
6729 sect_offset bottom = cu_header->sect_off;
6730 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6731
6732 return sect_off >= bottom && sect_off < top;
6733 }
6734
6735 /* Find the base address of the compilation unit for range lists and
6736 location lists. It will normally be specified by DW_AT_low_pc.
6737 In DWARF-3 draft 4, the base address could be overridden by
6738 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6739 compilation units with discontinuous ranges. */
6740
6741 static void
6742 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6743 {
6744 struct attribute *attr;
6745
6746 cu->base_known = 0;
6747 cu->base_address = 0;
6748
6749 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6750 if (attr)
6751 {
6752 cu->base_address = attr_value_as_address (attr);
6753 cu->base_known = 1;
6754 }
6755 else
6756 {
6757 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6758 if (attr)
6759 {
6760 cu->base_address = attr_value_as_address (attr);
6761 cu->base_known = 1;
6762 }
6763 }
6764 }
6765
6766 /* Read in the comp unit header information from the debug_info at info_ptr.
6767 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6768 NOTE: This leaves members offset, first_die_offset to be filled in
6769 by the caller. */
6770
6771 static const gdb_byte *
6772 read_comp_unit_head (struct comp_unit_head *cu_header,
6773 const gdb_byte *info_ptr,
6774 struct dwarf2_section_info *section,
6775 rcuh_kind section_kind)
6776 {
6777 int signed_addr;
6778 unsigned int bytes_read;
6779 const char *filename = get_section_file_name (section);
6780 bfd *abfd = get_section_bfd_owner (section);
6781
6782 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6783 cu_header->initial_length_size = bytes_read;
6784 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6785 info_ptr += bytes_read;
6786 cu_header->version = read_2_bytes (abfd, info_ptr);
6787 info_ptr += 2;
6788 if (cu_header->version < 5)
6789 switch (section_kind)
6790 {
6791 case rcuh_kind::COMPILE:
6792 cu_header->unit_type = DW_UT_compile;
6793 break;
6794 case rcuh_kind::TYPE:
6795 cu_header->unit_type = DW_UT_type;
6796 break;
6797 default:
6798 internal_error (__FILE__, __LINE__,
6799 _("read_comp_unit_head: invalid section_kind"));
6800 }
6801 else
6802 {
6803 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6804 (read_1_byte (abfd, info_ptr));
6805 info_ptr += 1;
6806 switch (cu_header->unit_type)
6807 {
6808 case DW_UT_compile:
6809 if (section_kind != rcuh_kind::COMPILE)
6810 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6811 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6812 filename);
6813 break;
6814 case DW_UT_type:
6815 section_kind = rcuh_kind::TYPE;
6816 break;
6817 default:
6818 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6819 "(is %d, should be %d or %d) [in module %s]"),
6820 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6821 }
6822
6823 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6824 info_ptr += 1;
6825 }
6826 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6827 cu_header,
6828 &bytes_read);
6829 info_ptr += bytes_read;
6830 if (cu_header->version < 5)
6831 {
6832 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6833 info_ptr += 1;
6834 }
6835 signed_addr = bfd_get_sign_extend_vma (abfd);
6836 if (signed_addr < 0)
6837 internal_error (__FILE__, __LINE__,
6838 _("read_comp_unit_head: dwarf from non elf file"));
6839 cu_header->signed_addr_p = signed_addr;
6840
6841 if (section_kind == rcuh_kind::TYPE)
6842 {
6843 LONGEST type_offset;
6844
6845 cu_header->signature = read_8_bytes (abfd, info_ptr);
6846 info_ptr += 8;
6847
6848 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6849 info_ptr += bytes_read;
6850 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6851 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6852 error (_("Dwarf Error: Too big type_offset in compilation unit "
6853 "header (is %s) [in module %s]"), plongest (type_offset),
6854 filename);
6855 }
6856
6857 return info_ptr;
6858 }
6859
6860 /* Helper function that returns the proper abbrev section for
6861 THIS_CU. */
6862
6863 static struct dwarf2_section_info *
6864 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6865 {
6866 struct dwarf2_section_info *abbrev;
6867 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6868
6869 if (this_cu->is_dwz)
6870 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6871 else
6872 abbrev = &dwarf2_per_objfile->abbrev;
6873
6874 return abbrev;
6875 }
6876
6877 /* Subroutine of read_and_check_comp_unit_head and
6878 read_and_check_type_unit_head to simplify them.
6879 Perform various error checking on the header. */
6880
6881 static void
6882 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6883 struct comp_unit_head *header,
6884 struct dwarf2_section_info *section,
6885 struct dwarf2_section_info *abbrev_section)
6886 {
6887 const char *filename = get_section_file_name (section);
6888
6889 if (header->version < 2 || header->version > 5)
6890 error (_("Dwarf Error: wrong version in compilation unit header "
6891 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6892 filename);
6893
6894 if (to_underlying (header->abbrev_sect_off)
6895 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6896 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6897 "(offset %s + 6) [in module %s]"),
6898 sect_offset_str (header->abbrev_sect_off),
6899 sect_offset_str (header->sect_off),
6900 filename);
6901
6902 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6903 avoid potential 32-bit overflow. */
6904 if (((ULONGEST) header->sect_off + get_cu_length (header))
6905 > section->size)
6906 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6907 "(offset %s + 0) [in module %s]"),
6908 header->length, sect_offset_str (header->sect_off),
6909 filename);
6910 }
6911
6912 /* Read in a CU/TU header and perform some basic error checking.
6913 The contents of the header are stored in HEADER.
6914 The result is a pointer to the start of the first DIE. */
6915
6916 static const gdb_byte *
6917 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6918 struct comp_unit_head *header,
6919 struct dwarf2_section_info *section,
6920 struct dwarf2_section_info *abbrev_section,
6921 const gdb_byte *info_ptr,
6922 rcuh_kind section_kind)
6923 {
6924 const gdb_byte *beg_of_comp_unit = info_ptr;
6925
6926 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6927
6928 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6929
6930 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6931
6932 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6933 abbrev_section);
6934
6935 return info_ptr;
6936 }
6937
6938 /* Fetch the abbreviation table offset from a comp or type unit header. */
6939
6940 static sect_offset
6941 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6942 struct dwarf2_section_info *section,
6943 sect_offset sect_off)
6944 {
6945 bfd *abfd = get_section_bfd_owner (section);
6946 const gdb_byte *info_ptr;
6947 unsigned int initial_length_size, offset_size;
6948 uint16_t version;
6949
6950 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6951 info_ptr = section->buffer + to_underlying (sect_off);
6952 read_initial_length (abfd, info_ptr, &initial_length_size);
6953 offset_size = initial_length_size == 4 ? 4 : 8;
6954 info_ptr += initial_length_size;
6955
6956 version = read_2_bytes (abfd, info_ptr);
6957 info_ptr += 2;
6958 if (version >= 5)
6959 {
6960 /* Skip unit type and address size. */
6961 info_ptr += 2;
6962 }
6963
6964 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6965 }
6966
6967 /* Allocate a new partial symtab for file named NAME and mark this new
6968 partial symtab as being an include of PST. */
6969
6970 static void
6971 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6972 struct objfile *objfile)
6973 {
6974 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6975
6976 if (!IS_ABSOLUTE_PATH (subpst->filename))
6977 {
6978 /* It shares objfile->objfile_obstack. */
6979 subpst->dirname = pst->dirname;
6980 }
6981
6982 subpst->textlow = 0;
6983 subpst->texthigh = 0;
6984
6985 subpst->dependencies
6986 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6987 subpst->dependencies[0] = pst;
6988 subpst->number_of_dependencies = 1;
6989
6990 subpst->globals_offset = 0;
6991 subpst->n_global_syms = 0;
6992 subpst->statics_offset = 0;
6993 subpst->n_static_syms = 0;
6994 subpst->compunit_symtab = NULL;
6995 subpst->read_symtab = pst->read_symtab;
6996 subpst->readin = 0;
6997
6998 /* No private part is necessary for include psymtabs. This property
6999 can be used to differentiate between such include psymtabs and
7000 the regular ones. */
7001 subpst->read_symtab_private = NULL;
7002 }
7003
7004 /* Read the Line Number Program data and extract the list of files
7005 included by the source file represented by PST. Build an include
7006 partial symtab for each of these included files. */
7007
7008 static void
7009 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
7010 struct die_info *die,
7011 struct partial_symtab *pst)
7012 {
7013 line_header_up lh;
7014 struct attribute *attr;
7015
7016 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7017 if (attr)
7018 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
7019 if (lh == NULL)
7020 return; /* No linetable, so no includes. */
7021
7022 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
7023 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
7024 }
7025
7026 static hashval_t
7027 hash_signatured_type (const void *item)
7028 {
7029 const struct signatured_type *sig_type
7030 = (const struct signatured_type *) item;
7031
7032 /* This drops the top 32 bits of the signature, but is ok for a hash. */
7033 return sig_type->signature;
7034 }
7035
7036 static int
7037 eq_signatured_type (const void *item_lhs, const void *item_rhs)
7038 {
7039 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
7040 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
7041
7042 return lhs->signature == rhs->signature;
7043 }
7044
7045 /* Allocate a hash table for signatured types. */
7046
7047 static htab_t
7048 allocate_signatured_type_table (struct objfile *objfile)
7049 {
7050 return htab_create_alloc_ex (41,
7051 hash_signatured_type,
7052 eq_signatured_type,
7053 NULL,
7054 &objfile->objfile_obstack,
7055 hashtab_obstack_allocate,
7056 dummy_obstack_deallocate);
7057 }
7058
7059 /* A helper function to add a signatured type CU to a table. */
7060
7061 static int
7062 add_signatured_type_cu_to_table (void **slot, void *datum)
7063 {
7064 struct signatured_type *sigt = (struct signatured_type *) *slot;
7065 struct signatured_type ***datap = (struct signatured_type ***) datum;
7066
7067 **datap = sigt;
7068 ++*datap;
7069
7070 return 1;
7071 }
7072
7073 /* A helper for create_debug_types_hash_table. Read types from SECTION
7074 and fill them into TYPES_HTAB. It will process only type units,
7075 therefore DW_UT_type. */
7076
7077 static void
7078 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
7079 struct dwo_file *dwo_file,
7080 dwarf2_section_info *section, htab_t &types_htab,
7081 rcuh_kind section_kind)
7082 {
7083 struct objfile *objfile = dwarf2_per_objfile->objfile;
7084 struct dwarf2_section_info *abbrev_section;
7085 bfd *abfd;
7086 const gdb_byte *info_ptr, *end_ptr;
7087
7088 abbrev_section = (dwo_file != NULL
7089 ? &dwo_file->sections.abbrev
7090 : &dwarf2_per_objfile->abbrev);
7091
7092 if (dwarf_read_debug)
7093 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
7094 get_section_name (section),
7095 get_section_file_name (abbrev_section));
7096
7097 dwarf2_read_section (objfile, section);
7098 info_ptr = section->buffer;
7099
7100 if (info_ptr == NULL)
7101 return;
7102
7103 /* We can't set abfd until now because the section may be empty or
7104 not present, in which case the bfd is unknown. */
7105 abfd = get_section_bfd_owner (section);
7106
7107 /* We don't use init_cutu_and_read_dies_simple, or some such, here
7108 because we don't need to read any dies: the signature is in the
7109 header. */
7110
7111 end_ptr = info_ptr + section->size;
7112 while (info_ptr < end_ptr)
7113 {
7114 struct signatured_type *sig_type;
7115 struct dwo_unit *dwo_tu;
7116 void **slot;
7117 const gdb_byte *ptr = info_ptr;
7118 struct comp_unit_head header;
7119 unsigned int length;
7120
7121 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
7122
7123 /* Initialize it due to a false compiler warning. */
7124 header.signature = -1;
7125 header.type_cu_offset_in_tu = (cu_offset) -1;
7126
7127 /* We need to read the type's signature in order to build the hash
7128 table, but we don't need anything else just yet. */
7129
7130 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
7131 abbrev_section, ptr, section_kind);
7132
7133 length = get_cu_length (&header);
7134
7135 /* Skip dummy type units. */
7136 if (ptr >= info_ptr + length
7137 || peek_abbrev_code (abfd, ptr) == 0
7138 || header.unit_type != DW_UT_type)
7139 {
7140 info_ptr += length;
7141 continue;
7142 }
7143
7144 if (types_htab == NULL)
7145 {
7146 if (dwo_file)
7147 types_htab = allocate_dwo_unit_table (objfile);
7148 else
7149 types_htab = allocate_signatured_type_table (objfile);
7150 }
7151
7152 if (dwo_file)
7153 {
7154 sig_type = NULL;
7155 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7156 struct dwo_unit);
7157 dwo_tu->dwo_file = dwo_file;
7158 dwo_tu->signature = header.signature;
7159 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
7160 dwo_tu->section = section;
7161 dwo_tu->sect_off = sect_off;
7162 dwo_tu->length = length;
7163 }
7164 else
7165 {
7166 /* N.B.: type_offset is not usable if this type uses a DWO file.
7167 The real type_offset is in the DWO file. */
7168 dwo_tu = NULL;
7169 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7170 struct signatured_type);
7171 sig_type->signature = header.signature;
7172 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
7173 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7174 sig_type->per_cu.is_debug_types = 1;
7175 sig_type->per_cu.section = section;
7176 sig_type->per_cu.sect_off = sect_off;
7177 sig_type->per_cu.length = length;
7178 }
7179
7180 slot = htab_find_slot (types_htab,
7181 dwo_file ? (void*) dwo_tu : (void *) sig_type,
7182 INSERT);
7183 gdb_assert (slot != NULL);
7184 if (*slot != NULL)
7185 {
7186 sect_offset dup_sect_off;
7187
7188 if (dwo_file)
7189 {
7190 const struct dwo_unit *dup_tu
7191 = (const struct dwo_unit *) *slot;
7192
7193 dup_sect_off = dup_tu->sect_off;
7194 }
7195 else
7196 {
7197 const struct signatured_type *dup_tu
7198 = (const struct signatured_type *) *slot;
7199
7200 dup_sect_off = dup_tu->per_cu.sect_off;
7201 }
7202
7203 complaint (&symfile_complaints,
7204 _("debug type entry at offset %s is duplicate to"
7205 " the entry at offset %s, signature %s"),
7206 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
7207 hex_string (header.signature));
7208 }
7209 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
7210
7211 if (dwarf_read_debug > 1)
7212 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
7213 sect_offset_str (sect_off),
7214 hex_string (header.signature));
7215
7216 info_ptr += length;
7217 }
7218 }
7219
7220 /* Create the hash table of all entries in the .debug_types
7221 (or .debug_types.dwo) section(s).
7222 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
7223 otherwise it is NULL.
7224
7225 The result is a pointer to the hash table or NULL if there are no types.
7226
7227 Note: This function processes DWO files only, not DWP files. */
7228
7229 static void
7230 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
7231 struct dwo_file *dwo_file,
7232 VEC (dwarf2_section_info_def) *types,
7233 htab_t &types_htab)
7234 {
7235 int ix;
7236 struct dwarf2_section_info *section;
7237
7238 if (VEC_empty (dwarf2_section_info_def, types))
7239 return;
7240
7241 for (ix = 0;
7242 VEC_iterate (dwarf2_section_info_def, types, ix, section);
7243 ++ix)
7244 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
7245 types_htab, rcuh_kind::TYPE);
7246 }
7247
7248 /* Create the hash table of all entries in the .debug_types section,
7249 and initialize all_type_units.
7250 The result is zero if there is an error (e.g. missing .debug_types section),
7251 otherwise non-zero. */
7252
7253 static int
7254 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7255 {
7256 htab_t types_htab = NULL;
7257 struct signatured_type **iter;
7258
7259 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
7260 &dwarf2_per_objfile->info, types_htab,
7261 rcuh_kind::COMPILE);
7262 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
7263 dwarf2_per_objfile->types, types_htab);
7264 if (types_htab == NULL)
7265 {
7266 dwarf2_per_objfile->signatured_types = NULL;
7267 return 0;
7268 }
7269
7270 dwarf2_per_objfile->signatured_types = types_htab;
7271
7272 dwarf2_per_objfile->n_type_units
7273 = dwarf2_per_objfile->n_allocated_type_units
7274 = htab_elements (types_htab);
7275 dwarf2_per_objfile->all_type_units =
7276 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
7277 iter = &dwarf2_per_objfile->all_type_units[0];
7278 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
7279 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
7280 == dwarf2_per_objfile->n_type_units);
7281
7282 return 1;
7283 }
7284
7285 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
7286 If SLOT is non-NULL, it is the entry to use in the hash table.
7287 Otherwise we find one. */
7288
7289 static struct signatured_type *
7290 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
7291 void **slot)
7292 {
7293 struct objfile *objfile = dwarf2_per_objfile->objfile;
7294 int n_type_units = dwarf2_per_objfile->n_type_units;
7295 struct signatured_type *sig_type;
7296
7297 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
7298 ++n_type_units;
7299 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
7300 {
7301 if (dwarf2_per_objfile->n_allocated_type_units == 0)
7302 dwarf2_per_objfile->n_allocated_type_units = 1;
7303 dwarf2_per_objfile->n_allocated_type_units *= 2;
7304 dwarf2_per_objfile->all_type_units
7305 = XRESIZEVEC (struct signatured_type *,
7306 dwarf2_per_objfile->all_type_units,
7307 dwarf2_per_objfile->n_allocated_type_units);
7308 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
7309 }
7310 dwarf2_per_objfile->n_type_units = n_type_units;
7311
7312 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7313 struct signatured_type);
7314 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
7315 sig_type->signature = sig;
7316 sig_type->per_cu.is_debug_types = 1;
7317 if (dwarf2_per_objfile->using_index)
7318 {
7319 sig_type->per_cu.v.quick =
7320 OBSTACK_ZALLOC (&objfile->objfile_obstack,
7321 struct dwarf2_per_cu_quick_data);
7322 }
7323
7324 if (slot == NULL)
7325 {
7326 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7327 sig_type, INSERT);
7328 }
7329 gdb_assert (*slot == NULL);
7330 *slot = sig_type;
7331 /* The rest of sig_type must be filled in by the caller. */
7332 return sig_type;
7333 }
7334
7335 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
7336 Fill in SIG_ENTRY with DWO_ENTRY. */
7337
7338 static void
7339 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
7340 struct signatured_type *sig_entry,
7341 struct dwo_unit *dwo_entry)
7342 {
7343 /* Make sure we're not clobbering something we don't expect to. */
7344 gdb_assert (! sig_entry->per_cu.queued);
7345 gdb_assert (sig_entry->per_cu.cu == NULL);
7346 if (dwarf2_per_objfile->using_index)
7347 {
7348 gdb_assert (sig_entry->per_cu.v.quick != NULL);
7349 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
7350 }
7351 else
7352 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
7353 gdb_assert (sig_entry->signature == dwo_entry->signature);
7354 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
7355 gdb_assert (sig_entry->type_unit_group == NULL);
7356 gdb_assert (sig_entry->dwo_unit == NULL);
7357
7358 sig_entry->per_cu.section = dwo_entry->section;
7359 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7360 sig_entry->per_cu.length = dwo_entry->length;
7361 sig_entry->per_cu.reading_dwo_directly = 1;
7362 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7363 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
7364 sig_entry->dwo_unit = dwo_entry;
7365 }
7366
7367 /* Subroutine of lookup_signatured_type.
7368 If we haven't read the TU yet, create the signatured_type data structure
7369 for a TU to be read in directly from a DWO file, bypassing the stub.
7370 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7371 using .gdb_index, then when reading a CU we want to stay in the DWO file
7372 containing that CU. Otherwise we could end up reading several other DWO
7373 files (due to comdat folding) to process the transitive closure of all the
7374 mentioned TUs, and that can be slow. The current DWO file will have every
7375 type signature that it needs.
7376 We only do this for .gdb_index because in the psymtab case we already have
7377 to read all the DWOs to build the type unit groups. */
7378
7379 static struct signatured_type *
7380 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7381 {
7382 struct dwarf2_per_objfile *dwarf2_per_objfile
7383 = cu->per_cu->dwarf2_per_objfile;
7384 struct objfile *objfile = dwarf2_per_objfile->objfile;
7385 struct dwo_file *dwo_file;
7386 struct dwo_unit find_dwo_entry, *dwo_entry;
7387 struct signatured_type find_sig_entry, *sig_entry;
7388 void **slot;
7389
7390 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7391
7392 /* If TU skeletons have been removed then we may not have read in any
7393 TUs yet. */
7394 if (dwarf2_per_objfile->signatured_types == NULL)
7395 {
7396 dwarf2_per_objfile->signatured_types
7397 = allocate_signatured_type_table (objfile);
7398 }
7399
7400 /* We only ever need to read in one copy of a signatured type.
7401 Use the global signatured_types array to do our own comdat-folding
7402 of types. If this is the first time we're reading this TU, and
7403 the TU has an entry in .gdb_index, replace the recorded data from
7404 .gdb_index with this TU. */
7405
7406 find_sig_entry.signature = sig;
7407 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7408 &find_sig_entry, INSERT);
7409 sig_entry = (struct signatured_type *) *slot;
7410
7411 /* We can get here with the TU already read, *or* in the process of being
7412 read. Don't reassign the global entry to point to this DWO if that's
7413 the case. Also note that if the TU is already being read, it may not
7414 have come from a DWO, the program may be a mix of Fission-compiled
7415 code and non-Fission-compiled code. */
7416
7417 /* Have we already tried to read this TU?
7418 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7419 needn't exist in the global table yet). */
7420 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7421 return sig_entry;
7422
7423 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7424 dwo_unit of the TU itself. */
7425 dwo_file = cu->dwo_unit->dwo_file;
7426
7427 /* Ok, this is the first time we're reading this TU. */
7428 if (dwo_file->tus == NULL)
7429 return NULL;
7430 find_dwo_entry.signature = sig;
7431 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7432 if (dwo_entry == NULL)
7433 return NULL;
7434
7435 /* If the global table doesn't have an entry for this TU, add one. */
7436 if (sig_entry == NULL)
7437 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7438
7439 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7440 sig_entry->per_cu.tu_read = 1;
7441 return sig_entry;
7442 }
7443
7444 /* Subroutine of lookup_signatured_type.
7445 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7446 then try the DWP file. If the TU stub (skeleton) has been removed then
7447 it won't be in .gdb_index. */
7448
7449 static struct signatured_type *
7450 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7451 {
7452 struct dwarf2_per_objfile *dwarf2_per_objfile
7453 = cu->per_cu->dwarf2_per_objfile;
7454 struct objfile *objfile = dwarf2_per_objfile->objfile;
7455 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7456 struct dwo_unit *dwo_entry;
7457 struct signatured_type find_sig_entry, *sig_entry;
7458 void **slot;
7459
7460 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7461 gdb_assert (dwp_file != NULL);
7462
7463 /* If TU skeletons have been removed then we may not have read in any
7464 TUs yet. */
7465 if (dwarf2_per_objfile->signatured_types == NULL)
7466 {
7467 dwarf2_per_objfile->signatured_types
7468 = allocate_signatured_type_table (objfile);
7469 }
7470
7471 find_sig_entry.signature = sig;
7472 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7473 &find_sig_entry, INSERT);
7474 sig_entry = (struct signatured_type *) *slot;
7475
7476 /* Have we already tried to read this TU?
7477 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7478 needn't exist in the global table yet). */
7479 if (sig_entry != NULL)
7480 return sig_entry;
7481
7482 if (dwp_file->tus == NULL)
7483 return NULL;
7484 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7485 sig, 1 /* is_debug_types */);
7486 if (dwo_entry == NULL)
7487 return NULL;
7488
7489 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7490 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7491
7492 return sig_entry;
7493 }
7494
7495 /* Lookup a signature based type for DW_FORM_ref_sig8.
7496 Returns NULL if signature SIG is not present in the table.
7497 It is up to the caller to complain about this. */
7498
7499 static struct signatured_type *
7500 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7501 {
7502 struct dwarf2_per_objfile *dwarf2_per_objfile
7503 = cu->per_cu->dwarf2_per_objfile;
7504
7505 if (cu->dwo_unit
7506 && dwarf2_per_objfile->using_index)
7507 {
7508 /* We're in a DWO/DWP file, and we're using .gdb_index.
7509 These cases require special processing. */
7510 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7511 return lookup_dwo_signatured_type (cu, sig);
7512 else
7513 return lookup_dwp_signatured_type (cu, sig);
7514 }
7515 else
7516 {
7517 struct signatured_type find_entry, *entry;
7518
7519 if (dwarf2_per_objfile->signatured_types == NULL)
7520 return NULL;
7521 find_entry.signature = sig;
7522 entry = ((struct signatured_type *)
7523 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7524 return entry;
7525 }
7526 }
7527 \f
7528 /* Low level DIE reading support. */
7529
7530 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7531
7532 static void
7533 init_cu_die_reader (struct die_reader_specs *reader,
7534 struct dwarf2_cu *cu,
7535 struct dwarf2_section_info *section,
7536 struct dwo_file *dwo_file,
7537 struct abbrev_table *abbrev_table)
7538 {
7539 gdb_assert (section->readin && section->buffer != NULL);
7540 reader->abfd = get_section_bfd_owner (section);
7541 reader->cu = cu;
7542 reader->dwo_file = dwo_file;
7543 reader->die_section = section;
7544 reader->buffer = section->buffer;
7545 reader->buffer_end = section->buffer + section->size;
7546 reader->comp_dir = NULL;
7547 reader->abbrev_table = abbrev_table;
7548 }
7549
7550 /* Subroutine of init_cutu_and_read_dies to simplify it.
7551 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7552 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7553 already.
7554
7555 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7556 from it to the DIE in the DWO. If NULL we are skipping the stub.
7557 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7558 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7559 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7560 STUB_COMP_DIR may be non-NULL.
7561 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7562 are filled in with the info of the DIE from the DWO file.
7563 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7564 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7565 kept around for at least as long as *RESULT_READER.
7566
7567 The result is non-zero if a valid (non-dummy) DIE was found. */
7568
7569 static int
7570 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7571 struct dwo_unit *dwo_unit,
7572 struct die_info *stub_comp_unit_die,
7573 const char *stub_comp_dir,
7574 struct die_reader_specs *result_reader,
7575 const gdb_byte **result_info_ptr,
7576 struct die_info **result_comp_unit_die,
7577 int *result_has_children,
7578 abbrev_table_up *result_dwo_abbrev_table)
7579 {
7580 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7581 struct objfile *objfile = dwarf2_per_objfile->objfile;
7582 struct dwarf2_cu *cu = this_cu->cu;
7583 bfd *abfd;
7584 const gdb_byte *begin_info_ptr, *info_ptr;
7585 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7586 int i,num_extra_attrs;
7587 struct dwarf2_section_info *dwo_abbrev_section;
7588 struct attribute *attr;
7589 struct die_info *comp_unit_die;
7590
7591 /* At most one of these may be provided. */
7592 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7593
7594 /* These attributes aren't processed until later:
7595 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7596 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7597 referenced later. However, these attributes are found in the stub
7598 which we won't have later. In order to not impose this complication
7599 on the rest of the code, we read them here and copy them to the
7600 DWO CU/TU die. */
7601
7602 stmt_list = NULL;
7603 low_pc = NULL;
7604 high_pc = NULL;
7605 ranges = NULL;
7606 comp_dir = NULL;
7607
7608 if (stub_comp_unit_die != NULL)
7609 {
7610 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7611 DWO file. */
7612 if (! this_cu->is_debug_types)
7613 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7614 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7615 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7616 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7617 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7618
7619 /* There should be a DW_AT_addr_base attribute here (if needed).
7620 We need the value before we can process DW_FORM_GNU_addr_index. */
7621 cu->addr_base = 0;
7622 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7623 if (attr)
7624 cu->addr_base = DW_UNSND (attr);
7625
7626 /* There should be a DW_AT_ranges_base attribute here (if needed).
7627 We need the value before we can process DW_AT_ranges. */
7628 cu->ranges_base = 0;
7629 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7630 if (attr)
7631 cu->ranges_base = DW_UNSND (attr);
7632 }
7633 else if (stub_comp_dir != NULL)
7634 {
7635 /* Reconstruct the comp_dir attribute to simplify the code below. */
7636 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7637 comp_dir->name = DW_AT_comp_dir;
7638 comp_dir->form = DW_FORM_string;
7639 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7640 DW_STRING (comp_dir) = stub_comp_dir;
7641 }
7642
7643 /* Set up for reading the DWO CU/TU. */
7644 cu->dwo_unit = dwo_unit;
7645 dwarf2_section_info *section = dwo_unit->section;
7646 dwarf2_read_section (objfile, section);
7647 abfd = get_section_bfd_owner (section);
7648 begin_info_ptr = info_ptr = (section->buffer
7649 + to_underlying (dwo_unit->sect_off));
7650 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7651
7652 if (this_cu->is_debug_types)
7653 {
7654 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7655
7656 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7657 &cu->header, section,
7658 dwo_abbrev_section,
7659 info_ptr, rcuh_kind::TYPE);
7660 /* This is not an assert because it can be caused by bad debug info. */
7661 if (sig_type->signature != cu->header.signature)
7662 {
7663 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7664 " TU at offset %s [in module %s]"),
7665 hex_string (sig_type->signature),
7666 hex_string (cu->header.signature),
7667 sect_offset_str (dwo_unit->sect_off),
7668 bfd_get_filename (abfd));
7669 }
7670 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7671 /* For DWOs coming from DWP files, we don't know the CU length
7672 nor the type's offset in the TU until now. */
7673 dwo_unit->length = get_cu_length (&cu->header);
7674 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7675
7676 /* Establish the type offset that can be used to lookup the type.
7677 For DWO files, we don't know it until now. */
7678 sig_type->type_offset_in_section
7679 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7680 }
7681 else
7682 {
7683 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7684 &cu->header, section,
7685 dwo_abbrev_section,
7686 info_ptr, rcuh_kind::COMPILE);
7687 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7688 /* For DWOs coming from DWP files, we don't know the CU length
7689 until now. */
7690 dwo_unit->length = get_cu_length (&cu->header);
7691 }
7692
7693 *result_dwo_abbrev_table
7694 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7695 cu->header.abbrev_sect_off);
7696 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7697 result_dwo_abbrev_table->get ());
7698
7699 /* Read in the die, but leave space to copy over the attributes
7700 from the stub. This has the benefit of simplifying the rest of
7701 the code - all the work to maintain the illusion of a single
7702 DW_TAG_{compile,type}_unit DIE is done here. */
7703 num_extra_attrs = ((stmt_list != NULL)
7704 + (low_pc != NULL)
7705 + (high_pc != NULL)
7706 + (ranges != NULL)
7707 + (comp_dir != NULL));
7708 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7709 result_has_children, num_extra_attrs);
7710
7711 /* Copy over the attributes from the stub to the DIE we just read in. */
7712 comp_unit_die = *result_comp_unit_die;
7713 i = comp_unit_die->num_attrs;
7714 if (stmt_list != NULL)
7715 comp_unit_die->attrs[i++] = *stmt_list;
7716 if (low_pc != NULL)
7717 comp_unit_die->attrs[i++] = *low_pc;
7718 if (high_pc != NULL)
7719 comp_unit_die->attrs[i++] = *high_pc;
7720 if (ranges != NULL)
7721 comp_unit_die->attrs[i++] = *ranges;
7722 if (comp_dir != NULL)
7723 comp_unit_die->attrs[i++] = *comp_dir;
7724 comp_unit_die->num_attrs += num_extra_attrs;
7725
7726 if (dwarf_die_debug)
7727 {
7728 fprintf_unfiltered (gdb_stdlog,
7729 "Read die from %s@0x%x of %s:\n",
7730 get_section_name (section),
7731 (unsigned) (begin_info_ptr - section->buffer),
7732 bfd_get_filename (abfd));
7733 dump_die (comp_unit_die, dwarf_die_debug);
7734 }
7735
7736 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7737 TUs by skipping the stub and going directly to the entry in the DWO file.
7738 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7739 to get it via circuitous means. Blech. */
7740 if (comp_dir != NULL)
7741 result_reader->comp_dir = DW_STRING (comp_dir);
7742
7743 /* Skip dummy compilation units. */
7744 if (info_ptr >= begin_info_ptr + dwo_unit->length
7745 || peek_abbrev_code (abfd, info_ptr) == 0)
7746 return 0;
7747
7748 *result_info_ptr = info_ptr;
7749 return 1;
7750 }
7751
7752 /* Subroutine of init_cutu_and_read_dies to simplify it.
7753 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7754 Returns NULL if the specified DWO unit cannot be found. */
7755
7756 static struct dwo_unit *
7757 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7758 struct die_info *comp_unit_die)
7759 {
7760 struct dwarf2_cu *cu = this_cu->cu;
7761 ULONGEST signature;
7762 struct dwo_unit *dwo_unit;
7763 const char *comp_dir, *dwo_name;
7764
7765 gdb_assert (cu != NULL);
7766
7767 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7768 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7769 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7770
7771 if (this_cu->is_debug_types)
7772 {
7773 struct signatured_type *sig_type;
7774
7775 /* Since this_cu is the first member of struct signatured_type,
7776 we can go from a pointer to one to a pointer to the other. */
7777 sig_type = (struct signatured_type *) this_cu;
7778 signature = sig_type->signature;
7779 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7780 }
7781 else
7782 {
7783 struct attribute *attr;
7784
7785 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7786 if (! attr)
7787 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7788 " [in module %s]"),
7789 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7790 signature = DW_UNSND (attr);
7791 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7792 signature);
7793 }
7794
7795 return dwo_unit;
7796 }
7797
7798 /* Subroutine of init_cutu_and_read_dies to simplify it.
7799 See it for a description of the parameters.
7800 Read a TU directly from a DWO file, bypassing the stub. */
7801
7802 static void
7803 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7804 int use_existing_cu, int keep,
7805 die_reader_func_ftype *die_reader_func,
7806 void *data)
7807 {
7808 std::unique_ptr<dwarf2_cu> new_cu;
7809 struct signatured_type *sig_type;
7810 struct die_reader_specs reader;
7811 const gdb_byte *info_ptr;
7812 struct die_info *comp_unit_die;
7813 int has_children;
7814 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7815
7816 /* Verify we can do the following downcast, and that we have the
7817 data we need. */
7818 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7819 sig_type = (struct signatured_type *) this_cu;
7820 gdb_assert (sig_type->dwo_unit != NULL);
7821
7822 if (use_existing_cu && this_cu->cu != NULL)
7823 {
7824 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7825 /* There's no need to do the rereading_dwo_cu handling that
7826 init_cutu_and_read_dies does since we don't read the stub. */
7827 }
7828 else
7829 {
7830 /* If !use_existing_cu, this_cu->cu must be NULL. */
7831 gdb_assert (this_cu->cu == NULL);
7832 new_cu.reset (new dwarf2_cu (this_cu));
7833 }
7834
7835 /* A future optimization, if needed, would be to use an existing
7836 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7837 could share abbrev tables. */
7838
7839 /* The abbreviation table used by READER, this must live at least as long as
7840 READER. */
7841 abbrev_table_up dwo_abbrev_table;
7842
7843 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7844 NULL /* stub_comp_unit_die */,
7845 sig_type->dwo_unit->dwo_file->comp_dir,
7846 &reader, &info_ptr,
7847 &comp_unit_die, &has_children,
7848 &dwo_abbrev_table) == 0)
7849 {
7850 /* Dummy die. */
7851 return;
7852 }
7853
7854 /* All the "real" work is done here. */
7855 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7856
7857 /* This duplicates the code in init_cutu_and_read_dies,
7858 but the alternative is making the latter more complex.
7859 This function is only for the special case of using DWO files directly:
7860 no point in overly complicating the general case just to handle this. */
7861 if (new_cu != NULL && keep)
7862 {
7863 /* Link this CU into read_in_chain. */
7864 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7865 dwarf2_per_objfile->read_in_chain = this_cu;
7866 /* The chain owns it now. */
7867 new_cu.release ();
7868 }
7869 }
7870
7871 /* Initialize a CU (or TU) and read its DIEs.
7872 If the CU defers to a DWO file, read the DWO file as well.
7873
7874 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7875 Otherwise the table specified in the comp unit header is read in and used.
7876 This is an optimization for when we already have the abbrev table.
7877
7878 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7879 Otherwise, a new CU is allocated with xmalloc.
7880
7881 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7882 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7883
7884 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7885 linker) then DIE_READER_FUNC will not get called. */
7886
7887 static void
7888 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7889 struct abbrev_table *abbrev_table,
7890 int use_existing_cu, int keep,
7891 die_reader_func_ftype *die_reader_func,
7892 void *data)
7893 {
7894 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7895 struct objfile *objfile = dwarf2_per_objfile->objfile;
7896 struct dwarf2_section_info *section = this_cu->section;
7897 bfd *abfd = get_section_bfd_owner (section);
7898 struct dwarf2_cu *cu;
7899 const gdb_byte *begin_info_ptr, *info_ptr;
7900 struct die_reader_specs reader;
7901 struct die_info *comp_unit_die;
7902 int has_children;
7903 struct attribute *attr;
7904 struct signatured_type *sig_type = NULL;
7905 struct dwarf2_section_info *abbrev_section;
7906 /* Non-zero if CU currently points to a DWO file and we need to
7907 reread it. When this happens we need to reread the skeleton die
7908 before we can reread the DWO file (this only applies to CUs, not TUs). */
7909 int rereading_dwo_cu = 0;
7910
7911 if (dwarf_die_debug)
7912 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7913 this_cu->is_debug_types ? "type" : "comp",
7914 sect_offset_str (this_cu->sect_off));
7915
7916 if (use_existing_cu)
7917 gdb_assert (keep);
7918
7919 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7920 file (instead of going through the stub), short-circuit all of this. */
7921 if (this_cu->reading_dwo_directly)
7922 {
7923 /* Narrow down the scope of possibilities to have to understand. */
7924 gdb_assert (this_cu->is_debug_types);
7925 gdb_assert (abbrev_table == NULL);
7926 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7927 die_reader_func, data);
7928 return;
7929 }
7930
7931 /* This is cheap if the section is already read in. */
7932 dwarf2_read_section (objfile, section);
7933
7934 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7935
7936 abbrev_section = get_abbrev_section_for_cu (this_cu);
7937
7938 std::unique_ptr<dwarf2_cu> new_cu;
7939 if (use_existing_cu && this_cu->cu != NULL)
7940 {
7941 cu = this_cu->cu;
7942 /* If this CU is from a DWO file we need to start over, we need to
7943 refetch the attributes from the skeleton CU.
7944 This could be optimized by retrieving those attributes from when we
7945 were here the first time: the previous comp_unit_die was stored in
7946 comp_unit_obstack. But there's no data yet that we need this
7947 optimization. */
7948 if (cu->dwo_unit != NULL)
7949 rereading_dwo_cu = 1;
7950 }
7951 else
7952 {
7953 /* If !use_existing_cu, this_cu->cu must be NULL. */
7954 gdb_assert (this_cu->cu == NULL);
7955 new_cu.reset (new dwarf2_cu (this_cu));
7956 cu = new_cu.get ();
7957 }
7958
7959 /* Get the header. */
7960 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7961 {
7962 /* We already have the header, there's no need to read it in again. */
7963 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7964 }
7965 else
7966 {
7967 if (this_cu->is_debug_types)
7968 {
7969 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7970 &cu->header, section,
7971 abbrev_section, info_ptr,
7972 rcuh_kind::TYPE);
7973
7974 /* Since per_cu is the first member of struct signatured_type,
7975 we can go from a pointer to one to a pointer to the other. */
7976 sig_type = (struct signatured_type *) this_cu;
7977 gdb_assert (sig_type->signature == cu->header.signature);
7978 gdb_assert (sig_type->type_offset_in_tu
7979 == cu->header.type_cu_offset_in_tu);
7980 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7981
7982 /* LENGTH has not been set yet for type units if we're
7983 using .gdb_index. */
7984 this_cu->length = get_cu_length (&cu->header);
7985
7986 /* Establish the type offset that can be used to lookup the type. */
7987 sig_type->type_offset_in_section =
7988 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7989
7990 this_cu->dwarf_version = cu->header.version;
7991 }
7992 else
7993 {
7994 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7995 &cu->header, section,
7996 abbrev_section,
7997 info_ptr,
7998 rcuh_kind::COMPILE);
7999
8000 gdb_assert (this_cu->sect_off == cu->header.sect_off);
8001 gdb_assert (this_cu->length == get_cu_length (&cu->header));
8002 this_cu->dwarf_version = cu->header.version;
8003 }
8004 }
8005
8006 /* Skip dummy compilation units. */
8007 if (info_ptr >= begin_info_ptr + this_cu->length
8008 || peek_abbrev_code (abfd, info_ptr) == 0)
8009 return;
8010
8011 /* If we don't have them yet, read the abbrevs for this compilation unit.
8012 And if we need to read them now, make sure they're freed when we're
8013 done (own the table through ABBREV_TABLE_HOLDER). */
8014 abbrev_table_up abbrev_table_holder;
8015 if (abbrev_table != NULL)
8016 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
8017 else
8018 {
8019 abbrev_table_holder
8020 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
8021 cu->header.abbrev_sect_off);
8022 abbrev_table = abbrev_table_holder.get ();
8023 }
8024
8025 /* Read the top level CU/TU die. */
8026 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
8027 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
8028
8029 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
8030 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
8031 table from the DWO file and pass the ownership over to us. It will be
8032 referenced from READER, so we must make sure to free it after we're done
8033 with READER.
8034
8035 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
8036 DWO CU, that this test will fail (the attribute will not be present). */
8037 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
8038 abbrev_table_up dwo_abbrev_table;
8039 if (attr)
8040 {
8041 struct dwo_unit *dwo_unit;
8042 struct die_info *dwo_comp_unit_die;
8043
8044 if (has_children)
8045 {
8046 complaint (&symfile_complaints,
8047 _("compilation unit with DW_AT_GNU_dwo_name"
8048 " has children (offset %s) [in module %s]"),
8049 sect_offset_str (this_cu->sect_off),
8050 bfd_get_filename (abfd));
8051 }
8052 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
8053 if (dwo_unit != NULL)
8054 {
8055 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
8056 comp_unit_die, NULL,
8057 &reader, &info_ptr,
8058 &dwo_comp_unit_die, &has_children,
8059 &dwo_abbrev_table) == 0)
8060 {
8061 /* Dummy die. */
8062 return;
8063 }
8064 comp_unit_die = dwo_comp_unit_die;
8065 }
8066 else
8067 {
8068 /* Yikes, we couldn't find the rest of the DIE, we only have
8069 the stub. A complaint has already been logged. There's
8070 not much more we can do except pass on the stub DIE to
8071 die_reader_func. We don't want to throw an error on bad
8072 debug info. */
8073 }
8074 }
8075
8076 /* All of the above is setup for this call. Yikes. */
8077 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8078
8079 /* Done, clean up. */
8080 if (new_cu != NULL && keep)
8081 {
8082 /* Link this CU into read_in_chain. */
8083 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
8084 dwarf2_per_objfile->read_in_chain = this_cu;
8085 /* The chain owns it now. */
8086 new_cu.release ();
8087 }
8088 }
8089
8090 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
8091 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
8092 to have already done the lookup to find the DWO file).
8093
8094 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
8095 THIS_CU->is_debug_types, but nothing else.
8096
8097 We fill in THIS_CU->length.
8098
8099 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
8100 linker) then DIE_READER_FUNC will not get called.
8101
8102 THIS_CU->cu is always freed when done.
8103 This is done in order to not leave THIS_CU->cu in a state where we have
8104 to care whether it refers to the "main" CU or the DWO CU. */
8105
8106 static void
8107 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
8108 struct dwo_file *dwo_file,
8109 die_reader_func_ftype *die_reader_func,
8110 void *data)
8111 {
8112 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
8113 struct objfile *objfile = dwarf2_per_objfile->objfile;
8114 struct dwarf2_section_info *section = this_cu->section;
8115 bfd *abfd = get_section_bfd_owner (section);
8116 struct dwarf2_section_info *abbrev_section;
8117 const gdb_byte *begin_info_ptr, *info_ptr;
8118 struct die_reader_specs reader;
8119 struct die_info *comp_unit_die;
8120 int has_children;
8121
8122 if (dwarf_die_debug)
8123 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
8124 this_cu->is_debug_types ? "type" : "comp",
8125 sect_offset_str (this_cu->sect_off));
8126
8127 gdb_assert (this_cu->cu == NULL);
8128
8129 abbrev_section = (dwo_file != NULL
8130 ? &dwo_file->sections.abbrev
8131 : get_abbrev_section_for_cu (this_cu));
8132
8133 /* This is cheap if the section is already read in. */
8134 dwarf2_read_section (objfile, section);
8135
8136 struct dwarf2_cu cu (this_cu);
8137
8138 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
8139 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
8140 &cu.header, section,
8141 abbrev_section, info_ptr,
8142 (this_cu->is_debug_types
8143 ? rcuh_kind::TYPE
8144 : rcuh_kind::COMPILE));
8145
8146 this_cu->length = get_cu_length (&cu.header);
8147
8148 /* Skip dummy compilation units. */
8149 if (info_ptr >= begin_info_ptr + this_cu->length
8150 || peek_abbrev_code (abfd, info_ptr) == 0)
8151 return;
8152
8153 abbrev_table_up abbrev_table
8154 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
8155 cu.header.abbrev_sect_off);
8156
8157 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
8158 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
8159
8160 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8161 }
8162
8163 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
8164 does not lookup the specified DWO file.
8165 This cannot be used to read DWO files.
8166
8167 THIS_CU->cu is always freed when done.
8168 This is done in order to not leave THIS_CU->cu in a state where we have
8169 to care whether it refers to the "main" CU or the DWO CU.
8170 We can revisit this if the data shows there's a performance issue. */
8171
8172 static void
8173 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
8174 die_reader_func_ftype *die_reader_func,
8175 void *data)
8176 {
8177 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
8178 }
8179 \f
8180 /* Type Unit Groups.
8181
8182 Type Unit Groups are a way to collapse the set of all TUs (type units) into
8183 a more manageable set. The grouping is done by DW_AT_stmt_list entry
8184 so that all types coming from the same compilation (.o file) are grouped
8185 together. A future step could be to put the types in the same symtab as
8186 the CU the types ultimately came from. */
8187
8188 static hashval_t
8189 hash_type_unit_group (const void *item)
8190 {
8191 const struct type_unit_group *tu_group
8192 = (const struct type_unit_group *) item;
8193
8194 return hash_stmt_list_entry (&tu_group->hash);
8195 }
8196
8197 static int
8198 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
8199 {
8200 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
8201 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
8202
8203 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
8204 }
8205
8206 /* Allocate a hash table for type unit groups. */
8207
8208 static htab_t
8209 allocate_type_unit_groups_table (struct objfile *objfile)
8210 {
8211 return htab_create_alloc_ex (3,
8212 hash_type_unit_group,
8213 eq_type_unit_group,
8214 NULL,
8215 &objfile->objfile_obstack,
8216 hashtab_obstack_allocate,
8217 dummy_obstack_deallocate);
8218 }
8219
8220 /* Type units that don't have DW_AT_stmt_list are grouped into their own
8221 partial symtabs. We combine several TUs per psymtab to not let the size
8222 of any one psymtab grow too big. */
8223 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
8224 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
8225
8226 /* Helper routine for get_type_unit_group.
8227 Create the type_unit_group object used to hold one or more TUs. */
8228
8229 static struct type_unit_group *
8230 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
8231 {
8232 struct dwarf2_per_objfile *dwarf2_per_objfile
8233 = cu->per_cu->dwarf2_per_objfile;
8234 struct objfile *objfile = dwarf2_per_objfile->objfile;
8235 struct dwarf2_per_cu_data *per_cu;
8236 struct type_unit_group *tu_group;
8237
8238 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8239 struct type_unit_group);
8240 per_cu = &tu_group->per_cu;
8241 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8242
8243 if (dwarf2_per_objfile->using_index)
8244 {
8245 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8246 struct dwarf2_per_cu_quick_data);
8247 }
8248 else
8249 {
8250 unsigned int line_offset = to_underlying (line_offset_struct);
8251 struct partial_symtab *pst;
8252 char *name;
8253
8254 /* Give the symtab a useful name for debug purposes. */
8255 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
8256 name = xstrprintf ("<type_units_%d>",
8257 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
8258 else
8259 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
8260
8261 pst = create_partial_symtab (per_cu, name);
8262 pst->anonymous = 1;
8263
8264 xfree (name);
8265 }
8266
8267 tu_group->hash.dwo_unit = cu->dwo_unit;
8268 tu_group->hash.line_sect_off = line_offset_struct;
8269
8270 return tu_group;
8271 }
8272
8273 /* Look up the type_unit_group for type unit CU, and create it if necessary.
8274 STMT_LIST is a DW_AT_stmt_list attribute. */
8275
8276 static struct type_unit_group *
8277 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
8278 {
8279 struct dwarf2_per_objfile *dwarf2_per_objfile
8280 = cu->per_cu->dwarf2_per_objfile;
8281 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8282 struct type_unit_group *tu_group;
8283 void **slot;
8284 unsigned int line_offset;
8285 struct type_unit_group type_unit_group_for_lookup;
8286
8287 if (dwarf2_per_objfile->type_unit_groups == NULL)
8288 {
8289 dwarf2_per_objfile->type_unit_groups =
8290 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
8291 }
8292
8293 /* Do we need to create a new group, or can we use an existing one? */
8294
8295 if (stmt_list)
8296 {
8297 line_offset = DW_UNSND (stmt_list);
8298 ++tu_stats->nr_symtab_sharers;
8299 }
8300 else
8301 {
8302 /* Ugh, no stmt_list. Rare, but we have to handle it.
8303 We can do various things here like create one group per TU or
8304 spread them over multiple groups to split up the expansion work.
8305 To avoid worst case scenarios (too many groups or too large groups)
8306 we, umm, group them in bunches. */
8307 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
8308 | (tu_stats->nr_stmt_less_type_units
8309 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
8310 ++tu_stats->nr_stmt_less_type_units;
8311 }
8312
8313 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
8314 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
8315 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
8316 &type_unit_group_for_lookup, INSERT);
8317 if (*slot != NULL)
8318 {
8319 tu_group = (struct type_unit_group *) *slot;
8320 gdb_assert (tu_group != NULL);
8321 }
8322 else
8323 {
8324 sect_offset line_offset_struct = (sect_offset) line_offset;
8325 tu_group = create_type_unit_group (cu, line_offset_struct);
8326 *slot = tu_group;
8327 ++tu_stats->nr_symtabs;
8328 }
8329
8330 return tu_group;
8331 }
8332 \f
8333 /* Partial symbol tables. */
8334
8335 /* Create a psymtab named NAME and assign it to PER_CU.
8336
8337 The caller must fill in the following details:
8338 dirname, textlow, texthigh. */
8339
8340 static struct partial_symtab *
8341 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
8342 {
8343 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
8344 struct partial_symtab *pst;
8345
8346 pst = start_psymtab_common (objfile, name, 0,
8347 objfile->global_psymbols,
8348 objfile->static_psymbols);
8349
8350 pst->psymtabs_addrmap_supported = 1;
8351
8352 /* This is the glue that links PST into GDB's symbol API. */
8353 pst->read_symtab_private = per_cu;
8354 pst->read_symtab = dwarf2_read_symtab;
8355 per_cu->v.psymtab = pst;
8356
8357 return pst;
8358 }
8359
8360 /* The DATA object passed to process_psymtab_comp_unit_reader has this
8361 type. */
8362
8363 struct process_psymtab_comp_unit_data
8364 {
8365 /* True if we are reading a DW_TAG_partial_unit. */
8366
8367 int want_partial_unit;
8368
8369 /* The "pretend" language that is used if the CU doesn't declare a
8370 language. */
8371
8372 enum language pretend_language;
8373 };
8374
8375 /* die_reader_func for process_psymtab_comp_unit. */
8376
8377 static void
8378 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
8379 const gdb_byte *info_ptr,
8380 struct die_info *comp_unit_die,
8381 int has_children,
8382 void *data)
8383 {
8384 struct dwarf2_cu *cu = reader->cu;
8385 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8386 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8387 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8388 CORE_ADDR baseaddr;
8389 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8390 struct partial_symtab *pst;
8391 enum pc_bounds_kind cu_bounds_kind;
8392 const char *filename;
8393 struct process_psymtab_comp_unit_data *info
8394 = (struct process_psymtab_comp_unit_data *) data;
8395
8396 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8397 return;
8398
8399 gdb_assert (! per_cu->is_debug_types);
8400
8401 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8402
8403 cu->list_in_scope = &file_symbols;
8404
8405 /* Allocate a new partial symbol table structure. */
8406 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8407 if (filename == NULL)
8408 filename = "";
8409
8410 pst = create_partial_symtab (per_cu, filename);
8411
8412 /* This must be done before calling dwarf2_build_include_psymtabs. */
8413 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8414
8415 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8416
8417 dwarf2_find_base_address (comp_unit_die, cu);
8418
8419 /* Possibly set the default values of LOWPC and HIGHPC from
8420 `DW_AT_ranges'. */
8421 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8422 &best_highpc, cu, pst);
8423 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8424 /* Store the contiguous range if it is not empty; it can be empty for
8425 CUs with no code. */
8426 addrmap_set_empty (objfile->psymtabs_addrmap,
8427 gdbarch_adjust_dwarf2_addr (gdbarch,
8428 best_lowpc + baseaddr),
8429 gdbarch_adjust_dwarf2_addr (gdbarch,
8430 best_highpc + baseaddr) - 1,
8431 pst);
8432
8433 /* Check if comp unit has_children.
8434 If so, read the rest of the partial symbols from this comp unit.
8435 If not, there's no more debug_info for this comp unit. */
8436 if (has_children)
8437 {
8438 struct partial_die_info *first_die;
8439 CORE_ADDR lowpc, highpc;
8440
8441 lowpc = ((CORE_ADDR) -1);
8442 highpc = ((CORE_ADDR) 0);
8443
8444 first_die = load_partial_dies (reader, info_ptr, 1);
8445
8446 scan_partial_symbols (first_die, &lowpc, &highpc,
8447 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8448
8449 /* If we didn't find a lowpc, set it to highpc to avoid
8450 complaints from `maint check'. */
8451 if (lowpc == ((CORE_ADDR) -1))
8452 lowpc = highpc;
8453
8454 /* If the compilation unit didn't have an explicit address range,
8455 then use the information extracted from its child dies. */
8456 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8457 {
8458 best_lowpc = lowpc;
8459 best_highpc = highpc;
8460 }
8461 }
8462 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
8463 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
8464
8465 end_psymtab_common (objfile, pst);
8466
8467 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8468 {
8469 int i;
8470 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8471 struct dwarf2_per_cu_data *iter;
8472
8473 /* Fill in 'dependencies' here; we fill in 'users' in a
8474 post-pass. */
8475 pst->number_of_dependencies = len;
8476 pst->dependencies =
8477 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8478 for (i = 0;
8479 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8480 i, iter);
8481 ++i)
8482 pst->dependencies[i] = iter->v.psymtab;
8483
8484 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8485 }
8486
8487 /* Get the list of files included in the current compilation unit,
8488 and build a psymtab for each of them. */
8489 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8490
8491 if (dwarf_read_debug)
8492 {
8493 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8494
8495 fprintf_unfiltered (gdb_stdlog,
8496 "Psymtab for %s unit @%s: %s - %s"
8497 ", %d global, %d static syms\n",
8498 per_cu->is_debug_types ? "type" : "comp",
8499 sect_offset_str (per_cu->sect_off),
8500 paddress (gdbarch, pst->textlow),
8501 paddress (gdbarch, pst->texthigh),
8502 pst->n_global_syms, pst->n_static_syms);
8503 }
8504 }
8505
8506 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8507 Process compilation unit THIS_CU for a psymtab. */
8508
8509 static void
8510 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8511 int want_partial_unit,
8512 enum language pretend_language)
8513 {
8514 /* If this compilation unit was already read in, free the
8515 cached copy in order to read it in again. This is
8516 necessary because we skipped some symbols when we first
8517 read in the compilation unit (see load_partial_dies).
8518 This problem could be avoided, but the benefit is unclear. */
8519 if (this_cu->cu != NULL)
8520 free_one_cached_comp_unit (this_cu);
8521
8522 if (this_cu->is_debug_types)
8523 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8524 NULL);
8525 else
8526 {
8527 process_psymtab_comp_unit_data info;
8528 info.want_partial_unit = want_partial_unit;
8529 info.pretend_language = pretend_language;
8530 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8531 process_psymtab_comp_unit_reader, &info);
8532 }
8533
8534 /* Age out any secondary CUs. */
8535 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8536 }
8537
8538 /* Reader function for build_type_psymtabs. */
8539
8540 static void
8541 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8542 const gdb_byte *info_ptr,
8543 struct die_info *type_unit_die,
8544 int has_children,
8545 void *data)
8546 {
8547 struct dwarf2_per_objfile *dwarf2_per_objfile
8548 = reader->cu->per_cu->dwarf2_per_objfile;
8549 struct objfile *objfile = dwarf2_per_objfile->objfile;
8550 struct dwarf2_cu *cu = reader->cu;
8551 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8552 struct signatured_type *sig_type;
8553 struct type_unit_group *tu_group;
8554 struct attribute *attr;
8555 struct partial_die_info *first_die;
8556 CORE_ADDR lowpc, highpc;
8557 struct partial_symtab *pst;
8558
8559 gdb_assert (data == NULL);
8560 gdb_assert (per_cu->is_debug_types);
8561 sig_type = (struct signatured_type *) per_cu;
8562
8563 if (! has_children)
8564 return;
8565
8566 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8567 tu_group = get_type_unit_group (cu, attr);
8568
8569 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8570
8571 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8572 cu->list_in_scope = &file_symbols;
8573 pst = create_partial_symtab (per_cu, "");
8574 pst->anonymous = 1;
8575
8576 first_die = load_partial_dies (reader, info_ptr, 1);
8577
8578 lowpc = (CORE_ADDR) -1;
8579 highpc = (CORE_ADDR) 0;
8580 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8581
8582 end_psymtab_common (objfile, pst);
8583 }
8584
8585 /* Struct used to sort TUs by their abbreviation table offset. */
8586
8587 struct tu_abbrev_offset
8588 {
8589 struct signatured_type *sig_type;
8590 sect_offset abbrev_offset;
8591 };
8592
8593 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
8594
8595 static int
8596 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
8597 {
8598 const struct tu_abbrev_offset * const *a
8599 = (const struct tu_abbrev_offset * const*) ap;
8600 const struct tu_abbrev_offset * const *b
8601 = (const struct tu_abbrev_offset * const*) bp;
8602 sect_offset aoff = (*a)->abbrev_offset;
8603 sect_offset boff = (*b)->abbrev_offset;
8604
8605 return (aoff > boff) - (aoff < boff);
8606 }
8607
8608 /* Efficiently read all the type units.
8609 This does the bulk of the work for build_type_psymtabs.
8610
8611 The efficiency is because we sort TUs by the abbrev table they use and
8612 only read each abbrev table once. In one program there are 200K TUs
8613 sharing 8K abbrev tables.
8614
8615 The main purpose of this function is to support building the
8616 dwarf2_per_objfile->type_unit_groups table.
8617 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8618 can collapse the search space by grouping them by stmt_list.
8619 The savings can be significant, in the same program from above the 200K TUs
8620 share 8K stmt_list tables.
8621
8622 FUNC is expected to call get_type_unit_group, which will create the
8623 struct type_unit_group if necessary and add it to
8624 dwarf2_per_objfile->type_unit_groups. */
8625
8626 static void
8627 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8628 {
8629 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8630 struct cleanup *cleanups;
8631 abbrev_table_up abbrev_table;
8632 sect_offset abbrev_offset;
8633 struct tu_abbrev_offset *sorted_by_abbrev;
8634 int i;
8635
8636 /* It's up to the caller to not call us multiple times. */
8637 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8638
8639 if (dwarf2_per_objfile->n_type_units == 0)
8640 return;
8641
8642 /* TUs typically share abbrev tables, and there can be way more TUs than
8643 abbrev tables. Sort by abbrev table to reduce the number of times we
8644 read each abbrev table in.
8645 Alternatives are to punt or to maintain a cache of abbrev tables.
8646 This is simpler and efficient enough for now.
8647
8648 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8649 symtab to use). Typically TUs with the same abbrev offset have the same
8650 stmt_list value too so in practice this should work well.
8651
8652 The basic algorithm here is:
8653
8654 sort TUs by abbrev table
8655 for each TU with same abbrev table:
8656 read abbrev table if first user
8657 read TU top level DIE
8658 [IWBN if DWO skeletons had DW_AT_stmt_list]
8659 call FUNC */
8660
8661 if (dwarf_read_debug)
8662 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8663
8664 /* Sort in a separate table to maintain the order of all_type_units
8665 for .gdb_index: TU indices directly index all_type_units. */
8666 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
8667 dwarf2_per_objfile->n_type_units);
8668 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8669 {
8670 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
8671
8672 sorted_by_abbrev[i].sig_type = sig_type;
8673 sorted_by_abbrev[i].abbrev_offset =
8674 read_abbrev_offset (dwarf2_per_objfile,
8675 sig_type->per_cu.section,
8676 sig_type->per_cu.sect_off);
8677 }
8678 cleanups = make_cleanup (xfree, sorted_by_abbrev);
8679 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
8680 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
8681
8682 abbrev_offset = (sect_offset) ~(unsigned) 0;
8683
8684 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8685 {
8686 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
8687
8688 /* Switch to the next abbrev table if necessary. */
8689 if (abbrev_table == NULL
8690 || tu->abbrev_offset != abbrev_offset)
8691 {
8692 abbrev_offset = tu->abbrev_offset;
8693 abbrev_table =
8694 abbrev_table_read_table (dwarf2_per_objfile,
8695 &dwarf2_per_objfile->abbrev,
8696 abbrev_offset);
8697 ++tu_stats->nr_uniq_abbrev_tables;
8698 }
8699
8700 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table.get (),
8701 0, 0, build_type_psymtabs_reader, NULL);
8702 }
8703
8704 do_cleanups (cleanups);
8705 }
8706
8707 /* Print collected type unit statistics. */
8708
8709 static void
8710 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8711 {
8712 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8713
8714 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8715 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
8716 dwarf2_per_objfile->n_type_units);
8717 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8718 tu_stats->nr_uniq_abbrev_tables);
8719 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8720 tu_stats->nr_symtabs);
8721 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8722 tu_stats->nr_symtab_sharers);
8723 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8724 tu_stats->nr_stmt_less_type_units);
8725 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8726 tu_stats->nr_all_type_units_reallocs);
8727 }
8728
8729 /* Traversal function for build_type_psymtabs. */
8730
8731 static int
8732 build_type_psymtab_dependencies (void **slot, void *info)
8733 {
8734 struct dwarf2_per_objfile *dwarf2_per_objfile
8735 = (struct dwarf2_per_objfile *) info;
8736 struct objfile *objfile = dwarf2_per_objfile->objfile;
8737 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8738 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8739 struct partial_symtab *pst = per_cu->v.psymtab;
8740 int len = VEC_length (sig_type_ptr, tu_group->tus);
8741 struct signatured_type *iter;
8742 int i;
8743
8744 gdb_assert (len > 0);
8745 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8746
8747 pst->number_of_dependencies = len;
8748 pst->dependencies =
8749 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8750 for (i = 0;
8751 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8752 ++i)
8753 {
8754 gdb_assert (iter->per_cu.is_debug_types);
8755 pst->dependencies[i] = iter->per_cu.v.psymtab;
8756 iter->type_unit_group = tu_group;
8757 }
8758
8759 VEC_free (sig_type_ptr, tu_group->tus);
8760
8761 return 1;
8762 }
8763
8764 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8765 Build partial symbol tables for the .debug_types comp-units. */
8766
8767 static void
8768 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8769 {
8770 if (! create_all_type_units (dwarf2_per_objfile))
8771 return;
8772
8773 build_type_psymtabs_1 (dwarf2_per_objfile);
8774 }
8775
8776 /* Traversal function for process_skeletonless_type_unit.
8777 Read a TU in a DWO file and build partial symbols for it. */
8778
8779 static int
8780 process_skeletonless_type_unit (void **slot, void *info)
8781 {
8782 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8783 struct dwarf2_per_objfile *dwarf2_per_objfile
8784 = (struct dwarf2_per_objfile *) info;
8785 struct signatured_type find_entry, *entry;
8786
8787 /* If this TU doesn't exist in the global table, add it and read it in. */
8788
8789 if (dwarf2_per_objfile->signatured_types == NULL)
8790 {
8791 dwarf2_per_objfile->signatured_types
8792 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8793 }
8794
8795 find_entry.signature = dwo_unit->signature;
8796 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8797 INSERT);
8798 /* If we've already seen this type there's nothing to do. What's happening
8799 is we're doing our own version of comdat-folding here. */
8800 if (*slot != NULL)
8801 return 1;
8802
8803 /* This does the job that create_all_type_units would have done for
8804 this TU. */
8805 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8806 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8807 *slot = entry;
8808
8809 /* This does the job that build_type_psymtabs_1 would have done. */
8810 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8811 build_type_psymtabs_reader, NULL);
8812
8813 return 1;
8814 }
8815
8816 /* Traversal function for process_skeletonless_type_units. */
8817
8818 static int
8819 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8820 {
8821 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8822
8823 if (dwo_file->tus != NULL)
8824 {
8825 htab_traverse_noresize (dwo_file->tus,
8826 process_skeletonless_type_unit, info);
8827 }
8828
8829 return 1;
8830 }
8831
8832 /* Scan all TUs of DWO files, verifying we've processed them.
8833 This is needed in case a TU was emitted without its skeleton.
8834 Note: This can't be done until we know what all the DWO files are. */
8835
8836 static void
8837 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8838 {
8839 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8840 if (get_dwp_file (dwarf2_per_objfile) == NULL
8841 && dwarf2_per_objfile->dwo_files != NULL)
8842 {
8843 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8844 process_dwo_file_for_skeletonless_type_units,
8845 dwarf2_per_objfile);
8846 }
8847 }
8848
8849 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8850
8851 static void
8852 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8853 {
8854 int i;
8855
8856 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8857 {
8858 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8859 struct partial_symtab *pst = per_cu->v.psymtab;
8860 int j;
8861
8862 if (pst == NULL)
8863 continue;
8864
8865 for (j = 0; j < pst->number_of_dependencies; ++j)
8866 {
8867 /* Set the 'user' field only if it is not already set. */
8868 if (pst->dependencies[j]->user == NULL)
8869 pst->dependencies[j]->user = pst;
8870 }
8871 }
8872 }
8873
8874 /* Build the partial symbol table by doing a quick pass through the
8875 .debug_info and .debug_abbrev sections. */
8876
8877 static void
8878 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8879 {
8880 struct cleanup *back_to;
8881 int i;
8882 struct objfile *objfile = dwarf2_per_objfile->objfile;
8883
8884 if (dwarf_read_debug)
8885 {
8886 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8887 objfile_name (objfile));
8888 }
8889
8890 dwarf2_per_objfile->reading_partial_symbols = 1;
8891
8892 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8893
8894 /* Any cached compilation units will be linked by the per-objfile
8895 read_in_chain. Make sure to free them when we're done. */
8896 back_to = make_cleanup (free_cached_comp_units, dwarf2_per_objfile);
8897
8898 build_type_psymtabs (dwarf2_per_objfile);
8899
8900 create_all_comp_units (dwarf2_per_objfile);
8901
8902 /* Create a temporary address map on a temporary obstack. We later
8903 copy this to the final obstack. */
8904 auto_obstack temp_obstack;
8905
8906 scoped_restore save_psymtabs_addrmap
8907 = make_scoped_restore (&objfile->psymtabs_addrmap,
8908 addrmap_create_mutable (&temp_obstack));
8909
8910 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8911 {
8912 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8913
8914 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8915 }
8916
8917 /* This has to wait until we read the CUs, we need the list of DWOs. */
8918 process_skeletonless_type_units (dwarf2_per_objfile);
8919
8920 /* Now that all TUs have been processed we can fill in the dependencies. */
8921 if (dwarf2_per_objfile->type_unit_groups != NULL)
8922 {
8923 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8924 build_type_psymtab_dependencies, dwarf2_per_objfile);
8925 }
8926
8927 if (dwarf_read_debug)
8928 print_tu_stats (dwarf2_per_objfile);
8929
8930 set_partial_user (dwarf2_per_objfile);
8931
8932 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8933 &objfile->objfile_obstack);
8934 /* At this point we want to keep the address map. */
8935 save_psymtabs_addrmap.release ();
8936
8937 do_cleanups (back_to);
8938
8939 if (dwarf_read_debug)
8940 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8941 objfile_name (objfile));
8942 }
8943
8944 /* die_reader_func for load_partial_comp_unit. */
8945
8946 static void
8947 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8948 const gdb_byte *info_ptr,
8949 struct die_info *comp_unit_die,
8950 int has_children,
8951 void *data)
8952 {
8953 struct dwarf2_cu *cu = reader->cu;
8954
8955 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8956
8957 /* Check if comp unit has_children.
8958 If so, read the rest of the partial symbols from this comp unit.
8959 If not, there's no more debug_info for this comp unit. */
8960 if (has_children)
8961 load_partial_dies (reader, info_ptr, 0);
8962 }
8963
8964 /* Load the partial DIEs for a secondary CU into memory.
8965 This is also used when rereading a primary CU with load_all_dies. */
8966
8967 static void
8968 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8969 {
8970 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8971 load_partial_comp_unit_reader, NULL);
8972 }
8973
8974 static void
8975 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8976 struct dwarf2_section_info *section,
8977 struct dwarf2_section_info *abbrev_section,
8978 unsigned int is_dwz,
8979 int *n_allocated,
8980 int *n_comp_units,
8981 struct dwarf2_per_cu_data ***all_comp_units)
8982 {
8983 const gdb_byte *info_ptr;
8984 struct objfile *objfile = dwarf2_per_objfile->objfile;
8985
8986 if (dwarf_read_debug)
8987 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8988 get_section_name (section),
8989 get_section_file_name (section));
8990
8991 dwarf2_read_section (objfile, section);
8992
8993 info_ptr = section->buffer;
8994
8995 while (info_ptr < section->buffer + section->size)
8996 {
8997 struct dwarf2_per_cu_data *this_cu;
8998
8999 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
9000
9001 comp_unit_head cu_header;
9002 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
9003 abbrev_section, info_ptr,
9004 rcuh_kind::COMPILE);
9005
9006 /* Save the compilation unit for later lookup. */
9007 if (cu_header.unit_type != DW_UT_type)
9008 {
9009 this_cu = XOBNEW (&objfile->objfile_obstack,
9010 struct dwarf2_per_cu_data);
9011 memset (this_cu, 0, sizeof (*this_cu));
9012 }
9013 else
9014 {
9015 auto sig_type = XOBNEW (&objfile->objfile_obstack,
9016 struct signatured_type);
9017 memset (sig_type, 0, sizeof (*sig_type));
9018 sig_type->signature = cu_header.signature;
9019 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
9020 this_cu = &sig_type->per_cu;
9021 }
9022 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9023 this_cu->sect_off = sect_off;
9024 this_cu->length = cu_header.length + cu_header.initial_length_size;
9025 this_cu->is_dwz = is_dwz;
9026 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
9027 this_cu->section = section;
9028
9029 if (*n_comp_units == *n_allocated)
9030 {
9031 *n_allocated *= 2;
9032 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
9033 *all_comp_units, *n_allocated);
9034 }
9035 (*all_comp_units)[*n_comp_units] = this_cu;
9036 ++*n_comp_units;
9037
9038 info_ptr = info_ptr + this_cu->length;
9039 }
9040 }
9041
9042 /* Create a list of all compilation units in OBJFILE.
9043 This is only done for -readnow and building partial symtabs. */
9044
9045 static void
9046 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
9047 {
9048 int n_allocated;
9049 int n_comp_units;
9050 struct dwarf2_per_cu_data **all_comp_units;
9051 struct dwz_file *dwz;
9052 struct objfile *objfile = dwarf2_per_objfile->objfile;
9053
9054 n_comp_units = 0;
9055 n_allocated = 10;
9056 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
9057
9058 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
9059 &dwarf2_per_objfile->abbrev, 0,
9060 &n_allocated, &n_comp_units, &all_comp_units);
9061
9062 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
9063 if (dwz != NULL)
9064 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
9065 1, &n_allocated, &n_comp_units,
9066 &all_comp_units);
9067
9068 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
9069 struct dwarf2_per_cu_data *,
9070 n_comp_units);
9071 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
9072 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
9073 xfree (all_comp_units);
9074 dwarf2_per_objfile->n_comp_units = n_comp_units;
9075 }
9076
9077 /* Process all loaded DIEs for compilation unit CU, starting at
9078 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
9079 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
9080 DW_AT_ranges). See the comments of add_partial_subprogram on how
9081 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
9082
9083 static void
9084 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
9085 CORE_ADDR *highpc, int set_addrmap,
9086 struct dwarf2_cu *cu)
9087 {
9088 struct partial_die_info *pdi;
9089
9090 /* Now, march along the PDI's, descending into ones which have
9091 interesting children but skipping the children of the other ones,
9092 until we reach the end of the compilation unit. */
9093
9094 pdi = first_die;
9095
9096 while (pdi != NULL)
9097 {
9098 pdi->fixup (cu);
9099
9100 /* Anonymous namespaces or modules have no name but have interesting
9101 children, so we need to look at them. Ditto for anonymous
9102 enums. */
9103
9104 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
9105 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
9106 || pdi->tag == DW_TAG_imported_unit
9107 || pdi->tag == DW_TAG_inlined_subroutine)
9108 {
9109 switch (pdi->tag)
9110 {
9111 case DW_TAG_subprogram:
9112 case DW_TAG_inlined_subroutine:
9113 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9114 break;
9115 case DW_TAG_constant:
9116 case DW_TAG_variable:
9117 case DW_TAG_typedef:
9118 case DW_TAG_union_type:
9119 if (!pdi->is_declaration)
9120 {
9121 add_partial_symbol (pdi, cu);
9122 }
9123 break;
9124 case DW_TAG_class_type:
9125 case DW_TAG_interface_type:
9126 case DW_TAG_structure_type:
9127 if (!pdi->is_declaration)
9128 {
9129 add_partial_symbol (pdi, cu);
9130 }
9131 if (cu->language == language_rust && pdi->has_children)
9132 scan_partial_symbols (pdi->die_child, lowpc, highpc,
9133 set_addrmap, cu);
9134 break;
9135 case DW_TAG_enumeration_type:
9136 if (!pdi->is_declaration)
9137 add_partial_enumeration (pdi, cu);
9138 break;
9139 case DW_TAG_base_type:
9140 case DW_TAG_subrange_type:
9141 /* File scope base type definitions are added to the partial
9142 symbol table. */
9143 add_partial_symbol (pdi, cu);
9144 break;
9145 case DW_TAG_namespace:
9146 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
9147 break;
9148 case DW_TAG_module:
9149 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
9150 break;
9151 case DW_TAG_imported_unit:
9152 {
9153 struct dwarf2_per_cu_data *per_cu;
9154
9155 /* For now we don't handle imported units in type units. */
9156 if (cu->per_cu->is_debug_types)
9157 {
9158 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9159 " supported in type units [in module %s]"),
9160 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9161 }
9162
9163 per_cu = dwarf2_find_containing_comp_unit
9164 (pdi->d.sect_off, pdi->is_dwz,
9165 cu->per_cu->dwarf2_per_objfile);
9166
9167 /* Go read the partial unit, if needed. */
9168 if (per_cu->v.psymtab == NULL)
9169 process_psymtab_comp_unit (per_cu, 1, cu->language);
9170
9171 VEC_safe_push (dwarf2_per_cu_ptr,
9172 cu->per_cu->imported_symtabs, per_cu);
9173 }
9174 break;
9175 case DW_TAG_imported_declaration:
9176 add_partial_symbol (pdi, cu);
9177 break;
9178 default:
9179 break;
9180 }
9181 }
9182
9183 /* If the die has a sibling, skip to the sibling. */
9184
9185 pdi = pdi->die_sibling;
9186 }
9187 }
9188
9189 /* Functions used to compute the fully scoped name of a partial DIE.
9190
9191 Normally, this is simple. For C++, the parent DIE's fully scoped
9192 name is concatenated with "::" and the partial DIE's name.
9193 Enumerators are an exception; they use the scope of their parent
9194 enumeration type, i.e. the name of the enumeration type is not
9195 prepended to the enumerator.
9196
9197 There are two complexities. One is DW_AT_specification; in this
9198 case "parent" means the parent of the target of the specification,
9199 instead of the direct parent of the DIE. The other is compilers
9200 which do not emit DW_TAG_namespace; in this case we try to guess
9201 the fully qualified name of structure types from their members'
9202 linkage names. This must be done using the DIE's children rather
9203 than the children of any DW_AT_specification target. We only need
9204 to do this for structures at the top level, i.e. if the target of
9205 any DW_AT_specification (if any; otherwise the DIE itself) does not
9206 have a parent. */
9207
9208 /* Compute the scope prefix associated with PDI's parent, in
9209 compilation unit CU. The result will be allocated on CU's
9210 comp_unit_obstack, or a copy of the already allocated PDI->NAME
9211 field. NULL is returned if no prefix is necessary. */
9212 static const char *
9213 partial_die_parent_scope (struct partial_die_info *pdi,
9214 struct dwarf2_cu *cu)
9215 {
9216 const char *grandparent_scope;
9217 struct partial_die_info *parent, *real_pdi;
9218
9219 /* We need to look at our parent DIE; if we have a DW_AT_specification,
9220 then this means the parent of the specification DIE. */
9221
9222 real_pdi = pdi;
9223 while (real_pdi->has_specification)
9224 real_pdi = find_partial_die (real_pdi->spec_offset,
9225 real_pdi->spec_is_dwz, cu);
9226
9227 parent = real_pdi->die_parent;
9228 if (parent == NULL)
9229 return NULL;
9230
9231 if (parent->scope_set)
9232 return parent->scope;
9233
9234 parent->fixup (cu);
9235
9236 grandparent_scope = partial_die_parent_scope (parent, cu);
9237
9238 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9239 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9240 Work around this problem here. */
9241 if (cu->language == language_cplus
9242 && parent->tag == DW_TAG_namespace
9243 && strcmp (parent->name, "::") == 0
9244 && grandparent_scope == NULL)
9245 {
9246 parent->scope = NULL;
9247 parent->scope_set = 1;
9248 return NULL;
9249 }
9250
9251 if (pdi->tag == DW_TAG_enumerator)
9252 /* Enumerators should not get the name of the enumeration as a prefix. */
9253 parent->scope = grandparent_scope;
9254 else if (parent->tag == DW_TAG_namespace
9255 || parent->tag == DW_TAG_module
9256 || parent->tag == DW_TAG_structure_type
9257 || parent->tag == DW_TAG_class_type
9258 || parent->tag == DW_TAG_interface_type
9259 || parent->tag == DW_TAG_union_type
9260 || parent->tag == DW_TAG_enumeration_type)
9261 {
9262 if (grandparent_scope == NULL)
9263 parent->scope = parent->name;
9264 else
9265 parent->scope = typename_concat (&cu->comp_unit_obstack,
9266 grandparent_scope,
9267 parent->name, 0, cu);
9268 }
9269 else
9270 {
9271 /* FIXME drow/2004-04-01: What should we be doing with
9272 function-local names? For partial symbols, we should probably be
9273 ignoring them. */
9274 complaint (&symfile_complaints,
9275 _("unhandled containing DIE tag %d for DIE at %s"),
9276 parent->tag, sect_offset_str (pdi->sect_off));
9277 parent->scope = grandparent_scope;
9278 }
9279
9280 parent->scope_set = 1;
9281 return parent->scope;
9282 }
9283
9284 /* Return the fully scoped name associated with PDI, from compilation unit
9285 CU. The result will be allocated with malloc. */
9286
9287 static char *
9288 partial_die_full_name (struct partial_die_info *pdi,
9289 struct dwarf2_cu *cu)
9290 {
9291 const char *parent_scope;
9292
9293 /* If this is a template instantiation, we can not work out the
9294 template arguments from partial DIEs. So, unfortunately, we have
9295 to go through the full DIEs. At least any work we do building
9296 types here will be reused if full symbols are loaded later. */
9297 if (pdi->has_template_arguments)
9298 {
9299 pdi->fixup (cu);
9300
9301 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
9302 {
9303 struct die_info *die;
9304 struct attribute attr;
9305 struct dwarf2_cu *ref_cu = cu;
9306
9307 /* DW_FORM_ref_addr is using section offset. */
9308 attr.name = (enum dwarf_attribute) 0;
9309 attr.form = DW_FORM_ref_addr;
9310 attr.u.unsnd = to_underlying (pdi->sect_off);
9311 die = follow_die_ref (NULL, &attr, &ref_cu);
9312
9313 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
9314 }
9315 }
9316
9317 parent_scope = partial_die_parent_scope (pdi, cu);
9318 if (parent_scope == NULL)
9319 return NULL;
9320 else
9321 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
9322 }
9323
9324 static void
9325 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
9326 {
9327 struct dwarf2_per_objfile *dwarf2_per_objfile
9328 = cu->per_cu->dwarf2_per_objfile;
9329 struct objfile *objfile = dwarf2_per_objfile->objfile;
9330 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9331 CORE_ADDR addr = 0;
9332 const char *actual_name = NULL;
9333 CORE_ADDR baseaddr;
9334 char *built_actual_name;
9335
9336 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9337
9338 built_actual_name = partial_die_full_name (pdi, cu);
9339 if (built_actual_name != NULL)
9340 actual_name = built_actual_name;
9341
9342 if (actual_name == NULL)
9343 actual_name = pdi->name;
9344
9345 switch (pdi->tag)
9346 {
9347 case DW_TAG_inlined_subroutine:
9348 case DW_TAG_subprogram:
9349 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
9350 if (pdi->is_external || cu->language == language_ada)
9351 {
9352 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
9353 of the global scope. But in Ada, we want to be able to access
9354 nested procedures globally. So all Ada subprograms are stored
9355 in the global scope. */
9356 add_psymbol_to_list (actual_name, strlen (actual_name),
9357 built_actual_name != NULL,
9358 VAR_DOMAIN, LOC_BLOCK,
9359 &objfile->global_psymbols,
9360 addr, cu->language, objfile);
9361 }
9362 else
9363 {
9364 add_psymbol_to_list (actual_name, strlen (actual_name),
9365 built_actual_name != NULL,
9366 VAR_DOMAIN, LOC_BLOCK,
9367 &objfile->static_psymbols,
9368 addr, cu->language, objfile);
9369 }
9370
9371 if (pdi->main_subprogram && actual_name != NULL)
9372 set_objfile_main_name (objfile, actual_name, cu->language);
9373 break;
9374 case DW_TAG_constant:
9375 {
9376 std::vector<partial_symbol *> *list;
9377
9378 if (pdi->is_external)
9379 list = &objfile->global_psymbols;
9380 else
9381 list = &objfile->static_psymbols;
9382 add_psymbol_to_list (actual_name, strlen (actual_name),
9383 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
9384 list, 0, cu->language, objfile);
9385 }
9386 break;
9387 case DW_TAG_variable:
9388 if (pdi->d.locdesc)
9389 addr = decode_locdesc (pdi->d.locdesc, cu);
9390
9391 if (pdi->d.locdesc
9392 && addr == 0
9393 && !dwarf2_per_objfile->has_section_at_zero)
9394 {
9395 /* A global or static variable may also have been stripped
9396 out by the linker if unused, in which case its address
9397 will be nullified; do not add such variables into partial
9398 symbol table then. */
9399 }
9400 else if (pdi->is_external)
9401 {
9402 /* Global Variable.
9403 Don't enter into the minimal symbol tables as there is
9404 a minimal symbol table entry from the ELF symbols already.
9405 Enter into partial symbol table if it has a location
9406 descriptor or a type.
9407 If the location descriptor is missing, new_symbol will create
9408 a LOC_UNRESOLVED symbol, the address of the variable will then
9409 be determined from the minimal symbol table whenever the variable
9410 is referenced.
9411 The address for the partial symbol table entry is not
9412 used by GDB, but it comes in handy for debugging partial symbol
9413 table building. */
9414
9415 if (pdi->d.locdesc || pdi->has_type)
9416 add_psymbol_to_list (actual_name, strlen (actual_name),
9417 built_actual_name != NULL,
9418 VAR_DOMAIN, LOC_STATIC,
9419 &objfile->global_psymbols,
9420 addr + baseaddr,
9421 cu->language, objfile);
9422 }
9423 else
9424 {
9425 int has_loc = pdi->d.locdesc != NULL;
9426
9427 /* Static Variable. Skip symbols whose value we cannot know (those
9428 without location descriptors or constant values). */
9429 if (!has_loc && !pdi->has_const_value)
9430 {
9431 xfree (built_actual_name);
9432 return;
9433 }
9434
9435 add_psymbol_to_list (actual_name, strlen (actual_name),
9436 built_actual_name != NULL,
9437 VAR_DOMAIN, LOC_STATIC,
9438 &objfile->static_psymbols,
9439 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
9440 cu->language, objfile);
9441 }
9442 break;
9443 case DW_TAG_typedef:
9444 case DW_TAG_base_type:
9445 case DW_TAG_subrange_type:
9446 add_psymbol_to_list (actual_name, strlen (actual_name),
9447 built_actual_name != NULL,
9448 VAR_DOMAIN, LOC_TYPEDEF,
9449 &objfile->static_psymbols,
9450 0, cu->language, objfile);
9451 break;
9452 case DW_TAG_imported_declaration:
9453 case DW_TAG_namespace:
9454 add_psymbol_to_list (actual_name, strlen (actual_name),
9455 built_actual_name != NULL,
9456 VAR_DOMAIN, LOC_TYPEDEF,
9457 &objfile->global_psymbols,
9458 0, cu->language, objfile);
9459 break;
9460 case DW_TAG_module:
9461 add_psymbol_to_list (actual_name, strlen (actual_name),
9462 built_actual_name != NULL,
9463 MODULE_DOMAIN, LOC_TYPEDEF,
9464 &objfile->global_psymbols,
9465 0, cu->language, objfile);
9466 break;
9467 case DW_TAG_class_type:
9468 case DW_TAG_interface_type:
9469 case DW_TAG_structure_type:
9470 case DW_TAG_union_type:
9471 case DW_TAG_enumeration_type:
9472 /* Skip external references. The DWARF standard says in the section
9473 about "Structure, Union, and Class Type Entries": "An incomplete
9474 structure, union or class type is represented by a structure,
9475 union or class entry that does not have a byte size attribute
9476 and that has a DW_AT_declaration attribute." */
9477 if (!pdi->has_byte_size && pdi->is_declaration)
9478 {
9479 xfree (built_actual_name);
9480 return;
9481 }
9482
9483 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9484 static vs. global. */
9485 add_psymbol_to_list (actual_name, strlen (actual_name),
9486 built_actual_name != NULL,
9487 STRUCT_DOMAIN, LOC_TYPEDEF,
9488 cu->language == language_cplus
9489 ? &objfile->global_psymbols
9490 : &objfile->static_psymbols,
9491 0, cu->language, objfile);
9492
9493 break;
9494 case DW_TAG_enumerator:
9495 add_psymbol_to_list (actual_name, strlen (actual_name),
9496 built_actual_name != NULL,
9497 VAR_DOMAIN, LOC_CONST,
9498 cu->language == language_cplus
9499 ? &objfile->global_psymbols
9500 : &objfile->static_psymbols,
9501 0, cu->language, objfile);
9502 break;
9503 default:
9504 break;
9505 }
9506
9507 xfree (built_actual_name);
9508 }
9509
9510 /* Read a partial die corresponding to a namespace; also, add a symbol
9511 corresponding to that namespace to the symbol table. NAMESPACE is
9512 the name of the enclosing namespace. */
9513
9514 static void
9515 add_partial_namespace (struct partial_die_info *pdi,
9516 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9517 int set_addrmap, struct dwarf2_cu *cu)
9518 {
9519 /* Add a symbol for the namespace. */
9520
9521 add_partial_symbol (pdi, cu);
9522
9523 /* Now scan partial symbols in that namespace. */
9524
9525 if (pdi->has_children)
9526 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9527 }
9528
9529 /* Read a partial die corresponding to a Fortran module. */
9530
9531 static void
9532 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9533 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9534 {
9535 /* Add a symbol for the namespace. */
9536
9537 add_partial_symbol (pdi, cu);
9538
9539 /* Now scan partial symbols in that module. */
9540
9541 if (pdi->has_children)
9542 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9543 }
9544
9545 /* Read a partial die corresponding to a subprogram or an inlined
9546 subprogram and create a partial symbol for that subprogram.
9547 When the CU language allows it, this routine also defines a partial
9548 symbol for each nested subprogram that this subprogram contains.
9549 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9550 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9551
9552 PDI may also be a lexical block, in which case we simply search
9553 recursively for subprograms defined inside that lexical block.
9554 Again, this is only performed when the CU language allows this
9555 type of definitions. */
9556
9557 static void
9558 add_partial_subprogram (struct partial_die_info *pdi,
9559 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9560 int set_addrmap, struct dwarf2_cu *cu)
9561 {
9562 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9563 {
9564 if (pdi->has_pc_info)
9565 {
9566 if (pdi->lowpc < *lowpc)
9567 *lowpc = pdi->lowpc;
9568 if (pdi->highpc > *highpc)
9569 *highpc = pdi->highpc;
9570 if (set_addrmap)
9571 {
9572 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9573 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9574 CORE_ADDR baseaddr;
9575 CORE_ADDR highpc;
9576 CORE_ADDR lowpc;
9577
9578 baseaddr = ANOFFSET (objfile->section_offsets,
9579 SECT_OFF_TEXT (objfile));
9580 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9581 pdi->lowpc + baseaddr);
9582 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9583 pdi->highpc + baseaddr);
9584 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9585 cu->per_cu->v.psymtab);
9586 }
9587 }
9588
9589 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9590 {
9591 if (!pdi->is_declaration)
9592 /* Ignore subprogram DIEs that do not have a name, they are
9593 illegal. Do not emit a complaint at this point, we will
9594 do so when we convert this psymtab into a symtab. */
9595 if (pdi->name)
9596 add_partial_symbol (pdi, cu);
9597 }
9598 }
9599
9600 if (! pdi->has_children)
9601 return;
9602
9603 if (cu->language == language_ada)
9604 {
9605 pdi = pdi->die_child;
9606 while (pdi != NULL)
9607 {
9608 pdi->fixup (cu);
9609 if (pdi->tag == DW_TAG_subprogram
9610 || pdi->tag == DW_TAG_inlined_subroutine
9611 || pdi->tag == DW_TAG_lexical_block)
9612 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9613 pdi = pdi->die_sibling;
9614 }
9615 }
9616 }
9617
9618 /* Read a partial die corresponding to an enumeration type. */
9619
9620 static void
9621 add_partial_enumeration (struct partial_die_info *enum_pdi,
9622 struct dwarf2_cu *cu)
9623 {
9624 struct partial_die_info *pdi;
9625
9626 if (enum_pdi->name != NULL)
9627 add_partial_symbol (enum_pdi, cu);
9628
9629 pdi = enum_pdi->die_child;
9630 while (pdi)
9631 {
9632 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9633 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9634 else
9635 add_partial_symbol (pdi, cu);
9636 pdi = pdi->die_sibling;
9637 }
9638 }
9639
9640 /* Return the initial uleb128 in the die at INFO_PTR. */
9641
9642 static unsigned int
9643 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9644 {
9645 unsigned int bytes_read;
9646
9647 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9648 }
9649
9650 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9651 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9652
9653 Return the corresponding abbrev, or NULL if the number is zero (indicating
9654 an empty DIE). In either case *BYTES_READ will be set to the length of
9655 the initial number. */
9656
9657 static struct abbrev_info *
9658 peek_die_abbrev (const die_reader_specs &reader,
9659 const gdb_byte *info_ptr, unsigned int *bytes_read)
9660 {
9661 dwarf2_cu *cu = reader.cu;
9662 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9663 unsigned int abbrev_number
9664 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9665
9666 if (abbrev_number == 0)
9667 return NULL;
9668
9669 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9670 if (!abbrev)
9671 {
9672 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9673 " at offset %s [in module %s]"),
9674 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9675 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9676 }
9677
9678 return abbrev;
9679 }
9680
9681 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9682 Returns a pointer to the end of a series of DIEs, terminated by an empty
9683 DIE. Any children of the skipped DIEs will also be skipped. */
9684
9685 static const gdb_byte *
9686 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9687 {
9688 while (1)
9689 {
9690 unsigned int bytes_read;
9691 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9692
9693 if (abbrev == NULL)
9694 return info_ptr + bytes_read;
9695 else
9696 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9697 }
9698 }
9699
9700 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9701 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9702 abbrev corresponding to that skipped uleb128 should be passed in
9703 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9704 children. */
9705
9706 static const gdb_byte *
9707 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9708 struct abbrev_info *abbrev)
9709 {
9710 unsigned int bytes_read;
9711 struct attribute attr;
9712 bfd *abfd = reader->abfd;
9713 struct dwarf2_cu *cu = reader->cu;
9714 const gdb_byte *buffer = reader->buffer;
9715 const gdb_byte *buffer_end = reader->buffer_end;
9716 unsigned int form, i;
9717
9718 for (i = 0; i < abbrev->num_attrs; i++)
9719 {
9720 /* The only abbrev we care about is DW_AT_sibling. */
9721 if (abbrev->attrs[i].name == DW_AT_sibling)
9722 {
9723 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9724 if (attr.form == DW_FORM_ref_addr)
9725 complaint (&symfile_complaints,
9726 _("ignoring absolute DW_AT_sibling"));
9727 else
9728 {
9729 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9730 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9731
9732 if (sibling_ptr < info_ptr)
9733 complaint (&symfile_complaints,
9734 _("DW_AT_sibling points backwards"));
9735 else if (sibling_ptr > reader->buffer_end)
9736 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9737 else
9738 return sibling_ptr;
9739 }
9740 }
9741
9742 /* If it isn't DW_AT_sibling, skip this attribute. */
9743 form = abbrev->attrs[i].form;
9744 skip_attribute:
9745 switch (form)
9746 {
9747 case DW_FORM_ref_addr:
9748 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9749 and later it is offset sized. */
9750 if (cu->header.version == 2)
9751 info_ptr += cu->header.addr_size;
9752 else
9753 info_ptr += cu->header.offset_size;
9754 break;
9755 case DW_FORM_GNU_ref_alt:
9756 info_ptr += cu->header.offset_size;
9757 break;
9758 case DW_FORM_addr:
9759 info_ptr += cu->header.addr_size;
9760 break;
9761 case DW_FORM_data1:
9762 case DW_FORM_ref1:
9763 case DW_FORM_flag:
9764 info_ptr += 1;
9765 break;
9766 case DW_FORM_flag_present:
9767 case DW_FORM_implicit_const:
9768 break;
9769 case DW_FORM_data2:
9770 case DW_FORM_ref2:
9771 info_ptr += 2;
9772 break;
9773 case DW_FORM_data4:
9774 case DW_FORM_ref4:
9775 info_ptr += 4;
9776 break;
9777 case DW_FORM_data8:
9778 case DW_FORM_ref8:
9779 case DW_FORM_ref_sig8:
9780 info_ptr += 8;
9781 break;
9782 case DW_FORM_data16:
9783 info_ptr += 16;
9784 break;
9785 case DW_FORM_string:
9786 read_direct_string (abfd, info_ptr, &bytes_read);
9787 info_ptr += bytes_read;
9788 break;
9789 case DW_FORM_sec_offset:
9790 case DW_FORM_strp:
9791 case DW_FORM_GNU_strp_alt:
9792 info_ptr += cu->header.offset_size;
9793 break;
9794 case DW_FORM_exprloc:
9795 case DW_FORM_block:
9796 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9797 info_ptr += bytes_read;
9798 break;
9799 case DW_FORM_block1:
9800 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9801 break;
9802 case DW_FORM_block2:
9803 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9804 break;
9805 case DW_FORM_block4:
9806 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9807 break;
9808 case DW_FORM_sdata:
9809 case DW_FORM_udata:
9810 case DW_FORM_ref_udata:
9811 case DW_FORM_GNU_addr_index:
9812 case DW_FORM_GNU_str_index:
9813 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9814 break;
9815 case DW_FORM_indirect:
9816 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9817 info_ptr += bytes_read;
9818 /* We need to continue parsing from here, so just go back to
9819 the top. */
9820 goto skip_attribute;
9821
9822 default:
9823 error (_("Dwarf Error: Cannot handle %s "
9824 "in DWARF reader [in module %s]"),
9825 dwarf_form_name (form),
9826 bfd_get_filename (abfd));
9827 }
9828 }
9829
9830 if (abbrev->has_children)
9831 return skip_children (reader, info_ptr);
9832 else
9833 return info_ptr;
9834 }
9835
9836 /* Locate ORIG_PDI's sibling.
9837 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9838
9839 static const gdb_byte *
9840 locate_pdi_sibling (const struct die_reader_specs *reader,
9841 struct partial_die_info *orig_pdi,
9842 const gdb_byte *info_ptr)
9843 {
9844 /* Do we know the sibling already? */
9845
9846 if (orig_pdi->sibling)
9847 return orig_pdi->sibling;
9848
9849 /* Are there any children to deal with? */
9850
9851 if (!orig_pdi->has_children)
9852 return info_ptr;
9853
9854 /* Skip the children the long way. */
9855
9856 return skip_children (reader, info_ptr);
9857 }
9858
9859 /* Expand this partial symbol table into a full symbol table. SELF is
9860 not NULL. */
9861
9862 static void
9863 dwarf2_read_symtab (struct partial_symtab *self,
9864 struct objfile *objfile)
9865 {
9866 struct dwarf2_per_objfile *dwarf2_per_objfile
9867 = get_dwarf2_per_objfile (objfile);
9868
9869 if (self->readin)
9870 {
9871 warning (_("bug: psymtab for %s is already read in."),
9872 self->filename);
9873 }
9874 else
9875 {
9876 if (info_verbose)
9877 {
9878 printf_filtered (_("Reading in symbols for %s..."),
9879 self->filename);
9880 gdb_flush (gdb_stdout);
9881 }
9882
9883 /* If this psymtab is constructed from a debug-only objfile, the
9884 has_section_at_zero flag will not necessarily be correct. We
9885 can get the correct value for this flag by looking at the data
9886 associated with the (presumably stripped) associated objfile. */
9887 if (objfile->separate_debug_objfile_backlink)
9888 {
9889 struct dwarf2_per_objfile *dpo_backlink
9890 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9891
9892 dwarf2_per_objfile->has_section_at_zero
9893 = dpo_backlink->has_section_at_zero;
9894 }
9895
9896 dwarf2_per_objfile->reading_partial_symbols = 0;
9897
9898 psymtab_to_symtab_1 (self);
9899
9900 /* Finish up the debug error message. */
9901 if (info_verbose)
9902 printf_filtered (_("done.\n"));
9903 }
9904
9905 process_cu_includes (dwarf2_per_objfile);
9906 }
9907 \f
9908 /* Reading in full CUs. */
9909
9910 /* Add PER_CU to the queue. */
9911
9912 static void
9913 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9914 enum language pretend_language)
9915 {
9916 struct dwarf2_queue_item *item;
9917
9918 per_cu->queued = 1;
9919 item = XNEW (struct dwarf2_queue_item);
9920 item->per_cu = per_cu;
9921 item->pretend_language = pretend_language;
9922 item->next = NULL;
9923
9924 if (dwarf2_queue == NULL)
9925 dwarf2_queue = item;
9926 else
9927 dwarf2_queue_tail->next = item;
9928
9929 dwarf2_queue_tail = item;
9930 }
9931
9932 /* If PER_CU is not yet queued, add it to the queue.
9933 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9934 dependency.
9935 The result is non-zero if PER_CU was queued, otherwise the result is zero
9936 meaning either PER_CU is already queued or it is already loaded.
9937
9938 N.B. There is an invariant here that if a CU is queued then it is loaded.
9939 The caller is required to load PER_CU if we return non-zero. */
9940
9941 static int
9942 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9943 struct dwarf2_per_cu_data *per_cu,
9944 enum language pretend_language)
9945 {
9946 /* We may arrive here during partial symbol reading, if we need full
9947 DIEs to process an unusual case (e.g. template arguments). Do
9948 not queue PER_CU, just tell our caller to load its DIEs. */
9949 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9950 {
9951 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9952 return 1;
9953 return 0;
9954 }
9955
9956 /* Mark the dependence relation so that we don't flush PER_CU
9957 too early. */
9958 if (dependent_cu != NULL)
9959 dwarf2_add_dependence (dependent_cu, per_cu);
9960
9961 /* If it's already on the queue, we have nothing to do. */
9962 if (per_cu->queued)
9963 return 0;
9964
9965 /* If the compilation unit is already loaded, just mark it as
9966 used. */
9967 if (per_cu->cu != NULL)
9968 {
9969 per_cu->cu->last_used = 0;
9970 return 0;
9971 }
9972
9973 /* Add it to the queue. */
9974 queue_comp_unit (per_cu, pretend_language);
9975
9976 return 1;
9977 }
9978
9979 /* Process the queue. */
9980
9981 static void
9982 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9983 {
9984 struct dwarf2_queue_item *item, *next_item;
9985
9986 if (dwarf_read_debug)
9987 {
9988 fprintf_unfiltered (gdb_stdlog,
9989 "Expanding one or more symtabs of objfile %s ...\n",
9990 objfile_name (dwarf2_per_objfile->objfile));
9991 }
9992
9993 /* The queue starts out with one item, but following a DIE reference
9994 may load a new CU, adding it to the end of the queue. */
9995 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9996 {
9997 if ((dwarf2_per_objfile->using_index
9998 ? !item->per_cu->v.quick->compunit_symtab
9999 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
10000 /* Skip dummy CUs. */
10001 && item->per_cu->cu != NULL)
10002 {
10003 struct dwarf2_per_cu_data *per_cu = item->per_cu;
10004 unsigned int debug_print_threshold;
10005 char buf[100];
10006
10007 if (per_cu->is_debug_types)
10008 {
10009 struct signatured_type *sig_type =
10010 (struct signatured_type *) per_cu;
10011
10012 sprintf (buf, "TU %s at offset %s",
10013 hex_string (sig_type->signature),
10014 sect_offset_str (per_cu->sect_off));
10015 /* There can be 100s of TUs.
10016 Only print them in verbose mode. */
10017 debug_print_threshold = 2;
10018 }
10019 else
10020 {
10021 sprintf (buf, "CU at offset %s",
10022 sect_offset_str (per_cu->sect_off));
10023 debug_print_threshold = 1;
10024 }
10025
10026 if (dwarf_read_debug >= debug_print_threshold)
10027 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
10028
10029 if (per_cu->is_debug_types)
10030 process_full_type_unit (per_cu, item->pretend_language);
10031 else
10032 process_full_comp_unit (per_cu, item->pretend_language);
10033
10034 if (dwarf_read_debug >= debug_print_threshold)
10035 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
10036 }
10037
10038 item->per_cu->queued = 0;
10039 next_item = item->next;
10040 xfree (item);
10041 }
10042
10043 dwarf2_queue_tail = NULL;
10044
10045 if (dwarf_read_debug)
10046 {
10047 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
10048 objfile_name (dwarf2_per_objfile->objfile));
10049 }
10050 }
10051
10052 /* Read in full symbols for PST, and anything it depends on. */
10053
10054 static void
10055 psymtab_to_symtab_1 (struct partial_symtab *pst)
10056 {
10057 struct dwarf2_per_cu_data *per_cu;
10058 int i;
10059
10060 if (pst->readin)
10061 return;
10062
10063 for (i = 0; i < pst->number_of_dependencies; i++)
10064 if (!pst->dependencies[i]->readin
10065 && pst->dependencies[i]->user == NULL)
10066 {
10067 /* Inform about additional files that need to be read in. */
10068 if (info_verbose)
10069 {
10070 /* FIXME: i18n: Need to make this a single string. */
10071 fputs_filtered (" ", gdb_stdout);
10072 wrap_here ("");
10073 fputs_filtered ("and ", gdb_stdout);
10074 wrap_here ("");
10075 printf_filtered ("%s...", pst->dependencies[i]->filename);
10076 wrap_here (""); /* Flush output. */
10077 gdb_flush (gdb_stdout);
10078 }
10079 psymtab_to_symtab_1 (pst->dependencies[i]);
10080 }
10081
10082 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10083
10084 if (per_cu == NULL)
10085 {
10086 /* It's an include file, no symbols to read for it.
10087 Everything is in the parent symtab. */
10088 pst->readin = 1;
10089 return;
10090 }
10091
10092 dw2_do_instantiate_symtab (per_cu);
10093 }
10094
10095 /* Trivial hash function for die_info: the hash value of a DIE
10096 is its offset in .debug_info for this objfile. */
10097
10098 static hashval_t
10099 die_hash (const void *item)
10100 {
10101 const struct die_info *die = (const struct die_info *) item;
10102
10103 return to_underlying (die->sect_off);
10104 }
10105
10106 /* Trivial comparison function for die_info structures: two DIEs
10107 are equal if they have the same offset. */
10108
10109 static int
10110 die_eq (const void *item_lhs, const void *item_rhs)
10111 {
10112 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
10113 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
10114
10115 return die_lhs->sect_off == die_rhs->sect_off;
10116 }
10117
10118 /* die_reader_func for load_full_comp_unit.
10119 This is identical to read_signatured_type_reader,
10120 but is kept separate for now. */
10121
10122 static void
10123 load_full_comp_unit_reader (const struct die_reader_specs *reader,
10124 const gdb_byte *info_ptr,
10125 struct die_info *comp_unit_die,
10126 int has_children,
10127 void *data)
10128 {
10129 struct dwarf2_cu *cu = reader->cu;
10130 enum language *language_ptr = (enum language *) data;
10131
10132 gdb_assert (cu->die_hash == NULL);
10133 cu->die_hash =
10134 htab_create_alloc_ex (cu->header.length / 12,
10135 die_hash,
10136 die_eq,
10137 NULL,
10138 &cu->comp_unit_obstack,
10139 hashtab_obstack_allocate,
10140 dummy_obstack_deallocate);
10141
10142 if (has_children)
10143 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
10144 &info_ptr, comp_unit_die);
10145 cu->dies = comp_unit_die;
10146 /* comp_unit_die is not stored in die_hash, no need. */
10147
10148 /* We try not to read any attributes in this function, because not
10149 all CUs needed for references have been loaded yet, and symbol
10150 table processing isn't initialized. But we have to set the CU language,
10151 or we won't be able to build types correctly.
10152 Similarly, if we do not read the producer, we can not apply
10153 producer-specific interpretation. */
10154 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
10155 }
10156
10157 /* Load the DIEs associated with PER_CU into memory. */
10158
10159 static void
10160 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
10161 enum language pretend_language)
10162 {
10163 gdb_assert (! this_cu->is_debug_types);
10164
10165 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
10166 load_full_comp_unit_reader, &pretend_language);
10167 }
10168
10169 /* Add a DIE to the delayed physname list. */
10170
10171 static void
10172 add_to_method_list (struct type *type, int fnfield_index, int index,
10173 const char *name, struct die_info *die,
10174 struct dwarf2_cu *cu)
10175 {
10176 struct delayed_method_info mi;
10177 mi.type = type;
10178 mi.fnfield_index = fnfield_index;
10179 mi.index = index;
10180 mi.name = name;
10181 mi.die = die;
10182 cu->method_list.push_back (mi);
10183 }
10184
10185 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
10186 "const" / "volatile". If so, decrements LEN by the length of the
10187 modifier and return true. Otherwise return false. */
10188
10189 template<size_t N>
10190 static bool
10191 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
10192 {
10193 size_t mod_len = sizeof (mod) - 1;
10194 if (len > mod_len && startswith (physname + (len - mod_len), mod))
10195 {
10196 len -= mod_len;
10197 return true;
10198 }
10199 return false;
10200 }
10201
10202 /* Compute the physnames of any methods on the CU's method list.
10203
10204 The computation of method physnames is delayed in order to avoid the
10205 (bad) condition that one of the method's formal parameters is of an as yet
10206 incomplete type. */
10207
10208 static void
10209 compute_delayed_physnames (struct dwarf2_cu *cu)
10210 {
10211 /* Only C++ delays computing physnames. */
10212 if (cu->method_list.empty ())
10213 return;
10214 gdb_assert (cu->language == language_cplus);
10215
10216 for (struct delayed_method_info &mi : cu->method_list)
10217 {
10218 const char *physname;
10219 struct fn_fieldlist *fn_flp
10220 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
10221 physname = dwarf2_physname (mi.name, mi.die, cu);
10222 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
10223 = physname ? physname : "";
10224
10225 /* Since there's no tag to indicate whether a method is a
10226 const/volatile overload, extract that information out of the
10227 demangled name. */
10228 if (physname != NULL)
10229 {
10230 size_t len = strlen (physname);
10231
10232 while (1)
10233 {
10234 if (physname[len] == ')') /* shortcut */
10235 break;
10236 else if (check_modifier (physname, len, " const"))
10237 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
10238 else if (check_modifier (physname, len, " volatile"))
10239 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
10240 else
10241 break;
10242 }
10243 }
10244 }
10245
10246 /* The list is no longer needed. */
10247 cu->method_list.clear ();
10248 }
10249
10250 /* Go objects should be embedded in a DW_TAG_module DIE,
10251 and it's not clear if/how imported objects will appear.
10252 To keep Go support simple until that's worked out,
10253 go back through what we've read and create something usable.
10254 We could do this while processing each DIE, and feels kinda cleaner,
10255 but that way is more invasive.
10256 This is to, for example, allow the user to type "p var" or "b main"
10257 without having to specify the package name, and allow lookups
10258 of module.object to work in contexts that use the expression
10259 parser. */
10260
10261 static void
10262 fixup_go_packaging (struct dwarf2_cu *cu)
10263 {
10264 char *package_name = NULL;
10265 struct pending *list;
10266 int i;
10267
10268 for (list = global_symbols; list != NULL; list = list->next)
10269 {
10270 for (i = 0; i < list->nsyms; ++i)
10271 {
10272 struct symbol *sym = list->symbol[i];
10273
10274 if (SYMBOL_LANGUAGE (sym) == language_go
10275 && SYMBOL_CLASS (sym) == LOC_BLOCK)
10276 {
10277 char *this_package_name = go_symbol_package_name (sym);
10278
10279 if (this_package_name == NULL)
10280 continue;
10281 if (package_name == NULL)
10282 package_name = this_package_name;
10283 else
10284 {
10285 struct objfile *objfile
10286 = cu->per_cu->dwarf2_per_objfile->objfile;
10287 if (strcmp (package_name, this_package_name) != 0)
10288 complaint (&symfile_complaints,
10289 _("Symtab %s has objects from two different Go packages: %s and %s"),
10290 (symbol_symtab (sym) != NULL
10291 ? symtab_to_filename_for_display
10292 (symbol_symtab (sym))
10293 : objfile_name (objfile)),
10294 this_package_name, package_name);
10295 xfree (this_package_name);
10296 }
10297 }
10298 }
10299 }
10300
10301 if (package_name != NULL)
10302 {
10303 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10304 const char *saved_package_name
10305 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
10306 package_name,
10307 strlen (package_name));
10308 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
10309 saved_package_name);
10310 struct symbol *sym;
10311
10312 TYPE_TAG_NAME (type) = TYPE_NAME (type);
10313
10314 sym = allocate_symbol (objfile);
10315 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
10316 SYMBOL_SET_NAMES (sym, saved_package_name,
10317 strlen (saved_package_name), 0, objfile);
10318 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
10319 e.g., "main" finds the "main" module and not C's main(). */
10320 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10321 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
10322 SYMBOL_TYPE (sym) = type;
10323
10324 add_symbol_to_list (sym, &global_symbols);
10325
10326 xfree (package_name);
10327 }
10328 }
10329
10330 /* Allocate a fully-qualified name consisting of the two parts on the
10331 obstack. */
10332
10333 static const char *
10334 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
10335 {
10336 return obconcat (obstack, p1, "::", p2, (char *) NULL);
10337 }
10338
10339 /* A helper that allocates a struct discriminant_info to attach to a
10340 union type. */
10341
10342 static struct discriminant_info *
10343 alloc_discriminant_info (struct type *type, int discriminant_index,
10344 int default_index)
10345 {
10346 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
10347 gdb_assert (default_index == -1
10348 || (default_index > 0 && default_index < TYPE_NFIELDS (type)));
10349
10350 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
10351
10352 struct discriminant_info *disc
10353 = ((struct discriminant_info *)
10354 TYPE_ZALLOC (type,
10355 offsetof (struct discriminant_info, discriminants)
10356 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
10357 disc->default_index = default_index;
10358 disc->discriminant_index = discriminant_index;
10359
10360 struct dynamic_prop prop;
10361 prop.kind = PROP_UNDEFINED;
10362 prop.data.baton = disc;
10363
10364 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
10365
10366 return disc;
10367 }
10368
10369 /* Some versions of rustc emitted enums in an unusual way.
10370
10371 Ordinary enums were emitted as unions. The first element of each
10372 structure in the union was named "RUST$ENUM$DISR". This element
10373 held the discriminant.
10374
10375 These versions of Rust also implemented the "non-zero"
10376 optimization. When the enum had two values, and one is empty and
10377 the other holds a pointer that cannot be zero, the pointer is used
10378 as the discriminant, with a zero value meaning the empty variant.
10379 Here, the union's first member is of the form
10380 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
10381 where the fieldnos are the indices of the fields that should be
10382 traversed in order to find the field (which may be several fields deep)
10383 and the variantname is the name of the variant of the case when the
10384 field is zero.
10385
10386 This function recognizes whether TYPE is of one of these forms,
10387 and, if so, smashes it to be a variant type. */
10388
10389 static void
10390 quirk_rust_enum (struct type *type, struct objfile *objfile)
10391 {
10392 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
10393
10394 /* We don't need to deal with empty enums. */
10395 if (TYPE_NFIELDS (type) == 0)
10396 return;
10397
10398 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
10399 if (TYPE_NFIELDS (type) == 1
10400 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
10401 {
10402 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
10403
10404 /* Decode the field name to find the offset of the
10405 discriminant. */
10406 ULONGEST bit_offset = 0;
10407 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
10408 while (name[0] >= '0' && name[0] <= '9')
10409 {
10410 char *tail;
10411 unsigned long index = strtoul (name, &tail, 10);
10412 name = tail;
10413 if (*name != '$'
10414 || index >= TYPE_NFIELDS (field_type)
10415 || (TYPE_FIELD_LOC_KIND (field_type, index)
10416 != FIELD_LOC_KIND_BITPOS))
10417 {
10418 complaint (&symfile_complaints,
10419 _("Could not parse Rust enum encoding string \"%s\""
10420 "[in module %s]"),
10421 TYPE_FIELD_NAME (type, 0),
10422 objfile_name (objfile));
10423 return;
10424 }
10425 ++name;
10426
10427 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10428 field_type = TYPE_FIELD_TYPE (field_type, index);
10429 }
10430
10431 /* Make a union to hold the variants. */
10432 struct type *union_type = alloc_type (objfile);
10433 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10434 TYPE_NFIELDS (union_type) = 3;
10435 TYPE_FIELDS (union_type)
10436 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10437 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10438
10439 /* Put the discriminant must at index 0. */
10440 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10441 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10442 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10443 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10444
10445 /* The order of fields doesn't really matter, so put the real
10446 field at index 1 and the data-less field at index 2. */
10447 struct discriminant_info *disc
10448 = alloc_discriminant_info (union_type, 0, 1);
10449 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10450 TYPE_FIELD_NAME (union_type, 1)
10451 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10452 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10453 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10454 TYPE_FIELD_NAME (union_type, 1));
10455
10456 const char *dataless_name
10457 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10458 name);
10459 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10460 dataless_name);
10461 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10462 /* NAME points into the original discriminant name, which
10463 already has the correct lifetime. */
10464 TYPE_FIELD_NAME (union_type, 2) = name;
10465 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10466 disc->discriminants[2] = 0;
10467
10468 /* Smash this type to be a structure type. We have to do this
10469 because the type has already been recorded. */
10470 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10471 TYPE_NFIELDS (type) = 1;
10472 TYPE_FIELDS (type)
10473 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10474
10475 /* Install the variant part. */
10476 TYPE_FIELD_TYPE (type, 0) = union_type;
10477 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10478 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10479 }
10480 else if (TYPE_NFIELDS (type) == 1)
10481 {
10482 /* We assume that a union with a single field is a univariant
10483 enum. */
10484 /* Smash this type to be a structure type. We have to do this
10485 because the type has already been recorded. */
10486 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10487
10488 /* Make a union to hold the variants. */
10489 struct type *union_type = alloc_type (objfile);
10490 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10491 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10492 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10493 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10494
10495 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10496 const char *variant_name
10497 = rust_last_path_segment (TYPE_NAME (field_type));
10498 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10499 TYPE_NAME (field_type)
10500 = rust_fully_qualify (&objfile->objfile_obstack,
10501 TYPE_NAME (field_type), variant_name);
10502
10503 /* Install the union in the outer struct type. */
10504 TYPE_NFIELDS (type) = 1;
10505 TYPE_FIELDS (type)
10506 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10507 TYPE_FIELD_TYPE (type, 0) = union_type;
10508 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10509 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10510
10511 alloc_discriminant_info (union_type, -1, 0);
10512 }
10513 else
10514 {
10515 struct type *disr_type = nullptr;
10516 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10517 {
10518 disr_type = TYPE_FIELD_TYPE (type, i);
10519
10520 if (TYPE_NFIELDS (disr_type) == 0)
10521 {
10522 /* Could be data-less variant, so keep going. */
10523 }
10524 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10525 "RUST$ENUM$DISR") != 0)
10526 {
10527 /* Not a Rust enum. */
10528 return;
10529 }
10530 else
10531 {
10532 /* Found one. */
10533 break;
10534 }
10535 }
10536
10537 /* If we got here without a discriminant, then it's probably
10538 just a union. */
10539 if (disr_type == nullptr)
10540 return;
10541
10542 /* Smash this type to be a structure type. We have to do this
10543 because the type has already been recorded. */
10544 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10545
10546 /* Make a union to hold the variants. */
10547 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10548 struct type *union_type = alloc_type (objfile);
10549 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10550 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10551 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10552 TYPE_FIELDS (union_type)
10553 = (struct field *) TYPE_ZALLOC (union_type,
10554 (TYPE_NFIELDS (union_type)
10555 * sizeof (struct field)));
10556
10557 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10558 TYPE_NFIELDS (type) * sizeof (struct field));
10559
10560 /* Install the discriminant at index 0 in the union. */
10561 TYPE_FIELD (union_type, 0) = *disr_field;
10562 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10563 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10564
10565 /* Install the union in the outer struct type. */
10566 TYPE_FIELD_TYPE (type, 0) = union_type;
10567 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10568 TYPE_NFIELDS (type) = 1;
10569
10570 /* Set the size and offset of the union type. */
10571 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10572
10573 /* We need a way to find the correct discriminant given a
10574 variant name. For convenience we build a map here. */
10575 struct type *enum_type = FIELD_TYPE (*disr_field);
10576 std::unordered_map<std::string, ULONGEST> discriminant_map;
10577 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10578 {
10579 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10580 {
10581 const char *name
10582 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10583 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10584 }
10585 }
10586
10587 int n_fields = TYPE_NFIELDS (union_type);
10588 struct discriminant_info *disc
10589 = alloc_discriminant_info (union_type, 0, -1);
10590 /* Skip the discriminant here. */
10591 for (int i = 1; i < n_fields; ++i)
10592 {
10593 /* Find the final word in the name of this variant's type.
10594 That name can be used to look up the correct
10595 discriminant. */
10596 const char *variant_name
10597 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10598 i)));
10599
10600 auto iter = discriminant_map.find (variant_name);
10601 if (iter != discriminant_map.end ())
10602 disc->discriminants[i] = iter->second;
10603
10604 /* Remove the discriminant field. */
10605 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10606 --TYPE_NFIELDS (sub_type);
10607 ++TYPE_FIELDS (sub_type);
10608 TYPE_FIELD_NAME (union_type, i) = variant_name;
10609 TYPE_NAME (sub_type)
10610 = rust_fully_qualify (&objfile->objfile_obstack,
10611 TYPE_NAME (type), variant_name);
10612 }
10613 }
10614 }
10615
10616 /* Rewrite some Rust unions to be structures with variants parts. */
10617
10618 static void
10619 rust_union_quirks (struct dwarf2_cu *cu)
10620 {
10621 gdb_assert (cu->language == language_rust);
10622 for (struct type *type : cu->rust_unions)
10623 quirk_rust_enum (type, cu->per_cu->dwarf2_per_objfile->objfile);
10624 }
10625
10626 /* Return the symtab for PER_CU. This works properly regardless of
10627 whether we're using the index or psymtabs. */
10628
10629 static struct compunit_symtab *
10630 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10631 {
10632 return (per_cu->dwarf2_per_objfile->using_index
10633 ? per_cu->v.quick->compunit_symtab
10634 : per_cu->v.psymtab->compunit_symtab);
10635 }
10636
10637 /* A helper function for computing the list of all symbol tables
10638 included by PER_CU. */
10639
10640 static void
10641 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10642 htab_t all_children, htab_t all_type_symtabs,
10643 struct dwarf2_per_cu_data *per_cu,
10644 struct compunit_symtab *immediate_parent)
10645 {
10646 void **slot;
10647 int ix;
10648 struct compunit_symtab *cust;
10649 struct dwarf2_per_cu_data *iter;
10650
10651 slot = htab_find_slot (all_children, per_cu, INSERT);
10652 if (*slot != NULL)
10653 {
10654 /* This inclusion and its children have been processed. */
10655 return;
10656 }
10657
10658 *slot = per_cu;
10659 /* Only add a CU if it has a symbol table. */
10660 cust = get_compunit_symtab (per_cu);
10661 if (cust != NULL)
10662 {
10663 /* If this is a type unit only add its symbol table if we haven't
10664 seen it yet (type unit per_cu's can share symtabs). */
10665 if (per_cu->is_debug_types)
10666 {
10667 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10668 if (*slot == NULL)
10669 {
10670 *slot = cust;
10671 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10672 if (cust->user == NULL)
10673 cust->user = immediate_parent;
10674 }
10675 }
10676 else
10677 {
10678 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10679 if (cust->user == NULL)
10680 cust->user = immediate_parent;
10681 }
10682 }
10683
10684 for (ix = 0;
10685 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10686 ++ix)
10687 {
10688 recursively_compute_inclusions (result, all_children,
10689 all_type_symtabs, iter, cust);
10690 }
10691 }
10692
10693 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10694 PER_CU. */
10695
10696 static void
10697 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10698 {
10699 gdb_assert (! per_cu->is_debug_types);
10700
10701 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10702 {
10703 int ix, len;
10704 struct dwarf2_per_cu_data *per_cu_iter;
10705 struct compunit_symtab *compunit_symtab_iter;
10706 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10707 htab_t all_children, all_type_symtabs;
10708 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10709
10710 /* If we don't have a symtab, we can just skip this case. */
10711 if (cust == NULL)
10712 return;
10713
10714 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10715 NULL, xcalloc, xfree);
10716 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10717 NULL, xcalloc, xfree);
10718
10719 for (ix = 0;
10720 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10721 ix, per_cu_iter);
10722 ++ix)
10723 {
10724 recursively_compute_inclusions (&result_symtabs, all_children,
10725 all_type_symtabs, per_cu_iter,
10726 cust);
10727 }
10728
10729 /* Now we have a transitive closure of all the included symtabs. */
10730 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10731 cust->includes
10732 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10733 struct compunit_symtab *, len + 1);
10734 for (ix = 0;
10735 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10736 compunit_symtab_iter);
10737 ++ix)
10738 cust->includes[ix] = compunit_symtab_iter;
10739 cust->includes[len] = NULL;
10740
10741 VEC_free (compunit_symtab_ptr, result_symtabs);
10742 htab_delete (all_children);
10743 htab_delete (all_type_symtabs);
10744 }
10745 }
10746
10747 /* Compute the 'includes' field for the symtabs of all the CUs we just
10748 read. */
10749
10750 static void
10751 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10752 {
10753 int ix;
10754 struct dwarf2_per_cu_data *iter;
10755
10756 for (ix = 0;
10757 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10758 ix, iter);
10759 ++ix)
10760 {
10761 if (! iter->is_debug_types)
10762 compute_compunit_symtab_includes (iter);
10763 }
10764
10765 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10766 }
10767
10768 /* Generate full symbol information for PER_CU, whose DIEs have
10769 already been loaded into memory. */
10770
10771 static void
10772 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10773 enum language pretend_language)
10774 {
10775 struct dwarf2_cu *cu = per_cu->cu;
10776 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10777 struct objfile *objfile = dwarf2_per_objfile->objfile;
10778 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10779 CORE_ADDR lowpc, highpc;
10780 struct compunit_symtab *cust;
10781 CORE_ADDR baseaddr;
10782 struct block *static_block;
10783 CORE_ADDR addr;
10784
10785 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10786
10787 buildsym_init ();
10788 scoped_free_pendings free_pending;
10789
10790 /* Clear the list here in case something was left over. */
10791 cu->method_list.clear ();
10792
10793 cu->list_in_scope = &file_symbols;
10794
10795 cu->language = pretend_language;
10796 cu->language_defn = language_def (cu->language);
10797
10798 /* Do line number decoding in read_file_scope () */
10799 process_die (cu->dies, cu);
10800
10801 /* For now fudge the Go package. */
10802 if (cu->language == language_go)
10803 fixup_go_packaging (cu);
10804
10805 /* Now that we have processed all the DIEs in the CU, all the types
10806 should be complete, and it should now be safe to compute all of the
10807 physnames. */
10808 compute_delayed_physnames (cu);
10809
10810 if (cu->language == language_rust)
10811 rust_union_quirks (cu);
10812
10813 /* Some compilers don't define a DW_AT_high_pc attribute for the
10814 compilation unit. If the DW_AT_high_pc is missing, synthesize
10815 it, by scanning the DIE's below the compilation unit. */
10816 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10817
10818 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10819 static_block = end_symtab_get_static_block (addr, 0, 1);
10820
10821 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10822 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10823 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10824 addrmap to help ensure it has an accurate map of pc values belonging to
10825 this comp unit. */
10826 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10827
10828 cust = end_symtab_from_static_block (static_block,
10829 SECT_OFF_TEXT (objfile), 0);
10830
10831 if (cust != NULL)
10832 {
10833 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10834
10835 /* Set symtab language to language from DW_AT_language. If the
10836 compilation is from a C file generated by language preprocessors, do
10837 not set the language if it was already deduced by start_subfile. */
10838 if (!(cu->language == language_c
10839 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10840 COMPUNIT_FILETABS (cust)->language = cu->language;
10841
10842 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10843 produce DW_AT_location with location lists but it can be possibly
10844 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10845 there were bugs in prologue debug info, fixed later in GCC-4.5
10846 by "unwind info for epilogues" patch (which is not directly related).
10847
10848 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10849 needed, it would be wrong due to missing DW_AT_producer there.
10850
10851 Still one can confuse GDB by using non-standard GCC compilation
10852 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10853 */
10854 if (cu->has_loclist && gcc_4_minor >= 5)
10855 cust->locations_valid = 1;
10856
10857 if (gcc_4_minor >= 5)
10858 cust->epilogue_unwind_valid = 1;
10859
10860 cust->call_site_htab = cu->call_site_htab;
10861 }
10862
10863 if (dwarf2_per_objfile->using_index)
10864 per_cu->v.quick->compunit_symtab = cust;
10865 else
10866 {
10867 struct partial_symtab *pst = per_cu->v.psymtab;
10868 pst->compunit_symtab = cust;
10869 pst->readin = 1;
10870 }
10871
10872 /* Push it for inclusion processing later. */
10873 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10874 }
10875
10876 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10877 already been loaded into memory. */
10878
10879 static void
10880 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10881 enum language pretend_language)
10882 {
10883 struct dwarf2_cu *cu = per_cu->cu;
10884 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10885 struct objfile *objfile = dwarf2_per_objfile->objfile;
10886 struct compunit_symtab *cust;
10887 struct signatured_type *sig_type;
10888
10889 gdb_assert (per_cu->is_debug_types);
10890 sig_type = (struct signatured_type *) per_cu;
10891
10892 buildsym_init ();
10893 scoped_free_pendings free_pending;
10894
10895 /* Clear the list here in case something was left over. */
10896 cu->method_list.clear ();
10897
10898 cu->list_in_scope = &file_symbols;
10899
10900 cu->language = pretend_language;
10901 cu->language_defn = language_def (cu->language);
10902
10903 /* The symbol tables are set up in read_type_unit_scope. */
10904 process_die (cu->dies, cu);
10905
10906 /* For now fudge the Go package. */
10907 if (cu->language == language_go)
10908 fixup_go_packaging (cu);
10909
10910 /* Now that we have processed all the DIEs in the CU, all the types
10911 should be complete, and it should now be safe to compute all of the
10912 physnames. */
10913 compute_delayed_physnames (cu);
10914
10915 if (cu->language == language_rust)
10916 rust_union_quirks (cu);
10917
10918 /* TUs share symbol tables.
10919 If this is the first TU to use this symtab, complete the construction
10920 of it with end_expandable_symtab. Otherwise, complete the addition of
10921 this TU's symbols to the existing symtab. */
10922 if (sig_type->type_unit_group->compunit_symtab == NULL)
10923 {
10924 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10925 sig_type->type_unit_group->compunit_symtab = cust;
10926
10927 if (cust != NULL)
10928 {
10929 /* Set symtab language to language from DW_AT_language. If the
10930 compilation is from a C file generated by language preprocessors,
10931 do not set the language if it was already deduced by
10932 start_subfile. */
10933 if (!(cu->language == language_c
10934 && COMPUNIT_FILETABS (cust)->language != language_c))
10935 COMPUNIT_FILETABS (cust)->language = cu->language;
10936 }
10937 }
10938 else
10939 {
10940 augment_type_symtab ();
10941 cust = sig_type->type_unit_group->compunit_symtab;
10942 }
10943
10944 if (dwarf2_per_objfile->using_index)
10945 per_cu->v.quick->compunit_symtab = cust;
10946 else
10947 {
10948 struct partial_symtab *pst = per_cu->v.psymtab;
10949 pst->compunit_symtab = cust;
10950 pst->readin = 1;
10951 }
10952 }
10953
10954 /* Process an imported unit DIE. */
10955
10956 static void
10957 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10958 {
10959 struct attribute *attr;
10960
10961 /* For now we don't handle imported units in type units. */
10962 if (cu->per_cu->is_debug_types)
10963 {
10964 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10965 " supported in type units [in module %s]"),
10966 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10967 }
10968
10969 attr = dwarf2_attr (die, DW_AT_import, cu);
10970 if (attr != NULL)
10971 {
10972 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10973 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10974 dwarf2_per_cu_data *per_cu
10975 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10976 cu->per_cu->dwarf2_per_objfile);
10977
10978 /* If necessary, add it to the queue and load its DIEs. */
10979 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10980 load_full_comp_unit (per_cu, cu->language);
10981
10982 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10983 per_cu);
10984 }
10985 }
10986
10987 /* RAII object that represents a process_die scope: i.e.,
10988 starts/finishes processing a DIE. */
10989 class process_die_scope
10990 {
10991 public:
10992 process_die_scope (die_info *die, dwarf2_cu *cu)
10993 : m_die (die), m_cu (cu)
10994 {
10995 /* We should only be processing DIEs not already in process. */
10996 gdb_assert (!m_die->in_process);
10997 m_die->in_process = true;
10998 }
10999
11000 ~process_die_scope ()
11001 {
11002 m_die->in_process = false;
11003
11004 /* If we're done processing the DIE for the CU that owns the line
11005 header, we don't need the line header anymore. */
11006 if (m_cu->line_header_die_owner == m_die)
11007 {
11008 delete m_cu->line_header;
11009 m_cu->line_header = NULL;
11010 m_cu->line_header_die_owner = NULL;
11011 }
11012 }
11013
11014 private:
11015 die_info *m_die;
11016 dwarf2_cu *m_cu;
11017 };
11018
11019 /* Process a die and its children. */
11020
11021 static void
11022 process_die (struct die_info *die, struct dwarf2_cu *cu)
11023 {
11024 process_die_scope scope (die, cu);
11025
11026 switch (die->tag)
11027 {
11028 case DW_TAG_padding:
11029 break;
11030 case DW_TAG_compile_unit:
11031 case DW_TAG_partial_unit:
11032 read_file_scope (die, cu);
11033 break;
11034 case DW_TAG_type_unit:
11035 read_type_unit_scope (die, cu);
11036 break;
11037 case DW_TAG_subprogram:
11038 case DW_TAG_inlined_subroutine:
11039 read_func_scope (die, cu);
11040 break;
11041 case DW_TAG_lexical_block:
11042 case DW_TAG_try_block:
11043 case DW_TAG_catch_block:
11044 read_lexical_block_scope (die, cu);
11045 break;
11046 case DW_TAG_call_site:
11047 case DW_TAG_GNU_call_site:
11048 read_call_site_scope (die, cu);
11049 break;
11050 case DW_TAG_class_type:
11051 case DW_TAG_interface_type:
11052 case DW_TAG_structure_type:
11053 case DW_TAG_union_type:
11054 process_structure_scope (die, cu);
11055 break;
11056 case DW_TAG_enumeration_type:
11057 process_enumeration_scope (die, cu);
11058 break;
11059
11060 /* These dies have a type, but processing them does not create
11061 a symbol or recurse to process the children. Therefore we can
11062 read them on-demand through read_type_die. */
11063 case DW_TAG_subroutine_type:
11064 case DW_TAG_set_type:
11065 case DW_TAG_array_type:
11066 case DW_TAG_pointer_type:
11067 case DW_TAG_ptr_to_member_type:
11068 case DW_TAG_reference_type:
11069 case DW_TAG_rvalue_reference_type:
11070 case DW_TAG_string_type:
11071 break;
11072
11073 case DW_TAG_base_type:
11074 case DW_TAG_subrange_type:
11075 case DW_TAG_typedef:
11076 /* Add a typedef symbol for the type definition, if it has a
11077 DW_AT_name. */
11078 new_symbol (die, read_type_die (die, cu), cu);
11079 break;
11080 case DW_TAG_common_block:
11081 read_common_block (die, cu);
11082 break;
11083 case DW_TAG_common_inclusion:
11084 break;
11085 case DW_TAG_namespace:
11086 cu->processing_has_namespace_info = 1;
11087 read_namespace (die, cu);
11088 break;
11089 case DW_TAG_module:
11090 cu->processing_has_namespace_info = 1;
11091 read_module (die, cu);
11092 break;
11093 case DW_TAG_imported_declaration:
11094 cu->processing_has_namespace_info = 1;
11095 if (read_namespace_alias (die, cu))
11096 break;
11097 /* The declaration is not a global namespace alias: fall through. */
11098 case DW_TAG_imported_module:
11099 cu->processing_has_namespace_info = 1;
11100 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
11101 || cu->language != language_fortran))
11102 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
11103 dwarf_tag_name (die->tag));
11104 read_import_statement (die, cu);
11105 break;
11106
11107 case DW_TAG_imported_unit:
11108 process_imported_unit_die (die, cu);
11109 break;
11110
11111 case DW_TAG_variable:
11112 read_variable (die, cu);
11113 break;
11114
11115 default:
11116 new_symbol (die, NULL, cu);
11117 break;
11118 }
11119 }
11120 \f
11121 /* DWARF name computation. */
11122
11123 /* A helper function for dwarf2_compute_name which determines whether DIE
11124 needs to have the name of the scope prepended to the name listed in the
11125 die. */
11126
11127 static int
11128 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
11129 {
11130 struct attribute *attr;
11131
11132 switch (die->tag)
11133 {
11134 case DW_TAG_namespace:
11135 case DW_TAG_typedef:
11136 case DW_TAG_class_type:
11137 case DW_TAG_interface_type:
11138 case DW_TAG_structure_type:
11139 case DW_TAG_union_type:
11140 case DW_TAG_enumeration_type:
11141 case DW_TAG_enumerator:
11142 case DW_TAG_subprogram:
11143 case DW_TAG_inlined_subroutine:
11144 case DW_TAG_member:
11145 case DW_TAG_imported_declaration:
11146 return 1;
11147
11148 case DW_TAG_variable:
11149 case DW_TAG_constant:
11150 /* We only need to prefix "globally" visible variables. These include
11151 any variable marked with DW_AT_external or any variable that
11152 lives in a namespace. [Variables in anonymous namespaces
11153 require prefixing, but they are not DW_AT_external.] */
11154
11155 if (dwarf2_attr (die, DW_AT_specification, cu))
11156 {
11157 struct dwarf2_cu *spec_cu = cu;
11158
11159 return die_needs_namespace (die_specification (die, &spec_cu),
11160 spec_cu);
11161 }
11162
11163 attr = dwarf2_attr (die, DW_AT_external, cu);
11164 if (attr == NULL && die->parent->tag != DW_TAG_namespace
11165 && die->parent->tag != DW_TAG_module)
11166 return 0;
11167 /* A variable in a lexical block of some kind does not need a
11168 namespace, even though in C++ such variables may be external
11169 and have a mangled name. */
11170 if (die->parent->tag == DW_TAG_lexical_block
11171 || die->parent->tag == DW_TAG_try_block
11172 || die->parent->tag == DW_TAG_catch_block
11173 || die->parent->tag == DW_TAG_subprogram)
11174 return 0;
11175 return 1;
11176
11177 default:
11178 return 0;
11179 }
11180 }
11181
11182 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
11183 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
11184 defined for the given DIE. */
11185
11186 static struct attribute *
11187 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
11188 {
11189 struct attribute *attr;
11190
11191 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
11192 if (attr == NULL)
11193 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
11194
11195 return attr;
11196 }
11197
11198 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
11199 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
11200 defined for the given DIE. */
11201
11202 static const char *
11203 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
11204 {
11205 const char *linkage_name;
11206
11207 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
11208 if (linkage_name == NULL)
11209 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
11210
11211 return linkage_name;
11212 }
11213
11214 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
11215 compute the physname for the object, which include a method's:
11216 - formal parameters (C++),
11217 - receiver type (Go),
11218
11219 The term "physname" is a bit confusing.
11220 For C++, for example, it is the demangled name.
11221 For Go, for example, it's the mangled name.
11222
11223 For Ada, return the DIE's linkage name rather than the fully qualified
11224 name. PHYSNAME is ignored..
11225
11226 The result is allocated on the objfile_obstack and canonicalized. */
11227
11228 static const char *
11229 dwarf2_compute_name (const char *name,
11230 struct die_info *die, struct dwarf2_cu *cu,
11231 int physname)
11232 {
11233 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11234
11235 if (name == NULL)
11236 name = dwarf2_name (die, cu);
11237
11238 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
11239 but otherwise compute it by typename_concat inside GDB.
11240 FIXME: Actually this is not really true, or at least not always true.
11241 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
11242 Fortran names because there is no mangling standard. So new_symbol
11243 will set the demangled name to the result of dwarf2_full_name, and it is
11244 the demangled name that GDB uses if it exists. */
11245 if (cu->language == language_ada
11246 || (cu->language == language_fortran && physname))
11247 {
11248 /* For Ada unit, we prefer the linkage name over the name, as
11249 the former contains the exported name, which the user expects
11250 to be able to reference. Ideally, we want the user to be able
11251 to reference this entity using either natural or linkage name,
11252 but we haven't started looking at this enhancement yet. */
11253 const char *linkage_name = dw2_linkage_name (die, cu);
11254
11255 if (linkage_name != NULL)
11256 return linkage_name;
11257 }
11258
11259 /* These are the only languages we know how to qualify names in. */
11260 if (name != NULL
11261 && (cu->language == language_cplus
11262 || cu->language == language_fortran || cu->language == language_d
11263 || cu->language == language_rust))
11264 {
11265 if (die_needs_namespace (die, cu))
11266 {
11267 const char *prefix;
11268 const char *canonical_name = NULL;
11269
11270 string_file buf;
11271
11272 prefix = determine_prefix (die, cu);
11273 if (*prefix != '\0')
11274 {
11275 char *prefixed_name = typename_concat (NULL, prefix, name,
11276 physname, cu);
11277
11278 buf.puts (prefixed_name);
11279 xfree (prefixed_name);
11280 }
11281 else
11282 buf.puts (name);
11283
11284 /* Template parameters may be specified in the DIE's DW_AT_name, or
11285 as children with DW_TAG_template_type_param or
11286 DW_TAG_value_type_param. If the latter, add them to the name
11287 here. If the name already has template parameters, then
11288 skip this step; some versions of GCC emit both, and
11289 it is more efficient to use the pre-computed name.
11290
11291 Something to keep in mind about this process: it is very
11292 unlikely, or in some cases downright impossible, to produce
11293 something that will match the mangled name of a function.
11294 If the definition of the function has the same debug info,
11295 we should be able to match up with it anyway. But fallbacks
11296 using the minimal symbol, for instance to find a method
11297 implemented in a stripped copy of libstdc++, will not work.
11298 If we do not have debug info for the definition, we will have to
11299 match them up some other way.
11300
11301 When we do name matching there is a related problem with function
11302 templates; two instantiated function templates are allowed to
11303 differ only by their return types, which we do not add here. */
11304
11305 if (cu->language == language_cplus && strchr (name, '<') == NULL)
11306 {
11307 struct attribute *attr;
11308 struct die_info *child;
11309 int first = 1;
11310
11311 die->building_fullname = 1;
11312
11313 for (child = die->child; child != NULL; child = child->sibling)
11314 {
11315 struct type *type;
11316 LONGEST value;
11317 const gdb_byte *bytes;
11318 struct dwarf2_locexpr_baton *baton;
11319 struct value *v;
11320
11321 if (child->tag != DW_TAG_template_type_param
11322 && child->tag != DW_TAG_template_value_param)
11323 continue;
11324
11325 if (first)
11326 {
11327 buf.puts ("<");
11328 first = 0;
11329 }
11330 else
11331 buf.puts (", ");
11332
11333 attr = dwarf2_attr (child, DW_AT_type, cu);
11334 if (attr == NULL)
11335 {
11336 complaint (&symfile_complaints,
11337 _("template parameter missing DW_AT_type"));
11338 buf.puts ("UNKNOWN_TYPE");
11339 continue;
11340 }
11341 type = die_type (child, cu);
11342
11343 if (child->tag == DW_TAG_template_type_param)
11344 {
11345 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
11346 continue;
11347 }
11348
11349 attr = dwarf2_attr (child, DW_AT_const_value, cu);
11350 if (attr == NULL)
11351 {
11352 complaint (&symfile_complaints,
11353 _("template parameter missing "
11354 "DW_AT_const_value"));
11355 buf.puts ("UNKNOWN_VALUE");
11356 continue;
11357 }
11358
11359 dwarf2_const_value_attr (attr, type, name,
11360 &cu->comp_unit_obstack, cu,
11361 &value, &bytes, &baton);
11362
11363 if (TYPE_NOSIGN (type))
11364 /* GDB prints characters as NUMBER 'CHAR'. If that's
11365 changed, this can use value_print instead. */
11366 c_printchar (value, type, &buf);
11367 else
11368 {
11369 struct value_print_options opts;
11370
11371 if (baton != NULL)
11372 v = dwarf2_evaluate_loc_desc (type, NULL,
11373 baton->data,
11374 baton->size,
11375 baton->per_cu);
11376 else if (bytes != NULL)
11377 {
11378 v = allocate_value (type);
11379 memcpy (value_contents_writeable (v), bytes,
11380 TYPE_LENGTH (type));
11381 }
11382 else
11383 v = value_from_longest (type, value);
11384
11385 /* Specify decimal so that we do not depend on
11386 the radix. */
11387 get_formatted_print_options (&opts, 'd');
11388 opts.raw = 1;
11389 value_print (v, &buf, &opts);
11390 release_value (v);
11391 value_free (v);
11392 }
11393 }
11394
11395 die->building_fullname = 0;
11396
11397 if (!first)
11398 {
11399 /* Close the argument list, with a space if necessary
11400 (nested templates). */
11401 if (!buf.empty () && buf.string ().back () == '>')
11402 buf.puts (" >");
11403 else
11404 buf.puts (">");
11405 }
11406 }
11407
11408 /* For C++ methods, append formal parameter type
11409 information, if PHYSNAME. */
11410
11411 if (physname && die->tag == DW_TAG_subprogram
11412 && cu->language == language_cplus)
11413 {
11414 struct type *type = read_type_die (die, cu);
11415
11416 c_type_print_args (type, &buf, 1, cu->language,
11417 &type_print_raw_options);
11418
11419 if (cu->language == language_cplus)
11420 {
11421 /* Assume that an artificial first parameter is
11422 "this", but do not crash if it is not. RealView
11423 marks unnamed (and thus unused) parameters as
11424 artificial; there is no way to differentiate
11425 the two cases. */
11426 if (TYPE_NFIELDS (type) > 0
11427 && TYPE_FIELD_ARTIFICIAL (type, 0)
11428 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11429 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11430 0))))
11431 buf.puts (" const");
11432 }
11433 }
11434
11435 const std::string &intermediate_name = buf.string ();
11436
11437 if (cu->language == language_cplus)
11438 canonical_name
11439 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11440 &objfile->per_bfd->storage_obstack);
11441
11442 /* If we only computed INTERMEDIATE_NAME, or if
11443 INTERMEDIATE_NAME is already canonical, then we need to
11444 copy it to the appropriate obstack. */
11445 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11446 name = ((const char *)
11447 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11448 intermediate_name.c_str (),
11449 intermediate_name.length ()));
11450 else
11451 name = canonical_name;
11452 }
11453 }
11454
11455 return name;
11456 }
11457
11458 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11459 If scope qualifiers are appropriate they will be added. The result
11460 will be allocated on the storage_obstack, or NULL if the DIE does
11461 not have a name. NAME may either be from a previous call to
11462 dwarf2_name or NULL.
11463
11464 The output string will be canonicalized (if C++). */
11465
11466 static const char *
11467 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11468 {
11469 return dwarf2_compute_name (name, die, cu, 0);
11470 }
11471
11472 /* Construct a physname for the given DIE in CU. NAME may either be
11473 from a previous call to dwarf2_name or NULL. The result will be
11474 allocated on the objfile_objstack or NULL if the DIE does not have a
11475 name.
11476
11477 The output string will be canonicalized (if C++). */
11478
11479 static const char *
11480 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11481 {
11482 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11483 const char *retval, *mangled = NULL, *canon = NULL;
11484 int need_copy = 1;
11485
11486 /* In this case dwarf2_compute_name is just a shortcut not building anything
11487 on its own. */
11488 if (!die_needs_namespace (die, cu))
11489 return dwarf2_compute_name (name, die, cu, 1);
11490
11491 mangled = dw2_linkage_name (die, cu);
11492
11493 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11494 See https://github.com/rust-lang/rust/issues/32925. */
11495 if (cu->language == language_rust && mangled != NULL
11496 && strchr (mangled, '{') != NULL)
11497 mangled = NULL;
11498
11499 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11500 has computed. */
11501 gdb::unique_xmalloc_ptr<char> demangled;
11502 if (mangled != NULL)
11503 {
11504
11505 if (cu->language == language_go)
11506 {
11507 /* This is a lie, but we already lie to the caller new_symbol.
11508 new_symbol assumes we return the mangled name.
11509 This just undoes that lie until things are cleaned up. */
11510 }
11511 else
11512 {
11513 /* Use DMGL_RET_DROP for C++ template functions to suppress
11514 their return type. It is easier for GDB users to search
11515 for such functions as `name(params)' than `long name(params)'.
11516 In such case the minimal symbol names do not match the full
11517 symbol names but for template functions there is never a need
11518 to look up their definition from their declaration so
11519 the only disadvantage remains the minimal symbol variant
11520 `long name(params)' does not have the proper inferior type. */
11521 demangled.reset (gdb_demangle (mangled,
11522 (DMGL_PARAMS | DMGL_ANSI
11523 | DMGL_RET_DROP)));
11524 }
11525 if (demangled)
11526 canon = demangled.get ();
11527 else
11528 {
11529 canon = mangled;
11530 need_copy = 0;
11531 }
11532 }
11533
11534 if (canon == NULL || check_physname)
11535 {
11536 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11537
11538 if (canon != NULL && strcmp (physname, canon) != 0)
11539 {
11540 /* It may not mean a bug in GDB. The compiler could also
11541 compute DW_AT_linkage_name incorrectly. But in such case
11542 GDB would need to be bug-to-bug compatible. */
11543
11544 complaint (&symfile_complaints,
11545 _("Computed physname <%s> does not match demangled <%s> "
11546 "(from linkage <%s>) - DIE at %s [in module %s]"),
11547 physname, canon, mangled, sect_offset_str (die->sect_off),
11548 objfile_name (objfile));
11549
11550 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11551 is available here - over computed PHYSNAME. It is safer
11552 against both buggy GDB and buggy compilers. */
11553
11554 retval = canon;
11555 }
11556 else
11557 {
11558 retval = physname;
11559 need_copy = 0;
11560 }
11561 }
11562 else
11563 retval = canon;
11564
11565 if (need_copy)
11566 retval = ((const char *)
11567 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11568 retval, strlen (retval)));
11569
11570 return retval;
11571 }
11572
11573 /* Inspect DIE in CU for a namespace alias. If one exists, record
11574 a new symbol for it.
11575
11576 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11577
11578 static int
11579 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11580 {
11581 struct attribute *attr;
11582
11583 /* If the die does not have a name, this is not a namespace
11584 alias. */
11585 attr = dwarf2_attr (die, DW_AT_name, cu);
11586 if (attr != NULL)
11587 {
11588 int num;
11589 struct die_info *d = die;
11590 struct dwarf2_cu *imported_cu = cu;
11591
11592 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11593 keep inspecting DIEs until we hit the underlying import. */
11594 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11595 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11596 {
11597 attr = dwarf2_attr (d, DW_AT_import, cu);
11598 if (attr == NULL)
11599 break;
11600
11601 d = follow_die_ref (d, attr, &imported_cu);
11602 if (d->tag != DW_TAG_imported_declaration)
11603 break;
11604 }
11605
11606 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11607 {
11608 complaint (&symfile_complaints,
11609 _("DIE at %s has too many recursively imported "
11610 "declarations"), sect_offset_str (d->sect_off));
11611 return 0;
11612 }
11613
11614 if (attr != NULL)
11615 {
11616 struct type *type;
11617 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11618
11619 type = get_die_type_at_offset (sect_off, cu->per_cu);
11620 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11621 {
11622 /* This declaration is a global namespace alias. Add
11623 a symbol for it whose type is the aliased namespace. */
11624 new_symbol (die, type, cu);
11625 return 1;
11626 }
11627 }
11628 }
11629
11630 return 0;
11631 }
11632
11633 /* Return the using directives repository (global or local?) to use in the
11634 current context for LANGUAGE.
11635
11636 For Ada, imported declarations can materialize renamings, which *may* be
11637 global. However it is impossible (for now?) in DWARF to distinguish
11638 "external" imported declarations and "static" ones. As all imported
11639 declarations seem to be static in all other languages, make them all CU-wide
11640 global only in Ada. */
11641
11642 static struct using_direct **
11643 using_directives (enum language language)
11644 {
11645 if (language == language_ada && context_stack_depth == 0)
11646 return &global_using_directives;
11647 else
11648 return &local_using_directives;
11649 }
11650
11651 /* Read the import statement specified by the given die and record it. */
11652
11653 static void
11654 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11655 {
11656 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11657 struct attribute *import_attr;
11658 struct die_info *imported_die, *child_die;
11659 struct dwarf2_cu *imported_cu;
11660 const char *imported_name;
11661 const char *imported_name_prefix;
11662 const char *canonical_name;
11663 const char *import_alias;
11664 const char *imported_declaration = NULL;
11665 const char *import_prefix;
11666 std::vector<const char *> excludes;
11667
11668 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11669 if (import_attr == NULL)
11670 {
11671 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11672 dwarf_tag_name (die->tag));
11673 return;
11674 }
11675
11676 imported_cu = cu;
11677 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11678 imported_name = dwarf2_name (imported_die, imported_cu);
11679 if (imported_name == NULL)
11680 {
11681 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11682
11683 The import in the following code:
11684 namespace A
11685 {
11686 typedef int B;
11687 }
11688
11689 int main ()
11690 {
11691 using A::B;
11692 B b;
11693 return b;
11694 }
11695
11696 ...
11697 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11698 <52> DW_AT_decl_file : 1
11699 <53> DW_AT_decl_line : 6
11700 <54> DW_AT_import : <0x75>
11701 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11702 <59> DW_AT_name : B
11703 <5b> DW_AT_decl_file : 1
11704 <5c> DW_AT_decl_line : 2
11705 <5d> DW_AT_type : <0x6e>
11706 ...
11707 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11708 <76> DW_AT_byte_size : 4
11709 <77> DW_AT_encoding : 5 (signed)
11710
11711 imports the wrong die ( 0x75 instead of 0x58 ).
11712 This case will be ignored until the gcc bug is fixed. */
11713 return;
11714 }
11715
11716 /* Figure out the local name after import. */
11717 import_alias = dwarf2_name (die, cu);
11718
11719 /* Figure out where the statement is being imported to. */
11720 import_prefix = determine_prefix (die, cu);
11721
11722 /* Figure out what the scope of the imported die is and prepend it
11723 to the name of the imported die. */
11724 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11725
11726 if (imported_die->tag != DW_TAG_namespace
11727 && imported_die->tag != DW_TAG_module)
11728 {
11729 imported_declaration = imported_name;
11730 canonical_name = imported_name_prefix;
11731 }
11732 else if (strlen (imported_name_prefix) > 0)
11733 canonical_name = obconcat (&objfile->objfile_obstack,
11734 imported_name_prefix,
11735 (cu->language == language_d ? "." : "::"),
11736 imported_name, (char *) NULL);
11737 else
11738 canonical_name = imported_name;
11739
11740 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11741 for (child_die = die->child; child_die && child_die->tag;
11742 child_die = sibling_die (child_die))
11743 {
11744 /* DWARF-4: A Fortran use statement with a “rename list” may be
11745 represented by an imported module entry with an import attribute
11746 referring to the module and owned entries corresponding to those
11747 entities that are renamed as part of being imported. */
11748
11749 if (child_die->tag != DW_TAG_imported_declaration)
11750 {
11751 complaint (&symfile_complaints,
11752 _("child DW_TAG_imported_declaration expected "
11753 "- DIE at %s [in module %s]"),
11754 sect_offset_str (child_die->sect_off),
11755 objfile_name (objfile));
11756 continue;
11757 }
11758
11759 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11760 if (import_attr == NULL)
11761 {
11762 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11763 dwarf_tag_name (child_die->tag));
11764 continue;
11765 }
11766
11767 imported_cu = cu;
11768 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11769 &imported_cu);
11770 imported_name = dwarf2_name (imported_die, imported_cu);
11771 if (imported_name == NULL)
11772 {
11773 complaint (&symfile_complaints,
11774 _("child DW_TAG_imported_declaration has unknown "
11775 "imported name - DIE at %s [in module %s]"),
11776 sect_offset_str (child_die->sect_off),
11777 objfile_name (objfile));
11778 continue;
11779 }
11780
11781 excludes.push_back (imported_name);
11782
11783 process_die (child_die, cu);
11784 }
11785
11786 add_using_directive (using_directives (cu->language),
11787 import_prefix,
11788 canonical_name,
11789 import_alias,
11790 imported_declaration,
11791 excludes,
11792 0,
11793 &objfile->objfile_obstack);
11794 }
11795
11796 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11797 types, but gives them a size of zero. Starting with version 14,
11798 ICC is compatible with GCC. */
11799
11800 static int
11801 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11802 {
11803 if (!cu->checked_producer)
11804 check_producer (cu);
11805
11806 return cu->producer_is_icc_lt_14;
11807 }
11808
11809 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11810 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11811 this, it was first present in GCC release 4.3.0. */
11812
11813 static int
11814 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11815 {
11816 if (!cu->checked_producer)
11817 check_producer (cu);
11818
11819 return cu->producer_is_gcc_lt_4_3;
11820 }
11821
11822 static file_and_directory
11823 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11824 {
11825 file_and_directory res;
11826
11827 /* Find the filename. Do not use dwarf2_name here, since the filename
11828 is not a source language identifier. */
11829 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11830 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11831
11832 if (res.comp_dir == NULL
11833 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11834 && IS_ABSOLUTE_PATH (res.name))
11835 {
11836 res.comp_dir_storage = ldirname (res.name);
11837 if (!res.comp_dir_storage.empty ())
11838 res.comp_dir = res.comp_dir_storage.c_str ();
11839 }
11840 if (res.comp_dir != NULL)
11841 {
11842 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11843 directory, get rid of it. */
11844 const char *cp = strchr (res.comp_dir, ':');
11845
11846 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11847 res.comp_dir = cp + 1;
11848 }
11849
11850 if (res.name == NULL)
11851 res.name = "<unknown>";
11852
11853 return res;
11854 }
11855
11856 /* Handle DW_AT_stmt_list for a compilation unit.
11857 DIE is the DW_TAG_compile_unit die for CU.
11858 COMP_DIR is the compilation directory. LOWPC is passed to
11859 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11860
11861 static void
11862 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11863 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11864 {
11865 struct dwarf2_per_objfile *dwarf2_per_objfile
11866 = cu->per_cu->dwarf2_per_objfile;
11867 struct objfile *objfile = dwarf2_per_objfile->objfile;
11868 struct attribute *attr;
11869 struct line_header line_header_local;
11870 hashval_t line_header_local_hash;
11871 void **slot;
11872 int decode_mapping;
11873
11874 gdb_assert (! cu->per_cu->is_debug_types);
11875
11876 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11877 if (attr == NULL)
11878 return;
11879
11880 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11881
11882 /* The line header hash table is only created if needed (it exists to
11883 prevent redundant reading of the line table for partial_units).
11884 If we're given a partial_unit, we'll need it. If we're given a
11885 compile_unit, then use the line header hash table if it's already
11886 created, but don't create one just yet. */
11887
11888 if (dwarf2_per_objfile->line_header_hash == NULL
11889 && die->tag == DW_TAG_partial_unit)
11890 {
11891 dwarf2_per_objfile->line_header_hash
11892 = htab_create_alloc_ex (127, line_header_hash_voidp,
11893 line_header_eq_voidp,
11894 free_line_header_voidp,
11895 &objfile->objfile_obstack,
11896 hashtab_obstack_allocate,
11897 dummy_obstack_deallocate);
11898 }
11899
11900 line_header_local.sect_off = line_offset;
11901 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11902 line_header_local_hash = line_header_hash (&line_header_local);
11903 if (dwarf2_per_objfile->line_header_hash != NULL)
11904 {
11905 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11906 &line_header_local,
11907 line_header_local_hash, NO_INSERT);
11908
11909 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11910 is not present in *SLOT (since if there is something in *SLOT then
11911 it will be for a partial_unit). */
11912 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11913 {
11914 gdb_assert (*slot != NULL);
11915 cu->line_header = (struct line_header *) *slot;
11916 return;
11917 }
11918 }
11919
11920 /* dwarf_decode_line_header does not yet provide sufficient information.
11921 We always have to call also dwarf_decode_lines for it. */
11922 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11923 if (lh == NULL)
11924 return;
11925
11926 cu->line_header = lh.release ();
11927 cu->line_header_die_owner = die;
11928
11929 if (dwarf2_per_objfile->line_header_hash == NULL)
11930 slot = NULL;
11931 else
11932 {
11933 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11934 &line_header_local,
11935 line_header_local_hash, INSERT);
11936 gdb_assert (slot != NULL);
11937 }
11938 if (slot != NULL && *slot == NULL)
11939 {
11940 /* This newly decoded line number information unit will be owned
11941 by line_header_hash hash table. */
11942 *slot = cu->line_header;
11943 cu->line_header_die_owner = NULL;
11944 }
11945 else
11946 {
11947 /* We cannot free any current entry in (*slot) as that struct line_header
11948 may be already used by multiple CUs. Create only temporary decoded
11949 line_header for this CU - it may happen at most once for each line
11950 number information unit. And if we're not using line_header_hash
11951 then this is what we want as well. */
11952 gdb_assert (die->tag != DW_TAG_partial_unit);
11953 }
11954 decode_mapping = (die->tag != DW_TAG_partial_unit);
11955 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11956 decode_mapping);
11957
11958 }
11959
11960 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11961
11962 static void
11963 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11964 {
11965 struct dwarf2_per_objfile *dwarf2_per_objfile
11966 = cu->per_cu->dwarf2_per_objfile;
11967 struct objfile *objfile = dwarf2_per_objfile->objfile;
11968 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11969 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11970 CORE_ADDR highpc = ((CORE_ADDR) 0);
11971 struct attribute *attr;
11972 struct die_info *child_die;
11973 CORE_ADDR baseaddr;
11974
11975 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11976
11977 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11978
11979 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11980 from finish_block. */
11981 if (lowpc == ((CORE_ADDR) -1))
11982 lowpc = highpc;
11983 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11984
11985 file_and_directory fnd = find_file_and_directory (die, cu);
11986
11987 prepare_one_comp_unit (cu, die, cu->language);
11988
11989 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11990 standardised yet. As a workaround for the language detection we fall
11991 back to the DW_AT_producer string. */
11992 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11993 cu->language = language_opencl;
11994
11995 /* Similar hack for Go. */
11996 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11997 set_cu_language (DW_LANG_Go, cu);
11998
11999 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
12000
12001 /* Decode line number information if present. We do this before
12002 processing child DIEs, so that the line header table is available
12003 for DW_AT_decl_file. */
12004 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
12005
12006 /* Process all dies in compilation unit. */
12007 if (die->child != NULL)
12008 {
12009 child_die = die->child;
12010 while (child_die && child_die->tag)
12011 {
12012 process_die (child_die, cu);
12013 child_die = sibling_die (child_die);
12014 }
12015 }
12016
12017 /* Decode macro information, if present. Dwarf 2 macro information
12018 refers to information in the line number info statement program
12019 header, so we can only read it if we've read the header
12020 successfully. */
12021 attr = dwarf2_attr (die, DW_AT_macros, cu);
12022 if (attr == NULL)
12023 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
12024 if (attr && cu->line_header)
12025 {
12026 if (dwarf2_attr (die, DW_AT_macro_info, cu))
12027 complaint (&symfile_complaints,
12028 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
12029
12030 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
12031 }
12032 else
12033 {
12034 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
12035 if (attr && cu->line_header)
12036 {
12037 unsigned int macro_offset = DW_UNSND (attr);
12038
12039 dwarf_decode_macros (cu, macro_offset, 0);
12040 }
12041 }
12042 }
12043
12044 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
12045 Create the set of symtabs used by this TU, or if this TU is sharing
12046 symtabs with another TU and the symtabs have already been created
12047 then restore those symtabs in the line header.
12048 We don't need the pc/line-number mapping for type units. */
12049
12050 static void
12051 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
12052 {
12053 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
12054 struct type_unit_group *tu_group;
12055 int first_time;
12056 struct attribute *attr;
12057 unsigned int i;
12058 struct signatured_type *sig_type;
12059
12060 gdb_assert (per_cu->is_debug_types);
12061 sig_type = (struct signatured_type *) per_cu;
12062
12063 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
12064
12065 /* If we're using .gdb_index (includes -readnow) then
12066 per_cu->type_unit_group may not have been set up yet. */
12067 if (sig_type->type_unit_group == NULL)
12068 sig_type->type_unit_group = get_type_unit_group (cu, attr);
12069 tu_group = sig_type->type_unit_group;
12070
12071 /* If we've already processed this stmt_list there's no real need to
12072 do it again, we could fake it and just recreate the part we need
12073 (file name,index -> symtab mapping). If data shows this optimization
12074 is useful we can do it then. */
12075 first_time = tu_group->compunit_symtab == NULL;
12076
12077 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
12078 debug info. */
12079 line_header_up lh;
12080 if (attr != NULL)
12081 {
12082 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
12083 lh = dwarf_decode_line_header (line_offset, cu);
12084 }
12085 if (lh == NULL)
12086 {
12087 if (first_time)
12088 dwarf2_start_symtab (cu, "", NULL, 0);
12089 else
12090 {
12091 gdb_assert (tu_group->symtabs == NULL);
12092 restart_symtab (tu_group->compunit_symtab, "", 0);
12093 }
12094 return;
12095 }
12096
12097 cu->line_header = lh.release ();
12098 cu->line_header_die_owner = die;
12099
12100 if (first_time)
12101 {
12102 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
12103
12104 /* Note: We don't assign tu_group->compunit_symtab yet because we're
12105 still initializing it, and our caller (a few levels up)
12106 process_full_type_unit still needs to know if this is the first
12107 time. */
12108
12109 tu_group->num_symtabs = cu->line_header->file_names.size ();
12110 tu_group->symtabs = XNEWVEC (struct symtab *,
12111 cu->line_header->file_names.size ());
12112
12113 for (i = 0; i < cu->line_header->file_names.size (); ++i)
12114 {
12115 file_entry &fe = cu->line_header->file_names[i];
12116
12117 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
12118
12119 if (current_subfile->symtab == NULL)
12120 {
12121 /* NOTE: start_subfile will recognize when it's been
12122 passed a file it has already seen. So we can't
12123 assume there's a simple mapping from
12124 cu->line_header->file_names to subfiles, plus
12125 cu->line_header->file_names may contain dups. */
12126 current_subfile->symtab
12127 = allocate_symtab (cust, current_subfile->name);
12128 }
12129
12130 fe.symtab = current_subfile->symtab;
12131 tu_group->symtabs[i] = fe.symtab;
12132 }
12133 }
12134 else
12135 {
12136 restart_symtab (tu_group->compunit_symtab, "", 0);
12137
12138 for (i = 0; i < cu->line_header->file_names.size (); ++i)
12139 {
12140 file_entry &fe = cu->line_header->file_names[i];
12141
12142 fe.symtab = tu_group->symtabs[i];
12143 }
12144 }
12145
12146 /* The main symtab is allocated last. Type units don't have DW_AT_name
12147 so they don't have a "real" (so to speak) symtab anyway.
12148 There is later code that will assign the main symtab to all symbols
12149 that don't have one. We need to handle the case of a symbol with a
12150 missing symtab (DW_AT_decl_file) anyway. */
12151 }
12152
12153 /* Process DW_TAG_type_unit.
12154 For TUs we want to skip the first top level sibling if it's not the
12155 actual type being defined by this TU. In this case the first top
12156 level sibling is there to provide context only. */
12157
12158 static void
12159 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
12160 {
12161 struct die_info *child_die;
12162
12163 prepare_one_comp_unit (cu, die, language_minimal);
12164
12165 /* Initialize (or reinitialize) the machinery for building symtabs.
12166 We do this before processing child DIEs, so that the line header table
12167 is available for DW_AT_decl_file. */
12168 setup_type_unit_groups (die, cu);
12169
12170 if (die->child != NULL)
12171 {
12172 child_die = die->child;
12173 while (child_die && child_die->tag)
12174 {
12175 process_die (child_die, cu);
12176 child_die = sibling_die (child_die);
12177 }
12178 }
12179 }
12180 \f
12181 /* DWO/DWP files.
12182
12183 http://gcc.gnu.org/wiki/DebugFission
12184 http://gcc.gnu.org/wiki/DebugFissionDWP
12185
12186 To simplify handling of both DWO files ("object" files with the DWARF info)
12187 and DWP files (a file with the DWOs packaged up into one file), we treat
12188 DWP files as having a collection of virtual DWO files. */
12189
12190 static hashval_t
12191 hash_dwo_file (const void *item)
12192 {
12193 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
12194 hashval_t hash;
12195
12196 hash = htab_hash_string (dwo_file->dwo_name);
12197 if (dwo_file->comp_dir != NULL)
12198 hash += htab_hash_string (dwo_file->comp_dir);
12199 return hash;
12200 }
12201
12202 static int
12203 eq_dwo_file (const void *item_lhs, const void *item_rhs)
12204 {
12205 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
12206 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
12207
12208 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
12209 return 0;
12210 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
12211 return lhs->comp_dir == rhs->comp_dir;
12212 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
12213 }
12214
12215 /* Allocate a hash table for DWO files. */
12216
12217 static htab_t
12218 allocate_dwo_file_hash_table (struct objfile *objfile)
12219 {
12220 return htab_create_alloc_ex (41,
12221 hash_dwo_file,
12222 eq_dwo_file,
12223 NULL,
12224 &objfile->objfile_obstack,
12225 hashtab_obstack_allocate,
12226 dummy_obstack_deallocate);
12227 }
12228
12229 /* Lookup DWO file DWO_NAME. */
12230
12231 static void **
12232 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
12233 const char *dwo_name,
12234 const char *comp_dir)
12235 {
12236 struct dwo_file find_entry;
12237 void **slot;
12238
12239 if (dwarf2_per_objfile->dwo_files == NULL)
12240 dwarf2_per_objfile->dwo_files
12241 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
12242
12243 memset (&find_entry, 0, sizeof (find_entry));
12244 find_entry.dwo_name = dwo_name;
12245 find_entry.comp_dir = comp_dir;
12246 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
12247
12248 return slot;
12249 }
12250
12251 static hashval_t
12252 hash_dwo_unit (const void *item)
12253 {
12254 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12255
12256 /* This drops the top 32 bits of the id, but is ok for a hash. */
12257 return dwo_unit->signature;
12258 }
12259
12260 static int
12261 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
12262 {
12263 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
12264 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
12265
12266 /* The signature is assumed to be unique within the DWO file.
12267 So while object file CU dwo_id's always have the value zero,
12268 that's OK, assuming each object file DWO file has only one CU,
12269 and that's the rule for now. */
12270 return lhs->signature == rhs->signature;
12271 }
12272
12273 /* Allocate a hash table for DWO CUs,TUs.
12274 There is one of these tables for each of CUs,TUs for each DWO file. */
12275
12276 static htab_t
12277 allocate_dwo_unit_table (struct objfile *objfile)
12278 {
12279 /* Start out with a pretty small number.
12280 Generally DWO files contain only one CU and maybe some TUs. */
12281 return htab_create_alloc_ex (3,
12282 hash_dwo_unit,
12283 eq_dwo_unit,
12284 NULL,
12285 &objfile->objfile_obstack,
12286 hashtab_obstack_allocate,
12287 dummy_obstack_deallocate);
12288 }
12289
12290 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
12291
12292 struct create_dwo_cu_data
12293 {
12294 struct dwo_file *dwo_file;
12295 struct dwo_unit dwo_unit;
12296 };
12297
12298 /* die_reader_func for create_dwo_cu. */
12299
12300 static void
12301 create_dwo_cu_reader (const struct die_reader_specs *reader,
12302 const gdb_byte *info_ptr,
12303 struct die_info *comp_unit_die,
12304 int has_children,
12305 void *datap)
12306 {
12307 struct dwarf2_cu *cu = reader->cu;
12308 sect_offset sect_off = cu->per_cu->sect_off;
12309 struct dwarf2_section_info *section = cu->per_cu->section;
12310 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
12311 struct dwo_file *dwo_file = data->dwo_file;
12312 struct dwo_unit *dwo_unit = &data->dwo_unit;
12313 struct attribute *attr;
12314
12315 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
12316 if (attr == NULL)
12317 {
12318 complaint (&symfile_complaints,
12319 _("Dwarf Error: debug entry at offset %s is missing"
12320 " its dwo_id [in module %s]"),
12321 sect_offset_str (sect_off), dwo_file->dwo_name);
12322 return;
12323 }
12324
12325 dwo_unit->dwo_file = dwo_file;
12326 dwo_unit->signature = DW_UNSND (attr);
12327 dwo_unit->section = section;
12328 dwo_unit->sect_off = sect_off;
12329 dwo_unit->length = cu->per_cu->length;
12330
12331 if (dwarf_read_debug)
12332 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
12333 sect_offset_str (sect_off),
12334 hex_string (dwo_unit->signature));
12335 }
12336
12337 /* Create the dwo_units for the CUs in a DWO_FILE.
12338 Note: This function processes DWO files only, not DWP files. */
12339
12340 static void
12341 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12342 struct dwo_file &dwo_file, dwarf2_section_info &section,
12343 htab_t &cus_htab)
12344 {
12345 struct objfile *objfile = dwarf2_per_objfile->objfile;
12346 const gdb_byte *info_ptr, *end_ptr;
12347
12348 dwarf2_read_section (objfile, &section);
12349 info_ptr = section.buffer;
12350
12351 if (info_ptr == NULL)
12352 return;
12353
12354 if (dwarf_read_debug)
12355 {
12356 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
12357 get_section_name (&section),
12358 get_section_file_name (&section));
12359 }
12360
12361 end_ptr = info_ptr + section.size;
12362 while (info_ptr < end_ptr)
12363 {
12364 struct dwarf2_per_cu_data per_cu;
12365 struct create_dwo_cu_data create_dwo_cu_data;
12366 struct dwo_unit *dwo_unit;
12367 void **slot;
12368 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
12369
12370 memset (&create_dwo_cu_data.dwo_unit, 0,
12371 sizeof (create_dwo_cu_data.dwo_unit));
12372 memset (&per_cu, 0, sizeof (per_cu));
12373 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
12374 per_cu.is_debug_types = 0;
12375 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
12376 per_cu.section = &section;
12377 create_dwo_cu_data.dwo_file = &dwo_file;
12378
12379 init_cutu_and_read_dies_no_follow (
12380 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
12381 info_ptr += per_cu.length;
12382
12383 // If the unit could not be parsed, skip it.
12384 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
12385 continue;
12386
12387 if (cus_htab == NULL)
12388 cus_htab = allocate_dwo_unit_table (objfile);
12389
12390 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12391 *dwo_unit = create_dwo_cu_data.dwo_unit;
12392 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12393 gdb_assert (slot != NULL);
12394 if (*slot != NULL)
12395 {
12396 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12397 sect_offset dup_sect_off = dup_cu->sect_off;
12398
12399 complaint (&symfile_complaints,
12400 _("debug cu entry at offset %s is duplicate to"
12401 " the entry at offset %s, signature %s"),
12402 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
12403 hex_string (dwo_unit->signature));
12404 }
12405 *slot = (void *)dwo_unit;
12406 }
12407 }
12408
12409 /* DWP file .debug_{cu,tu}_index section format:
12410 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12411
12412 DWP Version 1:
12413
12414 Both index sections have the same format, and serve to map a 64-bit
12415 signature to a set of section numbers. Each section begins with a header,
12416 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12417 indexes, and a pool of 32-bit section numbers. The index sections will be
12418 aligned at 8-byte boundaries in the file.
12419
12420 The index section header consists of:
12421
12422 V, 32 bit version number
12423 -, 32 bits unused
12424 N, 32 bit number of compilation units or type units in the index
12425 M, 32 bit number of slots in the hash table
12426
12427 Numbers are recorded using the byte order of the application binary.
12428
12429 The hash table begins at offset 16 in the section, and consists of an array
12430 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12431 order of the application binary). Unused slots in the hash table are 0.
12432 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12433
12434 The parallel table begins immediately after the hash table
12435 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12436 array of 32-bit indexes (using the byte order of the application binary),
12437 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12438 table contains a 32-bit index into the pool of section numbers. For unused
12439 hash table slots, the corresponding entry in the parallel table will be 0.
12440
12441 The pool of section numbers begins immediately following the hash table
12442 (at offset 16 + 12 * M from the beginning of the section). The pool of
12443 section numbers consists of an array of 32-bit words (using the byte order
12444 of the application binary). Each item in the array is indexed starting
12445 from 0. The hash table entry provides the index of the first section
12446 number in the set. Additional section numbers in the set follow, and the
12447 set is terminated by a 0 entry (section number 0 is not used in ELF).
12448
12449 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12450 section must be the first entry in the set, and the .debug_abbrev.dwo must
12451 be the second entry. Other members of the set may follow in any order.
12452
12453 ---
12454
12455 DWP Version 2:
12456
12457 DWP Version 2 combines all the .debug_info, etc. sections into one,
12458 and the entries in the index tables are now offsets into these sections.
12459 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12460 section.
12461
12462 Index Section Contents:
12463 Header
12464 Hash Table of Signatures dwp_hash_table.hash_table
12465 Parallel Table of Indices dwp_hash_table.unit_table
12466 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12467 Table of Section Sizes dwp_hash_table.v2.sizes
12468
12469 The index section header consists of:
12470
12471 V, 32 bit version number
12472 L, 32 bit number of columns in the table of section offsets
12473 N, 32 bit number of compilation units or type units in the index
12474 M, 32 bit number of slots in the hash table
12475
12476 Numbers are recorded using the byte order of the application binary.
12477
12478 The hash table has the same format as version 1.
12479 The parallel table of indices has the same format as version 1,
12480 except that the entries are origin-1 indices into the table of sections
12481 offsets and the table of section sizes.
12482
12483 The table of offsets begins immediately following the parallel table
12484 (at offset 16 + 12 * M from the beginning of the section). The table is
12485 a two-dimensional array of 32-bit words (using the byte order of the
12486 application binary), with L columns and N+1 rows, in row-major order.
12487 Each row in the array is indexed starting from 0. The first row provides
12488 a key to the remaining rows: each column in this row provides an identifier
12489 for a debug section, and the offsets in the same column of subsequent rows
12490 refer to that section. The section identifiers are:
12491
12492 DW_SECT_INFO 1 .debug_info.dwo
12493 DW_SECT_TYPES 2 .debug_types.dwo
12494 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12495 DW_SECT_LINE 4 .debug_line.dwo
12496 DW_SECT_LOC 5 .debug_loc.dwo
12497 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12498 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12499 DW_SECT_MACRO 8 .debug_macro.dwo
12500
12501 The offsets provided by the CU and TU index sections are the base offsets
12502 for the contributions made by each CU or TU to the corresponding section
12503 in the package file. Each CU and TU header contains an abbrev_offset
12504 field, used to find the abbreviations table for that CU or TU within the
12505 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12506 be interpreted as relative to the base offset given in the index section.
12507 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12508 should be interpreted as relative to the base offset for .debug_line.dwo,
12509 and offsets into other debug sections obtained from DWARF attributes should
12510 also be interpreted as relative to the corresponding base offset.
12511
12512 The table of sizes begins immediately following the table of offsets.
12513 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12514 with L columns and N rows, in row-major order. Each row in the array is
12515 indexed starting from 1 (row 0 is shared by the two tables).
12516
12517 ---
12518
12519 Hash table lookup is handled the same in version 1 and 2:
12520
12521 We assume that N and M will not exceed 2^32 - 1.
12522 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12523
12524 Given a 64-bit compilation unit signature or a type signature S, an entry
12525 in the hash table is located as follows:
12526
12527 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12528 the low-order k bits all set to 1.
12529
12530 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12531
12532 3) If the hash table entry at index H matches the signature, use that
12533 entry. If the hash table entry at index H is unused (all zeroes),
12534 terminate the search: the signature is not present in the table.
12535
12536 4) Let H = (H + H') modulo M. Repeat at Step 3.
12537
12538 Because M > N and H' and M are relatively prime, the search is guaranteed
12539 to stop at an unused slot or find the match. */
12540
12541 /* Create a hash table to map DWO IDs to their CU/TU entry in
12542 .debug_{info,types}.dwo in DWP_FILE.
12543 Returns NULL if there isn't one.
12544 Note: This function processes DWP files only, not DWO files. */
12545
12546 static struct dwp_hash_table *
12547 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12548 struct dwp_file *dwp_file, int is_debug_types)
12549 {
12550 struct objfile *objfile = dwarf2_per_objfile->objfile;
12551 bfd *dbfd = dwp_file->dbfd;
12552 const gdb_byte *index_ptr, *index_end;
12553 struct dwarf2_section_info *index;
12554 uint32_t version, nr_columns, nr_units, nr_slots;
12555 struct dwp_hash_table *htab;
12556
12557 if (is_debug_types)
12558 index = &dwp_file->sections.tu_index;
12559 else
12560 index = &dwp_file->sections.cu_index;
12561
12562 if (dwarf2_section_empty_p (index))
12563 return NULL;
12564 dwarf2_read_section (objfile, index);
12565
12566 index_ptr = index->buffer;
12567 index_end = index_ptr + index->size;
12568
12569 version = read_4_bytes (dbfd, index_ptr);
12570 index_ptr += 4;
12571 if (version == 2)
12572 nr_columns = read_4_bytes (dbfd, index_ptr);
12573 else
12574 nr_columns = 0;
12575 index_ptr += 4;
12576 nr_units = read_4_bytes (dbfd, index_ptr);
12577 index_ptr += 4;
12578 nr_slots = read_4_bytes (dbfd, index_ptr);
12579 index_ptr += 4;
12580
12581 if (version != 1 && version != 2)
12582 {
12583 error (_("Dwarf Error: unsupported DWP file version (%s)"
12584 " [in module %s]"),
12585 pulongest (version), dwp_file->name);
12586 }
12587 if (nr_slots != (nr_slots & -nr_slots))
12588 {
12589 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12590 " is not power of 2 [in module %s]"),
12591 pulongest (nr_slots), dwp_file->name);
12592 }
12593
12594 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12595 htab->version = version;
12596 htab->nr_columns = nr_columns;
12597 htab->nr_units = nr_units;
12598 htab->nr_slots = nr_slots;
12599 htab->hash_table = index_ptr;
12600 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12601
12602 /* Exit early if the table is empty. */
12603 if (nr_slots == 0 || nr_units == 0
12604 || (version == 2 && nr_columns == 0))
12605 {
12606 /* All must be zero. */
12607 if (nr_slots != 0 || nr_units != 0
12608 || (version == 2 && nr_columns != 0))
12609 {
12610 complaint (&symfile_complaints,
12611 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12612 " all zero [in modules %s]"),
12613 dwp_file->name);
12614 }
12615 return htab;
12616 }
12617
12618 if (version == 1)
12619 {
12620 htab->section_pool.v1.indices =
12621 htab->unit_table + sizeof (uint32_t) * nr_slots;
12622 /* It's harder to decide whether the section is too small in v1.
12623 V1 is deprecated anyway so we punt. */
12624 }
12625 else
12626 {
12627 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12628 int *ids = htab->section_pool.v2.section_ids;
12629 /* Reverse map for error checking. */
12630 int ids_seen[DW_SECT_MAX + 1];
12631 int i;
12632
12633 if (nr_columns < 2)
12634 {
12635 error (_("Dwarf Error: bad DWP hash table, too few columns"
12636 " in section table [in module %s]"),
12637 dwp_file->name);
12638 }
12639 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12640 {
12641 error (_("Dwarf Error: bad DWP hash table, too many columns"
12642 " in section table [in module %s]"),
12643 dwp_file->name);
12644 }
12645 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12646 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12647 for (i = 0; i < nr_columns; ++i)
12648 {
12649 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12650
12651 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12652 {
12653 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12654 " in section table [in module %s]"),
12655 id, dwp_file->name);
12656 }
12657 if (ids_seen[id] != -1)
12658 {
12659 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12660 " id %d in section table [in module %s]"),
12661 id, dwp_file->name);
12662 }
12663 ids_seen[id] = i;
12664 ids[i] = id;
12665 }
12666 /* Must have exactly one info or types section. */
12667 if (((ids_seen[DW_SECT_INFO] != -1)
12668 + (ids_seen[DW_SECT_TYPES] != -1))
12669 != 1)
12670 {
12671 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12672 " DWO info/types section [in module %s]"),
12673 dwp_file->name);
12674 }
12675 /* Must have an abbrev section. */
12676 if (ids_seen[DW_SECT_ABBREV] == -1)
12677 {
12678 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12679 " section [in module %s]"),
12680 dwp_file->name);
12681 }
12682 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12683 htab->section_pool.v2.sizes =
12684 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12685 * nr_units * nr_columns);
12686 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12687 * nr_units * nr_columns))
12688 > index_end)
12689 {
12690 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12691 " [in module %s]"),
12692 dwp_file->name);
12693 }
12694 }
12695
12696 return htab;
12697 }
12698
12699 /* Update SECTIONS with the data from SECTP.
12700
12701 This function is like the other "locate" section routines that are
12702 passed to bfd_map_over_sections, but in this context the sections to
12703 read comes from the DWP V1 hash table, not the full ELF section table.
12704
12705 The result is non-zero for success, or zero if an error was found. */
12706
12707 static int
12708 locate_v1_virtual_dwo_sections (asection *sectp,
12709 struct virtual_v1_dwo_sections *sections)
12710 {
12711 const struct dwop_section_names *names = &dwop_section_names;
12712
12713 if (section_is_p (sectp->name, &names->abbrev_dwo))
12714 {
12715 /* There can be only one. */
12716 if (sections->abbrev.s.section != NULL)
12717 return 0;
12718 sections->abbrev.s.section = sectp;
12719 sections->abbrev.size = bfd_get_section_size (sectp);
12720 }
12721 else if (section_is_p (sectp->name, &names->info_dwo)
12722 || section_is_p (sectp->name, &names->types_dwo))
12723 {
12724 /* There can be only one. */
12725 if (sections->info_or_types.s.section != NULL)
12726 return 0;
12727 sections->info_or_types.s.section = sectp;
12728 sections->info_or_types.size = bfd_get_section_size (sectp);
12729 }
12730 else if (section_is_p (sectp->name, &names->line_dwo))
12731 {
12732 /* There can be only one. */
12733 if (sections->line.s.section != NULL)
12734 return 0;
12735 sections->line.s.section = sectp;
12736 sections->line.size = bfd_get_section_size (sectp);
12737 }
12738 else if (section_is_p (sectp->name, &names->loc_dwo))
12739 {
12740 /* There can be only one. */
12741 if (sections->loc.s.section != NULL)
12742 return 0;
12743 sections->loc.s.section = sectp;
12744 sections->loc.size = bfd_get_section_size (sectp);
12745 }
12746 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12747 {
12748 /* There can be only one. */
12749 if (sections->macinfo.s.section != NULL)
12750 return 0;
12751 sections->macinfo.s.section = sectp;
12752 sections->macinfo.size = bfd_get_section_size (sectp);
12753 }
12754 else if (section_is_p (sectp->name, &names->macro_dwo))
12755 {
12756 /* There can be only one. */
12757 if (sections->macro.s.section != NULL)
12758 return 0;
12759 sections->macro.s.section = sectp;
12760 sections->macro.size = bfd_get_section_size (sectp);
12761 }
12762 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12763 {
12764 /* There can be only one. */
12765 if (sections->str_offsets.s.section != NULL)
12766 return 0;
12767 sections->str_offsets.s.section = sectp;
12768 sections->str_offsets.size = bfd_get_section_size (sectp);
12769 }
12770 else
12771 {
12772 /* No other kind of section is valid. */
12773 return 0;
12774 }
12775
12776 return 1;
12777 }
12778
12779 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12780 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12781 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12782 This is for DWP version 1 files. */
12783
12784 static struct dwo_unit *
12785 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12786 struct dwp_file *dwp_file,
12787 uint32_t unit_index,
12788 const char *comp_dir,
12789 ULONGEST signature, int is_debug_types)
12790 {
12791 struct objfile *objfile = dwarf2_per_objfile->objfile;
12792 const struct dwp_hash_table *dwp_htab =
12793 is_debug_types ? dwp_file->tus : dwp_file->cus;
12794 bfd *dbfd = dwp_file->dbfd;
12795 const char *kind = is_debug_types ? "TU" : "CU";
12796 struct dwo_file *dwo_file;
12797 struct dwo_unit *dwo_unit;
12798 struct virtual_v1_dwo_sections sections;
12799 void **dwo_file_slot;
12800 int i;
12801
12802 gdb_assert (dwp_file->version == 1);
12803
12804 if (dwarf_read_debug)
12805 {
12806 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12807 kind,
12808 pulongest (unit_index), hex_string (signature),
12809 dwp_file->name);
12810 }
12811
12812 /* Fetch the sections of this DWO unit.
12813 Put a limit on the number of sections we look for so that bad data
12814 doesn't cause us to loop forever. */
12815
12816 #define MAX_NR_V1_DWO_SECTIONS \
12817 (1 /* .debug_info or .debug_types */ \
12818 + 1 /* .debug_abbrev */ \
12819 + 1 /* .debug_line */ \
12820 + 1 /* .debug_loc */ \
12821 + 1 /* .debug_str_offsets */ \
12822 + 1 /* .debug_macro or .debug_macinfo */ \
12823 + 1 /* trailing zero */)
12824
12825 memset (&sections, 0, sizeof (sections));
12826
12827 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12828 {
12829 asection *sectp;
12830 uint32_t section_nr =
12831 read_4_bytes (dbfd,
12832 dwp_htab->section_pool.v1.indices
12833 + (unit_index + i) * sizeof (uint32_t));
12834
12835 if (section_nr == 0)
12836 break;
12837 if (section_nr >= dwp_file->num_sections)
12838 {
12839 error (_("Dwarf Error: bad DWP hash table, section number too large"
12840 " [in module %s]"),
12841 dwp_file->name);
12842 }
12843
12844 sectp = dwp_file->elf_sections[section_nr];
12845 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12846 {
12847 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12848 " [in module %s]"),
12849 dwp_file->name);
12850 }
12851 }
12852
12853 if (i < 2
12854 || dwarf2_section_empty_p (&sections.info_or_types)
12855 || dwarf2_section_empty_p (&sections.abbrev))
12856 {
12857 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12858 " [in module %s]"),
12859 dwp_file->name);
12860 }
12861 if (i == MAX_NR_V1_DWO_SECTIONS)
12862 {
12863 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12864 " [in module %s]"),
12865 dwp_file->name);
12866 }
12867
12868 /* It's easier for the rest of the code if we fake a struct dwo_file and
12869 have dwo_unit "live" in that. At least for now.
12870
12871 The DWP file can be made up of a random collection of CUs and TUs.
12872 However, for each CU + set of TUs that came from the same original DWO
12873 file, we can combine them back into a virtual DWO file to save space
12874 (fewer struct dwo_file objects to allocate). Remember that for really
12875 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12876
12877 std::string virtual_dwo_name =
12878 string_printf ("virtual-dwo/%d-%d-%d-%d",
12879 get_section_id (&sections.abbrev),
12880 get_section_id (&sections.line),
12881 get_section_id (&sections.loc),
12882 get_section_id (&sections.str_offsets));
12883 /* Can we use an existing virtual DWO file? */
12884 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12885 virtual_dwo_name.c_str (),
12886 comp_dir);
12887 /* Create one if necessary. */
12888 if (*dwo_file_slot == NULL)
12889 {
12890 if (dwarf_read_debug)
12891 {
12892 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12893 virtual_dwo_name.c_str ());
12894 }
12895 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12896 dwo_file->dwo_name
12897 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12898 virtual_dwo_name.c_str (),
12899 virtual_dwo_name.size ());
12900 dwo_file->comp_dir = comp_dir;
12901 dwo_file->sections.abbrev = sections.abbrev;
12902 dwo_file->sections.line = sections.line;
12903 dwo_file->sections.loc = sections.loc;
12904 dwo_file->sections.macinfo = sections.macinfo;
12905 dwo_file->sections.macro = sections.macro;
12906 dwo_file->sections.str_offsets = sections.str_offsets;
12907 /* The "str" section is global to the entire DWP file. */
12908 dwo_file->sections.str = dwp_file->sections.str;
12909 /* The info or types section is assigned below to dwo_unit,
12910 there's no need to record it in dwo_file.
12911 Also, we can't simply record type sections in dwo_file because
12912 we record a pointer into the vector in dwo_unit. As we collect more
12913 types we'll grow the vector and eventually have to reallocate space
12914 for it, invalidating all copies of pointers into the previous
12915 contents. */
12916 *dwo_file_slot = dwo_file;
12917 }
12918 else
12919 {
12920 if (dwarf_read_debug)
12921 {
12922 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12923 virtual_dwo_name.c_str ());
12924 }
12925 dwo_file = (struct dwo_file *) *dwo_file_slot;
12926 }
12927
12928 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12929 dwo_unit->dwo_file = dwo_file;
12930 dwo_unit->signature = signature;
12931 dwo_unit->section =
12932 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12933 *dwo_unit->section = sections.info_or_types;
12934 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12935
12936 return dwo_unit;
12937 }
12938
12939 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12940 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12941 piece within that section used by a TU/CU, return a virtual section
12942 of just that piece. */
12943
12944 static struct dwarf2_section_info
12945 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12946 struct dwarf2_section_info *section,
12947 bfd_size_type offset, bfd_size_type size)
12948 {
12949 struct dwarf2_section_info result;
12950 asection *sectp;
12951
12952 gdb_assert (section != NULL);
12953 gdb_assert (!section->is_virtual);
12954
12955 memset (&result, 0, sizeof (result));
12956 result.s.containing_section = section;
12957 result.is_virtual = 1;
12958
12959 if (size == 0)
12960 return result;
12961
12962 sectp = get_section_bfd_section (section);
12963
12964 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12965 bounds of the real section. This is a pretty-rare event, so just
12966 flag an error (easier) instead of a warning and trying to cope. */
12967 if (sectp == NULL
12968 || offset + size > bfd_get_section_size (sectp))
12969 {
12970 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12971 " in section %s [in module %s]"),
12972 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12973 objfile_name (dwarf2_per_objfile->objfile));
12974 }
12975
12976 result.virtual_offset = offset;
12977 result.size = size;
12978 return result;
12979 }
12980
12981 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12982 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12983 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12984 This is for DWP version 2 files. */
12985
12986 static struct dwo_unit *
12987 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12988 struct dwp_file *dwp_file,
12989 uint32_t unit_index,
12990 const char *comp_dir,
12991 ULONGEST signature, int is_debug_types)
12992 {
12993 struct objfile *objfile = dwarf2_per_objfile->objfile;
12994 const struct dwp_hash_table *dwp_htab =
12995 is_debug_types ? dwp_file->tus : dwp_file->cus;
12996 bfd *dbfd = dwp_file->dbfd;
12997 const char *kind = is_debug_types ? "TU" : "CU";
12998 struct dwo_file *dwo_file;
12999 struct dwo_unit *dwo_unit;
13000 struct virtual_v2_dwo_sections sections;
13001 void **dwo_file_slot;
13002 int i;
13003
13004 gdb_assert (dwp_file->version == 2);
13005
13006 if (dwarf_read_debug)
13007 {
13008 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
13009 kind,
13010 pulongest (unit_index), hex_string (signature),
13011 dwp_file->name);
13012 }
13013
13014 /* Fetch the section offsets of this DWO unit. */
13015
13016 memset (&sections, 0, sizeof (sections));
13017
13018 for (i = 0; i < dwp_htab->nr_columns; ++i)
13019 {
13020 uint32_t offset = read_4_bytes (dbfd,
13021 dwp_htab->section_pool.v2.offsets
13022 + (((unit_index - 1) * dwp_htab->nr_columns
13023 + i)
13024 * sizeof (uint32_t)));
13025 uint32_t size = read_4_bytes (dbfd,
13026 dwp_htab->section_pool.v2.sizes
13027 + (((unit_index - 1) * dwp_htab->nr_columns
13028 + i)
13029 * sizeof (uint32_t)));
13030
13031 switch (dwp_htab->section_pool.v2.section_ids[i])
13032 {
13033 case DW_SECT_INFO:
13034 case DW_SECT_TYPES:
13035 sections.info_or_types_offset = offset;
13036 sections.info_or_types_size = size;
13037 break;
13038 case DW_SECT_ABBREV:
13039 sections.abbrev_offset = offset;
13040 sections.abbrev_size = size;
13041 break;
13042 case DW_SECT_LINE:
13043 sections.line_offset = offset;
13044 sections.line_size = size;
13045 break;
13046 case DW_SECT_LOC:
13047 sections.loc_offset = offset;
13048 sections.loc_size = size;
13049 break;
13050 case DW_SECT_STR_OFFSETS:
13051 sections.str_offsets_offset = offset;
13052 sections.str_offsets_size = size;
13053 break;
13054 case DW_SECT_MACINFO:
13055 sections.macinfo_offset = offset;
13056 sections.macinfo_size = size;
13057 break;
13058 case DW_SECT_MACRO:
13059 sections.macro_offset = offset;
13060 sections.macro_size = size;
13061 break;
13062 }
13063 }
13064
13065 /* It's easier for the rest of the code if we fake a struct dwo_file and
13066 have dwo_unit "live" in that. At least for now.
13067
13068 The DWP file can be made up of a random collection of CUs and TUs.
13069 However, for each CU + set of TUs that came from the same original DWO
13070 file, we can combine them back into a virtual DWO file to save space
13071 (fewer struct dwo_file objects to allocate). Remember that for really
13072 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
13073
13074 std::string virtual_dwo_name =
13075 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
13076 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
13077 (long) (sections.line_size ? sections.line_offset : 0),
13078 (long) (sections.loc_size ? sections.loc_offset : 0),
13079 (long) (sections.str_offsets_size
13080 ? sections.str_offsets_offset : 0));
13081 /* Can we use an existing virtual DWO file? */
13082 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13083 virtual_dwo_name.c_str (),
13084 comp_dir);
13085 /* Create one if necessary. */
13086 if (*dwo_file_slot == NULL)
13087 {
13088 if (dwarf_read_debug)
13089 {
13090 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
13091 virtual_dwo_name.c_str ());
13092 }
13093 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
13094 dwo_file->dwo_name
13095 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
13096 virtual_dwo_name.c_str (),
13097 virtual_dwo_name.size ());
13098 dwo_file->comp_dir = comp_dir;
13099 dwo_file->sections.abbrev =
13100 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
13101 sections.abbrev_offset, sections.abbrev_size);
13102 dwo_file->sections.line =
13103 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
13104 sections.line_offset, sections.line_size);
13105 dwo_file->sections.loc =
13106 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
13107 sections.loc_offset, sections.loc_size);
13108 dwo_file->sections.macinfo =
13109 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
13110 sections.macinfo_offset, sections.macinfo_size);
13111 dwo_file->sections.macro =
13112 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
13113 sections.macro_offset, sections.macro_size);
13114 dwo_file->sections.str_offsets =
13115 create_dwp_v2_section (dwarf2_per_objfile,
13116 &dwp_file->sections.str_offsets,
13117 sections.str_offsets_offset,
13118 sections.str_offsets_size);
13119 /* The "str" section is global to the entire DWP file. */
13120 dwo_file->sections.str = dwp_file->sections.str;
13121 /* The info or types section is assigned below to dwo_unit,
13122 there's no need to record it in dwo_file.
13123 Also, we can't simply record type sections in dwo_file because
13124 we record a pointer into the vector in dwo_unit. As we collect more
13125 types we'll grow the vector and eventually have to reallocate space
13126 for it, invalidating all copies of pointers into the previous
13127 contents. */
13128 *dwo_file_slot = dwo_file;
13129 }
13130 else
13131 {
13132 if (dwarf_read_debug)
13133 {
13134 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
13135 virtual_dwo_name.c_str ());
13136 }
13137 dwo_file = (struct dwo_file *) *dwo_file_slot;
13138 }
13139
13140 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
13141 dwo_unit->dwo_file = dwo_file;
13142 dwo_unit->signature = signature;
13143 dwo_unit->section =
13144 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
13145 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
13146 is_debug_types
13147 ? &dwp_file->sections.types
13148 : &dwp_file->sections.info,
13149 sections.info_or_types_offset,
13150 sections.info_or_types_size);
13151 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
13152
13153 return dwo_unit;
13154 }
13155
13156 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
13157 Returns NULL if the signature isn't found. */
13158
13159 static struct dwo_unit *
13160 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
13161 struct dwp_file *dwp_file, const char *comp_dir,
13162 ULONGEST signature, int is_debug_types)
13163 {
13164 const struct dwp_hash_table *dwp_htab =
13165 is_debug_types ? dwp_file->tus : dwp_file->cus;
13166 bfd *dbfd = dwp_file->dbfd;
13167 uint32_t mask = dwp_htab->nr_slots - 1;
13168 uint32_t hash = signature & mask;
13169 uint32_t hash2 = ((signature >> 32) & mask) | 1;
13170 unsigned int i;
13171 void **slot;
13172 struct dwo_unit find_dwo_cu;
13173
13174 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
13175 find_dwo_cu.signature = signature;
13176 slot = htab_find_slot (is_debug_types
13177 ? dwp_file->loaded_tus
13178 : dwp_file->loaded_cus,
13179 &find_dwo_cu, INSERT);
13180
13181 if (*slot != NULL)
13182 return (struct dwo_unit *) *slot;
13183
13184 /* Use a for loop so that we don't loop forever on bad debug info. */
13185 for (i = 0; i < dwp_htab->nr_slots; ++i)
13186 {
13187 ULONGEST signature_in_table;
13188
13189 signature_in_table =
13190 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
13191 if (signature_in_table == signature)
13192 {
13193 uint32_t unit_index =
13194 read_4_bytes (dbfd,
13195 dwp_htab->unit_table + hash * sizeof (uint32_t));
13196
13197 if (dwp_file->version == 1)
13198 {
13199 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
13200 dwp_file, unit_index,
13201 comp_dir, signature,
13202 is_debug_types);
13203 }
13204 else
13205 {
13206 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
13207 dwp_file, unit_index,
13208 comp_dir, signature,
13209 is_debug_types);
13210 }
13211 return (struct dwo_unit *) *slot;
13212 }
13213 if (signature_in_table == 0)
13214 return NULL;
13215 hash = (hash + hash2) & mask;
13216 }
13217
13218 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
13219 " [in module %s]"),
13220 dwp_file->name);
13221 }
13222
13223 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
13224 Open the file specified by FILE_NAME and hand it off to BFD for
13225 preliminary analysis. Return a newly initialized bfd *, which
13226 includes a canonicalized copy of FILE_NAME.
13227 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
13228 SEARCH_CWD is true if the current directory is to be searched.
13229 It will be searched before debug-file-directory.
13230 If successful, the file is added to the bfd include table of the
13231 objfile's bfd (see gdb_bfd_record_inclusion).
13232 If unable to find/open the file, return NULL.
13233 NOTE: This function is derived from symfile_bfd_open. */
13234
13235 static gdb_bfd_ref_ptr
13236 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13237 const char *file_name, int is_dwp, int search_cwd)
13238 {
13239 int desc;
13240 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
13241 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
13242 to debug_file_directory. */
13243 const char *search_path;
13244 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
13245
13246 gdb::unique_xmalloc_ptr<char> search_path_holder;
13247 if (search_cwd)
13248 {
13249 if (*debug_file_directory != '\0')
13250 {
13251 search_path_holder.reset (concat (".", dirname_separator_string,
13252 debug_file_directory,
13253 (char *) NULL));
13254 search_path = search_path_holder.get ();
13255 }
13256 else
13257 search_path = ".";
13258 }
13259 else
13260 search_path = debug_file_directory;
13261
13262 openp_flags flags = OPF_RETURN_REALPATH;
13263 if (is_dwp)
13264 flags |= OPF_SEARCH_IN_PATH;
13265
13266 gdb::unique_xmalloc_ptr<char> absolute_name;
13267 desc = openp (search_path, flags, file_name,
13268 O_RDONLY | O_BINARY, &absolute_name);
13269 if (desc < 0)
13270 return NULL;
13271
13272 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
13273 gnutarget, desc));
13274 if (sym_bfd == NULL)
13275 return NULL;
13276 bfd_set_cacheable (sym_bfd.get (), 1);
13277
13278 if (!bfd_check_format (sym_bfd.get (), bfd_object))
13279 return NULL;
13280
13281 /* Success. Record the bfd as having been included by the objfile's bfd.
13282 This is important because things like demangled_names_hash lives in the
13283 objfile's per_bfd space and may have references to things like symbol
13284 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
13285 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13286
13287 return sym_bfd;
13288 }
13289
13290 /* Try to open DWO file FILE_NAME.
13291 COMP_DIR is the DW_AT_comp_dir attribute.
13292 The result is the bfd handle of the file.
13293 If there is a problem finding or opening the file, return NULL.
13294 Upon success, the canonicalized path of the file is stored in the bfd,
13295 same as symfile_bfd_open. */
13296
13297 static gdb_bfd_ref_ptr
13298 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13299 const char *file_name, const char *comp_dir)
13300 {
13301 if (IS_ABSOLUTE_PATH (file_name))
13302 return try_open_dwop_file (dwarf2_per_objfile, file_name,
13303 0 /*is_dwp*/, 0 /*search_cwd*/);
13304
13305 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
13306
13307 if (comp_dir != NULL)
13308 {
13309 char *path_to_try = concat (comp_dir, SLASH_STRING,
13310 file_name, (char *) NULL);
13311
13312 /* NOTE: If comp_dir is a relative path, this will also try the
13313 search path, which seems useful. */
13314 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
13315 path_to_try,
13316 0 /*is_dwp*/,
13317 1 /*search_cwd*/));
13318 xfree (path_to_try);
13319 if (abfd != NULL)
13320 return abfd;
13321 }
13322
13323 /* That didn't work, try debug-file-directory, which, despite its name,
13324 is a list of paths. */
13325
13326 if (*debug_file_directory == '\0')
13327 return NULL;
13328
13329 return try_open_dwop_file (dwarf2_per_objfile, file_name,
13330 0 /*is_dwp*/, 1 /*search_cwd*/);
13331 }
13332
13333 /* This function is mapped across the sections and remembers the offset and
13334 size of each of the DWO debugging sections we are interested in. */
13335
13336 static void
13337 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
13338 {
13339 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
13340 const struct dwop_section_names *names = &dwop_section_names;
13341
13342 if (section_is_p (sectp->name, &names->abbrev_dwo))
13343 {
13344 dwo_sections->abbrev.s.section = sectp;
13345 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
13346 }
13347 else if (section_is_p (sectp->name, &names->info_dwo))
13348 {
13349 dwo_sections->info.s.section = sectp;
13350 dwo_sections->info.size = bfd_get_section_size (sectp);
13351 }
13352 else if (section_is_p (sectp->name, &names->line_dwo))
13353 {
13354 dwo_sections->line.s.section = sectp;
13355 dwo_sections->line.size = bfd_get_section_size (sectp);
13356 }
13357 else if (section_is_p (sectp->name, &names->loc_dwo))
13358 {
13359 dwo_sections->loc.s.section = sectp;
13360 dwo_sections->loc.size = bfd_get_section_size (sectp);
13361 }
13362 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13363 {
13364 dwo_sections->macinfo.s.section = sectp;
13365 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
13366 }
13367 else if (section_is_p (sectp->name, &names->macro_dwo))
13368 {
13369 dwo_sections->macro.s.section = sectp;
13370 dwo_sections->macro.size = bfd_get_section_size (sectp);
13371 }
13372 else if (section_is_p (sectp->name, &names->str_dwo))
13373 {
13374 dwo_sections->str.s.section = sectp;
13375 dwo_sections->str.size = bfd_get_section_size (sectp);
13376 }
13377 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13378 {
13379 dwo_sections->str_offsets.s.section = sectp;
13380 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
13381 }
13382 else if (section_is_p (sectp->name, &names->types_dwo))
13383 {
13384 struct dwarf2_section_info type_section;
13385
13386 memset (&type_section, 0, sizeof (type_section));
13387 type_section.s.section = sectp;
13388 type_section.size = bfd_get_section_size (sectp);
13389 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
13390 &type_section);
13391 }
13392 }
13393
13394 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
13395 by PER_CU. This is for the non-DWP case.
13396 The result is NULL if DWO_NAME can't be found. */
13397
13398 static struct dwo_file *
13399 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13400 const char *dwo_name, const char *comp_dir)
13401 {
13402 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13403 struct objfile *objfile = dwarf2_per_objfile->objfile;
13404 struct dwo_file *dwo_file;
13405 struct cleanup *cleanups;
13406
13407 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
13408 if (dbfd == NULL)
13409 {
13410 if (dwarf_read_debug)
13411 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13412 return NULL;
13413 }
13414 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
13415 dwo_file->dwo_name = dwo_name;
13416 dwo_file->comp_dir = comp_dir;
13417 dwo_file->dbfd = dbfd.release ();
13418
13419 free_dwo_file_cleanup_data *cleanup_data = XNEW (free_dwo_file_cleanup_data);
13420 cleanup_data->dwo_file = dwo_file;
13421 cleanup_data->dwarf2_per_objfile = dwarf2_per_objfile;
13422
13423 cleanups = make_cleanup (free_dwo_file_cleanup, cleanup_data);
13424
13425 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13426 &dwo_file->sections);
13427
13428 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13429 dwo_file->cus);
13430
13431 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file,
13432 dwo_file->sections.types, dwo_file->tus);
13433
13434 discard_cleanups (cleanups);
13435
13436 if (dwarf_read_debug)
13437 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13438
13439 return dwo_file;
13440 }
13441
13442 /* This function is mapped across the sections and remembers the offset and
13443 size of each of the DWP debugging sections common to version 1 and 2 that
13444 we are interested in. */
13445
13446 static void
13447 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13448 void *dwp_file_ptr)
13449 {
13450 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13451 const struct dwop_section_names *names = &dwop_section_names;
13452 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13453
13454 /* Record the ELF section number for later lookup: this is what the
13455 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13456 gdb_assert (elf_section_nr < dwp_file->num_sections);
13457 dwp_file->elf_sections[elf_section_nr] = sectp;
13458
13459 /* Look for specific sections that we need. */
13460 if (section_is_p (sectp->name, &names->str_dwo))
13461 {
13462 dwp_file->sections.str.s.section = sectp;
13463 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13464 }
13465 else if (section_is_p (sectp->name, &names->cu_index))
13466 {
13467 dwp_file->sections.cu_index.s.section = sectp;
13468 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13469 }
13470 else if (section_is_p (sectp->name, &names->tu_index))
13471 {
13472 dwp_file->sections.tu_index.s.section = sectp;
13473 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13474 }
13475 }
13476
13477 /* This function is mapped across the sections and remembers the offset and
13478 size of each of the DWP version 2 debugging sections that we are interested
13479 in. This is split into a separate function because we don't know if we
13480 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13481
13482 static void
13483 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13484 {
13485 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13486 const struct dwop_section_names *names = &dwop_section_names;
13487 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13488
13489 /* Record the ELF section number for later lookup: this is what the
13490 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13491 gdb_assert (elf_section_nr < dwp_file->num_sections);
13492 dwp_file->elf_sections[elf_section_nr] = sectp;
13493
13494 /* Look for specific sections that we need. */
13495 if (section_is_p (sectp->name, &names->abbrev_dwo))
13496 {
13497 dwp_file->sections.abbrev.s.section = sectp;
13498 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13499 }
13500 else if (section_is_p (sectp->name, &names->info_dwo))
13501 {
13502 dwp_file->sections.info.s.section = sectp;
13503 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13504 }
13505 else if (section_is_p (sectp->name, &names->line_dwo))
13506 {
13507 dwp_file->sections.line.s.section = sectp;
13508 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13509 }
13510 else if (section_is_p (sectp->name, &names->loc_dwo))
13511 {
13512 dwp_file->sections.loc.s.section = sectp;
13513 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13514 }
13515 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13516 {
13517 dwp_file->sections.macinfo.s.section = sectp;
13518 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13519 }
13520 else if (section_is_p (sectp->name, &names->macro_dwo))
13521 {
13522 dwp_file->sections.macro.s.section = sectp;
13523 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13524 }
13525 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13526 {
13527 dwp_file->sections.str_offsets.s.section = sectp;
13528 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13529 }
13530 else if (section_is_p (sectp->name, &names->types_dwo))
13531 {
13532 dwp_file->sections.types.s.section = sectp;
13533 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13534 }
13535 }
13536
13537 /* Hash function for dwp_file loaded CUs/TUs. */
13538
13539 static hashval_t
13540 hash_dwp_loaded_cutus (const void *item)
13541 {
13542 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13543
13544 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13545 return dwo_unit->signature;
13546 }
13547
13548 /* Equality function for dwp_file loaded CUs/TUs. */
13549
13550 static int
13551 eq_dwp_loaded_cutus (const void *a, const void *b)
13552 {
13553 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13554 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13555
13556 return dua->signature == dub->signature;
13557 }
13558
13559 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13560
13561 static htab_t
13562 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13563 {
13564 return htab_create_alloc_ex (3,
13565 hash_dwp_loaded_cutus,
13566 eq_dwp_loaded_cutus,
13567 NULL,
13568 &objfile->objfile_obstack,
13569 hashtab_obstack_allocate,
13570 dummy_obstack_deallocate);
13571 }
13572
13573 /* Try to open DWP file FILE_NAME.
13574 The result is the bfd handle of the file.
13575 If there is a problem finding or opening the file, return NULL.
13576 Upon success, the canonicalized path of the file is stored in the bfd,
13577 same as symfile_bfd_open. */
13578
13579 static gdb_bfd_ref_ptr
13580 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13581 const char *file_name)
13582 {
13583 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13584 1 /*is_dwp*/,
13585 1 /*search_cwd*/));
13586 if (abfd != NULL)
13587 return abfd;
13588
13589 /* Work around upstream bug 15652.
13590 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13591 [Whether that's a "bug" is debatable, but it is getting in our way.]
13592 We have no real idea where the dwp file is, because gdb's realpath-ing
13593 of the executable's path may have discarded the needed info.
13594 [IWBN if the dwp file name was recorded in the executable, akin to
13595 .gnu_debuglink, but that doesn't exist yet.]
13596 Strip the directory from FILE_NAME and search again. */
13597 if (*debug_file_directory != '\0')
13598 {
13599 /* Don't implicitly search the current directory here.
13600 If the user wants to search "." to handle this case,
13601 it must be added to debug-file-directory. */
13602 return try_open_dwop_file (dwarf2_per_objfile,
13603 lbasename (file_name), 1 /*is_dwp*/,
13604 0 /*search_cwd*/);
13605 }
13606
13607 return NULL;
13608 }
13609
13610 /* Initialize the use of the DWP file for the current objfile.
13611 By convention the name of the DWP file is ${objfile}.dwp.
13612 The result is NULL if it can't be found. */
13613
13614 static struct dwp_file *
13615 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13616 {
13617 struct objfile *objfile = dwarf2_per_objfile->objfile;
13618 struct dwp_file *dwp_file;
13619
13620 /* Try to find first .dwp for the binary file before any symbolic links
13621 resolving. */
13622
13623 /* If the objfile is a debug file, find the name of the real binary
13624 file and get the name of dwp file from there. */
13625 std::string dwp_name;
13626 if (objfile->separate_debug_objfile_backlink != NULL)
13627 {
13628 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13629 const char *backlink_basename = lbasename (backlink->original_name);
13630
13631 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13632 }
13633 else
13634 dwp_name = objfile->original_name;
13635
13636 dwp_name += ".dwp";
13637
13638 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13639 if (dbfd == NULL
13640 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13641 {
13642 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13643 dwp_name = objfile_name (objfile);
13644 dwp_name += ".dwp";
13645 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13646 }
13647
13648 if (dbfd == NULL)
13649 {
13650 if (dwarf_read_debug)
13651 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13652 return NULL;
13653 }
13654 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13655 dwp_file->name = bfd_get_filename (dbfd.get ());
13656 dwp_file->dbfd = dbfd.release ();
13657
13658 /* +1: section 0 is unused */
13659 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13660 dwp_file->elf_sections =
13661 OBSTACK_CALLOC (&objfile->objfile_obstack,
13662 dwp_file->num_sections, asection *);
13663
13664 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13665 dwp_file);
13666
13667 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13668
13669 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13670
13671 /* The DWP file version is stored in the hash table. Oh well. */
13672 if (dwp_file->cus && dwp_file->tus
13673 && dwp_file->cus->version != dwp_file->tus->version)
13674 {
13675 /* Technically speaking, we should try to limp along, but this is
13676 pretty bizarre. We use pulongest here because that's the established
13677 portability solution (e.g, we cannot use %u for uint32_t). */
13678 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13679 " TU version %s [in DWP file %s]"),
13680 pulongest (dwp_file->cus->version),
13681 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13682 }
13683
13684 if (dwp_file->cus)
13685 dwp_file->version = dwp_file->cus->version;
13686 else if (dwp_file->tus)
13687 dwp_file->version = dwp_file->tus->version;
13688 else
13689 dwp_file->version = 2;
13690
13691 if (dwp_file->version == 2)
13692 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13693 dwp_file);
13694
13695 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13696 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13697
13698 if (dwarf_read_debug)
13699 {
13700 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13701 fprintf_unfiltered (gdb_stdlog,
13702 " %s CUs, %s TUs\n",
13703 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13704 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13705 }
13706
13707 return dwp_file;
13708 }
13709
13710 /* Wrapper around open_and_init_dwp_file, only open it once. */
13711
13712 static struct dwp_file *
13713 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13714 {
13715 if (! dwarf2_per_objfile->dwp_checked)
13716 {
13717 dwarf2_per_objfile->dwp_file
13718 = open_and_init_dwp_file (dwarf2_per_objfile);
13719 dwarf2_per_objfile->dwp_checked = 1;
13720 }
13721 return dwarf2_per_objfile->dwp_file;
13722 }
13723
13724 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13725 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13726 or in the DWP file for the objfile, referenced by THIS_UNIT.
13727 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13728 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13729
13730 This is called, for example, when wanting to read a variable with a
13731 complex location. Therefore we don't want to do file i/o for every call.
13732 Therefore we don't want to look for a DWO file on every call.
13733 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13734 then we check if we've already seen DWO_NAME, and only THEN do we check
13735 for a DWO file.
13736
13737 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13738 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13739
13740 static struct dwo_unit *
13741 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13742 const char *dwo_name, const char *comp_dir,
13743 ULONGEST signature, int is_debug_types)
13744 {
13745 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13746 struct objfile *objfile = dwarf2_per_objfile->objfile;
13747 const char *kind = is_debug_types ? "TU" : "CU";
13748 void **dwo_file_slot;
13749 struct dwo_file *dwo_file;
13750 struct dwp_file *dwp_file;
13751
13752 /* First see if there's a DWP file.
13753 If we have a DWP file but didn't find the DWO inside it, don't
13754 look for the original DWO file. It makes gdb behave differently
13755 depending on whether one is debugging in the build tree. */
13756
13757 dwp_file = get_dwp_file (dwarf2_per_objfile);
13758 if (dwp_file != NULL)
13759 {
13760 const struct dwp_hash_table *dwp_htab =
13761 is_debug_types ? dwp_file->tus : dwp_file->cus;
13762
13763 if (dwp_htab != NULL)
13764 {
13765 struct dwo_unit *dwo_cutu =
13766 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13767 signature, is_debug_types);
13768
13769 if (dwo_cutu != NULL)
13770 {
13771 if (dwarf_read_debug)
13772 {
13773 fprintf_unfiltered (gdb_stdlog,
13774 "Virtual DWO %s %s found: @%s\n",
13775 kind, hex_string (signature),
13776 host_address_to_string (dwo_cutu));
13777 }
13778 return dwo_cutu;
13779 }
13780 }
13781 }
13782 else
13783 {
13784 /* No DWP file, look for the DWO file. */
13785
13786 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13787 dwo_name, comp_dir);
13788 if (*dwo_file_slot == NULL)
13789 {
13790 /* Read in the file and build a table of the CUs/TUs it contains. */
13791 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13792 }
13793 /* NOTE: This will be NULL if unable to open the file. */
13794 dwo_file = (struct dwo_file *) *dwo_file_slot;
13795
13796 if (dwo_file != NULL)
13797 {
13798 struct dwo_unit *dwo_cutu = NULL;
13799
13800 if (is_debug_types && dwo_file->tus)
13801 {
13802 struct dwo_unit find_dwo_cutu;
13803
13804 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13805 find_dwo_cutu.signature = signature;
13806 dwo_cutu
13807 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13808 }
13809 else if (!is_debug_types && dwo_file->cus)
13810 {
13811 struct dwo_unit find_dwo_cutu;
13812
13813 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13814 find_dwo_cutu.signature = signature;
13815 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13816 &find_dwo_cutu);
13817 }
13818
13819 if (dwo_cutu != NULL)
13820 {
13821 if (dwarf_read_debug)
13822 {
13823 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13824 kind, dwo_name, hex_string (signature),
13825 host_address_to_string (dwo_cutu));
13826 }
13827 return dwo_cutu;
13828 }
13829 }
13830 }
13831
13832 /* We didn't find it. This could mean a dwo_id mismatch, or
13833 someone deleted the DWO/DWP file, or the search path isn't set up
13834 correctly to find the file. */
13835
13836 if (dwarf_read_debug)
13837 {
13838 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13839 kind, dwo_name, hex_string (signature));
13840 }
13841
13842 /* This is a warning and not a complaint because it can be caused by
13843 pilot error (e.g., user accidentally deleting the DWO). */
13844 {
13845 /* Print the name of the DWP file if we looked there, helps the user
13846 better diagnose the problem. */
13847 std::string dwp_text;
13848
13849 if (dwp_file != NULL)
13850 dwp_text = string_printf (" [in DWP file %s]",
13851 lbasename (dwp_file->name));
13852
13853 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13854 " [in module %s]"),
13855 kind, dwo_name, hex_string (signature),
13856 dwp_text.c_str (),
13857 this_unit->is_debug_types ? "TU" : "CU",
13858 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13859 }
13860 return NULL;
13861 }
13862
13863 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13864 See lookup_dwo_cutu_unit for details. */
13865
13866 static struct dwo_unit *
13867 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13868 const char *dwo_name, const char *comp_dir,
13869 ULONGEST signature)
13870 {
13871 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13872 }
13873
13874 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13875 See lookup_dwo_cutu_unit for details. */
13876
13877 static struct dwo_unit *
13878 lookup_dwo_type_unit (struct signatured_type *this_tu,
13879 const char *dwo_name, const char *comp_dir)
13880 {
13881 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13882 }
13883
13884 /* Traversal function for queue_and_load_all_dwo_tus. */
13885
13886 static int
13887 queue_and_load_dwo_tu (void **slot, void *info)
13888 {
13889 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13890 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13891 ULONGEST signature = dwo_unit->signature;
13892 struct signatured_type *sig_type =
13893 lookup_dwo_signatured_type (per_cu->cu, signature);
13894
13895 if (sig_type != NULL)
13896 {
13897 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13898
13899 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13900 a real dependency of PER_CU on SIG_TYPE. That is detected later
13901 while processing PER_CU. */
13902 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13903 load_full_type_unit (sig_cu);
13904 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13905 }
13906
13907 return 1;
13908 }
13909
13910 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13911 The DWO may have the only definition of the type, though it may not be
13912 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13913 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13914
13915 static void
13916 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13917 {
13918 struct dwo_unit *dwo_unit;
13919 struct dwo_file *dwo_file;
13920
13921 gdb_assert (!per_cu->is_debug_types);
13922 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13923 gdb_assert (per_cu->cu != NULL);
13924
13925 dwo_unit = per_cu->cu->dwo_unit;
13926 gdb_assert (dwo_unit != NULL);
13927
13928 dwo_file = dwo_unit->dwo_file;
13929 if (dwo_file->tus != NULL)
13930 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13931 }
13932
13933 /* Free all resources associated with DWO_FILE.
13934 Close the DWO file and munmap the sections.
13935 All memory should be on the objfile obstack. */
13936
13937 static void
13938 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
13939 {
13940
13941 /* Note: dbfd is NULL for virtual DWO files. */
13942 gdb_bfd_unref (dwo_file->dbfd);
13943
13944 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13945 }
13946
13947 /* Wrapper for free_dwo_file for use in cleanups. */
13948
13949 static void
13950 free_dwo_file_cleanup (void *arg)
13951 {
13952 struct free_dwo_file_cleanup_data *data
13953 = (struct free_dwo_file_cleanup_data *) arg;
13954 struct objfile *objfile = data->dwarf2_per_objfile->objfile;
13955
13956 free_dwo_file (data->dwo_file, objfile);
13957
13958 xfree (data);
13959 }
13960
13961 /* Traversal function for free_dwo_files. */
13962
13963 static int
13964 free_dwo_file_from_slot (void **slot, void *info)
13965 {
13966 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13967 struct objfile *objfile = (struct objfile *) info;
13968
13969 free_dwo_file (dwo_file, objfile);
13970
13971 return 1;
13972 }
13973
13974 /* Free all resources associated with DWO_FILES. */
13975
13976 static void
13977 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13978 {
13979 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13980 }
13981 \f
13982 /* Read in various DIEs. */
13983
13984 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13985 Inherit only the children of the DW_AT_abstract_origin DIE not being
13986 already referenced by DW_AT_abstract_origin from the children of the
13987 current DIE. */
13988
13989 static void
13990 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13991 {
13992 struct die_info *child_die;
13993 sect_offset *offsetp;
13994 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13995 struct die_info *origin_die;
13996 /* Iterator of the ORIGIN_DIE children. */
13997 struct die_info *origin_child_die;
13998 struct attribute *attr;
13999 struct dwarf2_cu *origin_cu;
14000 struct pending **origin_previous_list_in_scope;
14001
14002 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14003 if (!attr)
14004 return;
14005
14006 /* Note that following die references may follow to a die in a
14007 different cu. */
14008
14009 origin_cu = cu;
14010 origin_die = follow_die_ref (die, attr, &origin_cu);
14011
14012 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
14013 symbols in. */
14014 origin_previous_list_in_scope = origin_cu->list_in_scope;
14015 origin_cu->list_in_scope = cu->list_in_scope;
14016
14017 if (die->tag != origin_die->tag
14018 && !(die->tag == DW_TAG_inlined_subroutine
14019 && origin_die->tag == DW_TAG_subprogram))
14020 complaint (&symfile_complaints,
14021 _("DIE %s and its abstract origin %s have different tags"),
14022 sect_offset_str (die->sect_off),
14023 sect_offset_str (origin_die->sect_off));
14024
14025 std::vector<sect_offset> offsets;
14026
14027 for (child_die = die->child;
14028 child_die && child_die->tag;
14029 child_die = sibling_die (child_die))
14030 {
14031 struct die_info *child_origin_die;
14032 struct dwarf2_cu *child_origin_cu;
14033
14034 /* We are trying to process concrete instance entries:
14035 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
14036 it's not relevant to our analysis here. i.e. detecting DIEs that are
14037 present in the abstract instance but not referenced in the concrete
14038 one. */
14039 if (child_die->tag == DW_TAG_call_site
14040 || child_die->tag == DW_TAG_GNU_call_site)
14041 continue;
14042
14043 /* For each CHILD_DIE, find the corresponding child of
14044 ORIGIN_DIE. If there is more than one layer of
14045 DW_AT_abstract_origin, follow them all; there shouldn't be,
14046 but GCC versions at least through 4.4 generate this (GCC PR
14047 40573). */
14048 child_origin_die = child_die;
14049 child_origin_cu = cu;
14050 while (1)
14051 {
14052 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
14053 child_origin_cu);
14054 if (attr == NULL)
14055 break;
14056 child_origin_die = follow_die_ref (child_origin_die, attr,
14057 &child_origin_cu);
14058 }
14059
14060 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
14061 counterpart may exist. */
14062 if (child_origin_die != child_die)
14063 {
14064 if (child_die->tag != child_origin_die->tag
14065 && !(child_die->tag == DW_TAG_inlined_subroutine
14066 && child_origin_die->tag == DW_TAG_subprogram))
14067 complaint (&symfile_complaints,
14068 _("Child DIE %s and its abstract origin %s have "
14069 "different tags"),
14070 sect_offset_str (child_die->sect_off),
14071 sect_offset_str (child_origin_die->sect_off));
14072 if (child_origin_die->parent != origin_die)
14073 complaint (&symfile_complaints,
14074 _("Child DIE %s and its abstract origin %s have "
14075 "different parents"),
14076 sect_offset_str (child_die->sect_off),
14077 sect_offset_str (child_origin_die->sect_off));
14078 else
14079 offsets.push_back (child_origin_die->sect_off);
14080 }
14081 }
14082 std::sort (offsets.begin (), offsets.end ());
14083 sect_offset *offsets_end = offsets.data () + offsets.size ();
14084 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
14085 if (offsetp[-1] == *offsetp)
14086 complaint (&symfile_complaints,
14087 _("Multiple children of DIE %s refer "
14088 "to DIE %s as their abstract origin"),
14089 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
14090
14091 offsetp = offsets.data ();
14092 origin_child_die = origin_die->child;
14093 while (origin_child_die && origin_child_die->tag)
14094 {
14095 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
14096 while (offsetp < offsets_end
14097 && *offsetp < origin_child_die->sect_off)
14098 offsetp++;
14099 if (offsetp >= offsets_end
14100 || *offsetp > origin_child_die->sect_off)
14101 {
14102 /* Found that ORIGIN_CHILD_DIE is really not referenced.
14103 Check whether we're already processing ORIGIN_CHILD_DIE.
14104 This can happen with mutually referenced abstract_origins.
14105 PR 16581. */
14106 if (!origin_child_die->in_process)
14107 process_die (origin_child_die, origin_cu);
14108 }
14109 origin_child_die = sibling_die (origin_child_die);
14110 }
14111 origin_cu->list_in_scope = origin_previous_list_in_scope;
14112 }
14113
14114 static void
14115 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
14116 {
14117 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14119 struct context_stack *newobj;
14120 CORE_ADDR lowpc;
14121 CORE_ADDR highpc;
14122 struct die_info *child_die;
14123 struct attribute *attr, *call_line, *call_file;
14124 const char *name;
14125 CORE_ADDR baseaddr;
14126 struct block *block;
14127 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
14128 std::vector<struct symbol *> template_args;
14129 struct template_symbol *templ_func = NULL;
14130
14131 if (inlined_func)
14132 {
14133 /* If we do not have call site information, we can't show the
14134 caller of this inlined function. That's too confusing, so
14135 only use the scope for local variables. */
14136 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
14137 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
14138 if (call_line == NULL || call_file == NULL)
14139 {
14140 read_lexical_block_scope (die, cu);
14141 return;
14142 }
14143 }
14144
14145 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14146
14147 name = dwarf2_name (die, cu);
14148
14149 /* Ignore functions with missing or empty names. These are actually
14150 illegal according to the DWARF standard. */
14151 if (name == NULL)
14152 {
14153 complaint (&symfile_complaints,
14154 _("missing name for subprogram DIE at %s"),
14155 sect_offset_str (die->sect_off));
14156 return;
14157 }
14158
14159 /* Ignore functions with missing or invalid low and high pc attributes. */
14160 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
14161 <= PC_BOUNDS_INVALID)
14162 {
14163 attr = dwarf2_attr (die, DW_AT_external, cu);
14164 if (!attr || !DW_UNSND (attr))
14165 complaint (&symfile_complaints,
14166 _("cannot get low and high bounds "
14167 "for subprogram DIE at %s"),
14168 sect_offset_str (die->sect_off));
14169 return;
14170 }
14171
14172 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14173 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
14174
14175 /* If we have any template arguments, then we must allocate a
14176 different sort of symbol. */
14177 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
14178 {
14179 if (child_die->tag == DW_TAG_template_type_param
14180 || child_die->tag == DW_TAG_template_value_param)
14181 {
14182 templ_func = allocate_template_symbol (objfile);
14183 templ_func->subclass = SYMBOL_TEMPLATE;
14184 break;
14185 }
14186 }
14187
14188 newobj = push_context (0, lowpc);
14189 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
14190 (struct symbol *) templ_func);
14191
14192 /* If there is a location expression for DW_AT_frame_base, record
14193 it. */
14194 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
14195 if (attr)
14196 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
14197
14198 /* If there is a location for the static link, record it. */
14199 newobj->static_link = NULL;
14200 attr = dwarf2_attr (die, DW_AT_static_link, cu);
14201 if (attr)
14202 {
14203 newobj->static_link
14204 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
14205 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
14206 }
14207
14208 cu->list_in_scope = &local_symbols;
14209
14210 if (die->child != NULL)
14211 {
14212 child_die = die->child;
14213 while (child_die && child_die->tag)
14214 {
14215 if (child_die->tag == DW_TAG_template_type_param
14216 || child_die->tag == DW_TAG_template_value_param)
14217 {
14218 struct symbol *arg = new_symbol (child_die, NULL, cu);
14219
14220 if (arg != NULL)
14221 template_args.push_back (arg);
14222 }
14223 else
14224 process_die (child_die, cu);
14225 child_die = sibling_die (child_die);
14226 }
14227 }
14228
14229 inherit_abstract_dies (die, cu);
14230
14231 /* If we have a DW_AT_specification, we might need to import using
14232 directives from the context of the specification DIE. See the
14233 comment in determine_prefix. */
14234 if (cu->language == language_cplus
14235 && dwarf2_attr (die, DW_AT_specification, cu))
14236 {
14237 struct dwarf2_cu *spec_cu = cu;
14238 struct die_info *spec_die = die_specification (die, &spec_cu);
14239
14240 while (spec_die)
14241 {
14242 child_die = spec_die->child;
14243 while (child_die && child_die->tag)
14244 {
14245 if (child_die->tag == DW_TAG_imported_module)
14246 process_die (child_die, spec_cu);
14247 child_die = sibling_die (child_die);
14248 }
14249
14250 /* In some cases, GCC generates specification DIEs that
14251 themselves contain DW_AT_specification attributes. */
14252 spec_die = die_specification (spec_die, &spec_cu);
14253 }
14254 }
14255
14256 newobj = pop_context ();
14257 /* Make a block for the local symbols within. */
14258 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
14259 newobj->static_link, lowpc, highpc);
14260
14261 /* For C++, set the block's scope. */
14262 if ((cu->language == language_cplus
14263 || cu->language == language_fortran
14264 || cu->language == language_d
14265 || cu->language == language_rust)
14266 && cu->processing_has_namespace_info)
14267 block_set_scope (block, determine_prefix (die, cu),
14268 &objfile->objfile_obstack);
14269
14270 /* If we have address ranges, record them. */
14271 dwarf2_record_block_ranges (die, block, baseaddr, cu);
14272
14273 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
14274
14275 /* Attach template arguments to function. */
14276 if (!template_args.empty ())
14277 {
14278 gdb_assert (templ_func != NULL);
14279
14280 templ_func->n_template_arguments = template_args.size ();
14281 templ_func->template_arguments
14282 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
14283 templ_func->n_template_arguments);
14284 memcpy (templ_func->template_arguments,
14285 template_args.data (),
14286 (templ_func->n_template_arguments * sizeof (struct symbol *)));
14287 }
14288
14289 /* In C++, we can have functions nested inside functions (e.g., when
14290 a function declares a class that has methods). This means that
14291 when we finish processing a function scope, we may need to go
14292 back to building a containing block's symbol lists. */
14293 local_symbols = newobj->locals;
14294 local_using_directives = newobj->local_using_directives;
14295
14296 /* If we've finished processing a top-level function, subsequent
14297 symbols go in the file symbol list. */
14298 if (outermost_context_p ())
14299 cu->list_in_scope = &file_symbols;
14300 }
14301
14302 /* Process all the DIES contained within a lexical block scope. Start
14303 a new scope, process the dies, and then close the scope. */
14304
14305 static void
14306 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
14307 {
14308 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14309 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14310 struct context_stack *newobj;
14311 CORE_ADDR lowpc, highpc;
14312 struct die_info *child_die;
14313 CORE_ADDR baseaddr;
14314
14315 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14316
14317 /* Ignore blocks with missing or invalid low and high pc attributes. */
14318 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
14319 as multiple lexical blocks? Handling children in a sane way would
14320 be nasty. Might be easier to properly extend generic blocks to
14321 describe ranges. */
14322 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
14323 {
14324 case PC_BOUNDS_NOT_PRESENT:
14325 /* DW_TAG_lexical_block has no attributes, process its children as if
14326 there was no wrapping by that DW_TAG_lexical_block.
14327 GCC does no longer produces such DWARF since GCC r224161. */
14328 for (child_die = die->child;
14329 child_die != NULL && child_die->tag;
14330 child_die = sibling_die (child_die))
14331 process_die (child_die, cu);
14332 return;
14333 case PC_BOUNDS_INVALID:
14334 return;
14335 }
14336 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14337 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
14338
14339 push_context (0, lowpc);
14340 if (die->child != NULL)
14341 {
14342 child_die = die->child;
14343 while (child_die && child_die->tag)
14344 {
14345 process_die (child_die, cu);
14346 child_die = sibling_die (child_die);
14347 }
14348 }
14349 inherit_abstract_dies (die, cu);
14350 newobj = pop_context ();
14351
14352 if (local_symbols != NULL || local_using_directives != NULL)
14353 {
14354 struct block *block
14355 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
14356 newobj->start_addr, highpc);
14357
14358 /* Note that recording ranges after traversing children, as we
14359 do here, means that recording a parent's ranges entails
14360 walking across all its children's ranges as they appear in
14361 the address map, which is quadratic behavior.
14362
14363 It would be nicer to record the parent's ranges before
14364 traversing its children, simply overriding whatever you find
14365 there. But since we don't even decide whether to create a
14366 block until after we've traversed its children, that's hard
14367 to do. */
14368 dwarf2_record_block_ranges (die, block, baseaddr, cu);
14369 }
14370 local_symbols = newobj->locals;
14371 local_using_directives = newobj->local_using_directives;
14372 }
14373
14374 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
14375
14376 static void
14377 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
14378 {
14379 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14380 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14381 CORE_ADDR pc, baseaddr;
14382 struct attribute *attr;
14383 struct call_site *call_site, call_site_local;
14384 void **slot;
14385 int nparams;
14386 struct die_info *child_die;
14387
14388 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14389
14390 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
14391 if (attr == NULL)
14392 {
14393 /* This was a pre-DWARF-5 GNU extension alias
14394 for DW_AT_call_return_pc. */
14395 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14396 }
14397 if (!attr)
14398 {
14399 complaint (&symfile_complaints,
14400 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
14401 "DIE %s [in module %s]"),
14402 sect_offset_str (die->sect_off), objfile_name (objfile));
14403 return;
14404 }
14405 pc = attr_value_as_address (attr) + baseaddr;
14406 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
14407
14408 if (cu->call_site_htab == NULL)
14409 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
14410 NULL, &objfile->objfile_obstack,
14411 hashtab_obstack_allocate, NULL);
14412 call_site_local.pc = pc;
14413 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
14414 if (*slot != NULL)
14415 {
14416 complaint (&symfile_complaints,
14417 _("Duplicate PC %s for DW_TAG_call_site "
14418 "DIE %s [in module %s]"),
14419 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
14420 objfile_name (objfile));
14421 return;
14422 }
14423
14424 /* Count parameters at the caller. */
14425
14426 nparams = 0;
14427 for (child_die = die->child; child_die && child_die->tag;
14428 child_die = sibling_die (child_die))
14429 {
14430 if (child_die->tag != DW_TAG_call_site_parameter
14431 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14432 {
14433 complaint (&symfile_complaints,
14434 _("Tag %d is not DW_TAG_call_site_parameter in "
14435 "DW_TAG_call_site child DIE %s [in module %s]"),
14436 child_die->tag, sect_offset_str (child_die->sect_off),
14437 objfile_name (objfile));
14438 continue;
14439 }
14440
14441 nparams++;
14442 }
14443
14444 call_site
14445 = ((struct call_site *)
14446 obstack_alloc (&objfile->objfile_obstack,
14447 sizeof (*call_site)
14448 + (sizeof (*call_site->parameter) * (nparams - 1))));
14449 *slot = call_site;
14450 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14451 call_site->pc = pc;
14452
14453 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14454 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14455 {
14456 struct die_info *func_die;
14457
14458 /* Skip also over DW_TAG_inlined_subroutine. */
14459 for (func_die = die->parent;
14460 func_die && func_die->tag != DW_TAG_subprogram
14461 && func_die->tag != DW_TAG_subroutine_type;
14462 func_die = func_die->parent);
14463
14464 /* DW_AT_call_all_calls is a superset
14465 of DW_AT_call_all_tail_calls. */
14466 if (func_die
14467 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14468 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14469 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14470 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14471 {
14472 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14473 not complete. But keep CALL_SITE for look ups via call_site_htab,
14474 both the initial caller containing the real return address PC and
14475 the final callee containing the current PC of a chain of tail
14476 calls do not need to have the tail call list complete. But any
14477 function candidate for a virtual tail call frame searched via
14478 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14479 determined unambiguously. */
14480 }
14481 else
14482 {
14483 struct type *func_type = NULL;
14484
14485 if (func_die)
14486 func_type = get_die_type (func_die, cu);
14487 if (func_type != NULL)
14488 {
14489 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14490
14491 /* Enlist this call site to the function. */
14492 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14493 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14494 }
14495 else
14496 complaint (&symfile_complaints,
14497 _("Cannot find function owning DW_TAG_call_site "
14498 "DIE %s [in module %s]"),
14499 sect_offset_str (die->sect_off), objfile_name (objfile));
14500 }
14501 }
14502
14503 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14504 if (attr == NULL)
14505 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14506 if (attr == NULL)
14507 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14508 if (attr == NULL)
14509 {
14510 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14511 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14512 }
14513 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14514 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14515 /* Keep NULL DWARF_BLOCK. */;
14516 else if (attr_form_is_block (attr))
14517 {
14518 struct dwarf2_locexpr_baton *dlbaton;
14519
14520 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14521 dlbaton->data = DW_BLOCK (attr)->data;
14522 dlbaton->size = DW_BLOCK (attr)->size;
14523 dlbaton->per_cu = cu->per_cu;
14524
14525 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14526 }
14527 else if (attr_form_is_ref (attr))
14528 {
14529 struct dwarf2_cu *target_cu = cu;
14530 struct die_info *target_die;
14531
14532 target_die = follow_die_ref (die, attr, &target_cu);
14533 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14534 if (die_is_declaration (target_die, target_cu))
14535 {
14536 const char *target_physname;
14537
14538 /* Prefer the mangled name; otherwise compute the demangled one. */
14539 target_physname = dw2_linkage_name (target_die, target_cu);
14540 if (target_physname == NULL)
14541 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14542 if (target_physname == NULL)
14543 complaint (&symfile_complaints,
14544 _("DW_AT_call_target target DIE has invalid "
14545 "physname, for referencing DIE %s [in module %s]"),
14546 sect_offset_str (die->sect_off), objfile_name (objfile));
14547 else
14548 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14549 }
14550 else
14551 {
14552 CORE_ADDR lowpc;
14553
14554 /* DW_AT_entry_pc should be preferred. */
14555 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14556 <= PC_BOUNDS_INVALID)
14557 complaint (&symfile_complaints,
14558 _("DW_AT_call_target target DIE has invalid "
14559 "low pc, for referencing DIE %s [in module %s]"),
14560 sect_offset_str (die->sect_off), objfile_name (objfile));
14561 else
14562 {
14563 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14564 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14565 }
14566 }
14567 }
14568 else
14569 complaint (&symfile_complaints,
14570 _("DW_TAG_call_site DW_AT_call_target is neither "
14571 "block nor reference, for DIE %s [in module %s]"),
14572 sect_offset_str (die->sect_off), objfile_name (objfile));
14573
14574 call_site->per_cu = cu->per_cu;
14575
14576 for (child_die = die->child;
14577 child_die && child_die->tag;
14578 child_die = sibling_die (child_die))
14579 {
14580 struct call_site_parameter *parameter;
14581 struct attribute *loc, *origin;
14582
14583 if (child_die->tag != DW_TAG_call_site_parameter
14584 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14585 {
14586 /* Already printed the complaint above. */
14587 continue;
14588 }
14589
14590 gdb_assert (call_site->parameter_count < nparams);
14591 parameter = &call_site->parameter[call_site->parameter_count];
14592
14593 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14594 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14595 register is contained in DW_AT_call_value. */
14596
14597 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14598 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14599 if (origin == NULL)
14600 {
14601 /* This was a pre-DWARF-5 GNU extension alias
14602 for DW_AT_call_parameter. */
14603 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14604 }
14605 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14606 {
14607 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14608
14609 sect_offset sect_off
14610 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14611 if (!offset_in_cu_p (&cu->header, sect_off))
14612 {
14613 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14614 binding can be done only inside one CU. Such referenced DIE
14615 therefore cannot be even moved to DW_TAG_partial_unit. */
14616 complaint (&symfile_complaints,
14617 _("DW_AT_call_parameter offset is not in CU for "
14618 "DW_TAG_call_site child DIE %s [in module %s]"),
14619 sect_offset_str (child_die->sect_off),
14620 objfile_name (objfile));
14621 continue;
14622 }
14623 parameter->u.param_cu_off
14624 = (cu_offset) (sect_off - cu->header.sect_off);
14625 }
14626 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14627 {
14628 complaint (&symfile_complaints,
14629 _("No DW_FORM_block* DW_AT_location for "
14630 "DW_TAG_call_site child DIE %s [in module %s]"),
14631 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14632 continue;
14633 }
14634 else
14635 {
14636 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14637 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14638 if (parameter->u.dwarf_reg != -1)
14639 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14640 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14641 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14642 &parameter->u.fb_offset))
14643 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14644 else
14645 {
14646 complaint (&symfile_complaints,
14647 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14648 "for DW_FORM_block* DW_AT_location is supported for "
14649 "DW_TAG_call_site child DIE %s "
14650 "[in module %s]"),
14651 sect_offset_str (child_die->sect_off),
14652 objfile_name (objfile));
14653 continue;
14654 }
14655 }
14656
14657 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14658 if (attr == NULL)
14659 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14660 if (!attr_form_is_block (attr))
14661 {
14662 complaint (&symfile_complaints,
14663 _("No DW_FORM_block* DW_AT_call_value for "
14664 "DW_TAG_call_site child DIE %s [in module %s]"),
14665 sect_offset_str (child_die->sect_off),
14666 objfile_name (objfile));
14667 continue;
14668 }
14669 parameter->value = DW_BLOCK (attr)->data;
14670 parameter->value_size = DW_BLOCK (attr)->size;
14671
14672 /* Parameters are not pre-cleared by memset above. */
14673 parameter->data_value = NULL;
14674 parameter->data_value_size = 0;
14675 call_site->parameter_count++;
14676
14677 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14678 if (attr == NULL)
14679 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14680 if (attr)
14681 {
14682 if (!attr_form_is_block (attr))
14683 complaint (&symfile_complaints,
14684 _("No DW_FORM_block* DW_AT_call_data_value for "
14685 "DW_TAG_call_site child DIE %s [in module %s]"),
14686 sect_offset_str (child_die->sect_off),
14687 objfile_name (objfile));
14688 else
14689 {
14690 parameter->data_value = DW_BLOCK (attr)->data;
14691 parameter->data_value_size = DW_BLOCK (attr)->size;
14692 }
14693 }
14694 }
14695 }
14696
14697 /* Helper function for read_variable. If DIE represents a virtual
14698 table, then return the type of the concrete object that is
14699 associated with the virtual table. Otherwise, return NULL. */
14700
14701 static struct type *
14702 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14703 {
14704 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14705 if (attr == NULL)
14706 return NULL;
14707
14708 /* Find the type DIE. */
14709 struct die_info *type_die = NULL;
14710 struct dwarf2_cu *type_cu = cu;
14711
14712 if (attr_form_is_ref (attr))
14713 type_die = follow_die_ref (die, attr, &type_cu);
14714 if (type_die == NULL)
14715 return NULL;
14716
14717 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14718 return NULL;
14719 return die_containing_type (type_die, type_cu);
14720 }
14721
14722 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14723
14724 static void
14725 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14726 {
14727 struct rust_vtable_symbol *storage = NULL;
14728
14729 if (cu->language == language_rust)
14730 {
14731 struct type *containing_type = rust_containing_type (die, cu);
14732
14733 if (containing_type != NULL)
14734 {
14735 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14736
14737 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14738 struct rust_vtable_symbol);
14739 initialize_objfile_symbol (storage);
14740 storage->concrete_type = containing_type;
14741 storage->subclass = SYMBOL_RUST_VTABLE;
14742 }
14743 }
14744
14745 new_symbol (die, NULL, cu, storage);
14746 }
14747
14748 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14749 reading .debug_rnglists.
14750 Callback's type should be:
14751 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14752 Return true if the attributes are present and valid, otherwise,
14753 return false. */
14754
14755 template <typename Callback>
14756 static bool
14757 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14758 Callback &&callback)
14759 {
14760 struct dwarf2_per_objfile *dwarf2_per_objfile
14761 = cu->per_cu->dwarf2_per_objfile;
14762 struct objfile *objfile = dwarf2_per_objfile->objfile;
14763 bfd *obfd = objfile->obfd;
14764 /* Base address selection entry. */
14765 CORE_ADDR base;
14766 int found_base;
14767 const gdb_byte *buffer;
14768 CORE_ADDR baseaddr;
14769 bool overflow = false;
14770
14771 found_base = cu->base_known;
14772 base = cu->base_address;
14773
14774 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14775 if (offset >= dwarf2_per_objfile->rnglists.size)
14776 {
14777 complaint (&symfile_complaints,
14778 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14779 offset);
14780 return false;
14781 }
14782 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14783
14784 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14785
14786 while (1)
14787 {
14788 /* Initialize it due to a false compiler warning. */
14789 CORE_ADDR range_beginning = 0, range_end = 0;
14790 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14791 + dwarf2_per_objfile->rnglists.size);
14792 unsigned int bytes_read;
14793
14794 if (buffer == buf_end)
14795 {
14796 overflow = true;
14797 break;
14798 }
14799 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14800 switch (rlet)
14801 {
14802 case DW_RLE_end_of_list:
14803 break;
14804 case DW_RLE_base_address:
14805 if (buffer + cu->header.addr_size > buf_end)
14806 {
14807 overflow = true;
14808 break;
14809 }
14810 base = read_address (obfd, buffer, cu, &bytes_read);
14811 found_base = 1;
14812 buffer += bytes_read;
14813 break;
14814 case DW_RLE_start_length:
14815 if (buffer + cu->header.addr_size > buf_end)
14816 {
14817 overflow = true;
14818 break;
14819 }
14820 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14821 buffer += bytes_read;
14822 range_end = (range_beginning
14823 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14824 buffer += bytes_read;
14825 if (buffer > buf_end)
14826 {
14827 overflow = true;
14828 break;
14829 }
14830 break;
14831 case DW_RLE_offset_pair:
14832 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14833 buffer += bytes_read;
14834 if (buffer > buf_end)
14835 {
14836 overflow = true;
14837 break;
14838 }
14839 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14840 buffer += bytes_read;
14841 if (buffer > buf_end)
14842 {
14843 overflow = true;
14844 break;
14845 }
14846 break;
14847 case DW_RLE_start_end:
14848 if (buffer + 2 * cu->header.addr_size > buf_end)
14849 {
14850 overflow = true;
14851 break;
14852 }
14853 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14854 buffer += bytes_read;
14855 range_end = read_address (obfd, buffer, cu, &bytes_read);
14856 buffer += bytes_read;
14857 break;
14858 default:
14859 complaint (&symfile_complaints,
14860 _("Invalid .debug_rnglists data (no base address)"));
14861 return false;
14862 }
14863 if (rlet == DW_RLE_end_of_list || overflow)
14864 break;
14865 if (rlet == DW_RLE_base_address)
14866 continue;
14867
14868 if (!found_base)
14869 {
14870 /* We have no valid base address for the ranges
14871 data. */
14872 complaint (&symfile_complaints,
14873 _("Invalid .debug_rnglists data (no base address)"));
14874 return false;
14875 }
14876
14877 if (range_beginning > range_end)
14878 {
14879 /* Inverted range entries are invalid. */
14880 complaint (&symfile_complaints,
14881 _("Invalid .debug_rnglists data (inverted range)"));
14882 return false;
14883 }
14884
14885 /* Empty range entries have no effect. */
14886 if (range_beginning == range_end)
14887 continue;
14888
14889 range_beginning += base;
14890 range_end += base;
14891
14892 /* A not-uncommon case of bad debug info.
14893 Don't pollute the addrmap with bad data. */
14894 if (range_beginning + baseaddr == 0
14895 && !dwarf2_per_objfile->has_section_at_zero)
14896 {
14897 complaint (&symfile_complaints,
14898 _(".debug_rnglists entry has start address of zero"
14899 " [in module %s]"), objfile_name (objfile));
14900 continue;
14901 }
14902
14903 callback (range_beginning, range_end);
14904 }
14905
14906 if (overflow)
14907 {
14908 complaint (&symfile_complaints,
14909 _("Offset %d is not terminated "
14910 "for DW_AT_ranges attribute"),
14911 offset);
14912 return false;
14913 }
14914
14915 return true;
14916 }
14917
14918 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14919 Callback's type should be:
14920 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14921 Return 1 if the attributes are present and valid, otherwise, return 0. */
14922
14923 template <typename Callback>
14924 static int
14925 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14926 Callback &&callback)
14927 {
14928 struct dwarf2_per_objfile *dwarf2_per_objfile
14929 = cu->per_cu->dwarf2_per_objfile;
14930 struct objfile *objfile = dwarf2_per_objfile->objfile;
14931 struct comp_unit_head *cu_header = &cu->header;
14932 bfd *obfd = objfile->obfd;
14933 unsigned int addr_size = cu_header->addr_size;
14934 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14935 /* Base address selection entry. */
14936 CORE_ADDR base;
14937 int found_base;
14938 unsigned int dummy;
14939 const gdb_byte *buffer;
14940 CORE_ADDR baseaddr;
14941
14942 if (cu_header->version >= 5)
14943 return dwarf2_rnglists_process (offset, cu, callback);
14944
14945 found_base = cu->base_known;
14946 base = cu->base_address;
14947
14948 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14949 if (offset >= dwarf2_per_objfile->ranges.size)
14950 {
14951 complaint (&symfile_complaints,
14952 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14953 offset);
14954 return 0;
14955 }
14956 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14957
14958 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14959
14960 while (1)
14961 {
14962 CORE_ADDR range_beginning, range_end;
14963
14964 range_beginning = read_address (obfd, buffer, cu, &dummy);
14965 buffer += addr_size;
14966 range_end = read_address (obfd, buffer, cu, &dummy);
14967 buffer += addr_size;
14968 offset += 2 * addr_size;
14969
14970 /* An end of list marker is a pair of zero addresses. */
14971 if (range_beginning == 0 && range_end == 0)
14972 /* Found the end of list entry. */
14973 break;
14974
14975 /* Each base address selection entry is a pair of 2 values.
14976 The first is the largest possible address, the second is
14977 the base address. Check for a base address here. */
14978 if ((range_beginning & mask) == mask)
14979 {
14980 /* If we found the largest possible address, then we already
14981 have the base address in range_end. */
14982 base = range_end;
14983 found_base = 1;
14984 continue;
14985 }
14986
14987 if (!found_base)
14988 {
14989 /* We have no valid base address for the ranges
14990 data. */
14991 complaint (&symfile_complaints,
14992 _("Invalid .debug_ranges data (no base address)"));
14993 return 0;
14994 }
14995
14996 if (range_beginning > range_end)
14997 {
14998 /* Inverted range entries are invalid. */
14999 complaint (&symfile_complaints,
15000 _("Invalid .debug_ranges data (inverted range)"));
15001 return 0;
15002 }
15003
15004 /* Empty range entries have no effect. */
15005 if (range_beginning == range_end)
15006 continue;
15007
15008 range_beginning += base;
15009 range_end += base;
15010
15011 /* A not-uncommon case of bad debug info.
15012 Don't pollute the addrmap with bad data. */
15013 if (range_beginning + baseaddr == 0
15014 && !dwarf2_per_objfile->has_section_at_zero)
15015 {
15016 complaint (&symfile_complaints,
15017 _(".debug_ranges entry has start address of zero"
15018 " [in module %s]"), objfile_name (objfile));
15019 continue;
15020 }
15021
15022 callback (range_beginning, range_end);
15023 }
15024
15025 return 1;
15026 }
15027
15028 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
15029 Return 1 if the attributes are present and valid, otherwise, return 0.
15030 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
15031
15032 static int
15033 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
15034 CORE_ADDR *high_return, struct dwarf2_cu *cu,
15035 struct partial_symtab *ranges_pst)
15036 {
15037 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15038 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15039 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
15040 SECT_OFF_TEXT (objfile));
15041 int low_set = 0;
15042 CORE_ADDR low = 0;
15043 CORE_ADDR high = 0;
15044 int retval;
15045
15046 retval = dwarf2_ranges_process (offset, cu,
15047 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
15048 {
15049 if (ranges_pst != NULL)
15050 {
15051 CORE_ADDR lowpc;
15052 CORE_ADDR highpc;
15053
15054 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
15055 range_beginning + baseaddr);
15056 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
15057 range_end + baseaddr);
15058 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
15059 ranges_pst);
15060 }
15061
15062 /* FIXME: This is recording everything as a low-high
15063 segment of consecutive addresses. We should have a
15064 data structure for discontiguous block ranges
15065 instead. */
15066 if (! low_set)
15067 {
15068 low = range_beginning;
15069 high = range_end;
15070 low_set = 1;
15071 }
15072 else
15073 {
15074 if (range_beginning < low)
15075 low = range_beginning;
15076 if (range_end > high)
15077 high = range_end;
15078 }
15079 });
15080 if (!retval)
15081 return 0;
15082
15083 if (! low_set)
15084 /* If the first entry is an end-of-list marker, the range
15085 describes an empty scope, i.e. no instructions. */
15086 return 0;
15087
15088 if (low_return)
15089 *low_return = low;
15090 if (high_return)
15091 *high_return = high;
15092 return 1;
15093 }
15094
15095 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
15096 definition for the return value. *LOWPC and *HIGHPC are set iff
15097 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
15098
15099 static enum pc_bounds_kind
15100 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
15101 CORE_ADDR *highpc, struct dwarf2_cu *cu,
15102 struct partial_symtab *pst)
15103 {
15104 struct dwarf2_per_objfile *dwarf2_per_objfile
15105 = cu->per_cu->dwarf2_per_objfile;
15106 struct attribute *attr;
15107 struct attribute *attr_high;
15108 CORE_ADDR low = 0;
15109 CORE_ADDR high = 0;
15110 enum pc_bounds_kind ret;
15111
15112 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
15113 if (attr_high)
15114 {
15115 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15116 if (attr)
15117 {
15118 low = attr_value_as_address (attr);
15119 high = attr_value_as_address (attr_high);
15120 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
15121 high += low;
15122 }
15123 else
15124 /* Found high w/o low attribute. */
15125 return PC_BOUNDS_INVALID;
15126
15127 /* Found consecutive range of addresses. */
15128 ret = PC_BOUNDS_HIGH_LOW;
15129 }
15130 else
15131 {
15132 attr = dwarf2_attr (die, DW_AT_ranges, cu);
15133 if (attr != NULL)
15134 {
15135 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
15136 We take advantage of the fact that DW_AT_ranges does not appear
15137 in DW_TAG_compile_unit of DWO files. */
15138 int need_ranges_base = die->tag != DW_TAG_compile_unit;
15139 unsigned int ranges_offset = (DW_UNSND (attr)
15140 + (need_ranges_base
15141 ? cu->ranges_base
15142 : 0));
15143
15144 /* Value of the DW_AT_ranges attribute is the offset in the
15145 .debug_ranges section. */
15146 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
15147 return PC_BOUNDS_INVALID;
15148 /* Found discontinuous range of addresses. */
15149 ret = PC_BOUNDS_RANGES;
15150 }
15151 else
15152 return PC_BOUNDS_NOT_PRESENT;
15153 }
15154
15155 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
15156 if (high <= low)
15157 return PC_BOUNDS_INVALID;
15158
15159 /* When using the GNU linker, .gnu.linkonce. sections are used to
15160 eliminate duplicate copies of functions and vtables and such.
15161 The linker will arbitrarily choose one and discard the others.
15162 The AT_*_pc values for such functions refer to local labels in
15163 these sections. If the section from that file was discarded, the
15164 labels are not in the output, so the relocs get a value of 0.
15165 If this is a discarded function, mark the pc bounds as invalid,
15166 so that GDB will ignore it. */
15167 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
15168 return PC_BOUNDS_INVALID;
15169
15170 *lowpc = low;
15171 if (highpc)
15172 *highpc = high;
15173 return ret;
15174 }
15175
15176 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
15177 its low and high PC addresses. Do nothing if these addresses could not
15178 be determined. Otherwise, set LOWPC to the low address if it is smaller,
15179 and HIGHPC to the high address if greater than HIGHPC. */
15180
15181 static void
15182 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
15183 CORE_ADDR *lowpc, CORE_ADDR *highpc,
15184 struct dwarf2_cu *cu)
15185 {
15186 CORE_ADDR low, high;
15187 struct die_info *child = die->child;
15188
15189 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
15190 {
15191 *lowpc = std::min (*lowpc, low);
15192 *highpc = std::max (*highpc, high);
15193 }
15194
15195 /* If the language does not allow nested subprograms (either inside
15196 subprograms or lexical blocks), we're done. */
15197 if (cu->language != language_ada)
15198 return;
15199
15200 /* Check all the children of the given DIE. If it contains nested
15201 subprograms, then check their pc bounds. Likewise, we need to
15202 check lexical blocks as well, as they may also contain subprogram
15203 definitions. */
15204 while (child && child->tag)
15205 {
15206 if (child->tag == DW_TAG_subprogram
15207 || child->tag == DW_TAG_lexical_block)
15208 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
15209 child = sibling_die (child);
15210 }
15211 }
15212
15213 /* Get the low and high pc's represented by the scope DIE, and store
15214 them in *LOWPC and *HIGHPC. If the correct values can't be
15215 determined, set *LOWPC to -1 and *HIGHPC to 0. */
15216
15217 static void
15218 get_scope_pc_bounds (struct die_info *die,
15219 CORE_ADDR *lowpc, CORE_ADDR *highpc,
15220 struct dwarf2_cu *cu)
15221 {
15222 CORE_ADDR best_low = (CORE_ADDR) -1;
15223 CORE_ADDR best_high = (CORE_ADDR) 0;
15224 CORE_ADDR current_low, current_high;
15225
15226 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
15227 >= PC_BOUNDS_RANGES)
15228 {
15229 best_low = current_low;
15230 best_high = current_high;
15231 }
15232 else
15233 {
15234 struct die_info *child = die->child;
15235
15236 while (child && child->tag)
15237 {
15238 switch (child->tag) {
15239 case DW_TAG_subprogram:
15240 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
15241 break;
15242 case DW_TAG_namespace:
15243 case DW_TAG_module:
15244 /* FIXME: carlton/2004-01-16: Should we do this for
15245 DW_TAG_class_type/DW_TAG_structure_type, too? I think
15246 that current GCC's always emit the DIEs corresponding
15247 to definitions of methods of classes as children of a
15248 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
15249 the DIEs giving the declarations, which could be
15250 anywhere). But I don't see any reason why the
15251 standards says that they have to be there. */
15252 get_scope_pc_bounds (child, &current_low, &current_high, cu);
15253
15254 if (current_low != ((CORE_ADDR) -1))
15255 {
15256 best_low = std::min (best_low, current_low);
15257 best_high = std::max (best_high, current_high);
15258 }
15259 break;
15260 default:
15261 /* Ignore. */
15262 break;
15263 }
15264
15265 child = sibling_die (child);
15266 }
15267 }
15268
15269 *lowpc = best_low;
15270 *highpc = best_high;
15271 }
15272
15273 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
15274 in DIE. */
15275
15276 static void
15277 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
15278 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
15279 {
15280 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15281 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15282 struct attribute *attr;
15283 struct attribute *attr_high;
15284
15285 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
15286 if (attr_high)
15287 {
15288 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15289 if (attr)
15290 {
15291 CORE_ADDR low = attr_value_as_address (attr);
15292 CORE_ADDR high = attr_value_as_address (attr_high);
15293
15294 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
15295 high += low;
15296
15297 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
15298 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
15299 record_block_range (block, low, high - 1);
15300 }
15301 }
15302
15303 attr = dwarf2_attr (die, DW_AT_ranges, cu);
15304 if (attr)
15305 {
15306 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
15307 We take advantage of the fact that DW_AT_ranges does not appear
15308 in DW_TAG_compile_unit of DWO files. */
15309 int need_ranges_base = die->tag != DW_TAG_compile_unit;
15310
15311 /* The value of the DW_AT_ranges attribute is the offset of the
15312 address range list in the .debug_ranges section. */
15313 unsigned long offset = (DW_UNSND (attr)
15314 + (need_ranges_base ? cu->ranges_base : 0));
15315 const gdb_byte *buffer;
15316
15317 /* For some target architectures, but not others, the
15318 read_address function sign-extends the addresses it returns.
15319 To recognize base address selection entries, we need a
15320 mask. */
15321 unsigned int addr_size = cu->header.addr_size;
15322 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
15323
15324 /* The base address, to which the next pair is relative. Note
15325 that this 'base' is a DWARF concept: most entries in a range
15326 list are relative, to reduce the number of relocs against the
15327 debugging information. This is separate from this function's
15328 'baseaddr' argument, which GDB uses to relocate debugging
15329 information from a shared library based on the address at
15330 which the library was loaded. */
15331 CORE_ADDR base = cu->base_address;
15332 int base_known = cu->base_known;
15333
15334 dwarf2_ranges_process (offset, cu,
15335 [&] (CORE_ADDR start, CORE_ADDR end)
15336 {
15337 start += baseaddr;
15338 end += baseaddr;
15339 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
15340 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
15341 record_block_range (block, start, end - 1);
15342 });
15343 }
15344 }
15345
15346 /* Check whether the producer field indicates either of GCC < 4.6, or the
15347 Intel C/C++ compiler, and cache the result in CU. */
15348
15349 static void
15350 check_producer (struct dwarf2_cu *cu)
15351 {
15352 int major, minor;
15353
15354 if (cu->producer == NULL)
15355 {
15356 /* For unknown compilers expect their behavior is DWARF version
15357 compliant.
15358
15359 GCC started to support .debug_types sections by -gdwarf-4 since
15360 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
15361 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
15362 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
15363 interpreted incorrectly by GDB now - GCC PR debug/48229. */
15364 }
15365 else if (producer_is_gcc (cu->producer, &major, &minor))
15366 {
15367 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
15368 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
15369 }
15370 else if (producer_is_icc (cu->producer, &major, &minor))
15371 cu->producer_is_icc_lt_14 = major < 14;
15372 else
15373 {
15374 /* For other non-GCC compilers, expect their behavior is DWARF version
15375 compliant. */
15376 }
15377
15378 cu->checked_producer = 1;
15379 }
15380
15381 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
15382 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
15383 during 4.6.0 experimental. */
15384
15385 static int
15386 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
15387 {
15388 if (!cu->checked_producer)
15389 check_producer (cu);
15390
15391 return cu->producer_is_gxx_lt_4_6;
15392 }
15393
15394 /* Return the default accessibility type if it is not overriden by
15395 DW_AT_accessibility. */
15396
15397 static enum dwarf_access_attribute
15398 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
15399 {
15400 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
15401 {
15402 /* The default DWARF 2 accessibility for members is public, the default
15403 accessibility for inheritance is private. */
15404
15405 if (die->tag != DW_TAG_inheritance)
15406 return DW_ACCESS_public;
15407 else
15408 return DW_ACCESS_private;
15409 }
15410 else
15411 {
15412 /* DWARF 3+ defines the default accessibility a different way. The same
15413 rules apply now for DW_TAG_inheritance as for the members and it only
15414 depends on the container kind. */
15415
15416 if (die->parent->tag == DW_TAG_class_type)
15417 return DW_ACCESS_private;
15418 else
15419 return DW_ACCESS_public;
15420 }
15421 }
15422
15423 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
15424 offset. If the attribute was not found return 0, otherwise return
15425 1. If it was found but could not properly be handled, set *OFFSET
15426 to 0. */
15427
15428 static int
15429 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15430 LONGEST *offset)
15431 {
15432 struct attribute *attr;
15433
15434 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15435 if (attr != NULL)
15436 {
15437 *offset = 0;
15438
15439 /* Note that we do not check for a section offset first here.
15440 This is because DW_AT_data_member_location is new in DWARF 4,
15441 so if we see it, we can assume that a constant form is really
15442 a constant and not a section offset. */
15443 if (attr_form_is_constant (attr))
15444 *offset = dwarf2_get_attr_constant_value (attr, 0);
15445 else if (attr_form_is_section_offset (attr))
15446 dwarf2_complex_location_expr_complaint ();
15447 else if (attr_form_is_block (attr))
15448 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15449 else
15450 dwarf2_complex_location_expr_complaint ();
15451
15452 return 1;
15453 }
15454
15455 return 0;
15456 }
15457
15458 /* Add an aggregate field to the field list. */
15459
15460 static void
15461 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15462 struct dwarf2_cu *cu)
15463 {
15464 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15465 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15466 struct nextfield *new_field;
15467 struct attribute *attr;
15468 struct field *fp;
15469 const char *fieldname = "";
15470
15471 /* Allocate a new field list entry and link it in. */
15472 new_field = XNEW (struct nextfield);
15473 make_cleanup (xfree, new_field);
15474 memset (new_field, 0, sizeof (struct nextfield));
15475
15476 if (die->tag == DW_TAG_inheritance)
15477 {
15478 new_field->next = fip->baseclasses;
15479 fip->baseclasses = new_field;
15480 }
15481 else
15482 {
15483 new_field->next = fip->fields;
15484 fip->fields = new_field;
15485 }
15486 fip->nfields++;
15487
15488 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15489 if (attr)
15490 new_field->accessibility = DW_UNSND (attr);
15491 else
15492 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15493 if (new_field->accessibility != DW_ACCESS_public)
15494 fip->non_public_fields = 1;
15495
15496 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15497 if (attr)
15498 new_field->virtuality = DW_UNSND (attr);
15499 else
15500 new_field->virtuality = DW_VIRTUALITY_none;
15501
15502 fp = &new_field->field;
15503
15504 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15505 {
15506 LONGEST offset;
15507
15508 /* Data member other than a C++ static data member. */
15509
15510 /* Get type of field. */
15511 fp->type = die_type (die, cu);
15512
15513 SET_FIELD_BITPOS (*fp, 0);
15514
15515 /* Get bit size of field (zero if none). */
15516 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15517 if (attr)
15518 {
15519 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15520 }
15521 else
15522 {
15523 FIELD_BITSIZE (*fp) = 0;
15524 }
15525
15526 /* Get bit offset of field. */
15527 if (handle_data_member_location (die, cu, &offset))
15528 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15529 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15530 if (attr)
15531 {
15532 if (gdbarch_bits_big_endian (gdbarch))
15533 {
15534 /* For big endian bits, the DW_AT_bit_offset gives the
15535 additional bit offset from the MSB of the containing
15536 anonymous object to the MSB of the field. We don't
15537 have to do anything special since we don't need to
15538 know the size of the anonymous object. */
15539 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15540 }
15541 else
15542 {
15543 /* For little endian bits, compute the bit offset to the
15544 MSB of the anonymous object, subtract off the number of
15545 bits from the MSB of the field to the MSB of the
15546 object, and then subtract off the number of bits of
15547 the field itself. The result is the bit offset of
15548 the LSB of the field. */
15549 int anonymous_size;
15550 int bit_offset = DW_UNSND (attr);
15551
15552 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15553 if (attr)
15554 {
15555 /* The size of the anonymous object containing
15556 the bit field is explicit, so use the
15557 indicated size (in bytes). */
15558 anonymous_size = DW_UNSND (attr);
15559 }
15560 else
15561 {
15562 /* The size of the anonymous object containing
15563 the bit field must be inferred from the type
15564 attribute of the data member containing the
15565 bit field. */
15566 anonymous_size = TYPE_LENGTH (fp->type);
15567 }
15568 SET_FIELD_BITPOS (*fp,
15569 (FIELD_BITPOS (*fp)
15570 + anonymous_size * bits_per_byte
15571 - bit_offset - FIELD_BITSIZE (*fp)));
15572 }
15573 }
15574 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15575 if (attr != NULL)
15576 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15577 + dwarf2_get_attr_constant_value (attr, 0)));
15578
15579 /* Get name of field. */
15580 fieldname = dwarf2_name (die, cu);
15581 if (fieldname == NULL)
15582 fieldname = "";
15583
15584 /* The name is already allocated along with this objfile, so we don't
15585 need to duplicate it for the type. */
15586 fp->name = fieldname;
15587
15588 /* Change accessibility for artificial fields (e.g. virtual table
15589 pointer or virtual base class pointer) to private. */
15590 if (dwarf2_attr (die, DW_AT_artificial, cu))
15591 {
15592 FIELD_ARTIFICIAL (*fp) = 1;
15593 new_field->accessibility = DW_ACCESS_private;
15594 fip->non_public_fields = 1;
15595 }
15596 }
15597 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15598 {
15599 /* C++ static member. */
15600
15601 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15602 is a declaration, but all versions of G++ as of this writing
15603 (so through at least 3.2.1) incorrectly generate
15604 DW_TAG_variable tags. */
15605
15606 const char *physname;
15607
15608 /* Get name of field. */
15609 fieldname = dwarf2_name (die, cu);
15610 if (fieldname == NULL)
15611 return;
15612
15613 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15614 if (attr
15615 /* Only create a symbol if this is an external value.
15616 new_symbol checks this and puts the value in the global symbol
15617 table, which we want. If it is not external, new_symbol
15618 will try to put the value in cu->list_in_scope which is wrong. */
15619 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15620 {
15621 /* A static const member, not much different than an enum as far as
15622 we're concerned, except that we can support more types. */
15623 new_symbol (die, NULL, cu);
15624 }
15625
15626 /* Get physical name. */
15627 physname = dwarf2_physname (fieldname, die, cu);
15628
15629 /* The name is already allocated along with this objfile, so we don't
15630 need to duplicate it for the type. */
15631 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15632 FIELD_TYPE (*fp) = die_type (die, cu);
15633 FIELD_NAME (*fp) = fieldname;
15634 }
15635 else if (die->tag == DW_TAG_inheritance)
15636 {
15637 LONGEST offset;
15638
15639 /* C++ base class field. */
15640 if (handle_data_member_location (die, cu, &offset))
15641 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15642 FIELD_BITSIZE (*fp) = 0;
15643 FIELD_TYPE (*fp) = die_type (die, cu);
15644 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15645 fip->nbaseclasses++;
15646 }
15647 }
15648
15649 /* Can the type given by DIE define another type? */
15650
15651 static bool
15652 type_can_define_types (const struct die_info *die)
15653 {
15654 switch (die->tag)
15655 {
15656 case DW_TAG_typedef:
15657 case DW_TAG_class_type:
15658 case DW_TAG_structure_type:
15659 case DW_TAG_union_type:
15660 case DW_TAG_enumeration_type:
15661 return true;
15662
15663 default:
15664 return false;
15665 }
15666 }
15667
15668 /* Add a type definition defined in the scope of the FIP's class. */
15669
15670 static void
15671 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15672 struct dwarf2_cu *cu)
15673 {
15674 struct decl_field_list *new_field;
15675 struct decl_field *fp;
15676
15677 /* Allocate a new field list entry and link it in. */
15678 new_field = XCNEW (struct decl_field_list);
15679 make_cleanup (xfree, new_field);
15680
15681 gdb_assert (type_can_define_types (die));
15682
15683 fp = &new_field->field;
15684
15685 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15686 fp->name = dwarf2_name (die, cu);
15687 fp->type = read_type_die (die, cu);
15688
15689 /* Save accessibility. */
15690 enum dwarf_access_attribute accessibility;
15691 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15692 if (attr != NULL)
15693 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15694 else
15695 accessibility = dwarf2_default_access_attribute (die, cu);
15696 switch (accessibility)
15697 {
15698 case DW_ACCESS_public:
15699 /* The assumed value if neither private nor protected. */
15700 break;
15701 case DW_ACCESS_private:
15702 fp->is_private = 1;
15703 break;
15704 case DW_ACCESS_protected:
15705 fp->is_protected = 1;
15706 break;
15707 default:
15708 complaint (&symfile_complaints,
15709 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15710 }
15711
15712 if (die->tag == DW_TAG_typedef)
15713 {
15714 new_field->next = fip->typedef_field_list;
15715 fip->typedef_field_list = new_field;
15716 fip->typedef_field_list_count++;
15717 }
15718 else
15719 {
15720 new_field->next = fip->nested_types_list;
15721 fip->nested_types_list = new_field;
15722 fip->nested_types_list_count++;
15723 }
15724 }
15725
15726 /* Create the vector of fields, and attach it to the type. */
15727
15728 static void
15729 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15730 struct dwarf2_cu *cu)
15731 {
15732 int nfields = fip->nfields;
15733
15734 /* Record the field count, allocate space for the array of fields,
15735 and create blank accessibility bitfields if necessary. */
15736 TYPE_NFIELDS (type) = nfields;
15737 TYPE_FIELDS (type) = (struct field *)
15738 TYPE_ALLOC (type, sizeof (struct field) * nfields);
15739 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
15740
15741 if (fip->non_public_fields && cu->language != language_ada)
15742 {
15743 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15744
15745 TYPE_FIELD_PRIVATE_BITS (type) =
15746 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15747 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15748
15749 TYPE_FIELD_PROTECTED_BITS (type) =
15750 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15751 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15752
15753 TYPE_FIELD_IGNORE_BITS (type) =
15754 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15755 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15756 }
15757
15758 /* If the type has baseclasses, allocate and clear a bit vector for
15759 TYPE_FIELD_VIRTUAL_BITS. */
15760 if (fip->nbaseclasses && cu->language != language_ada)
15761 {
15762 int num_bytes = B_BYTES (fip->nbaseclasses);
15763 unsigned char *pointer;
15764
15765 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15766 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15767 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15768 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
15769 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
15770 }
15771
15772 /* Copy the saved-up fields into the field vector. Start from the head of
15773 the list, adding to the tail of the field array, so that they end up in
15774 the same order in the array in which they were added to the list. */
15775 while (nfields-- > 0)
15776 {
15777 struct nextfield *fieldp;
15778
15779 if (fip->fields)
15780 {
15781 fieldp = fip->fields;
15782 fip->fields = fieldp->next;
15783 }
15784 else
15785 {
15786 fieldp = fip->baseclasses;
15787 fip->baseclasses = fieldp->next;
15788 }
15789
15790 TYPE_FIELD (type, nfields) = fieldp->field;
15791 switch (fieldp->accessibility)
15792 {
15793 case DW_ACCESS_private:
15794 if (cu->language != language_ada)
15795 SET_TYPE_FIELD_PRIVATE (type, nfields);
15796 break;
15797
15798 case DW_ACCESS_protected:
15799 if (cu->language != language_ada)
15800 SET_TYPE_FIELD_PROTECTED (type, nfields);
15801 break;
15802
15803 case DW_ACCESS_public:
15804 break;
15805
15806 default:
15807 /* Unknown accessibility. Complain and treat it as public. */
15808 {
15809 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15810 fieldp->accessibility);
15811 }
15812 break;
15813 }
15814 if (nfields < fip->nbaseclasses)
15815 {
15816 switch (fieldp->virtuality)
15817 {
15818 case DW_VIRTUALITY_virtual:
15819 case DW_VIRTUALITY_pure_virtual:
15820 if (cu->language == language_ada)
15821 error (_("unexpected virtuality in component of Ada type"));
15822 SET_TYPE_FIELD_VIRTUAL (type, nfields);
15823 break;
15824 }
15825 }
15826 }
15827 }
15828
15829 /* Return true if this member function is a constructor, false
15830 otherwise. */
15831
15832 static int
15833 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15834 {
15835 const char *fieldname;
15836 const char *type_name;
15837 int len;
15838
15839 if (die->parent == NULL)
15840 return 0;
15841
15842 if (die->parent->tag != DW_TAG_structure_type
15843 && die->parent->tag != DW_TAG_union_type
15844 && die->parent->tag != DW_TAG_class_type)
15845 return 0;
15846
15847 fieldname = dwarf2_name (die, cu);
15848 type_name = dwarf2_name (die->parent, cu);
15849 if (fieldname == NULL || type_name == NULL)
15850 return 0;
15851
15852 len = strlen (fieldname);
15853 return (strncmp (fieldname, type_name, len) == 0
15854 && (type_name[len] == '\0' || type_name[len] == '<'));
15855 }
15856
15857 /* Add a member function to the proper fieldlist. */
15858
15859 static void
15860 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15861 struct type *type, struct dwarf2_cu *cu)
15862 {
15863 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15864 struct attribute *attr;
15865 struct fnfieldlist *flp;
15866 int i;
15867 struct fn_field *fnp;
15868 const char *fieldname;
15869 struct nextfnfield *new_fnfield;
15870 struct type *this_type;
15871 enum dwarf_access_attribute accessibility;
15872
15873 if (cu->language == language_ada)
15874 error (_("unexpected member function in Ada type"));
15875
15876 /* Get name of member function. */
15877 fieldname = dwarf2_name (die, cu);
15878 if (fieldname == NULL)
15879 return;
15880
15881 /* Look up member function name in fieldlist. */
15882 for (i = 0; i < fip->nfnfields; i++)
15883 {
15884 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15885 break;
15886 }
15887
15888 /* Create new list element if necessary. */
15889 if (i < fip->nfnfields)
15890 flp = &fip->fnfieldlists[i];
15891 else
15892 {
15893 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
15894 {
15895 fip->fnfieldlists = (struct fnfieldlist *)
15896 xrealloc (fip->fnfieldlists,
15897 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
15898 * sizeof (struct fnfieldlist));
15899 if (fip->nfnfields == 0)
15900 make_cleanup (free_current_contents, &fip->fnfieldlists);
15901 }
15902 flp = &fip->fnfieldlists[fip->nfnfields];
15903 flp->name = fieldname;
15904 flp->length = 0;
15905 flp->head = NULL;
15906 i = fip->nfnfields++;
15907 }
15908
15909 /* Create a new member function field and chain it to the field list
15910 entry. */
15911 new_fnfield = XNEW (struct nextfnfield);
15912 make_cleanup (xfree, new_fnfield);
15913 memset (new_fnfield, 0, sizeof (struct nextfnfield));
15914 new_fnfield->next = flp->head;
15915 flp->head = new_fnfield;
15916 flp->length++;
15917
15918 /* Fill in the member function field info. */
15919 fnp = &new_fnfield->fnfield;
15920
15921 /* Delay processing of the physname until later. */
15922 if (cu->language == language_cplus)
15923 {
15924 add_to_method_list (type, i, flp->length - 1, fieldname,
15925 die, cu);
15926 }
15927 else
15928 {
15929 const char *physname = dwarf2_physname (fieldname, die, cu);
15930 fnp->physname = physname ? physname : "";
15931 }
15932
15933 fnp->type = alloc_type (objfile);
15934 this_type = read_type_die (die, cu);
15935 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15936 {
15937 int nparams = TYPE_NFIELDS (this_type);
15938
15939 /* TYPE is the domain of this method, and THIS_TYPE is the type
15940 of the method itself (TYPE_CODE_METHOD). */
15941 smash_to_method_type (fnp->type, type,
15942 TYPE_TARGET_TYPE (this_type),
15943 TYPE_FIELDS (this_type),
15944 TYPE_NFIELDS (this_type),
15945 TYPE_VARARGS (this_type));
15946
15947 /* Handle static member functions.
15948 Dwarf2 has no clean way to discern C++ static and non-static
15949 member functions. G++ helps GDB by marking the first
15950 parameter for non-static member functions (which is the this
15951 pointer) as artificial. We obtain this information from
15952 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15953 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15954 fnp->voffset = VOFFSET_STATIC;
15955 }
15956 else
15957 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15958 dwarf2_full_name (fieldname, die, cu));
15959
15960 /* Get fcontext from DW_AT_containing_type if present. */
15961 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15962 fnp->fcontext = die_containing_type (die, cu);
15963
15964 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15965 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15966
15967 /* Get accessibility. */
15968 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15969 if (attr)
15970 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15971 else
15972 accessibility = dwarf2_default_access_attribute (die, cu);
15973 switch (accessibility)
15974 {
15975 case DW_ACCESS_private:
15976 fnp->is_private = 1;
15977 break;
15978 case DW_ACCESS_protected:
15979 fnp->is_protected = 1;
15980 break;
15981 }
15982
15983 /* Check for artificial methods. */
15984 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15985 if (attr && DW_UNSND (attr) != 0)
15986 fnp->is_artificial = 1;
15987
15988 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15989
15990 /* Get index in virtual function table if it is a virtual member
15991 function. For older versions of GCC, this is an offset in the
15992 appropriate virtual table, as specified by DW_AT_containing_type.
15993 For everyone else, it is an expression to be evaluated relative
15994 to the object address. */
15995
15996 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15997 if (attr)
15998 {
15999 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
16000 {
16001 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
16002 {
16003 /* Old-style GCC. */
16004 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
16005 }
16006 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
16007 || (DW_BLOCK (attr)->size > 1
16008 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
16009 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
16010 {
16011 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
16012 if ((fnp->voffset % cu->header.addr_size) != 0)
16013 dwarf2_complex_location_expr_complaint ();
16014 else
16015 fnp->voffset /= cu->header.addr_size;
16016 fnp->voffset += 2;
16017 }
16018 else
16019 dwarf2_complex_location_expr_complaint ();
16020
16021 if (!fnp->fcontext)
16022 {
16023 /* If there is no `this' field and no DW_AT_containing_type,
16024 we cannot actually find a base class context for the
16025 vtable! */
16026 if (TYPE_NFIELDS (this_type) == 0
16027 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
16028 {
16029 complaint (&symfile_complaints,
16030 _("cannot determine context for virtual member "
16031 "function \"%s\" (offset %s)"),
16032 fieldname, sect_offset_str (die->sect_off));
16033 }
16034 else
16035 {
16036 fnp->fcontext
16037 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
16038 }
16039 }
16040 }
16041 else if (attr_form_is_section_offset (attr))
16042 {
16043 dwarf2_complex_location_expr_complaint ();
16044 }
16045 else
16046 {
16047 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
16048 fieldname);
16049 }
16050 }
16051 else
16052 {
16053 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
16054 if (attr && DW_UNSND (attr))
16055 {
16056 /* GCC does this, as of 2008-08-25; PR debug/37237. */
16057 complaint (&symfile_complaints,
16058 _("Member function \"%s\" (offset %s) is virtual "
16059 "but the vtable offset is not specified"),
16060 fieldname, sect_offset_str (die->sect_off));
16061 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16062 TYPE_CPLUS_DYNAMIC (type) = 1;
16063 }
16064 }
16065 }
16066
16067 /* Create the vector of member function fields, and attach it to the type. */
16068
16069 static void
16070 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
16071 struct dwarf2_cu *cu)
16072 {
16073 struct fnfieldlist *flp;
16074 int i;
16075
16076 if (cu->language == language_ada)
16077 error (_("unexpected member functions in Ada type"));
16078
16079 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16080 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
16081 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
16082
16083 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
16084 {
16085 struct nextfnfield *nfp = flp->head;
16086 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
16087 int k;
16088
16089 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
16090 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
16091 fn_flp->fn_fields = (struct fn_field *)
16092 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
16093 for (k = flp->length; (k--, nfp); nfp = nfp->next)
16094 fn_flp->fn_fields[k] = nfp->fnfield;
16095 }
16096
16097 TYPE_NFN_FIELDS (type) = fip->nfnfields;
16098 }
16099
16100 /* Returns non-zero if NAME is the name of a vtable member in CU's
16101 language, zero otherwise. */
16102 static int
16103 is_vtable_name (const char *name, struct dwarf2_cu *cu)
16104 {
16105 static const char vptr[] = "_vptr";
16106
16107 /* Look for the C++ form of the vtable. */
16108 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
16109 return 1;
16110
16111 return 0;
16112 }
16113
16114 /* GCC outputs unnamed structures that are really pointers to member
16115 functions, with the ABI-specified layout. If TYPE describes
16116 such a structure, smash it into a member function type.
16117
16118 GCC shouldn't do this; it should just output pointer to member DIEs.
16119 This is GCC PR debug/28767. */
16120
16121 static void
16122 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
16123 {
16124 struct type *pfn_type, *self_type, *new_type;
16125
16126 /* Check for a structure with no name and two children. */
16127 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
16128 return;
16129
16130 /* Check for __pfn and __delta members. */
16131 if (TYPE_FIELD_NAME (type, 0) == NULL
16132 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
16133 || TYPE_FIELD_NAME (type, 1) == NULL
16134 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
16135 return;
16136
16137 /* Find the type of the method. */
16138 pfn_type = TYPE_FIELD_TYPE (type, 0);
16139 if (pfn_type == NULL
16140 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
16141 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
16142 return;
16143
16144 /* Look for the "this" argument. */
16145 pfn_type = TYPE_TARGET_TYPE (pfn_type);
16146 if (TYPE_NFIELDS (pfn_type) == 0
16147 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
16148 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
16149 return;
16150
16151 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
16152 new_type = alloc_type (objfile);
16153 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
16154 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
16155 TYPE_VARARGS (pfn_type));
16156 smash_to_methodptr_type (type, new_type);
16157 }
16158
16159
16160 /* Called when we find the DIE that starts a structure or union scope
16161 (definition) to create a type for the structure or union. Fill in
16162 the type's name and general properties; the members will not be
16163 processed until process_structure_scope. A symbol table entry for
16164 the type will also not be done until process_structure_scope (assuming
16165 the type has a name).
16166
16167 NOTE: we need to call these functions regardless of whether or not the
16168 DIE has a DW_AT_name attribute, since it might be an anonymous
16169 structure or union. This gets the type entered into our set of
16170 user defined types. */
16171
16172 static struct type *
16173 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
16174 {
16175 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16176 struct type *type;
16177 struct attribute *attr;
16178 const char *name;
16179
16180 /* If the definition of this type lives in .debug_types, read that type.
16181 Don't follow DW_AT_specification though, that will take us back up
16182 the chain and we want to go down. */
16183 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16184 if (attr)
16185 {
16186 type = get_DW_AT_signature_type (die, attr, cu);
16187
16188 /* The type's CU may not be the same as CU.
16189 Ensure TYPE is recorded with CU in die_type_hash. */
16190 return set_die_type (die, type, cu);
16191 }
16192
16193 type = alloc_type (objfile);
16194 INIT_CPLUS_SPECIFIC (type);
16195
16196 name = dwarf2_name (die, cu);
16197 if (name != NULL)
16198 {
16199 if (cu->language == language_cplus
16200 || cu->language == language_d
16201 || cu->language == language_rust)
16202 {
16203 const char *full_name = dwarf2_full_name (name, die, cu);
16204
16205 /* dwarf2_full_name might have already finished building the DIE's
16206 type. If so, there is no need to continue. */
16207 if (get_die_type (die, cu) != NULL)
16208 return get_die_type (die, cu);
16209
16210 TYPE_TAG_NAME (type) = full_name;
16211 if (die->tag == DW_TAG_structure_type
16212 || die->tag == DW_TAG_class_type)
16213 TYPE_NAME (type) = TYPE_TAG_NAME (type);
16214 }
16215 else
16216 {
16217 /* The name is already allocated along with this objfile, so
16218 we don't need to duplicate it for the type. */
16219 TYPE_TAG_NAME (type) = name;
16220 if (die->tag == DW_TAG_class_type)
16221 TYPE_NAME (type) = TYPE_TAG_NAME (type);
16222 }
16223 }
16224
16225 if (die->tag == DW_TAG_structure_type)
16226 {
16227 TYPE_CODE (type) = TYPE_CODE_STRUCT;
16228 }
16229 else if (die->tag == DW_TAG_union_type)
16230 {
16231 TYPE_CODE (type) = TYPE_CODE_UNION;
16232 }
16233 else
16234 {
16235 TYPE_CODE (type) = TYPE_CODE_STRUCT;
16236 }
16237
16238 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
16239 TYPE_DECLARED_CLASS (type) = 1;
16240
16241 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16242 if (attr)
16243 {
16244 if (attr_form_is_constant (attr))
16245 TYPE_LENGTH (type) = DW_UNSND (attr);
16246 else
16247 {
16248 /* For the moment, dynamic type sizes are not supported
16249 by GDB's struct type. The actual size is determined
16250 on-demand when resolving the type of a given object,
16251 so set the type's length to zero for now. Otherwise,
16252 we record an expression as the length, and that expression
16253 could lead to a very large value, which could eventually
16254 lead to us trying to allocate that much memory when creating
16255 a value of that type. */
16256 TYPE_LENGTH (type) = 0;
16257 }
16258 }
16259 else
16260 {
16261 TYPE_LENGTH (type) = 0;
16262 }
16263
16264 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
16265 {
16266 /* ICC<14 does not output the required DW_AT_declaration on
16267 incomplete types, but gives them a size of zero. */
16268 TYPE_STUB (type) = 1;
16269 }
16270 else
16271 TYPE_STUB_SUPPORTED (type) = 1;
16272
16273 if (die_is_declaration (die, cu))
16274 TYPE_STUB (type) = 1;
16275 else if (attr == NULL && die->child == NULL
16276 && producer_is_realview (cu->producer))
16277 /* RealView does not output the required DW_AT_declaration
16278 on incomplete types. */
16279 TYPE_STUB (type) = 1;
16280
16281 /* We need to add the type field to the die immediately so we don't
16282 infinitely recurse when dealing with pointers to the structure
16283 type within the structure itself. */
16284 set_die_type (die, type, cu);
16285
16286 /* set_die_type should be already done. */
16287 set_descriptive_type (type, die, cu);
16288
16289 return type;
16290 }
16291
16292 /* Finish creating a structure or union type, including filling in
16293 its members and creating a symbol for it. */
16294
16295 static void
16296 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16297 {
16298 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16299 struct die_info *child_die;
16300 struct type *type;
16301
16302 type = get_die_type (die, cu);
16303 if (type == NULL)
16304 type = read_structure_type (die, cu);
16305
16306 if (die->child != NULL && ! die_is_declaration (die, cu))
16307 {
16308 struct field_info fi;
16309 std::vector<struct symbol *> template_args;
16310 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
16311
16312 memset (&fi, 0, sizeof (struct field_info));
16313
16314 child_die = die->child;
16315
16316 while (child_die && child_die->tag)
16317 {
16318 if (child_die->tag == DW_TAG_member
16319 || child_die->tag == DW_TAG_variable)
16320 {
16321 /* NOTE: carlton/2002-11-05: A C++ static data member
16322 should be a DW_TAG_member that is a declaration, but
16323 all versions of G++ as of this writing (so through at
16324 least 3.2.1) incorrectly generate DW_TAG_variable
16325 tags for them instead. */
16326 dwarf2_add_field (&fi, child_die, cu);
16327 }
16328 else if (child_die->tag == DW_TAG_subprogram)
16329 {
16330 /* Rust doesn't have member functions in the C++ sense.
16331 However, it does emit ordinary functions as children
16332 of a struct DIE. */
16333 if (cu->language == language_rust)
16334 read_func_scope (child_die, cu);
16335 else
16336 {
16337 /* C++ member function. */
16338 dwarf2_add_member_fn (&fi, child_die, type, cu);
16339 }
16340 }
16341 else if (child_die->tag == DW_TAG_inheritance)
16342 {
16343 /* C++ base class field. */
16344 dwarf2_add_field (&fi, child_die, cu);
16345 }
16346 else if (type_can_define_types (child_die))
16347 dwarf2_add_type_defn (&fi, child_die, cu);
16348 else if (child_die->tag == DW_TAG_template_type_param
16349 || child_die->tag == DW_TAG_template_value_param)
16350 {
16351 struct symbol *arg = new_symbol (child_die, NULL, cu);
16352
16353 if (arg != NULL)
16354 template_args.push_back (arg);
16355 }
16356
16357 child_die = sibling_die (child_die);
16358 }
16359
16360 /* Attach template arguments to type. */
16361 if (!template_args.empty ())
16362 {
16363 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16364 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16365 TYPE_TEMPLATE_ARGUMENTS (type)
16366 = XOBNEWVEC (&objfile->objfile_obstack,
16367 struct symbol *,
16368 TYPE_N_TEMPLATE_ARGUMENTS (type));
16369 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16370 template_args.data (),
16371 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16372 * sizeof (struct symbol *)));
16373 }
16374
16375 /* Attach fields and member functions to the type. */
16376 if (fi.nfields)
16377 dwarf2_attach_fields_to_type (&fi, type, cu);
16378 if (fi.nfnfields)
16379 {
16380 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16381
16382 /* Get the type which refers to the base class (possibly this
16383 class itself) which contains the vtable pointer for the current
16384 class from the DW_AT_containing_type attribute. This use of
16385 DW_AT_containing_type is a GNU extension. */
16386
16387 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16388 {
16389 struct type *t = die_containing_type (die, cu);
16390
16391 set_type_vptr_basetype (type, t);
16392 if (type == t)
16393 {
16394 int i;
16395
16396 /* Our own class provides vtbl ptr. */
16397 for (i = TYPE_NFIELDS (t) - 1;
16398 i >= TYPE_N_BASECLASSES (t);
16399 --i)
16400 {
16401 const char *fieldname = TYPE_FIELD_NAME (t, i);
16402
16403 if (is_vtable_name (fieldname, cu))
16404 {
16405 set_type_vptr_fieldno (type, i);
16406 break;
16407 }
16408 }
16409
16410 /* Complain if virtual function table field not found. */
16411 if (i < TYPE_N_BASECLASSES (t))
16412 complaint (&symfile_complaints,
16413 _("virtual function table pointer "
16414 "not found when defining class '%s'"),
16415 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
16416 "");
16417 }
16418 else
16419 {
16420 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16421 }
16422 }
16423 else if (cu->producer
16424 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16425 {
16426 /* The IBM XLC compiler does not provide direct indication
16427 of the containing type, but the vtable pointer is
16428 always named __vfp. */
16429
16430 int i;
16431
16432 for (i = TYPE_NFIELDS (type) - 1;
16433 i >= TYPE_N_BASECLASSES (type);
16434 --i)
16435 {
16436 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16437 {
16438 set_type_vptr_fieldno (type, i);
16439 set_type_vptr_basetype (type, type);
16440 break;
16441 }
16442 }
16443 }
16444 }
16445
16446 /* Copy fi.typedef_field_list linked list elements content into the
16447 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16448 if (fi.typedef_field_list)
16449 {
16450 int i = fi.typedef_field_list_count;
16451
16452 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16453 TYPE_TYPEDEF_FIELD_ARRAY (type)
16454 = ((struct decl_field *)
16455 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
16456 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
16457
16458 /* Reverse the list order to keep the debug info elements order. */
16459 while (--i >= 0)
16460 {
16461 struct decl_field *dest, *src;
16462
16463 dest = &TYPE_TYPEDEF_FIELD (type, i);
16464 src = &fi.typedef_field_list->field;
16465 fi.typedef_field_list = fi.typedef_field_list->next;
16466 *dest = *src;
16467 }
16468 }
16469
16470 /* Copy fi.nested_types_list linked list elements content into the
16471 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16472 if (fi.nested_types_list != NULL && cu->language != language_ada)
16473 {
16474 int i = fi.nested_types_list_count;
16475
16476 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16477 TYPE_NESTED_TYPES_ARRAY (type)
16478 = ((struct decl_field *)
16479 TYPE_ALLOC (type, sizeof (struct decl_field) * i));
16480 TYPE_NESTED_TYPES_COUNT (type) = i;
16481
16482 /* Reverse the list order to keep the debug info elements order. */
16483 while (--i >= 0)
16484 {
16485 struct decl_field *dest, *src;
16486
16487 dest = &TYPE_NESTED_TYPES_FIELD (type, i);
16488 src = &fi.nested_types_list->field;
16489 fi.nested_types_list = fi.nested_types_list->next;
16490 *dest = *src;
16491 }
16492 }
16493
16494 do_cleanups (back_to);
16495 }
16496
16497 quirk_gcc_member_function_pointer (type, objfile);
16498 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16499 cu->rust_unions.push_back (type);
16500
16501 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16502 snapshots) has been known to create a die giving a declaration
16503 for a class that has, as a child, a die giving a definition for a
16504 nested class. So we have to process our children even if the
16505 current die is a declaration. Normally, of course, a declaration
16506 won't have any children at all. */
16507
16508 child_die = die->child;
16509
16510 while (child_die != NULL && child_die->tag)
16511 {
16512 if (child_die->tag == DW_TAG_member
16513 || child_die->tag == DW_TAG_variable
16514 || child_die->tag == DW_TAG_inheritance
16515 || child_die->tag == DW_TAG_template_value_param
16516 || child_die->tag == DW_TAG_template_type_param)
16517 {
16518 /* Do nothing. */
16519 }
16520 else
16521 process_die (child_die, cu);
16522
16523 child_die = sibling_die (child_die);
16524 }
16525
16526 /* Do not consider external references. According to the DWARF standard,
16527 these DIEs are identified by the fact that they have no byte_size
16528 attribute, and a declaration attribute. */
16529 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16530 || !die_is_declaration (die, cu))
16531 new_symbol (die, type, cu);
16532 }
16533
16534 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16535 update TYPE using some information only available in DIE's children. */
16536
16537 static void
16538 update_enumeration_type_from_children (struct die_info *die,
16539 struct type *type,
16540 struct dwarf2_cu *cu)
16541 {
16542 struct die_info *child_die;
16543 int unsigned_enum = 1;
16544 int flag_enum = 1;
16545 ULONGEST mask = 0;
16546
16547 auto_obstack obstack;
16548
16549 for (child_die = die->child;
16550 child_die != NULL && child_die->tag;
16551 child_die = sibling_die (child_die))
16552 {
16553 struct attribute *attr;
16554 LONGEST value;
16555 const gdb_byte *bytes;
16556 struct dwarf2_locexpr_baton *baton;
16557 const char *name;
16558
16559 if (child_die->tag != DW_TAG_enumerator)
16560 continue;
16561
16562 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16563 if (attr == NULL)
16564 continue;
16565
16566 name = dwarf2_name (child_die, cu);
16567 if (name == NULL)
16568 name = "<anonymous enumerator>";
16569
16570 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16571 &value, &bytes, &baton);
16572 if (value < 0)
16573 {
16574 unsigned_enum = 0;
16575 flag_enum = 0;
16576 }
16577 else if ((mask & value) != 0)
16578 flag_enum = 0;
16579 else
16580 mask |= value;
16581
16582 /* If we already know that the enum type is neither unsigned, nor
16583 a flag type, no need to look at the rest of the enumerates. */
16584 if (!unsigned_enum && !flag_enum)
16585 break;
16586 }
16587
16588 if (unsigned_enum)
16589 TYPE_UNSIGNED (type) = 1;
16590 if (flag_enum)
16591 TYPE_FLAG_ENUM (type) = 1;
16592 }
16593
16594 /* Given a DW_AT_enumeration_type die, set its type. We do not
16595 complete the type's fields yet, or create any symbols. */
16596
16597 static struct type *
16598 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16599 {
16600 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16601 struct type *type;
16602 struct attribute *attr;
16603 const char *name;
16604
16605 /* If the definition of this type lives in .debug_types, read that type.
16606 Don't follow DW_AT_specification though, that will take us back up
16607 the chain and we want to go down. */
16608 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16609 if (attr)
16610 {
16611 type = get_DW_AT_signature_type (die, attr, cu);
16612
16613 /* The type's CU may not be the same as CU.
16614 Ensure TYPE is recorded with CU in die_type_hash. */
16615 return set_die_type (die, type, cu);
16616 }
16617
16618 type = alloc_type (objfile);
16619
16620 TYPE_CODE (type) = TYPE_CODE_ENUM;
16621 name = dwarf2_full_name (NULL, die, cu);
16622 if (name != NULL)
16623 TYPE_TAG_NAME (type) = name;
16624
16625 attr = dwarf2_attr (die, DW_AT_type, cu);
16626 if (attr != NULL)
16627 {
16628 struct type *underlying_type = die_type (die, cu);
16629
16630 TYPE_TARGET_TYPE (type) = underlying_type;
16631 }
16632
16633 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16634 if (attr)
16635 {
16636 TYPE_LENGTH (type) = DW_UNSND (attr);
16637 }
16638 else
16639 {
16640 TYPE_LENGTH (type) = 0;
16641 }
16642
16643 /* The enumeration DIE can be incomplete. In Ada, any type can be
16644 declared as private in the package spec, and then defined only
16645 inside the package body. Such types are known as Taft Amendment
16646 Types. When another package uses such a type, an incomplete DIE
16647 may be generated by the compiler. */
16648 if (die_is_declaration (die, cu))
16649 TYPE_STUB (type) = 1;
16650
16651 /* Finish the creation of this type by using the enum's children.
16652 We must call this even when the underlying type has been provided
16653 so that we can determine if we're looking at a "flag" enum. */
16654 update_enumeration_type_from_children (die, type, cu);
16655
16656 /* If this type has an underlying type that is not a stub, then we
16657 may use its attributes. We always use the "unsigned" attribute
16658 in this situation, because ordinarily we guess whether the type
16659 is unsigned -- but the guess can be wrong and the underlying type
16660 can tell us the reality. However, we defer to a local size
16661 attribute if one exists, because this lets the compiler override
16662 the underlying type if needed. */
16663 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16664 {
16665 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16666 if (TYPE_LENGTH (type) == 0)
16667 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16668 }
16669
16670 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16671
16672 return set_die_type (die, type, cu);
16673 }
16674
16675 /* Given a pointer to a die which begins an enumeration, process all
16676 the dies that define the members of the enumeration, and create the
16677 symbol for the enumeration type.
16678
16679 NOTE: We reverse the order of the element list. */
16680
16681 static void
16682 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16683 {
16684 struct type *this_type;
16685
16686 this_type = get_die_type (die, cu);
16687 if (this_type == NULL)
16688 this_type = read_enumeration_type (die, cu);
16689
16690 if (die->child != NULL)
16691 {
16692 struct die_info *child_die;
16693 struct symbol *sym;
16694 struct field *fields = NULL;
16695 int num_fields = 0;
16696 const char *name;
16697
16698 child_die = die->child;
16699 while (child_die && child_die->tag)
16700 {
16701 if (child_die->tag != DW_TAG_enumerator)
16702 {
16703 process_die (child_die, cu);
16704 }
16705 else
16706 {
16707 name = dwarf2_name (child_die, cu);
16708 if (name)
16709 {
16710 sym = new_symbol (child_die, this_type, cu);
16711
16712 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16713 {
16714 fields = (struct field *)
16715 xrealloc (fields,
16716 (num_fields + DW_FIELD_ALLOC_CHUNK)
16717 * sizeof (struct field));
16718 }
16719
16720 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16721 FIELD_TYPE (fields[num_fields]) = NULL;
16722 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16723 FIELD_BITSIZE (fields[num_fields]) = 0;
16724
16725 num_fields++;
16726 }
16727 }
16728
16729 child_die = sibling_die (child_die);
16730 }
16731
16732 if (num_fields)
16733 {
16734 TYPE_NFIELDS (this_type) = num_fields;
16735 TYPE_FIELDS (this_type) = (struct field *)
16736 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16737 memcpy (TYPE_FIELDS (this_type), fields,
16738 sizeof (struct field) * num_fields);
16739 xfree (fields);
16740 }
16741 }
16742
16743 /* If we are reading an enum from a .debug_types unit, and the enum
16744 is a declaration, and the enum is not the signatured type in the
16745 unit, then we do not want to add a symbol for it. Adding a
16746 symbol would in some cases obscure the true definition of the
16747 enum, giving users an incomplete type when the definition is
16748 actually available. Note that we do not want to do this for all
16749 enums which are just declarations, because C++0x allows forward
16750 enum declarations. */
16751 if (cu->per_cu->is_debug_types
16752 && die_is_declaration (die, cu))
16753 {
16754 struct signatured_type *sig_type;
16755
16756 sig_type = (struct signatured_type *) cu->per_cu;
16757 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16758 if (sig_type->type_offset_in_section != die->sect_off)
16759 return;
16760 }
16761
16762 new_symbol (die, this_type, cu);
16763 }
16764
16765 /* Extract all information from a DW_TAG_array_type DIE and put it in
16766 the DIE's type field. For now, this only handles one dimensional
16767 arrays. */
16768
16769 static struct type *
16770 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16771 {
16772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16773 struct die_info *child_die;
16774 struct type *type;
16775 struct type *element_type, *range_type, *index_type;
16776 struct attribute *attr;
16777 const char *name;
16778 struct dynamic_prop *byte_stride_prop = NULL;
16779 unsigned int bit_stride = 0;
16780
16781 element_type = die_type (die, cu);
16782
16783 /* The die_type call above may have already set the type for this DIE. */
16784 type = get_die_type (die, cu);
16785 if (type)
16786 return type;
16787
16788 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16789 if (attr != NULL)
16790 {
16791 int stride_ok;
16792
16793 byte_stride_prop
16794 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16795 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16796 if (!stride_ok)
16797 {
16798 complaint (&symfile_complaints,
16799 _("unable to read array DW_AT_byte_stride "
16800 " - DIE at %s [in module %s]"),
16801 sect_offset_str (die->sect_off),
16802 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16803 /* Ignore this attribute. We will likely not be able to print
16804 arrays of this type correctly, but there is little we can do
16805 to help if we cannot read the attribute's value. */
16806 byte_stride_prop = NULL;
16807 }
16808 }
16809
16810 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16811 if (attr != NULL)
16812 bit_stride = DW_UNSND (attr);
16813
16814 /* Irix 6.2 native cc creates array types without children for
16815 arrays with unspecified length. */
16816 if (die->child == NULL)
16817 {
16818 index_type = objfile_type (objfile)->builtin_int;
16819 range_type = create_static_range_type (NULL, index_type, 0, -1);
16820 type = create_array_type_with_stride (NULL, element_type, range_type,
16821 byte_stride_prop, bit_stride);
16822 return set_die_type (die, type, cu);
16823 }
16824
16825 std::vector<struct type *> range_types;
16826 child_die = die->child;
16827 while (child_die && child_die->tag)
16828 {
16829 if (child_die->tag == DW_TAG_subrange_type)
16830 {
16831 struct type *child_type = read_type_die (child_die, cu);
16832
16833 if (child_type != NULL)
16834 {
16835 /* The range type was succesfully read. Save it for the
16836 array type creation. */
16837 range_types.push_back (child_type);
16838 }
16839 }
16840 child_die = sibling_die (child_die);
16841 }
16842
16843 /* Dwarf2 dimensions are output from left to right, create the
16844 necessary array types in backwards order. */
16845
16846 type = element_type;
16847
16848 if (read_array_order (die, cu) == DW_ORD_col_major)
16849 {
16850 int i = 0;
16851
16852 while (i < range_types.size ())
16853 type = create_array_type_with_stride (NULL, type, range_types[i++],
16854 byte_stride_prop, bit_stride);
16855 }
16856 else
16857 {
16858 size_t ndim = range_types.size ();
16859 while (ndim-- > 0)
16860 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16861 byte_stride_prop, bit_stride);
16862 }
16863
16864 /* Understand Dwarf2 support for vector types (like they occur on
16865 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16866 array type. This is not part of the Dwarf2/3 standard yet, but a
16867 custom vendor extension. The main difference between a regular
16868 array and the vector variant is that vectors are passed by value
16869 to functions. */
16870 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16871 if (attr)
16872 make_vector_type (type);
16873
16874 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16875 implementation may choose to implement triple vectors using this
16876 attribute. */
16877 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16878 if (attr)
16879 {
16880 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16881 TYPE_LENGTH (type) = DW_UNSND (attr);
16882 else
16883 complaint (&symfile_complaints,
16884 _("DW_AT_byte_size for array type smaller "
16885 "than the total size of elements"));
16886 }
16887
16888 name = dwarf2_name (die, cu);
16889 if (name)
16890 TYPE_NAME (type) = name;
16891
16892 /* Install the type in the die. */
16893 set_die_type (die, type, cu);
16894
16895 /* set_die_type should be already done. */
16896 set_descriptive_type (type, die, cu);
16897
16898 return type;
16899 }
16900
16901 static enum dwarf_array_dim_ordering
16902 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16903 {
16904 struct attribute *attr;
16905
16906 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16907
16908 if (attr)
16909 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16910
16911 /* GNU F77 is a special case, as at 08/2004 array type info is the
16912 opposite order to the dwarf2 specification, but data is still
16913 laid out as per normal fortran.
16914
16915 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16916 version checking. */
16917
16918 if (cu->language == language_fortran
16919 && cu->producer && strstr (cu->producer, "GNU F77"))
16920 {
16921 return DW_ORD_row_major;
16922 }
16923
16924 switch (cu->language_defn->la_array_ordering)
16925 {
16926 case array_column_major:
16927 return DW_ORD_col_major;
16928 case array_row_major:
16929 default:
16930 return DW_ORD_row_major;
16931 };
16932 }
16933
16934 /* Extract all information from a DW_TAG_set_type DIE and put it in
16935 the DIE's type field. */
16936
16937 static struct type *
16938 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16939 {
16940 struct type *domain_type, *set_type;
16941 struct attribute *attr;
16942
16943 domain_type = die_type (die, cu);
16944
16945 /* The die_type call above may have already set the type for this DIE. */
16946 set_type = get_die_type (die, cu);
16947 if (set_type)
16948 return set_type;
16949
16950 set_type = create_set_type (NULL, domain_type);
16951
16952 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16953 if (attr)
16954 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16955
16956 return set_die_type (die, set_type, cu);
16957 }
16958
16959 /* A helper for read_common_block that creates a locexpr baton.
16960 SYM is the symbol which we are marking as computed.
16961 COMMON_DIE is the DIE for the common block.
16962 COMMON_LOC is the location expression attribute for the common
16963 block itself.
16964 MEMBER_LOC is the location expression attribute for the particular
16965 member of the common block that we are processing.
16966 CU is the CU from which the above come. */
16967
16968 static void
16969 mark_common_block_symbol_computed (struct symbol *sym,
16970 struct die_info *common_die,
16971 struct attribute *common_loc,
16972 struct attribute *member_loc,
16973 struct dwarf2_cu *cu)
16974 {
16975 struct dwarf2_per_objfile *dwarf2_per_objfile
16976 = cu->per_cu->dwarf2_per_objfile;
16977 struct objfile *objfile = dwarf2_per_objfile->objfile;
16978 struct dwarf2_locexpr_baton *baton;
16979 gdb_byte *ptr;
16980 unsigned int cu_off;
16981 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16982 LONGEST offset = 0;
16983
16984 gdb_assert (common_loc && member_loc);
16985 gdb_assert (attr_form_is_block (common_loc));
16986 gdb_assert (attr_form_is_block (member_loc)
16987 || attr_form_is_constant (member_loc));
16988
16989 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16990 baton->per_cu = cu->per_cu;
16991 gdb_assert (baton->per_cu);
16992
16993 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16994
16995 if (attr_form_is_constant (member_loc))
16996 {
16997 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16998 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16999 }
17000 else
17001 baton->size += DW_BLOCK (member_loc)->size;
17002
17003 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
17004 baton->data = ptr;
17005
17006 *ptr++ = DW_OP_call4;
17007 cu_off = common_die->sect_off - cu->per_cu->sect_off;
17008 store_unsigned_integer (ptr, 4, byte_order, cu_off);
17009 ptr += 4;
17010
17011 if (attr_form_is_constant (member_loc))
17012 {
17013 *ptr++ = DW_OP_addr;
17014 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
17015 ptr += cu->header.addr_size;
17016 }
17017 else
17018 {
17019 /* We have to copy the data here, because DW_OP_call4 will only
17020 use a DW_AT_location attribute. */
17021 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
17022 ptr += DW_BLOCK (member_loc)->size;
17023 }
17024
17025 *ptr++ = DW_OP_plus;
17026 gdb_assert (ptr - baton->data == baton->size);
17027
17028 SYMBOL_LOCATION_BATON (sym) = baton;
17029 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17030 }
17031
17032 /* Create appropriate locally-scoped variables for all the
17033 DW_TAG_common_block entries. Also create a struct common_block
17034 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
17035 is used to sepate the common blocks name namespace from regular
17036 variable names. */
17037
17038 static void
17039 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
17040 {
17041 struct attribute *attr;
17042
17043 attr = dwarf2_attr (die, DW_AT_location, cu);
17044 if (attr)
17045 {
17046 /* Support the .debug_loc offsets. */
17047 if (attr_form_is_block (attr))
17048 {
17049 /* Ok. */
17050 }
17051 else if (attr_form_is_section_offset (attr))
17052 {
17053 dwarf2_complex_location_expr_complaint ();
17054 attr = NULL;
17055 }
17056 else
17057 {
17058 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17059 "common block member");
17060 attr = NULL;
17061 }
17062 }
17063
17064 if (die->child != NULL)
17065 {
17066 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17067 struct die_info *child_die;
17068 size_t n_entries = 0, size;
17069 struct common_block *common_block;
17070 struct symbol *sym;
17071
17072 for (child_die = die->child;
17073 child_die && child_die->tag;
17074 child_die = sibling_die (child_die))
17075 ++n_entries;
17076
17077 size = (sizeof (struct common_block)
17078 + (n_entries - 1) * sizeof (struct symbol *));
17079 common_block
17080 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
17081 size);
17082 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
17083 common_block->n_entries = 0;
17084
17085 for (child_die = die->child;
17086 child_die && child_die->tag;
17087 child_die = sibling_die (child_die))
17088 {
17089 /* Create the symbol in the DW_TAG_common_block block in the current
17090 symbol scope. */
17091 sym = new_symbol (child_die, NULL, cu);
17092 if (sym != NULL)
17093 {
17094 struct attribute *member_loc;
17095
17096 common_block->contents[common_block->n_entries++] = sym;
17097
17098 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
17099 cu);
17100 if (member_loc)
17101 {
17102 /* GDB has handled this for a long time, but it is
17103 not specified by DWARF. It seems to have been
17104 emitted by gfortran at least as recently as:
17105 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
17106 complaint (&symfile_complaints,
17107 _("Variable in common block has "
17108 "DW_AT_data_member_location "
17109 "- DIE at %s [in module %s]"),
17110 sect_offset_str (child_die->sect_off),
17111 objfile_name (objfile));
17112
17113 if (attr_form_is_section_offset (member_loc))
17114 dwarf2_complex_location_expr_complaint ();
17115 else if (attr_form_is_constant (member_loc)
17116 || attr_form_is_block (member_loc))
17117 {
17118 if (attr)
17119 mark_common_block_symbol_computed (sym, die, attr,
17120 member_loc, cu);
17121 }
17122 else
17123 dwarf2_complex_location_expr_complaint ();
17124 }
17125 }
17126 }
17127
17128 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
17129 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
17130 }
17131 }
17132
17133 /* Create a type for a C++ namespace. */
17134
17135 static struct type *
17136 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
17137 {
17138 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17139 const char *previous_prefix, *name;
17140 int is_anonymous;
17141 struct type *type;
17142
17143 /* For extensions, reuse the type of the original namespace. */
17144 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
17145 {
17146 struct die_info *ext_die;
17147 struct dwarf2_cu *ext_cu = cu;
17148
17149 ext_die = dwarf2_extension (die, &ext_cu);
17150 type = read_type_die (ext_die, ext_cu);
17151
17152 /* EXT_CU may not be the same as CU.
17153 Ensure TYPE is recorded with CU in die_type_hash. */
17154 return set_die_type (die, type, cu);
17155 }
17156
17157 name = namespace_name (die, &is_anonymous, cu);
17158
17159 /* Now build the name of the current namespace. */
17160
17161 previous_prefix = determine_prefix (die, cu);
17162 if (previous_prefix[0] != '\0')
17163 name = typename_concat (&objfile->objfile_obstack,
17164 previous_prefix, name, 0, cu);
17165
17166 /* Create the type. */
17167 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
17168 TYPE_TAG_NAME (type) = TYPE_NAME (type);
17169
17170 return set_die_type (die, type, cu);
17171 }
17172
17173 /* Read a namespace scope. */
17174
17175 static void
17176 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
17177 {
17178 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17179 int is_anonymous;
17180
17181 /* Add a symbol associated to this if we haven't seen the namespace
17182 before. Also, add a using directive if it's an anonymous
17183 namespace. */
17184
17185 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
17186 {
17187 struct type *type;
17188
17189 type = read_type_die (die, cu);
17190 new_symbol (die, type, cu);
17191
17192 namespace_name (die, &is_anonymous, cu);
17193 if (is_anonymous)
17194 {
17195 const char *previous_prefix = determine_prefix (die, cu);
17196
17197 std::vector<const char *> excludes;
17198 add_using_directive (using_directives (cu->language),
17199 previous_prefix, TYPE_NAME (type), NULL,
17200 NULL, excludes, 0, &objfile->objfile_obstack);
17201 }
17202 }
17203
17204 if (die->child != NULL)
17205 {
17206 struct die_info *child_die = die->child;
17207
17208 while (child_die && child_die->tag)
17209 {
17210 process_die (child_die, cu);
17211 child_die = sibling_die (child_die);
17212 }
17213 }
17214 }
17215
17216 /* Read a Fortran module as type. This DIE can be only a declaration used for
17217 imported module. Still we need that type as local Fortran "use ... only"
17218 declaration imports depend on the created type in determine_prefix. */
17219
17220 static struct type *
17221 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
17222 {
17223 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17224 const char *module_name;
17225 struct type *type;
17226
17227 module_name = dwarf2_name (die, cu);
17228 if (!module_name)
17229 complaint (&symfile_complaints,
17230 _("DW_TAG_module has no name, offset %s"),
17231 sect_offset_str (die->sect_off));
17232 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
17233
17234 /* determine_prefix uses TYPE_TAG_NAME. */
17235 TYPE_TAG_NAME (type) = TYPE_NAME (type);
17236
17237 return set_die_type (die, type, cu);
17238 }
17239
17240 /* Read a Fortran module. */
17241
17242 static void
17243 read_module (struct die_info *die, struct dwarf2_cu *cu)
17244 {
17245 struct die_info *child_die = die->child;
17246 struct type *type;
17247
17248 type = read_type_die (die, cu);
17249 new_symbol (die, type, cu);
17250
17251 while (child_die && child_die->tag)
17252 {
17253 process_die (child_die, cu);
17254 child_die = sibling_die (child_die);
17255 }
17256 }
17257
17258 /* Return the name of the namespace represented by DIE. Set
17259 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
17260 namespace. */
17261
17262 static const char *
17263 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
17264 {
17265 struct die_info *current_die;
17266 const char *name = NULL;
17267
17268 /* Loop through the extensions until we find a name. */
17269
17270 for (current_die = die;
17271 current_die != NULL;
17272 current_die = dwarf2_extension (die, &cu))
17273 {
17274 /* We don't use dwarf2_name here so that we can detect the absence
17275 of a name -> anonymous namespace. */
17276 name = dwarf2_string_attr (die, DW_AT_name, cu);
17277
17278 if (name != NULL)
17279 break;
17280 }
17281
17282 /* Is it an anonymous namespace? */
17283
17284 *is_anonymous = (name == NULL);
17285 if (*is_anonymous)
17286 name = CP_ANONYMOUS_NAMESPACE_STR;
17287
17288 return name;
17289 }
17290
17291 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17292 the user defined type vector. */
17293
17294 static struct type *
17295 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17296 {
17297 struct gdbarch *gdbarch
17298 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17299 struct comp_unit_head *cu_header = &cu->header;
17300 struct type *type;
17301 struct attribute *attr_byte_size;
17302 struct attribute *attr_address_class;
17303 int byte_size, addr_class;
17304 struct type *target_type;
17305
17306 target_type = die_type (die, cu);
17307
17308 /* The die_type call above may have already set the type for this DIE. */
17309 type = get_die_type (die, cu);
17310 if (type)
17311 return type;
17312
17313 type = lookup_pointer_type (target_type);
17314
17315 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17316 if (attr_byte_size)
17317 byte_size = DW_UNSND (attr_byte_size);
17318 else
17319 byte_size = cu_header->addr_size;
17320
17321 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17322 if (attr_address_class)
17323 addr_class = DW_UNSND (attr_address_class);
17324 else
17325 addr_class = DW_ADDR_none;
17326
17327 /* If the pointer size or address class is different than the
17328 default, create a type variant marked as such and set the
17329 length accordingly. */
17330 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
17331 {
17332 if (gdbarch_address_class_type_flags_p (gdbarch))
17333 {
17334 int type_flags;
17335
17336 type_flags = gdbarch_address_class_type_flags
17337 (gdbarch, byte_size, addr_class);
17338 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17339 == 0);
17340 type = make_type_with_address_space (type, type_flags);
17341 }
17342 else if (TYPE_LENGTH (type) != byte_size)
17343 {
17344 complaint (&symfile_complaints,
17345 _("invalid pointer size %d"), byte_size);
17346 }
17347 else
17348 {
17349 /* Should we also complain about unhandled address classes? */
17350 }
17351 }
17352
17353 TYPE_LENGTH (type) = byte_size;
17354 return set_die_type (die, type, cu);
17355 }
17356
17357 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17358 the user defined type vector. */
17359
17360 static struct type *
17361 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17362 {
17363 struct type *type;
17364 struct type *to_type;
17365 struct type *domain;
17366
17367 to_type = die_type (die, cu);
17368 domain = die_containing_type (die, cu);
17369
17370 /* The calls above may have already set the type for this DIE. */
17371 type = get_die_type (die, cu);
17372 if (type)
17373 return type;
17374
17375 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17376 type = lookup_methodptr_type (to_type);
17377 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17378 {
17379 struct type *new_type
17380 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17381
17382 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17383 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17384 TYPE_VARARGS (to_type));
17385 type = lookup_methodptr_type (new_type);
17386 }
17387 else
17388 type = lookup_memberptr_type (to_type, domain);
17389
17390 return set_die_type (die, type, cu);
17391 }
17392
17393 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17394 the user defined type vector. */
17395
17396 static struct type *
17397 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17398 enum type_code refcode)
17399 {
17400 struct comp_unit_head *cu_header = &cu->header;
17401 struct type *type, *target_type;
17402 struct attribute *attr;
17403
17404 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17405
17406 target_type = die_type (die, cu);
17407
17408 /* The die_type call above may have already set the type for this DIE. */
17409 type = get_die_type (die, cu);
17410 if (type)
17411 return type;
17412
17413 type = lookup_reference_type (target_type, refcode);
17414 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17415 if (attr)
17416 {
17417 TYPE_LENGTH (type) = DW_UNSND (attr);
17418 }
17419 else
17420 {
17421 TYPE_LENGTH (type) = cu_header->addr_size;
17422 }
17423 return set_die_type (die, type, cu);
17424 }
17425
17426 /* Add the given cv-qualifiers to the element type of the array. GCC
17427 outputs DWARF type qualifiers that apply to an array, not the
17428 element type. But GDB relies on the array element type to carry
17429 the cv-qualifiers. This mimics section 6.7.3 of the C99
17430 specification. */
17431
17432 static struct type *
17433 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17434 struct type *base_type, int cnst, int voltl)
17435 {
17436 struct type *el_type, *inner_array;
17437
17438 base_type = copy_type (base_type);
17439 inner_array = base_type;
17440
17441 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17442 {
17443 TYPE_TARGET_TYPE (inner_array) =
17444 copy_type (TYPE_TARGET_TYPE (inner_array));
17445 inner_array = TYPE_TARGET_TYPE (inner_array);
17446 }
17447
17448 el_type = TYPE_TARGET_TYPE (inner_array);
17449 cnst |= TYPE_CONST (el_type);
17450 voltl |= TYPE_VOLATILE (el_type);
17451 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17452
17453 return set_die_type (die, base_type, cu);
17454 }
17455
17456 static struct type *
17457 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17458 {
17459 struct type *base_type, *cv_type;
17460
17461 base_type = die_type (die, cu);
17462
17463 /* The die_type call above may have already set the type for this DIE. */
17464 cv_type = get_die_type (die, cu);
17465 if (cv_type)
17466 return cv_type;
17467
17468 /* In case the const qualifier is applied to an array type, the element type
17469 is so qualified, not the array type (section 6.7.3 of C99). */
17470 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17471 return add_array_cv_type (die, cu, base_type, 1, 0);
17472
17473 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17474 return set_die_type (die, cv_type, cu);
17475 }
17476
17477 static struct type *
17478 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17479 {
17480 struct type *base_type, *cv_type;
17481
17482 base_type = die_type (die, cu);
17483
17484 /* The die_type call above may have already set the type for this DIE. */
17485 cv_type = get_die_type (die, cu);
17486 if (cv_type)
17487 return cv_type;
17488
17489 /* In case the volatile qualifier is applied to an array type, the
17490 element type is so qualified, not the array type (section 6.7.3
17491 of C99). */
17492 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17493 return add_array_cv_type (die, cu, base_type, 0, 1);
17494
17495 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17496 return set_die_type (die, cv_type, cu);
17497 }
17498
17499 /* Handle DW_TAG_restrict_type. */
17500
17501 static struct type *
17502 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17503 {
17504 struct type *base_type, *cv_type;
17505
17506 base_type = die_type (die, cu);
17507
17508 /* The die_type call above may have already set the type for this DIE. */
17509 cv_type = get_die_type (die, cu);
17510 if (cv_type)
17511 return cv_type;
17512
17513 cv_type = make_restrict_type (base_type);
17514 return set_die_type (die, cv_type, cu);
17515 }
17516
17517 /* Handle DW_TAG_atomic_type. */
17518
17519 static struct type *
17520 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17521 {
17522 struct type *base_type, *cv_type;
17523
17524 base_type = die_type (die, cu);
17525
17526 /* The die_type call above may have already set the type for this DIE. */
17527 cv_type = get_die_type (die, cu);
17528 if (cv_type)
17529 return cv_type;
17530
17531 cv_type = make_atomic_type (base_type);
17532 return set_die_type (die, cv_type, cu);
17533 }
17534
17535 /* Extract all information from a DW_TAG_string_type DIE and add to
17536 the user defined type vector. It isn't really a user defined type,
17537 but it behaves like one, with other DIE's using an AT_user_def_type
17538 attribute to reference it. */
17539
17540 static struct type *
17541 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17542 {
17543 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17544 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17545 struct type *type, *range_type, *index_type, *char_type;
17546 struct attribute *attr;
17547 unsigned int length;
17548
17549 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17550 if (attr)
17551 {
17552 length = DW_UNSND (attr);
17553 }
17554 else
17555 {
17556 /* Check for the DW_AT_byte_size attribute. */
17557 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17558 if (attr)
17559 {
17560 length = DW_UNSND (attr);
17561 }
17562 else
17563 {
17564 length = 1;
17565 }
17566 }
17567
17568 index_type = objfile_type (objfile)->builtin_int;
17569 range_type = create_static_range_type (NULL, index_type, 1, length);
17570 char_type = language_string_char_type (cu->language_defn, gdbarch);
17571 type = create_string_type (NULL, char_type, range_type);
17572
17573 return set_die_type (die, type, cu);
17574 }
17575
17576 /* Assuming that DIE corresponds to a function, returns nonzero
17577 if the function is prototyped. */
17578
17579 static int
17580 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17581 {
17582 struct attribute *attr;
17583
17584 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17585 if (attr && (DW_UNSND (attr) != 0))
17586 return 1;
17587
17588 /* The DWARF standard implies that the DW_AT_prototyped attribute
17589 is only meaninful for C, but the concept also extends to other
17590 languages that allow unprototyped functions (Eg: Objective C).
17591 For all other languages, assume that functions are always
17592 prototyped. */
17593 if (cu->language != language_c
17594 && cu->language != language_objc
17595 && cu->language != language_opencl)
17596 return 1;
17597
17598 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17599 prototyped and unprototyped functions; default to prototyped,
17600 since that is more common in modern code (and RealView warns
17601 about unprototyped functions). */
17602 if (producer_is_realview (cu->producer))
17603 return 1;
17604
17605 return 0;
17606 }
17607
17608 /* Handle DIES due to C code like:
17609
17610 struct foo
17611 {
17612 int (*funcp)(int a, long l);
17613 int b;
17614 };
17615
17616 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17617
17618 static struct type *
17619 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17620 {
17621 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17622 struct type *type; /* Type that this function returns. */
17623 struct type *ftype; /* Function that returns above type. */
17624 struct attribute *attr;
17625
17626 type = die_type (die, cu);
17627
17628 /* The die_type call above may have already set the type for this DIE. */
17629 ftype = get_die_type (die, cu);
17630 if (ftype)
17631 return ftype;
17632
17633 ftype = lookup_function_type (type);
17634
17635 if (prototyped_function_p (die, cu))
17636 TYPE_PROTOTYPED (ftype) = 1;
17637
17638 /* Store the calling convention in the type if it's available in
17639 the subroutine die. Otherwise set the calling convention to
17640 the default value DW_CC_normal. */
17641 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17642 if (attr)
17643 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17644 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17645 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17646 else
17647 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17648
17649 /* Record whether the function returns normally to its caller or not
17650 if the DWARF producer set that information. */
17651 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17652 if (attr && (DW_UNSND (attr) != 0))
17653 TYPE_NO_RETURN (ftype) = 1;
17654
17655 /* We need to add the subroutine type to the die immediately so
17656 we don't infinitely recurse when dealing with parameters
17657 declared as the same subroutine type. */
17658 set_die_type (die, ftype, cu);
17659
17660 if (die->child != NULL)
17661 {
17662 struct type *void_type = objfile_type (objfile)->builtin_void;
17663 struct die_info *child_die;
17664 int nparams, iparams;
17665
17666 /* Count the number of parameters.
17667 FIXME: GDB currently ignores vararg functions, but knows about
17668 vararg member functions. */
17669 nparams = 0;
17670 child_die = die->child;
17671 while (child_die && child_die->tag)
17672 {
17673 if (child_die->tag == DW_TAG_formal_parameter)
17674 nparams++;
17675 else if (child_die->tag == DW_TAG_unspecified_parameters)
17676 TYPE_VARARGS (ftype) = 1;
17677 child_die = sibling_die (child_die);
17678 }
17679
17680 /* Allocate storage for parameters and fill them in. */
17681 TYPE_NFIELDS (ftype) = nparams;
17682 TYPE_FIELDS (ftype) = (struct field *)
17683 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17684
17685 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17686 even if we error out during the parameters reading below. */
17687 for (iparams = 0; iparams < nparams; iparams++)
17688 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17689
17690 iparams = 0;
17691 child_die = die->child;
17692 while (child_die && child_die->tag)
17693 {
17694 if (child_die->tag == DW_TAG_formal_parameter)
17695 {
17696 struct type *arg_type;
17697
17698 /* DWARF version 2 has no clean way to discern C++
17699 static and non-static member functions. G++ helps
17700 GDB by marking the first parameter for non-static
17701 member functions (which is the this pointer) as
17702 artificial. We pass this information to
17703 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17704
17705 DWARF version 3 added DW_AT_object_pointer, which GCC
17706 4.5 does not yet generate. */
17707 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17708 if (attr)
17709 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17710 else
17711 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17712 arg_type = die_type (child_die, cu);
17713
17714 /* RealView does not mark THIS as const, which the testsuite
17715 expects. GCC marks THIS as const in method definitions,
17716 but not in the class specifications (GCC PR 43053). */
17717 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17718 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17719 {
17720 int is_this = 0;
17721 struct dwarf2_cu *arg_cu = cu;
17722 const char *name = dwarf2_name (child_die, cu);
17723
17724 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17725 if (attr)
17726 {
17727 /* If the compiler emits this, use it. */
17728 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17729 is_this = 1;
17730 }
17731 else if (name && strcmp (name, "this") == 0)
17732 /* Function definitions will have the argument names. */
17733 is_this = 1;
17734 else if (name == NULL && iparams == 0)
17735 /* Declarations may not have the names, so like
17736 elsewhere in GDB, assume an artificial first
17737 argument is "this". */
17738 is_this = 1;
17739
17740 if (is_this)
17741 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17742 arg_type, 0);
17743 }
17744
17745 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17746 iparams++;
17747 }
17748 child_die = sibling_die (child_die);
17749 }
17750 }
17751
17752 return ftype;
17753 }
17754
17755 static struct type *
17756 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17757 {
17758 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17759 const char *name = NULL;
17760 struct type *this_type, *target_type;
17761
17762 name = dwarf2_full_name (NULL, die, cu);
17763 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17764 TYPE_TARGET_STUB (this_type) = 1;
17765 set_die_type (die, this_type, cu);
17766 target_type = die_type (die, cu);
17767 if (target_type != this_type)
17768 TYPE_TARGET_TYPE (this_type) = target_type;
17769 else
17770 {
17771 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17772 spec and cause infinite loops in GDB. */
17773 complaint (&symfile_complaints,
17774 _("Self-referential DW_TAG_typedef "
17775 "- DIE at %s [in module %s]"),
17776 sect_offset_str (die->sect_off), objfile_name (objfile));
17777 TYPE_TARGET_TYPE (this_type) = NULL;
17778 }
17779 return this_type;
17780 }
17781
17782 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17783 (which may be different from NAME) to the architecture back-end to allow
17784 it to guess the correct format if necessary. */
17785
17786 static struct type *
17787 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17788 const char *name_hint)
17789 {
17790 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17791 const struct floatformat **format;
17792 struct type *type;
17793
17794 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17795 if (format)
17796 type = init_float_type (objfile, bits, name, format);
17797 else
17798 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17799
17800 return type;
17801 }
17802
17803 /* Find a representation of a given base type and install
17804 it in the TYPE field of the die. */
17805
17806 static struct type *
17807 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17808 {
17809 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17810 struct type *type;
17811 struct attribute *attr;
17812 int encoding = 0, bits = 0;
17813 const char *name;
17814
17815 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17816 if (attr)
17817 {
17818 encoding = DW_UNSND (attr);
17819 }
17820 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17821 if (attr)
17822 {
17823 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17824 }
17825 name = dwarf2_name (die, cu);
17826 if (!name)
17827 {
17828 complaint (&symfile_complaints,
17829 _("DW_AT_name missing from DW_TAG_base_type"));
17830 }
17831
17832 switch (encoding)
17833 {
17834 case DW_ATE_address:
17835 /* Turn DW_ATE_address into a void * pointer. */
17836 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17837 type = init_pointer_type (objfile, bits, name, type);
17838 break;
17839 case DW_ATE_boolean:
17840 type = init_boolean_type (objfile, bits, 1, name);
17841 break;
17842 case DW_ATE_complex_float:
17843 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17844 type = init_complex_type (objfile, name, type);
17845 break;
17846 case DW_ATE_decimal_float:
17847 type = init_decfloat_type (objfile, bits, name);
17848 break;
17849 case DW_ATE_float:
17850 type = dwarf2_init_float_type (objfile, bits, name, name);
17851 break;
17852 case DW_ATE_signed:
17853 type = init_integer_type (objfile, bits, 0, name);
17854 break;
17855 case DW_ATE_unsigned:
17856 if (cu->language == language_fortran
17857 && name
17858 && startswith (name, "character("))
17859 type = init_character_type (objfile, bits, 1, name);
17860 else
17861 type = init_integer_type (objfile, bits, 1, name);
17862 break;
17863 case DW_ATE_signed_char:
17864 if (cu->language == language_ada || cu->language == language_m2
17865 || cu->language == language_pascal
17866 || cu->language == language_fortran)
17867 type = init_character_type (objfile, bits, 0, name);
17868 else
17869 type = init_integer_type (objfile, bits, 0, name);
17870 break;
17871 case DW_ATE_unsigned_char:
17872 if (cu->language == language_ada || cu->language == language_m2
17873 || cu->language == language_pascal
17874 || cu->language == language_fortran
17875 || cu->language == language_rust)
17876 type = init_character_type (objfile, bits, 1, name);
17877 else
17878 type = init_integer_type (objfile, bits, 1, name);
17879 break;
17880 case DW_ATE_UTF:
17881 {
17882 gdbarch *arch = get_objfile_arch (objfile);
17883
17884 if (bits == 16)
17885 type = builtin_type (arch)->builtin_char16;
17886 else if (bits == 32)
17887 type = builtin_type (arch)->builtin_char32;
17888 else
17889 {
17890 complaint (&symfile_complaints,
17891 _("unsupported DW_ATE_UTF bit size: '%d'"),
17892 bits);
17893 type = init_integer_type (objfile, bits, 1, name);
17894 }
17895 return set_die_type (die, type, cu);
17896 }
17897 break;
17898
17899 default:
17900 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17901 dwarf_type_encoding_name (encoding));
17902 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17903 break;
17904 }
17905
17906 if (name && strcmp (name, "char") == 0)
17907 TYPE_NOSIGN (type) = 1;
17908
17909 return set_die_type (die, type, cu);
17910 }
17911
17912 /* Parse dwarf attribute if it's a block, reference or constant and put the
17913 resulting value of the attribute into struct bound_prop.
17914 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17915
17916 static int
17917 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17918 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17919 {
17920 struct dwarf2_property_baton *baton;
17921 struct obstack *obstack
17922 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17923
17924 if (attr == NULL || prop == NULL)
17925 return 0;
17926
17927 if (attr_form_is_block (attr))
17928 {
17929 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17930 baton->referenced_type = NULL;
17931 baton->locexpr.per_cu = cu->per_cu;
17932 baton->locexpr.size = DW_BLOCK (attr)->size;
17933 baton->locexpr.data = DW_BLOCK (attr)->data;
17934 prop->data.baton = baton;
17935 prop->kind = PROP_LOCEXPR;
17936 gdb_assert (prop->data.baton != NULL);
17937 }
17938 else if (attr_form_is_ref (attr))
17939 {
17940 struct dwarf2_cu *target_cu = cu;
17941 struct die_info *target_die;
17942 struct attribute *target_attr;
17943
17944 target_die = follow_die_ref (die, attr, &target_cu);
17945 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17946 if (target_attr == NULL)
17947 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17948 target_cu);
17949 if (target_attr == NULL)
17950 return 0;
17951
17952 switch (target_attr->name)
17953 {
17954 case DW_AT_location:
17955 if (attr_form_is_section_offset (target_attr))
17956 {
17957 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17958 baton->referenced_type = die_type (target_die, target_cu);
17959 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17960 prop->data.baton = baton;
17961 prop->kind = PROP_LOCLIST;
17962 gdb_assert (prop->data.baton != NULL);
17963 }
17964 else if (attr_form_is_block (target_attr))
17965 {
17966 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17967 baton->referenced_type = die_type (target_die, target_cu);
17968 baton->locexpr.per_cu = cu->per_cu;
17969 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17970 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17971 prop->data.baton = baton;
17972 prop->kind = PROP_LOCEXPR;
17973 gdb_assert (prop->data.baton != NULL);
17974 }
17975 else
17976 {
17977 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17978 "dynamic property");
17979 return 0;
17980 }
17981 break;
17982 case DW_AT_data_member_location:
17983 {
17984 LONGEST offset;
17985
17986 if (!handle_data_member_location (target_die, target_cu,
17987 &offset))
17988 return 0;
17989
17990 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17991 baton->referenced_type = read_type_die (target_die->parent,
17992 target_cu);
17993 baton->offset_info.offset = offset;
17994 baton->offset_info.type = die_type (target_die, target_cu);
17995 prop->data.baton = baton;
17996 prop->kind = PROP_ADDR_OFFSET;
17997 break;
17998 }
17999 }
18000 }
18001 else if (attr_form_is_constant (attr))
18002 {
18003 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
18004 prop->kind = PROP_CONST;
18005 }
18006 else
18007 {
18008 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
18009 dwarf2_name (die, cu));
18010 return 0;
18011 }
18012
18013 return 1;
18014 }
18015
18016 /* Read the given DW_AT_subrange DIE. */
18017
18018 static struct type *
18019 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
18020 {
18021 struct type *base_type, *orig_base_type;
18022 struct type *range_type;
18023 struct attribute *attr;
18024 struct dynamic_prop low, high;
18025 int low_default_is_valid;
18026 int high_bound_is_count = 0;
18027 const char *name;
18028 LONGEST negative_mask;
18029
18030 orig_base_type = die_type (die, cu);
18031 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
18032 whereas the real type might be. So, we use ORIG_BASE_TYPE when
18033 creating the range type, but we use the result of check_typedef
18034 when examining properties of the type. */
18035 base_type = check_typedef (orig_base_type);
18036
18037 /* The die_type call above may have already set the type for this DIE. */
18038 range_type = get_die_type (die, cu);
18039 if (range_type)
18040 return range_type;
18041
18042 low.kind = PROP_CONST;
18043 high.kind = PROP_CONST;
18044 high.data.const_val = 0;
18045
18046 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
18047 omitting DW_AT_lower_bound. */
18048 switch (cu->language)
18049 {
18050 case language_c:
18051 case language_cplus:
18052 low.data.const_val = 0;
18053 low_default_is_valid = 1;
18054 break;
18055 case language_fortran:
18056 low.data.const_val = 1;
18057 low_default_is_valid = 1;
18058 break;
18059 case language_d:
18060 case language_objc:
18061 case language_rust:
18062 low.data.const_val = 0;
18063 low_default_is_valid = (cu->header.version >= 4);
18064 break;
18065 case language_ada:
18066 case language_m2:
18067 case language_pascal:
18068 low.data.const_val = 1;
18069 low_default_is_valid = (cu->header.version >= 4);
18070 break;
18071 default:
18072 low.data.const_val = 0;
18073 low_default_is_valid = 0;
18074 break;
18075 }
18076
18077 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
18078 if (attr)
18079 attr_to_dynamic_prop (attr, die, cu, &low);
18080 else if (!low_default_is_valid)
18081 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
18082 "- DIE at %s [in module %s]"),
18083 sect_offset_str (die->sect_off),
18084 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18085
18086 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
18087 if (!attr_to_dynamic_prop (attr, die, cu, &high))
18088 {
18089 attr = dwarf2_attr (die, DW_AT_count, cu);
18090 if (attr_to_dynamic_prop (attr, die, cu, &high))
18091 {
18092 /* If bounds are constant do the final calculation here. */
18093 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
18094 high.data.const_val = low.data.const_val + high.data.const_val - 1;
18095 else
18096 high_bound_is_count = 1;
18097 }
18098 }
18099
18100 /* Dwarf-2 specifications explicitly allows to create subrange types
18101 without specifying a base type.
18102 In that case, the base type must be set to the type of
18103 the lower bound, upper bound or count, in that order, if any of these
18104 three attributes references an object that has a type.
18105 If no base type is found, the Dwarf-2 specifications say that
18106 a signed integer type of size equal to the size of an address should
18107 be used.
18108 For the following C code: `extern char gdb_int [];'
18109 GCC produces an empty range DIE.
18110 FIXME: muller/2010-05-28: Possible references to object for low bound,
18111 high bound or count are not yet handled by this code. */
18112 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
18113 {
18114 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18115 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18116 int addr_size = gdbarch_addr_bit (gdbarch) /8;
18117 struct type *int_type = objfile_type (objfile)->builtin_int;
18118
18119 /* Test "int", "long int", and "long long int" objfile types,
18120 and select the first one having a size above or equal to the
18121 architecture address size. */
18122 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
18123 base_type = int_type;
18124 else
18125 {
18126 int_type = objfile_type (objfile)->builtin_long;
18127 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
18128 base_type = int_type;
18129 else
18130 {
18131 int_type = objfile_type (objfile)->builtin_long_long;
18132 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
18133 base_type = int_type;
18134 }
18135 }
18136 }
18137
18138 /* Normally, the DWARF producers are expected to use a signed
18139 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18140 But this is unfortunately not always the case, as witnessed
18141 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18142 is used instead. To work around that ambiguity, we treat
18143 the bounds as signed, and thus sign-extend their values, when
18144 the base type is signed. */
18145 negative_mask =
18146 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18147 if (low.kind == PROP_CONST
18148 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
18149 low.data.const_val |= negative_mask;
18150 if (high.kind == PROP_CONST
18151 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
18152 high.data.const_val |= negative_mask;
18153
18154 range_type = create_range_type (NULL, orig_base_type, &low, &high);
18155
18156 if (high_bound_is_count)
18157 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
18158
18159 /* Ada expects an empty array on no boundary attributes. */
18160 if (attr == NULL && cu->language != language_ada)
18161 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
18162
18163 name = dwarf2_name (die, cu);
18164 if (name)
18165 TYPE_NAME (range_type) = name;
18166
18167 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18168 if (attr)
18169 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18170
18171 set_die_type (die, range_type, cu);
18172
18173 /* set_die_type should be already done. */
18174 set_descriptive_type (range_type, die, cu);
18175
18176 return range_type;
18177 }
18178
18179 static struct type *
18180 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18181 {
18182 struct type *type;
18183
18184 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18185 NULL);
18186 TYPE_NAME (type) = dwarf2_name (die, cu);
18187
18188 /* In Ada, an unspecified type is typically used when the description
18189 of the type is defered to a different unit. When encountering
18190 such a type, we treat it as a stub, and try to resolve it later on,
18191 when needed. */
18192 if (cu->language == language_ada)
18193 TYPE_STUB (type) = 1;
18194
18195 return set_die_type (die, type, cu);
18196 }
18197
18198 /* Read a single die and all its descendents. Set the die's sibling
18199 field to NULL; set other fields in the die correctly, and set all
18200 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18201 location of the info_ptr after reading all of those dies. PARENT
18202 is the parent of the die in question. */
18203
18204 static struct die_info *
18205 read_die_and_children (const struct die_reader_specs *reader,
18206 const gdb_byte *info_ptr,
18207 const gdb_byte **new_info_ptr,
18208 struct die_info *parent)
18209 {
18210 struct die_info *die;
18211 const gdb_byte *cur_ptr;
18212 int has_children;
18213
18214 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18215 if (die == NULL)
18216 {
18217 *new_info_ptr = cur_ptr;
18218 return NULL;
18219 }
18220 store_in_ref_table (die, reader->cu);
18221
18222 if (has_children)
18223 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18224 else
18225 {
18226 die->child = NULL;
18227 *new_info_ptr = cur_ptr;
18228 }
18229
18230 die->sibling = NULL;
18231 die->parent = parent;
18232 return die;
18233 }
18234
18235 /* Read a die, all of its descendents, and all of its siblings; set
18236 all of the fields of all of the dies correctly. Arguments are as
18237 in read_die_and_children. */
18238
18239 static struct die_info *
18240 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18241 const gdb_byte *info_ptr,
18242 const gdb_byte **new_info_ptr,
18243 struct die_info *parent)
18244 {
18245 struct die_info *first_die, *last_sibling;
18246 const gdb_byte *cur_ptr;
18247
18248 cur_ptr = info_ptr;
18249 first_die = last_sibling = NULL;
18250
18251 while (1)
18252 {
18253 struct die_info *die
18254 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18255
18256 if (die == NULL)
18257 {
18258 *new_info_ptr = cur_ptr;
18259 return first_die;
18260 }
18261
18262 if (!first_die)
18263 first_die = die;
18264 else
18265 last_sibling->sibling = die;
18266
18267 last_sibling = die;
18268 }
18269 }
18270
18271 /* Read a die, all of its descendents, and all of its siblings; set
18272 all of the fields of all of the dies correctly. Arguments are as
18273 in read_die_and_children.
18274 This the main entry point for reading a DIE and all its children. */
18275
18276 static struct die_info *
18277 read_die_and_siblings (const struct die_reader_specs *reader,
18278 const gdb_byte *info_ptr,
18279 const gdb_byte **new_info_ptr,
18280 struct die_info *parent)
18281 {
18282 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18283 new_info_ptr, parent);
18284
18285 if (dwarf_die_debug)
18286 {
18287 fprintf_unfiltered (gdb_stdlog,
18288 "Read die from %s@0x%x of %s:\n",
18289 get_section_name (reader->die_section),
18290 (unsigned) (info_ptr - reader->die_section->buffer),
18291 bfd_get_filename (reader->abfd));
18292 dump_die (die, dwarf_die_debug);
18293 }
18294
18295 return die;
18296 }
18297
18298 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18299 attributes.
18300 The caller is responsible for filling in the extra attributes
18301 and updating (*DIEP)->num_attrs.
18302 Set DIEP to point to a newly allocated die with its information,
18303 except for its child, sibling, and parent fields.
18304 Set HAS_CHILDREN to tell whether the die has children or not. */
18305
18306 static const gdb_byte *
18307 read_full_die_1 (const struct die_reader_specs *reader,
18308 struct die_info **diep, const gdb_byte *info_ptr,
18309 int *has_children, int num_extra_attrs)
18310 {
18311 unsigned int abbrev_number, bytes_read, i;
18312 struct abbrev_info *abbrev;
18313 struct die_info *die;
18314 struct dwarf2_cu *cu = reader->cu;
18315 bfd *abfd = reader->abfd;
18316
18317 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18318 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18319 info_ptr += bytes_read;
18320 if (!abbrev_number)
18321 {
18322 *diep = NULL;
18323 *has_children = 0;
18324 return info_ptr;
18325 }
18326
18327 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18328 if (!abbrev)
18329 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18330 abbrev_number,
18331 bfd_get_filename (abfd));
18332
18333 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18334 die->sect_off = sect_off;
18335 die->tag = abbrev->tag;
18336 die->abbrev = abbrev_number;
18337
18338 /* Make the result usable.
18339 The caller needs to update num_attrs after adding the extra
18340 attributes. */
18341 die->num_attrs = abbrev->num_attrs;
18342
18343 for (i = 0; i < abbrev->num_attrs; ++i)
18344 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18345 info_ptr);
18346
18347 *diep = die;
18348 *has_children = abbrev->has_children;
18349 return info_ptr;
18350 }
18351
18352 /* Read a die and all its attributes.
18353 Set DIEP to point to a newly allocated die with its information,
18354 except for its child, sibling, and parent fields.
18355 Set HAS_CHILDREN to tell whether the die has children or not. */
18356
18357 static const gdb_byte *
18358 read_full_die (const struct die_reader_specs *reader,
18359 struct die_info **diep, const gdb_byte *info_ptr,
18360 int *has_children)
18361 {
18362 const gdb_byte *result;
18363
18364 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18365
18366 if (dwarf_die_debug)
18367 {
18368 fprintf_unfiltered (gdb_stdlog,
18369 "Read die from %s@0x%x of %s:\n",
18370 get_section_name (reader->die_section),
18371 (unsigned) (info_ptr - reader->die_section->buffer),
18372 bfd_get_filename (reader->abfd));
18373 dump_die (*diep, dwarf_die_debug);
18374 }
18375
18376 return result;
18377 }
18378 \f
18379 /* Abbreviation tables.
18380
18381 In DWARF version 2, the description of the debugging information is
18382 stored in a separate .debug_abbrev section. Before we read any
18383 dies from a section we read in all abbreviations and install them
18384 in a hash table. */
18385
18386 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18387
18388 struct abbrev_info *
18389 abbrev_table::alloc_abbrev ()
18390 {
18391 struct abbrev_info *abbrev;
18392
18393 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18394 memset (abbrev, 0, sizeof (struct abbrev_info));
18395
18396 return abbrev;
18397 }
18398
18399 /* Add an abbreviation to the table. */
18400
18401 void
18402 abbrev_table::add_abbrev (unsigned int abbrev_number,
18403 struct abbrev_info *abbrev)
18404 {
18405 unsigned int hash_number;
18406
18407 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18408 abbrev->next = m_abbrevs[hash_number];
18409 m_abbrevs[hash_number] = abbrev;
18410 }
18411
18412 /* Look up an abbrev in the table.
18413 Returns NULL if the abbrev is not found. */
18414
18415 struct abbrev_info *
18416 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18417 {
18418 unsigned int hash_number;
18419 struct abbrev_info *abbrev;
18420
18421 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18422 abbrev = m_abbrevs[hash_number];
18423
18424 while (abbrev)
18425 {
18426 if (abbrev->number == abbrev_number)
18427 return abbrev;
18428 abbrev = abbrev->next;
18429 }
18430 return NULL;
18431 }
18432
18433 /* Read in an abbrev table. */
18434
18435 static abbrev_table_up
18436 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18437 struct dwarf2_section_info *section,
18438 sect_offset sect_off)
18439 {
18440 struct objfile *objfile = dwarf2_per_objfile->objfile;
18441 bfd *abfd = get_section_bfd_owner (section);
18442 const gdb_byte *abbrev_ptr;
18443 struct abbrev_info *cur_abbrev;
18444 unsigned int abbrev_number, bytes_read, abbrev_name;
18445 unsigned int abbrev_form;
18446 struct attr_abbrev *cur_attrs;
18447 unsigned int allocated_attrs;
18448
18449 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18450
18451 dwarf2_read_section (objfile, section);
18452 abbrev_ptr = section->buffer + to_underlying (sect_off);
18453 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18454 abbrev_ptr += bytes_read;
18455
18456 allocated_attrs = ATTR_ALLOC_CHUNK;
18457 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18458
18459 /* Loop until we reach an abbrev number of 0. */
18460 while (abbrev_number)
18461 {
18462 cur_abbrev = abbrev_table->alloc_abbrev ();
18463
18464 /* read in abbrev header */
18465 cur_abbrev->number = abbrev_number;
18466 cur_abbrev->tag
18467 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18468 abbrev_ptr += bytes_read;
18469 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18470 abbrev_ptr += 1;
18471
18472 /* now read in declarations */
18473 for (;;)
18474 {
18475 LONGEST implicit_const;
18476
18477 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18478 abbrev_ptr += bytes_read;
18479 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18480 abbrev_ptr += bytes_read;
18481 if (abbrev_form == DW_FORM_implicit_const)
18482 {
18483 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18484 &bytes_read);
18485 abbrev_ptr += bytes_read;
18486 }
18487 else
18488 {
18489 /* Initialize it due to a false compiler warning. */
18490 implicit_const = -1;
18491 }
18492
18493 if (abbrev_name == 0)
18494 break;
18495
18496 if (cur_abbrev->num_attrs == allocated_attrs)
18497 {
18498 allocated_attrs += ATTR_ALLOC_CHUNK;
18499 cur_attrs
18500 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18501 }
18502
18503 cur_attrs[cur_abbrev->num_attrs].name
18504 = (enum dwarf_attribute) abbrev_name;
18505 cur_attrs[cur_abbrev->num_attrs].form
18506 = (enum dwarf_form) abbrev_form;
18507 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18508 ++cur_abbrev->num_attrs;
18509 }
18510
18511 cur_abbrev->attrs =
18512 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18513 cur_abbrev->num_attrs);
18514 memcpy (cur_abbrev->attrs, cur_attrs,
18515 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18516
18517 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18518
18519 /* Get next abbreviation.
18520 Under Irix6 the abbreviations for a compilation unit are not
18521 always properly terminated with an abbrev number of 0.
18522 Exit loop if we encounter an abbreviation which we have
18523 already read (which means we are about to read the abbreviations
18524 for the next compile unit) or if the end of the abbreviation
18525 table is reached. */
18526 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18527 break;
18528 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18529 abbrev_ptr += bytes_read;
18530 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18531 break;
18532 }
18533
18534 xfree (cur_attrs);
18535 return abbrev_table;
18536 }
18537
18538 /* Returns nonzero if TAG represents a type that we might generate a partial
18539 symbol for. */
18540
18541 static int
18542 is_type_tag_for_partial (int tag)
18543 {
18544 switch (tag)
18545 {
18546 #if 0
18547 /* Some types that would be reasonable to generate partial symbols for,
18548 that we don't at present. */
18549 case DW_TAG_array_type:
18550 case DW_TAG_file_type:
18551 case DW_TAG_ptr_to_member_type:
18552 case DW_TAG_set_type:
18553 case DW_TAG_string_type:
18554 case DW_TAG_subroutine_type:
18555 #endif
18556 case DW_TAG_base_type:
18557 case DW_TAG_class_type:
18558 case DW_TAG_interface_type:
18559 case DW_TAG_enumeration_type:
18560 case DW_TAG_structure_type:
18561 case DW_TAG_subrange_type:
18562 case DW_TAG_typedef:
18563 case DW_TAG_union_type:
18564 return 1;
18565 default:
18566 return 0;
18567 }
18568 }
18569
18570 /* Load all DIEs that are interesting for partial symbols into memory. */
18571
18572 static struct partial_die_info *
18573 load_partial_dies (const struct die_reader_specs *reader,
18574 const gdb_byte *info_ptr, int building_psymtab)
18575 {
18576 struct dwarf2_cu *cu = reader->cu;
18577 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18578 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18579 unsigned int bytes_read;
18580 unsigned int load_all = 0;
18581 int nesting_level = 1;
18582
18583 parent_die = NULL;
18584 last_die = NULL;
18585
18586 gdb_assert (cu->per_cu != NULL);
18587 if (cu->per_cu->load_all_dies)
18588 load_all = 1;
18589
18590 cu->partial_dies
18591 = htab_create_alloc_ex (cu->header.length / 12,
18592 partial_die_hash,
18593 partial_die_eq,
18594 NULL,
18595 &cu->comp_unit_obstack,
18596 hashtab_obstack_allocate,
18597 dummy_obstack_deallocate);
18598
18599 while (1)
18600 {
18601 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18602
18603 /* A NULL abbrev means the end of a series of children. */
18604 if (abbrev == NULL)
18605 {
18606 if (--nesting_level == 0)
18607 return first_die;
18608
18609 info_ptr += bytes_read;
18610 last_die = parent_die;
18611 parent_die = parent_die->die_parent;
18612 continue;
18613 }
18614
18615 /* Check for template arguments. We never save these; if
18616 they're seen, we just mark the parent, and go on our way. */
18617 if (parent_die != NULL
18618 && cu->language == language_cplus
18619 && (abbrev->tag == DW_TAG_template_type_param
18620 || abbrev->tag == DW_TAG_template_value_param))
18621 {
18622 parent_die->has_template_arguments = 1;
18623
18624 if (!load_all)
18625 {
18626 /* We don't need a partial DIE for the template argument. */
18627 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18628 continue;
18629 }
18630 }
18631
18632 /* We only recurse into c++ subprograms looking for template arguments.
18633 Skip their other children. */
18634 if (!load_all
18635 && cu->language == language_cplus
18636 && parent_die != NULL
18637 && parent_die->tag == DW_TAG_subprogram)
18638 {
18639 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18640 continue;
18641 }
18642
18643 /* Check whether this DIE is interesting enough to save. Normally
18644 we would not be interested in members here, but there may be
18645 later variables referencing them via DW_AT_specification (for
18646 static members). */
18647 if (!load_all
18648 && !is_type_tag_for_partial (abbrev->tag)
18649 && abbrev->tag != DW_TAG_constant
18650 && abbrev->tag != DW_TAG_enumerator
18651 && abbrev->tag != DW_TAG_subprogram
18652 && abbrev->tag != DW_TAG_inlined_subroutine
18653 && abbrev->tag != DW_TAG_lexical_block
18654 && abbrev->tag != DW_TAG_variable
18655 && abbrev->tag != DW_TAG_namespace
18656 && abbrev->tag != DW_TAG_module
18657 && abbrev->tag != DW_TAG_member
18658 && abbrev->tag != DW_TAG_imported_unit
18659 && abbrev->tag != DW_TAG_imported_declaration)
18660 {
18661 /* Otherwise we skip to the next sibling, if any. */
18662 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18663 continue;
18664 }
18665
18666 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18667 abbrev);
18668
18669 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18670
18671 /* This two-pass algorithm for processing partial symbols has a
18672 high cost in cache pressure. Thus, handle some simple cases
18673 here which cover the majority of C partial symbols. DIEs
18674 which neither have specification tags in them, nor could have
18675 specification tags elsewhere pointing at them, can simply be
18676 processed and discarded.
18677
18678 This segment is also optional; scan_partial_symbols and
18679 add_partial_symbol will handle these DIEs if we chain
18680 them in normally. When compilers which do not emit large
18681 quantities of duplicate debug information are more common,
18682 this code can probably be removed. */
18683
18684 /* Any complete simple types at the top level (pretty much all
18685 of them, for a language without namespaces), can be processed
18686 directly. */
18687 if (parent_die == NULL
18688 && pdi.has_specification == 0
18689 && pdi.is_declaration == 0
18690 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18691 || pdi.tag == DW_TAG_base_type
18692 || pdi.tag == DW_TAG_subrange_type))
18693 {
18694 if (building_psymtab && pdi.name != NULL)
18695 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18696 VAR_DOMAIN, LOC_TYPEDEF,
18697 &objfile->static_psymbols,
18698 0, cu->language, objfile);
18699 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18700 continue;
18701 }
18702
18703 /* The exception for DW_TAG_typedef with has_children above is
18704 a workaround of GCC PR debug/47510. In the case of this complaint
18705 type_name_no_tag_or_error will error on such types later.
18706
18707 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18708 it could not find the child DIEs referenced later, this is checked
18709 above. In correct DWARF DW_TAG_typedef should have no children. */
18710
18711 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18712 complaint (&symfile_complaints,
18713 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18714 "- DIE at %s [in module %s]"),
18715 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18716
18717 /* If we're at the second level, and we're an enumerator, and
18718 our parent has no specification (meaning possibly lives in a
18719 namespace elsewhere), then we can add the partial symbol now
18720 instead of queueing it. */
18721 if (pdi.tag == DW_TAG_enumerator
18722 && parent_die != NULL
18723 && parent_die->die_parent == NULL
18724 && parent_die->tag == DW_TAG_enumeration_type
18725 && parent_die->has_specification == 0)
18726 {
18727 if (pdi.name == NULL)
18728 complaint (&symfile_complaints,
18729 _("malformed enumerator DIE ignored"));
18730 else if (building_psymtab)
18731 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18732 VAR_DOMAIN, LOC_CONST,
18733 cu->language == language_cplus
18734 ? &objfile->global_psymbols
18735 : &objfile->static_psymbols,
18736 0, cu->language, objfile);
18737
18738 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18739 continue;
18740 }
18741
18742 struct partial_die_info *part_die
18743 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18744
18745 /* We'll save this DIE so link it in. */
18746 part_die->die_parent = parent_die;
18747 part_die->die_sibling = NULL;
18748 part_die->die_child = NULL;
18749
18750 if (last_die && last_die == parent_die)
18751 last_die->die_child = part_die;
18752 else if (last_die)
18753 last_die->die_sibling = part_die;
18754
18755 last_die = part_die;
18756
18757 if (first_die == NULL)
18758 first_die = part_die;
18759
18760 /* Maybe add the DIE to the hash table. Not all DIEs that we
18761 find interesting need to be in the hash table, because we
18762 also have the parent/sibling/child chains; only those that we
18763 might refer to by offset later during partial symbol reading.
18764
18765 For now this means things that might have be the target of a
18766 DW_AT_specification, DW_AT_abstract_origin, or
18767 DW_AT_extension. DW_AT_extension will refer only to
18768 namespaces; DW_AT_abstract_origin refers to functions (and
18769 many things under the function DIE, but we do not recurse
18770 into function DIEs during partial symbol reading) and
18771 possibly variables as well; DW_AT_specification refers to
18772 declarations. Declarations ought to have the DW_AT_declaration
18773 flag. It happens that GCC forgets to put it in sometimes, but
18774 only for functions, not for types.
18775
18776 Adding more things than necessary to the hash table is harmless
18777 except for the performance cost. Adding too few will result in
18778 wasted time in find_partial_die, when we reread the compilation
18779 unit with load_all_dies set. */
18780
18781 if (load_all
18782 || abbrev->tag == DW_TAG_constant
18783 || abbrev->tag == DW_TAG_subprogram
18784 || abbrev->tag == DW_TAG_variable
18785 || abbrev->tag == DW_TAG_namespace
18786 || part_die->is_declaration)
18787 {
18788 void **slot;
18789
18790 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18791 to_underlying (part_die->sect_off),
18792 INSERT);
18793 *slot = part_die;
18794 }
18795
18796 /* For some DIEs we want to follow their children (if any). For C
18797 we have no reason to follow the children of structures; for other
18798 languages we have to, so that we can get at method physnames
18799 to infer fully qualified class names, for DW_AT_specification,
18800 and for C++ template arguments. For C++, we also look one level
18801 inside functions to find template arguments (if the name of the
18802 function does not already contain the template arguments).
18803
18804 For Ada, we need to scan the children of subprograms and lexical
18805 blocks as well because Ada allows the definition of nested
18806 entities that could be interesting for the debugger, such as
18807 nested subprograms for instance. */
18808 if (last_die->has_children
18809 && (load_all
18810 || last_die->tag == DW_TAG_namespace
18811 || last_die->tag == DW_TAG_module
18812 || last_die->tag == DW_TAG_enumeration_type
18813 || (cu->language == language_cplus
18814 && last_die->tag == DW_TAG_subprogram
18815 && (last_die->name == NULL
18816 || strchr (last_die->name, '<') == NULL))
18817 || (cu->language != language_c
18818 && (last_die->tag == DW_TAG_class_type
18819 || last_die->tag == DW_TAG_interface_type
18820 || last_die->tag == DW_TAG_structure_type
18821 || last_die->tag == DW_TAG_union_type))
18822 || (cu->language == language_ada
18823 && (last_die->tag == DW_TAG_subprogram
18824 || last_die->tag == DW_TAG_lexical_block))))
18825 {
18826 nesting_level++;
18827 parent_die = last_die;
18828 continue;
18829 }
18830
18831 /* Otherwise we skip to the next sibling, if any. */
18832 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18833
18834 /* Back to the top, do it again. */
18835 }
18836 }
18837
18838 partial_die_info::partial_die_info (sect_offset sect_off_,
18839 struct abbrev_info *abbrev)
18840 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18841 {
18842 }
18843
18844 /* Read a minimal amount of information into the minimal die structure.
18845 INFO_PTR should point just after the initial uleb128 of a DIE. */
18846
18847 const gdb_byte *
18848 partial_die_info::read (const struct die_reader_specs *reader,
18849 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18850 {
18851 struct dwarf2_cu *cu = reader->cu;
18852 struct dwarf2_per_objfile *dwarf2_per_objfile
18853 = cu->per_cu->dwarf2_per_objfile;
18854 unsigned int i;
18855 int has_low_pc_attr = 0;
18856 int has_high_pc_attr = 0;
18857 int high_pc_relative = 0;
18858
18859 for (i = 0; i < abbrev.num_attrs; ++i)
18860 {
18861 struct attribute attr;
18862
18863 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18864
18865 /* Store the data if it is of an attribute we want to keep in a
18866 partial symbol table. */
18867 switch (attr.name)
18868 {
18869 case DW_AT_name:
18870 switch (tag)
18871 {
18872 case DW_TAG_compile_unit:
18873 case DW_TAG_partial_unit:
18874 case DW_TAG_type_unit:
18875 /* Compilation units have a DW_AT_name that is a filename, not
18876 a source language identifier. */
18877 case DW_TAG_enumeration_type:
18878 case DW_TAG_enumerator:
18879 /* These tags always have simple identifiers already; no need
18880 to canonicalize them. */
18881 name = DW_STRING (&attr);
18882 break;
18883 default:
18884 {
18885 struct objfile *objfile = dwarf2_per_objfile->objfile;
18886
18887 name
18888 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18889 &objfile->per_bfd->storage_obstack);
18890 }
18891 break;
18892 }
18893 break;
18894 case DW_AT_linkage_name:
18895 case DW_AT_MIPS_linkage_name:
18896 /* Note that both forms of linkage name might appear. We
18897 assume they will be the same, and we only store the last
18898 one we see. */
18899 if (cu->language == language_ada)
18900 name = DW_STRING (&attr);
18901 linkage_name = DW_STRING (&attr);
18902 break;
18903 case DW_AT_low_pc:
18904 has_low_pc_attr = 1;
18905 lowpc = attr_value_as_address (&attr);
18906 break;
18907 case DW_AT_high_pc:
18908 has_high_pc_attr = 1;
18909 highpc = attr_value_as_address (&attr);
18910 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18911 high_pc_relative = 1;
18912 break;
18913 case DW_AT_location:
18914 /* Support the .debug_loc offsets. */
18915 if (attr_form_is_block (&attr))
18916 {
18917 d.locdesc = DW_BLOCK (&attr);
18918 }
18919 else if (attr_form_is_section_offset (&attr))
18920 {
18921 dwarf2_complex_location_expr_complaint ();
18922 }
18923 else
18924 {
18925 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18926 "partial symbol information");
18927 }
18928 break;
18929 case DW_AT_external:
18930 is_external = DW_UNSND (&attr);
18931 break;
18932 case DW_AT_declaration:
18933 is_declaration = DW_UNSND (&attr);
18934 break;
18935 case DW_AT_type:
18936 has_type = 1;
18937 break;
18938 case DW_AT_abstract_origin:
18939 case DW_AT_specification:
18940 case DW_AT_extension:
18941 has_specification = 1;
18942 spec_offset = dwarf2_get_ref_die_offset (&attr);
18943 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18944 || cu->per_cu->is_dwz);
18945 break;
18946 case DW_AT_sibling:
18947 /* Ignore absolute siblings, they might point outside of
18948 the current compile unit. */
18949 if (attr.form == DW_FORM_ref_addr)
18950 complaint (&symfile_complaints,
18951 _("ignoring absolute DW_AT_sibling"));
18952 else
18953 {
18954 const gdb_byte *buffer = reader->buffer;
18955 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18956 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18957
18958 if (sibling_ptr < info_ptr)
18959 complaint (&symfile_complaints,
18960 _("DW_AT_sibling points backwards"));
18961 else if (sibling_ptr > reader->buffer_end)
18962 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18963 else
18964 sibling = sibling_ptr;
18965 }
18966 break;
18967 case DW_AT_byte_size:
18968 has_byte_size = 1;
18969 break;
18970 case DW_AT_const_value:
18971 has_const_value = 1;
18972 break;
18973 case DW_AT_calling_convention:
18974 /* DWARF doesn't provide a way to identify a program's source-level
18975 entry point. DW_AT_calling_convention attributes are only meant
18976 to describe functions' calling conventions.
18977
18978 However, because it's a necessary piece of information in
18979 Fortran, and before DWARF 4 DW_CC_program was the only
18980 piece of debugging information whose definition refers to
18981 a 'main program' at all, several compilers marked Fortran
18982 main programs with DW_CC_program --- even when those
18983 functions use the standard calling conventions.
18984
18985 Although DWARF now specifies a way to provide this
18986 information, we support this practice for backward
18987 compatibility. */
18988 if (DW_UNSND (&attr) == DW_CC_program
18989 && cu->language == language_fortran)
18990 main_subprogram = 1;
18991 break;
18992 case DW_AT_inline:
18993 if (DW_UNSND (&attr) == DW_INL_inlined
18994 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18995 may_be_inlined = 1;
18996 break;
18997
18998 case DW_AT_import:
18999 if (tag == DW_TAG_imported_unit)
19000 {
19001 d.sect_off = dwarf2_get_ref_die_offset (&attr);
19002 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19003 || cu->per_cu->is_dwz);
19004 }
19005 break;
19006
19007 case DW_AT_main_subprogram:
19008 main_subprogram = DW_UNSND (&attr);
19009 break;
19010
19011 default:
19012 break;
19013 }
19014 }
19015
19016 if (high_pc_relative)
19017 highpc += lowpc;
19018
19019 if (has_low_pc_attr && has_high_pc_attr)
19020 {
19021 /* When using the GNU linker, .gnu.linkonce. sections are used to
19022 eliminate duplicate copies of functions and vtables and such.
19023 The linker will arbitrarily choose one and discard the others.
19024 The AT_*_pc values for such functions refer to local labels in
19025 these sections. If the section from that file was discarded, the
19026 labels are not in the output, so the relocs get a value of 0.
19027 If this is a discarded function, mark the pc bounds as invalid,
19028 so that GDB will ignore it. */
19029 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
19030 {
19031 struct objfile *objfile = dwarf2_per_objfile->objfile;
19032 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19033
19034 complaint (&symfile_complaints,
19035 _("DW_AT_low_pc %s is zero "
19036 "for DIE at %s [in module %s]"),
19037 paddress (gdbarch, lowpc),
19038 sect_offset_str (sect_off),
19039 objfile_name (objfile));
19040 }
19041 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
19042 else if (lowpc >= highpc)
19043 {
19044 struct objfile *objfile = dwarf2_per_objfile->objfile;
19045 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19046
19047 complaint (&symfile_complaints,
19048 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
19049 "for DIE at %s [in module %s]"),
19050 paddress (gdbarch, lowpc),
19051 paddress (gdbarch, highpc),
19052 sect_offset_str (sect_off),
19053 objfile_name (objfile));
19054 }
19055 else
19056 has_pc_info = 1;
19057 }
19058
19059 return info_ptr;
19060 }
19061
19062 /* Find a cached partial DIE at OFFSET in CU. */
19063
19064 struct partial_die_info *
19065 dwarf2_cu::find_partial_die (sect_offset sect_off)
19066 {
19067 struct partial_die_info *lookup_die = NULL;
19068 struct partial_die_info part_die (sect_off);
19069
19070 lookup_die = ((struct partial_die_info *)
19071 htab_find_with_hash (partial_dies, &part_die,
19072 to_underlying (sect_off)));
19073
19074 return lookup_die;
19075 }
19076
19077 /* Find a partial DIE at OFFSET, which may or may not be in CU,
19078 except in the case of .debug_types DIEs which do not reference
19079 outside their CU (they do however referencing other types via
19080 DW_FORM_ref_sig8). */
19081
19082 static struct partial_die_info *
19083 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
19084 {
19085 struct dwarf2_per_objfile *dwarf2_per_objfile
19086 = cu->per_cu->dwarf2_per_objfile;
19087 struct objfile *objfile = dwarf2_per_objfile->objfile;
19088 struct dwarf2_per_cu_data *per_cu = NULL;
19089 struct partial_die_info *pd = NULL;
19090
19091 if (offset_in_dwz == cu->per_cu->is_dwz
19092 && offset_in_cu_p (&cu->header, sect_off))
19093 {
19094 pd = cu->find_partial_die (sect_off);
19095 if (pd != NULL)
19096 return pd;
19097 /* We missed recording what we needed.
19098 Load all dies and try again. */
19099 per_cu = cu->per_cu;
19100 }
19101 else
19102 {
19103 /* TUs don't reference other CUs/TUs (except via type signatures). */
19104 if (cu->per_cu->is_debug_types)
19105 {
19106 error (_("Dwarf Error: Type Unit at offset %s contains"
19107 " external reference to offset %s [in module %s].\n"),
19108 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
19109 bfd_get_filename (objfile->obfd));
19110 }
19111 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
19112 dwarf2_per_objfile);
19113
19114 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
19115 load_partial_comp_unit (per_cu);
19116
19117 per_cu->cu->last_used = 0;
19118 pd = per_cu->cu->find_partial_die (sect_off);
19119 }
19120
19121 /* If we didn't find it, and not all dies have been loaded,
19122 load them all and try again. */
19123
19124 if (pd == NULL && per_cu->load_all_dies == 0)
19125 {
19126 per_cu->load_all_dies = 1;
19127
19128 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19129 THIS_CU->cu may already be in use. So we can't just free it and
19130 replace its DIEs with the ones we read in. Instead, we leave those
19131 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19132 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19133 set. */
19134 load_partial_comp_unit (per_cu);
19135
19136 pd = per_cu->cu->find_partial_die (sect_off);
19137 }
19138
19139 if (pd == NULL)
19140 internal_error (__FILE__, __LINE__,
19141 _("could not find partial DIE %s "
19142 "in cache [from module %s]\n"),
19143 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19144 return pd;
19145 }
19146
19147 /* See if we can figure out if the class lives in a namespace. We do
19148 this by looking for a member function; its demangled name will
19149 contain namespace info, if there is any. */
19150
19151 static void
19152 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19153 struct dwarf2_cu *cu)
19154 {
19155 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19156 what template types look like, because the demangler
19157 frequently doesn't give the same name as the debug info. We
19158 could fix this by only using the demangled name to get the
19159 prefix (but see comment in read_structure_type). */
19160
19161 struct partial_die_info *real_pdi;
19162 struct partial_die_info *child_pdi;
19163
19164 /* If this DIE (this DIE's specification, if any) has a parent, then
19165 we should not do this. We'll prepend the parent's fully qualified
19166 name when we create the partial symbol. */
19167
19168 real_pdi = struct_pdi;
19169 while (real_pdi->has_specification)
19170 real_pdi = find_partial_die (real_pdi->spec_offset,
19171 real_pdi->spec_is_dwz, cu);
19172
19173 if (real_pdi->die_parent != NULL)
19174 return;
19175
19176 for (child_pdi = struct_pdi->die_child;
19177 child_pdi != NULL;
19178 child_pdi = child_pdi->die_sibling)
19179 {
19180 if (child_pdi->tag == DW_TAG_subprogram
19181 && child_pdi->linkage_name != NULL)
19182 {
19183 char *actual_class_name
19184 = language_class_name_from_physname (cu->language_defn,
19185 child_pdi->linkage_name);
19186 if (actual_class_name != NULL)
19187 {
19188 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19189 struct_pdi->name
19190 = ((const char *)
19191 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19192 actual_class_name,
19193 strlen (actual_class_name)));
19194 xfree (actual_class_name);
19195 }
19196 break;
19197 }
19198 }
19199 }
19200
19201 void
19202 partial_die_info::fixup (struct dwarf2_cu *cu)
19203 {
19204 /* Once we've fixed up a die, there's no point in doing so again.
19205 This also avoids a memory leak if we were to call
19206 guess_partial_die_structure_name multiple times. */
19207 if (fixup_called)
19208 return;
19209
19210 /* If we found a reference attribute and the DIE has no name, try
19211 to find a name in the referred to DIE. */
19212
19213 if (name == NULL && has_specification)
19214 {
19215 struct partial_die_info *spec_die;
19216
19217 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
19218
19219 spec_die->fixup (cu);
19220
19221 if (spec_die->name)
19222 {
19223 name = spec_die->name;
19224
19225 /* Copy DW_AT_external attribute if it is set. */
19226 if (spec_die->is_external)
19227 is_external = spec_die->is_external;
19228 }
19229 }
19230
19231 /* Set default names for some unnamed DIEs. */
19232
19233 if (name == NULL && tag == DW_TAG_namespace)
19234 name = CP_ANONYMOUS_NAMESPACE_STR;
19235
19236 /* If there is no parent die to provide a namespace, and there are
19237 children, see if we can determine the namespace from their linkage
19238 name. */
19239 if (cu->language == language_cplus
19240 && !VEC_empty (dwarf2_section_info_def,
19241 cu->per_cu->dwarf2_per_objfile->types)
19242 && die_parent == NULL
19243 && has_children
19244 && (tag == DW_TAG_class_type
19245 || tag == DW_TAG_structure_type
19246 || tag == DW_TAG_union_type))
19247 guess_partial_die_structure_name (this, cu);
19248
19249 /* GCC might emit a nameless struct or union that has a linkage
19250 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19251 if (name == NULL
19252 && (tag == DW_TAG_class_type
19253 || tag == DW_TAG_interface_type
19254 || tag == DW_TAG_structure_type
19255 || tag == DW_TAG_union_type)
19256 && linkage_name != NULL)
19257 {
19258 char *demangled;
19259
19260 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19261 if (demangled)
19262 {
19263 const char *base;
19264
19265 /* Strip any leading namespaces/classes, keep only the base name.
19266 DW_AT_name for named DIEs does not contain the prefixes. */
19267 base = strrchr (demangled, ':');
19268 if (base && base > demangled && base[-1] == ':')
19269 base++;
19270 else
19271 base = demangled;
19272
19273 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19274 name
19275 = ((const char *)
19276 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19277 base, strlen (base)));
19278 xfree (demangled);
19279 }
19280 }
19281
19282 fixup_called = 1;
19283 }
19284
19285 /* Read an attribute value described by an attribute form. */
19286
19287 static const gdb_byte *
19288 read_attribute_value (const struct die_reader_specs *reader,
19289 struct attribute *attr, unsigned form,
19290 LONGEST implicit_const, const gdb_byte *info_ptr)
19291 {
19292 struct dwarf2_cu *cu = reader->cu;
19293 struct dwarf2_per_objfile *dwarf2_per_objfile
19294 = cu->per_cu->dwarf2_per_objfile;
19295 struct objfile *objfile = dwarf2_per_objfile->objfile;
19296 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19297 bfd *abfd = reader->abfd;
19298 struct comp_unit_head *cu_header = &cu->header;
19299 unsigned int bytes_read;
19300 struct dwarf_block *blk;
19301
19302 attr->form = (enum dwarf_form) form;
19303 switch (form)
19304 {
19305 case DW_FORM_ref_addr:
19306 if (cu->header.version == 2)
19307 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19308 else
19309 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19310 &cu->header, &bytes_read);
19311 info_ptr += bytes_read;
19312 break;
19313 case DW_FORM_GNU_ref_alt:
19314 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19315 info_ptr += bytes_read;
19316 break;
19317 case DW_FORM_addr:
19318 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19319 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19320 info_ptr += bytes_read;
19321 break;
19322 case DW_FORM_block2:
19323 blk = dwarf_alloc_block (cu);
19324 blk->size = read_2_bytes (abfd, info_ptr);
19325 info_ptr += 2;
19326 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19327 info_ptr += blk->size;
19328 DW_BLOCK (attr) = blk;
19329 break;
19330 case DW_FORM_block4:
19331 blk = dwarf_alloc_block (cu);
19332 blk->size = read_4_bytes (abfd, info_ptr);
19333 info_ptr += 4;
19334 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19335 info_ptr += blk->size;
19336 DW_BLOCK (attr) = blk;
19337 break;
19338 case DW_FORM_data2:
19339 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19340 info_ptr += 2;
19341 break;
19342 case DW_FORM_data4:
19343 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19344 info_ptr += 4;
19345 break;
19346 case DW_FORM_data8:
19347 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19348 info_ptr += 8;
19349 break;
19350 case DW_FORM_data16:
19351 blk = dwarf_alloc_block (cu);
19352 blk->size = 16;
19353 blk->data = read_n_bytes (abfd, info_ptr, 16);
19354 info_ptr += 16;
19355 DW_BLOCK (attr) = blk;
19356 break;
19357 case DW_FORM_sec_offset:
19358 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19359 info_ptr += bytes_read;
19360 break;
19361 case DW_FORM_string:
19362 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19363 DW_STRING_IS_CANONICAL (attr) = 0;
19364 info_ptr += bytes_read;
19365 break;
19366 case DW_FORM_strp:
19367 if (!cu->per_cu->is_dwz)
19368 {
19369 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19370 abfd, info_ptr, cu_header,
19371 &bytes_read);
19372 DW_STRING_IS_CANONICAL (attr) = 0;
19373 info_ptr += bytes_read;
19374 break;
19375 }
19376 /* FALLTHROUGH */
19377 case DW_FORM_line_strp:
19378 if (!cu->per_cu->is_dwz)
19379 {
19380 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19381 abfd, info_ptr,
19382 cu_header, &bytes_read);
19383 DW_STRING_IS_CANONICAL (attr) = 0;
19384 info_ptr += bytes_read;
19385 break;
19386 }
19387 /* FALLTHROUGH */
19388 case DW_FORM_GNU_strp_alt:
19389 {
19390 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19391 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19392 &bytes_read);
19393
19394 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19395 dwz, str_offset);
19396 DW_STRING_IS_CANONICAL (attr) = 0;
19397 info_ptr += bytes_read;
19398 }
19399 break;
19400 case DW_FORM_exprloc:
19401 case DW_FORM_block:
19402 blk = dwarf_alloc_block (cu);
19403 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19404 info_ptr += bytes_read;
19405 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19406 info_ptr += blk->size;
19407 DW_BLOCK (attr) = blk;
19408 break;
19409 case DW_FORM_block1:
19410 blk = dwarf_alloc_block (cu);
19411 blk->size = read_1_byte (abfd, info_ptr);
19412 info_ptr += 1;
19413 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19414 info_ptr += blk->size;
19415 DW_BLOCK (attr) = blk;
19416 break;
19417 case DW_FORM_data1:
19418 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19419 info_ptr += 1;
19420 break;
19421 case DW_FORM_flag:
19422 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19423 info_ptr += 1;
19424 break;
19425 case DW_FORM_flag_present:
19426 DW_UNSND (attr) = 1;
19427 break;
19428 case DW_FORM_sdata:
19429 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19430 info_ptr += bytes_read;
19431 break;
19432 case DW_FORM_udata:
19433 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19434 info_ptr += bytes_read;
19435 break;
19436 case DW_FORM_ref1:
19437 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19438 + read_1_byte (abfd, info_ptr));
19439 info_ptr += 1;
19440 break;
19441 case DW_FORM_ref2:
19442 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19443 + read_2_bytes (abfd, info_ptr));
19444 info_ptr += 2;
19445 break;
19446 case DW_FORM_ref4:
19447 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19448 + read_4_bytes (abfd, info_ptr));
19449 info_ptr += 4;
19450 break;
19451 case DW_FORM_ref8:
19452 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19453 + read_8_bytes (abfd, info_ptr));
19454 info_ptr += 8;
19455 break;
19456 case DW_FORM_ref_sig8:
19457 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19458 info_ptr += 8;
19459 break;
19460 case DW_FORM_ref_udata:
19461 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19462 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19463 info_ptr += bytes_read;
19464 break;
19465 case DW_FORM_indirect:
19466 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19467 info_ptr += bytes_read;
19468 if (form == DW_FORM_implicit_const)
19469 {
19470 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19471 info_ptr += bytes_read;
19472 }
19473 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19474 info_ptr);
19475 break;
19476 case DW_FORM_implicit_const:
19477 DW_SND (attr) = implicit_const;
19478 break;
19479 case DW_FORM_GNU_addr_index:
19480 if (reader->dwo_file == NULL)
19481 {
19482 /* For now flag a hard error.
19483 Later we can turn this into a complaint. */
19484 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19485 dwarf_form_name (form),
19486 bfd_get_filename (abfd));
19487 }
19488 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19489 info_ptr += bytes_read;
19490 break;
19491 case DW_FORM_GNU_str_index:
19492 if (reader->dwo_file == NULL)
19493 {
19494 /* For now flag a hard error.
19495 Later we can turn this into a complaint if warranted. */
19496 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19497 dwarf_form_name (form),
19498 bfd_get_filename (abfd));
19499 }
19500 {
19501 ULONGEST str_index =
19502 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19503
19504 DW_STRING (attr) = read_str_index (reader, str_index);
19505 DW_STRING_IS_CANONICAL (attr) = 0;
19506 info_ptr += bytes_read;
19507 }
19508 break;
19509 default:
19510 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19511 dwarf_form_name (form),
19512 bfd_get_filename (abfd));
19513 }
19514
19515 /* Super hack. */
19516 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19517 attr->form = DW_FORM_GNU_ref_alt;
19518
19519 /* We have seen instances where the compiler tried to emit a byte
19520 size attribute of -1 which ended up being encoded as an unsigned
19521 0xffffffff. Although 0xffffffff is technically a valid size value,
19522 an object of this size seems pretty unlikely so we can relatively
19523 safely treat these cases as if the size attribute was invalid and
19524 treat them as zero by default. */
19525 if (attr->name == DW_AT_byte_size
19526 && form == DW_FORM_data4
19527 && DW_UNSND (attr) >= 0xffffffff)
19528 {
19529 complaint
19530 (&symfile_complaints,
19531 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19532 hex_string (DW_UNSND (attr)));
19533 DW_UNSND (attr) = 0;
19534 }
19535
19536 return info_ptr;
19537 }
19538
19539 /* Read an attribute described by an abbreviated attribute. */
19540
19541 static const gdb_byte *
19542 read_attribute (const struct die_reader_specs *reader,
19543 struct attribute *attr, struct attr_abbrev *abbrev,
19544 const gdb_byte *info_ptr)
19545 {
19546 attr->name = abbrev->name;
19547 return read_attribute_value (reader, attr, abbrev->form,
19548 abbrev->implicit_const, info_ptr);
19549 }
19550
19551 /* Read dwarf information from a buffer. */
19552
19553 static unsigned int
19554 read_1_byte (bfd *abfd, const gdb_byte *buf)
19555 {
19556 return bfd_get_8 (abfd, buf);
19557 }
19558
19559 static int
19560 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19561 {
19562 return bfd_get_signed_8 (abfd, buf);
19563 }
19564
19565 static unsigned int
19566 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19567 {
19568 return bfd_get_16 (abfd, buf);
19569 }
19570
19571 static int
19572 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19573 {
19574 return bfd_get_signed_16 (abfd, buf);
19575 }
19576
19577 static unsigned int
19578 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19579 {
19580 return bfd_get_32 (abfd, buf);
19581 }
19582
19583 static int
19584 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19585 {
19586 return bfd_get_signed_32 (abfd, buf);
19587 }
19588
19589 static ULONGEST
19590 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19591 {
19592 return bfd_get_64 (abfd, buf);
19593 }
19594
19595 static CORE_ADDR
19596 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19597 unsigned int *bytes_read)
19598 {
19599 struct comp_unit_head *cu_header = &cu->header;
19600 CORE_ADDR retval = 0;
19601
19602 if (cu_header->signed_addr_p)
19603 {
19604 switch (cu_header->addr_size)
19605 {
19606 case 2:
19607 retval = bfd_get_signed_16 (abfd, buf);
19608 break;
19609 case 4:
19610 retval = bfd_get_signed_32 (abfd, buf);
19611 break;
19612 case 8:
19613 retval = bfd_get_signed_64 (abfd, buf);
19614 break;
19615 default:
19616 internal_error (__FILE__, __LINE__,
19617 _("read_address: bad switch, signed [in module %s]"),
19618 bfd_get_filename (abfd));
19619 }
19620 }
19621 else
19622 {
19623 switch (cu_header->addr_size)
19624 {
19625 case 2:
19626 retval = bfd_get_16 (abfd, buf);
19627 break;
19628 case 4:
19629 retval = bfd_get_32 (abfd, buf);
19630 break;
19631 case 8:
19632 retval = bfd_get_64 (abfd, buf);
19633 break;
19634 default:
19635 internal_error (__FILE__, __LINE__,
19636 _("read_address: bad switch, "
19637 "unsigned [in module %s]"),
19638 bfd_get_filename (abfd));
19639 }
19640 }
19641
19642 *bytes_read = cu_header->addr_size;
19643 return retval;
19644 }
19645
19646 /* Read the initial length from a section. The (draft) DWARF 3
19647 specification allows the initial length to take up either 4 bytes
19648 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19649 bytes describe the length and all offsets will be 8 bytes in length
19650 instead of 4.
19651
19652 An older, non-standard 64-bit format is also handled by this
19653 function. The older format in question stores the initial length
19654 as an 8-byte quantity without an escape value. Lengths greater
19655 than 2^32 aren't very common which means that the initial 4 bytes
19656 is almost always zero. Since a length value of zero doesn't make
19657 sense for the 32-bit format, this initial zero can be considered to
19658 be an escape value which indicates the presence of the older 64-bit
19659 format. As written, the code can't detect (old format) lengths
19660 greater than 4GB. If it becomes necessary to handle lengths
19661 somewhat larger than 4GB, we could allow other small values (such
19662 as the non-sensical values of 1, 2, and 3) to also be used as
19663 escape values indicating the presence of the old format.
19664
19665 The value returned via bytes_read should be used to increment the
19666 relevant pointer after calling read_initial_length().
19667
19668 [ Note: read_initial_length() and read_offset() are based on the
19669 document entitled "DWARF Debugging Information Format", revision
19670 3, draft 8, dated November 19, 2001. This document was obtained
19671 from:
19672
19673 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19674
19675 This document is only a draft and is subject to change. (So beware.)
19676
19677 Details regarding the older, non-standard 64-bit format were
19678 determined empirically by examining 64-bit ELF files produced by
19679 the SGI toolchain on an IRIX 6.5 machine.
19680
19681 - Kevin, July 16, 2002
19682 ] */
19683
19684 static LONGEST
19685 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19686 {
19687 LONGEST length = bfd_get_32 (abfd, buf);
19688
19689 if (length == 0xffffffff)
19690 {
19691 length = bfd_get_64 (abfd, buf + 4);
19692 *bytes_read = 12;
19693 }
19694 else if (length == 0)
19695 {
19696 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19697 length = bfd_get_64 (abfd, buf);
19698 *bytes_read = 8;
19699 }
19700 else
19701 {
19702 *bytes_read = 4;
19703 }
19704
19705 return length;
19706 }
19707
19708 /* Cover function for read_initial_length.
19709 Returns the length of the object at BUF, and stores the size of the
19710 initial length in *BYTES_READ and stores the size that offsets will be in
19711 *OFFSET_SIZE.
19712 If the initial length size is not equivalent to that specified in
19713 CU_HEADER then issue a complaint.
19714 This is useful when reading non-comp-unit headers. */
19715
19716 static LONGEST
19717 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19718 const struct comp_unit_head *cu_header,
19719 unsigned int *bytes_read,
19720 unsigned int *offset_size)
19721 {
19722 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19723
19724 gdb_assert (cu_header->initial_length_size == 4
19725 || cu_header->initial_length_size == 8
19726 || cu_header->initial_length_size == 12);
19727
19728 if (cu_header->initial_length_size != *bytes_read)
19729 complaint (&symfile_complaints,
19730 _("intermixed 32-bit and 64-bit DWARF sections"));
19731
19732 *offset_size = (*bytes_read == 4) ? 4 : 8;
19733 return length;
19734 }
19735
19736 /* Read an offset from the data stream. The size of the offset is
19737 given by cu_header->offset_size. */
19738
19739 static LONGEST
19740 read_offset (bfd *abfd, const gdb_byte *buf,
19741 const struct comp_unit_head *cu_header,
19742 unsigned int *bytes_read)
19743 {
19744 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19745
19746 *bytes_read = cu_header->offset_size;
19747 return offset;
19748 }
19749
19750 /* Read an offset from the data stream. */
19751
19752 static LONGEST
19753 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19754 {
19755 LONGEST retval = 0;
19756
19757 switch (offset_size)
19758 {
19759 case 4:
19760 retval = bfd_get_32 (abfd, buf);
19761 break;
19762 case 8:
19763 retval = bfd_get_64 (abfd, buf);
19764 break;
19765 default:
19766 internal_error (__FILE__, __LINE__,
19767 _("read_offset_1: bad switch [in module %s]"),
19768 bfd_get_filename (abfd));
19769 }
19770
19771 return retval;
19772 }
19773
19774 static const gdb_byte *
19775 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19776 {
19777 /* If the size of a host char is 8 bits, we can return a pointer
19778 to the buffer, otherwise we have to copy the data to a buffer
19779 allocated on the temporary obstack. */
19780 gdb_assert (HOST_CHAR_BIT == 8);
19781 return buf;
19782 }
19783
19784 static const char *
19785 read_direct_string (bfd *abfd, const gdb_byte *buf,
19786 unsigned int *bytes_read_ptr)
19787 {
19788 /* If the size of a host char is 8 bits, we can return a pointer
19789 to the string, otherwise we have to copy the string to a buffer
19790 allocated on the temporary obstack. */
19791 gdb_assert (HOST_CHAR_BIT == 8);
19792 if (*buf == '\0')
19793 {
19794 *bytes_read_ptr = 1;
19795 return NULL;
19796 }
19797 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19798 return (const char *) buf;
19799 }
19800
19801 /* Return pointer to string at section SECT offset STR_OFFSET with error
19802 reporting strings FORM_NAME and SECT_NAME. */
19803
19804 static const char *
19805 read_indirect_string_at_offset_from (struct objfile *objfile,
19806 bfd *abfd, LONGEST str_offset,
19807 struct dwarf2_section_info *sect,
19808 const char *form_name,
19809 const char *sect_name)
19810 {
19811 dwarf2_read_section (objfile, sect);
19812 if (sect->buffer == NULL)
19813 error (_("%s used without %s section [in module %s]"),
19814 form_name, sect_name, bfd_get_filename (abfd));
19815 if (str_offset >= sect->size)
19816 error (_("%s pointing outside of %s section [in module %s]"),
19817 form_name, sect_name, bfd_get_filename (abfd));
19818 gdb_assert (HOST_CHAR_BIT == 8);
19819 if (sect->buffer[str_offset] == '\0')
19820 return NULL;
19821 return (const char *) (sect->buffer + str_offset);
19822 }
19823
19824 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19825
19826 static const char *
19827 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19828 bfd *abfd, LONGEST str_offset)
19829 {
19830 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19831 abfd, str_offset,
19832 &dwarf2_per_objfile->str,
19833 "DW_FORM_strp", ".debug_str");
19834 }
19835
19836 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19837
19838 static const char *
19839 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19840 bfd *abfd, LONGEST str_offset)
19841 {
19842 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19843 abfd, str_offset,
19844 &dwarf2_per_objfile->line_str,
19845 "DW_FORM_line_strp",
19846 ".debug_line_str");
19847 }
19848
19849 /* Read a string at offset STR_OFFSET in the .debug_str section from
19850 the .dwz file DWZ. Throw an error if the offset is too large. If
19851 the string consists of a single NUL byte, return NULL; otherwise
19852 return a pointer to the string. */
19853
19854 static const char *
19855 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19856 LONGEST str_offset)
19857 {
19858 dwarf2_read_section (objfile, &dwz->str);
19859
19860 if (dwz->str.buffer == NULL)
19861 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19862 "section [in module %s]"),
19863 bfd_get_filename (dwz->dwz_bfd));
19864 if (str_offset >= dwz->str.size)
19865 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19866 ".debug_str section [in module %s]"),
19867 bfd_get_filename (dwz->dwz_bfd));
19868 gdb_assert (HOST_CHAR_BIT == 8);
19869 if (dwz->str.buffer[str_offset] == '\0')
19870 return NULL;
19871 return (const char *) (dwz->str.buffer + str_offset);
19872 }
19873
19874 /* Return pointer to string at .debug_str offset as read from BUF.
19875 BUF is assumed to be in a compilation unit described by CU_HEADER.
19876 Return *BYTES_READ_PTR count of bytes read from BUF. */
19877
19878 static const char *
19879 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19880 const gdb_byte *buf,
19881 const struct comp_unit_head *cu_header,
19882 unsigned int *bytes_read_ptr)
19883 {
19884 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19885
19886 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19887 }
19888
19889 /* Return pointer to string at .debug_line_str offset as read from BUF.
19890 BUF is assumed to be in a compilation unit described by CU_HEADER.
19891 Return *BYTES_READ_PTR count of bytes read from BUF. */
19892
19893 static const char *
19894 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19895 bfd *abfd, const gdb_byte *buf,
19896 const struct comp_unit_head *cu_header,
19897 unsigned int *bytes_read_ptr)
19898 {
19899 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19900
19901 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19902 str_offset);
19903 }
19904
19905 ULONGEST
19906 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19907 unsigned int *bytes_read_ptr)
19908 {
19909 ULONGEST result;
19910 unsigned int num_read;
19911 int shift;
19912 unsigned char byte;
19913
19914 result = 0;
19915 shift = 0;
19916 num_read = 0;
19917 while (1)
19918 {
19919 byte = bfd_get_8 (abfd, buf);
19920 buf++;
19921 num_read++;
19922 result |= ((ULONGEST) (byte & 127) << shift);
19923 if ((byte & 128) == 0)
19924 {
19925 break;
19926 }
19927 shift += 7;
19928 }
19929 *bytes_read_ptr = num_read;
19930 return result;
19931 }
19932
19933 static LONGEST
19934 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19935 unsigned int *bytes_read_ptr)
19936 {
19937 LONGEST result;
19938 int shift, num_read;
19939 unsigned char byte;
19940
19941 result = 0;
19942 shift = 0;
19943 num_read = 0;
19944 while (1)
19945 {
19946 byte = bfd_get_8 (abfd, buf);
19947 buf++;
19948 num_read++;
19949 result |= ((LONGEST) (byte & 127) << shift);
19950 shift += 7;
19951 if ((byte & 128) == 0)
19952 {
19953 break;
19954 }
19955 }
19956 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19957 result |= -(((LONGEST) 1) << shift);
19958 *bytes_read_ptr = num_read;
19959 return result;
19960 }
19961
19962 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19963 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19964 ADDR_SIZE is the size of addresses from the CU header. */
19965
19966 static CORE_ADDR
19967 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19968 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19969 {
19970 struct objfile *objfile = dwarf2_per_objfile->objfile;
19971 bfd *abfd = objfile->obfd;
19972 const gdb_byte *info_ptr;
19973
19974 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19975 if (dwarf2_per_objfile->addr.buffer == NULL)
19976 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19977 objfile_name (objfile));
19978 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19979 error (_("DW_FORM_addr_index pointing outside of "
19980 ".debug_addr section [in module %s]"),
19981 objfile_name (objfile));
19982 info_ptr = (dwarf2_per_objfile->addr.buffer
19983 + addr_base + addr_index * addr_size);
19984 if (addr_size == 4)
19985 return bfd_get_32 (abfd, info_ptr);
19986 else
19987 return bfd_get_64 (abfd, info_ptr);
19988 }
19989
19990 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19991
19992 static CORE_ADDR
19993 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19994 {
19995 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19996 cu->addr_base, cu->header.addr_size);
19997 }
19998
19999 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
20000
20001 static CORE_ADDR
20002 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
20003 unsigned int *bytes_read)
20004 {
20005 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
20006 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
20007
20008 return read_addr_index (cu, addr_index);
20009 }
20010
20011 /* Data structure to pass results from dwarf2_read_addr_index_reader
20012 back to dwarf2_read_addr_index. */
20013
20014 struct dwarf2_read_addr_index_data
20015 {
20016 ULONGEST addr_base;
20017 int addr_size;
20018 };
20019
20020 /* die_reader_func for dwarf2_read_addr_index. */
20021
20022 static void
20023 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
20024 const gdb_byte *info_ptr,
20025 struct die_info *comp_unit_die,
20026 int has_children,
20027 void *data)
20028 {
20029 struct dwarf2_cu *cu = reader->cu;
20030 struct dwarf2_read_addr_index_data *aidata =
20031 (struct dwarf2_read_addr_index_data *) data;
20032
20033 aidata->addr_base = cu->addr_base;
20034 aidata->addr_size = cu->header.addr_size;
20035 }
20036
20037 /* Given an index in .debug_addr, fetch the value.
20038 NOTE: This can be called during dwarf expression evaluation,
20039 long after the debug information has been read, and thus per_cu->cu
20040 may no longer exist. */
20041
20042 CORE_ADDR
20043 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
20044 unsigned int addr_index)
20045 {
20046 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
20047 struct objfile *objfile = dwarf2_per_objfile->objfile;
20048 struct dwarf2_cu *cu = per_cu->cu;
20049 ULONGEST addr_base;
20050 int addr_size;
20051
20052 /* We need addr_base and addr_size.
20053 If we don't have PER_CU->cu, we have to get it.
20054 Nasty, but the alternative is storing the needed info in PER_CU,
20055 which at this point doesn't seem justified: it's not clear how frequently
20056 it would get used and it would increase the size of every PER_CU.
20057 Entry points like dwarf2_per_cu_addr_size do a similar thing
20058 so we're not in uncharted territory here.
20059 Alas we need to be a bit more complicated as addr_base is contained
20060 in the DIE.
20061
20062 We don't need to read the entire CU(/TU).
20063 We just need the header and top level die.
20064
20065 IWBN to use the aging mechanism to let us lazily later discard the CU.
20066 For now we skip this optimization. */
20067
20068 if (cu != NULL)
20069 {
20070 addr_base = cu->addr_base;
20071 addr_size = cu->header.addr_size;
20072 }
20073 else
20074 {
20075 struct dwarf2_read_addr_index_data aidata;
20076
20077 /* Note: We can't use init_cutu_and_read_dies_simple here,
20078 we need addr_base. */
20079 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
20080 dwarf2_read_addr_index_reader, &aidata);
20081 addr_base = aidata.addr_base;
20082 addr_size = aidata.addr_size;
20083 }
20084
20085 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
20086 addr_size);
20087 }
20088
20089 /* Given a DW_FORM_GNU_str_index, fetch the string.
20090 This is only used by the Fission support. */
20091
20092 static const char *
20093 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20094 {
20095 struct dwarf2_cu *cu = reader->cu;
20096 struct dwarf2_per_objfile *dwarf2_per_objfile
20097 = cu->per_cu->dwarf2_per_objfile;
20098 struct objfile *objfile = dwarf2_per_objfile->objfile;
20099 const char *objf_name = objfile_name (objfile);
20100 bfd *abfd = objfile->obfd;
20101 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
20102 struct dwarf2_section_info *str_offsets_section =
20103 &reader->dwo_file->sections.str_offsets;
20104 const gdb_byte *info_ptr;
20105 ULONGEST str_offset;
20106 static const char form_name[] = "DW_FORM_GNU_str_index";
20107
20108 dwarf2_read_section (objfile, str_section);
20109 dwarf2_read_section (objfile, str_offsets_section);
20110 if (str_section->buffer == NULL)
20111 error (_("%s used without .debug_str.dwo section"
20112 " in CU at offset %s [in module %s]"),
20113 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20114 if (str_offsets_section->buffer == NULL)
20115 error (_("%s used without .debug_str_offsets.dwo section"
20116 " in CU at offset %s [in module %s]"),
20117 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20118 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20119 error (_("%s pointing outside of .debug_str_offsets.dwo"
20120 " section in CU at offset %s [in module %s]"),
20121 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20122 info_ptr = (str_offsets_section->buffer
20123 + str_index * cu->header.offset_size);
20124 if (cu->header.offset_size == 4)
20125 str_offset = bfd_get_32 (abfd, info_ptr);
20126 else
20127 str_offset = bfd_get_64 (abfd, info_ptr);
20128 if (str_offset >= str_section->size)
20129 error (_("Offset from %s pointing outside of"
20130 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20131 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20132 return (const char *) (str_section->buffer + str_offset);
20133 }
20134
20135 /* Return the length of an LEB128 number in BUF. */
20136
20137 static int
20138 leb128_size (const gdb_byte *buf)
20139 {
20140 const gdb_byte *begin = buf;
20141 gdb_byte byte;
20142
20143 while (1)
20144 {
20145 byte = *buf++;
20146 if ((byte & 128) == 0)
20147 return buf - begin;
20148 }
20149 }
20150
20151 static void
20152 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20153 {
20154 switch (lang)
20155 {
20156 case DW_LANG_C89:
20157 case DW_LANG_C99:
20158 case DW_LANG_C11:
20159 case DW_LANG_C:
20160 case DW_LANG_UPC:
20161 cu->language = language_c;
20162 break;
20163 case DW_LANG_Java:
20164 case DW_LANG_C_plus_plus:
20165 case DW_LANG_C_plus_plus_11:
20166 case DW_LANG_C_plus_plus_14:
20167 cu->language = language_cplus;
20168 break;
20169 case DW_LANG_D:
20170 cu->language = language_d;
20171 break;
20172 case DW_LANG_Fortran77:
20173 case DW_LANG_Fortran90:
20174 case DW_LANG_Fortran95:
20175 case DW_LANG_Fortran03:
20176 case DW_LANG_Fortran08:
20177 cu->language = language_fortran;
20178 break;
20179 case DW_LANG_Go:
20180 cu->language = language_go;
20181 break;
20182 case DW_LANG_Mips_Assembler:
20183 cu->language = language_asm;
20184 break;
20185 case DW_LANG_Ada83:
20186 case DW_LANG_Ada95:
20187 cu->language = language_ada;
20188 break;
20189 case DW_LANG_Modula2:
20190 cu->language = language_m2;
20191 break;
20192 case DW_LANG_Pascal83:
20193 cu->language = language_pascal;
20194 break;
20195 case DW_LANG_ObjC:
20196 cu->language = language_objc;
20197 break;
20198 case DW_LANG_Rust:
20199 case DW_LANG_Rust_old:
20200 cu->language = language_rust;
20201 break;
20202 case DW_LANG_Cobol74:
20203 case DW_LANG_Cobol85:
20204 default:
20205 cu->language = language_minimal;
20206 break;
20207 }
20208 cu->language_defn = language_def (cu->language);
20209 }
20210
20211 /* Return the named attribute or NULL if not there. */
20212
20213 static struct attribute *
20214 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20215 {
20216 for (;;)
20217 {
20218 unsigned int i;
20219 struct attribute *spec = NULL;
20220
20221 for (i = 0; i < die->num_attrs; ++i)
20222 {
20223 if (die->attrs[i].name == name)
20224 return &die->attrs[i];
20225 if (die->attrs[i].name == DW_AT_specification
20226 || die->attrs[i].name == DW_AT_abstract_origin)
20227 spec = &die->attrs[i];
20228 }
20229
20230 if (!spec)
20231 break;
20232
20233 die = follow_die_ref (die, spec, &cu);
20234 }
20235
20236 return NULL;
20237 }
20238
20239 /* Return the named attribute or NULL if not there,
20240 but do not follow DW_AT_specification, etc.
20241 This is for use in contexts where we're reading .debug_types dies.
20242 Following DW_AT_specification, DW_AT_abstract_origin will take us
20243 back up the chain, and we want to go down. */
20244
20245 static struct attribute *
20246 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20247 {
20248 unsigned int i;
20249
20250 for (i = 0; i < die->num_attrs; ++i)
20251 if (die->attrs[i].name == name)
20252 return &die->attrs[i];
20253
20254 return NULL;
20255 }
20256
20257 /* Return the string associated with a string-typed attribute, or NULL if it
20258 is either not found or is of an incorrect type. */
20259
20260 static const char *
20261 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20262 {
20263 struct attribute *attr;
20264 const char *str = NULL;
20265
20266 attr = dwarf2_attr (die, name, cu);
20267
20268 if (attr != NULL)
20269 {
20270 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20271 || attr->form == DW_FORM_string
20272 || attr->form == DW_FORM_GNU_str_index
20273 || attr->form == DW_FORM_GNU_strp_alt)
20274 str = DW_STRING (attr);
20275 else
20276 complaint (&symfile_complaints,
20277 _("string type expected for attribute %s for "
20278 "DIE at %s in module %s"),
20279 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20280 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20281 }
20282
20283 return str;
20284 }
20285
20286 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20287 and holds a non-zero value. This function should only be used for
20288 DW_FORM_flag or DW_FORM_flag_present attributes. */
20289
20290 static int
20291 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20292 {
20293 struct attribute *attr = dwarf2_attr (die, name, cu);
20294
20295 return (attr && DW_UNSND (attr));
20296 }
20297
20298 static int
20299 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20300 {
20301 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20302 which value is non-zero. However, we have to be careful with
20303 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20304 (via dwarf2_flag_true_p) follows this attribute. So we may
20305 end up accidently finding a declaration attribute that belongs
20306 to a different DIE referenced by the specification attribute,
20307 even though the given DIE does not have a declaration attribute. */
20308 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20309 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20310 }
20311
20312 /* Return the die giving the specification for DIE, if there is
20313 one. *SPEC_CU is the CU containing DIE on input, and the CU
20314 containing the return value on output. If there is no
20315 specification, but there is an abstract origin, that is
20316 returned. */
20317
20318 static struct die_info *
20319 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20320 {
20321 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20322 *spec_cu);
20323
20324 if (spec_attr == NULL)
20325 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20326
20327 if (spec_attr == NULL)
20328 return NULL;
20329 else
20330 return follow_die_ref (die, spec_attr, spec_cu);
20331 }
20332
20333 /* Stub for free_line_header to match void * callback types. */
20334
20335 static void
20336 free_line_header_voidp (void *arg)
20337 {
20338 struct line_header *lh = (struct line_header *) arg;
20339
20340 delete lh;
20341 }
20342
20343 void
20344 line_header::add_include_dir (const char *include_dir)
20345 {
20346 if (dwarf_line_debug >= 2)
20347 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20348 include_dirs.size () + 1, include_dir);
20349
20350 include_dirs.push_back (include_dir);
20351 }
20352
20353 void
20354 line_header::add_file_name (const char *name,
20355 dir_index d_index,
20356 unsigned int mod_time,
20357 unsigned int length)
20358 {
20359 if (dwarf_line_debug >= 2)
20360 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20361 (unsigned) file_names.size () + 1, name);
20362
20363 file_names.emplace_back (name, d_index, mod_time, length);
20364 }
20365
20366 /* A convenience function to find the proper .debug_line section for a CU. */
20367
20368 static struct dwarf2_section_info *
20369 get_debug_line_section (struct dwarf2_cu *cu)
20370 {
20371 struct dwarf2_section_info *section;
20372 struct dwarf2_per_objfile *dwarf2_per_objfile
20373 = cu->per_cu->dwarf2_per_objfile;
20374
20375 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20376 DWO file. */
20377 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20378 section = &cu->dwo_unit->dwo_file->sections.line;
20379 else if (cu->per_cu->is_dwz)
20380 {
20381 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20382
20383 section = &dwz->line;
20384 }
20385 else
20386 section = &dwarf2_per_objfile->line;
20387
20388 return section;
20389 }
20390
20391 /* Read directory or file name entry format, starting with byte of
20392 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20393 entries count and the entries themselves in the described entry
20394 format. */
20395
20396 static void
20397 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20398 bfd *abfd, const gdb_byte **bufp,
20399 struct line_header *lh,
20400 const struct comp_unit_head *cu_header,
20401 void (*callback) (struct line_header *lh,
20402 const char *name,
20403 dir_index d_index,
20404 unsigned int mod_time,
20405 unsigned int length))
20406 {
20407 gdb_byte format_count, formati;
20408 ULONGEST data_count, datai;
20409 const gdb_byte *buf = *bufp;
20410 const gdb_byte *format_header_data;
20411 unsigned int bytes_read;
20412
20413 format_count = read_1_byte (abfd, buf);
20414 buf += 1;
20415 format_header_data = buf;
20416 for (formati = 0; formati < format_count; formati++)
20417 {
20418 read_unsigned_leb128 (abfd, buf, &bytes_read);
20419 buf += bytes_read;
20420 read_unsigned_leb128 (abfd, buf, &bytes_read);
20421 buf += bytes_read;
20422 }
20423
20424 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20425 buf += bytes_read;
20426 for (datai = 0; datai < data_count; datai++)
20427 {
20428 const gdb_byte *format = format_header_data;
20429 struct file_entry fe;
20430
20431 for (formati = 0; formati < format_count; formati++)
20432 {
20433 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20434 format += bytes_read;
20435
20436 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20437 format += bytes_read;
20438
20439 gdb::optional<const char *> string;
20440 gdb::optional<unsigned int> uint;
20441
20442 switch (form)
20443 {
20444 case DW_FORM_string:
20445 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20446 buf += bytes_read;
20447 break;
20448
20449 case DW_FORM_line_strp:
20450 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20451 abfd, buf,
20452 cu_header,
20453 &bytes_read));
20454 buf += bytes_read;
20455 break;
20456
20457 case DW_FORM_data1:
20458 uint.emplace (read_1_byte (abfd, buf));
20459 buf += 1;
20460 break;
20461
20462 case DW_FORM_data2:
20463 uint.emplace (read_2_bytes (abfd, buf));
20464 buf += 2;
20465 break;
20466
20467 case DW_FORM_data4:
20468 uint.emplace (read_4_bytes (abfd, buf));
20469 buf += 4;
20470 break;
20471
20472 case DW_FORM_data8:
20473 uint.emplace (read_8_bytes (abfd, buf));
20474 buf += 8;
20475 break;
20476
20477 case DW_FORM_udata:
20478 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20479 buf += bytes_read;
20480 break;
20481
20482 case DW_FORM_block:
20483 /* It is valid only for DW_LNCT_timestamp which is ignored by
20484 current GDB. */
20485 break;
20486 }
20487
20488 switch (content_type)
20489 {
20490 case DW_LNCT_path:
20491 if (string.has_value ())
20492 fe.name = *string;
20493 break;
20494 case DW_LNCT_directory_index:
20495 if (uint.has_value ())
20496 fe.d_index = (dir_index) *uint;
20497 break;
20498 case DW_LNCT_timestamp:
20499 if (uint.has_value ())
20500 fe.mod_time = *uint;
20501 break;
20502 case DW_LNCT_size:
20503 if (uint.has_value ())
20504 fe.length = *uint;
20505 break;
20506 case DW_LNCT_MD5:
20507 break;
20508 default:
20509 complaint (&symfile_complaints,
20510 _("Unknown format content type %s"),
20511 pulongest (content_type));
20512 }
20513 }
20514
20515 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20516 }
20517
20518 *bufp = buf;
20519 }
20520
20521 /* Read the statement program header starting at OFFSET in
20522 .debug_line, or .debug_line.dwo. Return a pointer
20523 to a struct line_header, allocated using xmalloc.
20524 Returns NULL if there is a problem reading the header, e.g., if it
20525 has a version we don't understand.
20526
20527 NOTE: the strings in the include directory and file name tables of
20528 the returned object point into the dwarf line section buffer,
20529 and must not be freed. */
20530
20531 static line_header_up
20532 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20533 {
20534 const gdb_byte *line_ptr;
20535 unsigned int bytes_read, offset_size;
20536 int i;
20537 const char *cur_dir, *cur_file;
20538 struct dwarf2_section_info *section;
20539 bfd *abfd;
20540 struct dwarf2_per_objfile *dwarf2_per_objfile
20541 = cu->per_cu->dwarf2_per_objfile;
20542
20543 section = get_debug_line_section (cu);
20544 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20545 if (section->buffer == NULL)
20546 {
20547 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20548 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20549 else
20550 complaint (&symfile_complaints, _("missing .debug_line section"));
20551 return 0;
20552 }
20553
20554 /* We can't do this until we know the section is non-empty.
20555 Only then do we know we have such a section. */
20556 abfd = get_section_bfd_owner (section);
20557
20558 /* Make sure that at least there's room for the total_length field.
20559 That could be 12 bytes long, but we're just going to fudge that. */
20560 if (to_underlying (sect_off) + 4 >= section->size)
20561 {
20562 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20563 return 0;
20564 }
20565
20566 line_header_up lh (new line_header ());
20567
20568 lh->sect_off = sect_off;
20569 lh->offset_in_dwz = cu->per_cu->is_dwz;
20570
20571 line_ptr = section->buffer + to_underlying (sect_off);
20572
20573 /* Read in the header. */
20574 lh->total_length =
20575 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20576 &bytes_read, &offset_size);
20577 line_ptr += bytes_read;
20578 if (line_ptr + lh->total_length > (section->buffer + section->size))
20579 {
20580 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20581 return 0;
20582 }
20583 lh->statement_program_end = line_ptr + lh->total_length;
20584 lh->version = read_2_bytes (abfd, line_ptr);
20585 line_ptr += 2;
20586 if (lh->version > 5)
20587 {
20588 /* This is a version we don't understand. The format could have
20589 changed in ways we don't handle properly so just punt. */
20590 complaint (&symfile_complaints,
20591 _("unsupported version in .debug_line section"));
20592 return NULL;
20593 }
20594 if (lh->version >= 5)
20595 {
20596 gdb_byte segment_selector_size;
20597
20598 /* Skip address size. */
20599 read_1_byte (abfd, line_ptr);
20600 line_ptr += 1;
20601
20602 segment_selector_size = read_1_byte (abfd, line_ptr);
20603 line_ptr += 1;
20604 if (segment_selector_size != 0)
20605 {
20606 complaint (&symfile_complaints,
20607 _("unsupported segment selector size %u "
20608 "in .debug_line section"),
20609 segment_selector_size);
20610 return NULL;
20611 }
20612 }
20613 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20614 line_ptr += offset_size;
20615 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20616 line_ptr += 1;
20617 if (lh->version >= 4)
20618 {
20619 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20620 line_ptr += 1;
20621 }
20622 else
20623 lh->maximum_ops_per_instruction = 1;
20624
20625 if (lh->maximum_ops_per_instruction == 0)
20626 {
20627 lh->maximum_ops_per_instruction = 1;
20628 complaint (&symfile_complaints,
20629 _("invalid maximum_ops_per_instruction "
20630 "in `.debug_line' section"));
20631 }
20632
20633 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20634 line_ptr += 1;
20635 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20636 line_ptr += 1;
20637 lh->line_range = read_1_byte (abfd, line_ptr);
20638 line_ptr += 1;
20639 lh->opcode_base = read_1_byte (abfd, line_ptr);
20640 line_ptr += 1;
20641 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20642
20643 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20644 for (i = 1; i < lh->opcode_base; ++i)
20645 {
20646 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20647 line_ptr += 1;
20648 }
20649
20650 if (lh->version >= 5)
20651 {
20652 /* Read directory table. */
20653 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20654 &cu->header,
20655 [] (struct line_header *lh, const char *name,
20656 dir_index d_index, unsigned int mod_time,
20657 unsigned int length)
20658 {
20659 lh->add_include_dir (name);
20660 });
20661
20662 /* Read file name table. */
20663 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20664 &cu->header,
20665 [] (struct line_header *lh, const char *name,
20666 dir_index d_index, unsigned int mod_time,
20667 unsigned int length)
20668 {
20669 lh->add_file_name (name, d_index, mod_time, length);
20670 });
20671 }
20672 else
20673 {
20674 /* Read directory table. */
20675 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20676 {
20677 line_ptr += bytes_read;
20678 lh->add_include_dir (cur_dir);
20679 }
20680 line_ptr += bytes_read;
20681
20682 /* Read file name table. */
20683 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20684 {
20685 unsigned int mod_time, length;
20686 dir_index d_index;
20687
20688 line_ptr += bytes_read;
20689 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20690 line_ptr += bytes_read;
20691 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20692 line_ptr += bytes_read;
20693 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20694 line_ptr += bytes_read;
20695
20696 lh->add_file_name (cur_file, d_index, mod_time, length);
20697 }
20698 line_ptr += bytes_read;
20699 }
20700 lh->statement_program_start = line_ptr;
20701
20702 if (line_ptr > (section->buffer + section->size))
20703 complaint (&symfile_complaints,
20704 _("line number info header doesn't "
20705 "fit in `.debug_line' section"));
20706
20707 return lh;
20708 }
20709
20710 /* Subroutine of dwarf_decode_lines to simplify it.
20711 Return the file name of the psymtab for included file FILE_INDEX
20712 in line header LH of PST.
20713 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20714 If space for the result is malloc'd, *NAME_HOLDER will be set.
20715 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20716
20717 static const char *
20718 psymtab_include_file_name (const struct line_header *lh, int file_index,
20719 const struct partial_symtab *pst,
20720 const char *comp_dir,
20721 gdb::unique_xmalloc_ptr<char> *name_holder)
20722 {
20723 const file_entry &fe = lh->file_names[file_index];
20724 const char *include_name = fe.name;
20725 const char *include_name_to_compare = include_name;
20726 const char *pst_filename;
20727 int file_is_pst;
20728
20729 const char *dir_name = fe.include_dir (lh);
20730
20731 gdb::unique_xmalloc_ptr<char> hold_compare;
20732 if (!IS_ABSOLUTE_PATH (include_name)
20733 && (dir_name != NULL || comp_dir != NULL))
20734 {
20735 /* Avoid creating a duplicate psymtab for PST.
20736 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20737 Before we do the comparison, however, we need to account
20738 for DIR_NAME and COMP_DIR.
20739 First prepend dir_name (if non-NULL). If we still don't
20740 have an absolute path prepend comp_dir (if non-NULL).
20741 However, the directory we record in the include-file's
20742 psymtab does not contain COMP_DIR (to match the
20743 corresponding symtab(s)).
20744
20745 Example:
20746
20747 bash$ cd /tmp
20748 bash$ gcc -g ./hello.c
20749 include_name = "hello.c"
20750 dir_name = "."
20751 DW_AT_comp_dir = comp_dir = "/tmp"
20752 DW_AT_name = "./hello.c"
20753
20754 */
20755
20756 if (dir_name != NULL)
20757 {
20758 name_holder->reset (concat (dir_name, SLASH_STRING,
20759 include_name, (char *) NULL));
20760 include_name = name_holder->get ();
20761 include_name_to_compare = include_name;
20762 }
20763 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20764 {
20765 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20766 include_name, (char *) NULL));
20767 include_name_to_compare = hold_compare.get ();
20768 }
20769 }
20770
20771 pst_filename = pst->filename;
20772 gdb::unique_xmalloc_ptr<char> copied_name;
20773 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20774 {
20775 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20776 pst_filename, (char *) NULL));
20777 pst_filename = copied_name.get ();
20778 }
20779
20780 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20781
20782 if (file_is_pst)
20783 return NULL;
20784 return include_name;
20785 }
20786
20787 /* State machine to track the state of the line number program. */
20788
20789 class lnp_state_machine
20790 {
20791 public:
20792 /* Initialize a machine state for the start of a line number
20793 program. */
20794 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20795
20796 file_entry *current_file ()
20797 {
20798 /* lh->file_names is 0-based, but the file name numbers in the
20799 statement program are 1-based. */
20800 return m_line_header->file_name_at (m_file);
20801 }
20802
20803 /* Record the line in the state machine. END_SEQUENCE is true if
20804 we're processing the end of a sequence. */
20805 void record_line (bool end_sequence);
20806
20807 /* Check address and if invalid nop-out the rest of the lines in this
20808 sequence. */
20809 void check_line_address (struct dwarf2_cu *cu,
20810 const gdb_byte *line_ptr,
20811 CORE_ADDR lowpc, CORE_ADDR address);
20812
20813 void handle_set_discriminator (unsigned int discriminator)
20814 {
20815 m_discriminator = discriminator;
20816 m_line_has_non_zero_discriminator |= discriminator != 0;
20817 }
20818
20819 /* Handle DW_LNE_set_address. */
20820 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20821 {
20822 m_op_index = 0;
20823 address += baseaddr;
20824 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20825 }
20826
20827 /* Handle DW_LNS_advance_pc. */
20828 void handle_advance_pc (CORE_ADDR adjust);
20829
20830 /* Handle a special opcode. */
20831 void handle_special_opcode (unsigned char op_code);
20832
20833 /* Handle DW_LNS_advance_line. */
20834 void handle_advance_line (int line_delta)
20835 {
20836 advance_line (line_delta);
20837 }
20838
20839 /* Handle DW_LNS_set_file. */
20840 void handle_set_file (file_name_index file);
20841
20842 /* Handle DW_LNS_negate_stmt. */
20843 void handle_negate_stmt ()
20844 {
20845 m_is_stmt = !m_is_stmt;
20846 }
20847
20848 /* Handle DW_LNS_const_add_pc. */
20849 void handle_const_add_pc ();
20850
20851 /* Handle DW_LNS_fixed_advance_pc. */
20852 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20853 {
20854 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20855 m_op_index = 0;
20856 }
20857
20858 /* Handle DW_LNS_copy. */
20859 void handle_copy ()
20860 {
20861 record_line (false);
20862 m_discriminator = 0;
20863 }
20864
20865 /* Handle DW_LNE_end_sequence. */
20866 void handle_end_sequence ()
20867 {
20868 m_record_line_callback = ::record_line;
20869 }
20870
20871 private:
20872 /* Advance the line by LINE_DELTA. */
20873 void advance_line (int line_delta)
20874 {
20875 m_line += line_delta;
20876
20877 if (line_delta != 0)
20878 m_line_has_non_zero_discriminator = m_discriminator != 0;
20879 }
20880
20881 gdbarch *m_gdbarch;
20882
20883 /* True if we're recording lines.
20884 Otherwise we're building partial symtabs and are just interested in
20885 finding include files mentioned by the line number program. */
20886 bool m_record_lines_p;
20887
20888 /* The line number header. */
20889 line_header *m_line_header;
20890
20891 /* These are part of the standard DWARF line number state machine,
20892 and initialized according to the DWARF spec. */
20893
20894 unsigned char m_op_index = 0;
20895 /* The line table index (1-based) of the current file. */
20896 file_name_index m_file = (file_name_index) 1;
20897 unsigned int m_line = 1;
20898
20899 /* These are initialized in the constructor. */
20900
20901 CORE_ADDR m_address;
20902 bool m_is_stmt;
20903 unsigned int m_discriminator;
20904
20905 /* Additional bits of state we need to track. */
20906
20907 /* The last file that we called dwarf2_start_subfile for.
20908 This is only used for TLLs. */
20909 unsigned int m_last_file = 0;
20910 /* The last file a line number was recorded for. */
20911 struct subfile *m_last_subfile = NULL;
20912
20913 /* The function to call to record a line. */
20914 record_line_ftype *m_record_line_callback = NULL;
20915
20916 /* The last line number that was recorded, used to coalesce
20917 consecutive entries for the same line. This can happen, for
20918 example, when discriminators are present. PR 17276. */
20919 unsigned int m_last_line = 0;
20920 bool m_line_has_non_zero_discriminator = false;
20921 };
20922
20923 void
20924 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20925 {
20926 CORE_ADDR addr_adj = (((m_op_index + adjust)
20927 / m_line_header->maximum_ops_per_instruction)
20928 * m_line_header->minimum_instruction_length);
20929 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20930 m_op_index = ((m_op_index + adjust)
20931 % m_line_header->maximum_ops_per_instruction);
20932 }
20933
20934 void
20935 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20936 {
20937 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20938 CORE_ADDR addr_adj = (((m_op_index
20939 + (adj_opcode / m_line_header->line_range))
20940 / m_line_header->maximum_ops_per_instruction)
20941 * m_line_header->minimum_instruction_length);
20942 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20943 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20944 % m_line_header->maximum_ops_per_instruction);
20945
20946 int line_delta = (m_line_header->line_base
20947 + (adj_opcode % m_line_header->line_range));
20948 advance_line (line_delta);
20949 record_line (false);
20950 m_discriminator = 0;
20951 }
20952
20953 void
20954 lnp_state_machine::handle_set_file (file_name_index file)
20955 {
20956 m_file = file;
20957
20958 const file_entry *fe = current_file ();
20959 if (fe == NULL)
20960 dwarf2_debug_line_missing_file_complaint ();
20961 else if (m_record_lines_p)
20962 {
20963 const char *dir = fe->include_dir (m_line_header);
20964
20965 m_last_subfile = current_subfile;
20966 m_line_has_non_zero_discriminator = m_discriminator != 0;
20967 dwarf2_start_subfile (fe->name, dir);
20968 }
20969 }
20970
20971 void
20972 lnp_state_machine::handle_const_add_pc ()
20973 {
20974 CORE_ADDR adjust
20975 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20976
20977 CORE_ADDR addr_adj
20978 = (((m_op_index + adjust)
20979 / m_line_header->maximum_ops_per_instruction)
20980 * m_line_header->minimum_instruction_length);
20981
20982 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20983 m_op_index = ((m_op_index + adjust)
20984 % m_line_header->maximum_ops_per_instruction);
20985 }
20986
20987 /* Ignore this record_line request. */
20988
20989 static void
20990 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20991 {
20992 return;
20993 }
20994
20995 /* Return non-zero if we should add LINE to the line number table.
20996 LINE is the line to add, LAST_LINE is the last line that was added,
20997 LAST_SUBFILE is the subfile for LAST_LINE.
20998 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20999 had a non-zero discriminator.
21000
21001 We have to be careful in the presence of discriminators.
21002 E.g., for this line:
21003
21004 for (i = 0; i < 100000; i++);
21005
21006 clang can emit four line number entries for that one line,
21007 each with a different discriminator.
21008 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
21009
21010 However, we want gdb to coalesce all four entries into one.
21011 Otherwise the user could stepi into the middle of the line and
21012 gdb would get confused about whether the pc really was in the
21013 middle of the line.
21014
21015 Things are further complicated by the fact that two consecutive
21016 line number entries for the same line is a heuristic used by gcc
21017 to denote the end of the prologue. So we can't just discard duplicate
21018 entries, we have to be selective about it. The heuristic we use is
21019 that we only collapse consecutive entries for the same line if at least
21020 one of those entries has a non-zero discriminator. PR 17276.
21021
21022 Note: Addresses in the line number state machine can never go backwards
21023 within one sequence, thus this coalescing is ok. */
21024
21025 static int
21026 dwarf_record_line_p (unsigned int line, unsigned int last_line,
21027 int line_has_non_zero_discriminator,
21028 struct subfile *last_subfile)
21029 {
21030 if (current_subfile != last_subfile)
21031 return 1;
21032 if (line != last_line)
21033 return 1;
21034 /* Same line for the same file that we've seen already.
21035 As a last check, for pr 17276, only record the line if the line
21036 has never had a non-zero discriminator. */
21037 if (!line_has_non_zero_discriminator)
21038 return 1;
21039 return 0;
21040 }
21041
21042 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
21043 in the line table of subfile SUBFILE. */
21044
21045 static void
21046 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
21047 unsigned int line, CORE_ADDR address,
21048 record_line_ftype p_record_line)
21049 {
21050 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
21051
21052 if (dwarf_line_debug)
21053 {
21054 fprintf_unfiltered (gdb_stdlog,
21055 "Recording line %u, file %s, address %s\n",
21056 line, lbasename (subfile->name),
21057 paddress (gdbarch, address));
21058 }
21059
21060 (*p_record_line) (subfile, line, addr);
21061 }
21062
21063 /* Subroutine of dwarf_decode_lines_1 to simplify it.
21064 Mark the end of a set of line number records.
21065 The arguments are the same as for dwarf_record_line_1.
21066 If SUBFILE is NULL the request is ignored. */
21067
21068 static void
21069 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
21070 CORE_ADDR address, record_line_ftype p_record_line)
21071 {
21072 if (subfile == NULL)
21073 return;
21074
21075 if (dwarf_line_debug)
21076 {
21077 fprintf_unfiltered (gdb_stdlog,
21078 "Finishing current line, file %s, address %s\n",
21079 lbasename (subfile->name),
21080 paddress (gdbarch, address));
21081 }
21082
21083 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
21084 }
21085
21086 void
21087 lnp_state_machine::record_line (bool end_sequence)
21088 {
21089 if (dwarf_line_debug)
21090 {
21091 fprintf_unfiltered (gdb_stdlog,
21092 "Processing actual line %u: file %u,"
21093 " address %s, is_stmt %u, discrim %u\n",
21094 m_line, to_underlying (m_file),
21095 paddress (m_gdbarch, m_address),
21096 m_is_stmt, m_discriminator);
21097 }
21098
21099 file_entry *fe = current_file ();
21100
21101 if (fe == NULL)
21102 dwarf2_debug_line_missing_file_complaint ();
21103 /* For now we ignore lines not starting on an instruction boundary.
21104 But not when processing end_sequence for compatibility with the
21105 previous version of the code. */
21106 else if (m_op_index == 0 || end_sequence)
21107 {
21108 fe->included_p = 1;
21109 if (m_record_lines_p && m_is_stmt)
21110 {
21111 if (m_last_subfile != current_subfile || end_sequence)
21112 {
21113 dwarf_finish_line (m_gdbarch, m_last_subfile,
21114 m_address, m_record_line_callback);
21115 }
21116
21117 if (!end_sequence)
21118 {
21119 if (dwarf_record_line_p (m_line, m_last_line,
21120 m_line_has_non_zero_discriminator,
21121 m_last_subfile))
21122 {
21123 dwarf_record_line_1 (m_gdbarch, current_subfile,
21124 m_line, m_address,
21125 m_record_line_callback);
21126 }
21127 m_last_subfile = current_subfile;
21128 m_last_line = m_line;
21129 }
21130 }
21131 }
21132 }
21133
21134 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
21135 bool record_lines_p)
21136 {
21137 m_gdbarch = arch;
21138 m_record_lines_p = record_lines_p;
21139 m_line_header = lh;
21140
21141 m_record_line_callback = ::record_line;
21142
21143 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21144 was a line entry for it so that the backend has a chance to adjust it
21145 and also record it in case it needs it. This is currently used by MIPS
21146 code, cf. `mips_adjust_dwarf2_line'. */
21147 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21148 m_is_stmt = lh->default_is_stmt;
21149 m_discriminator = 0;
21150 }
21151
21152 void
21153 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21154 const gdb_byte *line_ptr,
21155 CORE_ADDR lowpc, CORE_ADDR address)
21156 {
21157 /* If address < lowpc then it's not a usable value, it's outside the
21158 pc range of the CU. However, we restrict the test to only address
21159 values of zero to preserve GDB's previous behaviour which is to
21160 handle the specific case of a function being GC'd by the linker. */
21161
21162 if (address == 0 && address < lowpc)
21163 {
21164 /* This line table is for a function which has been
21165 GCd by the linker. Ignore it. PR gdb/12528 */
21166
21167 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21168 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21169
21170 complaint (&symfile_complaints,
21171 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21172 line_offset, objfile_name (objfile));
21173 m_record_line_callback = noop_record_line;
21174 /* Note: record_line_callback is left as noop_record_line until
21175 we see DW_LNE_end_sequence. */
21176 }
21177 }
21178
21179 /* Subroutine of dwarf_decode_lines to simplify it.
21180 Process the line number information in LH.
21181 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21182 program in order to set included_p for every referenced header. */
21183
21184 static void
21185 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21186 const int decode_for_pst_p, CORE_ADDR lowpc)
21187 {
21188 const gdb_byte *line_ptr, *extended_end;
21189 const gdb_byte *line_end;
21190 unsigned int bytes_read, extended_len;
21191 unsigned char op_code, extended_op;
21192 CORE_ADDR baseaddr;
21193 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21194 bfd *abfd = objfile->obfd;
21195 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21196 /* True if we're recording line info (as opposed to building partial
21197 symtabs and just interested in finding include files mentioned by
21198 the line number program). */
21199 bool record_lines_p = !decode_for_pst_p;
21200
21201 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21202
21203 line_ptr = lh->statement_program_start;
21204 line_end = lh->statement_program_end;
21205
21206 /* Read the statement sequences until there's nothing left. */
21207 while (line_ptr < line_end)
21208 {
21209 /* The DWARF line number program state machine. Reset the state
21210 machine at the start of each sequence. */
21211 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
21212 bool end_sequence = false;
21213
21214 if (record_lines_p)
21215 {
21216 /* Start a subfile for the current file of the state
21217 machine. */
21218 const file_entry *fe = state_machine.current_file ();
21219
21220 if (fe != NULL)
21221 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
21222 }
21223
21224 /* Decode the table. */
21225 while (line_ptr < line_end && !end_sequence)
21226 {
21227 op_code = read_1_byte (abfd, line_ptr);
21228 line_ptr += 1;
21229
21230 if (op_code >= lh->opcode_base)
21231 {
21232 /* Special opcode. */
21233 state_machine.handle_special_opcode (op_code);
21234 }
21235 else switch (op_code)
21236 {
21237 case DW_LNS_extended_op:
21238 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21239 &bytes_read);
21240 line_ptr += bytes_read;
21241 extended_end = line_ptr + extended_len;
21242 extended_op = read_1_byte (abfd, line_ptr);
21243 line_ptr += 1;
21244 switch (extended_op)
21245 {
21246 case DW_LNE_end_sequence:
21247 state_machine.handle_end_sequence ();
21248 end_sequence = true;
21249 break;
21250 case DW_LNE_set_address:
21251 {
21252 CORE_ADDR address
21253 = read_address (abfd, line_ptr, cu, &bytes_read);
21254 line_ptr += bytes_read;
21255
21256 state_machine.check_line_address (cu, line_ptr,
21257 lowpc, address);
21258 state_machine.handle_set_address (baseaddr, address);
21259 }
21260 break;
21261 case DW_LNE_define_file:
21262 {
21263 const char *cur_file;
21264 unsigned int mod_time, length;
21265 dir_index dindex;
21266
21267 cur_file = read_direct_string (abfd, line_ptr,
21268 &bytes_read);
21269 line_ptr += bytes_read;
21270 dindex = (dir_index)
21271 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21272 line_ptr += bytes_read;
21273 mod_time =
21274 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21275 line_ptr += bytes_read;
21276 length =
21277 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21278 line_ptr += bytes_read;
21279 lh->add_file_name (cur_file, dindex, mod_time, length);
21280 }
21281 break;
21282 case DW_LNE_set_discriminator:
21283 {
21284 /* The discriminator is not interesting to the
21285 debugger; just ignore it. We still need to
21286 check its value though:
21287 if there are consecutive entries for the same
21288 (non-prologue) line we want to coalesce them.
21289 PR 17276. */
21290 unsigned int discr
21291 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21292 line_ptr += bytes_read;
21293
21294 state_machine.handle_set_discriminator (discr);
21295 }
21296 break;
21297 default:
21298 complaint (&symfile_complaints,
21299 _("mangled .debug_line section"));
21300 return;
21301 }
21302 /* Make sure that we parsed the extended op correctly. If e.g.
21303 we expected a different address size than the producer used,
21304 we may have read the wrong number of bytes. */
21305 if (line_ptr != extended_end)
21306 {
21307 complaint (&symfile_complaints,
21308 _("mangled .debug_line section"));
21309 return;
21310 }
21311 break;
21312 case DW_LNS_copy:
21313 state_machine.handle_copy ();
21314 break;
21315 case DW_LNS_advance_pc:
21316 {
21317 CORE_ADDR adjust
21318 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21319 line_ptr += bytes_read;
21320
21321 state_machine.handle_advance_pc (adjust);
21322 }
21323 break;
21324 case DW_LNS_advance_line:
21325 {
21326 int line_delta
21327 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21328 line_ptr += bytes_read;
21329
21330 state_machine.handle_advance_line (line_delta);
21331 }
21332 break;
21333 case DW_LNS_set_file:
21334 {
21335 file_name_index file
21336 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21337 &bytes_read);
21338 line_ptr += bytes_read;
21339
21340 state_machine.handle_set_file (file);
21341 }
21342 break;
21343 case DW_LNS_set_column:
21344 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21345 line_ptr += bytes_read;
21346 break;
21347 case DW_LNS_negate_stmt:
21348 state_machine.handle_negate_stmt ();
21349 break;
21350 case DW_LNS_set_basic_block:
21351 break;
21352 /* Add to the address register of the state machine the
21353 address increment value corresponding to special opcode
21354 255. I.e., this value is scaled by the minimum
21355 instruction length since special opcode 255 would have
21356 scaled the increment. */
21357 case DW_LNS_const_add_pc:
21358 state_machine.handle_const_add_pc ();
21359 break;
21360 case DW_LNS_fixed_advance_pc:
21361 {
21362 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21363 line_ptr += 2;
21364
21365 state_machine.handle_fixed_advance_pc (addr_adj);
21366 }
21367 break;
21368 default:
21369 {
21370 /* Unknown standard opcode, ignore it. */
21371 int i;
21372
21373 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21374 {
21375 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21376 line_ptr += bytes_read;
21377 }
21378 }
21379 }
21380 }
21381
21382 if (!end_sequence)
21383 dwarf2_debug_line_missing_end_sequence_complaint ();
21384
21385 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21386 in which case we still finish recording the last line). */
21387 state_machine.record_line (true);
21388 }
21389 }
21390
21391 /* Decode the Line Number Program (LNP) for the given line_header
21392 structure and CU. The actual information extracted and the type
21393 of structures created from the LNP depends on the value of PST.
21394
21395 1. If PST is NULL, then this procedure uses the data from the program
21396 to create all necessary symbol tables, and their linetables.
21397
21398 2. If PST is not NULL, this procedure reads the program to determine
21399 the list of files included by the unit represented by PST, and
21400 builds all the associated partial symbol tables.
21401
21402 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21403 It is used for relative paths in the line table.
21404 NOTE: When processing partial symtabs (pst != NULL),
21405 comp_dir == pst->dirname.
21406
21407 NOTE: It is important that psymtabs have the same file name (via strcmp)
21408 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21409 symtab we don't use it in the name of the psymtabs we create.
21410 E.g. expand_line_sal requires this when finding psymtabs to expand.
21411 A good testcase for this is mb-inline.exp.
21412
21413 LOWPC is the lowest address in CU (or 0 if not known).
21414
21415 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21416 for its PC<->lines mapping information. Otherwise only the filename
21417 table is read in. */
21418
21419 static void
21420 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21421 struct dwarf2_cu *cu, struct partial_symtab *pst,
21422 CORE_ADDR lowpc, int decode_mapping)
21423 {
21424 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21425 const int decode_for_pst_p = (pst != NULL);
21426
21427 if (decode_mapping)
21428 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21429
21430 if (decode_for_pst_p)
21431 {
21432 int file_index;
21433
21434 /* Now that we're done scanning the Line Header Program, we can
21435 create the psymtab of each included file. */
21436 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21437 if (lh->file_names[file_index].included_p == 1)
21438 {
21439 gdb::unique_xmalloc_ptr<char> name_holder;
21440 const char *include_name =
21441 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21442 &name_holder);
21443 if (include_name != NULL)
21444 dwarf2_create_include_psymtab (include_name, pst, objfile);
21445 }
21446 }
21447 else
21448 {
21449 /* Make sure a symtab is created for every file, even files
21450 which contain only variables (i.e. no code with associated
21451 line numbers). */
21452 struct compunit_symtab *cust = buildsym_compunit_symtab ();
21453 int i;
21454
21455 for (i = 0; i < lh->file_names.size (); i++)
21456 {
21457 file_entry &fe = lh->file_names[i];
21458
21459 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
21460
21461 if (current_subfile->symtab == NULL)
21462 {
21463 current_subfile->symtab
21464 = allocate_symtab (cust, current_subfile->name);
21465 }
21466 fe.symtab = current_subfile->symtab;
21467 }
21468 }
21469 }
21470
21471 /* Start a subfile for DWARF. FILENAME is the name of the file and
21472 DIRNAME the name of the source directory which contains FILENAME
21473 or NULL if not known.
21474 This routine tries to keep line numbers from identical absolute and
21475 relative file names in a common subfile.
21476
21477 Using the `list' example from the GDB testsuite, which resides in
21478 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21479 of /srcdir/list0.c yields the following debugging information for list0.c:
21480
21481 DW_AT_name: /srcdir/list0.c
21482 DW_AT_comp_dir: /compdir
21483 files.files[0].name: list0.h
21484 files.files[0].dir: /srcdir
21485 files.files[1].name: list0.c
21486 files.files[1].dir: /srcdir
21487
21488 The line number information for list0.c has to end up in a single
21489 subfile, so that `break /srcdir/list0.c:1' works as expected.
21490 start_subfile will ensure that this happens provided that we pass the
21491 concatenation of files.files[1].dir and files.files[1].name as the
21492 subfile's name. */
21493
21494 static void
21495 dwarf2_start_subfile (const char *filename, const char *dirname)
21496 {
21497 char *copy = NULL;
21498
21499 /* In order not to lose the line information directory,
21500 we concatenate it to the filename when it makes sense.
21501 Note that the Dwarf3 standard says (speaking of filenames in line
21502 information): ``The directory index is ignored for file names
21503 that represent full path names''. Thus ignoring dirname in the
21504 `else' branch below isn't an issue. */
21505
21506 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21507 {
21508 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21509 filename = copy;
21510 }
21511
21512 start_subfile (filename);
21513
21514 if (copy != NULL)
21515 xfree (copy);
21516 }
21517
21518 /* Start a symtab for DWARF.
21519 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21520
21521 static struct compunit_symtab *
21522 dwarf2_start_symtab (struct dwarf2_cu *cu,
21523 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21524 {
21525 struct compunit_symtab *cust
21526 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21527 low_pc, cu->language);
21528
21529 record_debugformat ("DWARF 2");
21530 record_producer (cu->producer);
21531
21532 /* We assume that we're processing GCC output. */
21533 processing_gcc_compilation = 2;
21534
21535 cu->processing_has_namespace_info = 0;
21536
21537 return cust;
21538 }
21539
21540 static void
21541 var_decode_location (struct attribute *attr, struct symbol *sym,
21542 struct dwarf2_cu *cu)
21543 {
21544 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21545 struct comp_unit_head *cu_header = &cu->header;
21546
21547 /* NOTE drow/2003-01-30: There used to be a comment and some special
21548 code here to turn a symbol with DW_AT_external and a
21549 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21550 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21551 with some versions of binutils) where shared libraries could have
21552 relocations against symbols in their debug information - the
21553 minimal symbol would have the right address, but the debug info
21554 would not. It's no longer necessary, because we will explicitly
21555 apply relocations when we read in the debug information now. */
21556
21557 /* A DW_AT_location attribute with no contents indicates that a
21558 variable has been optimized away. */
21559 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21560 {
21561 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21562 return;
21563 }
21564
21565 /* Handle one degenerate form of location expression specially, to
21566 preserve GDB's previous behavior when section offsets are
21567 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21568 then mark this symbol as LOC_STATIC. */
21569
21570 if (attr_form_is_block (attr)
21571 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21572 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21573 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21574 && (DW_BLOCK (attr)->size
21575 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21576 {
21577 unsigned int dummy;
21578
21579 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21580 SYMBOL_VALUE_ADDRESS (sym) =
21581 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21582 else
21583 SYMBOL_VALUE_ADDRESS (sym) =
21584 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21585 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21586 fixup_symbol_section (sym, objfile);
21587 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21588 SYMBOL_SECTION (sym));
21589 return;
21590 }
21591
21592 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21593 expression evaluator, and use LOC_COMPUTED only when necessary
21594 (i.e. when the value of a register or memory location is
21595 referenced, or a thread-local block, etc.). Then again, it might
21596 not be worthwhile. I'm assuming that it isn't unless performance
21597 or memory numbers show me otherwise. */
21598
21599 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21600
21601 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21602 cu->has_loclist = 1;
21603 }
21604
21605 /* Given a pointer to a DWARF information entry, figure out if we need
21606 to make a symbol table entry for it, and if so, create a new entry
21607 and return a pointer to it.
21608 If TYPE is NULL, determine symbol type from the die, otherwise
21609 used the passed type.
21610 If SPACE is not NULL, use it to hold the new symbol. If it is
21611 NULL, allocate a new symbol on the objfile's obstack. */
21612
21613 static struct symbol *
21614 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21615 struct symbol *space)
21616 {
21617 struct dwarf2_per_objfile *dwarf2_per_objfile
21618 = cu->per_cu->dwarf2_per_objfile;
21619 struct objfile *objfile = dwarf2_per_objfile->objfile;
21620 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21621 struct symbol *sym = NULL;
21622 const char *name;
21623 struct attribute *attr = NULL;
21624 struct attribute *attr2 = NULL;
21625 CORE_ADDR baseaddr;
21626 struct pending **list_to_add = NULL;
21627
21628 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21629
21630 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21631
21632 name = dwarf2_name (die, cu);
21633 if (name)
21634 {
21635 const char *linkagename;
21636 int suppress_add = 0;
21637
21638 if (space)
21639 sym = space;
21640 else
21641 sym = allocate_symbol (objfile);
21642 OBJSTAT (objfile, n_syms++);
21643
21644 /* Cache this symbol's name and the name's demangled form (if any). */
21645 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21646 linkagename = dwarf2_physname (name, die, cu);
21647 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21648
21649 /* Fortran does not have mangling standard and the mangling does differ
21650 between gfortran, iFort etc. */
21651 if (cu->language == language_fortran
21652 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21653 symbol_set_demangled_name (&(sym->ginfo),
21654 dwarf2_full_name (name, die, cu),
21655 NULL);
21656
21657 /* Default assumptions.
21658 Use the passed type or decode it from the die. */
21659 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21660 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21661 if (type != NULL)
21662 SYMBOL_TYPE (sym) = type;
21663 else
21664 SYMBOL_TYPE (sym) = die_type (die, cu);
21665 attr = dwarf2_attr (die,
21666 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21667 cu);
21668 if (attr)
21669 {
21670 SYMBOL_LINE (sym) = DW_UNSND (attr);
21671 }
21672
21673 attr = dwarf2_attr (die,
21674 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21675 cu);
21676 if (attr)
21677 {
21678 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21679 struct file_entry *fe;
21680
21681 if (cu->line_header != NULL)
21682 fe = cu->line_header->file_name_at (file_index);
21683 else
21684 fe = NULL;
21685
21686 if (fe == NULL)
21687 complaint (&symfile_complaints,
21688 _("file index out of range"));
21689 else
21690 symbol_set_symtab (sym, fe->symtab);
21691 }
21692
21693 switch (die->tag)
21694 {
21695 case DW_TAG_label:
21696 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21697 if (attr)
21698 {
21699 CORE_ADDR addr;
21700
21701 addr = attr_value_as_address (attr);
21702 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21703 SYMBOL_VALUE_ADDRESS (sym) = addr;
21704 }
21705 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21706 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21707 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21708 add_symbol_to_list (sym, cu->list_in_scope);
21709 break;
21710 case DW_TAG_subprogram:
21711 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21712 finish_block. */
21713 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21714 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21715 if ((attr2 && (DW_UNSND (attr2) != 0))
21716 || cu->language == language_ada)
21717 {
21718 /* Subprograms marked external are stored as a global symbol.
21719 Ada subprograms, whether marked external or not, are always
21720 stored as a global symbol, because we want to be able to
21721 access them globally. For instance, we want to be able
21722 to break on a nested subprogram without having to
21723 specify the context. */
21724 list_to_add = &global_symbols;
21725 }
21726 else
21727 {
21728 list_to_add = cu->list_in_scope;
21729 }
21730 break;
21731 case DW_TAG_inlined_subroutine:
21732 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21733 finish_block. */
21734 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21735 SYMBOL_INLINED (sym) = 1;
21736 list_to_add = cu->list_in_scope;
21737 break;
21738 case DW_TAG_template_value_param:
21739 suppress_add = 1;
21740 /* Fall through. */
21741 case DW_TAG_constant:
21742 case DW_TAG_variable:
21743 case DW_TAG_member:
21744 /* Compilation with minimal debug info may result in
21745 variables with missing type entries. Change the
21746 misleading `void' type to something sensible. */
21747 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21748 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21749
21750 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21751 /* In the case of DW_TAG_member, we should only be called for
21752 static const members. */
21753 if (die->tag == DW_TAG_member)
21754 {
21755 /* dwarf2_add_field uses die_is_declaration,
21756 so we do the same. */
21757 gdb_assert (die_is_declaration (die, cu));
21758 gdb_assert (attr);
21759 }
21760 if (attr)
21761 {
21762 dwarf2_const_value (attr, sym, cu);
21763 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21764 if (!suppress_add)
21765 {
21766 if (attr2 && (DW_UNSND (attr2) != 0))
21767 list_to_add = &global_symbols;
21768 else
21769 list_to_add = cu->list_in_scope;
21770 }
21771 break;
21772 }
21773 attr = dwarf2_attr (die, DW_AT_location, cu);
21774 if (attr)
21775 {
21776 var_decode_location (attr, sym, cu);
21777 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21778
21779 /* Fortran explicitly imports any global symbols to the local
21780 scope by DW_TAG_common_block. */
21781 if (cu->language == language_fortran && die->parent
21782 && die->parent->tag == DW_TAG_common_block)
21783 attr2 = NULL;
21784
21785 if (SYMBOL_CLASS (sym) == LOC_STATIC
21786 && SYMBOL_VALUE_ADDRESS (sym) == 0
21787 && !dwarf2_per_objfile->has_section_at_zero)
21788 {
21789 /* When a static variable is eliminated by the linker,
21790 the corresponding debug information is not stripped
21791 out, but the variable address is set to null;
21792 do not add such variables into symbol table. */
21793 }
21794 else if (attr2 && (DW_UNSND (attr2) != 0))
21795 {
21796 /* Workaround gfortran PR debug/40040 - it uses
21797 DW_AT_location for variables in -fPIC libraries which may
21798 get overriden by other libraries/executable and get
21799 a different address. Resolve it by the minimal symbol
21800 which may come from inferior's executable using copy
21801 relocation. Make this workaround only for gfortran as for
21802 other compilers GDB cannot guess the minimal symbol
21803 Fortran mangling kind. */
21804 if (cu->language == language_fortran && die->parent
21805 && die->parent->tag == DW_TAG_module
21806 && cu->producer
21807 && startswith (cu->producer, "GNU Fortran"))
21808 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21809
21810 /* A variable with DW_AT_external is never static,
21811 but it may be block-scoped. */
21812 list_to_add = (cu->list_in_scope == &file_symbols
21813 ? &global_symbols : cu->list_in_scope);
21814 }
21815 else
21816 list_to_add = cu->list_in_scope;
21817 }
21818 else
21819 {
21820 /* We do not know the address of this symbol.
21821 If it is an external symbol and we have type information
21822 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21823 The address of the variable will then be determined from
21824 the minimal symbol table whenever the variable is
21825 referenced. */
21826 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21827
21828 /* Fortran explicitly imports any global symbols to the local
21829 scope by DW_TAG_common_block. */
21830 if (cu->language == language_fortran && die->parent
21831 && die->parent->tag == DW_TAG_common_block)
21832 {
21833 /* SYMBOL_CLASS doesn't matter here because
21834 read_common_block is going to reset it. */
21835 if (!suppress_add)
21836 list_to_add = cu->list_in_scope;
21837 }
21838 else if (attr2 && (DW_UNSND (attr2) != 0)
21839 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21840 {
21841 /* A variable with DW_AT_external is never static, but it
21842 may be block-scoped. */
21843 list_to_add = (cu->list_in_scope == &file_symbols
21844 ? &global_symbols : cu->list_in_scope);
21845
21846 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21847 }
21848 else if (!die_is_declaration (die, cu))
21849 {
21850 /* Use the default LOC_OPTIMIZED_OUT class. */
21851 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21852 if (!suppress_add)
21853 list_to_add = cu->list_in_scope;
21854 }
21855 }
21856 break;
21857 case DW_TAG_formal_parameter:
21858 /* If we are inside a function, mark this as an argument. If
21859 not, we might be looking at an argument to an inlined function
21860 when we do not have enough information to show inlined frames;
21861 pretend it's a local variable in that case so that the user can
21862 still see it. */
21863 if (context_stack_depth > 0
21864 && context_stack[context_stack_depth - 1].name != NULL)
21865 SYMBOL_IS_ARGUMENT (sym) = 1;
21866 attr = dwarf2_attr (die, DW_AT_location, cu);
21867 if (attr)
21868 {
21869 var_decode_location (attr, sym, cu);
21870 }
21871 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21872 if (attr)
21873 {
21874 dwarf2_const_value (attr, sym, cu);
21875 }
21876
21877 list_to_add = cu->list_in_scope;
21878 break;
21879 case DW_TAG_unspecified_parameters:
21880 /* From varargs functions; gdb doesn't seem to have any
21881 interest in this information, so just ignore it for now.
21882 (FIXME?) */
21883 break;
21884 case DW_TAG_template_type_param:
21885 suppress_add = 1;
21886 /* Fall through. */
21887 case DW_TAG_class_type:
21888 case DW_TAG_interface_type:
21889 case DW_TAG_structure_type:
21890 case DW_TAG_union_type:
21891 case DW_TAG_set_type:
21892 case DW_TAG_enumeration_type:
21893 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21894 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21895
21896 {
21897 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21898 really ever be static objects: otherwise, if you try
21899 to, say, break of a class's method and you're in a file
21900 which doesn't mention that class, it won't work unless
21901 the check for all static symbols in lookup_symbol_aux
21902 saves you. See the OtherFileClass tests in
21903 gdb.c++/namespace.exp. */
21904
21905 if (!suppress_add)
21906 {
21907 list_to_add = (cu->list_in_scope == &file_symbols
21908 && cu->language == language_cplus
21909 ? &global_symbols : cu->list_in_scope);
21910
21911 /* The semantics of C++ state that "struct foo {
21912 ... }" also defines a typedef for "foo". */
21913 if (cu->language == language_cplus
21914 || cu->language == language_ada
21915 || cu->language == language_d
21916 || cu->language == language_rust)
21917 {
21918 /* The symbol's name is already allocated along
21919 with this objfile, so we don't need to
21920 duplicate it for the type. */
21921 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21922 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21923 }
21924 }
21925 }
21926 break;
21927 case DW_TAG_typedef:
21928 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21930 list_to_add = cu->list_in_scope;
21931 break;
21932 case DW_TAG_base_type:
21933 case DW_TAG_subrange_type:
21934 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21935 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21936 list_to_add = cu->list_in_scope;
21937 break;
21938 case DW_TAG_enumerator:
21939 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21940 if (attr)
21941 {
21942 dwarf2_const_value (attr, sym, cu);
21943 }
21944 {
21945 /* NOTE: carlton/2003-11-10: See comment above in the
21946 DW_TAG_class_type, etc. block. */
21947
21948 list_to_add = (cu->list_in_scope == &file_symbols
21949 && cu->language == language_cplus
21950 ? &global_symbols : cu->list_in_scope);
21951 }
21952 break;
21953 case DW_TAG_imported_declaration:
21954 case DW_TAG_namespace:
21955 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21956 list_to_add = &global_symbols;
21957 break;
21958 case DW_TAG_module:
21959 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21960 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21961 list_to_add = &global_symbols;
21962 break;
21963 case DW_TAG_common_block:
21964 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21965 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21966 add_symbol_to_list (sym, cu->list_in_scope);
21967 break;
21968 default:
21969 /* Not a tag we recognize. Hopefully we aren't processing
21970 trash data, but since we must specifically ignore things
21971 we don't recognize, there is nothing else we should do at
21972 this point. */
21973 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21974 dwarf_tag_name (die->tag));
21975 break;
21976 }
21977
21978 if (suppress_add)
21979 {
21980 sym->hash_next = objfile->template_symbols;
21981 objfile->template_symbols = sym;
21982 list_to_add = NULL;
21983 }
21984
21985 if (list_to_add != NULL)
21986 add_symbol_to_list (sym, list_to_add);
21987
21988 /* For the benefit of old versions of GCC, check for anonymous
21989 namespaces based on the demangled name. */
21990 if (!cu->processing_has_namespace_info
21991 && cu->language == language_cplus)
21992 cp_scan_for_anonymous_namespaces (sym, objfile);
21993 }
21994 return (sym);
21995 }
21996
21997 /* Given an attr with a DW_FORM_dataN value in host byte order,
21998 zero-extend it as appropriate for the symbol's type. The DWARF
21999 standard (v4) is not entirely clear about the meaning of using
22000 DW_FORM_dataN for a constant with a signed type, where the type is
22001 wider than the data. The conclusion of a discussion on the DWARF
22002 list was that this is unspecified. We choose to always zero-extend
22003 because that is the interpretation long in use by GCC. */
22004
22005 static gdb_byte *
22006 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
22007 struct dwarf2_cu *cu, LONGEST *value, int bits)
22008 {
22009 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22010 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
22011 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
22012 LONGEST l = DW_UNSND (attr);
22013
22014 if (bits < sizeof (*value) * 8)
22015 {
22016 l &= ((LONGEST) 1 << bits) - 1;
22017 *value = l;
22018 }
22019 else if (bits == sizeof (*value) * 8)
22020 *value = l;
22021 else
22022 {
22023 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
22024 store_unsigned_integer (bytes, bits / 8, byte_order, l);
22025 return bytes;
22026 }
22027
22028 return NULL;
22029 }
22030
22031 /* Read a constant value from an attribute. Either set *VALUE, or if
22032 the value does not fit in *VALUE, set *BYTES - either already
22033 allocated on the objfile obstack, or newly allocated on OBSTACK,
22034 or, set *BATON, if we translated the constant to a location
22035 expression. */
22036
22037 static void
22038 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
22039 const char *name, struct obstack *obstack,
22040 struct dwarf2_cu *cu,
22041 LONGEST *value, const gdb_byte **bytes,
22042 struct dwarf2_locexpr_baton **baton)
22043 {
22044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22045 struct comp_unit_head *cu_header = &cu->header;
22046 struct dwarf_block *blk;
22047 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
22048 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22049
22050 *value = 0;
22051 *bytes = NULL;
22052 *baton = NULL;
22053
22054 switch (attr->form)
22055 {
22056 case DW_FORM_addr:
22057 case DW_FORM_GNU_addr_index:
22058 {
22059 gdb_byte *data;
22060
22061 if (TYPE_LENGTH (type) != cu_header->addr_size)
22062 dwarf2_const_value_length_mismatch_complaint (name,
22063 cu_header->addr_size,
22064 TYPE_LENGTH (type));
22065 /* Symbols of this form are reasonably rare, so we just
22066 piggyback on the existing location code rather than writing
22067 a new implementation of symbol_computed_ops. */
22068 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
22069 (*baton)->per_cu = cu->per_cu;
22070 gdb_assert ((*baton)->per_cu);
22071
22072 (*baton)->size = 2 + cu_header->addr_size;
22073 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
22074 (*baton)->data = data;
22075
22076 data[0] = DW_OP_addr;
22077 store_unsigned_integer (&data[1], cu_header->addr_size,
22078 byte_order, DW_ADDR (attr));
22079 data[cu_header->addr_size + 1] = DW_OP_stack_value;
22080 }
22081 break;
22082 case DW_FORM_string:
22083 case DW_FORM_strp:
22084 case DW_FORM_GNU_str_index:
22085 case DW_FORM_GNU_strp_alt:
22086 /* DW_STRING is already allocated on the objfile obstack, point
22087 directly to it. */
22088 *bytes = (const gdb_byte *) DW_STRING (attr);
22089 break;
22090 case DW_FORM_block1:
22091 case DW_FORM_block2:
22092 case DW_FORM_block4:
22093 case DW_FORM_block:
22094 case DW_FORM_exprloc:
22095 case DW_FORM_data16:
22096 blk = DW_BLOCK (attr);
22097 if (TYPE_LENGTH (type) != blk->size)
22098 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22099 TYPE_LENGTH (type));
22100 *bytes = blk->data;
22101 break;
22102
22103 /* The DW_AT_const_value attributes are supposed to carry the
22104 symbol's value "represented as it would be on the target
22105 architecture." By the time we get here, it's already been
22106 converted to host endianness, so we just need to sign- or
22107 zero-extend it as appropriate. */
22108 case DW_FORM_data1:
22109 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22110 break;
22111 case DW_FORM_data2:
22112 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22113 break;
22114 case DW_FORM_data4:
22115 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22116 break;
22117 case DW_FORM_data8:
22118 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22119 break;
22120
22121 case DW_FORM_sdata:
22122 case DW_FORM_implicit_const:
22123 *value = DW_SND (attr);
22124 break;
22125
22126 case DW_FORM_udata:
22127 *value = DW_UNSND (attr);
22128 break;
22129
22130 default:
22131 complaint (&symfile_complaints,
22132 _("unsupported const value attribute form: '%s'"),
22133 dwarf_form_name (attr->form));
22134 *value = 0;
22135 break;
22136 }
22137 }
22138
22139
22140 /* Copy constant value from an attribute to a symbol. */
22141
22142 static void
22143 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22144 struct dwarf2_cu *cu)
22145 {
22146 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22147 LONGEST value;
22148 const gdb_byte *bytes;
22149 struct dwarf2_locexpr_baton *baton;
22150
22151 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22152 SYMBOL_PRINT_NAME (sym),
22153 &objfile->objfile_obstack, cu,
22154 &value, &bytes, &baton);
22155
22156 if (baton != NULL)
22157 {
22158 SYMBOL_LOCATION_BATON (sym) = baton;
22159 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22160 }
22161 else if (bytes != NULL)
22162 {
22163 SYMBOL_VALUE_BYTES (sym) = bytes;
22164 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22165 }
22166 else
22167 {
22168 SYMBOL_VALUE (sym) = value;
22169 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22170 }
22171 }
22172
22173 /* Return the type of the die in question using its DW_AT_type attribute. */
22174
22175 static struct type *
22176 die_type (struct die_info *die, struct dwarf2_cu *cu)
22177 {
22178 struct attribute *type_attr;
22179
22180 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22181 if (!type_attr)
22182 {
22183 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22184 /* A missing DW_AT_type represents a void type. */
22185 return objfile_type (objfile)->builtin_void;
22186 }
22187
22188 return lookup_die_type (die, type_attr, cu);
22189 }
22190
22191 /* True iff CU's producer generates GNAT Ada auxiliary information
22192 that allows to find parallel types through that information instead
22193 of having to do expensive parallel lookups by type name. */
22194
22195 static int
22196 need_gnat_info (struct dwarf2_cu *cu)
22197 {
22198 /* Assume that the Ada compiler was GNAT, which always produces
22199 the auxiliary information. */
22200 return (cu->language == language_ada);
22201 }
22202
22203 /* Return the auxiliary type of the die in question using its
22204 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22205 attribute is not present. */
22206
22207 static struct type *
22208 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22209 {
22210 struct attribute *type_attr;
22211
22212 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22213 if (!type_attr)
22214 return NULL;
22215
22216 return lookup_die_type (die, type_attr, cu);
22217 }
22218
22219 /* If DIE has a descriptive_type attribute, then set the TYPE's
22220 descriptive type accordingly. */
22221
22222 static void
22223 set_descriptive_type (struct type *type, struct die_info *die,
22224 struct dwarf2_cu *cu)
22225 {
22226 struct type *descriptive_type = die_descriptive_type (die, cu);
22227
22228 if (descriptive_type)
22229 {
22230 ALLOCATE_GNAT_AUX_TYPE (type);
22231 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22232 }
22233 }
22234
22235 /* Return the containing type of the die in question using its
22236 DW_AT_containing_type attribute. */
22237
22238 static struct type *
22239 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22240 {
22241 struct attribute *type_attr;
22242 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22243
22244 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22245 if (!type_attr)
22246 error (_("Dwarf Error: Problem turning containing type into gdb type "
22247 "[in module %s]"), objfile_name (objfile));
22248
22249 return lookup_die_type (die, type_attr, cu);
22250 }
22251
22252 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22253
22254 static struct type *
22255 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22256 {
22257 struct dwarf2_per_objfile *dwarf2_per_objfile
22258 = cu->per_cu->dwarf2_per_objfile;
22259 struct objfile *objfile = dwarf2_per_objfile->objfile;
22260 char *message, *saved;
22261
22262 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
22263 objfile_name (objfile),
22264 sect_offset_str (cu->header.sect_off),
22265 sect_offset_str (die->sect_off));
22266 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22267 message, strlen (message));
22268 xfree (message);
22269
22270 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22271 }
22272
22273 /* Look up the type of DIE in CU using its type attribute ATTR.
22274 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22275 DW_AT_containing_type.
22276 If there is no type substitute an error marker. */
22277
22278 static struct type *
22279 lookup_die_type (struct die_info *die, const struct attribute *attr,
22280 struct dwarf2_cu *cu)
22281 {
22282 struct dwarf2_per_objfile *dwarf2_per_objfile
22283 = cu->per_cu->dwarf2_per_objfile;
22284 struct objfile *objfile = dwarf2_per_objfile->objfile;
22285 struct type *this_type;
22286
22287 gdb_assert (attr->name == DW_AT_type
22288 || attr->name == DW_AT_GNAT_descriptive_type
22289 || attr->name == DW_AT_containing_type);
22290
22291 /* First see if we have it cached. */
22292
22293 if (attr->form == DW_FORM_GNU_ref_alt)
22294 {
22295 struct dwarf2_per_cu_data *per_cu;
22296 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22297
22298 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22299 dwarf2_per_objfile);
22300 this_type = get_die_type_at_offset (sect_off, per_cu);
22301 }
22302 else if (attr_form_is_ref (attr))
22303 {
22304 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22305
22306 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22307 }
22308 else if (attr->form == DW_FORM_ref_sig8)
22309 {
22310 ULONGEST signature = DW_SIGNATURE (attr);
22311
22312 return get_signatured_type (die, signature, cu);
22313 }
22314 else
22315 {
22316 complaint (&symfile_complaints,
22317 _("Dwarf Error: Bad type attribute %s in DIE"
22318 " at %s [in module %s]"),
22319 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22320 objfile_name (objfile));
22321 return build_error_marker_type (cu, die);
22322 }
22323
22324 /* If not cached we need to read it in. */
22325
22326 if (this_type == NULL)
22327 {
22328 struct die_info *type_die = NULL;
22329 struct dwarf2_cu *type_cu = cu;
22330
22331 if (attr_form_is_ref (attr))
22332 type_die = follow_die_ref (die, attr, &type_cu);
22333 if (type_die == NULL)
22334 return build_error_marker_type (cu, die);
22335 /* If we find the type now, it's probably because the type came
22336 from an inter-CU reference and the type's CU got expanded before
22337 ours. */
22338 this_type = read_type_die (type_die, type_cu);
22339 }
22340
22341 /* If we still don't have a type use an error marker. */
22342
22343 if (this_type == NULL)
22344 return build_error_marker_type (cu, die);
22345
22346 return this_type;
22347 }
22348
22349 /* Return the type in DIE, CU.
22350 Returns NULL for invalid types.
22351
22352 This first does a lookup in die_type_hash,
22353 and only reads the die in if necessary.
22354
22355 NOTE: This can be called when reading in partial or full symbols. */
22356
22357 static struct type *
22358 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22359 {
22360 struct type *this_type;
22361
22362 this_type = get_die_type (die, cu);
22363 if (this_type)
22364 return this_type;
22365
22366 return read_type_die_1 (die, cu);
22367 }
22368
22369 /* Read the type in DIE, CU.
22370 Returns NULL for invalid types. */
22371
22372 static struct type *
22373 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22374 {
22375 struct type *this_type = NULL;
22376
22377 switch (die->tag)
22378 {
22379 case DW_TAG_class_type:
22380 case DW_TAG_interface_type:
22381 case DW_TAG_structure_type:
22382 case DW_TAG_union_type:
22383 this_type = read_structure_type (die, cu);
22384 break;
22385 case DW_TAG_enumeration_type:
22386 this_type = read_enumeration_type (die, cu);
22387 break;
22388 case DW_TAG_subprogram:
22389 case DW_TAG_subroutine_type:
22390 case DW_TAG_inlined_subroutine:
22391 this_type = read_subroutine_type (die, cu);
22392 break;
22393 case DW_TAG_array_type:
22394 this_type = read_array_type (die, cu);
22395 break;
22396 case DW_TAG_set_type:
22397 this_type = read_set_type (die, cu);
22398 break;
22399 case DW_TAG_pointer_type:
22400 this_type = read_tag_pointer_type (die, cu);
22401 break;
22402 case DW_TAG_ptr_to_member_type:
22403 this_type = read_tag_ptr_to_member_type (die, cu);
22404 break;
22405 case DW_TAG_reference_type:
22406 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22407 break;
22408 case DW_TAG_rvalue_reference_type:
22409 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22410 break;
22411 case DW_TAG_const_type:
22412 this_type = read_tag_const_type (die, cu);
22413 break;
22414 case DW_TAG_volatile_type:
22415 this_type = read_tag_volatile_type (die, cu);
22416 break;
22417 case DW_TAG_restrict_type:
22418 this_type = read_tag_restrict_type (die, cu);
22419 break;
22420 case DW_TAG_string_type:
22421 this_type = read_tag_string_type (die, cu);
22422 break;
22423 case DW_TAG_typedef:
22424 this_type = read_typedef (die, cu);
22425 break;
22426 case DW_TAG_subrange_type:
22427 this_type = read_subrange_type (die, cu);
22428 break;
22429 case DW_TAG_base_type:
22430 this_type = read_base_type (die, cu);
22431 break;
22432 case DW_TAG_unspecified_type:
22433 this_type = read_unspecified_type (die, cu);
22434 break;
22435 case DW_TAG_namespace:
22436 this_type = read_namespace_type (die, cu);
22437 break;
22438 case DW_TAG_module:
22439 this_type = read_module_type (die, cu);
22440 break;
22441 case DW_TAG_atomic_type:
22442 this_type = read_tag_atomic_type (die, cu);
22443 break;
22444 default:
22445 complaint (&symfile_complaints,
22446 _("unexpected tag in read_type_die: '%s'"),
22447 dwarf_tag_name (die->tag));
22448 break;
22449 }
22450
22451 return this_type;
22452 }
22453
22454 /* See if we can figure out if the class lives in a namespace. We do
22455 this by looking for a member function; its demangled name will
22456 contain namespace info, if there is any.
22457 Return the computed name or NULL.
22458 Space for the result is allocated on the objfile's obstack.
22459 This is the full-die version of guess_partial_die_structure_name.
22460 In this case we know DIE has no useful parent. */
22461
22462 static char *
22463 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22464 {
22465 struct die_info *spec_die;
22466 struct dwarf2_cu *spec_cu;
22467 struct die_info *child;
22468 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22469
22470 spec_cu = cu;
22471 spec_die = die_specification (die, &spec_cu);
22472 if (spec_die != NULL)
22473 {
22474 die = spec_die;
22475 cu = spec_cu;
22476 }
22477
22478 for (child = die->child;
22479 child != NULL;
22480 child = child->sibling)
22481 {
22482 if (child->tag == DW_TAG_subprogram)
22483 {
22484 const char *linkage_name = dw2_linkage_name (child, cu);
22485
22486 if (linkage_name != NULL)
22487 {
22488 char *actual_name
22489 = language_class_name_from_physname (cu->language_defn,
22490 linkage_name);
22491 char *name = NULL;
22492
22493 if (actual_name != NULL)
22494 {
22495 const char *die_name = dwarf2_name (die, cu);
22496
22497 if (die_name != NULL
22498 && strcmp (die_name, actual_name) != 0)
22499 {
22500 /* Strip off the class name from the full name.
22501 We want the prefix. */
22502 int die_name_len = strlen (die_name);
22503 int actual_name_len = strlen (actual_name);
22504
22505 /* Test for '::' as a sanity check. */
22506 if (actual_name_len > die_name_len + 2
22507 && actual_name[actual_name_len
22508 - die_name_len - 1] == ':')
22509 name = (char *) obstack_copy0 (
22510 &objfile->per_bfd->storage_obstack,
22511 actual_name, actual_name_len - die_name_len - 2);
22512 }
22513 }
22514 xfree (actual_name);
22515 return name;
22516 }
22517 }
22518 }
22519
22520 return NULL;
22521 }
22522
22523 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22524 prefix part in such case. See
22525 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22526
22527 static const char *
22528 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22529 {
22530 struct attribute *attr;
22531 const char *base;
22532
22533 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22534 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22535 return NULL;
22536
22537 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22538 return NULL;
22539
22540 attr = dw2_linkage_name_attr (die, cu);
22541 if (attr == NULL || DW_STRING (attr) == NULL)
22542 return NULL;
22543
22544 /* dwarf2_name had to be already called. */
22545 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22546
22547 /* Strip the base name, keep any leading namespaces/classes. */
22548 base = strrchr (DW_STRING (attr), ':');
22549 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22550 return "";
22551
22552 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22553 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22554 DW_STRING (attr),
22555 &base[-1] - DW_STRING (attr));
22556 }
22557
22558 /* Return the name of the namespace/class that DIE is defined within,
22559 or "" if we can't tell. The caller should not xfree the result.
22560
22561 For example, if we're within the method foo() in the following
22562 code:
22563
22564 namespace N {
22565 class C {
22566 void foo () {
22567 }
22568 };
22569 }
22570
22571 then determine_prefix on foo's die will return "N::C". */
22572
22573 static const char *
22574 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22575 {
22576 struct dwarf2_per_objfile *dwarf2_per_objfile
22577 = cu->per_cu->dwarf2_per_objfile;
22578 struct die_info *parent, *spec_die;
22579 struct dwarf2_cu *spec_cu;
22580 struct type *parent_type;
22581 const char *retval;
22582
22583 if (cu->language != language_cplus
22584 && cu->language != language_fortran && cu->language != language_d
22585 && cu->language != language_rust)
22586 return "";
22587
22588 retval = anonymous_struct_prefix (die, cu);
22589 if (retval)
22590 return retval;
22591
22592 /* We have to be careful in the presence of DW_AT_specification.
22593 For example, with GCC 3.4, given the code
22594
22595 namespace N {
22596 void foo() {
22597 // Definition of N::foo.
22598 }
22599 }
22600
22601 then we'll have a tree of DIEs like this:
22602
22603 1: DW_TAG_compile_unit
22604 2: DW_TAG_namespace // N
22605 3: DW_TAG_subprogram // declaration of N::foo
22606 4: DW_TAG_subprogram // definition of N::foo
22607 DW_AT_specification // refers to die #3
22608
22609 Thus, when processing die #4, we have to pretend that we're in
22610 the context of its DW_AT_specification, namely the contex of die
22611 #3. */
22612 spec_cu = cu;
22613 spec_die = die_specification (die, &spec_cu);
22614 if (spec_die == NULL)
22615 parent = die->parent;
22616 else
22617 {
22618 parent = spec_die->parent;
22619 cu = spec_cu;
22620 }
22621
22622 if (parent == NULL)
22623 return "";
22624 else if (parent->building_fullname)
22625 {
22626 const char *name;
22627 const char *parent_name;
22628
22629 /* It has been seen on RealView 2.2 built binaries,
22630 DW_TAG_template_type_param types actually _defined_ as
22631 children of the parent class:
22632
22633 enum E {};
22634 template class <class Enum> Class{};
22635 Class<enum E> class_e;
22636
22637 1: DW_TAG_class_type (Class)
22638 2: DW_TAG_enumeration_type (E)
22639 3: DW_TAG_enumerator (enum1:0)
22640 3: DW_TAG_enumerator (enum2:1)
22641 ...
22642 2: DW_TAG_template_type_param
22643 DW_AT_type DW_FORM_ref_udata (E)
22644
22645 Besides being broken debug info, it can put GDB into an
22646 infinite loop. Consider:
22647
22648 When we're building the full name for Class<E>, we'll start
22649 at Class, and go look over its template type parameters,
22650 finding E. We'll then try to build the full name of E, and
22651 reach here. We're now trying to build the full name of E,
22652 and look over the parent DIE for containing scope. In the
22653 broken case, if we followed the parent DIE of E, we'd again
22654 find Class, and once again go look at its template type
22655 arguments, etc., etc. Simply don't consider such parent die
22656 as source-level parent of this die (it can't be, the language
22657 doesn't allow it), and break the loop here. */
22658 name = dwarf2_name (die, cu);
22659 parent_name = dwarf2_name (parent, cu);
22660 complaint (&symfile_complaints,
22661 _("template param type '%s' defined within parent '%s'"),
22662 name ? name : "<unknown>",
22663 parent_name ? parent_name : "<unknown>");
22664 return "";
22665 }
22666 else
22667 switch (parent->tag)
22668 {
22669 case DW_TAG_namespace:
22670 parent_type = read_type_die (parent, cu);
22671 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22672 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22673 Work around this problem here. */
22674 if (cu->language == language_cplus
22675 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22676 return "";
22677 /* We give a name to even anonymous namespaces. */
22678 return TYPE_TAG_NAME (parent_type);
22679 case DW_TAG_class_type:
22680 case DW_TAG_interface_type:
22681 case DW_TAG_structure_type:
22682 case DW_TAG_union_type:
22683 case DW_TAG_module:
22684 parent_type = read_type_die (parent, cu);
22685 if (TYPE_TAG_NAME (parent_type) != NULL)
22686 return TYPE_TAG_NAME (parent_type);
22687 else
22688 /* An anonymous structure is only allowed non-static data
22689 members; no typedefs, no member functions, et cetera.
22690 So it does not need a prefix. */
22691 return "";
22692 case DW_TAG_compile_unit:
22693 case DW_TAG_partial_unit:
22694 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22695 if (cu->language == language_cplus
22696 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22697 && die->child != NULL
22698 && (die->tag == DW_TAG_class_type
22699 || die->tag == DW_TAG_structure_type
22700 || die->tag == DW_TAG_union_type))
22701 {
22702 char *name = guess_full_die_structure_name (die, cu);
22703 if (name != NULL)
22704 return name;
22705 }
22706 return "";
22707 case DW_TAG_enumeration_type:
22708 parent_type = read_type_die (parent, cu);
22709 if (TYPE_DECLARED_CLASS (parent_type))
22710 {
22711 if (TYPE_TAG_NAME (parent_type) != NULL)
22712 return TYPE_TAG_NAME (parent_type);
22713 return "";
22714 }
22715 /* Fall through. */
22716 default:
22717 return determine_prefix (parent, cu);
22718 }
22719 }
22720
22721 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22722 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22723 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22724 an obconcat, otherwise allocate storage for the result. The CU argument is
22725 used to determine the language and hence, the appropriate separator. */
22726
22727 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22728
22729 static char *
22730 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22731 int physname, struct dwarf2_cu *cu)
22732 {
22733 const char *lead = "";
22734 const char *sep;
22735
22736 if (suffix == NULL || suffix[0] == '\0'
22737 || prefix == NULL || prefix[0] == '\0')
22738 sep = "";
22739 else if (cu->language == language_d)
22740 {
22741 /* For D, the 'main' function could be defined in any module, but it
22742 should never be prefixed. */
22743 if (strcmp (suffix, "D main") == 0)
22744 {
22745 prefix = "";
22746 sep = "";
22747 }
22748 else
22749 sep = ".";
22750 }
22751 else if (cu->language == language_fortran && physname)
22752 {
22753 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22754 DW_AT_MIPS_linkage_name is preferred and used instead. */
22755
22756 lead = "__";
22757 sep = "_MOD_";
22758 }
22759 else
22760 sep = "::";
22761
22762 if (prefix == NULL)
22763 prefix = "";
22764 if (suffix == NULL)
22765 suffix = "";
22766
22767 if (obs == NULL)
22768 {
22769 char *retval
22770 = ((char *)
22771 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22772
22773 strcpy (retval, lead);
22774 strcat (retval, prefix);
22775 strcat (retval, sep);
22776 strcat (retval, suffix);
22777 return retval;
22778 }
22779 else
22780 {
22781 /* We have an obstack. */
22782 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22783 }
22784 }
22785
22786 /* Return sibling of die, NULL if no sibling. */
22787
22788 static struct die_info *
22789 sibling_die (struct die_info *die)
22790 {
22791 return die->sibling;
22792 }
22793
22794 /* Get name of a die, return NULL if not found. */
22795
22796 static const char *
22797 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22798 struct obstack *obstack)
22799 {
22800 if (name && cu->language == language_cplus)
22801 {
22802 std::string canon_name = cp_canonicalize_string (name);
22803
22804 if (!canon_name.empty ())
22805 {
22806 if (canon_name != name)
22807 name = (const char *) obstack_copy0 (obstack,
22808 canon_name.c_str (),
22809 canon_name.length ());
22810 }
22811 }
22812
22813 return name;
22814 }
22815
22816 /* Get name of a die, return NULL if not found.
22817 Anonymous namespaces are converted to their magic string. */
22818
22819 static const char *
22820 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22821 {
22822 struct attribute *attr;
22823 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22824
22825 attr = dwarf2_attr (die, DW_AT_name, cu);
22826 if ((!attr || !DW_STRING (attr))
22827 && die->tag != DW_TAG_namespace
22828 && die->tag != DW_TAG_class_type
22829 && die->tag != DW_TAG_interface_type
22830 && die->tag != DW_TAG_structure_type
22831 && die->tag != DW_TAG_union_type)
22832 return NULL;
22833
22834 switch (die->tag)
22835 {
22836 case DW_TAG_compile_unit:
22837 case DW_TAG_partial_unit:
22838 /* Compilation units have a DW_AT_name that is a filename, not
22839 a source language identifier. */
22840 case DW_TAG_enumeration_type:
22841 case DW_TAG_enumerator:
22842 /* These tags always have simple identifiers already; no need
22843 to canonicalize them. */
22844 return DW_STRING (attr);
22845
22846 case DW_TAG_namespace:
22847 if (attr != NULL && DW_STRING (attr) != NULL)
22848 return DW_STRING (attr);
22849 return CP_ANONYMOUS_NAMESPACE_STR;
22850
22851 case DW_TAG_class_type:
22852 case DW_TAG_interface_type:
22853 case DW_TAG_structure_type:
22854 case DW_TAG_union_type:
22855 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22856 structures or unions. These were of the form "._%d" in GCC 4.1,
22857 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22858 and GCC 4.4. We work around this problem by ignoring these. */
22859 if (attr && DW_STRING (attr)
22860 && (startswith (DW_STRING (attr), "._")
22861 || startswith (DW_STRING (attr), "<anonymous")))
22862 return NULL;
22863
22864 /* GCC might emit a nameless typedef that has a linkage name. See
22865 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22866 if (!attr || DW_STRING (attr) == NULL)
22867 {
22868 char *demangled = NULL;
22869
22870 attr = dw2_linkage_name_attr (die, cu);
22871 if (attr == NULL || DW_STRING (attr) == NULL)
22872 return NULL;
22873
22874 /* Avoid demangling DW_STRING (attr) the second time on a second
22875 call for the same DIE. */
22876 if (!DW_STRING_IS_CANONICAL (attr))
22877 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22878
22879 if (demangled)
22880 {
22881 const char *base;
22882
22883 /* FIXME: we already did this for the partial symbol... */
22884 DW_STRING (attr)
22885 = ((const char *)
22886 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22887 demangled, strlen (demangled)));
22888 DW_STRING_IS_CANONICAL (attr) = 1;
22889 xfree (demangled);
22890
22891 /* Strip any leading namespaces/classes, keep only the base name.
22892 DW_AT_name for named DIEs does not contain the prefixes. */
22893 base = strrchr (DW_STRING (attr), ':');
22894 if (base && base > DW_STRING (attr) && base[-1] == ':')
22895 return &base[1];
22896 else
22897 return DW_STRING (attr);
22898 }
22899 }
22900 break;
22901
22902 default:
22903 break;
22904 }
22905
22906 if (!DW_STRING_IS_CANONICAL (attr))
22907 {
22908 DW_STRING (attr)
22909 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22910 &objfile->per_bfd->storage_obstack);
22911 DW_STRING_IS_CANONICAL (attr) = 1;
22912 }
22913 return DW_STRING (attr);
22914 }
22915
22916 /* Return the die that this die in an extension of, or NULL if there
22917 is none. *EXT_CU is the CU containing DIE on input, and the CU
22918 containing the return value on output. */
22919
22920 static struct die_info *
22921 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22922 {
22923 struct attribute *attr;
22924
22925 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22926 if (attr == NULL)
22927 return NULL;
22928
22929 return follow_die_ref (die, attr, ext_cu);
22930 }
22931
22932 /* Convert a DIE tag into its string name. */
22933
22934 static const char *
22935 dwarf_tag_name (unsigned tag)
22936 {
22937 const char *name = get_DW_TAG_name (tag);
22938
22939 if (name == NULL)
22940 return "DW_TAG_<unknown>";
22941
22942 return name;
22943 }
22944
22945 /* Convert a DWARF attribute code into its string name. */
22946
22947 static const char *
22948 dwarf_attr_name (unsigned attr)
22949 {
22950 const char *name;
22951
22952 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22953 if (attr == DW_AT_MIPS_fde)
22954 return "DW_AT_MIPS_fde";
22955 #else
22956 if (attr == DW_AT_HP_block_index)
22957 return "DW_AT_HP_block_index";
22958 #endif
22959
22960 name = get_DW_AT_name (attr);
22961
22962 if (name == NULL)
22963 return "DW_AT_<unknown>";
22964
22965 return name;
22966 }
22967
22968 /* Convert a DWARF value form code into its string name. */
22969
22970 static const char *
22971 dwarf_form_name (unsigned form)
22972 {
22973 const char *name = get_DW_FORM_name (form);
22974
22975 if (name == NULL)
22976 return "DW_FORM_<unknown>";
22977
22978 return name;
22979 }
22980
22981 static const char *
22982 dwarf_bool_name (unsigned mybool)
22983 {
22984 if (mybool)
22985 return "TRUE";
22986 else
22987 return "FALSE";
22988 }
22989
22990 /* Convert a DWARF type code into its string name. */
22991
22992 static const char *
22993 dwarf_type_encoding_name (unsigned enc)
22994 {
22995 const char *name = get_DW_ATE_name (enc);
22996
22997 if (name == NULL)
22998 return "DW_ATE_<unknown>";
22999
23000 return name;
23001 }
23002
23003 static void
23004 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
23005 {
23006 unsigned int i;
23007
23008 print_spaces (indent, f);
23009 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
23010 dwarf_tag_name (die->tag), die->abbrev,
23011 sect_offset_str (die->sect_off));
23012
23013 if (die->parent != NULL)
23014 {
23015 print_spaces (indent, f);
23016 fprintf_unfiltered (f, " parent at offset: %s\n",
23017 sect_offset_str (die->parent->sect_off));
23018 }
23019
23020 print_spaces (indent, f);
23021 fprintf_unfiltered (f, " has children: %s\n",
23022 dwarf_bool_name (die->child != NULL));
23023
23024 print_spaces (indent, f);
23025 fprintf_unfiltered (f, " attributes:\n");
23026
23027 for (i = 0; i < die->num_attrs; ++i)
23028 {
23029 print_spaces (indent, f);
23030 fprintf_unfiltered (f, " %s (%s) ",
23031 dwarf_attr_name (die->attrs[i].name),
23032 dwarf_form_name (die->attrs[i].form));
23033
23034 switch (die->attrs[i].form)
23035 {
23036 case DW_FORM_addr:
23037 case DW_FORM_GNU_addr_index:
23038 fprintf_unfiltered (f, "address: ");
23039 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
23040 break;
23041 case DW_FORM_block2:
23042 case DW_FORM_block4:
23043 case DW_FORM_block:
23044 case DW_FORM_block1:
23045 fprintf_unfiltered (f, "block: size %s",
23046 pulongest (DW_BLOCK (&die->attrs[i])->size));
23047 break;
23048 case DW_FORM_exprloc:
23049 fprintf_unfiltered (f, "expression: size %s",
23050 pulongest (DW_BLOCK (&die->attrs[i])->size));
23051 break;
23052 case DW_FORM_data16:
23053 fprintf_unfiltered (f, "constant of 16 bytes");
23054 break;
23055 case DW_FORM_ref_addr:
23056 fprintf_unfiltered (f, "ref address: ");
23057 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23058 break;
23059 case DW_FORM_GNU_ref_alt:
23060 fprintf_unfiltered (f, "alt ref address: ");
23061 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23062 break;
23063 case DW_FORM_ref1:
23064 case DW_FORM_ref2:
23065 case DW_FORM_ref4:
23066 case DW_FORM_ref8:
23067 case DW_FORM_ref_udata:
23068 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
23069 (long) (DW_UNSND (&die->attrs[i])));
23070 break;
23071 case DW_FORM_data1:
23072 case DW_FORM_data2:
23073 case DW_FORM_data4:
23074 case DW_FORM_data8:
23075 case DW_FORM_udata:
23076 case DW_FORM_sdata:
23077 fprintf_unfiltered (f, "constant: %s",
23078 pulongest (DW_UNSND (&die->attrs[i])));
23079 break;
23080 case DW_FORM_sec_offset:
23081 fprintf_unfiltered (f, "section offset: %s",
23082 pulongest (DW_UNSND (&die->attrs[i])));
23083 break;
23084 case DW_FORM_ref_sig8:
23085 fprintf_unfiltered (f, "signature: %s",
23086 hex_string (DW_SIGNATURE (&die->attrs[i])));
23087 break;
23088 case DW_FORM_string:
23089 case DW_FORM_strp:
23090 case DW_FORM_line_strp:
23091 case DW_FORM_GNU_str_index:
23092 case DW_FORM_GNU_strp_alt:
23093 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23094 DW_STRING (&die->attrs[i])
23095 ? DW_STRING (&die->attrs[i]) : "",
23096 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23097 break;
23098 case DW_FORM_flag:
23099 if (DW_UNSND (&die->attrs[i]))
23100 fprintf_unfiltered (f, "flag: TRUE");
23101 else
23102 fprintf_unfiltered (f, "flag: FALSE");
23103 break;
23104 case DW_FORM_flag_present:
23105 fprintf_unfiltered (f, "flag: TRUE");
23106 break;
23107 case DW_FORM_indirect:
23108 /* The reader will have reduced the indirect form to
23109 the "base form" so this form should not occur. */
23110 fprintf_unfiltered (f,
23111 "unexpected attribute form: DW_FORM_indirect");
23112 break;
23113 case DW_FORM_implicit_const:
23114 fprintf_unfiltered (f, "constant: %s",
23115 plongest (DW_SND (&die->attrs[i])));
23116 break;
23117 default:
23118 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23119 die->attrs[i].form);
23120 break;
23121 }
23122 fprintf_unfiltered (f, "\n");
23123 }
23124 }
23125
23126 static void
23127 dump_die_for_error (struct die_info *die)
23128 {
23129 dump_die_shallow (gdb_stderr, 0, die);
23130 }
23131
23132 static void
23133 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23134 {
23135 int indent = level * 4;
23136
23137 gdb_assert (die != NULL);
23138
23139 if (level >= max_level)
23140 return;
23141
23142 dump_die_shallow (f, indent, die);
23143
23144 if (die->child != NULL)
23145 {
23146 print_spaces (indent, f);
23147 fprintf_unfiltered (f, " Children:");
23148 if (level + 1 < max_level)
23149 {
23150 fprintf_unfiltered (f, "\n");
23151 dump_die_1 (f, level + 1, max_level, die->child);
23152 }
23153 else
23154 {
23155 fprintf_unfiltered (f,
23156 " [not printed, max nesting level reached]\n");
23157 }
23158 }
23159
23160 if (die->sibling != NULL && level > 0)
23161 {
23162 dump_die_1 (f, level, max_level, die->sibling);
23163 }
23164 }
23165
23166 /* This is called from the pdie macro in gdbinit.in.
23167 It's not static so gcc will keep a copy callable from gdb. */
23168
23169 void
23170 dump_die (struct die_info *die, int max_level)
23171 {
23172 dump_die_1 (gdb_stdlog, 0, max_level, die);
23173 }
23174
23175 static void
23176 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23177 {
23178 void **slot;
23179
23180 slot = htab_find_slot_with_hash (cu->die_hash, die,
23181 to_underlying (die->sect_off),
23182 INSERT);
23183
23184 *slot = die;
23185 }
23186
23187 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23188 required kind. */
23189
23190 static sect_offset
23191 dwarf2_get_ref_die_offset (const struct attribute *attr)
23192 {
23193 if (attr_form_is_ref (attr))
23194 return (sect_offset) DW_UNSND (attr);
23195
23196 complaint (&symfile_complaints,
23197 _("unsupported die ref attribute form: '%s'"),
23198 dwarf_form_name (attr->form));
23199 return {};
23200 }
23201
23202 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23203 * the value held by the attribute is not constant. */
23204
23205 static LONGEST
23206 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23207 {
23208 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23209 return DW_SND (attr);
23210 else if (attr->form == DW_FORM_udata
23211 || attr->form == DW_FORM_data1
23212 || attr->form == DW_FORM_data2
23213 || attr->form == DW_FORM_data4
23214 || attr->form == DW_FORM_data8)
23215 return DW_UNSND (attr);
23216 else
23217 {
23218 /* For DW_FORM_data16 see attr_form_is_constant. */
23219 complaint (&symfile_complaints,
23220 _("Attribute value is not a constant (%s)"),
23221 dwarf_form_name (attr->form));
23222 return default_value;
23223 }
23224 }
23225
23226 /* Follow reference or signature attribute ATTR of SRC_DIE.
23227 On entry *REF_CU is the CU of SRC_DIE.
23228 On exit *REF_CU is the CU of the result. */
23229
23230 static struct die_info *
23231 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23232 struct dwarf2_cu **ref_cu)
23233 {
23234 struct die_info *die;
23235
23236 if (attr_form_is_ref (attr))
23237 die = follow_die_ref (src_die, attr, ref_cu);
23238 else if (attr->form == DW_FORM_ref_sig8)
23239 die = follow_die_sig (src_die, attr, ref_cu);
23240 else
23241 {
23242 dump_die_for_error (src_die);
23243 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23244 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23245 }
23246
23247 return die;
23248 }
23249
23250 /* Follow reference OFFSET.
23251 On entry *REF_CU is the CU of the source die referencing OFFSET.
23252 On exit *REF_CU is the CU of the result.
23253 Returns NULL if OFFSET is invalid. */
23254
23255 static struct die_info *
23256 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23257 struct dwarf2_cu **ref_cu)
23258 {
23259 struct die_info temp_die;
23260 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23261 struct dwarf2_per_objfile *dwarf2_per_objfile
23262 = cu->per_cu->dwarf2_per_objfile;
23263 struct objfile *objfile = dwarf2_per_objfile->objfile;
23264
23265 gdb_assert (cu->per_cu != NULL);
23266
23267 target_cu = cu;
23268
23269 if (cu->per_cu->is_debug_types)
23270 {
23271 /* .debug_types CUs cannot reference anything outside their CU.
23272 If they need to, they have to reference a signatured type via
23273 DW_FORM_ref_sig8. */
23274 if (!offset_in_cu_p (&cu->header, sect_off))
23275 return NULL;
23276 }
23277 else if (offset_in_dwz != cu->per_cu->is_dwz
23278 || !offset_in_cu_p (&cu->header, sect_off))
23279 {
23280 struct dwarf2_per_cu_data *per_cu;
23281
23282 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23283 dwarf2_per_objfile);
23284
23285 /* If necessary, add it to the queue and load its DIEs. */
23286 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23287 load_full_comp_unit (per_cu, cu->language);
23288
23289 target_cu = per_cu->cu;
23290 }
23291 else if (cu->dies == NULL)
23292 {
23293 /* We're loading full DIEs during partial symbol reading. */
23294 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23295 load_full_comp_unit (cu->per_cu, language_minimal);
23296 }
23297
23298 *ref_cu = target_cu;
23299 temp_die.sect_off = sect_off;
23300 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23301 &temp_die,
23302 to_underlying (sect_off));
23303 }
23304
23305 /* Follow reference attribute ATTR of SRC_DIE.
23306 On entry *REF_CU is the CU of SRC_DIE.
23307 On exit *REF_CU is the CU of the result. */
23308
23309 static struct die_info *
23310 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23311 struct dwarf2_cu **ref_cu)
23312 {
23313 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23314 struct dwarf2_cu *cu = *ref_cu;
23315 struct die_info *die;
23316
23317 die = follow_die_offset (sect_off,
23318 (attr->form == DW_FORM_GNU_ref_alt
23319 || cu->per_cu->is_dwz),
23320 ref_cu);
23321 if (!die)
23322 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23323 "at %s [in module %s]"),
23324 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23325 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23326
23327 return die;
23328 }
23329
23330 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23331 Returned value is intended for DW_OP_call*. Returned
23332 dwarf2_locexpr_baton->data has lifetime of
23333 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23334
23335 struct dwarf2_locexpr_baton
23336 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23337 struct dwarf2_per_cu_data *per_cu,
23338 CORE_ADDR (*get_frame_pc) (void *baton),
23339 void *baton)
23340 {
23341 struct dwarf2_cu *cu;
23342 struct die_info *die;
23343 struct attribute *attr;
23344 struct dwarf2_locexpr_baton retval;
23345 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23346 struct dwarf2_per_objfile *dwarf2_per_objfile
23347 = get_dwarf2_per_objfile (objfile);
23348
23349 if (per_cu->cu == NULL)
23350 load_cu (per_cu);
23351 cu = per_cu->cu;
23352 if (cu == NULL)
23353 {
23354 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23355 Instead just throw an error, not much else we can do. */
23356 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23357 sect_offset_str (sect_off), objfile_name (objfile));
23358 }
23359
23360 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23361 if (!die)
23362 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23363 sect_offset_str (sect_off), objfile_name (objfile));
23364
23365 attr = dwarf2_attr (die, DW_AT_location, cu);
23366 if (!attr)
23367 {
23368 /* DWARF: "If there is no such attribute, then there is no effect.".
23369 DATA is ignored if SIZE is 0. */
23370
23371 retval.data = NULL;
23372 retval.size = 0;
23373 }
23374 else if (attr_form_is_section_offset (attr))
23375 {
23376 struct dwarf2_loclist_baton loclist_baton;
23377 CORE_ADDR pc = (*get_frame_pc) (baton);
23378 size_t size;
23379
23380 fill_in_loclist_baton (cu, &loclist_baton, attr);
23381
23382 retval.data = dwarf2_find_location_expression (&loclist_baton,
23383 &size, pc);
23384 retval.size = size;
23385 }
23386 else
23387 {
23388 if (!attr_form_is_block (attr))
23389 error (_("Dwarf Error: DIE at %s referenced in module %s "
23390 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23391 sect_offset_str (sect_off), objfile_name (objfile));
23392
23393 retval.data = DW_BLOCK (attr)->data;
23394 retval.size = DW_BLOCK (attr)->size;
23395 }
23396 retval.per_cu = cu->per_cu;
23397
23398 age_cached_comp_units (dwarf2_per_objfile);
23399
23400 return retval;
23401 }
23402
23403 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23404 offset. */
23405
23406 struct dwarf2_locexpr_baton
23407 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23408 struct dwarf2_per_cu_data *per_cu,
23409 CORE_ADDR (*get_frame_pc) (void *baton),
23410 void *baton)
23411 {
23412 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23413
23414 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23415 }
23416
23417 /* Write a constant of a given type as target-ordered bytes into
23418 OBSTACK. */
23419
23420 static const gdb_byte *
23421 write_constant_as_bytes (struct obstack *obstack,
23422 enum bfd_endian byte_order,
23423 struct type *type,
23424 ULONGEST value,
23425 LONGEST *len)
23426 {
23427 gdb_byte *result;
23428
23429 *len = TYPE_LENGTH (type);
23430 result = (gdb_byte *) obstack_alloc (obstack, *len);
23431 store_unsigned_integer (result, *len, byte_order, value);
23432
23433 return result;
23434 }
23435
23436 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23437 pointer to the constant bytes and set LEN to the length of the
23438 data. If memory is needed, allocate it on OBSTACK. If the DIE
23439 does not have a DW_AT_const_value, return NULL. */
23440
23441 const gdb_byte *
23442 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23443 struct dwarf2_per_cu_data *per_cu,
23444 struct obstack *obstack,
23445 LONGEST *len)
23446 {
23447 struct dwarf2_cu *cu;
23448 struct die_info *die;
23449 struct attribute *attr;
23450 const gdb_byte *result = NULL;
23451 struct type *type;
23452 LONGEST value;
23453 enum bfd_endian byte_order;
23454 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23455
23456 if (per_cu->cu == NULL)
23457 load_cu (per_cu);
23458 cu = per_cu->cu;
23459 if (cu == NULL)
23460 {
23461 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23462 Instead just throw an error, not much else we can do. */
23463 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23464 sect_offset_str (sect_off), objfile_name (objfile));
23465 }
23466
23467 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23468 if (!die)
23469 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23470 sect_offset_str (sect_off), objfile_name (objfile));
23471
23472 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23473 if (attr == NULL)
23474 return NULL;
23475
23476 byte_order = (bfd_big_endian (objfile->obfd)
23477 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23478
23479 switch (attr->form)
23480 {
23481 case DW_FORM_addr:
23482 case DW_FORM_GNU_addr_index:
23483 {
23484 gdb_byte *tem;
23485
23486 *len = cu->header.addr_size;
23487 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23488 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23489 result = tem;
23490 }
23491 break;
23492 case DW_FORM_string:
23493 case DW_FORM_strp:
23494 case DW_FORM_GNU_str_index:
23495 case DW_FORM_GNU_strp_alt:
23496 /* DW_STRING is already allocated on the objfile obstack, point
23497 directly to it. */
23498 result = (const gdb_byte *) DW_STRING (attr);
23499 *len = strlen (DW_STRING (attr));
23500 break;
23501 case DW_FORM_block1:
23502 case DW_FORM_block2:
23503 case DW_FORM_block4:
23504 case DW_FORM_block:
23505 case DW_FORM_exprloc:
23506 case DW_FORM_data16:
23507 result = DW_BLOCK (attr)->data;
23508 *len = DW_BLOCK (attr)->size;
23509 break;
23510
23511 /* The DW_AT_const_value attributes are supposed to carry the
23512 symbol's value "represented as it would be on the target
23513 architecture." By the time we get here, it's already been
23514 converted to host endianness, so we just need to sign- or
23515 zero-extend it as appropriate. */
23516 case DW_FORM_data1:
23517 type = die_type (die, cu);
23518 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23519 if (result == NULL)
23520 result = write_constant_as_bytes (obstack, byte_order,
23521 type, value, len);
23522 break;
23523 case DW_FORM_data2:
23524 type = die_type (die, cu);
23525 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23526 if (result == NULL)
23527 result = write_constant_as_bytes (obstack, byte_order,
23528 type, value, len);
23529 break;
23530 case DW_FORM_data4:
23531 type = die_type (die, cu);
23532 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23533 if (result == NULL)
23534 result = write_constant_as_bytes (obstack, byte_order,
23535 type, value, len);
23536 break;
23537 case DW_FORM_data8:
23538 type = die_type (die, cu);
23539 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23540 if (result == NULL)
23541 result = write_constant_as_bytes (obstack, byte_order,
23542 type, value, len);
23543 break;
23544
23545 case DW_FORM_sdata:
23546 case DW_FORM_implicit_const:
23547 type = die_type (die, cu);
23548 result = write_constant_as_bytes (obstack, byte_order,
23549 type, DW_SND (attr), len);
23550 break;
23551
23552 case DW_FORM_udata:
23553 type = die_type (die, cu);
23554 result = write_constant_as_bytes (obstack, byte_order,
23555 type, DW_UNSND (attr), len);
23556 break;
23557
23558 default:
23559 complaint (&symfile_complaints,
23560 _("unsupported const value attribute form: '%s'"),
23561 dwarf_form_name (attr->form));
23562 break;
23563 }
23564
23565 return result;
23566 }
23567
23568 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23569 valid type for this die is found. */
23570
23571 struct type *
23572 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23573 struct dwarf2_per_cu_data *per_cu)
23574 {
23575 struct dwarf2_cu *cu;
23576 struct die_info *die;
23577
23578 if (per_cu->cu == NULL)
23579 load_cu (per_cu);
23580 cu = per_cu->cu;
23581 if (!cu)
23582 return NULL;
23583
23584 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23585 if (!die)
23586 return NULL;
23587
23588 return die_type (die, cu);
23589 }
23590
23591 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23592 PER_CU. */
23593
23594 struct type *
23595 dwarf2_get_die_type (cu_offset die_offset,
23596 struct dwarf2_per_cu_data *per_cu)
23597 {
23598 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23599 return get_die_type_at_offset (die_offset_sect, per_cu);
23600 }
23601
23602 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23603 On entry *REF_CU is the CU of SRC_DIE.
23604 On exit *REF_CU is the CU of the result.
23605 Returns NULL if the referenced DIE isn't found. */
23606
23607 static struct die_info *
23608 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23609 struct dwarf2_cu **ref_cu)
23610 {
23611 struct die_info temp_die;
23612 struct dwarf2_cu *sig_cu;
23613 struct die_info *die;
23614
23615 /* While it might be nice to assert sig_type->type == NULL here,
23616 we can get here for DW_AT_imported_declaration where we need
23617 the DIE not the type. */
23618
23619 /* If necessary, add it to the queue and load its DIEs. */
23620
23621 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23622 read_signatured_type (sig_type);
23623
23624 sig_cu = sig_type->per_cu.cu;
23625 gdb_assert (sig_cu != NULL);
23626 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23627 temp_die.sect_off = sig_type->type_offset_in_section;
23628 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23629 to_underlying (temp_die.sect_off));
23630 if (die)
23631 {
23632 struct dwarf2_per_objfile *dwarf2_per_objfile
23633 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23634
23635 /* For .gdb_index version 7 keep track of included TUs.
23636 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23637 if (dwarf2_per_objfile->index_table != NULL
23638 && dwarf2_per_objfile->index_table->version <= 7)
23639 {
23640 VEC_safe_push (dwarf2_per_cu_ptr,
23641 (*ref_cu)->per_cu->imported_symtabs,
23642 sig_cu->per_cu);
23643 }
23644
23645 *ref_cu = sig_cu;
23646 return die;
23647 }
23648
23649 return NULL;
23650 }
23651
23652 /* Follow signatured type referenced by ATTR in SRC_DIE.
23653 On entry *REF_CU is the CU of SRC_DIE.
23654 On exit *REF_CU is the CU of the result.
23655 The result is the DIE of the type.
23656 If the referenced type cannot be found an error is thrown. */
23657
23658 static struct die_info *
23659 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23660 struct dwarf2_cu **ref_cu)
23661 {
23662 ULONGEST signature = DW_SIGNATURE (attr);
23663 struct signatured_type *sig_type;
23664 struct die_info *die;
23665
23666 gdb_assert (attr->form == DW_FORM_ref_sig8);
23667
23668 sig_type = lookup_signatured_type (*ref_cu, signature);
23669 /* sig_type will be NULL if the signatured type is missing from
23670 the debug info. */
23671 if (sig_type == NULL)
23672 {
23673 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23674 " from DIE at %s [in module %s]"),
23675 hex_string (signature), sect_offset_str (src_die->sect_off),
23676 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23677 }
23678
23679 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23680 if (die == NULL)
23681 {
23682 dump_die_for_error (src_die);
23683 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23684 " from DIE at %s [in module %s]"),
23685 hex_string (signature), sect_offset_str (src_die->sect_off),
23686 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23687 }
23688
23689 return die;
23690 }
23691
23692 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23693 reading in and processing the type unit if necessary. */
23694
23695 static struct type *
23696 get_signatured_type (struct die_info *die, ULONGEST signature,
23697 struct dwarf2_cu *cu)
23698 {
23699 struct dwarf2_per_objfile *dwarf2_per_objfile
23700 = cu->per_cu->dwarf2_per_objfile;
23701 struct signatured_type *sig_type;
23702 struct dwarf2_cu *type_cu;
23703 struct die_info *type_die;
23704 struct type *type;
23705
23706 sig_type = lookup_signatured_type (cu, signature);
23707 /* sig_type will be NULL if the signatured type is missing from
23708 the debug info. */
23709 if (sig_type == NULL)
23710 {
23711 complaint (&symfile_complaints,
23712 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23713 " from DIE at %s [in module %s]"),
23714 hex_string (signature), sect_offset_str (die->sect_off),
23715 objfile_name (dwarf2_per_objfile->objfile));
23716 return build_error_marker_type (cu, die);
23717 }
23718
23719 /* If we already know the type we're done. */
23720 if (sig_type->type != NULL)
23721 return sig_type->type;
23722
23723 type_cu = cu;
23724 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23725 if (type_die != NULL)
23726 {
23727 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23728 is created. This is important, for example, because for c++ classes
23729 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23730 type = read_type_die (type_die, type_cu);
23731 if (type == NULL)
23732 {
23733 complaint (&symfile_complaints,
23734 _("Dwarf Error: Cannot build signatured type %s"
23735 " referenced from DIE at %s [in module %s]"),
23736 hex_string (signature), sect_offset_str (die->sect_off),
23737 objfile_name (dwarf2_per_objfile->objfile));
23738 type = build_error_marker_type (cu, die);
23739 }
23740 }
23741 else
23742 {
23743 complaint (&symfile_complaints,
23744 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23745 " from DIE at %s [in module %s]"),
23746 hex_string (signature), sect_offset_str (die->sect_off),
23747 objfile_name (dwarf2_per_objfile->objfile));
23748 type = build_error_marker_type (cu, die);
23749 }
23750 sig_type->type = type;
23751
23752 return type;
23753 }
23754
23755 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23756 reading in and processing the type unit if necessary. */
23757
23758 static struct type *
23759 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23760 struct dwarf2_cu *cu) /* ARI: editCase function */
23761 {
23762 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23763 if (attr_form_is_ref (attr))
23764 {
23765 struct dwarf2_cu *type_cu = cu;
23766 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23767
23768 return read_type_die (type_die, type_cu);
23769 }
23770 else if (attr->form == DW_FORM_ref_sig8)
23771 {
23772 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23773 }
23774 else
23775 {
23776 struct dwarf2_per_objfile *dwarf2_per_objfile
23777 = cu->per_cu->dwarf2_per_objfile;
23778
23779 complaint (&symfile_complaints,
23780 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23781 " at %s [in module %s]"),
23782 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23783 objfile_name (dwarf2_per_objfile->objfile));
23784 return build_error_marker_type (cu, die);
23785 }
23786 }
23787
23788 /* Load the DIEs associated with type unit PER_CU into memory. */
23789
23790 static void
23791 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23792 {
23793 struct signatured_type *sig_type;
23794
23795 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23796 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23797
23798 /* We have the per_cu, but we need the signatured_type.
23799 Fortunately this is an easy translation. */
23800 gdb_assert (per_cu->is_debug_types);
23801 sig_type = (struct signatured_type *) per_cu;
23802
23803 gdb_assert (per_cu->cu == NULL);
23804
23805 read_signatured_type (sig_type);
23806
23807 gdb_assert (per_cu->cu != NULL);
23808 }
23809
23810 /* die_reader_func for read_signatured_type.
23811 This is identical to load_full_comp_unit_reader,
23812 but is kept separate for now. */
23813
23814 static void
23815 read_signatured_type_reader (const struct die_reader_specs *reader,
23816 const gdb_byte *info_ptr,
23817 struct die_info *comp_unit_die,
23818 int has_children,
23819 void *data)
23820 {
23821 struct dwarf2_cu *cu = reader->cu;
23822
23823 gdb_assert (cu->die_hash == NULL);
23824 cu->die_hash =
23825 htab_create_alloc_ex (cu->header.length / 12,
23826 die_hash,
23827 die_eq,
23828 NULL,
23829 &cu->comp_unit_obstack,
23830 hashtab_obstack_allocate,
23831 dummy_obstack_deallocate);
23832
23833 if (has_children)
23834 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23835 &info_ptr, comp_unit_die);
23836 cu->dies = comp_unit_die;
23837 /* comp_unit_die is not stored in die_hash, no need. */
23838
23839 /* We try not to read any attributes in this function, because not
23840 all CUs needed for references have been loaded yet, and symbol
23841 table processing isn't initialized. But we have to set the CU language,
23842 or we won't be able to build types correctly.
23843 Similarly, if we do not read the producer, we can not apply
23844 producer-specific interpretation. */
23845 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23846 }
23847
23848 /* Read in a signatured type and build its CU and DIEs.
23849 If the type is a stub for the real type in a DWO file,
23850 read in the real type from the DWO file as well. */
23851
23852 static void
23853 read_signatured_type (struct signatured_type *sig_type)
23854 {
23855 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23856
23857 gdb_assert (per_cu->is_debug_types);
23858 gdb_assert (per_cu->cu == NULL);
23859
23860 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23861 read_signatured_type_reader, NULL);
23862 sig_type->per_cu.tu_read = 1;
23863 }
23864
23865 /* Decode simple location descriptions.
23866 Given a pointer to a dwarf block that defines a location, compute
23867 the location and return the value.
23868
23869 NOTE drow/2003-11-18: This function is called in two situations
23870 now: for the address of static or global variables (partial symbols
23871 only) and for offsets into structures which are expected to be
23872 (more or less) constant. The partial symbol case should go away,
23873 and only the constant case should remain. That will let this
23874 function complain more accurately. A few special modes are allowed
23875 without complaint for global variables (for instance, global
23876 register values and thread-local values).
23877
23878 A location description containing no operations indicates that the
23879 object is optimized out. The return value is 0 for that case.
23880 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23881 callers will only want a very basic result and this can become a
23882 complaint.
23883
23884 Note that stack[0] is unused except as a default error return. */
23885
23886 static CORE_ADDR
23887 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23888 {
23889 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23890 size_t i;
23891 size_t size = blk->size;
23892 const gdb_byte *data = blk->data;
23893 CORE_ADDR stack[64];
23894 int stacki;
23895 unsigned int bytes_read, unsnd;
23896 gdb_byte op;
23897
23898 i = 0;
23899 stacki = 0;
23900 stack[stacki] = 0;
23901 stack[++stacki] = 0;
23902
23903 while (i < size)
23904 {
23905 op = data[i++];
23906 switch (op)
23907 {
23908 case DW_OP_lit0:
23909 case DW_OP_lit1:
23910 case DW_OP_lit2:
23911 case DW_OP_lit3:
23912 case DW_OP_lit4:
23913 case DW_OP_lit5:
23914 case DW_OP_lit6:
23915 case DW_OP_lit7:
23916 case DW_OP_lit8:
23917 case DW_OP_lit9:
23918 case DW_OP_lit10:
23919 case DW_OP_lit11:
23920 case DW_OP_lit12:
23921 case DW_OP_lit13:
23922 case DW_OP_lit14:
23923 case DW_OP_lit15:
23924 case DW_OP_lit16:
23925 case DW_OP_lit17:
23926 case DW_OP_lit18:
23927 case DW_OP_lit19:
23928 case DW_OP_lit20:
23929 case DW_OP_lit21:
23930 case DW_OP_lit22:
23931 case DW_OP_lit23:
23932 case DW_OP_lit24:
23933 case DW_OP_lit25:
23934 case DW_OP_lit26:
23935 case DW_OP_lit27:
23936 case DW_OP_lit28:
23937 case DW_OP_lit29:
23938 case DW_OP_lit30:
23939 case DW_OP_lit31:
23940 stack[++stacki] = op - DW_OP_lit0;
23941 break;
23942
23943 case DW_OP_reg0:
23944 case DW_OP_reg1:
23945 case DW_OP_reg2:
23946 case DW_OP_reg3:
23947 case DW_OP_reg4:
23948 case DW_OP_reg5:
23949 case DW_OP_reg6:
23950 case DW_OP_reg7:
23951 case DW_OP_reg8:
23952 case DW_OP_reg9:
23953 case DW_OP_reg10:
23954 case DW_OP_reg11:
23955 case DW_OP_reg12:
23956 case DW_OP_reg13:
23957 case DW_OP_reg14:
23958 case DW_OP_reg15:
23959 case DW_OP_reg16:
23960 case DW_OP_reg17:
23961 case DW_OP_reg18:
23962 case DW_OP_reg19:
23963 case DW_OP_reg20:
23964 case DW_OP_reg21:
23965 case DW_OP_reg22:
23966 case DW_OP_reg23:
23967 case DW_OP_reg24:
23968 case DW_OP_reg25:
23969 case DW_OP_reg26:
23970 case DW_OP_reg27:
23971 case DW_OP_reg28:
23972 case DW_OP_reg29:
23973 case DW_OP_reg30:
23974 case DW_OP_reg31:
23975 stack[++stacki] = op - DW_OP_reg0;
23976 if (i < size)
23977 dwarf2_complex_location_expr_complaint ();
23978 break;
23979
23980 case DW_OP_regx:
23981 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23982 i += bytes_read;
23983 stack[++stacki] = unsnd;
23984 if (i < size)
23985 dwarf2_complex_location_expr_complaint ();
23986 break;
23987
23988 case DW_OP_addr:
23989 stack[++stacki] = read_address (objfile->obfd, &data[i],
23990 cu, &bytes_read);
23991 i += bytes_read;
23992 break;
23993
23994 case DW_OP_const1u:
23995 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23996 i += 1;
23997 break;
23998
23999 case DW_OP_const1s:
24000 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24001 i += 1;
24002 break;
24003
24004 case DW_OP_const2u:
24005 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24006 i += 2;
24007 break;
24008
24009 case DW_OP_const2s:
24010 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24011 i += 2;
24012 break;
24013
24014 case DW_OP_const4u:
24015 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24016 i += 4;
24017 break;
24018
24019 case DW_OP_const4s:
24020 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24021 i += 4;
24022 break;
24023
24024 case DW_OP_const8u:
24025 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24026 i += 8;
24027 break;
24028
24029 case DW_OP_constu:
24030 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24031 &bytes_read);
24032 i += bytes_read;
24033 break;
24034
24035 case DW_OP_consts:
24036 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24037 i += bytes_read;
24038 break;
24039
24040 case DW_OP_dup:
24041 stack[stacki + 1] = stack[stacki];
24042 stacki++;
24043 break;
24044
24045 case DW_OP_plus:
24046 stack[stacki - 1] += stack[stacki];
24047 stacki--;
24048 break;
24049
24050 case DW_OP_plus_uconst:
24051 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24052 &bytes_read);
24053 i += bytes_read;
24054 break;
24055
24056 case DW_OP_minus:
24057 stack[stacki - 1] -= stack[stacki];
24058 stacki--;
24059 break;
24060
24061 case DW_OP_deref:
24062 /* If we're not the last op, then we definitely can't encode
24063 this using GDB's address_class enum. This is valid for partial
24064 global symbols, although the variable's address will be bogus
24065 in the psymtab. */
24066 if (i < size)
24067 dwarf2_complex_location_expr_complaint ();
24068 break;
24069
24070 case DW_OP_GNU_push_tls_address:
24071 case DW_OP_form_tls_address:
24072 /* The top of the stack has the offset from the beginning
24073 of the thread control block at which the variable is located. */
24074 /* Nothing should follow this operator, so the top of stack would
24075 be returned. */
24076 /* This is valid for partial global symbols, but the variable's
24077 address will be bogus in the psymtab. Make it always at least
24078 non-zero to not look as a variable garbage collected by linker
24079 which have DW_OP_addr 0. */
24080 if (i < size)
24081 dwarf2_complex_location_expr_complaint ();
24082 stack[stacki]++;
24083 break;
24084
24085 case DW_OP_GNU_uninit:
24086 break;
24087
24088 case DW_OP_GNU_addr_index:
24089 case DW_OP_GNU_const_index:
24090 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24091 &bytes_read);
24092 i += bytes_read;
24093 break;
24094
24095 default:
24096 {
24097 const char *name = get_DW_OP_name (op);
24098
24099 if (name)
24100 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
24101 name);
24102 else
24103 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
24104 op);
24105 }
24106
24107 return (stack[stacki]);
24108 }
24109
24110 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24111 outside of the allocated space. Also enforce minimum>0. */
24112 if (stacki >= ARRAY_SIZE (stack) - 1)
24113 {
24114 complaint (&symfile_complaints,
24115 _("location description stack overflow"));
24116 return 0;
24117 }
24118
24119 if (stacki <= 0)
24120 {
24121 complaint (&symfile_complaints,
24122 _("location description stack underflow"));
24123 return 0;
24124 }
24125 }
24126 return (stack[stacki]);
24127 }
24128
24129 /* memory allocation interface */
24130
24131 static struct dwarf_block *
24132 dwarf_alloc_block (struct dwarf2_cu *cu)
24133 {
24134 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24135 }
24136
24137 static struct die_info *
24138 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24139 {
24140 struct die_info *die;
24141 size_t size = sizeof (struct die_info);
24142
24143 if (num_attrs > 1)
24144 size += (num_attrs - 1) * sizeof (struct attribute);
24145
24146 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24147 memset (die, 0, sizeof (struct die_info));
24148 return (die);
24149 }
24150
24151 \f
24152 /* Macro support. */
24153
24154 /* Return file name relative to the compilation directory of file number I in
24155 *LH's file name table. The result is allocated using xmalloc; the caller is
24156 responsible for freeing it. */
24157
24158 static char *
24159 file_file_name (int file, struct line_header *lh)
24160 {
24161 /* Is the file number a valid index into the line header's file name
24162 table? Remember that file numbers start with one, not zero. */
24163 if (1 <= file && file <= lh->file_names.size ())
24164 {
24165 const file_entry &fe = lh->file_names[file - 1];
24166
24167 if (!IS_ABSOLUTE_PATH (fe.name))
24168 {
24169 const char *dir = fe.include_dir (lh);
24170 if (dir != NULL)
24171 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24172 }
24173 return xstrdup (fe.name);
24174 }
24175 else
24176 {
24177 /* The compiler produced a bogus file number. We can at least
24178 record the macro definitions made in the file, even if we
24179 won't be able to find the file by name. */
24180 char fake_name[80];
24181
24182 xsnprintf (fake_name, sizeof (fake_name),
24183 "<bad macro file number %d>", file);
24184
24185 complaint (&symfile_complaints,
24186 _("bad file number in macro information (%d)"),
24187 file);
24188
24189 return xstrdup (fake_name);
24190 }
24191 }
24192
24193 /* Return the full name of file number I in *LH's file name table.
24194 Use COMP_DIR as the name of the current directory of the
24195 compilation. The result is allocated using xmalloc; the caller is
24196 responsible for freeing it. */
24197 static char *
24198 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24199 {
24200 /* Is the file number a valid index into the line header's file name
24201 table? Remember that file numbers start with one, not zero. */
24202 if (1 <= file && file <= lh->file_names.size ())
24203 {
24204 char *relative = file_file_name (file, lh);
24205
24206 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24207 return relative;
24208 return reconcat (relative, comp_dir, SLASH_STRING,
24209 relative, (char *) NULL);
24210 }
24211 else
24212 return file_file_name (file, lh);
24213 }
24214
24215
24216 static struct macro_source_file *
24217 macro_start_file (int file, int line,
24218 struct macro_source_file *current_file,
24219 struct line_header *lh)
24220 {
24221 /* File name relative to the compilation directory of this source file. */
24222 char *file_name = file_file_name (file, lh);
24223
24224 if (! current_file)
24225 {
24226 /* Note: We don't create a macro table for this compilation unit
24227 at all until we actually get a filename. */
24228 struct macro_table *macro_table = get_macro_table ();
24229
24230 /* If we have no current file, then this must be the start_file
24231 directive for the compilation unit's main source file. */
24232 current_file = macro_set_main (macro_table, file_name);
24233 macro_define_special (macro_table);
24234 }
24235 else
24236 current_file = macro_include (current_file, line, file_name);
24237
24238 xfree (file_name);
24239
24240 return current_file;
24241 }
24242
24243 static const char *
24244 consume_improper_spaces (const char *p, const char *body)
24245 {
24246 if (*p == ' ')
24247 {
24248 complaint (&symfile_complaints,
24249 _("macro definition contains spaces "
24250 "in formal argument list:\n`%s'"),
24251 body);
24252
24253 while (*p == ' ')
24254 p++;
24255 }
24256
24257 return p;
24258 }
24259
24260
24261 static void
24262 parse_macro_definition (struct macro_source_file *file, int line,
24263 const char *body)
24264 {
24265 const char *p;
24266
24267 /* The body string takes one of two forms. For object-like macro
24268 definitions, it should be:
24269
24270 <macro name> " " <definition>
24271
24272 For function-like macro definitions, it should be:
24273
24274 <macro name> "() " <definition>
24275 or
24276 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24277
24278 Spaces may appear only where explicitly indicated, and in the
24279 <definition>.
24280
24281 The Dwarf 2 spec says that an object-like macro's name is always
24282 followed by a space, but versions of GCC around March 2002 omit
24283 the space when the macro's definition is the empty string.
24284
24285 The Dwarf 2 spec says that there should be no spaces between the
24286 formal arguments in a function-like macro's formal argument list,
24287 but versions of GCC around March 2002 include spaces after the
24288 commas. */
24289
24290
24291 /* Find the extent of the macro name. The macro name is terminated
24292 by either a space or null character (for an object-like macro) or
24293 an opening paren (for a function-like macro). */
24294 for (p = body; *p; p++)
24295 if (*p == ' ' || *p == '(')
24296 break;
24297
24298 if (*p == ' ' || *p == '\0')
24299 {
24300 /* It's an object-like macro. */
24301 int name_len = p - body;
24302 char *name = savestring (body, name_len);
24303 const char *replacement;
24304
24305 if (*p == ' ')
24306 replacement = body + name_len + 1;
24307 else
24308 {
24309 dwarf2_macro_malformed_definition_complaint (body);
24310 replacement = body + name_len;
24311 }
24312
24313 macro_define_object (file, line, name, replacement);
24314
24315 xfree (name);
24316 }
24317 else if (*p == '(')
24318 {
24319 /* It's a function-like macro. */
24320 char *name = savestring (body, p - body);
24321 int argc = 0;
24322 int argv_size = 1;
24323 char **argv = XNEWVEC (char *, argv_size);
24324
24325 p++;
24326
24327 p = consume_improper_spaces (p, body);
24328
24329 /* Parse the formal argument list. */
24330 while (*p && *p != ')')
24331 {
24332 /* Find the extent of the current argument name. */
24333 const char *arg_start = p;
24334
24335 while (*p && *p != ',' && *p != ')' && *p != ' ')
24336 p++;
24337
24338 if (! *p || p == arg_start)
24339 dwarf2_macro_malformed_definition_complaint (body);
24340 else
24341 {
24342 /* Make sure argv has room for the new argument. */
24343 if (argc >= argv_size)
24344 {
24345 argv_size *= 2;
24346 argv = XRESIZEVEC (char *, argv, argv_size);
24347 }
24348
24349 argv[argc++] = savestring (arg_start, p - arg_start);
24350 }
24351
24352 p = consume_improper_spaces (p, body);
24353
24354 /* Consume the comma, if present. */
24355 if (*p == ',')
24356 {
24357 p++;
24358
24359 p = consume_improper_spaces (p, body);
24360 }
24361 }
24362
24363 if (*p == ')')
24364 {
24365 p++;
24366
24367 if (*p == ' ')
24368 /* Perfectly formed definition, no complaints. */
24369 macro_define_function (file, line, name,
24370 argc, (const char **) argv,
24371 p + 1);
24372 else if (*p == '\0')
24373 {
24374 /* Complain, but do define it. */
24375 dwarf2_macro_malformed_definition_complaint (body);
24376 macro_define_function (file, line, name,
24377 argc, (const char **) argv,
24378 p);
24379 }
24380 else
24381 /* Just complain. */
24382 dwarf2_macro_malformed_definition_complaint (body);
24383 }
24384 else
24385 /* Just complain. */
24386 dwarf2_macro_malformed_definition_complaint (body);
24387
24388 xfree (name);
24389 {
24390 int i;
24391
24392 for (i = 0; i < argc; i++)
24393 xfree (argv[i]);
24394 }
24395 xfree (argv);
24396 }
24397 else
24398 dwarf2_macro_malformed_definition_complaint (body);
24399 }
24400
24401 /* Skip some bytes from BYTES according to the form given in FORM.
24402 Returns the new pointer. */
24403
24404 static const gdb_byte *
24405 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24406 enum dwarf_form form,
24407 unsigned int offset_size,
24408 struct dwarf2_section_info *section)
24409 {
24410 unsigned int bytes_read;
24411
24412 switch (form)
24413 {
24414 case DW_FORM_data1:
24415 case DW_FORM_flag:
24416 ++bytes;
24417 break;
24418
24419 case DW_FORM_data2:
24420 bytes += 2;
24421 break;
24422
24423 case DW_FORM_data4:
24424 bytes += 4;
24425 break;
24426
24427 case DW_FORM_data8:
24428 bytes += 8;
24429 break;
24430
24431 case DW_FORM_data16:
24432 bytes += 16;
24433 break;
24434
24435 case DW_FORM_string:
24436 read_direct_string (abfd, bytes, &bytes_read);
24437 bytes += bytes_read;
24438 break;
24439
24440 case DW_FORM_sec_offset:
24441 case DW_FORM_strp:
24442 case DW_FORM_GNU_strp_alt:
24443 bytes += offset_size;
24444 break;
24445
24446 case DW_FORM_block:
24447 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24448 bytes += bytes_read;
24449 break;
24450
24451 case DW_FORM_block1:
24452 bytes += 1 + read_1_byte (abfd, bytes);
24453 break;
24454 case DW_FORM_block2:
24455 bytes += 2 + read_2_bytes (abfd, bytes);
24456 break;
24457 case DW_FORM_block4:
24458 bytes += 4 + read_4_bytes (abfd, bytes);
24459 break;
24460
24461 case DW_FORM_sdata:
24462 case DW_FORM_udata:
24463 case DW_FORM_GNU_addr_index:
24464 case DW_FORM_GNU_str_index:
24465 bytes = gdb_skip_leb128 (bytes, buffer_end);
24466 if (bytes == NULL)
24467 {
24468 dwarf2_section_buffer_overflow_complaint (section);
24469 return NULL;
24470 }
24471 break;
24472
24473 case DW_FORM_implicit_const:
24474 break;
24475
24476 default:
24477 {
24478 complaint (&symfile_complaints,
24479 _("invalid form 0x%x in `%s'"),
24480 form, get_section_name (section));
24481 return NULL;
24482 }
24483 }
24484
24485 return bytes;
24486 }
24487
24488 /* A helper for dwarf_decode_macros that handles skipping an unknown
24489 opcode. Returns an updated pointer to the macro data buffer; or,
24490 on error, issues a complaint and returns NULL. */
24491
24492 static const gdb_byte *
24493 skip_unknown_opcode (unsigned int opcode,
24494 const gdb_byte **opcode_definitions,
24495 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24496 bfd *abfd,
24497 unsigned int offset_size,
24498 struct dwarf2_section_info *section)
24499 {
24500 unsigned int bytes_read, i;
24501 unsigned long arg;
24502 const gdb_byte *defn;
24503
24504 if (opcode_definitions[opcode] == NULL)
24505 {
24506 complaint (&symfile_complaints,
24507 _("unrecognized DW_MACFINO opcode 0x%x"),
24508 opcode);
24509 return NULL;
24510 }
24511
24512 defn = opcode_definitions[opcode];
24513 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24514 defn += bytes_read;
24515
24516 for (i = 0; i < arg; ++i)
24517 {
24518 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24519 (enum dwarf_form) defn[i], offset_size,
24520 section);
24521 if (mac_ptr == NULL)
24522 {
24523 /* skip_form_bytes already issued the complaint. */
24524 return NULL;
24525 }
24526 }
24527
24528 return mac_ptr;
24529 }
24530
24531 /* A helper function which parses the header of a macro section.
24532 If the macro section is the extended (for now called "GNU") type,
24533 then this updates *OFFSET_SIZE. Returns a pointer to just after
24534 the header, or issues a complaint and returns NULL on error. */
24535
24536 static const gdb_byte *
24537 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24538 bfd *abfd,
24539 const gdb_byte *mac_ptr,
24540 unsigned int *offset_size,
24541 int section_is_gnu)
24542 {
24543 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24544
24545 if (section_is_gnu)
24546 {
24547 unsigned int version, flags;
24548
24549 version = read_2_bytes (abfd, mac_ptr);
24550 if (version != 4 && version != 5)
24551 {
24552 complaint (&symfile_complaints,
24553 _("unrecognized version `%d' in .debug_macro section"),
24554 version);
24555 return NULL;
24556 }
24557 mac_ptr += 2;
24558
24559 flags = read_1_byte (abfd, mac_ptr);
24560 ++mac_ptr;
24561 *offset_size = (flags & 1) ? 8 : 4;
24562
24563 if ((flags & 2) != 0)
24564 /* We don't need the line table offset. */
24565 mac_ptr += *offset_size;
24566
24567 /* Vendor opcode descriptions. */
24568 if ((flags & 4) != 0)
24569 {
24570 unsigned int i, count;
24571
24572 count = read_1_byte (abfd, mac_ptr);
24573 ++mac_ptr;
24574 for (i = 0; i < count; ++i)
24575 {
24576 unsigned int opcode, bytes_read;
24577 unsigned long arg;
24578
24579 opcode = read_1_byte (abfd, mac_ptr);
24580 ++mac_ptr;
24581 opcode_definitions[opcode] = mac_ptr;
24582 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24583 mac_ptr += bytes_read;
24584 mac_ptr += arg;
24585 }
24586 }
24587 }
24588
24589 return mac_ptr;
24590 }
24591
24592 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24593 including DW_MACRO_import. */
24594
24595 static void
24596 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24597 bfd *abfd,
24598 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24599 struct macro_source_file *current_file,
24600 struct line_header *lh,
24601 struct dwarf2_section_info *section,
24602 int section_is_gnu, int section_is_dwz,
24603 unsigned int offset_size,
24604 htab_t include_hash)
24605 {
24606 struct objfile *objfile = dwarf2_per_objfile->objfile;
24607 enum dwarf_macro_record_type macinfo_type;
24608 int at_commandline;
24609 const gdb_byte *opcode_definitions[256];
24610
24611 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24612 &offset_size, section_is_gnu);
24613 if (mac_ptr == NULL)
24614 {
24615 /* We already issued a complaint. */
24616 return;
24617 }
24618
24619 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24620 GDB is still reading the definitions from command line. First
24621 DW_MACINFO_start_file will need to be ignored as it was already executed
24622 to create CURRENT_FILE for the main source holding also the command line
24623 definitions. On first met DW_MACINFO_start_file this flag is reset to
24624 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24625
24626 at_commandline = 1;
24627
24628 do
24629 {
24630 /* Do we at least have room for a macinfo type byte? */
24631 if (mac_ptr >= mac_end)
24632 {
24633 dwarf2_section_buffer_overflow_complaint (section);
24634 break;
24635 }
24636
24637 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24638 mac_ptr++;
24639
24640 /* Note that we rely on the fact that the corresponding GNU and
24641 DWARF constants are the same. */
24642 DIAGNOSTIC_PUSH
24643 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24644 switch (macinfo_type)
24645 {
24646 /* A zero macinfo type indicates the end of the macro
24647 information. */
24648 case 0:
24649 break;
24650
24651 case DW_MACRO_define:
24652 case DW_MACRO_undef:
24653 case DW_MACRO_define_strp:
24654 case DW_MACRO_undef_strp:
24655 case DW_MACRO_define_sup:
24656 case DW_MACRO_undef_sup:
24657 {
24658 unsigned int bytes_read;
24659 int line;
24660 const char *body;
24661 int is_define;
24662
24663 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24664 mac_ptr += bytes_read;
24665
24666 if (macinfo_type == DW_MACRO_define
24667 || macinfo_type == DW_MACRO_undef)
24668 {
24669 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24670 mac_ptr += bytes_read;
24671 }
24672 else
24673 {
24674 LONGEST str_offset;
24675
24676 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24677 mac_ptr += offset_size;
24678
24679 if (macinfo_type == DW_MACRO_define_sup
24680 || macinfo_type == DW_MACRO_undef_sup
24681 || section_is_dwz)
24682 {
24683 struct dwz_file *dwz
24684 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24685
24686 body = read_indirect_string_from_dwz (objfile,
24687 dwz, str_offset);
24688 }
24689 else
24690 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24691 abfd, str_offset);
24692 }
24693
24694 is_define = (macinfo_type == DW_MACRO_define
24695 || macinfo_type == DW_MACRO_define_strp
24696 || macinfo_type == DW_MACRO_define_sup);
24697 if (! current_file)
24698 {
24699 /* DWARF violation as no main source is present. */
24700 complaint (&symfile_complaints,
24701 _("debug info with no main source gives macro %s "
24702 "on line %d: %s"),
24703 is_define ? _("definition") : _("undefinition"),
24704 line, body);
24705 break;
24706 }
24707 if ((line == 0 && !at_commandline)
24708 || (line != 0 && at_commandline))
24709 complaint (&symfile_complaints,
24710 _("debug info gives %s macro %s with %s line %d: %s"),
24711 at_commandline ? _("command-line") : _("in-file"),
24712 is_define ? _("definition") : _("undefinition"),
24713 line == 0 ? _("zero") : _("non-zero"), line, body);
24714
24715 if (is_define)
24716 parse_macro_definition (current_file, line, body);
24717 else
24718 {
24719 gdb_assert (macinfo_type == DW_MACRO_undef
24720 || macinfo_type == DW_MACRO_undef_strp
24721 || macinfo_type == DW_MACRO_undef_sup);
24722 macro_undef (current_file, line, body);
24723 }
24724 }
24725 break;
24726
24727 case DW_MACRO_start_file:
24728 {
24729 unsigned int bytes_read;
24730 int line, file;
24731
24732 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24733 mac_ptr += bytes_read;
24734 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24735 mac_ptr += bytes_read;
24736
24737 if ((line == 0 && !at_commandline)
24738 || (line != 0 && at_commandline))
24739 complaint (&symfile_complaints,
24740 _("debug info gives source %d included "
24741 "from %s at %s line %d"),
24742 file, at_commandline ? _("command-line") : _("file"),
24743 line == 0 ? _("zero") : _("non-zero"), line);
24744
24745 if (at_commandline)
24746 {
24747 /* This DW_MACRO_start_file was executed in the
24748 pass one. */
24749 at_commandline = 0;
24750 }
24751 else
24752 current_file = macro_start_file (file, line, current_file, lh);
24753 }
24754 break;
24755
24756 case DW_MACRO_end_file:
24757 if (! current_file)
24758 complaint (&symfile_complaints,
24759 _("macro debug info has an unmatched "
24760 "`close_file' directive"));
24761 else
24762 {
24763 current_file = current_file->included_by;
24764 if (! current_file)
24765 {
24766 enum dwarf_macro_record_type next_type;
24767
24768 /* GCC circa March 2002 doesn't produce the zero
24769 type byte marking the end of the compilation
24770 unit. Complain if it's not there, but exit no
24771 matter what. */
24772
24773 /* Do we at least have room for a macinfo type byte? */
24774 if (mac_ptr >= mac_end)
24775 {
24776 dwarf2_section_buffer_overflow_complaint (section);
24777 return;
24778 }
24779
24780 /* We don't increment mac_ptr here, so this is just
24781 a look-ahead. */
24782 next_type
24783 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24784 mac_ptr);
24785 if (next_type != 0)
24786 complaint (&symfile_complaints,
24787 _("no terminating 0-type entry for "
24788 "macros in `.debug_macinfo' section"));
24789
24790 return;
24791 }
24792 }
24793 break;
24794
24795 case DW_MACRO_import:
24796 case DW_MACRO_import_sup:
24797 {
24798 LONGEST offset;
24799 void **slot;
24800 bfd *include_bfd = abfd;
24801 struct dwarf2_section_info *include_section = section;
24802 const gdb_byte *include_mac_end = mac_end;
24803 int is_dwz = section_is_dwz;
24804 const gdb_byte *new_mac_ptr;
24805
24806 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24807 mac_ptr += offset_size;
24808
24809 if (macinfo_type == DW_MACRO_import_sup)
24810 {
24811 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24812
24813 dwarf2_read_section (objfile, &dwz->macro);
24814
24815 include_section = &dwz->macro;
24816 include_bfd = get_section_bfd_owner (include_section);
24817 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24818 is_dwz = 1;
24819 }
24820
24821 new_mac_ptr = include_section->buffer + offset;
24822 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24823
24824 if (*slot != NULL)
24825 {
24826 /* This has actually happened; see
24827 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24828 complaint (&symfile_complaints,
24829 _("recursive DW_MACRO_import in "
24830 ".debug_macro section"));
24831 }
24832 else
24833 {
24834 *slot = (void *) new_mac_ptr;
24835
24836 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24837 include_bfd, new_mac_ptr,
24838 include_mac_end, current_file, lh,
24839 section, section_is_gnu, is_dwz,
24840 offset_size, include_hash);
24841
24842 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24843 }
24844 }
24845 break;
24846
24847 case DW_MACINFO_vendor_ext:
24848 if (!section_is_gnu)
24849 {
24850 unsigned int bytes_read;
24851
24852 /* This reads the constant, but since we don't recognize
24853 any vendor extensions, we ignore it. */
24854 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24855 mac_ptr += bytes_read;
24856 read_direct_string (abfd, mac_ptr, &bytes_read);
24857 mac_ptr += bytes_read;
24858
24859 /* We don't recognize any vendor extensions. */
24860 break;
24861 }
24862 /* FALLTHROUGH */
24863
24864 default:
24865 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24866 mac_ptr, mac_end, abfd, offset_size,
24867 section);
24868 if (mac_ptr == NULL)
24869 return;
24870 break;
24871 }
24872 DIAGNOSTIC_POP
24873 } while (macinfo_type != 0);
24874 }
24875
24876 static void
24877 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24878 int section_is_gnu)
24879 {
24880 struct dwarf2_per_objfile *dwarf2_per_objfile
24881 = cu->per_cu->dwarf2_per_objfile;
24882 struct objfile *objfile = dwarf2_per_objfile->objfile;
24883 struct line_header *lh = cu->line_header;
24884 bfd *abfd;
24885 const gdb_byte *mac_ptr, *mac_end;
24886 struct macro_source_file *current_file = 0;
24887 enum dwarf_macro_record_type macinfo_type;
24888 unsigned int offset_size = cu->header.offset_size;
24889 const gdb_byte *opcode_definitions[256];
24890 void **slot;
24891 struct dwarf2_section_info *section;
24892 const char *section_name;
24893
24894 if (cu->dwo_unit != NULL)
24895 {
24896 if (section_is_gnu)
24897 {
24898 section = &cu->dwo_unit->dwo_file->sections.macro;
24899 section_name = ".debug_macro.dwo";
24900 }
24901 else
24902 {
24903 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24904 section_name = ".debug_macinfo.dwo";
24905 }
24906 }
24907 else
24908 {
24909 if (section_is_gnu)
24910 {
24911 section = &dwarf2_per_objfile->macro;
24912 section_name = ".debug_macro";
24913 }
24914 else
24915 {
24916 section = &dwarf2_per_objfile->macinfo;
24917 section_name = ".debug_macinfo";
24918 }
24919 }
24920
24921 dwarf2_read_section (objfile, section);
24922 if (section->buffer == NULL)
24923 {
24924 complaint (&symfile_complaints, _("missing %s section"), section_name);
24925 return;
24926 }
24927 abfd = get_section_bfd_owner (section);
24928
24929 /* First pass: Find the name of the base filename.
24930 This filename is needed in order to process all macros whose definition
24931 (or undefinition) comes from the command line. These macros are defined
24932 before the first DW_MACINFO_start_file entry, and yet still need to be
24933 associated to the base file.
24934
24935 To determine the base file name, we scan the macro definitions until we
24936 reach the first DW_MACINFO_start_file entry. We then initialize
24937 CURRENT_FILE accordingly so that any macro definition found before the
24938 first DW_MACINFO_start_file can still be associated to the base file. */
24939
24940 mac_ptr = section->buffer + offset;
24941 mac_end = section->buffer + section->size;
24942
24943 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24944 &offset_size, section_is_gnu);
24945 if (mac_ptr == NULL)
24946 {
24947 /* We already issued a complaint. */
24948 return;
24949 }
24950
24951 do
24952 {
24953 /* Do we at least have room for a macinfo type byte? */
24954 if (mac_ptr >= mac_end)
24955 {
24956 /* Complaint is printed during the second pass as GDB will probably
24957 stop the first pass earlier upon finding
24958 DW_MACINFO_start_file. */
24959 break;
24960 }
24961
24962 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24963 mac_ptr++;
24964
24965 /* Note that we rely on the fact that the corresponding GNU and
24966 DWARF constants are the same. */
24967 DIAGNOSTIC_PUSH
24968 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24969 switch (macinfo_type)
24970 {
24971 /* A zero macinfo type indicates the end of the macro
24972 information. */
24973 case 0:
24974 break;
24975
24976 case DW_MACRO_define:
24977 case DW_MACRO_undef:
24978 /* Only skip the data by MAC_PTR. */
24979 {
24980 unsigned int bytes_read;
24981
24982 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24983 mac_ptr += bytes_read;
24984 read_direct_string (abfd, mac_ptr, &bytes_read);
24985 mac_ptr += bytes_read;
24986 }
24987 break;
24988
24989 case DW_MACRO_start_file:
24990 {
24991 unsigned int bytes_read;
24992 int line, file;
24993
24994 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24995 mac_ptr += bytes_read;
24996 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24997 mac_ptr += bytes_read;
24998
24999 current_file = macro_start_file (file, line, current_file, lh);
25000 }
25001 break;
25002
25003 case DW_MACRO_end_file:
25004 /* No data to skip by MAC_PTR. */
25005 break;
25006
25007 case DW_MACRO_define_strp:
25008 case DW_MACRO_undef_strp:
25009 case DW_MACRO_define_sup:
25010 case DW_MACRO_undef_sup:
25011 {
25012 unsigned int bytes_read;
25013
25014 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25015 mac_ptr += bytes_read;
25016 mac_ptr += offset_size;
25017 }
25018 break;
25019
25020 case DW_MACRO_import:
25021 case DW_MACRO_import_sup:
25022 /* Note that, according to the spec, a transparent include
25023 chain cannot call DW_MACRO_start_file. So, we can just
25024 skip this opcode. */
25025 mac_ptr += offset_size;
25026 break;
25027
25028 case DW_MACINFO_vendor_ext:
25029 /* Only skip the data by MAC_PTR. */
25030 if (!section_is_gnu)
25031 {
25032 unsigned int bytes_read;
25033
25034 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25035 mac_ptr += bytes_read;
25036 read_direct_string (abfd, mac_ptr, &bytes_read);
25037 mac_ptr += bytes_read;
25038 }
25039 /* FALLTHROUGH */
25040
25041 default:
25042 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25043 mac_ptr, mac_end, abfd, offset_size,
25044 section);
25045 if (mac_ptr == NULL)
25046 return;
25047 break;
25048 }
25049 DIAGNOSTIC_POP
25050 } while (macinfo_type != 0 && current_file == NULL);
25051
25052 /* Second pass: Process all entries.
25053
25054 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25055 command-line macro definitions/undefinitions. This flag is unset when we
25056 reach the first DW_MACINFO_start_file entry. */
25057
25058 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25059 htab_eq_pointer,
25060 NULL, xcalloc, xfree));
25061 mac_ptr = section->buffer + offset;
25062 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25063 *slot = (void *) mac_ptr;
25064 dwarf_decode_macro_bytes (dwarf2_per_objfile,
25065 abfd, mac_ptr, mac_end,
25066 current_file, lh, section,
25067 section_is_gnu, 0, offset_size,
25068 include_hash.get ());
25069 }
25070
25071 /* Check if the attribute's form is a DW_FORM_block*
25072 if so return true else false. */
25073
25074 static int
25075 attr_form_is_block (const struct attribute *attr)
25076 {
25077 return (attr == NULL ? 0 :
25078 attr->form == DW_FORM_block1
25079 || attr->form == DW_FORM_block2
25080 || attr->form == DW_FORM_block4
25081 || attr->form == DW_FORM_block
25082 || attr->form == DW_FORM_exprloc);
25083 }
25084
25085 /* Return non-zero if ATTR's value is a section offset --- classes
25086 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25087 You may use DW_UNSND (attr) to retrieve such offsets.
25088
25089 Section 7.5.4, "Attribute Encodings", explains that no attribute
25090 may have a value that belongs to more than one of these classes; it
25091 would be ambiguous if we did, because we use the same forms for all
25092 of them. */
25093
25094 static int
25095 attr_form_is_section_offset (const struct attribute *attr)
25096 {
25097 return (attr->form == DW_FORM_data4
25098 || attr->form == DW_FORM_data8
25099 || attr->form == DW_FORM_sec_offset);
25100 }
25101
25102 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25103 zero otherwise. When this function returns true, you can apply
25104 dwarf2_get_attr_constant_value to it.
25105
25106 However, note that for some attributes you must check
25107 attr_form_is_section_offset before using this test. DW_FORM_data4
25108 and DW_FORM_data8 are members of both the constant class, and of
25109 the classes that contain offsets into other debug sections
25110 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25111 that, if an attribute's can be either a constant or one of the
25112 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25113 taken as section offsets, not constants.
25114
25115 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25116 cannot handle that. */
25117
25118 static int
25119 attr_form_is_constant (const struct attribute *attr)
25120 {
25121 switch (attr->form)
25122 {
25123 case DW_FORM_sdata:
25124 case DW_FORM_udata:
25125 case DW_FORM_data1:
25126 case DW_FORM_data2:
25127 case DW_FORM_data4:
25128 case DW_FORM_data8:
25129 case DW_FORM_implicit_const:
25130 return 1;
25131 default:
25132 return 0;
25133 }
25134 }
25135
25136
25137 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25138 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25139
25140 static int
25141 attr_form_is_ref (const struct attribute *attr)
25142 {
25143 switch (attr->form)
25144 {
25145 case DW_FORM_ref_addr:
25146 case DW_FORM_ref1:
25147 case DW_FORM_ref2:
25148 case DW_FORM_ref4:
25149 case DW_FORM_ref8:
25150 case DW_FORM_ref_udata:
25151 case DW_FORM_GNU_ref_alt:
25152 return 1;
25153 default:
25154 return 0;
25155 }
25156 }
25157
25158 /* Return the .debug_loc section to use for CU.
25159 For DWO files use .debug_loc.dwo. */
25160
25161 static struct dwarf2_section_info *
25162 cu_debug_loc_section (struct dwarf2_cu *cu)
25163 {
25164 struct dwarf2_per_objfile *dwarf2_per_objfile
25165 = cu->per_cu->dwarf2_per_objfile;
25166
25167 if (cu->dwo_unit)
25168 {
25169 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25170
25171 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25172 }
25173 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25174 : &dwarf2_per_objfile->loc);
25175 }
25176
25177 /* A helper function that fills in a dwarf2_loclist_baton. */
25178
25179 static void
25180 fill_in_loclist_baton (struct dwarf2_cu *cu,
25181 struct dwarf2_loclist_baton *baton,
25182 const struct attribute *attr)
25183 {
25184 struct dwarf2_per_objfile *dwarf2_per_objfile
25185 = cu->per_cu->dwarf2_per_objfile;
25186 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25187
25188 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25189
25190 baton->per_cu = cu->per_cu;
25191 gdb_assert (baton->per_cu);
25192 /* We don't know how long the location list is, but make sure we
25193 don't run off the edge of the section. */
25194 baton->size = section->size - DW_UNSND (attr);
25195 baton->data = section->buffer + DW_UNSND (attr);
25196 baton->base_address = cu->base_address;
25197 baton->from_dwo = cu->dwo_unit != NULL;
25198 }
25199
25200 static void
25201 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25202 struct dwarf2_cu *cu, int is_block)
25203 {
25204 struct dwarf2_per_objfile *dwarf2_per_objfile
25205 = cu->per_cu->dwarf2_per_objfile;
25206 struct objfile *objfile = dwarf2_per_objfile->objfile;
25207 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25208
25209 if (attr_form_is_section_offset (attr)
25210 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25211 the section. If so, fall through to the complaint in the
25212 other branch. */
25213 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25214 {
25215 struct dwarf2_loclist_baton *baton;
25216
25217 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25218
25219 fill_in_loclist_baton (cu, baton, attr);
25220
25221 if (cu->base_known == 0)
25222 complaint (&symfile_complaints,
25223 _("Location list used without "
25224 "specifying the CU base address."));
25225
25226 SYMBOL_ACLASS_INDEX (sym) = (is_block
25227 ? dwarf2_loclist_block_index
25228 : dwarf2_loclist_index);
25229 SYMBOL_LOCATION_BATON (sym) = baton;
25230 }
25231 else
25232 {
25233 struct dwarf2_locexpr_baton *baton;
25234
25235 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25236 baton->per_cu = cu->per_cu;
25237 gdb_assert (baton->per_cu);
25238
25239 if (attr_form_is_block (attr))
25240 {
25241 /* Note that we're just copying the block's data pointer
25242 here, not the actual data. We're still pointing into the
25243 info_buffer for SYM's objfile; right now we never release
25244 that buffer, but when we do clean up properly this may
25245 need to change. */
25246 baton->size = DW_BLOCK (attr)->size;
25247 baton->data = DW_BLOCK (attr)->data;
25248 }
25249 else
25250 {
25251 dwarf2_invalid_attrib_class_complaint ("location description",
25252 SYMBOL_NATURAL_NAME (sym));
25253 baton->size = 0;
25254 }
25255
25256 SYMBOL_ACLASS_INDEX (sym) = (is_block
25257 ? dwarf2_locexpr_block_index
25258 : dwarf2_locexpr_index);
25259 SYMBOL_LOCATION_BATON (sym) = baton;
25260 }
25261 }
25262
25263 /* Return the OBJFILE associated with the compilation unit CU. If CU
25264 came from a separate debuginfo file, then the master objfile is
25265 returned. */
25266
25267 struct objfile *
25268 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25269 {
25270 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25271
25272 /* Return the master objfile, so that we can report and look up the
25273 correct file containing this variable. */
25274 if (objfile->separate_debug_objfile_backlink)
25275 objfile = objfile->separate_debug_objfile_backlink;
25276
25277 return objfile;
25278 }
25279
25280 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25281 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25282 CU_HEADERP first. */
25283
25284 static const struct comp_unit_head *
25285 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25286 struct dwarf2_per_cu_data *per_cu)
25287 {
25288 const gdb_byte *info_ptr;
25289
25290 if (per_cu->cu)
25291 return &per_cu->cu->header;
25292
25293 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25294
25295 memset (cu_headerp, 0, sizeof (*cu_headerp));
25296 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25297 rcuh_kind::COMPILE);
25298
25299 return cu_headerp;
25300 }
25301
25302 /* Return the address size given in the compilation unit header for CU. */
25303
25304 int
25305 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25306 {
25307 struct comp_unit_head cu_header_local;
25308 const struct comp_unit_head *cu_headerp;
25309
25310 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25311
25312 return cu_headerp->addr_size;
25313 }
25314
25315 /* Return the offset size given in the compilation unit header for CU. */
25316
25317 int
25318 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25319 {
25320 struct comp_unit_head cu_header_local;
25321 const struct comp_unit_head *cu_headerp;
25322
25323 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25324
25325 return cu_headerp->offset_size;
25326 }
25327
25328 /* See its dwarf2loc.h declaration. */
25329
25330 int
25331 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25332 {
25333 struct comp_unit_head cu_header_local;
25334 const struct comp_unit_head *cu_headerp;
25335
25336 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25337
25338 if (cu_headerp->version == 2)
25339 return cu_headerp->addr_size;
25340 else
25341 return cu_headerp->offset_size;
25342 }
25343
25344 /* Return the text offset of the CU. The returned offset comes from
25345 this CU's objfile. If this objfile came from a separate debuginfo
25346 file, then the offset may be different from the corresponding
25347 offset in the parent objfile. */
25348
25349 CORE_ADDR
25350 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25351 {
25352 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25353
25354 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25355 }
25356
25357 /* Return DWARF version number of PER_CU. */
25358
25359 short
25360 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25361 {
25362 return per_cu->dwarf_version;
25363 }
25364
25365 /* Locate the .debug_info compilation unit from CU's objfile which contains
25366 the DIE at OFFSET. Raises an error on failure. */
25367
25368 static struct dwarf2_per_cu_data *
25369 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25370 unsigned int offset_in_dwz,
25371 struct dwarf2_per_objfile *dwarf2_per_objfile)
25372 {
25373 struct dwarf2_per_cu_data *this_cu;
25374 int low, high;
25375 const sect_offset *cu_off;
25376
25377 low = 0;
25378 high = dwarf2_per_objfile->n_comp_units - 1;
25379 while (high > low)
25380 {
25381 struct dwarf2_per_cu_data *mid_cu;
25382 int mid = low + (high - low) / 2;
25383
25384 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25385 cu_off = &mid_cu->sect_off;
25386 if (mid_cu->is_dwz > offset_in_dwz
25387 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25388 high = mid;
25389 else
25390 low = mid + 1;
25391 }
25392 gdb_assert (low == high);
25393 this_cu = dwarf2_per_objfile->all_comp_units[low];
25394 cu_off = &this_cu->sect_off;
25395 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25396 {
25397 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25398 error (_("Dwarf Error: could not find partial DIE containing "
25399 "offset %s [in module %s]"),
25400 sect_offset_str (sect_off),
25401 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25402
25403 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25404 <= sect_off);
25405 return dwarf2_per_objfile->all_comp_units[low-1];
25406 }
25407 else
25408 {
25409 this_cu = dwarf2_per_objfile->all_comp_units[low];
25410 if (low == dwarf2_per_objfile->n_comp_units - 1
25411 && sect_off >= this_cu->sect_off + this_cu->length)
25412 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25413 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25414 return this_cu;
25415 }
25416 }
25417
25418 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25419
25420 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25421 : per_cu (per_cu_),
25422 mark (0),
25423 has_loclist (0),
25424 checked_producer (0),
25425 producer_is_gxx_lt_4_6 (0),
25426 producer_is_gcc_lt_4_3 (0),
25427 producer_is_icc_lt_14 (0),
25428 processing_has_namespace_info (0)
25429 {
25430 per_cu->cu = this;
25431 }
25432
25433 /* Destroy a dwarf2_cu. */
25434
25435 dwarf2_cu::~dwarf2_cu ()
25436 {
25437 per_cu->cu = NULL;
25438 }
25439
25440 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25441
25442 static void
25443 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25444 enum language pretend_language)
25445 {
25446 struct attribute *attr;
25447
25448 /* Set the language we're debugging. */
25449 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25450 if (attr)
25451 set_cu_language (DW_UNSND (attr), cu);
25452 else
25453 {
25454 cu->language = pretend_language;
25455 cu->language_defn = language_def (cu->language);
25456 }
25457
25458 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25459 }
25460
25461 /* Free all cached compilation units. */
25462
25463 static void
25464 free_cached_comp_units (void *data)
25465 {
25466 struct dwarf2_per_objfile *dwarf2_per_objfile
25467 = (struct dwarf2_per_objfile *) data;
25468
25469 dwarf2_per_objfile->free_cached_comp_units ();
25470 }
25471
25472 /* Increase the age counter on each cached compilation unit, and free
25473 any that are too old. */
25474
25475 static void
25476 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25477 {
25478 struct dwarf2_per_cu_data *per_cu, **last_chain;
25479
25480 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25481 per_cu = dwarf2_per_objfile->read_in_chain;
25482 while (per_cu != NULL)
25483 {
25484 per_cu->cu->last_used ++;
25485 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25486 dwarf2_mark (per_cu->cu);
25487 per_cu = per_cu->cu->read_in_chain;
25488 }
25489
25490 per_cu = dwarf2_per_objfile->read_in_chain;
25491 last_chain = &dwarf2_per_objfile->read_in_chain;
25492 while (per_cu != NULL)
25493 {
25494 struct dwarf2_per_cu_data *next_cu;
25495
25496 next_cu = per_cu->cu->read_in_chain;
25497
25498 if (!per_cu->cu->mark)
25499 {
25500 delete per_cu->cu;
25501 *last_chain = next_cu;
25502 }
25503 else
25504 last_chain = &per_cu->cu->read_in_chain;
25505
25506 per_cu = next_cu;
25507 }
25508 }
25509
25510 /* Remove a single compilation unit from the cache. */
25511
25512 static void
25513 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25514 {
25515 struct dwarf2_per_cu_data *per_cu, **last_chain;
25516 struct dwarf2_per_objfile *dwarf2_per_objfile
25517 = target_per_cu->dwarf2_per_objfile;
25518
25519 per_cu = dwarf2_per_objfile->read_in_chain;
25520 last_chain = &dwarf2_per_objfile->read_in_chain;
25521 while (per_cu != NULL)
25522 {
25523 struct dwarf2_per_cu_data *next_cu;
25524
25525 next_cu = per_cu->cu->read_in_chain;
25526
25527 if (per_cu == target_per_cu)
25528 {
25529 delete per_cu->cu;
25530 per_cu->cu = NULL;
25531 *last_chain = next_cu;
25532 break;
25533 }
25534 else
25535 last_chain = &per_cu->cu->read_in_chain;
25536
25537 per_cu = next_cu;
25538 }
25539 }
25540
25541 /* Release all extra memory associated with OBJFILE. */
25542
25543 void
25544 dwarf2_free_objfile (struct objfile *objfile)
25545 {
25546 struct dwarf2_per_objfile *dwarf2_per_objfile
25547 = get_dwarf2_per_objfile (objfile);
25548
25549 delete dwarf2_per_objfile;
25550 }
25551
25552 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25553 We store these in a hash table separate from the DIEs, and preserve them
25554 when the DIEs are flushed out of cache.
25555
25556 The CU "per_cu" pointer is needed because offset alone is not enough to
25557 uniquely identify the type. A file may have multiple .debug_types sections,
25558 or the type may come from a DWO file. Furthermore, while it's more logical
25559 to use per_cu->section+offset, with Fission the section with the data is in
25560 the DWO file but we don't know that section at the point we need it.
25561 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25562 because we can enter the lookup routine, get_die_type_at_offset, from
25563 outside this file, and thus won't necessarily have PER_CU->cu.
25564 Fortunately, PER_CU is stable for the life of the objfile. */
25565
25566 struct dwarf2_per_cu_offset_and_type
25567 {
25568 const struct dwarf2_per_cu_data *per_cu;
25569 sect_offset sect_off;
25570 struct type *type;
25571 };
25572
25573 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25574
25575 static hashval_t
25576 per_cu_offset_and_type_hash (const void *item)
25577 {
25578 const struct dwarf2_per_cu_offset_and_type *ofs
25579 = (const struct dwarf2_per_cu_offset_and_type *) item;
25580
25581 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25582 }
25583
25584 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25585
25586 static int
25587 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25588 {
25589 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25590 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25591 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25592 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25593
25594 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25595 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25596 }
25597
25598 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25599 table if necessary. For convenience, return TYPE.
25600
25601 The DIEs reading must have careful ordering to:
25602 * Not cause infite loops trying to read in DIEs as a prerequisite for
25603 reading current DIE.
25604 * Not trying to dereference contents of still incompletely read in types
25605 while reading in other DIEs.
25606 * Enable referencing still incompletely read in types just by a pointer to
25607 the type without accessing its fields.
25608
25609 Therefore caller should follow these rules:
25610 * Try to fetch any prerequisite types we may need to build this DIE type
25611 before building the type and calling set_die_type.
25612 * After building type call set_die_type for current DIE as soon as
25613 possible before fetching more types to complete the current type.
25614 * Make the type as complete as possible before fetching more types. */
25615
25616 static struct type *
25617 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25618 {
25619 struct dwarf2_per_objfile *dwarf2_per_objfile
25620 = cu->per_cu->dwarf2_per_objfile;
25621 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25622 struct objfile *objfile = dwarf2_per_objfile->objfile;
25623 struct attribute *attr;
25624 struct dynamic_prop prop;
25625
25626 /* For Ada types, make sure that the gnat-specific data is always
25627 initialized (if not already set). There are a few types where
25628 we should not be doing so, because the type-specific area is
25629 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25630 where the type-specific area is used to store the floatformat).
25631 But this is not a problem, because the gnat-specific information
25632 is actually not needed for these types. */
25633 if (need_gnat_info (cu)
25634 && TYPE_CODE (type) != TYPE_CODE_FUNC
25635 && TYPE_CODE (type) != TYPE_CODE_FLT
25636 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25637 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25638 && TYPE_CODE (type) != TYPE_CODE_METHOD
25639 && !HAVE_GNAT_AUX_INFO (type))
25640 INIT_GNAT_SPECIFIC (type);
25641
25642 /* Read DW_AT_allocated and set in type. */
25643 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25644 if (attr_form_is_block (attr))
25645 {
25646 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25647 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25648 }
25649 else if (attr != NULL)
25650 {
25651 complaint (&symfile_complaints,
25652 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25653 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25654 sect_offset_str (die->sect_off));
25655 }
25656
25657 /* Read DW_AT_associated and set in type. */
25658 attr = dwarf2_attr (die, DW_AT_associated, cu);
25659 if (attr_form_is_block (attr))
25660 {
25661 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25662 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25663 }
25664 else if (attr != NULL)
25665 {
25666 complaint (&symfile_complaints,
25667 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25668 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25669 sect_offset_str (die->sect_off));
25670 }
25671
25672 /* Read DW_AT_data_location and set in type. */
25673 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25674 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25675 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25676
25677 if (dwarf2_per_objfile->die_type_hash == NULL)
25678 {
25679 dwarf2_per_objfile->die_type_hash =
25680 htab_create_alloc_ex (127,
25681 per_cu_offset_and_type_hash,
25682 per_cu_offset_and_type_eq,
25683 NULL,
25684 &objfile->objfile_obstack,
25685 hashtab_obstack_allocate,
25686 dummy_obstack_deallocate);
25687 }
25688
25689 ofs.per_cu = cu->per_cu;
25690 ofs.sect_off = die->sect_off;
25691 ofs.type = type;
25692 slot = (struct dwarf2_per_cu_offset_and_type **)
25693 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25694 if (*slot)
25695 complaint (&symfile_complaints,
25696 _("A problem internal to GDB: DIE %s has type already set"),
25697 sect_offset_str (die->sect_off));
25698 *slot = XOBNEW (&objfile->objfile_obstack,
25699 struct dwarf2_per_cu_offset_and_type);
25700 **slot = ofs;
25701 return type;
25702 }
25703
25704 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25705 or return NULL if the die does not have a saved type. */
25706
25707 static struct type *
25708 get_die_type_at_offset (sect_offset sect_off,
25709 struct dwarf2_per_cu_data *per_cu)
25710 {
25711 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25712 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25713
25714 if (dwarf2_per_objfile->die_type_hash == NULL)
25715 return NULL;
25716
25717 ofs.per_cu = per_cu;
25718 ofs.sect_off = sect_off;
25719 slot = ((struct dwarf2_per_cu_offset_and_type *)
25720 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25721 if (slot)
25722 return slot->type;
25723 else
25724 return NULL;
25725 }
25726
25727 /* Look up the type for DIE in CU in die_type_hash,
25728 or return NULL if DIE does not have a saved type. */
25729
25730 static struct type *
25731 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25732 {
25733 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25734 }
25735
25736 /* Add a dependence relationship from CU to REF_PER_CU. */
25737
25738 static void
25739 dwarf2_add_dependence (struct dwarf2_cu *cu,
25740 struct dwarf2_per_cu_data *ref_per_cu)
25741 {
25742 void **slot;
25743
25744 if (cu->dependencies == NULL)
25745 cu->dependencies
25746 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25747 NULL, &cu->comp_unit_obstack,
25748 hashtab_obstack_allocate,
25749 dummy_obstack_deallocate);
25750
25751 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25752 if (*slot == NULL)
25753 *slot = ref_per_cu;
25754 }
25755
25756 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25757 Set the mark field in every compilation unit in the
25758 cache that we must keep because we are keeping CU. */
25759
25760 static int
25761 dwarf2_mark_helper (void **slot, void *data)
25762 {
25763 struct dwarf2_per_cu_data *per_cu;
25764
25765 per_cu = (struct dwarf2_per_cu_data *) *slot;
25766
25767 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25768 reading of the chain. As such dependencies remain valid it is not much
25769 useful to track and undo them during QUIT cleanups. */
25770 if (per_cu->cu == NULL)
25771 return 1;
25772
25773 if (per_cu->cu->mark)
25774 return 1;
25775 per_cu->cu->mark = 1;
25776
25777 if (per_cu->cu->dependencies != NULL)
25778 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25779
25780 return 1;
25781 }
25782
25783 /* Set the mark field in CU and in every other compilation unit in the
25784 cache that we must keep because we are keeping CU. */
25785
25786 static void
25787 dwarf2_mark (struct dwarf2_cu *cu)
25788 {
25789 if (cu->mark)
25790 return;
25791 cu->mark = 1;
25792 if (cu->dependencies != NULL)
25793 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25794 }
25795
25796 static void
25797 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25798 {
25799 while (per_cu)
25800 {
25801 per_cu->cu->mark = 0;
25802 per_cu = per_cu->cu->read_in_chain;
25803 }
25804 }
25805
25806 /* Trivial hash function for partial_die_info: the hash value of a DIE
25807 is its offset in .debug_info for this objfile. */
25808
25809 static hashval_t
25810 partial_die_hash (const void *item)
25811 {
25812 const struct partial_die_info *part_die
25813 = (const struct partial_die_info *) item;
25814
25815 return to_underlying (part_die->sect_off);
25816 }
25817
25818 /* Trivial comparison function for partial_die_info structures: two DIEs
25819 are equal if they have the same offset. */
25820
25821 static int
25822 partial_die_eq (const void *item_lhs, const void *item_rhs)
25823 {
25824 const struct partial_die_info *part_die_lhs
25825 = (const struct partial_die_info *) item_lhs;
25826 const struct partial_die_info *part_die_rhs
25827 = (const struct partial_die_info *) item_rhs;
25828
25829 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25830 }
25831
25832 static struct cmd_list_element *set_dwarf_cmdlist;
25833 static struct cmd_list_element *show_dwarf_cmdlist;
25834
25835 static void
25836 set_dwarf_cmd (const char *args, int from_tty)
25837 {
25838 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25839 gdb_stdout);
25840 }
25841
25842 static void
25843 show_dwarf_cmd (const char *args, int from_tty)
25844 {
25845 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25846 }
25847
25848 /* The "save gdb-index" command. */
25849
25850 /* Write SIZE bytes from the buffer pointed to by DATA to FILE, with
25851 error checking. */
25852
25853 static void
25854 file_write (FILE *file, const void *data, size_t size)
25855 {
25856 if (fwrite (data, 1, size, file) != size)
25857 error (_("couldn't data write to file"));
25858 }
25859
25860 /* Write the contents of VEC to FILE, with error checking. */
25861
25862 template<typename Elem, typename Alloc>
25863 static void
25864 file_write (FILE *file, const std::vector<Elem, Alloc> &vec)
25865 {
25866 file_write (file, vec.data (), vec.size () * sizeof (vec[0]));
25867 }
25868
25869 /* In-memory buffer to prepare data to be written later to a file. */
25870 class data_buf
25871 {
25872 public:
25873 /* Copy DATA to the end of the buffer. */
25874 template<typename T>
25875 void append_data (const T &data)
25876 {
25877 std::copy (reinterpret_cast<const gdb_byte *> (&data),
25878 reinterpret_cast<const gdb_byte *> (&data + 1),
25879 grow (sizeof (data)));
25880 }
25881
25882 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
25883 terminating zero is appended too. */
25884 void append_cstr0 (const char *cstr)
25885 {
25886 const size_t size = strlen (cstr) + 1;
25887 std::copy (cstr, cstr + size, grow (size));
25888 }
25889
25890 /* Store INPUT as ULEB128 to the end of buffer. */
25891 void append_unsigned_leb128 (ULONGEST input)
25892 {
25893 for (;;)
25894 {
25895 gdb_byte output = input & 0x7f;
25896 input >>= 7;
25897 if (input)
25898 output |= 0x80;
25899 append_data (output);
25900 if (input == 0)
25901 break;
25902 }
25903 }
25904
25905 /* Accept a host-format integer in VAL and append it to the buffer
25906 as a target-format integer which is LEN bytes long. */
25907 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
25908 {
25909 ::store_unsigned_integer (grow (len), len, byte_order, val);
25910 }
25911
25912 /* Return the size of the buffer. */
25913 size_t size () const
25914 {
25915 return m_vec.size ();
25916 }
25917
25918 /* Return true iff the buffer is empty. */
25919 bool empty () const
25920 {
25921 return m_vec.empty ();
25922 }
25923
25924 /* Write the buffer to FILE. */
25925 void file_write (FILE *file) const
25926 {
25927 ::file_write (file, m_vec);
25928 }
25929
25930 private:
25931 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
25932 the start of the new block. */
25933 gdb_byte *grow (size_t size)
25934 {
25935 m_vec.resize (m_vec.size () + size);
25936 return &*m_vec.end () - size;
25937 }
25938
25939 gdb::byte_vector m_vec;
25940 };
25941
25942 /* An entry in the symbol table. */
25943 struct symtab_index_entry
25944 {
25945 /* The name of the symbol. */
25946 const char *name;
25947 /* The offset of the name in the constant pool. */
25948 offset_type index_offset;
25949 /* A sorted vector of the indices of all the CUs that hold an object
25950 of this name. */
25951 std::vector<offset_type> cu_indices;
25952 };
25953
25954 /* The symbol table. This is a power-of-2-sized hash table. */
25955 struct mapped_symtab
25956 {
25957 mapped_symtab ()
25958 {
25959 data.resize (1024);
25960 }
25961
25962 offset_type n_elements = 0;
25963 std::vector<symtab_index_entry> data;
25964 };
25965
25966 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
25967 the slot.
25968
25969 Function is used only during write_hash_table so no index format backward
25970 compatibility is needed. */
25971
25972 static symtab_index_entry &
25973 find_slot (struct mapped_symtab *symtab, const char *name)
25974 {
25975 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
25976
25977 index = hash & (symtab->data.size () - 1);
25978 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
25979
25980 for (;;)
25981 {
25982 if (symtab->data[index].name == NULL
25983 || strcmp (name, symtab->data[index].name) == 0)
25984 return symtab->data[index];
25985 index = (index + step) & (symtab->data.size () - 1);
25986 }
25987 }
25988
25989 /* Expand SYMTAB's hash table. */
25990
25991 static void
25992 hash_expand (struct mapped_symtab *symtab)
25993 {
25994 auto old_entries = std::move (symtab->data);
25995
25996 symtab->data.clear ();
25997 symtab->data.resize (old_entries.size () * 2);
25998
25999 for (auto &it : old_entries)
26000 if (it.name != NULL)
26001 {
26002 auto &ref = find_slot (symtab, it.name);
26003 ref = std::move (it);
26004 }
26005 }
26006
26007 /* Add an entry to SYMTAB. NAME is the name of the symbol.
26008 CU_INDEX is the index of the CU in which the symbol appears.
26009 IS_STATIC is one if the symbol is static, otherwise zero (global). */
26010
26011 static void
26012 add_index_entry (struct mapped_symtab *symtab, const char *name,
26013 int is_static, gdb_index_symbol_kind kind,
26014 offset_type cu_index)
26015 {
26016 offset_type cu_index_and_attrs;
26017
26018 ++symtab->n_elements;
26019 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
26020 hash_expand (symtab);
26021
26022 symtab_index_entry &slot = find_slot (symtab, name);
26023 if (slot.name == NULL)
26024 {
26025 slot.name = name;
26026 /* index_offset is set later. */
26027 }
26028
26029 cu_index_and_attrs = 0;
26030 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
26031 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
26032 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
26033
26034 /* We don't want to record an index value twice as we want to avoid the
26035 duplication.
26036 We process all global symbols and then all static symbols
26037 (which would allow us to avoid the duplication by only having to check
26038 the last entry pushed), but a symbol could have multiple kinds in one CU.
26039 To keep things simple we don't worry about the duplication here and
26040 sort and uniqufy the list after we've processed all symbols. */
26041 slot.cu_indices.push_back (cu_index_and_attrs);
26042 }
26043
26044 /* Sort and remove duplicates of all symbols' cu_indices lists. */
26045
26046 static void
26047 uniquify_cu_indices (struct mapped_symtab *symtab)
26048 {
26049 for (auto &entry : symtab->data)
26050 {
26051 if (entry.name != NULL && !entry.cu_indices.empty ())
26052 {
26053 auto &cu_indices = entry.cu_indices;
26054 std::sort (cu_indices.begin (), cu_indices.end ());
26055 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
26056 cu_indices.erase (from, cu_indices.end ());
26057 }
26058 }
26059 }
26060
26061 /* A form of 'const char *' suitable for container keys. Only the
26062 pointer is stored. The strings themselves are compared, not the
26063 pointers. */
26064 class c_str_view
26065 {
26066 public:
26067 c_str_view (const char *cstr)
26068 : m_cstr (cstr)
26069 {}
26070
26071 bool operator== (const c_str_view &other) const
26072 {
26073 return strcmp (m_cstr, other.m_cstr) == 0;
26074 }
26075
26076 /* Return the underlying C string. Note, the returned string is
26077 only a reference with lifetime of this object. */
26078 const char *c_str () const
26079 {
26080 return m_cstr;
26081 }
26082
26083 private:
26084 friend class c_str_view_hasher;
26085 const char *const m_cstr;
26086 };
26087
26088 /* A std::unordered_map::hasher for c_str_view that uses the right
26089 hash function for strings in a mapped index. */
26090 class c_str_view_hasher
26091 {
26092 public:
26093 size_t operator () (const c_str_view &x) const
26094 {
26095 return mapped_index_string_hash (INT_MAX, x.m_cstr);
26096 }
26097 };
26098
26099 /* A std::unordered_map::hasher for std::vector<>. */
26100 template<typename T>
26101 class vector_hasher
26102 {
26103 public:
26104 size_t operator () (const std::vector<T> &key) const
26105 {
26106 return iterative_hash (key.data (),
26107 sizeof (key.front ()) * key.size (), 0);
26108 }
26109 };
26110
26111 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
26112 constant pool entries going into the data buffer CPOOL. */
26113
26114 static void
26115 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
26116 {
26117 {
26118 /* Elements are sorted vectors of the indices of all the CUs that
26119 hold an object of this name. */
26120 std::unordered_map<std::vector<offset_type>, offset_type,
26121 vector_hasher<offset_type>>
26122 symbol_hash_table;
26123
26124 /* We add all the index vectors to the constant pool first, to
26125 ensure alignment is ok. */
26126 for (symtab_index_entry &entry : symtab->data)
26127 {
26128 if (entry.name == NULL)
26129 continue;
26130 gdb_assert (entry.index_offset == 0);
26131
26132 /* Finding before inserting is faster than always trying to
26133 insert, because inserting always allocates a node, does the
26134 lookup, and then destroys the new node if another node
26135 already had the same key. C++17 try_emplace will avoid
26136 this. */
26137 const auto found
26138 = symbol_hash_table.find (entry.cu_indices);
26139 if (found != symbol_hash_table.end ())
26140 {
26141 entry.index_offset = found->second;
26142 continue;
26143 }
26144
26145 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
26146 entry.index_offset = cpool.size ();
26147 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
26148 for (const auto index : entry.cu_indices)
26149 cpool.append_data (MAYBE_SWAP (index));
26150 }
26151 }
26152
26153 /* Now write out the hash table. */
26154 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
26155 for (const auto &entry : symtab->data)
26156 {
26157 offset_type str_off, vec_off;
26158
26159 if (entry.name != NULL)
26160 {
26161 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
26162 if (insertpair.second)
26163 cpool.append_cstr0 (entry.name);
26164 str_off = insertpair.first->second;
26165 vec_off = entry.index_offset;
26166 }
26167 else
26168 {
26169 /* While 0 is a valid constant pool index, it is not valid
26170 to have 0 for both offsets. */
26171 str_off = 0;
26172 vec_off = 0;
26173 }
26174
26175 output.append_data (MAYBE_SWAP (str_off));
26176 output.append_data (MAYBE_SWAP (vec_off));
26177 }
26178 }
26179
26180 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
26181
26182 /* Helper struct for building the address table. */
26183 struct addrmap_index_data
26184 {
26185 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
26186 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
26187 {}
26188
26189 struct objfile *objfile;
26190 data_buf &addr_vec;
26191 psym_index_map &cu_index_htab;
26192
26193 /* Non-zero if the previous_* fields are valid.
26194 We can't write an entry until we see the next entry (since it is only then
26195 that we know the end of the entry). */
26196 int previous_valid;
26197 /* Index of the CU in the table of all CUs in the index file. */
26198 unsigned int previous_cu_index;
26199 /* Start address of the CU. */
26200 CORE_ADDR previous_cu_start;
26201 };
26202
26203 /* Write an address entry to ADDR_VEC. */
26204
26205 static void
26206 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
26207 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
26208 {
26209 CORE_ADDR baseaddr;
26210
26211 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
26212
26213 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
26214 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
26215 addr_vec.append_data (MAYBE_SWAP (cu_index));
26216 }
26217
26218 /* Worker function for traversing an addrmap to build the address table. */
26219
26220 static int
26221 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
26222 {
26223 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
26224 struct partial_symtab *pst = (struct partial_symtab *) obj;
26225
26226 if (data->previous_valid)
26227 add_address_entry (data->objfile, data->addr_vec,
26228 data->previous_cu_start, start_addr,
26229 data->previous_cu_index);
26230
26231 data->previous_cu_start = start_addr;
26232 if (pst != NULL)
26233 {
26234 const auto it = data->cu_index_htab.find (pst);
26235 gdb_assert (it != data->cu_index_htab.cend ());
26236 data->previous_cu_index = it->second;
26237 data->previous_valid = 1;
26238 }
26239 else
26240 data->previous_valid = 0;
26241
26242 return 0;
26243 }
26244
26245 /* Write OBJFILE's address map to ADDR_VEC.
26246 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
26247 in the index file. */
26248
26249 static void
26250 write_address_map (struct objfile *objfile, data_buf &addr_vec,
26251 psym_index_map &cu_index_htab)
26252 {
26253 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
26254
26255 /* When writing the address table, we have to cope with the fact that
26256 the addrmap iterator only provides the start of a region; we have to
26257 wait until the next invocation to get the start of the next region. */
26258
26259 addrmap_index_data.objfile = objfile;
26260 addrmap_index_data.previous_valid = 0;
26261
26262 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
26263 &addrmap_index_data);
26264
26265 /* It's highly unlikely the last entry (end address = 0xff...ff)
26266 is valid, but we should still handle it.
26267 The end address is recorded as the start of the next region, but that
26268 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
26269 anyway. */
26270 if (addrmap_index_data.previous_valid)
26271 add_address_entry (objfile, addr_vec,
26272 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
26273 addrmap_index_data.previous_cu_index);
26274 }
26275
26276 /* Return the symbol kind of PSYM. */
26277
26278 static gdb_index_symbol_kind
26279 symbol_kind (struct partial_symbol *psym)
26280 {
26281 domain_enum domain = PSYMBOL_DOMAIN (psym);
26282 enum address_class aclass = PSYMBOL_CLASS (psym);
26283
26284 switch (domain)
26285 {
26286 case VAR_DOMAIN:
26287 switch (aclass)
26288 {
26289 case LOC_BLOCK:
26290 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
26291 case LOC_TYPEDEF:
26292 return GDB_INDEX_SYMBOL_KIND_TYPE;
26293 case LOC_COMPUTED:
26294 case LOC_CONST_BYTES:
26295 case LOC_OPTIMIZED_OUT:
26296 case LOC_STATIC:
26297 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
26298 case LOC_CONST:
26299 /* Note: It's currently impossible to recognize psyms as enum values
26300 short of reading the type info. For now punt. */
26301 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
26302 default:
26303 /* There are other LOC_FOO values that one might want to classify
26304 as variables, but dwarf2read.c doesn't currently use them. */
26305 return GDB_INDEX_SYMBOL_KIND_OTHER;
26306 }
26307 case STRUCT_DOMAIN:
26308 return GDB_INDEX_SYMBOL_KIND_TYPE;
26309 default:
26310 return GDB_INDEX_SYMBOL_KIND_OTHER;
26311 }
26312 }
26313
26314 /* Add a list of partial symbols to SYMTAB. */
26315
26316 static void
26317 write_psymbols (struct mapped_symtab *symtab,
26318 std::unordered_set<partial_symbol *> &psyms_seen,
26319 struct partial_symbol **psymp,
26320 int count,
26321 offset_type cu_index,
26322 int is_static)
26323 {
26324 for (; count-- > 0; ++psymp)
26325 {
26326 struct partial_symbol *psym = *psymp;
26327
26328 if (SYMBOL_LANGUAGE (psym) == language_ada)
26329 error (_("Ada is not currently supported by the index"));
26330
26331 /* Only add a given psymbol once. */
26332 if (psyms_seen.insert (psym).second)
26333 {
26334 gdb_index_symbol_kind kind = symbol_kind (psym);
26335
26336 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
26337 is_static, kind, cu_index);
26338 }
26339 }
26340 }
26341
26342 /* A helper struct used when iterating over debug_types. */
26343 struct signatured_type_index_data
26344 {
26345 signatured_type_index_data (data_buf &types_list_,
26346 std::unordered_set<partial_symbol *> &psyms_seen_)
26347 : types_list (types_list_), psyms_seen (psyms_seen_)
26348 {}
26349
26350 struct objfile *objfile;
26351 struct mapped_symtab *symtab;
26352 data_buf &types_list;
26353 std::unordered_set<partial_symbol *> &psyms_seen;
26354 int cu_index;
26355 };
26356
26357 /* A helper function that writes a single signatured_type to an
26358 obstack. */
26359
26360 static int
26361 write_one_signatured_type (void **slot, void *d)
26362 {
26363 struct signatured_type_index_data *info
26364 = (struct signatured_type_index_data *) d;
26365 struct signatured_type *entry = (struct signatured_type *) *slot;
26366 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
26367
26368 write_psymbols (info->symtab,
26369 info->psyms_seen,
26370 &info->objfile->global_psymbols[psymtab->globals_offset],
26371 psymtab->n_global_syms, info->cu_index,
26372 0);
26373 write_psymbols (info->symtab,
26374 info->psyms_seen,
26375 &info->objfile->static_psymbols[psymtab->statics_offset],
26376 psymtab->n_static_syms, info->cu_index,
26377 1);
26378
26379 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26380 to_underlying (entry->per_cu.sect_off));
26381 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26382 to_underlying (entry->type_offset_in_tu));
26383 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
26384
26385 ++info->cu_index;
26386
26387 return 1;
26388 }
26389
26390 /* Recurse into all "included" dependencies and count their symbols as
26391 if they appeared in this psymtab. */
26392
26393 static void
26394 recursively_count_psymbols (struct partial_symtab *psymtab,
26395 size_t &psyms_seen)
26396 {
26397 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26398 if (psymtab->dependencies[i]->user != NULL)
26399 recursively_count_psymbols (psymtab->dependencies[i],
26400 psyms_seen);
26401
26402 psyms_seen += psymtab->n_global_syms;
26403 psyms_seen += psymtab->n_static_syms;
26404 }
26405
26406 /* Recurse into all "included" dependencies and write their symbols as
26407 if they appeared in this psymtab. */
26408
26409 static void
26410 recursively_write_psymbols (struct objfile *objfile,
26411 struct partial_symtab *psymtab,
26412 struct mapped_symtab *symtab,
26413 std::unordered_set<partial_symbol *> &psyms_seen,
26414 offset_type cu_index)
26415 {
26416 int i;
26417
26418 for (i = 0; i < psymtab->number_of_dependencies; ++i)
26419 if (psymtab->dependencies[i]->user != NULL)
26420 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26421 symtab, psyms_seen, cu_index);
26422
26423 write_psymbols (symtab,
26424 psyms_seen,
26425 &objfile->global_psymbols[psymtab->globals_offset],
26426 psymtab->n_global_syms, cu_index,
26427 0);
26428 write_psymbols (symtab,
26429 psyms_seen,
26430 &objfile->static_psymbols[psymtab->statics_offset],
26431 psymtab->n_static_syms, cu_index,
26432 1);
26433 }
26434
26435 /* DWARF-5 .debug_names builder. */
26436 class debug_names
26437 {
26438 public:
26439 debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile, bool is_dwarf64,
26440 bfd_endian dwarf5_byte_order)
26441 : m_dwarf5_byte_order (dwarf5_byte_order),
26442 m_dwarf32 (dwarf5_byte_order),
26443 m_dwarf64 (dwarf5_byte_order),
26444 m_dwarf (is_dwarf64
26445 ? static_cast<dwarf &> (m_dwarf64)
26446 : static_cast<dwarf &> (m_dwarf32)),
26447 m_name_table_string_offs (m_dwarf.name_table_string_offs),
26448 m_name_table_entry_offs (m_dwarf.name_table_entry_offs),
26449 m_debugstrlookup (dwarf2_per_objfile)
26450 {}
26451
26452 int dwarf5_offset_size () const
26453 {
26454 const bool dwarf5_is_dwarf64 = &m_dwarf == &m_dwarf64;
26455 return dwarf5_is_dwarf64 ? 8 : 4;
26456 }
26457
26458 /* Is this symbol from DW_TAG_compile_unit or DW_TAG_type_unit? */
26459 enum class unit_kind { cu, tu };
26460
26461 /* Insert one symbol. */
26462 void insert (const partial_symbol *psym, int cu_index, bool is_static,
26463 unit_kind kind)
26464 {
26465 const int dwarf_tag = psymbol_tag (psym);
26466 if (dwarf_tag == 0)
26467 return;
26468 const char *const name = SYMBOL_SEARCH_NAME (psym);
26469 const auto insertpair
26470 = m_name_to_value_set.emplace (c_str_view (name),
26471 std::set<symbol_value> ());
26472 std::set<symbol_value> &value_set = insertpair.first->second;
26473 value_set.emplace (symbol_value (dwarf_tag, cu_index, is_static, kind));
26474 }
26475
26476 /* Build all the tables. All symbols must be already inserted.
26477 This function does not call file_write, caller has to do it
26478 afterwards. */
26479 void build ()
26480 {
26481 /* Verify the build method has not be called twice. */
26482 gdb_assert (m_abbrev_table.empty ());
26483 const size_t name_count = m_name_to_value_set.size ();
26484 m_bucket_table.resize
26485 (std::pow (2, std::ceil (std::log2 (name_count * 4 / 3))));
26486 m_hash_table.reserve (name_count);
26487 m_name_table_string_offs.reserve (name_count);
26488 m_name_table_entry_offs.reserve (name_count);
26489
26490 /* Map each hash of symbol to its name and value. */
26491 struct hash_it_pair
26492 {
26493 uint32_t hash;
26494 decltype (m_name_to_value_set)::const_iterator it;
26495 };
26496 std::vector<std::forward_list<hash_it_pair>> bucket_hash;
26497 bucket_hash.resize (m_bucket_table.size ());
26498 for (decltype (m_name_to_value_set)::const_iterator it
26499 = m_name_to_value_set.cbegin ();
26500 it != m_name_to_value_set.cend ();
26501 ++it)
26502 {
26503 const char *const name = it->first.c_str ();
26504 const uint32_t hash = dwarf5_djb_hash (name);
26505 hash_it_pair hashitpair;
26506 hashitpair.hash = hash;
26507 hashitpair.it = it;
26508 auto &slot = bucket_hash[hash % bucket_hash.size()];
26509 slot.push_front (std::move (hashitpair));
26510 }
26511 for (size_t bucket_ix = 0; bucket_ix < bucket_hash.size (); ++bucket_ix)
26512 {
26513 const std::forward_list<hash_it_pair> &hashitlist
26514 = bucket_hash[bucket_ix];
26515 if (hashitlist.empty ())
26516 continue;
26517 uint32_t &bucket_slot = m_bucket_table[bucket_ix];
26518 /* The hashes array is indexed starting at 1. */
26519 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&bucket_slot),
26520 sizeof (bucket_slot), m_dwarf5_byte_order,
26521 m_hash_table.size () + 1);
26522 for (const hash_it_pair &hashitpair : hashitlist)
26523 {
26524 m_hash_table.push_back (0);
26525 store_unsigned_integer (reinterpret_cast<gdb_byte *>
26526 (&m_hash_table.back ()),
26527 sizeof (m_hash_table.back ()),
26528 m_dwarf5_byte_order, hashitpair.hash);
26529 const c_str_view &name = hashitpair.it->first;
26530 const std::set<symbol_value> &value_set = hashitpair.it->second;
26531 m_name_table_string_offs.push_back_reorder
26532 (m_debugstrlookup.lookup (name.c_str ()));
26533 m_name_table_entry_offs.push_back_reorder (m_entry_pool.size ());
26534 gdb_assert (!value_set.empty ());
26535 for (const symbol_value &value : value_set)
26536 {
26537 int &idx = m_indexkey_to_idx[index_key (value.dwarf_tag,
26538 value.is_static,
26539 value.kind)];
26540 if (idx == 0)
26541 {
26542 idx = m_idx_next++;
26543 m_abbrev_table.append_unsigned_leb128 (idx);
26544 m_abbrev_table.append_unsigned_leb128 (value.dwarf_tag);
26545 m_abbrev_table.append_unsigned_leb128
26546 (value.kind == unit_kind::cu ? DW_IDX_compile_unit
26547 : DW_IDX_type_unit);
26548 m_abbrev_table.append_unsigned_leb128 (DW_FORM_udata);
26549 m_abbrev_table.append_unsigned_leb128 (value.is_static
26550 ? DW_IDX_GNU_internal
26551 : DW_IDX_GNU_external);
26552 m_abbrev_table.append_unsigned_leb128 (DW_FORM_flag_present);
26553
26554 /* Terminate attributes list. */
26555 m_abbrev_table.append_unsigned_leb128 (0);
26556 m_abbrev_table.append_unsigned_leb128 (0);
26557 }
26558
26559 m_entry_pool.append_unsigned_leb128 (idx);
26560 m_entry_pool.append_unsigned_leb128 (value.cu_index);
26561 }
26562
26563 /* Terminate the list of CUs. */
26564 m_entry_pool.append_unsigned_leb128 (0);
26565 }
26566 }
26567 gdb_assert (m_hash_table.size () == name_count);
26568
26569 /* Terminate tags list. */
26570 m_abbrev_table.append_unsigned_leb128 (0);
26571 }
26572
26573 /* Return .debug_names bucket count. This must be called only after
26574 calling the build method. */
26575 uint32_t bucket_count () const
26576 {
26577 /* Verify the build method has been already called. */
26578 gdb_assert (!m_abbrev_table.empty ());
26579 const uint32_t retval = m_bucket_table.size ();
26580
26581 /* Check for overflow. */
26582 gdb_assert (retval == m_bucket_table.size ());
26583 return retval;
26584 }
26585
26586 /* Return .debug_names names count. This must be called only after
26587 calling the build method. */
26588 uint32_t name_count () const
26589 {
26590 /* Verify the build method has been already called. */
26591 gdb_assert (!m_abbrev_table.empty ());
26592 const uint32_t retval = m_hash_table.size ();
26593
26594 /* Check for overflow. */
26595 gdb_assert (retval == m_hash_table.size ());
26596 return retval;
26597 }
26598
26599 /* Return number of bytes of .debug_names abbreviation table. This
26600 must be called only after calling the build method. */
26601 uint32_t abbrev_table_bytes () const
26602 {
26603 gdb_assert (!m_abbrev_table.empty ());
26604 return m_abbrev_table.size ();
26605 }
26606
26607 /* Recurse into all "included" dependencies and store their symbols
26608 as if they appeared in this psymtab. */
26609 void recursively_write_psymbols
26610 (struct objfile *objfile,
26611 struct partial_symtab *psymtab,
26612 std::unordered_set<partial_symbol *> &psyms_seen,
26613 int cu_index)
26614 {
26615 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26616 if (psymtab->dependencies[i]->user != NULL)
26617 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26618 psyms_seen, cu_index);
26619
26620 write_psymbols (psyms_seen,
26621 &objfile->global_psymbols[psymtab->globals_offset],
26622 psymtab->n_global_syms, cu_index, false, unit_kind::cu);
26623 write_psymbols (psyms_seen,
26624 &objfile->static_psymbols[psymtab->statics_offset],
26625 psymtab->n_static_syms, cu_index, true, unit_kind::cu);
26626 }
26627
26628 /* Return number of bytes the .debug_names section will have. This
26629 must be called only after calling the build method. */
26630 size_t bytes () const
26631 {
26632 /* Verify the build method has been already called. */
26633 gdb_assert (!m_abbrev_table.empty ());
26634 size_t expected_bytes = 0;
26635 expected_bytes += m_bucket_table.size () * sizeof (m_bucket_table[0]);
26636 expected_bytes += m_hash_table.size () * sizeof (m_hash_table[0]);
26637 expected_bytes += m_name_table_string_offs.bytes ();
26638 expected_bytes += m_name_table_entry_offs.bytes ();
26639 expected_bytes += m_abbrev_table.size ();
26640 expected_bytes += m_entry_pool.size ();
26641 return expected_bytes;
26642 }
26643
26644 /* Write .debug_names to FILE_NAMES and .debug_str addition to
26645 FILE_STR. This must be called only after calling the build
26646 method. */
26647 void file_write (FILE *file_names, FILE *file_str) const
26648 {
26649 /* Verify the build method has been already called. */
26650 gdb_assert (!m_abbrev_table.empty ());
26651 ::file_write (file_names, m_bucket_table);
26652 ::file_write (file_names, m_hash_table);
26653 m_name_table_string_offs.file_write (file_names);
26654 m_name_table_entry_offs.file_write (file_names);
26655 m_abbrev_table.file_write (file_names);
26656 m_entry_pool.file_write (file_names);
26657 m_debugstrlookup.file_write (file_str);
26658 }
26659
26660 /* A helper user data for write_one_signatured_type. */
26661 class write_one_signatured_type_data
26662 {
26663 public:
26664 write_one_signatured_type_data (debug_names &nametable_,
26665 signatured_type_index_data &&info_)
26666 : nametable (nametable_), info (std::move (info_))
26667 {}
26668 debug_names &nametable;
26669 struct signatured_type_index_data info;
26670 };
26671
26672 /* A helper function to pass write_one_signatured_type to
26673 htab_traverse_noresize. */
26674 static int
26675 write_one_signatured_type (void **slot, void *d)
26676 {
26677 write_one_signatured_type_data *data = (write_one_signatured_type_data *) d;
26678 struct signatured_type_index_data *info = &data->info;
26679 struct signatured_type *entry = (struct signatured_type *) *slot;
26680
26681 data->nametable.write_one_signatured_type (entry, info);
26682
26683 return 1;
26684 }
26685
26686 private:
26687
26688 /* Storage for symbol names mapping them to their .debug_str section
26689 offsets. */
26690 class debug_str_lookup
26691 {
26692 public:
26693
26694 /* Object costructor to be called for current DWARF2_PER_OBJFILE.
26695 All .debug_str section strings are automatically stored. */
26696 debug_str_lookup (struct dwarf2_per_objfile *dwarf2_per_objfile)
26697 : m_abfd (dwarf2_per_objfile->objfile->obfd),
26698 m_dwarf2_per_objfile (dwarf2_per_objfile)
26699 {
26700 dwarf2_read_section (dwarf2_per_objfile->objfile,
26701 &dwarf2_per_objfile->str);
26702 if (dwarf2_per_objfile->str.buffer == NULL)
26703 return;
26704 for (const gdb_byte *data = dwarf2_per_objfile->str.buffer;
26705 data < (dwarf2_per_objfile->str.buffer
26706 + dwarf2_per_objfile->str.size);)
26707 {
26708 const char *const s = reinterpret_cast<const char *> (data);
26709 const auto insertpair
26710 = m_str_table.emplace (c_str_view (s),
26711 data - dwarf2_per_objfile->str.buffer);
26712 if (!insertpair.second)
26713 complaint (&symfile_complaints,
26714 _("Duplicate string \"%s\" in "
26715 ".debug_str section [in module %s]"),
26716 s, bfd_get_filename (m_abfd));
26717 data += strlen (s) + 1;
26718 }
26719 }
26720
26721 /* Return offset of symbol name S in the .debug_str section. Add
26722 such symbol to the section's end if it does not exist there
26723 yet. */
26724 size_t lookup (const char *s)
26725 {
26726 const auto it = m_str_table.find (c_str_view (s));
26727 if (it != m_str_table.end ())
26728 return it->second;
26729 const size_t offset = (m_dwarf2_per_objfile->str.size
26730 + m_str_add_buf.size ());
26731 m_str_table.emplace (c_str_view (s), offset);
26732 m_str_add_buf.append_cstr0 (s);
26733 return offset;
26734 }
26735
26736 /* Append the end of the .debug_str section to FILE. */
26737 void file_write (FILE *file) const
26738 {
26739 m_str_add_buf.file_write (file);
26740 }
26741
26742 private:
26743 std::unordered_map<c_str_view, size_t, c_str_view_hasher> m_str_table;
26744 bfd *const m_abfd;
26745 struct dwarf2_per_objfile *m_dwarf2_per_objfile;
26746
26747 /* Data to add at the end of .debug_str for new needed symbol names. */
26748 data_buf m_str_add_buf;
26749 };
26750
26751 /* Container to map used DWARF tags to their .debug_names abbreviation
26752 tags. */
26753 class index_key
26754 {
26755 public:
26756 index_key (int dwarf_tag_, bool is_static_, unit_kind kind_)
26757 : dwarf_tag (dwarf_tag_), is_static (is_static_), kind (kind_)
26758 {
26759 }
26760
26761 bool
26762 operator== (const index_key &other) const
26763 {
26764 return (dwarf_tag == other.dwarf_tag && is_static == other.is_static
26765 && kind == other.kind);
26766 }
26767
26768 const int dwarf_tag;
26769 const bool is_static;
26770 const unit_kind kind;
26771 };
26772
26773 /* Provide std::unordered_map::hasher for index_key. */
26774 class index_key_hasher
26775 {
26776 public:
26777 size_t
26778 operator () (const index_key &key) const
26779 {
26780 return (std::hash<int>() (key.dwarf_tag) << 1) | key.is_static;
26781 }
26782 };
26783
26784 /* Parameters of one symbol entry. */
26785 class symbol_value
26786 {
26787 public:
26788 const int dwarf_tag, cu_index;
26789 const bool is_static;
26790 const unit_kind kind;
26791
26792 symbol_value (int dwarf_tag_, int cu_index_, bool is_static_,
26793 unit_kind kind_)
26794 : dwarf_tag (dwarf_tag_), cu_index (cu_index_), is_static (is_static_),
26795 kind (kind_)
26796 {}
26797
26798 bool
26799 operator< (const symbol_value &other) const
26800 {
26801 #define X(n) \
26802 do \
26803 { \
26804 if (n < other.n) \
26805 return true; \
26806 if (n > other.n) \
26807 return false; \
26808 } \
26809 while (0)
26810 X (dwarf_tag);
26811 X (is_static);
26812 X (kind);
26813 X (cu_index);
26814 #undef X
26815 return false;
26816 }
26817 };
26818
26819 /* Abstract base class to unify DWARF-32 and DWARF-64 name table
26820 output. */
26821 class offset_vec
26822 {
26823 protected:
26824 const bfd_endian dwarf5_byte_order;
26825 public:
26826 explicit offset_vec (bfd_endian dwarf5_byte_order_)
26827 : dwarf5_byte_order (dwarf5_byte_order_)
26828 {}
26829
26830 /* Call std::vector::reserve for NELEM elements. */
26831 virtual void reserve (size_t nelem) = 0;
26832
26833 /* Call std::vector::push_back with store_unsigned_integer byte
26834 reordering for ELEM. */
26835 virtual void push_back_reorder (size_t elem) = 0;
26836
26837 /* Return expected output size in bytes. */
26838 virtual size_t bytes () const = 0;
26839
26840 /* Write name table to FILE. */
26841 virtual void file_write (FILE *file) const = 0;
26842 };
26843
26844 /* Template to unify DWARF-32 and DWARF-64 output. */
26845 template<typename OffsetSize>
26846 class offset_vec_tmpl : public offset_vec
26847 {
26848 public:
26849 explicit offset_vec_tmpl (bfd_endian dwarf5_byte_order_)
26850 : offset_vec (dwarf5_byte_order_)
26851 {}
26852
26853 /* Implement offset_vec::reserve. */
26854 void reserve (size_t nelem) override
26855 {
26856 m_vec.reserve (nelem);
26857 }
26858
26859 /* Implement offset_vec::push_back_reorder. */
26860 void push_back_reorder (size_t elem) override
26861 {
26862 m_vec.push_back (elem);
26863 /* Check for overflow. */
26864 gdb_assert (m_vec.back () == elem);
26865 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&m_vec.back ()),
26866 sizeof (m_vec.back ()), dwarf5_byte_order, elem);
26867 }
26868
26869 /* Implement offset_vec::bytes. */
26870 size_t bytes () const override
26871 {
26872 return m_vec.size () * sizeof (m_vec[0]);
26873 }
26874
26875 /* Implement offset_vec::file_write. */
26876 void file_write (FILE *file) const override
26877 {
26878 ::file_write (file, m_vec);
26879 }
26880
26881 private:
26882 std::vector<OffsetSize> m_vec;
26883 };
26884
26885 /* Base class to unify DWARF-32 and DWARF-64 .debug_names output
26886 respecting name table width. */
26887 class dwarf
26888 {
26889 public:
26890 offset_vec &name_table_string_offs, &name_table_entry_offs;
26891
26892 dwarf (offset_vec &name_table_string_offs_,
26893 offset_vec &name_table_entry_offs_)
26894 : name_table_string_offs (name_table_string_offs_),
26895 name_table_entry_offs (name_table_entry_offs_)
26896 {
26897 }
26898 };
26899
26900 /* Template to unify DWARF-32 and DWARF-64 .debug_names output
26901 respecting name table width. */
26902 template<typename OffsetSize>
26903 class dwarf_tmpl : public dwarf
26904 {
26905 public:
26906 explicit dwarf_tmpl (bfd_endian dwarf5_byte_order_)
26907 : dwarf (m_name_table_string_offs, m_name_table_entry_offs),
26908 m_name_table_string_offs (dwarf5_byte_order_),
26909 m_name_table_entry_offs (dwarf5_byte_order_)
26910 {}
26911
26912 private:
26913 offset_vec_tmpl<OffsetSize> m_name_table_string_offs;
26914 offset_vec_tmpl<OffsetSize> m_name_table_entry_offs;
26915 };
26916
26917 /* Try to reconstruct original DWARF tag for given partial_symbol.
26918 This function is not DWARF-5 compliant but it is sufficient for
26919 GDB as a DWARF-5 index consumer. */
26920 static int psymbol_tag (const struct partial_symbol *psym)
26921 {
26922 domain_enum domain = PSYMBOL_DOMAIN (psym);
26923 enum address_class aclass = PSYMBOL_CLASS (psym);
26924
26925 switch (domain)
26926 {
26927 case VAR_DOMAIN:
26928 switch (aclass)
26929 {
26930 case LOC_BLOCK:
26931 return DW_TAG_subprogram;
26932 case LOC_TYPEDEF:
26933 return DW_TAG_typedef;
26934 case LOC_COMPUTED:
26935 case LOC_CONST_BYTES:
26936 case LOC_OPTIMIZED_OUT:
26937 case LOC_STATIC:
26938 return DW_TAG_variable;
26939 case LOC_CONST:
26940 /* Note: It's currently impossible to recognize psyms as enum values
26941 short of reading the type info. For now punt. */
26942 return DW_TAG_variable;
26943 default:
26944 /* There are other LOC_FOO values that one might want to classify
26945 as variables, but dwarf2read.c doesn't currently use them. */
26946 return DW_TAG_variable;
26947 }
26948 case STRUCT_DOMAIN:
26949 return DW_TAG_structure_type;
26950 default:
26951 return 0;
26952 }
26953 }
26954
26955 /* Call insert for all partial symbols and mark them in PSYMS_SEEN. */
26956 void write_psymbols (std::unordered_set<partial_symbol *> &psyms_seen,
26957 struct partial_symbol **psymp, int count, int cu_index,
26958 bool is_static, unit_kind kind)
26959 {
26960 for (; count-- > 0; ++psymp)
26961 {
26962 struct partial_symbol *psym = *psymp;
26963
26964 if (SYMBOL_LANGUAGE (psym) == language_ada)
26965 error (_("Ada is not currently supported by the index"));
26966
26967 /* Only add a given psymbol once. */
26968 if (psyms_seen.insert (psym).second)
26969 insert (psym, cu_index, is_static, kind);
26970 }
26971 }
26972
26973 /* A helper function that writes a single signatured_type
26974 to a debug_names. */
26975 void
26976 write_one_signatured_type (struct signatured_type *entry,
26977 struct signatured_type_index_data *info)
26978 {
26979 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
26980
26981 write_psymbols (info->psyms_seen,
26982 &info->objfile->global_psymbols[psymtab->globals_offset],
26983 psymtab->n_global_syms, info->cu_index, false,
26984 unit_kind::tu);
26985 write_psymbols (info->psyms_seen,
26986 &info->objfile->static_psymbols[psymtab->statics_offset],
26987 psymtab->n_static_syms, info->cu_index, true,
26988 unit_kind::tu);
26989
26990 info->types_list.append_uint (dwarf5_offset_size (), m_dwarf5_byte_order,
26991 to_underlying (entry->per_cu.sect_off));
26992
26993 ++info->cu_index;
26994 }
26995
26996 /* Store value of each symbol. */
26997 std::unordered_map<c_str_view, std::set<symbol_value>, c_str_view_hasher>
26998 m_name_to_value_set;
26999
27000 /* Tables of DWARF-5 .debug_names. They are in object file byte
27001 order. */
27002 std::vector<uint32_t> m_bucket_table;
27003 std::vector<uint32_t> m_hash_table;
27004
27005 const bfd_endian m_dwarf5_byte_order;
27006 dwarf_tmpl<uint32_t> m_dwarf32;
27007 dwarf_tmpl<uint64_t> m_dwarf64;
27008 dwarf &m_dwarf;
27009 offset_vec &m_name_table_string_offs, &m_name_table_entry_offs;
27010 debug_str_lookup m_debugstrlookup;
27011
27012 /* Map each used .debug_names abbreviation tag parameter to its
27013 index value. */
27014 std::unordered_map<index_key, int, index_key_hasher> m_indexkey_to_idx;
27015
27016 /* Next unused .debug_names abbreviation tag for
27017 m_indexkey_to_idx. */
27018 int m_idx_next = 1;
27019
27020 /* .debug_names abbreviation table. */
27021 data_buf m_abbrev_table;
27022
27023 /* .debug_names entry pool. */
27024 data_buf m_entry_pool;
27025 };
27026
27027 /* Return iff any of the needed offsets does not fit into 32-bit
27028 .debug_names section. */
27029
27030 static bool
27031 check_dwarf64_offsets (struct dwarf2_per_objfile *dwarf2_per_objfile)
27032 {
27033 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
27034 {
27035 const dwarf2_per_cu_data &per_cu = *dwarf2_per_objfile->all_comp_units[i];
27036
27037 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
27038 return true;
27039 }
27040 for (int i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
27041 {
27042 const signatured_type &sigtype = *dwarf2_per_objfile->all_type_units[i];
27043 const dwarf2_per_cu_data &per_cu = sigtype.per_cu;
27044
27045 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
27046 return true;
27047 }
27048 return false;
27049 }
27050
27051 /* The psyms_seen set is potentially going to be largish (~40k
27052 elements when indexing a -g3 build of GDB itself). Estimate the
27053 number of elements in order to avoid too many rehashes, which
27054 require rebuilding buckets and thus many trips to
27055 malloc/free. */
27056
27057 static size_t
27058 psyms_seen_size (struct dwarf2_per_objfile *dwarf2_per_objfile)
27059 {
27060 size_t psyms_count = 0;
27061 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
27062 {
27063 struct dwarf2_per_cu_data *per_cu
27064 = dwarf2_per_objfile->all_comp_units[i];
27065 struct partial_symtab *psymtab = per_cu->v.psymtab;
27066
27067 if (psymtab != NULL && psymtab->user == NULL)
27068 recursively_count_psymbols (psymtab, psyms_count);
27069 }
27070 /* Generating an index for gdb itself shows a ratio of
27071 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
27072 return psyms_count / 4;
27073 }
27074
27075 /* Write new .gdb_index section for OBJFILE into OUT_FILE.
27076 Return how many bytes were expected to be written into OUT_FILE. */
27077
27078 static size_t
27079 write_gdbindex (struct dwarf2_per_objfile *dwarf2_per_objfile, FILE *out_file)
27080 {
27081 struct objfile *objfile = dwarf2_per_objfile->objfile;
27082 mapped_symtab symtab;
27083 data_buf cu_list;
27084
27085 /* While we're scanning CU's create a table that maps a psymtab pointer
27086 (which is what addrmap records) to its index (which is what is recorded
27087 in the index file). This will later be needed to write the address
27088 table. */
27089 psym_index_map cu_index_htab;
27090 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
27091
27092 /* The CU list is already sorted, so we don't need to do additional
27093 work here. Also, the debug_types entries do not appear in
27094 all_comp_units, but only in their own hash table. */
27095
27096 std::unordered_set<partial_symbol *> psyms_seen
27097 (psyms_seen_size (dwarf2_per_objfile));
27098 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
27099 {
27100 struct dwarf2_per_cu_data *per_cu
27101 = dwarf2_per_objfile->all_comp_units[i];
27102 struct partial_symtab *psymtab = per_cu->v.psymtab;
27103
27104 /* CU of a shared file from 'dwz -m' may be unused by this main file.
27105 It may be referenced from a local scope but in such case it does not
27106 need to be present in .gdb_index. */
27107 if (psymtab == NULL)
27108 continue;
27109
27110 if (psymtab->user == NULL)
27111 recursively_write_psymbols (objfile, psymtab, &symtab,
27112 psyms_seen, i);
27113
27114 const auto insertpair = cu_index_htab.emplace (psymtab, i);
27115 gdb_assert (insertpair.second);
27116
27117 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
27118 to_underlying (per_cu->sect_off));
27119 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
27120 }
27121
27122 /* Dump the address map. */
27123 data_buf addr_vec;
27124 write_address_map (objfile, addr_vec, cu_index_htab);
27125
27126 /* Write out the .debug_type entries, if any. */
27127 data_buf types_cu_list;
27128 if (dwarf2_per_objfile->signatured_types)
27129 {
27130 signatured_type_index_data sig_data (types_cu_list,
27131 psyms_seen);
27132
27133 sig_data.objfile = objfile;
27134 sig_data.symtab = &symtab;
27135 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
27136 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
27137 write_one_signatured_type, &sig_data);
27138 }
27139
27140 /* Now that we've processed all symbols we can shrink their cu_indices
27141 lists. */
27142 uniquify_cu_indices (&symtab);
27143
27144 data_buf symtab_vec, constant_pool;
27145 write_hash_table (&symtab, symtab_vec, constant_pool);
27146
27147 data_buf contents;
27148 const offset_type size_of_contents = 6 * sizeof (offset_type);
27149 offset_type total_len = size_of_contents;
27150
27151 /* The version number. */
27152 contents.append_data (MAYBE_SWAP (8));
27153
27154 /* The offset of the CU list from the start of the file. */
27155 contents.append_data (MAYBE_SWAP (total_len));
27156 total_len += cu_list.size ();
27157
27158 /* The offset of the types CU list from the start of the file. */
27159 contents.append_data (MAYBE_SWAP (total_len));
27160 total_len += types_cu_list.size ();
27161
27162 /* The offset of the address table from the start of the file. */
27163 contents.append_data (MAYBE_SWAP (total_len));
27164 total_len += addr_vec.size ();
27165
27166 /* The offset of the symbol table from the start of the file. */
27167 contents.append_data (MAYBE_SWAP (total_len));
27168 total_len += symtab_vec.size ();
27169
27170 /* The offset of the constant pool from the start of the file. */
27171 contents.append_data (MAYBE_SWAP (total_len));
27172 total_len += constant_pool.size ();
27173
27174 gdb_assert (contents.size () == size_of_contents);
27175
27176 contents.file_write (out_file);
27177 cu_list.file_write (out_file);
27178 types_cu_list.file_write (out_file);
27179 addr_vec.file_write (out_file);
27180 symtab_vec.file_write (out_file);
27181 constant_pool.file_write (out_file);
27182
27183 return total_len;
27184 }
27185
27186 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
27187 static const gdb_byte dwarf5_gdb_augmentation[] = { 'G', 'D', 'B', 0 };
27188
27189 /* Write a new .debug_names section for OBJFILE into OUT_FILE, write
27190 needed addition to .debug_str section to OUT_FILE_STR. Return how
27191 many bytes were expected to be written into OUT_FILE. */
27192
27193 static size_t
27194 write_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
27195 FILE *out_file, FILE *out_file_str)
27196 {
27197 const bool dwarf5_is_dwarf64 = check_dwarf64_offsets (dwarf2_per_objfile);
27198 struct objfile *objfile = dwarf2_per_objfile->objfile;
27199 const enum bfd_endian dwarf5_byte_order
27200 = gdbarch_byte_order (get_objfile_arch (objfile));
27201
27202 /* The CU list is already sorted, so we don't need to do additional
27203 work here. Also, the debug_types entries do not appear in
27204 all_comp_units, but only in their own hash table. */
27205 data_buf cu_list;
27206 debug_names nametable (dwarf2_per_objfile, dwarf5_is_dwarf64,
27207 dwarf5_byte_order);
27208 std::unordered_set<partial_symbol *>
27209 psyms_seen (psyms_seen_size (dwarf2_per_objfile));
27210 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
27211 {
27212 const dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
27213 partial_symtab *psymtab = per_cu->v.psymtab;
27214
27215 /* CU of a shared file from 'dwz -m' may be unused by this main
27216 file. It may be referenced from a local scope but in such
27217 case it does not need to be present in .debug_names. */
27218 if (psymtab == NULL)
27219 continue;
27220
27221 if (psymtab->user == NULL)
27222 nametable.recursively_write_psymbols (objfile, psymtab, psyms_seen, i);
27223
27224 cu_list.append_uint (nametable.dwarf5_offset_size (), dwarf5_byte_order,
27225 to_underlying (per_cu->sect_off));
27226 }
27227
27228 /* Write out the .debug_type entries, if any. */
27229 data_buf types_cu_list;
27230 if (dwarf2_per_objfile->signatured_types)
27231 {
27232 debug_names::write_one_signatured_type_data sig_data (nametable,
27233 signatured_type_index_data (types_cu_list, psyms_seen));
27234
27235 sig_data.info.objfile = objfile;
27236 /* It is used only for gdb_index. */
27237 sig_data.info.symtab = nullptr;
27238 sig_data.info.cu_index = 0;
27239 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
27240 debug_names::write_one_signatured_type,
27241 &sig_data);
27242 }
27243
27244 nametable.build ();
27245
27246 /* No addr_vec - DWARF-5 uses .debug_aranges generated by GCC. */
27247
27248 const offset_type bytes_of_header
27249 = ((dwarf5_is_dwarf64 ? 12 : 4)
27250 + 2 + 2 + 7 * 4
27251 + sizeof (dwarf5_gdb_augmentation));
27252 size_t expected_bytes = 0;
27253 expected_bytes += bytes_of_header;
27254 expected_bytes += cu_list.size ();
27255 expected_bytes += types_cu_list.size ();
27256 expected_bytes += nametable.bytes ();
27257 data_buf header;
27258
27259 if (!dwarf5_is_dwarf64)
27260 {
27261 const uint64_t size64 = expected_bytes - 4;
27262 gdb_assert (size64 < 0xfffffff0);
27263 header.append_uint (4, dwarf5_byte_order, size64);
27264 }
27265 else
27266 {
27267 header.append_uint (4, dwarf5_byte_order, 0xffffffff);
27268 header.append_uint (8, dwarf5_byte_order, expected_bytes - 12);
27269 }
27270
27271 /* The version number. */
27272 header.append_uint (2, dwarf5_byte_order, 5);
27273
27274 /* Padding. */
27275 header.append_uint (2, dwarf5_byte_order, 0);
27276
27277 /* comp_unit_count - The number of CUs in the CU list. */
27278 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_comp_units);
27279
27280 /* local_type_unit_count - The number of TUs in the local TU
27281 list. */
27282 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_type_units);
27283
27284 /* foreign_type_unit_count - The number of TUs in the foreign TU
27285 list. */
27286 header.append_uint (4, dwarf5_byte_order, 0);
27287
27288 /* bucket_count - The number of hash buckets in the hash lookup
27289 table. */
27290 header.append_uint (4, dwarf5_byte_order, nametable.bucket_count ());
27291
27292 /* name_count - The number of unique names in the index. */
27293 header.append_uint (4, dwarf5_byte_order, nametable.name_count ());
27294
27295 /* abbrev_table_size - The size in bytes of the abbreviations
27296 table. */
27297 header.append_uint (4, dwarf5_byte_order, nametable.abbrev_table_bytes ());
27298
27299 /* augmentation_string_size - The size in bytes of the augmentation
27300 string. This value is rounded up to a multiple of 4. */
27301 static_assert (sizeof (dwarf5_gdb_augmentation) % 4 == 0, "");
27302 header.append_uint (4, dwarf5_byte_order, sizeof (dwarf5_gdb_augmentation));
27303 header.append_data (dwarf5_gdb_augmentation);
27304
27305 gdb_assert (header.size () == bytes_of_header);
27306
27307 header.file_write (out_file);
27308 cu_list.file_write (out_file);
27309 types_cu_list.file_write (out_file);
27310 nametable.file_write (out_file, out_file_str);
27311
27312 return expected_bytes;
27313 }
27314
27315 /* Assert that FILE's size is EXPECTED_SIZE. Assumes file's seek
27316 position is at the end of the file. */
27317
27318 static void
27319 assert_file_size (FILE *file, const char *filename, size_t expected_size)
27320 {
27321 const auto file_size = ftell (file);
27322 if (file_size == -1)
27323 error (_("Can't get `%s' size"), filename);
27324 gdb_assert (file_size == expected_size);
27325 }
27326
27327 /* Create an index file for OBJFILE in the directory DIR. */
27328
27329 static void
27330 write_psymtabs_to_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
27331 const char *dir,
27332 dw_index_kind index_kind)
27333 {
27334 struct objfile *objfile = dwarf2_per_objfile->objfile;
27335
27336 if (dwarf2_per_objfile->using_index)
27337 error (_("Cannot use an index to create the index"));
27338
27339 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
27340 error (_("Cannot make an index when the file has multiple .debug_types sections"));
27341
27342 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
27343 return;
27344
27345 struct stat st;
27346 if (stat (objfile_name (objfile), &st) < 0)
27347 perror_with_name (objfile_name (objfile));
27348
27349 std::string filename (std::string (dir) + SLASH_STRING
27350 + lbasename (objfile_name (objfile))
27351 + (index_kind == dw_index_kind::DEBUG_NAMES
27352 ? INDEX5_SUFFIX : INDEX4_SUFFIX));
27353
27354 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
27355 if (!out_file)
27356 error (_("Can't open `%s' for writing"), filename.c_str ());
27357
27358 /* Order matters here; we want FILE to be closed before FILENAME is
27359 unlinked, because on MS-Windows one cannot delete a file that is
27360 still open. (Don't call anything here that might throw until
27361 file_closer is created.) */
27362 gdb::unlinker unlink_file (filename.c_str ());
27363 gdb_file_up close_out_file (out_file);
27364
27365 if (index_kind == dw_index_kind::DEBUG_NAMES)
27366 {
27367 std::string filename_str (std::string (dir) + SLASH_STRING
27368 + lbasename (objfile_name (objfile))
27369 + DEBUG_STR_SUFFIX);
27370 FILE *out_file_str
27371 = gdb_fopen_cloexec (filename_str.c_str (), "wb").release ();
27372 if (!out_file_str)
27373 error (_("Can't open `%s' for writing"), filename_str.c_str ());
27374 gdb::unlinker unlink_file_str (filename_str.c_str ());
27375 gdb_file_up close_out_file_str (out_file_str);
27376
27377 const size_t total_len
27378 = write_debug_names (dwarf2_per_objfile, out_file, out_file_str);
27379 assert_file_size (out_file, filename.c_str (), total_len);
27380
27381 /* We want to keep the file .debug_str file too. */
27382 unlink_file_str.keep ();
27383 }
27384 else
27385 {
27386 const size_t total_len
27387 = write_gdbindex (dwarf2_per_objfile, out_file);
27388 assert_file_size (out_file, filename.c_str (), total_len);
27389 }
27390
27391 /* We want to keep the file. */
27392 unlink_file.keep ();
27393 }
27394
27395 /* Implementation of the `save gdb-index' command.
27396
27397 Note that the .gdb_index file format used by this command is
27398 documented in the GDB manual. Any changes here must be documented
27399 there. */
27400
27401 static void
27402 save_gdb_index_command (const char *arg, int from_tty)
27403 {
27404 struct objfile *objfile;
27405 const char dwarf5space[] = "-dwarf-5 ";
27406 dw_index_kind index_kind = dw_index_kind::GDB_INDEX;
27407
27408 if (!arg)
27409 arg = "";
27410
27411 arg = skip_spaces (arg);
27412 if (strncmp (arg, dwarf5space, strlen (dwarf5space)) == 0)
27413 {
27414 index_kind = dw_index_kind::DEBUG_NAMES;
27415 arg += strlen (dwarf5space);
27416 arg = skip_spaces (arg);
27417 }
27418
27419 if (!*arg)
27420 error (_("usage: save gdb-index [-dwarf-5] DIRECTORY"));
27421
27422 ALL_OBJFILES (objfile)
27423 {
27424 struct stat st;
27425
27426 /* If the objfile does not correspond to an actual file, skip it. */
27427 if (stat (objfile_name (objfile), &st) < 0)
27428 continue;
27429
27430 struct dwarf2_per_objfile *dwarf2_per_objfile
27431 = get_dwarf2_per_objfile (objfile);
27432
27433 if (dwarf2_per_objfile != NULL)
27434 {
27435 TRY
27436 {
27437 write_psymtabs_to_index (dwarf2_per_objfile, arg, index_kind);
27438 }
27439 CATCH (except, RETURN_MASK_ERROR)
27440 {
27441 exception_fprintf (gdb_stderr, except,
27442 _("Error while writing index for `%s': "),
27443 objfile_name (objfile));
27444 }
27445 END_CATCH
27446 }
27447
27448 }
27449 }
27450
27451 \f
27452
27453 int dwarf_always_disassemble;
27454
27455 static void
27456 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
27457 struct cmd_list_element *c, const char *value)
27458 {
27459 fprintf_filtered (file,
27460 _("Whether to always disassemble "
27461 "DWARF expressions is %s.\n"),
27462 value);
27463 }
27464
27465 static void
27466 show_check_physname (struct ui_file *file, int from_tty,
27467 struct cmd_list_element *c, const char *value)
27468 {
27469 fprintf_filtered (file,
27470 _("Whether to check \"physname\" is %s.\n"),
27471 value);
27472 }
27473
27474 void
27475 _initialize_dwarf2_read (void)
27476 {
27477 struct cmd_list_element *c;
27478
27479 dwarf2_objfile_data_key = register_objfile_data ();
27480
27481 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
27482 Set DWARF specific variables.\n\
27483 Configure DWARF variables such as the cache size"),
27484 &set_dwarf_cmdlist, "maintenance set dwarf ",
27485 0/*allow-unknown*/, &maintenance_set_cmdlist);
27486
27487 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
27488 Show DWARF specific variables\n\
27489 Show DWARF variables such as the cache size"),
27490 &show_dwarf_cmdlist, "maintenance show dwarf ",
27491 0/*allow-unknown*/, &maintenance_show_cmdlist);
27492
27493 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
27494 &dwarf_max_cache_age, _("\
27495 Set the upper bound on the age of cached DWARF compilation units."), _("\
27496 Show the upper bound on the age of cached DWARF compilation units."), _("\
27497 A higher limit means that cached compilation units will be stored\n\
27498 in memory longer, and more total memory will be used. Zero disables\n\
27499 caching, which can slow down startup."),
27500 NULL,
27501 show_dwarf_max_cache_age,
27502 &set_dwarf_cmdlist,
27503 &show_dwarf_cmdlist);
27504
27505 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
27506 &dwarf_always_disassemble, _("\
27507 Set whether `info address' always disassembles DWARF expressions."), _("\
27508 Show whether `info address' always disassembles DWARF expressions."), _("\
27509 When enabled, DWARF expressions are always printed in an assembly-like\n\
27510 syntax. When disabled, expressions will be printed in a more\n\
27511 conversational style, when possible."),
27512 NULL,
27513 show_dwarf_always_disassemble,
27514 &set_dwarf_cmdlist,
27515 &show_dwarf_cmdlist);
27516
27517 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
27518 Set debugging of the DWARF reader."), _("\
27519 Show debugging of the DWARF reader."), _("\
27520 When enabled (non-zero), debugging messages are printed during DWARF\n\
27521 reading and symtab expansion. A value of 1 (one) provides basic\n\
27522 information. A value greater than 1 provides more verbose information."),
27523 NULL,
27524 NULL,
27525 &setdebuglist, &showdebuglist);
27526
27527 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
27528 Set debugging of the DWARF DIE reader."), _("\
27529 Show debugging of the DWARF DIE reader."), _("\
27530 When enabled (non-zero), DIEs are dumped after they are read in.\n\
27531 The value is the maximum depth to print."),
27532 NULL,
27533 NULL,
27534 &setdebuglist, &showdebuglist);
27535
27536 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
27537 Set debugging of the dwarf line reader."), _("\
27538 Show debugging of the dwarf line reader."), _("\
27539 When enabled (non-zero), line number entries are dumped as they are read in.\n\
27540 A value of 1 (one) provides basic information.\n\
27541 A value greater than 1 provides more verbose information."),
27542 NULL,
27543 NULL,
27544 &setdebuglist, &showdebuglist);
27545
27546 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
27547 Set cross-checking of \"physname\" code against demangler."), _("\
27548 Show cross-checking of \"physname\" code against demangler."), _("\
27549 When enabled, GDB's internal \"physname\" code is checked against\n\
27550 the demangler."),
27551 NULL, show_check_physname,
27552 &setdebuglist, &showdebuglist);
27553
27554 add_setshow_boolean_cmd ("use-deprecated-index-sections",
27555 no_class, &use_deprecated_index_sections, _("\
27556 Set whether to use deprecated gdb_index sections."), _("\
27557 Show whether to use deprecated gdb_index sections."), _("\
27558 When enabled, deprecated .gdb_index sections are used anyway.\n\
27559 Normally they are ignored either because of a missing feature or\n\
27560 performance issue.\n\
27561 Warning: This option must be enabled before gdb reads the file."),
27562 NULL,
27563 NULL,
27564 &setlist, &showlist);
27565
27566 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
27567 _("\
27568 Save a gdb-index file.\n\
27569 Usage: save gdb-index [-dwarf-5] DIRECTORY\n\
27570 \n\
27571 No options create one file with .gdb-index extension for pre-DWARF-5\n\
27572 compatible .gdb_index section. With -dwarf-5 creates two files with\n\
27573 extension .debug_names and .debug_str for DWARF-5 .debug_names section."),
27574 &save_cmdlist);
27575 set_cmd_completer (c, filename_completer);
27576
27577 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
27578 &dwarf2_locexpr_funcs);
27579 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
27580 &dwarf2_loclist_funcs);
27581
27582 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
27583 &dwarf2_block_frame_base_locexpr_funcs);
27584 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
27585 &dwarf2_block_frame_base_loclist_funcs);
27586
27587 #if GDB_SELF_TEST
27588 selftests::register_test ("dw2_expand_symtabs_matching",
27589 selftests::dw2_expand_symtabs_matching::run_test);
27590 #endif
27591 }
This page took 0.559451 seconds and 5 git commands to generate.