Move DWARF index-related things to a separate file
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 /* The name_component table (a sorted vector). See name_component's
151 description above. */
152 std::vector<name_component> name_components;
153
154 /* How NAME_COMPONENTS is sorted. */
155 enum case_sensitivity name_components_casing;
156
157 /* Return the number of names in the symbol table. */
158 virtual size_t symbol_name_count () const = 0;
159
160 /* Get the name of the symbol at IDX in the symbol table. */
161 virtual const char *symbol_name_at (offset_type idx) const = 0;
162
163 /* Return whether the name at IDX in the symbol table should be
164 ignored. */
165 virtual bool symbol_name_slot_invalid (offset_type idx) const
166 {
167 return false;
168 }
169
170 /* Build the symbol name component sorted vector, if we haven't
171 yet. */
172 void build_name_components ();
173
174 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
175 possible matches for LN_NO_PARAMS in the name component
176 vector. */
177 std::pair<std::vector<name_component>::const_iterator,
178 std::vector<name_component>::const_iterator>
179 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
180
181 /* Prevent deleting/destroying via a base class pointer. */
182 protected:
183 ~mapped_index_base() = default;
184 };
185
186 /* A description of the mapped index. The file format is described in
187 a comment by the code that writes the index. */
188 struct mapped_index final : public mapped_index_base
189 {
190 /* A slot/bucket in the symbol table hash. */
191 struct symbol_table_slot
192 {
193 const offset_type name;
194 const offset_type vec;
195 };
196
197 /* Index data format version. */
198 int version;
199
200 /* The total length of the buffer. */
201 off_t total_size;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 /* Name of the file. */
814 const char *name;
815
816 /* File format version. */
817 int version;
818
819 /* The bfd. */
820 bfd *dbfd;
821
822 /* Section info for this file. */
823 struct dwp_sections sections;
824
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus;
827
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus;
830
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
832 htab_t loaded_cus;
833 htab_t loaded_tus;
834
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections;
838 asection **elf_sections;
839 };
840
841 /* This represents a '.dwz' file. */
842
843 struct dwz_file
844 {
845 /* A dwz file can only contain a few sections. */
846 struct dwarf2_section_info abbrev;
847 struct dwarf2_section_info info;
848 struct dwarf2_section_info str;
849 struct dwarf2_section_info line;
850 struct dwarf2_section_info macro;
851 struct dwarf2_section_info gdb_index;
852 struct dwarf2_section_info debug_names;
853
854 /* The dwz's BFD. */
855 bfd *dwz_bfd;
856 };
857
858 /* Struct used to pass misc. parameters to read_die_and_children, et
859 al. which are used for both .debug_info and .debug_types dies.
860 All parameters here are unchanging for the life of the call. This
861 struct exists to abstract away the constant parameters of die reading. */
862
863 struct die_reader_specs
864 {
865 /* The bfd of die_section. */
866 bfd* abfd;
867
868 /* The CU of the DIE we are parsing. */
869 struct dwarf2_cu *cu;
870
871 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
872 struct dwo_file *dwo_file;
873
874 /* The section the die comes from.
875 This is either .debug_info or .debug_types, or the .dwo variants. */
876 struct dwarf2_section_info *die_section;
877
878 /* die_section->buffer. */
879 const gdb_byte *buffer;
880
881 /* The end of the buffer. */
882 const gdb_byte *buffer_end;
883
884 /* The value of the DW_AT_comp_dir attribute. */
885 const char *comp_dir;
886
887 /* The abbreviation table to use when reading the DIEs. */
888 struct abbrev_table *abbrev_table;
889 };
890
891 /* Type of function passed to init_cutu_and_read_dies, et.al. */
892 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
893 const gdb_byte *info_ptr,
894 struct die_info *comp_unit_die,
895 int has_children,
896 void *data);
897
898 /* A 1-based directory index. This is a strong typedef to prevent
899 accidentally using a directory index as a 0-based index into an
900 array/vector. */
901 enum class dir_index : unsigned int {};
902
903 /* Likewise, a 1-based file name index. */
904 enum class file_name_index : unsigned int {};
905
906 struct file_entry
907 {
908 file_entry () = default;
909
910 file_entry (const char *name_, dir_index d_index_,
911 unsigned int mod_time_, unsigned int length_)
912 : name (name_),
913 d_index (d_index_),
914 mod_time (mod_time_),
915 length (length_)
916 {}
917
918 /* Return the include directory at D_INDEX stored in LH. Returns
919 NULL if D_INDEX is out of bounds. */
920 const char *include_dir (const line_header *lh) const;
921
922 /* The file name. Note this is an observing pointer. The memory is
923 owned by debug_line_buffer. */
924 const char *name {};
925
926 /* The directory index (1-based). */
927 dir_index d_index {};
928
929 unsigned int mod_time {};
930
931 unsigned int length {};
932
933 /* True if referenced by the Line Number Program. */
934 bool included_p {};
935
936 /* The associated symbol table, if any. */
937 struct symtab *symtab {};
938 };
939
940 /* The line number information for a compilation unit (found in the
941 .debug_line section) begins with a "statement program header",
942 which contains the following information. */
943 struct line_header
944 {
945 line_header ()
946 : offset_in_dwz {}
947 {}
948
949 /* Add an entry to the include directory table. */
950 void add_include_dir (const char *include_dir);
951
952 /* Add an entry to the file name table. */
953 void add_file_name (const char *name, dir_index d_index,
954 unsigned int mod_time, unsigned int length);
955
956 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
957 is out of bounds. */
958 const char *include_dir_at (dir_index index) const
959 {
960 /* Convert directory index number (1-based) to vector index
961 (0-based). */
962 size_t vec_index = to_underlying (index) - 1;
963
964 if (vec_index >= include_dirs.size ())
965 return NULL;
966 return include_dirs[vec_index];
967 }
968
969 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
970 is out of bounds. */
971 file_entry *file_name_at (file_name_index index)
972 {
973 /* Convert file name index number (1-based) to vector index
974 (0-based). */
975 size_t vec_index = to_underlying (index) - 1;
976
977 if (vec_index >= file_names.size ())
978 return NULL;
979 return &file_names[vec_index];
980 }
981
982 /* Const version of the above. */
983 const file_entry *file_name_at (unsigned int index) const
984 {
985 if (index >= file_names.size ())
986 return NULL;
987 return &file_names[index];
988 }
989
990 /* Offset of line number information in .debug_line section. */
991 sect_offset sect_off {};
992
993 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
994 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
995
996 unsigned int total_length {};
997 unsigned short version {};
998 unsigned int header_length {};
999 unsigned char minimum_instruction_length {};
1000 unsigned char maximum_ops_per_instruction {};
1001 unsigned char default_is_stmt {};
1002 int line_base {};
1003 unsigned char line_range {};
1004 unsigned char opcode_base {};
1005
1006 /* standard_opcode_lengths[i] is the number of operands for the
1007 standard opcode whose value is i. This means that
1008 standard_opcode_lengths[0] is unused, and the last meaningful
1009 element is standard_opcode_lengths[opcode_base - 1]. */
1010 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1011
1012 /* The include_directories table. Note these are observing
1013 pointers. The memory is owned by debug_line_buffer. */
1014 std::vector<const char *> include_dirs;
1015
1016 /* The file_names table. */
1017 std::vector<file_entry> file_names;
1018
1019 /* The start and end of the statement program following this
1020 header. These point into dwarf2_per_objfile->line_buffer. */
1021 const gdb_byte *statement_program_start {}, *statement_program_end {};
1022 };
1023
1024 typedef std::unique_ptr<line_header> line_header_up;
1025
1026 const char *
1027 file_entry::include_dir (const line_header *lh) const
1028 {
1029 return lh->include_dir_at (d_index);
1030 }
1031
1032 /* When we construct a partial symbol table entry we only
1033 need this much information. */
1034 struct partial_die_info : public allocate_on_obstack
1035 {
1036 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1037
1038 /* Disable assign but still keep copy ctor, which is needed
1039 load_partial_dies. */
1040 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1041
1042 /* Adjust the partial die before generating a symbol for it. This
1043 function may set the is_external flag or change the DIE's
1044 name. */
1045 void fixup (struct dwarf2_cu *cu);
1046
1047 /* Read a minimal amount of information into the minimal die
1048 structure. */
1049 const gdb_byte *read (const struct die_reader_specs *reader,
1050 const struct abbrev_info &abbrev,
1051 const gdb_byte *info_ptr);
1052
1053 /* Offset of this DIE. */
1054 const sect_offset sect_off;
1055
1056 /* DWARF-2 tag for this DIE. */
1057 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1058
1059 /* Assorted flags describing the data found in this DIE. */
1060 const unsigned int has_children : 1;
1061
1062 unsigned int is_external : 1;
1063 unsigned int is_declaration : 1;
1064 unsigned int has_type : 1;
1065 unsigned int has_specification : 1;
1066 unsigned int has_pc_info : 1;
1067 unsigned int may_be_inlined : 1;
1068
1069 /* This DIE has been marked DW_AT_main_subprogram. */
1070 unsigned int main_subprogram : 1;
1071
1072 /* Flag set if the SCOPE field of this structure has been
1073 computed. */
1074 unsigned int scope_set : 1;
1075
1076 /* Flag set if the DIE has a byte_size attribute. */
1077 unsigned int has_byte_size : 1;
1078
1079 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1080 unsigned int has_const_value : 1;
1081
1082 /* Flag set if any of the DIE's children are template arguments. */
1083 unsigned int has_template_arguments : 1;
1084
1085 /* Flag set if fixup has been called on this die. */
1086 unsigned int fixup_called : 1;
1087
1088 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1089 unsigned int is_dwz : 1;
1090
1091 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1092 unsigned int spec_is_dwz : 1;
1093
1094 /* The name of this DIE. Normally the value of DW_AT_name, but
1095 sometimes a default name for unnamed DIEs. */
1096 const char *name = nullptr;
1097
1098 /* The linkage name, if present. */
1099 const char *linkage_name = nullptr;
1100
1101 /* The scope to prepend to our children. This is generally
1102 allocated on the comp_unit_obstack, so will disappear
1103 when this compilation unit leaves the cache. */
1104 const char *scope = nullptr;
1105
1106 /* Some data associated with the partial DIE. The tag determines
1107 which field is live. */
1108 union
1109 {
1110 /* The location description associated with this DIE, if any. */
1111 struct dwarf_block *locdesc;
1112 /* The offset of an import, for DW_TAG_imported_unit. */
1113 sect_offset sect_off;
1114 } d {};
1115
1116 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1117 CORE_ADDR lowpc = 0;
1118 CORE_ADDR highpc = 0;
1119
1120 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1121 DW_AT_sibling, if any. */
1122 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1123 could return DW_AT_sibling values to its caller load_partial_dies. */
1124 const gdb_byte *sibling = nullptr;
1125
1126 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1127 DW_AT_specification (or DW_AT_abstract_origin or
1128 DW_AT_extension). */
1129 sect_offset spec_offset {};
1130
1131 /* Pointers to this DIE's parent, first child, and next sibling,
1132 if any. */
1133 struct partial_die_info *die_parent = nullptr;
1134 struct partial_die_info *die_child = nullptr;
1135 struct partial_die_info *die_sibling = nullptr;
1136
1137 friend struct partial_die_info *
1138 dwarf2_cu::find_partial_die (sect_offset sect_off);
1139
1140 private:
1141 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1142 partial_die_info (sect_offset sect_off)
1143 : partial_die_info (sect_off, DW_TAG_padding, 0)
1144 {
1145 }
1146
1147 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1148 int has_children_)
1149 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1150 {
1151 is_external = 0;
1152 is_declaration = 0;
1153 has_type = 0;
1154 has_specification = 0;
1155 has_pc_info = 0;
1156 may_be_inlined = 0;
1157 main_subprogram = 0;
1158 scope_set = 0;
1159 has_byte_size = 0;
1160 has_const_value = 0;
1161 has_template_arguments = 0;
1162 fixup_called = 0;
1163 is_dwz = 0;
1164 spec_is_dwz = 0;
1165 }
1166 };
1167
1168 /* This data structure holds the information of an abbrev. */
1169 struct abbrev_info
1170 {
1171 unsigned int number; /* number identifying abbrev */
1172 enum dwarf_tag tag; /* dwarf tag */
1173 unsigned short has_children; /* boolean */
1174 unsigned short num_attrs; /* number of attributes */
1175 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1176 struct abbrev_info *next; /* next in chain */
1177 };
1178
1179 struct attr_abbrev
1180 {
1181 ENUM_BITFIELD(dwarf_attribute) name : 16;
1182 ENUM_BITFIELD(dwarf_form) form : 16;
1183
1184 /* It is valid only if FORM is DW_FORM_implicit_const. */
1185 LONGEST implicit_const;
1186 };
1187
1188 /* Size of abbrev_table.abbrev_hash_table. */
1189 #define ABBREV_HASH_SIZE 121
1190
1191 /* Top level data structure to contain an abbreviation table. */
1192
1193 struct abbrev_table
1194 {
1195 explicit abbrev_table (sect_offset off)
1196 : sect_off (off)
1197 {
1198 m_abbrevs =
1199 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1200 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1201 }
1202
1203 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1204
1205 /* Allocate space for a struct abbrev_info object in
1206 ABBREV_TABLE. */
1207 struct abbrev_info *alloc_abbrev ();
1208
1209 /* Add an abbreviation to the table. */
1210 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1211
1212 /* Look up an abbrev in the table.
1213 Returns NULL if the abbrev is not found. */
1214
1215 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1216
1217
1218 /* Where the abbrev table came from.
1219 This is used as a sanity check when the table is used. */
1220 const sect_offset sect_off;
1221
1222 /* Storage for the abbrev table. */
1223 auto_obstack abbrev_obstack;
1224
1225 private:
1226
1227 /* Hash table of abbrevs.
1228 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1229 It could be statically allocated, but the previous code didn't so we
1230 don't either. */
1231 struct abbrev_info **m_abbrevs;
1232 };
1233
1234 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1235
1236 /* Attributes have a name and a value. */
1237 struct attribute
1238 {
1239 ENUM_BITFIELD(dwarf_attribute) name : 16;
1240 ENUM_BITFIELD(dwarf_form) form : 15;
1241
1242 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1243 field should be in u.str (existing only for DW_STRING) but it is kept
1244 here for better struct attribute alignment. */
1245 unsigned int string_is_canonical : 1;
1246
1247 union
1248 {
1249 const char *str;
1250 struct dwarf_block *blk;
1251 ULONGEST unsnd;
1252 LONGEST snd;
1253 CORE_ADDR addr;
1254 ULONGEST signature;
1255 }
1256 u;
1257 };
1258
1259 /* This data structure holds a complete die structure. */
1260 struct die_info
1261 {
1262 /* DWARF-2 tag for this DIE. */
1263 ENUM_BITFIELD(dwarf_tag) tag : 16;
1264
1265 /* Number of attributes */
1266 unsigned char num_attrs;
1267
1268 /* True if we're presently building the full type name for the
1269 type derived from this DIE. */
1270 unsigned char building_fullname : 1;
1271
1272 /* True if this die is in process. PR 16581. */
1273 unsigned char in_process : 1;
1274
1275 /* Abbrev number */
1276 unsigned int abbrev;
1277
1278 /* Offset in .debug_info or .debug_types section. */
1279 sect_offset sect_off;
1280
1281 /* The dies in a compilation unit form an n-ary tree. PARENT
1282 points to this die's parent; CHILD points to the first child of
1283 this node; and all the children of a given node are chained
1284 together via their SIBLING fields. */
1285 struct die_info *child; /* Its first child, if any. */
1286 struct die_info *sibling; /* Its next sibling, if any. */
1287 struct die_info *parent; /* Its parent, if any. */
1288
1289 /* An array of attributes, with NUM_ATTRS elements. There may be
1290 zero, but it's not common and zero-sized arrays are not
1291 sufficiently portable C. */
1292 struct attribute attrs[1];
1293 };
1294
1295 /* Get at parts of an attribute structure. */
1296
1297 #define DW_STRING(attr) ((attr)->u.str)
1298 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1299 #define DW_UNSND(attr) ((attr)->u.unsnd)
1300 #define DW_BLOCK(attr) ((attr)->u.blk)
1301 #define DW_SND(attr) ((attr)->u.snd)
1302 #define DW_ADDR(attr) ((attr)->u.addr)
1303 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1304
1305 /* Blocks are a bunch of untyped bytes. */
1306 struct dwarf_block
1307 {
1308 size_t size;
1309
1310 /* Valid only if SIZE is not zero. */
1311 const gdb_byte *data;
1312 };
1313
1314 #ifndef ATTR_ALLOC_CHUNK
1315 #define ATTR_ALLOC_CHUNK 4
1316 #endif
1317
1318 /* Allocate fields for structs, unions and enums in this size. */
1319 #ifndef DW_FIELD_ALLOC_CHUNK
1320 #define DW_FIELD_ALLOC_CHUNK 4
1321 #endif
1322
1323 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1324 but this would require a corresponding change in unpack_field_as_long
1325 and friends. */
1326 static int bits_per_byte = 8;
1327
1328 /* When reading a variant or variant part, we track a bit more
1329 information about the field, and store it in an object of this
1330 type. */
1331
1332 struct variant_field
1333 {
1334 /* If we see a DW_TAG_variant, then this will be the discriminant
1335 value. */
1336 ULONGEST discriminant_value;
1337 /* If we see a DW_TAG_variant, then this will be set if this is the
1338 default branch. */
1339 bool default_branch;
1340 /* While reading a DW_TAG_variant_part, this will be set if this
1341 field is the discriminant. */
1342 bool is_discriminant;
1343 };
1344
1345 struct nextfield
1346 {
1347 int accessibility = 0;
1348 int virtuality = 0;
1349 /* Extra information to describe a variant or variant part. */
1350 struct variant_field variant {};
1351 struct field field {};
1352 };
1353
1354 struct fnfieldlist
1355 {
1356 const char *name = nullptr;
1357 std::vector<struct fn_field> fnfields;
1358 };
1359
1360 /* The routines that read and process dies for a C struct or C++ class
1361 pass lists of data member fields and lists of member function fields
1362 in an instance of a field_info structure, as defined below. */
1363 struct field_info
1364 {
1365 /* List of data member and baseclasses fields. */
1366 std::vector<struct nextfield> fields;
1367 std::vector<struct nextfield> baseclasses;
1368
1369 /* Number of fields (including baseclasses). */
1370 int nfields = 0;
1371
1372 /* Set if the accesibility of one of the fields is not public. */
1373 int non_public_fields = 0;
1374
1375 /* Member function fieldlist array, contains name of possibly overloaded
1376 member function, number of overloaded member functions and a pointer
1377 to the head of the member function field chain. */
1378 std::vector<struct fnfieldlist> fnfieldlists;
1379
1380 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1381 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1382 std::vector<struct decl_field> typedef_field_list;
1383
1384 /* Nested types defined by this class and the number of elements in this
1385 list. */
1386 std::vector<struct decl_field> nested_types_list;
1387 };
1388
1389 /* One item on the queue of compilation units to read in full symbols
1390 for. */
1391 struct dwarf2_queue_item
1392 {
1393 struct dwarf2_per_cu_data *per_cu;
1394 enum language pretend_language;
1395 struct dwarf2_queue_item *next;
1396 };
1397
1398 /* The current queue. */
1399 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1400
1401 /* Loaded secondary compilation units are kept in memory until they
1402 have not been referenced for the processing of this many
1403 compilation units. Set this to zero to disable caching. Cache
1404 sizes of up to at least twenty will improve startup time for
1405 typical inter-CU-reference binaries, at an obvious memory cost. */
1406 static int dwarf_max_cache_age = 5;
1407 static void
1408 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1409 struct cmd_list_element *c, const char *value)
1410 {
1411 fprintf_filtered (file, _("The upper bound on the age of cached "
1412 "DWARF compilation units is %s.\n"),
1413 value);
1414 }
1415 \f
1416 /* local function prototypes */
1417
1418 static const char *get_section_name (const struct dwarf2_section_info *);
1419
1420 static const char *get_section_file_name (const struct dwarf2_section_info *);
1421
1422 static void dwarf2_find_base_address (struct die_info *die,
1423 struct dwarf2_cu *cu);
1424
1425 static struct partial_symtab *create_partial_symtab
1426 (struct dwarf2_per_cu_data *per_cu, const char *name);
1427
1428 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1429 const gdb_byte *info_ptr,
1430 struct die_info *type_unit_die,
1431 int has_children, void *data);
1432
1433 static void dwarf2_build_psymtabs_hard
1434 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1435
1436 static void scan_partial_symbols (struct partial_die_info *,
1437 CORE_ADDR *, CORE_ADDR *,
1438 int, struct dwarf2_cu *);
1439
1440 static void add_partial_symbol (struct partial_die_info *,
1441 struct dwarf2_cu *);
1442
1443 static void add_partial_namespace (struct partial_die_info *pdi,
1444 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1445 int set_addrmap, struct dwarf2_cu *cu);
1446
1447 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1448 CORE_ADDR *highpc, int set_addrmap,
1449 struct dwarf2_cu *cu);
1450
1451 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1452 struct dwarf2_cu *cu);
1453
1454 static void add_partial_subprogram (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int need_pc, struct dwarf2_cu *cu);
1457
1458 static void dwarf2_read_symtab (struct partial_symtab *,
1459 struct objfile *);
1460
1461 static void psymtab_to_symtab_1 (struct partial_symtab *);
1462
1463 static abbrev_table_up abbrev_table_read_table
1464 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1465 sect_offset);
1466
1467 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1468
1469 static struct partial_die_info *load_partial_dies
1470 (const struct die_reader_specs *, const gdb_byte *, int);
1471
1472 static struct partial_die_info *find_partial_die (sect_offset, int,
1473 struct dwarf2_cu *);
1474
1475 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1476 struct attribute *, struct attr_abbrev *,
1477 const gdb_byte *);
1478
1479 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1480
1481 static int read_1_signed_byte (bfd *, const gdb_byte *);
1482
1483 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1484
1485 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1486
1487 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1488
1489 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1490 unsigned int *);
1491
1492 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1493
1494 static LONGEST read_checked_initial_length_and_offset
1495 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1496 unsigned int *, unsigned int *);
1497
1498 static LONGEST read_offset (bfd *, const gdb_byte *,
1499 const struct comp_unit_head *,
1500 unsigned int *);
1501
1502 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1503
1504 static sect_offset read_abbrev_offset
1505 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1506 struct dwarf2_section_info *, sect_offset);
1507
1508 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1509
1510 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static const char *read_indirect_string
1513 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1514 const struct comp_unit_head *, unsigned int *);
1515
1516 static const char *read_indirect_line_string
1517 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1518 const struct comp_unit_head *, unsigned int *);
1519
1520 static const char *read_indirect_string_at_offset
1521 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1522 LONGEST str_offset);
1523
1524 static const char *read_indirect_string_from_dwz
1525 (struct objfile *objfile, struct dwz_file *, LONGEST);
1526
1527 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1530 const gdb_byte *,
1531 unsigned int *);
1532
1533 static const char *read_str_index (const struct die_reader_specs *reader,
1534 ULONGEST str_index);
1535
1536 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1537
1538 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1539 struct dwarf2_cu *);
1540
1541 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1542 unsigned int);
1543
1544 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1545 struct dwarf2_cu *cu);
1546
1547 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1548 struct dwarf2_cu *cu);
1549
1550 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1551
1552 static struct die_info *die_specification (struct die_info *die,
1553 struct dwarf2_cu **);
1554
1555 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1556 struct dwarf2_cu *cu);
1557
1558 static void dwarf_decode_lines (struct line_header *, const char *,
1559 struct dwarf2_cu *, struct partial_symtab *,
1560 CORE_ADDR, int decode_mapping);
1561
1562 static void dwarf2_start_subfile (const char *, const char *);
1563
1564 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1565 const char *, const char *,
1566 CORE_ADDR);
1567
1568 static struct symbol *new_symbol (struct die_info *, struct type *,
1569 struct dwarf2_cu *, struct symbol * = NULL);
1570
1571 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1572 struct dwarf2_cu *);
1573
1574 static void dwarf2_const_value_attr (const struct attribute *attr,
1575 struct type *type,
1576 const char *name,
1577 struct obstack *obstack,
1578 struct dwarf2_cu *cu, LONGEST *value,
1579 const gdb_byte **bytes,
1580 struct dwarf2_locexpr_baton **baton);
1581
1582 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1583
1584 static int need_gnat_info (struct dwarf2_cu *);
1585
1586 static struct type *die_descriptive_type (struct die_info *,
1587 struct dwarf2_cu *);
1588
1589 static void set_descriptive_type (struct type *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592 static struct type *die_containing_type (struct die_info *,
1593 struct dwarf2_cu *);
1594
1595 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1596 struct dwarf2_cu *);
1597
1598 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1599
1600 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1601
1602 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1603
1604 static char *typename_concat (struct obstack *obs, const char *prefix,
1605 const char *suffix, int physname,
1606 struct dwarf2_cu *cu);
1607
1608 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1611
1612 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1613
1614 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1615
1616 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1617
1618 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1619
1620 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1621 struct dwarf2_cu *, struct partial_symtab *);
1622
1623 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1624 values. Keep the items ordered with increasing constraints compliance. */
1625 enum pc_bounds_kind
1626 {
1627 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1628 PC_BOUNDS_NOT_PRESENT,
1629
1630 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1631 were present but they do not form a valid range of PC addresses. */
1632 PC_BOUNDS_INVALID,
1633
1634 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1635 PC_BOUNDS_RANGES,
1636
1637 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1638 PC_BOUNDS_HIGH_LOW,
1639 };
1640
1641 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1642 CORE_ADDR *, CORE_ADDR *,
1643 struct dwarf2_cu *,
1644 struct partial_symtab *);
1645
1646 static void get_scope_pc_bounds (struct die_info *,
1647 CORE_ADDR *, CORE_ADDR *,
1648 struct dwarf2_cu *);
1649
1650 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1651 CORE_ADDR, struct dwarf2_cu *);
1652
1653 static void dwarf2_add_field (struct field_info *, struct die_info *,
1654 struct dwarf2_cu *);
1655
1656 static void dwarf2_attach_fields_to_type (struct field_info *,
1657 struct type *, struct dwarf2_cu *);
1658
1659 static void dwarf2_add_member_fn (struct field_info *,
1660 struct die_info *, struct type *,
1661 struct dwarf2_cu *);
1662
1663 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1664 struct type *,
1665 struct dwarf2_cu *);
1666
1667 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1672
1673 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static struct using_direct **using_directives (enum language);
1676
1677 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1678
1679 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1680
1681 static struct type *read_module_type (struct die_info *die,
1682 struct dwarf2_cu *cu);
1683
1684 static const char *namespace_name (struct die_info *die,
1685 int *is_anonymous, struct dwarf2_cu *);
1686
1687 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1688
1689 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1690
1691 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1692 struct dwarf2_cu *);
1693
1694 static struct die_info *read_die_and_siblings_1
1695 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1696 struct die_info *);
1697
1698 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1699 const gdb_byte *info_ptr,
1700 const gdb_byte **new_info_ptr,
1701 struct die_info *parent);
1702
1703 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1704 struct die_info **, const gdb_byte *,
1705 int *, int);
1706
1707 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1708 struct die_info **, const gdb_byte *,
1709 int *);
1710
1711 static void process_die (struct die_info *, struct dwarf2_cu *);
1712
1713 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1714 struct obstack *);
1715
1716 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1717
1718 static const char *dwarf2_full_name (const char *name,
1719 struct die_info *die,
1720 struct dwarf2_cu *cu);
1721
1722 static const char *dwarf2_physname (const char *name, struct die_info *die,
1723 struct dwarf2_cu *cu);
1724
1725 static struct die_info *dwarf2_extension (struct die_info *die,
1726 struct dwarf2_cu **);
1727
1728 static const char *dwarf_tag_name (unsigned int);
1729
1730 static const char *dwarf_attr_name (unsigned int);
1731
1732 static const char *dwarf_form_name (unsigned int);
1733
1734 static const char *dwarf_bool_name (unsigned int);
1735
1736 static const char *dwarf_type_encoding_name (unsigned int);
1737
1738 static struct die_info *sibling_die (struct die_info *);
1739
1740 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1741
1742 static void dump_die_for_error (struct die_info *);
1743
1744 static void dump_die_1 (struct ui_file *, int level, int max_level,
1745 struct die_info *);
1746
1747 /*static*/ void dump_die (struct die_info *, int max_level);
1748
1749 static void store_in_ref_table (struct die_info *,
1750 struct dwarf2_cu *);
1751
1752 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1753
1754 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1755
1756 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1757 const struct attribute *,
1758 struct dwarf2_cu **);
1759
1760 static struct die_info *follow_die_ref (struct die_info *,
1761 const struct attribute *,
1762 struct dwarf2_cu **);
1763
1764 static struct die_info *follow_die_sig (struct die_info *,
1765 const struct attribute *,
1766 struct dwarf2_cu **);
1767
1768 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1769 struct dwarf2_cu *);
1770
1771 static struct type *get_DW_AT_signature_type (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu *);
1774
1775 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1776
1777 static void read_signatured_type (struct signatured_type *);
1778
1779 static int attr_to_dynamic_prop (const struct attribute *attr,
1780 struct die_info *die, struct dwarf2_cu *cu,
1781 struct dynamic_prop *prop);
1782
1783 /* memory allocation interface */
1784
1785 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1786
1787 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1788
1789 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1790
1791 static int attr_form_is_block (const struct attribute *);
1792
1793 static int attr_form_is_section_offset (const struct attribute *);
1794
1795 static int attr_form_is_constant (const struct attribute *);
1796
1797 static int attr_form_is_ref (const struct attribute *);
1798
1799 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1800 struct dwarf2_loclist_baton *baton,
1801 const struct attribute *attr);
1802
1803 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1804 struct symbol *sym,
1805 struct dwarf2_cu *cu,
1806 int is_block);
1807
1808 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1809 const gdb_byte *info_ptr,
1810 struct abbrev_info *abbrev);
1811
1812 static hashval_t partial_die_hash (const void *item);
1813
1814 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1815
1816 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1817 (sect_offset sect_off, unsigned int offset_in_dwz,
1818 struct dwarf2_per_objfile *dwarf2_per_objfile);
1819
1820 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1821 struct die_info *comp_unit_die,
1822 enum language pretend_language);
1823
1824 static void free_cached_comp_units (void *);
1825
1826 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1827
1828 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1829
1830 static struct type *set_die_type (struct die_info *, struct type *,
1831 struct dwarf2_cu *);
1832
1833 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1834
1835 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1836
1837 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1838 enum language);
1839
1840 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1841 enum language);
1842
1843 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1844 enum language);
1845
1846 static void dwarf2_add_dependence (struct dwarf2_cu *,
1847 struct dwarf2_per_cu_data *);
1848
1849 static void dwarf2_mark (struct dwarf2_cu *);
1850
1851 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1852
1853 static struct type *get_die_type_at_offset (sect_offset,
1854 struct dwarf2_per_cu_data *);
1855
1856 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1857
1858 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1859 enum language pretend_language);
1860
1861 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1862
1863 /* Class, the destructor of which frees all allocated queue entries. This
1864 will only have work to do if an error was thrown while processing the
1865 dwarf. If no error was thrown then the queue entries should have all
1866 been processed, and freed, as we went along. */
1867
1868 class dwarf2_queue_guard
1869 {
1870 public:
1871 dwarf2_queue_guard () = default;
1872
1873 /* Free any entries remaining on the queue. There should only be
1874 entries left if we hit an error while processing the dwarf. */
1875 ~dwarf2_queue_guard ()
1876 {
1877 struct dwarf2_queue_item *item, *last;
1878
1879 item = dwarf2_queue;
1880 while (item)
1881 {
1882 /* Anything still marked queued is likely to be in an
1883 inconsistent state, so discard it. */
1884 if (item->per_cu->queued)
1885 {
1886 if (item->per_cu->cu != NULL)
1887 free_one_cached_comp_unit (item->per_cu);
1888 item->per_cu->queued = 0;
1889 }
1890
1891 last = item;
1892 item = item->next;
1893 xfree (last);
1894 }
1895
1896 dwarf2_queue = dwarf2_queue_tail = NULL;
1897 }
1898 };
1899
1900 /* The return type of find_file_and_directory. Note, the enclosed
1901 string pointers are only valid while this object is valid. */
1902
1903 struct file_and_directory
1904 {
1905 /* The filename. This is never NULL. */
1906 const char *name;
1907
1908 /* The compilation directory. NULL if not known. If we needed to
1909 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1910 points directly to the DW_AT_comp_dir string attribute owned by
1911 the obstack that owns the DIE. */
1912 const char *comp_dir;
1913
1914 /* If we needed to build a new string for comp_dir, this is what
1915 owns the storage. */
1916 std::string comp_dir_storage;
1917 };
1918
1919 static file_and_directory find_file_and_directory (struct die_info *die,
1920 struct dwarf2_cu *cu);
1921
1922 static char *file_full_name (int file, struct line_header *lh,
1923 const char *comp_dir);
1924
1925 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1926 enum class rcuh_kind { COMPILE, TYPE };
1927
1928 static const gdb_byte *read_and_check_comp_unit_head
1929 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1930 struct comp_unit_head *header,
1931 struct dwarf2_section_info *section,
1932 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1933 rcuh_kind section_kind);
1934
1935 static void init_cutu_and_read_dies
1936 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1937 int use_existing_cu, int keep,
1938 die_reader_func_ftype *die_reader_func, void *data);
1939
1940 static void init_cutu_and_read_dies_simple
1941 (struct dwarf2_per_cu_data *this_cu,
1942 die_reader_func_ftype *die_reader_func, void *data);
1943
1944 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1945
1946 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1947
1948 static struct dwo_unit *lookup_dwo_unit_in_dwp
1949 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1950 struct dwp_file *dwp_file, const char *comp_dir,
1951 ULONGEST signature, int is_debug_types);
1952
1953 static struct dwp_file *get_dwp_file
1954 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1955
1956 static struct dwo_unit *lookup_dwo_comp_unit
1957 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1958
1959 static struct dwo_unit *lookup_dwo_type_unit
1960 (struct signatured_type *, const char *, const char *);
1961
1962 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1963
1964 static void free_dwo_file_cleanup (void *);
1965
1966 struct free_dwo_file_cleanup_data
1967 {
1968 struct dwo_file *dwo_file;
1969 struct dwarf2_per_objfile *dwarf2_per_objfile;
1970 };
1971
1972 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1973
1974 static void check_producer (struct dwarf2_cu *cu);
1975
1976 static void free_line_header_voidp (void *arg);
1977 \f
1978 /* Various complaints about symbol reading that don't abort the process. */
1979
1980 static void
1981 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1982 {
1983 complaint (&symfile_complaints,
1984 _("statement list doesn't fit in .debug_line section"));
1985 }
1986
1987 static void
1988 dwarf2_debug_line_missing_file_complaint (void)
1989 {
1990 complaint (&symfile_complaints,
1991 _(".debug_line section has line data without a file"));
1992 }
1993
1994 static void
1995 dwarf2_debug_line_missing_end_sequence_complaint (void)
1996 {
1997 complaint (&symfile_complaints,
1998 _(".debug_line section has line "
1999 "program sequence without an end"));
2000 }
2001
2002 static void
2003 dwarf2_complex_location_expr_complaint (void)
2004 {
2005 complaint (&symfile_complaints, _("location expression too complex"));
2006 }
2007
2008 static void
2009 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2010 int arg3)
2011 {
2012 complaint (&symfile_complaints,
2013 _("const value length mismatch for '%s', got %d, expected %d"),
2014 arg1, arg2, arg3);
2015 }
2016
2017 static void
2018 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2019 {
2020 complaint (&symfile_complaints,
2021 _("debug info runs off end of %s section"
2022 " [in module %s]"),
2023 get_section_name (section),
2024 get_section_file_name (section));
2025 }
2026
2027 static void
2028 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2029 {
2030 complaint (&symfile_complaints,
2031 _("macro debug info contains a "
2032 "malformed macro definition:\n`%s'"),
2033 arg1);
2034 }
2035
2036 static void
2037 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2038 {
2039 complaint (&symfile_complaints,
2040 _("invalid attribute class or form for '%s' in '%s'"),
2041 arg1, arg2);
2042 }
2043
2044 /* Hash function for line_header_hash. */
2045
2046 static hashval_t
2047 line_header_hash (const struct line_header *ofs)
2048 {
2049 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2050 }
2051
2052 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2053
2054 static hashval_t
2055 line_header_hash_voidp (const void *item)
2056 {
2057 const struct line_header *ofs = (const struct line_header *) item;
2058
2059 return line_header_hash (ofs);
2060 }
2061
2062 /* Equality function for line_header_hash. */
2063
2064 static int
2065 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2066 {
2067 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2068 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2069
2070 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2071 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2072 }
2073
2074 \f
2075
2076 /* Read the given attribute value as an address, taking the attribute's
2077 form into account. */
2078
2079 static CORE_ADDR
2080 attr_value_as_address (struct attribute *attr)
2081 {
2082 CORE_ADDR addr;
2083
2084 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2085 {
2086 /* Aside from a few clearly defined exceptions, attributes that
2087 contain an address must always be in DW_FORM_addr form.
2088 Unfortunately, some compilers happen to be violating this
2089 requirement by encoding addresses using other forms, such
2090 as DW_FORM_data4 for example. For those broken compilers,
2091 we try to do our best, without any guarantee of success,
2092 to interpret the address correctly. It would also be nice
2093 to generate a complaint, but that would require us to maintain
2094 a list of legitimate cases where a non-address form is allowed,
2095 as well as update callers to pass in at least the CU's DWARF
2096 version. This is more overhead than what we're willing to
2097 expand for a pretty rare case. */
2098 addr = DW_UNSND (attr);
2099 }
2100 else
2101 addr = DW_ADDR (attr);
2102
2103 return addr;
2104 }
2105
2106 /* See declaration. */
2107
2108 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2109 const dwarf2_debug_sections *names)
2110 : objfile (objfile_)
2111 {
2112 if (names == NULL)
2113 names = &dwarf2_elf_names;
2114
2115 bfd *obfd = objfile->obfd;
2116
2117 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2118 locate_sections (obfd, sec, *names);
2119 }
2120
2121 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2122
2123 dwarf2_per_objfile::~dwarf2_per_objfile ()
2124 {
2125 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2126 free_cached_comp_units ();
2127
2128 if (quick_file_names_table)
2129 htab_delete (quick_file_names_table);
2130
2131 if (line_header_hash)
2132 htab_delete (line_header_hash);
2133
2134 for (int ix = 0; ix < n_comp_units; ++ix)
2135 VEC_free (dwarf2_per_cu_ptr, all_comp_units[ix]->imported_symtabs);
2136
2137 for (int ix = 0; ix < n_type_units; ++ix)
2138 VEC_free (dwarf2_per_cu_ptr,
2139 all_type_units[ix]->per_cu.imported_symtabs);
2140 xfree (all_type_units);
2141
2142 VEC_free (dwarf2_section_info_def, types);
2143
2144 if (dwo_files != NULL)
2145 free_dwo_files (dwo_files, objfile);
2146 if (dwp_file != NULL)
2147 gdb_bfd_unref (dwp_file->dbfd);
2148
2149 if (dwz_file != NULL && dwz_file->dwz_bfd)
2150 gdb_bfd_unref (dwz_file->dwz_bfd);
2151
2152 if (index_table != NULL)
2153 index_table->~mapped_index ();
2154
2155 /* Everything else should be on the objfile obstack. */
2156 }
2157
2158 /* See declaration. */
2159
2160 void
2161 dwarf2_per_objfile::free_cached_comp_units ()
2162 {
2163 dwarf2_per_cu_data *per_cu = read_in_chain;
2164 dwarf2_per_cu_data **last_chain = &read_in_chain;
2165 while (per_cu != NULL)
2166 {
2167 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2168
2169 delete per_cu->cu;
2170 *last_chain = next_cu;
2171 per_cu = next_cu;
2172 }
2173 }
2174
2175 /* Try to locate the sections we need for DWARF 2 debugging
2176 information and return true if we have enough to do something.
2177 NAMES points to the dwarf2 section names, or is NULL if the standard
2178 ELF names are used. */
2179
2180 int
2181 dwarf2_has_info (struct objfile *objfile,
2182 const struct dwarf2_debug_sections *names)
2183 {
2184 if (objfile->flags & OBJF_READNEVER)
2185 return 0;
2186
2187 struct dwarf2_per_objfile *dwarf2_per_objfile
2188 = get_dwarf2_per_objfile (objfile);
2189
2190 if (dwarf2_per_objfile == NULL)
2191 {
2192 /* Initialize per-objfile state. */
2193 dwarf2_per_objfile
2194 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2195 names);
2196 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2197 }
2198 return (!dwarf2_per_objfile->info.is_virtual
2199 && dwarf2_per_objfile->info.s.section != NULL
2200 && !dwarf2_per_objfile->abbrev.is_virtual
2201 && dwarf2_per_objfile->abbrev.s.section != NULL);
2202 }
2203
2204 /* Return the containing section of virtual section SECTION. */
2205
2206 static struct dwarf2_section_info *
2207 get_containing_section (const struct dwarf2_section_info *section)
2208 {
2209 gdb_assert (section->is_virtual);
2210 return section->s.containing_section;
2211 }
2212
2213 /* Return the bfd owner of SECTION. */
2214
2215 static struct bfd *
2216 get_section_bfd_owner (const struct dwarf2_section_info *section)
2217 {
2218 if (section->is_virtual)
2219 {
2220 section = get_containing_section (section);
2221 gdb_assert (!section->is_virtual);
2222 }
2223 return section->s.section->owner;
2224 }
2225
2226 /* Return the bfd section of SECTION.
2227 Returns NULL if the section is not present. */
2228
2229 static asection *
2230 get_section_bfd_section (const struct dwarf2_section_info *section)
2231 {
2232 if (section->is_virtual)
2233 {
2234 section = get_containing_section (section);
2235 gdb_assert (!section->is_virtual);
2236 }
2237 return section->s.section;
2238 }
2239
2240 /* Return the name of SECTION. */
2241
2242 static const char *
2243 get_section_name (const struct dwarf2_section_info *section)
2244 {
2245 asection *sectp = get_section_bfd_section (section);
2246
2247 gdb_assert (sectp != NULL);
2248 return bfd_section_name (get_section_bfd_owner (section), sectp);
2249 }
2250
2251 /* Return the name of the file SECTION is in. */
2252
2253 static const char *
2254 get_section_file_name (const struct dwarf2_section_info *section)
2255 {
2256 bfd *abfd = get_section_bfd_owner (section);
2257
2258 return bfd_get_filename (abfd);
2259 }
2260
2261 /* Return the id of SECTION.
2262 Returns 0 if SECTION doesn't exist. */
2263
2264 static int
2265 get_section_id (const struct dwarf2_section_info *section)
2266 {
2267 asection *sectp = get_section_bfd_section (section);
2268
2269 if (sectp == NULL)
2270 return 0;
2271 return sectp->id;
2272 }
2273
2274 /* Return the flags of SECTION.
2275 SECTION (or containing section if this is a virtual section) must exist. */
2276
2277 static int
2278 get_section_flags (const struct dwarf2_section_info *section)
2279 {
2280 asection *sectp = get_section_bfd_section (section);
2281
2282 gdb_assert (sectp != NULL);
2283 return bfd_get_section_flags (sectp->owner, sectp);
2284 }
2285
2286 /* When loading sections, we look either for uncompressed section or for
2287 compressed section names. */
2288
2289 static int
2290 section_is_p (const char *section_name,
2291 const struct dwarf2_section_names *names)
2292 {
2293 if (names->normal != NULL
2294 && strcmp (section_name, names->normal) == 0)
2295 return 1;
2296 if (names->compressed != NULL
2297 && strcmp (section_name, names->compressed) == 0)
2298 return 1;
2299 return 0;
2300 }
2301
2302 /* See declaration. */
2303
2304 void
2305 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2306 const dwarf2_debug_sections &names)
2307 {
2308 flagword aflag = bfd_get_section_flags (abfd, sectp);
2309
2310 if ((aflag & SEC_HAS_CONTENTS) == 0)
2311 {
2312 }
2313 else if (section_is_p (sectp->name, &names.info))
2314 {
2315 this->info.s.section = sectp;
2316 this->info.size = bfd_get_section_size (sectp);
2317 }
2318 else if (section_is_p (sectp->name, &names.abbrev))
2319 {
2320 this->abbrev.s.section = sectp;
2321 this->abbrev.size = bfd_get_section_size (sectp);
2322 }
2323 else if (section_is_p (sectp->name, &names.line))
2324 {
2325 this->line.s.section = sectp;
2326 this->line.size = bfd_get_section_size (sectp);
2327 }
2328 else if (section_is_p (sectp->name, &names.loc))
2329 {
2330 this->loc.s.section = sectp;
2331 this->loc.size = bfd_get_section_size (sectp);
2332 }
2333 else if (section_is_p (sectp->name, &names.loclists))
2334 {
2335 this->loclists.s.section = sectp;
2336 this->loclists.size = bfd_get_section_size (sectp);
2337 }
2338 else if (section_is_p (sectp->name, &names.macinfo))
2339 {
2340 this->macinfo.s.section = sectp;
2341 this->macinfo.size = bfd_get_section_size (sectp);
2342 }
2343 else if (section_is_p (sectp->name, &names.macro))
2344 {
2345 this->macro.s.section = sectp;
2346 this->macro.size = bfd_get_section_size (sectp);
2347 }
2348 else if (section_is_p (sectp->name, &names.str))
2349 {
2350 this->str.s.section = sectp;
2351 this->str.size = bfd_get_section_size (sectp);
2352 }
2353 else if (section_is_p (sectp->name, &names.line_str))
2354 {
2355 this->line_str.s.section = sectp;
2356 this->line_str.size = bfd_get_section_size (sectp);
2357 }
2358 else if (section_is_p (sectp->name, &names.addr))
2359 {
2360 this->addr.s.section = sectp;
2361 this->addr.size = bfd_get_section_size (sectp);
2362 }
2363 else if (section_is_p (sectp->name, &names.frame))
2364 {
2365 this->frame.s.section = sectp;
2366 this->frame.size = bfd_get_section_size (sectp);
2367 }
2368 else if (section_is_p (sectp->name, &names.eh_frame))
2369 {
2370 this->eh_frame.s.section = sectp;
2371 this->eh_frame.size = bfd_get_section_size (sectp);
2372 }
2373 else if (section_is_p (sectp->name, &names.ranges))
2374 {
2375 this->ranges.s.section = sectp;
2376 this->ranges.size = bfd_get_section_size (sectp);
2377 }
2378 else if (section_is_p (sectp->name, &names.rnglists))
2379 {
2380 this->rnglists.s.section = sectp;
2381 this->rnglists.size = bfd_get_section_size (sectp);
2382 }
2383 else if (section_is_p (sectp->name, &names.types))
2384 {
2385 struct dwarf2_section_info type_section;
2386
2387 memset (&type_section, 0, sizeof (type_section));
2388 type_section.s.section = sectp;
2389 type_section.size = bfd_get_section_size (sectp);
2390
2391 VEC_safe_push (dwarf2_section_info_def, this->types,
2392 &type_section);
2393 }
2394 else if (section_is_p (sectp->name, &names.gdb_index))
2395 {
2396 this->gdb_index.s.section = sectp;
2397 this->gdb_index.size = bfd_get_section_size (sectp);
2398 }
2399 else if (section_is_p (sectp->name, &names.debug_names))
2400 {
2401 this->debug_names.s.section = sectp;
2402 this->debug_names.size = bfd_get_section_size (sectp);
2403 }
2404 else if (section_is_p (sectp->name, &names.debug_aranges))
2405 {
2406 this->debug_aranges.s.section = sectp;
2407 this->debug_aranges.size = bfd_get_section_size (sectp);
2408 }
2409
2410 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2411 && bfd_section_vma (abfd, sectp) == 0)
2412 this->has_section_at_zero = true;
2413 }
2414
2415 /* A helper function that decides whether a section is empty,
2416 or not present. */
2417
2418 static int
2419 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2420 {
2421 if (section->is_virtual)
2422 return section->size == 0;
2423 return section->s.section == NULL || section->size == 0;
2424 }
2425
2426 /* See dwarf2read.h. */
2427
2428 void
2429 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2430 {
2431 asection *sectp;
2432 bfd *abfd;
2433 gdb_byte *buf, *retbuf;
2434
2435 if (info->readin)
2436 return;
2437 info->buffer = NULL;
2438 info->readin = 1;
2439
2440 if (dwarf2_section_empty_p (info))
2441 return;
2442
2443 sectp = get_section_bfd_section (info);
2444
2445 /* If this is a virtual section we need to read in the real one first. */
2446 if (info->is_virtual)
2447 {
2448 struct dwarf2_section_info *containing_section =
2449 get_containing_section (info);
2450
2451 gdb_assert (sectp != NULL);
2452 if ((sectp->flags & SEC_RELOC) != 0)
2453 {
2454 error (_("Dwarf Error: DWP format V2 with relocations is not"
2455 " supported in section %s [in module %s]"),
2456 get_section_name (info), get_section_file_name (info));
2457 }
2458 dwarf2_read_section (objfile, containing_section);
2459 /* Other code should have already caught virtual sections that don't
2460 fit. */
2461 gdb_assert (info->virtual_offset + info->size
2462 <= containing_section->size);
2463 /* If the real section is empty or there was a problem reading the
2464 section we shouldn't get here. */
2465 gdb_assert (containing_section->buffer != NULL);
2466 info->buffer = containing_section->buffer + info->virtual_offset;
2467 return;
2468 }
2469
2470 /* If the section has relocations, we must read it ourselves.
2471 Otherwise we attach it to the BFD. */
2472 if ((sectp->flags & SEC_RELOC) == 0)
2473 {
2474 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2475 return;
2476 }
2477
2478 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2479 info->buffer = buf;
2480
2481 /* When debugging .o files, we may need to apply relocations; see
2482 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2483 We never compress sections in .o files, so we only need to
2484 try this when the section is not compressed. */
2485 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2486 if (retbuf != NULL)
2487 {
2488 info->buffer = retbuf;
2489 return;
2490 }
2491
2492 abfd = get_section_bfd_owner (info);
2493 gdb_assert (abfd != NULL);
2494
2495 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2496 || bfd_bread (buf, info->size, abfd) != info->size)
2497 {
2498 error (_("Dwarf Error: Can't read DWARF data"
2499 " in section %s [in module %s]"),
2500 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2501 }
2502 }
2503
2504 /* A helper function that returns the size of a section in a safe way.
2505 If you are positive that the section has been read before using the
2506 size, then it is safe to refer to the dwarf2_section_info object's
2507 "size" field directly. In other cases, you must call this
2508 function, because for compressed sections the size field is not set
2509 correctly until the section has been read. */
2510
2511 static bfd_size_type
2512 dwarf2_section_size (struct objfile *objfile,
2513 struct dwarf2_section_info *info)
2514 {
2515 if (!info->readin)
2516 dwarf2_read_section (objfile, info);
2517 return info->size;
2518 }
2519
2520 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2521 SECTION_NAME. */
2522
2523 void
2524 dwarf2_get_section_info (struct objfile *objfile,
2525 enum dwarf2_section_enum sect,
2526 asection **sectp, const gdb_byte **bufp,
2527 bfd_size_type *sizep)
2528 {
2529 struct dwarf2_per_objfile *data
2530 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2531 dwarf2_objfile_data_key);
2532 struct dwarf2_section_info *info;
2533
2534 /* We may see an objfile without any DWARF, in which case we just
2535 return nothing. */
2536 if (data == NULL)
2537 {
2538 *sectp = NULL;
2539 *bufp = NULL;
2540 *sizep = 0;
2541 return;
2542 }
2543 switch (sect)
2544 {
2545 case DWARF2_DEBUG_FRAME:
2546 info = &data->frame;
2547 break;
2548 case DWARF2_EH_FRAME:
2549 info = &data->eh_frame;
2550 break;
2551 default:
2552 gdb_assert_not_reached ("unexpected section");
2553 }
2554
2555 dwarf2_read_section (objfile, info);
2556
2557 *sectp = get_section_bfd_section (info);
2558 *bufp = info->buffer;
2559 *sizep = info->size;
2560 }
2561
2562 /* A helper function to find the sections for a .dwz file. */
2563
2564 static void
2565 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2566 {
2567 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2568
2569 /* Note that we only support the standard ELF names, because .dwz
2570 is ELF-only (at the time of writing). */
2571 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2572 {
2573 dwz_file->abbrev.s.section = sectp;
2574 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2575 }
2576 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2577 {
2578 dwz_file->info.s.section = sectp;
2579 dwz_file->info.size = bfd_get_section_size (sectp);
2580 }
2581 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2582 {
2583 dwz_file->str.s.section = sectp;
2584 dwz_file->str.size = bfd_get_section_size (sectp);
2585 }
2586 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2587 {
2588 dwz_file->line.s.section = sectp;
2589 dwz_file->line.size = bfd_get_section_size (sectp);
2590 }
2591 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2592 {
2593 dwz_file->macro.s.section = sectp;
2594 dwz_file->macro.size = bfd_get_section_size (sectp);
2595 }
2596 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2597 {
2598 dwz_file->gdb_index.s.section = sectp;
2599 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2600 }
2601 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2602 {
2603 dwz_file->debug_names.s.section = sectp;
2604 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2605 }
2606 }
2607
2608 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2609 there is no .gnu_debugaltlink section in the file. Error if there
2610 is such a section but the file cannot be found. */
2611
2612 static struct dwz_file *
2613 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2614 {
2615 const char *filename;
2616 struct dwz_file *result;
2617 bfd_size_type buildid_len_arg;
2618 size_t buildid_len;
2619 bfd_byte *buildid;
2620
2621 if (dwarf2_per_objfile->dwz_file != NULL)
2622 return dwarf2_per_objfile->dwz_file;
2623
2624 bfd_set_error (bfd_error_no_error);
2625 gdb::unique_xmalloc_ptr<char> data
2626 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2627 &buildid_len_arg, &buildid));
2628 if (data == NULL)
2629 {
2630 if (bfd_get_error () == bfd_error_no_error)
2631 return NULL;
2632 error (_("could not read '.gnu_debugaltlink' section: %s"),
2633 bfd_errmsg (bfd_get_error ()));
2634 }
2635
2636 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2637
2638 buildid_len = (size_t) buildid_len_arg;
2639
2640 filename = data.get ();
2641
2642 std::string abs_storage;
2643 if (!IS_ABSOLUTE_PATH (filename))
2644 {
2645 gdb::unique_xmalloc_ptr<char> abs
2646 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2647
2648 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2649 filename = abs_storage.c_str ();
2650 }
2651
2652 /* First try the file name given in the section. If that doesn't
2653 work, try to use the build-id instead. */
2654 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2655 if (dwz_bfd != NULL)
2656 {
2657 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2658 dwz_bfd.release ();
2659 }
2660
2661 if (dwz_bfd == NULL)
2662 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2663
2664 if (dwz_bfd == NULL)
2665 error (_("could not find '.gnu_debugaltlink' file for %s"),
2666 objfile_name (dwarf2_per_objfile->objfile));
2667
2668 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2669 struct dwz_file);
2670 result->dwz_bfd = dwz_bfd.release ();
2671
2672 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2673
2674 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2675 dwarf2_per_objfile->dwz_file = result;
2676 return result;
2677 }
2678 \f
2679 /* DWARF quick_symbols_functions support. */
2680
2681 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2682 unique line tables, so we maintain a separate table of all .debug_line
2683 derived entries to support the sharing.
2684 All the quick functions need is the list of file names. We discard the
2685 line_header when we're done and don't need to record it here. */
2686 struct quick_file_names
2687 {
2688 /* The data used to construct the hash key. */
2689 struct stmt_list_hash hash;
2690
2691 /* The number of entries in file_names, real_names. */
2692 unsigned int num_file_names;
2693
2694 /* The file names from the line table, after being run through
2695 file_full_name. */
2696 const char **file_names;
2697
2698 /* The file names from the line table after being run through
2699 gdb_realpath. These are computed lazily. */
2700 const char **real_names;
2701 };
2702
2703 /* When using the index (and thus not using psymtabs), each CU has an
2704 object of this type. This is used to hold information needed by
2705 the various "quick" methods. */
2706 struct dwarf2_per_cu_quick_data
2707 {
2708 /* The file table. This can be NULL if there was no file table
2709 or it's currently not read in.
2710 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2711 struct quick_file_names *file_names;
2712
2713 /* The corresponding symbol table. This is NULL if symbols for this
2714 CU have not yet been read. */
2715 struct compunit_symtab *compunit_symtab;
2716
2717 /* A temporary mark bit used when iterating over all CUs in
2718 expand_symtabs_matching. */
2719 unsigned int mark : 1;
2720
2721 /* True if we've tried to read the file table and found there isn't one.
2722 There will be no point in trying to read it again next time. */
2723 unsigned int no_file_data : 1;
2724 };
2725
2726 /* Utility hash function for a stmt_list_hash. */
2727
2728 static hashval_t
2729 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2730 {
2731 hashval_t v = 0;
2732
2733 if (stmt_list_hash->dwo_unit != NULL)
2734 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2735 v += to_underlying (stmt_list_hash->line_sect_off);
2736 return v;
2737 }
2738
2739 /* Utility equality function for a stmt_list_hash. */
2740
2741 static int
2742 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2743 const struct stmt_list_hash *rhs)
2744 {
2745 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2746 return 0;
2747 if (lhs->dwo_unit != NULL
2748 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2749 return 0;
2750
2751 return lhs->line_sect_off == rhs->line_sect_off;
2752 }
2753
2754 /* Hash function for a quick_file_names. */
2755
2756 static hashval_t
2757 hash_file_name_entry (const void *e)
2758 {
2759 const struct quick_file_names *file_data
2760 = (const struct quick_file_names *) e;
2761
2762 return hash_stmt_list_entry (&file_data->hash);
2763 }
2764
2765 /* Equality function for a quick_file_names. */
2766
2767 static int
2768 eq_file_name_entry (const void *a, const void *b)
2769 {
2770 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2771 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2772
2773 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2774 }
2775
2776 /* Delete function for a quick_file_names. */
2777
2778 static void
2779 delete_file_name_entry (void *e)
2780 {
2781 struct quick_file_names *file_data = (struct quick_file_names *) e;
2782 int i;
2783
2784 for (i = 0; i < file_data->num_file_names; ++i)
2785 {
2786 xfree ((void*) file_data->file_names[i]);
2787 if (file_data->real_names)
2788 xfree ((void*) file_data->real_names[i]);
2789 }
2790
2791 /* The space for the struct itself lives on objfile_obstack,
2792 so we don't free it here. */
2793 }
2794
2795 /* Create a quick_file_names hash table. */
2796
2797 static htab_t
2798 create_quick_file_names_table (unsigned int nr_initial_entries)
2799 {
2800 return htab_create_alloc (nr_initial_entries,
2801 hash_file_name_entry, eq_file_name_entry,
2802 delete_file_name_entry, xcalloc, xfree);
2803 }
2804
2805 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2806 have to be created afterwards. You should call age_cached_comp_units after
2807 processing PER_CU->CU. dw2_setup must have been already called. */
2808
2809 static void
2810 load_cu (struct dwarf2_per_cu_data *per_cu)
2811 {
2812 if (per_cu->is_debug_types)
2813 load_full_type_unit (per_cu);
2814 else
2815 load_full_comp_unit (per_cu, language_minimal);
2816
2817 if (per_cu->cu == NULL)
2818 return; /* Dummy CU. */
2819
2820 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2821 }
2822
2823 /* Read in the symbols for PER_CU. */
2824
2825 static void
2826 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2827 {
2828 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2829
2830 /* Skip type_unit_groups, reading the type units they contain
2831 is handled elsewhere. */
2832 if (IS_TYPE_UNIT_GROUP (per_cu))
2833 return;
2834
2835 /* The destructor of dwarf2_queue_guard frees any entries left on
2836 the queue. After this point we're guaranteed to leave this function
2837 with the dwarf queue empty. */
2838 dwarf2_queue_guard q_guard;
2839
2840 if (dwarf2_per_objfile->using_index
2841 ? per_cu->v.quick->compunit_symtab == NULL
2842 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2843 {
2844 queue_comp_unit (per_cu, language_minimal);
2845 load_cu (per_cu);
2846
2847 /* If we just loaded a CU from a DWO, and we're working with an index
2848 that may badly handle TUs, load all the TUs in that DWO as well.
2849 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2850 if (!per_cu->is_debug_types
2851 && per_cu->cu != NULL
2852 && per_cu->cu->dwo_unit != NULL
2853 && dwarf2_per_objfile->index_table != NULL
2854 && dwarf2_per_objfile->index_table->version <= 7
2855 /* DWP files aren't supported yet. */
2856 && get_dwp_file (dwarf2_per_objfile) == NULL)
2857 queue_and_load_all_dwo_tus (per_cu);
2858 }
2859
2860 process_queue (dwarf2_per_objfile);
2861
2862 /* Age the cache, releasing compilation units that have not
2863 been used recently. */
2864 age_cached_comp_units (dwarf2_per_objfile);
2865 }
2866
2867 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2868 the objfile from which this CU came. Returns the resulting symbol
2869 table. */
2870
2871 static struct compunit_symtab *
2872 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2873 {
2874 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2875
2876 gdb_assert (dwarf2_per_objfile->using_index);
2877 if (!per_cu->v.quick->compunit_symtab)
2878 {
2879 struct cleanup *back_to = make_cleanup (free_cached_comp_units,
2880 dwarf2_per_objfile);
2881 scoped_restore decrementer = increment_reading_symtab ();
2882 dw2_do_instantiate_symtab (per_cu);
2883 process_cu_includes (dwarf2_per_objfile);
2884 do_cleanups (back_to);
2885 }
2886
2887 return per_cu->v.quick->compunit_symtab;
2888 }
2889
2890 /* Return the CU/TU given its index.
2891
2892 This is intended for loops like:
2893
2894 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2895 + dwarf2_per_objfile->n_type_units); ++i)
2896 {
2897 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2898
2899 ...;
2900 }
2901 */
2902
2903 static struct dwarf2_per_cu_data *
2904 dw2_get_cutu (struct dwarf2_per_objfile *dwarf2_per_objfile,
2905 int index)
2906 {
2907 if (index >= dwarf2_per_objfile->n_comp_units)
2908 {
2909 index -= dwarf2_per_objfile->n_comp_units;
2910 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2911 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2912 }
2913
2914 return dwarf2_per_objfile->all_comp_units[index];
2915 }
2916
2917 /* Return the CU given its index.
2918 This differs from dw2_get_cutu in that it's for when you know INDEX
2919 refers to a CU. */
2920
2921 static struct dwarf2_per_cu_data *
2922 dw2_get_cu (struct dwarf2_per_objfile *dwarf2_per_objfile, int index)
2923 {
2924 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2925
2926 return dwarf2_per_objfile->all_comp_units[index];
2927 }
2928
2929 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2930 objfile_obstack, and constructed with the specified field
2931 values. */
2932
2933 static dwarf2_per_cu_data *
2934 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2935 struct dwarf2_section_info *section,
2936 int is_dwz,
2937 sect_offset sect_off, ULONGEST length)
2938 {
2939 struct objfile *objfile = dwarf2_per_objfile->objfile;
2940 dwarf2_per_cu_data *the_cu
2941 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2942 struct dwarf2_per_cu_data);
2943 the_cu->sect_off = sect_off;
2944 the_cu->length = length;
2945 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2946 the_cu->section = section;
2947 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2948 struct dwarf2_per_cu_quick_data);
2949 the_cu->is_dwz = is_dwz;
2950 return the_cu;
2951 }
2952
2953 /* A helper for create_cus_from_index that handles a given list of
2954 CUs. */
2955
2956 static void
2957 create_cus_from_index_list (struct objfile *objfile,
2958 const gdb_byte *cu_list, offset_type n_elements,
2959 struct dwarf2_section_info *section,
2960 int is_dwz,
2961 int base_offset)
2962 {
2963 offset_type i;
2964 struct dwarf2_per_objfile *dwarf2_per_objfile
2965 = get_dwarf2_per_objfile (objfile);
2966
2967 for (i = 0; i < n_elements; i += 2)
2968 {
2969 gdb_static_assert (sizeof (ULONGEST) >= 8);
2970
2971 sect_offset sect_off
2972 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2973 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2974 cu_list += 2 * 8;
2975
2976 dwarf2_per_objfile->all_comp_units[base_offset + i / 2]
2977 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2978 sect_off, length);
2979 }
2980 }
2981
2982 /* Read the CU list from the mapped index, and use it to create all
2983 the CU objects for this objfile. */
2984
2985 static void
2986 create_cus_from_index (struct objfile *objfile,
2987 const gdb_byte *cu_list, offset_type cu_list_elements,
2988 const gdb_byte *dwz_list, offset_type dwz_elements)
2989 {
2990 struct dwz_file *dwz;
2991 struct dwarf2_per_objfile *dwarf2_per_objfile
2992 = get_dwarf2_per_objfile (objfile);
2993
2994 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2995 dwarf2_per_objfile->all_comp_units =
2996 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2997 dwarf2_per_objfile->n_comp_units);
2998
2999 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3000 &dwarf2_per_objfile->info, 0, 0);
3001
3002 if (dwz_elements == 0)
3003 return;
3004
3005 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3006 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3007 cu_list_elements / 2);
3008 }
3009
3010 /* Create the signatured type hash table from the index. */
3011
3012 static void
3013 create_signatured_type_table_from_index (struct objfile *objfile,
3014 struct dwarf2_section_info *section,
3015 const gdb_byte *bytes,
3016 offset_type elements)
3017 {
3018 offset_type i;
3019 htab_t sig_types_hash;
3020 struct dwarf2_per_objfile *dwarf2_per_objfile
3021 = get_dwarf2_per_objfile (objfile);
3022
3023 dwarf2_per_objfile->n_type_units
3024 = dwarf2_per_objfile->n_allocated_type_units
3025 = elements / 3;
3026 dwarf2_per_objfile->all_type_units =
3027 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3028
3029 sig_types_hash = allocate_signatured_type_table (objfile);
3030
3031 for (i = 0; i < elements; i += 3)
3032 {
3033 struct signatured_type *sig_type;
3034 ULONGEST signature;
3035 void **slot;
3036 cu_offset type_offset_in_tu;
3037
3038 gdb_static_assert (sizeof (ULONGEST) >= 8);
3039 sect_offset sect_off
3040 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3041 type_offset_in_tu
3042 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3043 BFD_ENDIAN_LITTLE);
3044 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3045 bytes += 3 * 8;
3046
3047 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3048 struct signatured_type);
3049 sig_type->signature = signature;
3050 sig_type->type_offset_in_tu = type_offset_in_tu;
3051 sig_type->per_cu.is_debug_types = 1;
3052 sig_type->per_cu.section = section;
3053 sig_type->per_cu.sect_off = sect_off;
3054 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3055 sig_type->per_cu.v.quick
3056 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3057 struct dwarf2_per_cu_quick_data);
3058
3059 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3060 *slot = sig_type;
3061
3062 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3063 }
3064
3065 dwarf2_per_objfile->signatured_types = sig_types_hash;
3066 }
3067
3068 /* Create the signatured type hash table from .debug_names. */
3069
3070 static void
3071 create_signatured_type_table_from_debug_names
3072 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3073 const mapped_debug_names &map,
3074 struct dwarf2_section_info *section,
3075 struct dwarf2_section_info *abbrev_section)
3076 {
3077 struct objfile *objfile = dwarf2_per_objfile->objfile;
3078
3079 dwarf2_read_section (objfile, section);
3080 dwarf2_read_section (objfile, abbrev_section);
3081
3082 dwarf2_per_objfile->n_type_units
3083 = dwarf2_per_objfile->n_allocated_type_units
3084 = map.tu_count;
3085 dwarf2_per_objfile->all_type_units
3086 = XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3087
3088 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3089
3090 for (uint32_t i = 0; i < map.tu_count; ++i)
3091 {
3092 struct signatured_type *sig_type;
3093 ULONGEST signature;
3094 void **slot;
3095 cu_offset type_offset_in_tu;
3096
3097 sect_offset sect_off
3098 = (sect_offset) (extract_unsigned_integer
3099 (map.tu_table_reordered + i * map.offset_size,
3100 map.offset_size,
3101 map.dwarf5_byte_order));
3102
3103 comp_unit_head cu_header;
3104 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3105 abbrev_section,
3106 section->buffer + to_underlying (sect_off),
3107 rcuh_kind::TYPE);
3108
3109 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3110 struct signatured_type);
3111 sig_type->signature = cu_header.signature;
3112 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3113 sig_type->per_cu.is_debug_types = 1;
3114 sig_type->per_cu.section = section;
3115 sig_type->per_cu.sect_off = sect_off;
3116 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3117 sig_type->per_cu.v.quick
3118 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3119 struct dwarf2_per_cu_quick_data);
3120
3121 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3122 *slot = sig_type;
3123
3124 dwarf2_per_objfile->all_type_units[i] = sig_type;
3125 }
3126
3127 dwarf2_per_objfile->signatured_types = sig_types_hash;
3128 }
3129
3130 /* Read the address map data from the mapped index, and use it to
3131 populate the objfile's psymtabs_addrmap. */
3132
3133 static void
3134 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3135 struct mapped_index *index)
3136 {
3137 struct objfile *objfile = dwarf2_per_objfile->objfile;
3138 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3139 const gdb_byte *iter, *end;
3140 struct addrmap *mutable_map;
3141 CORE_ADDR baseaddr;
3142
3143 auto_obstack temp_obstack;
3144
3145 mutable_map = addrmap_create_mutable (&temp_obstack);
3146
3147 iter = index->address_table.data ();
3148 end = iter + index->address_table.size ();
3149
3150 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3151
3152 while (iter < end)
3153 {
3154 ULONGEST hi, lo, cu_index;
3155 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3156 iter += 8;
3157 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3158 iter += 8;
3159 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3160 iter += 4;
3161
3162 if (lo > hi)
3163 {
3164 complaint (&symfile_complaints,
3165 _(".gdb_index address table has invalid range (%s - %s)"),
3166 hex_string (lo), hex_string (hi));
3167 continue;
3168 }
3169
3170 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3171 {
3172 complaint (&symfile_complaints,
3173 _(".gdb_index address table has invalid CU number %u"),
3174 (unsigned) cu_index);
3175 continue;
3176 }
3177
3178 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3179 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3180 addrmap_set_empty (mutable_map, lo, hi - 1,
3181 dw2_get_cutu (dwarf2_per_objfile, cu_index));
3182 }
3183
3184 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3185 &objfile->objfile_obstack);
3186 }
3187
3188 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3189 populate the objfile's psymtabs_addrmap. */
3190
3191 static void
3192 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3193 struct dwarf2_section_info *section)
3194 {
3195 struct objfile *objfile = dwarf2_per_objfile->objfile;
3196 bfd *abfd = objfile->obfd;
3197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3198 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3199 SECT_OFF_TEXT (objfile));
3200
3201 auto_obstack temp_obstack;
3202 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3203
3204 std::unordered_map<sect_offset,
3205 dwarf2_per_cu_data *,
3206 gdb::hash_enum<sect_offset>>
3207 debug_info_offset_to_per_cu;
3208 for (int cui = 0; cui < dwarf2_per_objfile->n_comp_units; ++cui)
3209 {
3210 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, cui);
3211 const auto insertpair
3212 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3213 if (!insertpair.second)
3214 {
3215 warning (_("Section .debug_aranges in %s has duplicate "
3216 "debug_info_offset %s, ignoring .debug_aranges."),
3217 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3218 return;
3219 }
3220 }
3221
3222 dwarf2_read_section (objfile, section);
3223
3224 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3225
3226 const gdb_byte *addr = section->buffer;
3227
3228 while (addr < section->buffer + section->size)
3229 {
3230 const gdb_byte *const entry_addr = addr;
3231 unsigned int bytes_read;
3232
3233 const LONGEST entry_length = read_initial_length (abfd, addr,
3234 &bytes_read);
3235 addr += bytes_read;
3236
3237 const gdb_byte *const entry_end = addr + entry_length;
3238 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3239 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3240 if (addr + entry_length > section->buffer + section->size)
3241 {
3242 warning (_("Section .debug_aranges in %s entry at offset %zu "
3243 "length %s exceeds section length %s, "
3244 "ignoring .debug_aranges."),
3245 objfile_name (objfile), entry_addr - section->buffer,
3246 plongest (bytes_read + entry_length),
3247 pulongest (section->size));
3248 return;
3249 }
3250
3251 /* The version number. */
3252 const uint16_t version = read_2_bytes (abfd, addr);
3253 addr += 2;
3254 if (version != 2)
3255 {
3256 warning (_("Section .debug_aranges in %s entry at offset %zu "
3257 "has unsupported version %d, ignoring .debug_aranges."),
3258 objfile_name (objfile), entry_addr - section->buffer,
3259 version);
3260 return;
3261 }
3262
3263 const uint64_t debug_info_offset
3264 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3265 addr += offset_size;
3266 const auto per_cu_it
3267 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3268 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3269 {
3270 warning (_("Section .debug_aranges in %s entry at offset %zu "
3271 "debug_info_offset %s does not exists, "
3272 "ignoring .debug_aranges."),
3273 objfile_name (objfile), entry_addr - section->buffer,
3274 pulongest (debug_info_offset));
3275 return;
3276 }
3277 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3278
3279 const uint8_t address_size = *addr++;
3280 if (address_size < 1 || address_size > 8)
3281 {
3282 warning (_("Section .debug_aranges in %s entry at offset %zu "
3283 "address_size %u is invalid, ignoring .debug_aranges."),
3284 objfile_name (objfile), entry_addr - section->buffer,
3285 address_size);
3286 return;
3287 }
3288
3289 const uint8_t segment_selector_size = *addr++;
3290 if (segment_selector_size != 0)
3291 {
3292 warning (_("Section .debug_aranges in %s entry at offset %zu "
3293 "segment_selector_size %u is not supported, "
3294 "ignoring .debug_aranges."),
3295 objfile_name (objfile), entry_addr - section->buffer,
3296 segment_selector_size);
3297 return;
3298 }
3299
3300 /* Must pad to an alignment boundary that is twice the address
3301 size. It is undocumented by the DWARF standard but GCC does
3302 use it. */
3303 for (size_t padding = ((-(addr - section->buffer))
3304 & (2 * address_size - 1));
3305 padding > 0; padding--)
3306 if (*addr++ != 0)
3307 {
3308 warning (_("Section .debug_aranges in %s entry at offset %zu "
3309 "padding is not zero, ignoring .debug_aranges."),
3310 objfile_name (objfile), entry_addr - section->buffer);
3311 return;
3312 }
3313
3314 for (;;)
3315 {
3316 if (addr + 2 * address_size > entry_end)
3317 {
3318 warning (_("Section .debug_aranges in %s entry at offset %zu "
3319 "address list is not properly terminated, "
3320 "ignoring .debug_aranges."),
3321 objfile_name (objfile), entry_addr - section->buffer);
3322 return;
3323 }
3324 ULONGEST start = extract_unsigned_integer (addr, address_size,
3325 dwarf5_byte_order);
3326 addr += address_size;
3327 ULONGEST length = extract_unsigned_integer (addr, address_size,
3328 dwarf5_byte_order);
3329 addr += address_size;
3330 if (start == 0 && length == 0)
3331 break;
3332 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3333 {
3334 /* Symbol was eliminated due to a COMDAT group. */
3335 continue;
3336 }
3337 ULONGEST end = start + length;
3338 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3339 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3340 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3341 }
3342 }
3343
3344 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3345 &objfile->objfile_obstack);
3346 }
3347
3348 /* Find a slot in the mapped index INDEX for the object named NAME.
3349 If NAME is found, set *VEC_OUT to point to the CU vector in the
3350 constant pool and return true. If NAME cannot be found, return
3351 false. */
3352
3353 static bool
3354 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3355 offset_type **vec_out)
3356 {
3357 offset_type hash;
3358 offset_type slot, step;
3359 int (*cmp) (const char *, const char *);
3360
3361 gdb::unique_xmalloc_ptr<char> without_params;
3362 if (current_language->la_language == language_cplus
3363 || current_language->la_language == language_fortran
3364 || current_language->la_language == language_d)
3365 {
3366 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3367 not contain any. */
3368
3369 if (strchr (name, '(') != NULL)
3370 {
3371 without_params = cp_remove_params (name);
3372
3373 if (without_params != NULL)
3374 name = without_params.get ();
3375 }
3376 }
3377
3378 /* Index version 4 did not support case insensitive searches. But the
3379 indices for case insensitive languages are built in lowercase, therefore
3380 simulate our NAME being searched is also lowercased. */
3381 hash = mapped_index_string_hash ((index->version == 4
3382 && case_sensitivity == case_sensitive_off
3383 ? 5 : index->version),
3384 name);
3385
3386 slot = hash & (index->symbol_table.size () - 1);
3387 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3388 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3389
3390 for (;;)
3391 {
3392 const char *str;
3393
3394 const auto &bucket = index->symbol_table[slot];
3395 if (bucket.name == 0 && bucket.vec == 0)
3396 return false;
3397
3398 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3399 if (!cmp (name, str))
3400 {
3401 *vec_out = (offset_type *) (index->constant_pool
3402 + MAYBE_SWAP (bucket.vec));
3403 return true;
3404 }
3405
3406 slot = (slot + step) & (index->symbol_table.size () - 1);
3407 }
3408 }
3409
3410 /* A helper function that reads the .gdb_index from SECTION and fills
3411 in MAP. FILENAME is the name of the file containing the section;
3412 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3413 ok to use deprecated sections.
3414
3415 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3416 out parameters that are filled in with information about the CU and
3417 TU lists in the section.
3418
3419 Returns 1 if all went well, 0 otherwise. */
3420
3421 static int
3422 read_index_from_section (struct objfile *objfile,
3423 const char *filename,
3424 int deprecated_ok,
3425 struct dwarf2_section_info *section,
3426 struct mapped_index *map,
3427 const gdb_byte **cu_list,
3428 offset_type *cu_list_elements,
3429 const gdb_byte **types_list,
3430 offset_type *types_list_elements)
3431 {
3432 const gdb_byte *addr;
3433 offset_type version;
3434 offset_type *metadata;
3435 int i;
3436
3437 if (dwarf2_section_empty_p (section))
3438 return 0;
3439
3440 /* Older elfutils strip versions could keep the section in the main
3441 executable while splitting it for the separate debug info file. */
3442 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3443 return 0;
3444
3445 dwarf2_read_section (objfile, section);
3446
3447 addr = section->buffer;
3448 /* Version check. */
3449 version = MAYBE_SWAP (*(offset_type *) addr);
3450 /* Versions earlier than 3 emitted every copy of a psymbol. This
3451 causes the index to behave very poorly for certain requests. Version 3
3452 contained incomplete addrmap. So, it seems better to just ignore such
3453 indices. */
3454 if (version < 4)
3455 {
3456 static int warning_printed = 0;
3457 if (!warning_printed)
3458 {
3459 warning (_("Skipping obsolete .gdb_index section in %s."),
3460 filename);
3461 warning_printed = 1;
3462 }
3463 return 0;
3464 }
3465 /* Index version 4 uses a different hash function than index version
3466 5 and later.
3467
3468 Versions earlier than 6 did not emit psymbols for inlined
3469 functions. Using these files will cause GDB not to be able to
3470 set breakpoints on inlined functions by name, so we ignore these
3471 indices unless the user has done
3472 "set use-deprecated-index-sections on". */
3473 if (version < 6 && !deprecated_ok)
3474 {
3475 static int warning_printed = 0;
3476 if (!warning_printed)
3477 {
3478 warning (_("\
3479 Skipping deprecated .gdb_index section in %s.\n\
3480 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3481 to use the section anyway."),
3482 filename);
3483 warning_printed = 1;
3484 }
3485 return 0;
3486 }
3487 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3488 of the TU (for symbols coming from TUs),
3489 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3490 Plus gold-generated indices can have duplicate entries for global symbols,
3491 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3492 These are just performance bugs, and we can't distinguish gdb-generated
3493 indices from gold-generated ones, so issue no warning here. */
3494
3495 /* Indexes with higher version than the one supported by GDB may be no
3496 longer backward compatible. */
3497 if (version > 8)
3498 return 0;
3499
3500 map->version = version;
3501 map->total_size = section->size;
3502
3503 metadata = (offset_type *) (addr + sizeof (offset_type));
3504
3505 i = 0;
3506 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3507 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3508 / 8);
3509 ++i;
3510
3511 *types_list = addr + MAYBE_SWAP (metadata[i]);
3512 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3513 - MAYBE_SWAP (metadata[i]))
3514 / 8);
3515 ++i;
3516
3517 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3518 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3519 map->address_table
3520 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3521 ++i;
3522
3523 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3524 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3525 map->symbol_table
3526 = gdb::array_view<mapped_index::symbol_table_slot>
3527 ((mapped_index::symbol_table_slot *) symbol_table,
3528 (mapped_index::symbol_table_slot *) symbol_table_end);
3529
3530 ++i;
3531 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3532
3533 return 1;
3534 }
3535
3536 /* Read .gdb_index. If everything went ok, initialize the "quick"
3537 elements of all the CUs and return 1. Otherwise, return 0. */
3538
3539 static int
3540 dwarf2_read_index (struct objfile *objfile)
3541 {
3542 struct mapped_index local_map, *map;
3543 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3544 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3545 struct dwz_file *dwz;
3546 struct dwarf2_per_objfile *dwarf2_per_objfile
3547 = get_dwarf2_per_objfile (objfile);
3548
3549 if (!read_index_from_section (objfile, objfile_name (objfile),
3550 use_deprecated_index_sections,
3551 &dwarf2_per_objfile->gdb_index, &local_map,
3552 &cu_list, &cu_list_elements,
3553 &types_list, &types_list_elements))
3554 return 0;
3555
3556 /* Don't use the index if it's empty. */
3557 if (local_map.symbol_table.empty ())
3558 return 0;
3559
3560 /* If there is a .dwz file, read it so we can get its CU list as
3561 well. */
3562 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3563 if (dwz != NULL)
3564 {
3565 struct mapped_index dwz_map;
3566 const gdb_byte *dwz_types_ignore;
3567 offset_type dwz_types_elements_ignore;
3568
3569 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3570 1,
3571 &dwz->gdb_index, &dwz_map,
3572 &dwz_list, &dwz_list_elements,
3573 &dwz_types_ignore,
3574 &dwz_types_elements_ignore))
3575 {
3576 warning (_("could not read '.gdb_index' section from %s; skipping"),
3577 bfd_get_filename (dwz->dwz_bfd));
3578 return 0;
3579 }
3580 }
3581
3582 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3583 dwz_list_elements);
3584
3585 if (types_list_elements)
3586 {
3587 struct dwarf2_section_info *section;
3588
3589 /* We can only handle a single .debug_types when we have an
3590 index. */
3591 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3592 return 0;
3593
3594 section = VEC_index (dwarf2_section_info_def,
3595 dwarf2_per_objfile->types, 0);
3596
3597 create_signatured_type_table_from_index (objfile, section, types_list,
3598 types_list_elements);
3599 }
3600
3601 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
3602
3603 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3604 map = new (map) mapped_index ();
3605 *map = local_map;
3606
3607 dwarf2_per_objfile->index_table = map;
3608 dwarf2_per_objfile->using_index = 1;
3609 dwarf2_per_objfile->quick_file_names_table =
3610 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3611
3612 return 1;
3613 }
3614
3615 /* die_reader_func for dw2_get_file_names. */
3616
3617 static void
3618 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3619 const gdb_byte *info_ptr,
3620 struct die_info *comp_unit_die,
3621 int has_children,
3622 void *data)
3623 {
3624 struct dwarf2_cu *cu = reader->cu;
3625 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3626 struct dwarf2_per_objfile *dwarf2_per_objfile
3627 = cu->per_cu->dwarf2_per_objfile;
3628 struct objfile *objfile = dwarf2_per_objfile->objfile;
3629 struct dwarf2_per_cu_data *lh_cu;
3630 struct attribute *attr;
3631 int i;
3632 void **slot;
3633 struct quick_file_names *qfn;
3634
3635 gdb_assert (! this_cu->is_debug_types);
3636
3637 /* Our callers never want to match partial units -- instead they
3638 will match the enclosing full CU. */
3639 if (comp_unit_die->tag == DW_TAG_partial_unit)
3640 {
3641 this_cu->v.quick->no_file_data = 1;
3642 return;
3643 }
3644
3645 lh_cu = this_cu;
3646 slot = NULL;
3647
3648 line_header_up lh;
3649 sect_offset line_offset {};
3650
3651 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3652 if (attr)
3653 {
3654 struct quick_file_names find_entry;
3655
3656 line_offset = (sect_offset) DW_UNSND (attr);
3657
3658 /* We may have already read in this line header (TU line header sharing).
3659 If we have we're done. */
3660 find_entry.hash.dwo_unit = cu->dwo_unit;
3661 find_entry.hash.line_sect_off = line_offset;
3662 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3663 &find_entry, INSERT);
3664 if (*slot != NULL)
3665 {
3666 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3667 return;
3668 }
3669
3670 lh = dwarf_decode_line_header (line_offset, cu);
3671 }
3672 if (lh == NULL)
3673 {
3674 lh_cu->v.quick->no_file_data = 1;
3675 return;
3676 }
3677
3678 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3679 qfn->hash.dwo_unit = cu->dwo_unit;
3680 qfn->hash.line_sect_off = line_offset;
3681 gdb_assert (slot != NULL);
3682 *slot = qfn;
3683
3684 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3685
3686 qfn->num_file_names = lh->file_names.size ();
3687 qfn->file_names =
3688 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3689 for (i = 0; i < lh->file_names.size (); ++i)
3690 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3691 qfn->real_names = NULL;
3692
3693 lh_cu->v.quick->file_names = qfn;
3694 }
3695
3696 /* A helper for the "quick" functions which attempts to read the line
3697 table for THIS_CU. */
3698
3699 static struct quick_file_names *
3700 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3701 {
3702 /* This should never be called for TUs. */
3703 gdb_assert (! this_cu->is_debug_types);
3704 /* Nor type unit groups. */
3705 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3706
3707 if (this_cu->v.quick->file_names != NULL)
3708 return this_cu->v.quick->file_names;
3709 /* If we know there is no line data, no point in looking again. */
3710 if (this_cu->v.quick->no_file_data)
3711 return NULL;
3712
3713 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3714
3715 if (this_cu->v.quick->no_file_data)
3716 return NULL;
3717 return this_cu->v.quick->file_names;
3718 }
3719
3720 /* A helper for the "quick" functions which computes and caches the
3721 real path for a given file name from the line table. */
3722
3723 static const char *
3724 dw2_get_real_path (struct objfile *objfile,
3725 struct quick_file_names *qfn, int index)
3726 {
3727 if (qfn->real_names == NULL)
3728 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3729 qfn->num_file_names, const char *);
3730
3731 if (qfn->real_names[index] == NULL)
3732 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3733
3734 return qfn->real_names[index];
3735 }
3736
3737 static struct symtab *
3738 dw2_find_last_source_symtab (struct objfile *objfile)
3739 {
3740 struct dwarf2_per_objfile *dwarf2_per_objfile
3741 = get_dwarf2_per_objfile (objfile);
3742 int index = dwarf2_per_objfile->n_comp_units - 1;
3743 dwarf2_per_cu_data *dwarf_cu = dw2_get_cutu (dwarf2_per_objfile, index);
3744 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
3745
3746 if (cust == NULL)
3747 return NULL;
3748
3749 return compunit_primary_filetab (cust);
3750 }
3751
3752 /* Traversal function for dw2_forget_cached_source_info. */
3753
3754 static int
3755 dw2_free_cached_file_names (void **slot, void *info)
3756 {
3757 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3758
3759 if (file_data->real_names)
3760 {
3761 int i;
3762
3763 for (i = 0; i < file_data->num_file_names; ++i)
3764 {
3765 xfree ((void*) file_data->real_names[i]);
3766 file_data->real_names[i] = NULL;
3767 }
3768 }
3769
3770 return 1;
3771 }
3772
3773 static void
3774 dw2_forget_cached_source_info (struct objfile *objfile)
3775 {
3776 struct dwarf2_per_objfile *dwarf2_per_objfile
3777 = get_dwarf2_per_objfile (objfile);
3778
3779 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3780 dw2_free_cached_file_names, NULL);
3781 }
3782
3783 /* Helper function for dw2_map_symtabs_matching_filename that expands
3784 the symtabs and calls the iterator. */
3785
3786 static int
3787 dw2_map_expand_apply (struct objfile *objfile,
3788 struct dwarf2_per_cu_data *per_cu,
3789 const char *name, const char *real_path,
3790 gdb::function_view<bool (symtab *)> callback)
3791 {
3792 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3793
3794 /* Don't visit already-expanded CUs. */
3795 if (per_cu->v.quick->compunit_symtab)
3796 return 0;
3797
3798 /* This may expand more than one symtab, and we want to iterate over
3799 all of them. */
3800 dw2_instantiate_symtab (per_cu);
3801
3802 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3803 last_made, callback);
3804 }
3805
3806 /* Implementation of the map_symtabs_matching_filename method. */
3807
3808 static bool
3809 dw2_map_symtabs_matching_filename
3810 (struct objfile *objfile, const char *name, const char *real_path,
3811 gdb::function_view<bool (symtab *)> callback)
3812 {
3813 int i;
3814 const char *name_basename = lbasename (name);
3815 struct dwarf2_per_objfile *dwarf2_per_objfile
3816 = get_dwarf2_per_objfile (objfile);
3817
3818 /* The rule is CUs specify all the files, including those used by
3819 any TU, so there's no need to scan TUs here. */
3820
3821 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3822 {
3823 int j;
3824 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
3825 struct quick_file_names *file_data;
3826
3827 /* We only need to look at symtabs not already expanded. */
3828 if (per_cu->v.quick->compunit_symtab)
3829 continue;
3830
3831 file_data = dw2_get_file_names (per_cu);
3832 if (file_data == NULL)
3833 continue;
3834
3835 for (j = 0; j < file_data->num_file_names; ++j)
3836 {
3837 const char *this_name = file_data->file_names[j];
3838 const char *this_real_name;
3839
3840 if (compare_filenames_for_search (this_name, name))
3841 {
3842 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3843 callback))
3844 return true;
3845 continue;
3846 }
3847
3848 /* Before we invoke realpath, which can get expensive when many
3849 files are involved, do a quick comparison of the basenames. */
3850 if (! basenames_may_differ
3851 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3852 continue;
3853
3854 this_real_name = dw2_get_real_path (objfile, file_data, j);
3855 if (compare_filenames_for_search (this_real_name, name))
3856 {
3857 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3858 callback))
3859 return true;
3860 continue;
3861 }
3862
3863 if (real_path != NULL)
3864 {
3865 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3866 gdb_assert (IS_ABSOLUTE_PATH (name));
3867 if (this_real_name != NULL
3868 && FILENAME_CMP (real_path, this_real_name) == 0)
3869 {
3870 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3871 callback))
3872 return true;
3873 continue;
3874 }
3875 }
3876 }
3877 }
3878
3879 return false;
3880 }
3881
3882 /* Struct used to manage iterating over all CUs looking for a symbol. */
3883
3884 struct dw2_symtab_iterator
3885 {
3886 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3887 struct dwarf2_per_objfile *dwarf2_per_objfile;
3888 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3889 int want_specific_block;
3890 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3891 Unused if !WANT_SPECIFIC_BLOCK. */
3892 int block_index;
3893 /* The kind of symbol we're looking for. */
3894 domain_enum domain;
3895 /* The list of CUs from the index entry of the symbol,
3896 or NULL if not found. */
3897 offset_type *vec;
3898 /* The next element in VEC to look at. */
3899 int next;
3900 /* The number of elements in VEC, or zero if there is no match. */
3901 int length;
3902 /* Have we seen a global version of the symbol?
3903 If so we can ignore all further global instances.
3904 This is to work around gold/15646, inefficient gold-generated
3905 indices. */
3906 int global_seen;
3907 };
3908
3909 /* Initialize the index symtab iterator ITER.
3910 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3911 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3912
3913 static void
3914 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3915 struct dwarf2_per_objfile *dwarf2_per_objfile,
3916 int want_specific_block,
3917 int block_index,
3918 domain_enum domain,
3919 const char *name)
3920 {
3921 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3922 iter->want_specific_block = want_specific_block;
3923 iter->block_index = block_index;
3924 iter->domain = domain;
3925 iter->next = 0;
3926 iter->global_seen = 0;
3927
3928 mapped_index *index = dwarf2_per_objfile->index_table;
3929
3930 /* index is NULL if OBJF_READNOW. */
3931 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3932 iter->length = MAYBE_SWAP (*iter->vec);
3933 else
3934 {
3935 iter->vec = NULL;
3936 iter->length = 0;
3937 }
3938 }
3939
3940 /* Return the next matching CU or NULL if there are no more. */
3941
3942 static struct dwarf2_per_cu_data *
3943 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3944 {
3945 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3946
3947 for ( ; iter->next < iter->length; ++iter->next)
3948 {
3949 offset_type cu_index_and_attrs =
3950 MAYBE_SWAP (iter->vec[iter->next + 1]);
3951 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3952 struct dwarf2_per_cu_data *per_cu;
3953 int want_static = iter->block_index != GLOBAL_BLOCK;
3954 /* This value is only valid for index versions >= 7. */
3955 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3956 gdb_index_symbol_kind symbol_kind =
3957 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3958 /* Only check the symbol attributes if they're present.
3959 Indices prior to version 7 don't record them,
3960 and indices >= 7 may elide them for certain symbols
3961 (gold does this). */
3962 int attrs_valid =
3963 (dwarf2_per_objfile->index_table->version >= 7
3964 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3965
3966 /* Don't crash on bad data. */
3967 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3968 + dwarf2_per_objfile->n_type_units))
3969 {
3970 complaint (&symfile_complaints,
3971 _(".gdb_index entry has bad CU index"
3972 " [in module %s]"),
3973 objfile_name (dwarf2_per_objfile->objfile));
3974 continue;
3975 }
3976
3977 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
3978
3979 /* Skip if already read in. */
3980 if (per_cu->v.quick->compunit_symtab)
3981 continue;
3982
3983 /* Check static vs global. */
3984 if (attrs_valid)
3985 {
3986 if (iter->want_specific_block
3987 && want_static != is_static)
3988 continue;
3989 /* Work around gold/15646. */
3990 if (!is_static && iter->global_seen)
3991 continue;
3992 if (!is_static)
3993 iter->global_seen = 1;
3994 }
3995
3996 /* Only check the symbol's kind if it has one. */
3997 if (attrs_valid)
3998 {
3999 switch (iter->domain)
4000 {
4001 case VAR_DOMAIN:
4002 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4003 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4004 /* Some types are also in VAR_DOMAIN. */
4005 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4006 continue;
4007 break;
4008 case STRUCT_DOMAIN:
4009 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4010 continue;
4011 break;
4012 case LABEL_DOMAIN:
4013 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4014 continue;
4015 break;
4016 default:
4017 break;
4018 }
4019 }
4020
4021 ++iter->next;
4022 return per_cu;
4023 }
4024
4025 return NULL;
4026 }
4027
4028 static struct compunit_symtab *
4029 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4030 const char *name, domain_enum domain)
4031 {
4032 struct compunit_symtab *stab_best = NULL;
4033 struct dwarf2_per_objfile *dwarf2_per_objfile
4034 = get_dwarf2_per_objfile (objfile);
4035
4036 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4037
4038 struct dw2_symtab_iterator iter;
4039 struct dwarf2_per_cu_data *per_cu;
4040
4041 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4042
4043 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4044 {
4045 struct symbol *sym, *with_opaque = NULL;
4046 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4047 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4048 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4049
4050 sym = block_find_symbol (block, name, domain,
4051 block_find_non_opaque_type_preferred,
4052 &with_opaque);
4053
4054 /* Some caution must be observed with overloaded functions
4055 and methods, since the index will not contain any overload
4056 information (but NAME might contain it). */
4057
4058 if (sym != NULL
4059 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4060 return stab;
4061 if (with_opaque != NULL
4062 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4063 stab_best = stab;
4064
4065 /* Keep looking through other CUs. */
4066 }
4067
4068 return stab_best;
4069 }
4070
4071 static void
4072 dw2_print_stats (struct objfile *objfile)
4073 {
4074 struct dwarf2_per_objfile *dwarf2_per_objfile
4075 = get_dwarf2_per_objfile (objfile);
4076 int total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
4077 int count = 0;
4078
4079 for (int i = 0; i < total; ++i)
4080 {
4081 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4082
4083 if (!per_cu->v.quick->compunit_symtab)
4084 ++count;
4085 }
4086 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4087 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4088 }
4089
4090 /* This dumps minimal information about the index.
4091 It is called via "mt print objfiles".
4092 One use is to verify .gdb_index has been loaded by the
4093 gdb.dwarf2/gdb-index.exp testcase. */
4094
4095 static void
4096 dw2_dump (struct objfile *objfile)
4097 {
4098 struct dwarf2_per_objfile *dwarf2_per_objfile
4099 = get_dwarf2_per_objfile (objfile);
4100
4101 gdb_assert (dwarf2_per_objfile->using_index);
4102 printf_filtered (".gdb_index:");
4103 if (dwarf2_per_objfile->index_table != NULL)
4104 {
4105 printf_filtered (" version %d\n",
4106 dwarf2_per_objfile->index_table->version);
4107 }
4108 else
4109 printf_filtered (" faked for \"readnow\"\n");
4110 printf_filtered ("\n");
4111 }
4112
4113 static void
4114 dw2_relocate (struct objfile *objfile,
4115 const struct section_offsets *new_offsets,
4116 const struct section_offsets *delta)
4117 {
4118 /* There's nothing to relocate here. */
4119 }
4120
4121 static void
4122 dw2_expand_symtabs_for_function (struct objfile *objfile,
4123 const char *func_name)
4124 {
4125 struct dwarf2_per_objfile *dwarf2_per_objfile
4126 = get_dwarf2_per_objfile (objfile);
4127
4128 struct dw2_symtab_iterator iter;
4129 struct dwarf2_per_cu_data *per_cu;
4130
4131 /* Note: It doesn't matter what we pass for block_index here. */
4132 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4133 func_name);
4134
4135 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4136 dw2_instantiate_symtab (per_cu);
4137
4138 }
4139
4140 static void
4141 dw2_expand_all_symtabs (struct objfile *objfile)
4142 {
4143 struct dwarf2_per_objfile *dwarf2_per_objfile
4144 = get_dwarf2_per_objfile (objfile);
4145 int total_units = (dwarf2_per_objfile->n_comp_units
4146 + dwarf2_per_objfile->n_type_units);
4147
4148 for (int i = 0; i < total_units; ++i)
4149 {
4150 struct dwarf2_per_cu_data *per_cu
4151 = dw2_get_cutu (dwarf2_per_objfile, i);
4152
4153 dw2_instantiate_symtab (per_cu);
4154 }
4155 }
4156
4157 static void
4158 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4159 const char *fullname)
4160 {
4161 struct dwarf2_per_objfile *dwarf2_per_objfile
4162 = get_dwarf2_per_objfile (objfile);
4163
4164 /* We don't need to consider type units here.
4165 This is only called for examining code, e.g. expand_line_sal.
4166 There can be an order of magnitude (or more) more type units
4167 than comp units, and we avoid them if we can. */
4168
4169 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4170 {
4171 int j;
4172 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4173 struct quick_file_names *file_data;
4174
4175 /* We only need to look at symtabs not already expanded. */
4176 if (per_cu->v.quick->compunit_symtab)
4177 continue;
4178
4179 file_data = dw2_get_file_names (per_cu);
4180 if (file_data == NULL)
4181 continue;
4182
4183 for (j = 0; j < file_data->num_file_names; ++j)
4184 {
4185 const char *this_fullname = file_data->file_names[j];
4186
4187 if (filename_cmp (this_fullname, fullname) == 0)
4188 {
4189 dw2_instantiate_symtab (per_cu);
4190 break;
4191 }
4192 }
4193 }
4194 }
4195
4196 static void
4197 dw2_map_matching_symbols (struct objfile *objfile,
4198 const char * name, domain_enum domain,
4199 int global,
4200 int (*callback) (struct block *,
4201 struct symbol *, void *),
4202 void *data, symbol_name_match_type match,
4203 symbol_compare_ftype *ordered_compare)
4204 {
4205 /* Currently unimplemented; used for Ada. The function can be called if the
4206 current language is Ada for a non-Ada objfile using GNU index. As Ada
4207 does not look for non-Ada symbols this function should just return. */
4208 }
4209
4210 /* Symbol name matcher for .gdb_index names.
4211
4212 Symbol names in .gdb_index have a few particularities:
4213
4214 - There's no indication of which is the language of each symbol.
4215
4216 Since each language has its own symbol name matching algorithm,
4217 and we don't know which language is the right one, we must match
4218 each symbol against all languages. This would be a potential
4219 performance problem if it were not mitigated by the
4220 mapped_index::name_components lookup table, which significantly
4221 reduces the number of times we need to call into this matcher,
4222 making it a non-issue.
4223
4224 - Symbol names in the index have no overload (parameter)
4225 information. I.e., in C++, "foo(int)" and "foo(long)" both
4226 appear as "foo" in the index, for example.
4227
4228 This means that the lookup names passed to the symbol name
4229 matcher functions must have no parameter information either
4230 because (e.g.) symbol search name "foo" does not match
4231 lookup-name "foo(int)" [while swapping search name for lookup
4232 name would match].
4233 */
4234 class gdb_index_symbol_name_matcher
4235 {
4236 public:
4237 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4238 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4239
4240 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4241 Returns true if any matcher matches. */
4242 bool matches (const char *symbol_name);
4243
4244 private:
4245 /* A reference to the lookup name we're matching against. */
4246 const lookup_name_info &m_lookup_name;
4247
4248 /* A vector holding all the different symbol name matchers, for all
4249 languages. */
4250 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4251 };
4252
4253 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4254 (const lookup_name_info &lookup_name)
4255 : m_lookup_name (lookup_name)
4256 {
4257 /* Prepare the vector of comparison functions upfront, to avoid
4258 doing the same work for each symbol. Care is taken to avoid
4259 matching with the same matcher more than once if/when multiple
4260 languages use the same matcher function. */
4261 auto &matchers = m_symbol_name_matcher_funcs;
4262 matchers.reserve (nr_languages);
4263
4264 matchers.push_back (default_symbol_name_matcher);
4265
4266 for (int i = 0; i < nr_languages; i++)
4267 {
4268 const language_defn *lang = language_def ((enum language) i);
4269 symbol_name_matcher_ftype *name_matcher
4270 = get_symbol_name_matcher (lang, m_lookup_name);
4271
4272 /* Don't insert the same comparison routine more than once.
4273 Note that we do this linear walk instead of a seemingly
4274 cheaper sorted insert, or use a std::set or something like
4275 that, because relative order of function addresses is not
4276 stable. This is not a problem in practice because the number
4277 of supported languages is low, and the cost here is tiny
4278 compared to the number of searches we'll do afterwards using
4279 this object. */
4280 if (name_matcher != default_symbol_name_matcher
4281 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4282 == matchers.end ()))
4283 matchers.push_back (name_matcher);
4284 }
4285 }
4286
4287 bool
4288 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4289 {
4290 for (auto matches_name : m_symbol_name_matcher_funcs)
4291 if (matches_name (symbol_name, m_lookup_name, NULL))
4292 return true;
4293
4294 return false;
4295 }
4296
4297 /* Starting from a search name, return the string that finds the upper
4298 bound of all strings that start with SEARCH_NAME in a sorted name
4299 list. Returns the empty string to indicate that the upper bound is
4300 the end of the list. */
4301
4302 static std::string
4303 make_sort_after_prefix_name (const char *search_name)
4304 {
4305 /* When looking to complete "func", we find the upper bound of all
4306 symbols that start with "func" by looking for where we'd insert
4307 the closest string that would follow "func" in lexicographical
4308 order. Usually, that's "func"-with-last-character-incremented,
4309 i.e. "fund". Mind non-ASCII characters, though. Usually those
4310 will be UTF-8 multi-byte sequences, but we can't be certain.
4311 Especially mind the 0xff character, which is a valid character in
4312 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4313 rule out compilers allowing it in identifiers. Note that
4314 conveniently, strcmp/strcasecmp are specified to compare
4315 characters interpreted as unsigned char. So what we do is treat
4316 the whole string as a base 256 number composed of a sequence of
4317 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4318 to 0, and carries 1 to the following more-significant position.
4319 If the very first character in SEARCH_NAME ends up incremented
4320 and carries/overflows, then the upper bound is the end of the
4321 list. The string after the empty string is also the empty
4322 string.
4323
4324 Some examples of this operation:
4325
4326 SEARCH_NAME => "+1" RESULT
4327
4328 "abc" => "abd"
4329 "ab\xff" => "ac"
4330 "\xff" "a" "\xff" => "\xff" "b"
4331 "\xff" => ""
4332 "\xff\xff" => ""
4333 "" => ""
4334
4335 Then, with these symbols for example:
4336
4337 func
4338 func1
4339 fund
4340
4341 completing "func" looks for symbols between "func" and
4342 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4343 which finds "func" and "func1", but not "fund".
4344
4345 And with:
4346
4347 funcÿ (Latin1 'ÿ' [0xff])
4348 funcÿ1
4349 fund
4350
4351 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4352 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4353
4354 And with:
4355
4356 ÿÿ (Latin1 'ÿ' [0xff])
4357 ÿÿ1
4358
4359 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4360 the end of the list.
4361 */
4362 std::string after = search_name;
4363 while (!after.empty () && (unsigned char) after.back () == 0xff)
4364 after.pop_back ();
4365 if (!after.empty ())
4366 after.back () = (unsigned char) after.back () + 1;
4367 return after;
4368 }
4369
4370 /* See declaration. */
4371
4372 std::pair<std::vector<name_component>::const_iterator,
4373 std::vector<name_component>::const_iterator>
4374 mapped_index_base::find_name_components_bounds
4375 (const lookup_name_info &lookup_name_without_params) const
4376 {
4377 auto *name_cmp
4378 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4379
4380 const char *cplus
4381 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4382
4383 /* Comparison function object for lower_bound that matches against a
4384 given symbol name. */
4385 auto lookup_compare_lower = [&] (const name_component &elem,
4386 const char *name)
4387 {
4388 const char *elem_qualified = this->symbol_name_at (elem.idx);
4389 const char *elem_name = elem_qualified + elem.name_offset;
4390 return name_cmp (elem_name, name) < 0;
4391 };
4392
4393 /* Comparison function object for upper_bound that matches against a
4394 given symbol name. */
4395 auto lookup_compare_upper = [&] (const char *name,
4396 const name_component &elem)
4397 {
4398 const char *elem_qualified = this->symbol_name_at (elem.idx);
4399 const char *elem_name = elem_qualified + elem.name_offset;
4400 return name_cmp (name, elem_name) < 0;
4401 };
4402
4403 auto begin = this->name_components.begin ();
4404 auto end = this->name_components.end ();
4405
4406 /* Find the lower bound. */
4407 auto lower = [&] ()
4408 {
4409 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4410 return begin;
4411 else
4412 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4413 } ();
4414
4415 /* Find the upper bound. */
4416 auto upper = [&] ()
4417 {
4418 if (lookup_name_without_params.completion_mode ())
4419 {
4420 /* In completion mode, we want UPPER to point past all
4421 symbols names that have the same prefix. I.e., with
4422 these symbols, and completing "func":
4423
4424 function << lower bound
4425 function1
4426 other_function << upper bound
4427
4428 We find the upper bound by looking for the insertion
4429 point of "func"-with-last-character-incremented,
4430 i.e. "fund". */
4431 std::string after = make_sort_after_prefix_name (cplus);
4432 if (after.empty ())
4433 return end;
4434 return std::lower_bound (lower, end, after.c_str (),
4435 lookup_compare_lower);
4436 }
4437 else
4438 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4439 } ();
4440
4441 return {lower, upper};
4442 }
4443
4444 /* See declaration. */
4445
4446 void
4447 mapped_index_base::build_name_components ()
4448 {
4449 if (!this->name_components.empty ())
4450 return;
4451
4452 this->name_components_casing = case_sensitivity;
4453 auto *name_cmp
4454 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4455
4456 /* The code below only knows how to break apart components of C++
4457 symbol names (and other languages that use '::' as
4458 namespace/module separator). If we add support for wild matching
4459 to some language that uses some other operator (E.g., Ada, Go and
4460 D use '.'), then we'll need to try splitting the symbol name
4461 according to that language too. Note that Ada does support wild
4462 matching, but doesn't currently support .gdb_index. */
4463 auto count = this->symbol_name_count ();
4464 for (offset_type idx = 0; idx < count; idx++)
4465 {
4466 if (this->symbol_name_slot_invalid (idx))
4467 continue;
4468
4469 const char *name = this->symbol_name_at (idx);
4470
4471 /* Add each name component to the name component table. */
4472 unsigned int previous_len = 0;
4473 for (unsigned int current_len = cp_find_first_component (name);
4474 name[current_len] != '\0';
4475 current_len += cp_find_first_component (name + current_len))
4476 {
4477 gdb_assert (name[current_len] == ':');
4478 this->name_components.push_back ({previous_len, idx});
4479 /* Skip the '::'. */
4480 current_len += 2;
4481 previous_len = current_len;
4482 }
4483 this->name_components.push_back ({previous_len, idx});
4484 }
4485
4486 /* Sort name_components elements by name. */
4487 auto name_comp_compare = [&] (const name_component &left,
4488 const name_component &right)
4489 {
4490 const char *left_qualified = this->symbol_name_at (left.idx);
4491 const char *right_qualified = this->symbol_name_at (right.idx);
4492
4493 const char *left_name = left_qualified + left.name_offset;
4494 const char *right_name = right_qualified + right.name_offset;
4495
4496 return name_cmp (left_name, right_name) < 0;
4497 };
4498
4499 std::sort (this->name_components.begin (),
4500 this->name_components.end (),
4501 name_comp_compare);
4502 }
4503
4504 /* Helper for dw2_expand_symtabs_matching that works with a
4505 mapped_index_base instead of the containing objfile. This is split
4506 to a separate function in order to be able to unit test the
4507 name_components matching using a mock mapped_index_base. For each
4508 symbol name that matches, calls MATCH_CALLBACK, passing it the
4509 symbol's index in the mapped_index_base symbol table. */
4510
4511 static void
4512 dw2_expand_symtabs_matching_symbol
4513 (mapped_index_base &index,
4514 const lookup_name_info &lookup_name_in,
4515 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4516 enum search_domain kind,
4517 gdb::function_view<void (offset_type)> match_callback)
4518 {
4519 lookup_name_info lookup_name_without_params
4520 = lookup_name_in.make_ignore_params ();
4521 gdb_index_symbol_name_matcher lookup_name_matcher
4522 (lookup_name_without_params);
4523
4524 /* Build the symbol name component sorted vector, if we haven't
4525 yet. */
4526 index.build_name_components ();
4527
4528 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4529
4530 /* Now for each symbol name in range, check to see if we have a name
4531 match, and if so, call the MATCH_CALLBACK callback. */
4532
4533 /* The same symbol may appear more than once in the range though.
4534 E.g., if we're looking for symbols that complete "w", and we have
4535 a symbol named "w1::w2", we'll find the two name components for
4536 that same symbol in the range. To be sure we only call the
4537 callback once per symbol, we first collect the symbol name
4538 indexes that matched in a temporary vector and ignore
4539 duplicates. */
4540 std::vector<offset_type> matches;
4541 matches.reserve (std::distance (bounds.first, bounds.second));
4542
4543 for (; bounds.first != bounds.second; ++bounds.first)
4544 {
4545 const char *qualified = index.symbol_name_at (bounds.first->idx);
4546
4547 if (!lookup_name_matcher.matches (qualified)
4548 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4549 continue;
4550
4551 matches.push_back (bounds.first->idx);
4552 }
4553
4554 std::sort (matches.begin (), matches.end ());
4555
4556 /* Finally call the callback, once per match. */
4557 ULONGEST prev = -1;
4558 for (offset_type idx : matches)
4559 {
4560 if (prev != idx)
4561 {
4562 match_callback (idx);
4563 prev = idx;
4564 }
4565 }
4566
4567 /* Above we use a type wider than idx's for 'prev', since 0 and
4568 (offset_type)-1 are both possible values. */
4569 static_assert (sizeof (prev) > sizeof (offset_type), "");
4570 }
4571
4572 #if GDB_SELF_TEST
4573
4574 namespace selftests { namespace dw2_expand_symtabs_matching {
4575
4576 /* A mock .gdb_index/.debug_names-like name index table, enough to
4577 exercise dw2_expand_symtabs_matching_symbol, which works with the
4578 mapped_index_base interface. Builds an index from the symbol list
4579 passed as parameter to the constructor. */
4580 class mock_mapped_index : public mapped_index_base
4581 {
4582 public:
4583 mock_mapped_index (gdb::array_view<const char *> symbols)
4584 : m_symbol_table (symbols)
4585 {}
4586
4587 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4588
4589 /* Return the number of names in the symbol table. */
4590 virtual size_t symbol_name_count () const
4591 {
4592 return m_symbol_table.size ();
4593 }
4594
4595 /* Get the name of the symbol at IDX in the symbol table. */
4596 virtual const char *symbol_name_at (offset_type idx) const
4597 {
4598 return m_symbol_table[idx];
4599 }
4600
4601 private:
4602 gdb::array_view<const char *> m_symbol_table;
4603 };
4604
4605 /* Convenience function that converts a NULL pointer to a "<null>"
4606 string, to pass to print routines. */
4607
4608 static const char *
4609 string_or_null (const char *str)
4610 {
4611 return str != NULL ? str : "<null>";
4612 }
4613
4614 /* Check if a lookup_name_info built from
4615 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4616 index. EXPECTED_LIST is the list of expected matches, in expected
4617 matching order. If no match expected, then an empty list is
4618 specified. Returns true on success. On failure prints a warning
4619 indicating the file:line that failed, and returns false. */
4620
4621 static bool
4622 check_match (const char *file, int line,
4623 mock_mapped_index &mock_index,
4624 const char *name, symbol_name_match_type match_type,
4625 bool completion_mode,
4626 std::initializer_list<const char *> expected_list)
4627 {
4628 lookup_name_info lookup_name (name, match_type, completion_mode);
4629
4630 bool matched = true;
4631
4632 auto mismatch = [&] (const char *expected_str,
4633 const char *got)
4634 {
4635 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4636 "expected=\"%s\", got=\"%s\"\n"),
4637 file, line,
4638 (match_type == symbol_name_match_type::FULL
4639 ? "FULL" : "WILD"),
4640 name, string_or_null (expected_str), string_or_null (got));
4641 matched = false;
4642 };
4643
4644 auto expected_it = expected_list.begin ();
4645 auto expected_end = expected_list.end ();
4646
4647 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4648 NULL, ALL_DOMAIN,
4649 [&] (offset_type idx)
4650 {
4651 const char *matched_name = mock_index.symbol_name_at (idx);
4652 const char *expected_str
4653 = expected_it == expected_end ? NULL : *expected_it++;
4654
4655 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4656 mismatch (expected_str, matched_name);
4657 });
4658
4659 const char *expected_str
4660 = expected_it == expected_end ? NULL : *expected_it++;
4661 if (expected_str != NULL)
4662 mismatch (expected_str, NULL);
4663
4664 return matched;
4665 }
4666
4667 /* The symbols added to the mock mapped_index for testing (in
4668 canonical form). */
4669 static const char *test_symbols[] = {
4670 "function",
4671 "std::bar",
4672 "std::zfunction",
4673 "std::zfunction2",
4674 "w1::w2",
4675 "ns::foo<char*>",
4676 "ns::foo<int>",
4677 "ns::foo<long>",
4678 "ns2::tmpl<int>::foo2",
4679 "(anonymous namespace)::A::B::C",
4680
4681 /* These are used to check that the increment-last-char in the
4682 matching algorithm for completion doesn't match "t1_fund" when
4683 completing "t1_func". */
4684 "t1_func",
4685 "t1_func1",
4686 "t1_fund",
4687 "t1_fund1",
4688
4689 /* A UTF-8 name with multi-byte sequences to make sure that
4690 cp-name-parser understands this as a single identifier ("função"
4691 is "function" in PT). */
4692 u8"u8função",
4693
4694 /* \377 (0xff) is Latin1 'ÿ'. */
4695 "yfunc\377",
4696
4697 /* \377 (0xff) is Latin1 'ÿ'. */
4698 "\377",
4699 "\377\377123",
4700
4701 /* A name with all sorts of complications. Starts with "z" to make
4702 it easier for the completion tests below. */
4703 #define Z_SYM_NAME \
4704 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4705 "::tuple<(anonymous namespace)::ui*, " \
4706 "std::default_delete<(anonymous namespace)::ui>, void>"
4707
4708 Z_SYM_NAME
4709 };
4710
4711 /* Returns true if the mapped_index_base::find_name_component_bounds
4712 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4713 in completion mode. */
4714
4715 static bool
4716 check_find_bounds_finds (mapped_index_base &index,
4717 const char *search_name,
4718 gdb::array_view<const char *> expected_syms)
4719 {
4720 lookup_name_info lookup_name (search_name,
4721 symbol_name_match_type::FULL, true);
4722
4723 auto bounds = index.find_name_components_bounds (lookup_name);
4724
4725 size_t distance = std::distance (bounds.first, bounds.second);
4726 if (distance != expected_syms.size ())
4727 return false;
4728
4729 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4730 {
4731 auto nc_elem = bounds.first + exp_elem;
4732 const char *qualified = index.symbol_name_at (nc_elem->idx);
4733 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4734 return false;
4735 }
4736
4737 return true;
4738 }
4739
4740 /* Test the lower-level mapped_index::find_name_component_bounds
4741 method. */
4742
4743 static void
4744 test_mapped_index_find_name_component_bounds ()
4745 {
4746 mock_mapped_index mock_index (test_symbols);
4747
4748 mock_index.build_name_components ();
4749
4750 /* Test the lower-level mapped_index::find_name_component_bounds
4751 method in completion mode. */
4752 {
4753 static const char *expected_syms[] = {
4754 "t1_func",
4755 "t1_func1",
4756 };
4757
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "t1_func", expected_syms));
4760 }
4761
4762 /* Check that the increment-last-char in the name matching algorithm
4763 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4764 {
4765 static const char *expected_syms1[] = {
4766 "\377",
4767 "\377\377123",
4768 };
4769 SELF_CHECK (check_find_bounds_finds (mock_index,
4770 "\377", expected_syms1));
4771
4772 static const char *expected_syms2[] = {
4773 "\377\377123",
4774 };
4775 SELF_CHECK (check_find_bounds_finds (mock_index,
4776 "\377\377", expected_syms2));
4777 }
4778 }
4779
4780 /* Test dw2_expand_symtabs_matching_symbol. */
4781
4782 static void
4783 test_dw2_expand_symtabs_matching_symbol ()
4784 {
4785 mock_mapped_index mock_index (test_symbols);
4786
4787 /* We let all tests run until the end even if some fails, for debug
4788 convenience. */
4789 bool any_mismatch = false;
4790
4791 /* Create the expected symbols list (an initializer_list). Needed
4792 because lists have commas, and we need to pass them to CHECK,
4793 which is a macro. */
4794 #define EXPECT(...) { __VA_ARGS__ }
4795
4796 /* Wrapper for check_match that passes down the current
4797 __FILE__/__LINE__. */
4798 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4799 any_mismatch |= !check_match (__FILE__, __LINE__, \
4800 mock_index, \
4801 NAME, MATCH_TYPE, COMPLETION_MODE, \
4802 EXPECTED_LIST)
4803
4804 /* Identity checks. */
4805 for (const char *sym : test_symbols)
4806 {
4807 /* Should be able to match all existing symbols. */
4808 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4809 EXPECT (sym));
4810
4811 /* Should be able to match all existing symbols with
4812 parameters. */
4813 std::string with_params = std::string (sym) + "(int)";
4814 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4815 EXPECT (sym));
4816
4817 /* Should be able to match all existing symbols with
4818 parameters and qualifiers. */
4819 with_params = std::string (sym) + " ( int ) const";
4820 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4821 EXPECT (sym));
4822
4823 /* This should really find sym, but cp-name-parser.y doesn't
4824 know about lvalue/rvalue qualifiers yet. */
4825 with_params = std::string (sym) + " ( int ) &&";
4826 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4827 {});
4828 }
4829
4830 /* Check that the name matching algorithm for completion doesn't get
4831 confused with Latin1 'ÿ' / 0xff. */
4832 {
4833 static const char str[] = "\377";
4834 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4835 EXPECT ("\377", "\377\377123"));
4836 }
4837
4838 /* Check that the increment-last-char in the matching algorithm for
4839 completion doesn't match "t1_fund" when completing "t1_func". */
4840 {
4841 static const char str[] = "t1_func";
4842 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4843 EXPECT ("t1_func", "t1_func1"));
4844 }
4845
4846 /* Check that completion mode works at each prefix of the expected
4847 symbol name. */
4848 {
4849 static const char str[] = "function(int)";
4850 size_t len = strlen (str);
4851 std::string lookup;
4852
4853 for (size_t i = 1; i < len; i++)
4854 {
4855 lookup.assign (str, i);
4856 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4857 EXPECT ("function"));
4858 }
4859 }
4860
4861 /* While "w" is a prefix of both components, the match function
4862 should still only be called once. */
4863 {
4864 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4865 EXPECT ("w1::w2"));
4866 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4867 EXPECT ("w1::w2"));
4868 }
4869
4870 /* Same, with a "complicated" symbol. */
4871 {
4872 static const char str[] = Z_SYM_NAME;
4873 size_t len = strlen (str);
4874 std::string lookup;
4875
4876 for (size_t i = 1; i < len; i++)
4877 {
4878 lookup.assign (str, i);
4879 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4880 EXPECT (Z_SYM_NAME));
4881 }
4882 }
4883
4884 /* In FULL mode, an incomplete symbol doesn't match. */
4885 {
4886 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4887 {});
4888 }
4889
4890 /* A complete symbol with parameters matches any overload, since the
4891 index has no overload info. */
4892 {
4893 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4894 EXPECT ("std::zfunction", "std::zfunction2"));
4895 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4896 EXPECT ("std::zfunction", "std::zfunction2"));
4897 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4898 EXPECT ("std::zfunction", "std::zfunction2"));
4899 }
4900
4901 /* Check that whitespace is ignored appropriately. A symbol with a
4902 template argument list. */
4903 {
4904 static const char expected[] = "ns::foo<int>";
4905 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4906 EXPECT (expected));
4907 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4908 EXPECT (expected));
4909 }
4910
4911 /* Check that whitespace is ignored appropriately. A symbol with a
4912 template argument list that includes a pointer. */
4913 {
4914 static const char expected[] = "ns::foo<char*>";
4915 /* Try both completion and non-completion modes. */
4916 static const bool completion_mode[2] = {false, true};
4917 for (size_t i = 0; i < 2; i++)
4918 {
4919 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4920 completion_mode[i], EXPECT (expected));
4921 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4922 completion_mode[i], EXPECT (expected));
4923
4924 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4925 completion_mode[i], EXPECT (expected));
4926 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4927 completion_mode[i], EXPECT (expected));
4928 }
4929 }
4930
4931 {
4932 /* Check method qualifiers are ignored. */
4933 static const char expected[] = "ns::foo<char*>";
4934 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4935 symbol_name_match_type::FULL, true, EXPECT (expected));
4936 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4937 symbol_name_match_type::FULL, true, EXPECT (expected));
4938 CHECK_MATCH ("foo < char * > ( int ) const",
4939 symbol_name_match_type::WILD, true, EXPECT (expected));
4940 CHECK_MATCH ("foo < char * > ( int ) &&",
4941 symbol_name_match_type::WILD, true, EXPECT (expected));
4942 }
4943
4944 /* Test lookup names that don't match anything. */
4945 {
4946 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4947 {});
4948
4949 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4950 {});
4951 }
4952
4953 /* Some wild matching tests, exercising "(anonymous namespace)",
4954 which should not be confused with a parameter list. */
4955 {
4956 static const char *syms[] = {
4957 "A::B::C",
4958 "B::C",
4959 "C",
4960 "A :: B :: C ( int )",
4961 "B :: C ( int )",
4962 "C ( int )",
4963 };
4964
4965 for (const char *s : syms)
4966 {
4967 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4968 EXPECT ("(anonymous namespace)::A::B::C"));
4969 }
4970 }
4971
4972 {
4973 static const char expected[] = "ns2::tmpl<int>::foo2";
4974 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4975 EXPECT (expected));
4976 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4977 EXPECT (expected));
4978 }
4979
4980 SELF_CHECK (!any_mismatch);
4981
4982 #undef EXPECT
4983 #undef CHECK_MATCH
4984 }
4985
4986 static void
4987 run_test ()
4988 {
4989 test_mapped_index_find_name_component_bounds ();
4990 test_dw2_expand_symtabs_matching_symbol ();
4991 }
4992
4993 }} // namespace selftests::dw2_expand_symtabs_matching
4994
4995 #endif /* GDB_SELF_TEST */
4996
4997 /* If FILE_MATCHER is NULL or if PER_CU has
4998 dwarf2_per_cu_quick_data::MARK set (see
4999 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5000 EXPANSION_NOTIFY on it. */
5001
5002 static void
5003 dw2_expand_symtabs_matching_one
5004 (struct dwarf2_per_cu_data *per_cu,
5005 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5006 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5007 {
5008 if (file_matcher == NULL || per_cu->v.quick->mark)
5009 {
5010 bool symtab_was_null
5011 = (per_cu->v.quick->compunit_symtab == NULL);
5012
5013 dw2_instantiate_symtab (per_cu);
5014
5015 if (expansion_notify != NULL
5016 && symtab_was_null
5017 && per_cu->v.quick->compunit_symtab != NULL)
5018 expansion_notify (per_cu->v.quick->compunit_symtab);
5019 }
5020 }
5021
5022 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5023 matched, to expand corresponding CUs that were marked. IDX is the
5024 index of the symbol name that matched. */
5025
5026 static void
5027 dw2_expand_marked_cus
5028 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5029 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5030 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5031 search_domain kind)
5032 {
5033 offset_type *vec, vec_len, vec_idx;
5034 bool global_seen = false;
5035 mapped_index &index = *dwarf2_per_objfile->index_table;
5036
5037 vec = (offset_type *) (index.constant_pool
5038 + MAYBE_SWAP (index.symbol_table[idx].vec));
5039 vec_len = MAYBE_SWAP (vec[0]);
5040 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5041 {
5042 struct dwarf2_per_cu_data *per_cu;
5043 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5044 /* This value is only valid for index versions >= 7. */
5045 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5046 gdb_index_symbol_kind symbol_kind =
5047 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5048 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5049 /* Only check the symbol attributes if they're present.
5050 Indices prior to version 7 don't record them,
5051 and indices >= 7 may elide them for certain symbols
5052 (gold does this). */
5053 int attrs_valid =
5054 (index.version >= 7
5055 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5056
5057 /* Work around gold/15646. */
5058 if (attrs_valid)
5059 {
5060 if (!is_static && global_seen)
5061 continue;
5062 if (!is_static)
5063 global_seen = true;
5064 }
5065
5066 /* Only check the symbol's kind if it has one. */
5067 if (attrs_valid)
5068 {
5069 switch (kind)
5070 {
5071 case VARIABLES_DOMAIN:
5072 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5073 continue;
5074 break;
5075 case FUNCTIONS_DOMAIN:
5076 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5077 continue;
5078 break;
5079 case TYPES_DOMAIN:
5080 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5081 continue;
5082 break;
5083 default:
5084 break;
5085 }
5086 }
5087
5088 /* Don't crash on bad data. */
5089 if (cu_index >= (dwarf2_per_objfile->n_comp_units
5090 + dwarf2_per_objfile->n_type_units))
5091 {
5092 complaint (&symfile_complaints,
5093 _(".gdb_index entry has bad CU index"
5094 " [in module %s]"),
5095 objfile_name (dwarf2_per_objfile->objfile));
5096 continue;
5097 }
5098
5099 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
5100 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5101 expansion_notify);
5102 }
5103 }
5104
5105 /* If FILE_MATCHER is non-NULL, set all the
5106 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5107 that match FILE_MATCHER. */
5108
5109 static void
5110 dw_expand_symtabs_matching_file_matcher
5111 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5112 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5113 {
5114 if (file_matcher == NULL)
5115 return;
5116
5117 objfile *const objfile = dwarf2_per_objfile->objfile;
5118
5119 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5120 htab_eq_pointer,
5121 NULL, xcalloc, xfree));
5122 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5123 htab_eq_pointer,
5124 NULL, xcalloc, xfree));
5125
5126 /* The rule is CUs specify all the files, including those used by
5127 any TU, so there's no need to scan TUs here. */
5128
5129 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5130 {
5131 int j;
5132 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5133 struct quick_file_names *file_data;
5134 void **slot;
5135
5136 QUIT;
5137
5138 per_cu->v.quick->mark = 0;
5139
5140 /* We only need to look at symtabs not already expanded. */
5141 if (per_cu->v.quick->compunit_symtab)
5142 continue;
5143
5144 file_data = dw2_get_file_names (per_cu);
5145 if (file_data == NULL)
5146 continue;
5147
5148 if (htab_find (visited_not_found.get (), file_data) != NULL)
5149 continue;
5150 else if (htab_find (visited_found.get (), file_data) != NULL)
5151 {
5152 per_cu->v.quick->mark = 1;
5153 continue;
5154 }
5155
5156 for (j = 0; j < file_data->num_file_names; ++j)
5157 {
5158 const char *this_real_name;
5159
5160 if (file_matcher (file_data->file_names[j], false))
5161 {
5162 per_cu->v.quick->mark = 1;
5163 break;
5164 }
5165
5166 /* Before we invoke realpath, which can get expensive when many
5167 files are involved, do a quick comparison of the basenames. */
5168 if (!basenames_may_differ
5169 && !file_matcher (lbasename (file_data->file_names[j]),
5170 true))
5171 continue;
5172
5173 this_real_name = dw2_get_real_path (objfile, file_data, j);
5174 if (file_matcher (this_real_name, false))
5175 {
5176 per_cu->v.quick->mark = 1;
5177 break;
5178 }
5179 }
5180
5181 slot = htab_find_slot (per_cu->v.quick->mark
5182 ? visited_found.get ()
5183 : visited_not_found.get (),
5184 file_data, INSERT);
5185 *slot = file_data;
5186 }
5187 }
5188
5189 static void
5190 dw2_expand_symtabs_matching
5191 (struct objfile *objfile,
5192 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5193 const lookup_name_info &lookup_name,
5194 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5195 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5196 enum search_domain kind)
5197 {
5198 struct dwarf2_per_objfile *dwarf2_per_objfile
5199 = get_dwarf2_per_objfile (objfile);
5200
5201 /* index_table is NULL if OBJF_READNOW. */
5202 if (!dwarf2_per_objfile->index_table)
5203 return;
5204
5205 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5206
5207 mapped_index &index = *dwarf2_per_objfile->index_table;
5208
5209 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5210 symbol_matcher,
5211 kind, [&] (offset_type idx)
5212 {
5213 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5214 expansion_notify, kind);
5215 });
5216 }
5217
5218 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5219 symtab. */
5220
5221 static struct compunit_symtab *
5222 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5223 CORE_ADDR pc)
5224 {
5225 int i;
5226
5227 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5228 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5229 return cust;
5230
5231 if (cust->includes == NULL)
5232 return NULL;
5233
5234 for (i = 0; cust->includes[i]; ++i)
5235 {
5236 struct compunit_symtab *s = cust->includes[i];
5237
5238 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5239 if (s != NULL)
5240 return s;
5241 }
5242
5243 return NULL;
5244 }
5245
5246 static struct compunit_symtab *
5247 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5248 struct bound_minimal_symbol msymbol,
5249 CORE_ADDR pc,
5250 struct obj_section *section,
5251 int warn_if_readin)
5252 {
5253 struct dwarf2_per_cu_data *data;
5254 struct compunit_symtab *result;
5255
5256 if (!objfile->psymtabs_addrmap)
5257 return NULL;
5258
5259 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5260 pc);
5261 if (!data)
5262 return NULL;
5263
5264 if (warn_if_readin && data->v.quick->compunit_symtab)
5265 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5266 paddress (get_objfile_arch (objfile), pc));
5267
5268 result
5269 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5270 pc);
5271 gdb_assert (result != NULL);
5272 return result;
5273 }
5274
5275 static void
5276 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5277 void *data, int need_fullname)
5278 {
5279 struct dwarf2_per_objfile *dwarf2_per_objfile
5280 = get_dwarf2_per_objfile (objfile);
5281
5282 if (!dwarf2_per_objfile->filenames_cache)
5283 {
5284 dwarf2_per_objfile->filenames_cache.emplace ();
5285
5286 htab_up visited (htab_create_alloc (10,
5287 htab_hash_pointer, htab_eq_pointer,
5288 NULL, xcalloc, xfree));
5289
5290 /* The rule is CUs specify all the files, including those used
5291 by any TU, so there's no need to scan TUs here. We can
5292 ignore file names coming from already-expanded CUs. */
5293
5294 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5295 {
5296 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
5297
5298 if (per_cu->v.quick->compunit_symtab)
5299 {
5300 void **slot = htab_find_slot (visited.get (),
5301 per_cu->v.quick->file_names,
5302 INSERT);
5303
5304 *slot = per_cu->v.quick->file_names;
5305 }
5306 }
5307
5308 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5309 {
5310 dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5311 struct quick_file_names *file_data;
5312 void **slot;
5313
5314 /* We only need to look at symtabs not already expanded. */
5315 if (per_cu->v.quick->compunit_symtab)
5316 continue;
5317
5318 file_data = dw2_get_file_names (per_cu);
5319 if (file_data == NULL)
5320 continue;
5321
5322 slot = htab_find_slot (visited.get (), file_data, INSERT);
5323 if (*slot)
5324 {
5325 /* Already visited. */
5326 continue;
5327 }
5328 *slot = file_data;
5329
5330 for (int j = 0; j < file_data->num_file_names; ++j)
5331 {
5332 const char *filename = file_data->file_names[j];
5333 dwarf2_per_objfile->filenames_cache->seen (filename);
5334 }
5335 }
5336 }
5337
5338 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5339 {
5340 gdb::unique_xmalloc_ptr<char> this_real_name;
5341
5342 if (need_fullname)
5343 this_real_name = gdb_realpath (filename);
5344 (*fun) (filename, this_real_name.get (), data);
5345 });
5346 }
5347
5348 static int
5349 dw2_has_symbols (struct objfile *objfile)
5350 {
5351 return 1;
5352 }
5353
5354 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5355 {
5356 dw2_has_symbols,
5357 dw2_find_last_source_symtab,
5358 dw2_forget_cached_source_info,
5359 dw2_map_symtabs_matching_filename,
5360 dw2_lookup_symbol,
5361 dw2_print_stats,
5362 dw2_dump,
5363 dw2_relocate,
5364 dw2_expand_symtabs_for_function,
5365 dw2_expand_all_symtabs,
5366 dw2_expand_symtabs_with_fullname,
5367 dw2_map_matching_symbols,
5368 dw2_expand_symtabs_matching,
5369 dw2_find_pc_sect_compunit_symtab,
5370 NULL,
5371 dw2_map_symbol_filenames
5372 };
5373
5374 /* DWARF-5 debug_names reader. */
5375
5376 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5377 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5378
5379 /* A helper function that reads the .debug_names section in SECTION
5380 and fills in MAP. FILENAME is the name of the file containing the
5381 section; it is used for error reporting.
5382
5383 Returns true if all went well, false otherwise. */
5384
5385 static bool
5386 read_debug_names_from_section (struct objfile *objfile,
5387 const char *filename,
5388 struct dwarf2_section_info *section,
5389 mapped_debug_names &map)
5390 {
5391 if (dwarf2_section_empty_p (section))
5392 return false;
5393
5394 /* Older elfutils strip versions could keep the section in the main
5395 executable while splitting it for the separate debug info file. */
5396 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5397 return false;
5398
5399 dwarf2_read_section (objfile, section);
5400
5401 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5402
5403 const gdb_byte *addr = section->buffer;
5404
5405 bfd *const abfd = get_section_bfd_owner (section);
5406
5407 unsigned int bytes_read;
5408 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5409 addr += bytes_read;
5410
5411 map.dwarf5_is_dwarf64 = bytes_read != 4;
5412 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5413 if (bytes_read + length != section->size)
5414 {
5415 /* There may be multiple per-CU indices. */
5416 warning (_("Section .debug_names in %s length %s does not match "
5417 "section length %s, ignoring .debug_names."),
5418 filename, plongest (bytes_read + length),
5419 pulongest (section->size));
5420 return false;
5421 }
5422
5423 /* The version number. */
5424 uint16_t version = read_2_bytes (abfd, addr);
5425 addr += 2;
5426 if (version != 5)
5427 {
5428 warning (_("Section .debug_names in %s has unsupported version %d, "
5429 "ignoring .debug_names."),
5430 filename, version);
5431 return false;
5432 }
5433
5434 /* Padding. */
5435 uint16_t padding = read_2_bytes (abfd, addr);
5436 addr += 2;
5437 if (padding != 0)
5438 {
5439 warning (_("Section .debug_names in %s has unsupported padding %d, "
5440 "ignoring .debug_names."),
5441 filename, padding);
5442 return false;
5443 }
5444
5445 /* comp_unit_count - The number of CUs in the CU list. */
5446 map.cu_count = read_4_bytes (abfd, addr);
5447 addr += 4;
5448
5449 /* local_type_unit_count - The number of TUs in the local TU
5450 list. */
5451 map.tu_count = read_4_bytes (abfd, addr);
5452 addr += 4;
5453
5454 /* foreign_type_unit_count - The number of TUs in the foreign TU
5455 list. */
5456 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5457 addr += 4;
5458 if (foreign_tu_count != 0)
5459 {
5460 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5461 "ignoring .debug_names."),
5462 filename, static_cast<unsigned long> (foreign_tu_count));
5463 return false;
5464 }
5465
5466 /* bucket_count - The number of hash buckets in the hash lookup
5467 table. */
5468 map.bucket_count = read_4_bytes (abfd, addr);
5469 addr += 4;
5470
5471 /* name_count - The number of unique names in the index. */
5472 map.name_count = read_4_bytes (abfd, addr);
5473 addr += 4;
5474
5475 /* abbrev_table_size - The size in bytes of the abbreviations
5476 table. */
5477 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5478 addr += 4;
5479
5480 /* augmentation_string_size - The size in bytes of the augmentation
5481 string. This value is rounded up to a multiple of 4. */
5482 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5483 addr += 4;
5484 map.augmentation_is_gdb = ((augmentation_string_size
5485 == sizeof (dwarf5_augmentation))
5486 && memcmp (addr, dwarf5_augmentation,
5487 sizeof (dwarf5_augmentation)) == 0);
5488 augmentation_string_size += (-augmentation_string_size) & 3;
5489 addr += augmentation_string_size;
5490
5491 /* List of CUs */
5492 map.cu_table_reordered = addr;
5493 addr += map.cu_count * map.offset_size;
5494
5495 /* List of Local TUs */
5496 map.tu_table_reordered = addr;
5497 addr += map.tu_count * map.offset_size;
5498
5499 /* Hash Lookup Table */
5500 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5501 addr += map.bucket_count * 4;
5502 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5503 addr += map.name_count * 4;
5504
5505 /* Name Table */
5506 map.name_table_string_offs_reordered = addr;
5507 addr += map.name_count * map.offset_size;
5508 map.name_table_entry_offs_reordered = addr;
5509 addr += map.name_count * map.offset_size;
5510
5511 const gdb_byte *abbrev_table_start = addr;
5512 for (;;)
5513 {
5514 unsigned int bytes_read;
5515 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5516 addr += bytes_read;
5517 if (index_num == 0)
5518 break;
5519
5520 const auto insertpair
5521 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5522 if (!insertpair.second)
5523 {
5524 warning (_("Section .debug_names in %s has duplicate index %s, "
5525 "ignoring .debug_names."),
5526 filename, pulongest (index_num));
5527 return false;
5528 }
5529 mapped_debug_names::index_val &indexval = insertpair.first->second;
5530 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5531 addr += bytes_read;
5532
5533 for (;;)
5534 {
5535 mapped_debug_names::index_val::attr attr;
5536 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5537 addr += bytes_read;
5538 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5539 addr += bytes_read;
5540 if (attr.form == DW_FORM_implicit_const)
5541 {
5542 attr.implicit_const = read_signed_leb128 (abfd, addr,
5543 &bytes_read);
5544 addr += bytes_read;
5545 }
5546 if (attr.dw_idx == 0 && attr.form == 0)
5547 break;
5548 indexval.attr_vec.push_back (std::move (attr));
5549 }
5550 }
5551 if (addr != abbrev_table_start + abbrev_table_size)
5552 {
5553 warning (_("Section .debug_names in %s has abbreviation_table "
5554 "of size %zu vs. written as %u, ignoring .debug_names."),
5555 filename, addr - abbrev_table_start, abbrev_table_size);
5556 return false;
5557 }
5558 map.entry_pool = addr;
5559
5560 return true;
5561 }
5562
5563 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5564 list. */
5565
5566 static void
5567 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5568 const mapped_debug_names &map,
5569 dwarf2_section_info &section,
5570 bool is_dwz, int base_offset)
5571 {
5572 sect_offset sect_off_prev;
5573 for (uint32_t i = 0; i <= map.cu_count; ++i)
5574 {
5575 sect_offset sect_off_next;
5576 if (i < map.cu_count)
5577 {
5578 sect_off_next
5579 = (sect_offset) (extract_unsigned_integer
5580 (map.cu_table_reordered + i * map.offset_size,
5581 map.offset_size,
5582 map.dwarf5_byte_order));
5583 }
5584 else
5585 sect_off_next = (sect_offset) section.size;
5586 if (i >= 1)
5587 {
5588 const ULONGEST length = sect_off_next - sect_off_prev;
5589 dwarf2_per_objfile->all_comp_units[base_offset + (i - 1)]
5590 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5591 sect_off_prev, length);
5592 }
5593 sect_off_prev = sect_off_next;
5594 }
5595 }
5596
5597 /* Read the CU list from the mapped index, and use it to create all
5598 the CU objects for this dwarf2_per_objfile. */
5599
5600 static void
5601 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5602 const mapped_debug_names &map,
5603 const mapped_debug_names &dwz_map)
5604 {
5605 struct objfile *objfile = dwarf2_per_objfile->objfile;
5606
5607 dwarf2_per_objfile->n_comp_units = map.cu_count + dwz_map.cu_count;
5608 dwarf2_per_objfile->all_comp_units
5609 = XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
5610 dwarf2_per_objfile->n_comp_units);
5611
5612 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5613 dwarf2_per_objfile->info,
5614 false /* is_dwz */,
5615 0 /* base_offset */);
5616
5617 if (dwz_map.cu_count == 0)
5618 return;
5619
5620 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5621 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5622 true /* is_dwz */,
5623 map.cu_count /* base_offset */);
5624 }
5625
5626 /* Read .debug_names. If everything went ok, initialize the "quick"
5627 elements of all the CUs and return true. Otherwise, return false. */
5628
5629 static bool
5630 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5631 {
5632 mapped_debug_names local_map (dwarf2_per_objfile);
5633 mapped_debug_names dwz_map (dwarf2_per_objfile);
5634 struct objfile *objfile = dwarf2_per_objfile->objfile;
5635
5636 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5637 &dwarf2_per_objfile->debug_names,
5638 local_map))
5639 return false;
5640
5641 /* Don't use the index if it's empty. */
5642 if (local_map.name_count == 0)
5643 return false;
5644
5645 /* If there is a .dwz file, read it so we can get its CU list as
5646 well. */
5647 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5648 if (dwz != NULL)
5649 {
5650 if (!read_debug_names_from_section (objfile,
5651 bfd_get_filename (dwz->dwz_bfd),
5652 &dwz->debug_names, dwz_map))
5653 {
5654 warning (_("could not read '.debug_names' section from %s; skipping"),
5655 bfd_get_filename (dwz->dwz_bfd));
5656 return false;
5657 }
5658 }
5659
5660 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
5661
5662 if (local_map.tu_count != 0)
5663 {
5664 /* We can only handle a single .debug_types when we have an
5665 index. */
5666 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5667 return false;
5668
5669 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5670 dwarf2_per_objfile->types, 0);
5671
5672 create_signatured_type_table_from_debug_names
5673 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
5674 }
5675
5676 create_addrmap_from_aranges (dwarf2_per_objfile,
5677 &dwarf2_per_objfile->debug_aranges);
5678
5679 dwarf2_per_objfile->debug_names_table.reset
5680 (new mapped_debug_names (dwarf2_per_objfile));
5681 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
5682 dwarf2_per_objfile->using_index = 1;
5683 dwarf2_per_objfile->quick_file_names_table =
5684 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
5685
5686 return true;
5687 }
5688
5689 /* Type used to manage iterating over all CUs looking for a symbol for
5690 .debug_names. */
5691
5692 class dw2_debug_names_iterator
5693 {
5694 public:
5695 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5696 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5697 dw2_debug_names_iterator (const mapped_debug_names &map,
5698 bool want_specific_block,
5699 block_enum block_index, domain_enum domain,
5700 const char *name)
5701 : m_map (map), m_want_specific_block (want_specific_block),
5702 m_block_index (block_index), m_domain (domain),
5703 m_addr (find_vec_in_debug_names (map, name))
5704 {}
5705
5706 dw2_debug_names_iterator (const mapped_debug_names &map,
5707 search_domain search, uint32_t namei)
5708 : m_map (map),
5709 m_search (search),
5710 m_addr (find_vec_in_debug_names (map, namei))
5711 {}
5712
5713 /* Return the next matching CU or NULL if there are no more. */
5714 dwarf2_per_cu_data *next ();
5715
5716 private:
5717 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5718 const char *name);
5719 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5720 uint32_t namei);
5721
5722 /* The internalized form of .debug_names. */
5723 const mapped_debug_names &m_map;
5724
5725 /* If true, only look for symbols that match BLOCK_INDEX. */
5726 const bool m_want_specific_block = false;
5727
5728 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5729 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5730 value. */
5731 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5732
5733 /* The kind of symbol we're looking for. */
5734 const domain_enum m_domain = UNDEF_DOMAIN;
5735 const search_domain m_search = ALL_DOMAIN;
5736
5737 /* The list of CUs from the index entry of the symbol, or NULL if
5738 not found. */
5739 const gdb_byte *m_addr;
5740 };
5741
5742 const char *
5743 mapped_debug_names::namei_to_name (uint32_t namei) const
5744 {
5745 const ULONGEST namei_string_offs
5746 = extract_unsigned_integer ((name_table_string_offs_reordered
5747 + namei * offset_size),
5748 offset_size,
5749 dwarf5_byte_order);
5750 return read_indirect_string_at_offset
5751 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5752 }
5753
5754 /* Find a slot in .debug_names for the object named NAME. If NAME is
5755 found, return pointer to its pool data. If NAME cannot be found,
5756 return NULL. */
5757
5758 const gdb_byte *
5759 dw2_debug_names_iterator::find_vec_in_debug_names
5760 (const mapped_debug_names &map, const char *name)
5761 {
5762 int (*cmp) (const char *, const char *);
5763
5764 if (current_language->la_language == language_cplus
5765 || current_language->la_language == language_fortran
5766 || current_language->la_language == language_d)
5767 {
5768 /* NAME is already canonical. Drop any qualifiers as
5769 .debug_names does not contain any. */
5770
5771 if (strchr (name, '(') != NULL)
5772 {
5773 gdb::unique_xmalloc_ptr<char> without_params
5774 = cp_remove_params (name);
5775
5776 if (without_params != NULL)
5777 {
5778 name = without_params.get();
5779 }
5780 }
5781 }
5782
5783 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5784
5785 const uint32_t full_hash = dwarf5_djb_hash (name);
5786 uint32_t namei
5787 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5788 (map.bucket_table_reordered
5789 + (full_hash % map.bucket_count)), 4,
5790 map.dwarf5_byte_order);
5791 if (namei == 0)
5792 return NULL;
5793 --namei;
5794 if (namei >= map.name_count)
5795 {
5796 complaint (&symfile_complaints,
5797 _("Wrong .debug_names with name index %u but name_count=%u "
5798 "[in module %s]"),
5799 namei, map.name_count,
5800 objfile_name (map.dwarf2_per_objfile->objfile));
5801 return NULL;
5802 }
5803
5804 for (;;)
5805 {
5806 const uint32_t namei_full_hash
5807 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5808 (map.hash_table_reordered + namei), 4,
5809 map.dwarf5_byte_order);
5810 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5811 return NULL;
5812
5813 if (full_hash == namei_full_hash)
5814 {
5815 const char *const namei_string = map.namei_to_name (namei);
5816
5817 #if 0 /* An expensive sanity check. */
5818 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5819 {
5820 complaint (&symfile_complaints,
5821 _("Wrong .debug_names hash for string at index %u "
5822 "[in module %s]"),
5823 namei, objfile_name (dwarf2_per_objfile->objfile));
5824 return NULL;
5825 }
5826 #endif
5827
5828 if (cmp (namei_string, name) == 0)
5829 {
5830 const ULONGEST namei_entry_offs
5831 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5832 + namei * map.offset_size),
5833 map.offset_size, map.dwarf5_byte_order);
5834 return map.entry_pool + namei_entry_offs;
5835 }
5836 }
5837
5838 ++namei;
5839 if (namei >= map.name_count)
5840 return NULL;
5841 }
5842 }
5843
5844 const gdb_byte *
5845 dw2_debug_names_iterator::find_vec_in_debug_names
5846 (const mapped_debug_names &map, uint32_t namei)
5847 {
5848 if (namei >= map.name_count)
5849 {
5850 complaint (&symfile_complaints,
5851 _("Wrong .debug_names with name index %u but name_count=%u "
5852 "[in module %s]"),
5853 namei, map.name_count,
5854 objfile_name (map.dwarf2_per_objfile->objfile));
5855 return NULL;
5856 }
5857
5858 const ULONGEST namei_entry_offs
5859 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5860 + namei * map.offset_size),
5861 map.offset_size, map.dwarf5_byte_order);
5862 return map.entry_pool + namei_entry_offs;
5863 }
5864
5865 /* See dw2_debug_names_iterator. */
5866
5867 dwarf2_per_cu_data *
5868 dw2_debug_names_iterator::next ()
5869 {
5870 if (m_addr == NULL)
5871 return NULL;
5872
5873 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5874 struct objfile *objfile = dwarf2_per_objfile->objfile;
5875 bfd *const abfd = objfile->obfd;
5876
5877 again:
5878
5879 unsigned int bytes_read;
5880 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5881 m_addr += bytes_read;
5882 if (abbrev == 0)
5883 return NULL;
5884
5885 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5886 if (indexval_it == m_map.abbrev_map.cend ())
5887 {
5888 complaint (&symfile_complaints,
5889 _("Wrong .debug_names undefined abbrev code %s "
5890 "[in module %s]"),
5891 pulongest (abbrev), objfile_name (objfile));
5892 return NULL;
5893 }
5894 const mapped_debug_names::index_val &indexval = indexval_it->second;
5895 bool have_is_static = false;
5896 bool is_static;
5897 dwarf2_per_cu_data *per_cu = NULL;
5898 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5899 {
5900 ULONGEST ull;
5901 switch (attr.form)
5902 {
5903 case DW_FORM_implicit_const:
5904 ull = attr.implicit_const;
5905 break;
5906 case DW_FORM_flag_present:
5907 ull = 1;
5908 break;
5909 case DW_FORM_udata:
5910 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5911 m_addr += bytes_read;
5912 break;
5913 default:
5914 complaint (&symfile_complaints,
5915 _("Unsupported .debug_names form %s [in module %s]"),
5916 dwarf_form_name (attr.form),
5917 objfile_name (objfile));
5918 return NULL;
5919 }
5920 switch (attr.dw_idx)
5921 {
5922 case DW_IDX_compile_unit:
5923 /* Don't crash on bad data. */
5924 if (ull >= dwarf2_per_objfile->n_comp_units)
5925 {
5926 complaint (&symfile_complaints,
5927 _(".debug_names entry has bad CU index %s"
5928 " [in module %s]"),
5929 pulongest (ull),
5930 objfile_name (dwarf2_per_objfile->objfile));
5931 continue;
5932 }
5933 per_cu = dw2_get_cutu (dwarf2_per_objfile, ull);
5934 break;
5935 case DW_IDX_type_unit:
5936 /* Don't crash on bad data. */
5937 if (ull >= dwarf2_per_objfile->n_type_units)
5938 {
5939 complaint (&symfile_complaints,
5940 _(".debug_names entry has bad TU index %s"
5941 " [in module %s]"),
5942 pulongest (ull),
5943 objfile_name (dwarf2_per_objfile->objfile));
5944 continue;
5945 }
5946 per_cu = dw2_get_cutu (dwarf2_per_objfile,
5947 dwarf2_per_objfile->n_comp_units + ull);
5948 break;
5949 case DW_IDX_GNU_internal:
5950 if (!m_map.augmentation_is_gdb)
5951 break;
5952 have_is_static = true;
5953 is_static = true;
5954 break;
5955 case DW_IDX_GNU_external:
5956 if (!m_map.augmentation_is_gdb)
5957 break;
5958 have_is_static = true;
5959 is_static = false;
5960 break;
5961 }
5962 }
5963
5964 /* Skip if already read in. */
5965 if (per_cu->v.quick->compunit_symtab)
5966 goto again;
5967
5968 /* Check static vs global. */
5969 if (have_is_static)
5970 {
5971 const bool want_static = m_block_index != GLOBAL_BLOCK;
5972 if (m_want_specific_block && want_static != is_static)
5973 goto again;
5974 }
5975
5976 /* Match dw2_symtab_iter_next, symbol_kind
5977 and debug_names::psymbol_tag. */
5978 switch (m_domain)
5979 {
5980 case VAR_DOMAIN:
5981 switch (indexval.dwarf_tag)
5982 {
5983 case DW_TAG_variable:
5984 case DW_TAG_subprogram:
5985 /* Some types are also in VAR_DOMAIN. */
5986 case DW_TAG_typedef:
5987 case DW_TAG_structure_type:
5988 break;
5989 default:
5990 goto again;
5991 }
5992 break;
5993 case STRUCT_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_typedef:
5997 case DW_TAG_structure_type:
5998 break;
5999 default:
6000 goto again;
6001 }
6002 break;
6003 case LABEL_DOMAIN:
6004 switch (indexval.dwarf_tag)
6005 {
6006 case 0:
6007 case DW_TAG_variable:
6008 break;
6009 default:
6010 goto again;
6011 }
6012 break;
6013 default:
6014 break;
6015 }
6016
6017 /* Match dw2_expand_symtabs_matching, symbol_kind and
6018 debug_names::psymbol_tag. */
6019 switch (m_search)
6020 {
6021 case VARIABLES_DOMAIN:
6022 switch (indexval.dwarf_tag)
6023 {
6024 case DW_TAG_variable:
6025 break;
6026 default:
6027 goto again;
6028 }
6029 break;
6030 case FUNCTIONS_DOMAIN:
6031 switch (indexval.dwarf_tag)
6032 {
6033 case DW_TAG_subprogram:
6034 break;
6035 default:
6036 goto again;
6037 }
6038 break;
6039 case TYPES_DOMAIN:
6040 switch (indexval.dwarf_tag)
6041 {
6042 case DW_TAG_typedef:
6043 case DW_TAG_structure_type:
6044 break;
6045 default:
6046 goto again;
6047 }
6048 break;
6049 default:
6050 break;
6051 }
6052
6053 return per_cu;
6054 }
6055
6056 static struct compunit_symtab *
6057 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6058 const char *name, domain_enum domain)
6059 {
6060 const block_enum block_index = static_cast<block_enum> (block_index_int);
6061 struct dwarf2_per_objfile *dwarf2_per_objfile
6062 = get_dwarf2_per_objfile (objfile);
6063
6064 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6065 if (!mapp)
6066 {
6067 /* index is NULL if OBJF_READNOW. */
6068 return NULL;
6069 }
6070 const auto &map = *mapp;
6071
6072 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6073 block_index, domain, name);
6074
6075 struct compunit_symtab *stab_best = NULL;
6076 struct dwarf2_per_cu_data *per_cu;
6077 while ((per_cu = iter.next ()) != NULL)
6078 {
6079 struct symbol *sym, *with_opaque = NULL;
6080 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6081 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6082 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6083
6084 sym = block_find_symbol (block, name, domain,
6085 block_find_non_opaque_type_preferred,
6086 &with_opaque);
6087
6088 /* Some caution must be observed with overloaded functions and
6089 methods, since the index will not contain any overload
6090 information (but NAME might contain it). */
6091
6092 if (sym != NULL
6093 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6094 return stab;
6095 if (with_opaque != NULL
6096 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6097 stab_best = stab;
6098
6099 /* Keep looking through other CUs. */
6100 }
6101
6102 return stab_best;
6103 }
6104
6105 /* This dumps minimal information about .debug_names. It is called
6106 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6107 uses this to verify that .debug_names has been loaded. */
6108
6109 static void
6110 dw2_debug_names_dump (struct objfile *objfile)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 gdb_assert (dwarf2_per_objfile->using_index);
6116 printf_filtered (".debug_names:");
6117 if (dwarf2_per_objfile->debug_names_table)
6118 printf_filtered (" exists\n");
6119 else
6120 printf_filtered (" faked for \"readnow\"\n");
6121 printf_filtered ("\n");
6122 }
6123
6124 static void
6125 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6126 const char *func_name)
6127 {
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
6130
6131 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6132 if (dwarf2_per_objfile->debug_names_table)
6133 {
6134 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6135
6136 /* Note: It doesn't matter what we pass for block_index here. */
6137 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6138 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6139
6140 struct dwarf2_per_cu_data *per_cu;
6141 while ((per_cu = iter.next ()) != NULL)
6142 dw2_instantiate_symtab (per_cu);
6143 }
6144 }
6145
6146 static void
6147 dw2_debug_names_expand_symtabs_matching
6148 (struct objfile *objfile,
6149 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6150 const lookup_name_info &lookup_name,
6151 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6152 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6153 enum search_domain kind)
6154 {
6155 struct dwarf2_per_objfile *dwarf2_per_objfile
6156 = get_dwarf2_per_objfile (objfile);
6157
6158 /* debug_names_table is NULL if OBJF_READNOW. */
6159 if (!dwarf2_per_objfile->debug_names_table)
6160 return;
6161
6162 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6163
6164 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6165
6166 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6167 symbol_matcher,
6168 kind, [&] (offset_type namei)
6169 {
6170 /* The name was matched, now expand corresponding CUs that were
6171 marked. */
6172 dw2_debug_names_iterator iter (map, kind, namei);
6173
6174 struct dwarf2_per_cu_data *per_cu;
6175 while ((per_cu = iter.next ()) != NULL)
6176 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6177 expansion_notify);
6178 });
6179 }
6180
6181 const struct quick_symbol_functions dwarf2_debug_names_functions =
6182 {
6183 dw2_has_symbols,
6184 dw2_find_last_source_symtab,
6185 dw2_forget_cached_source_info,
6186 dw2_map_symtabs_matching_filename,
6187 dw2_debug_names_lookup_symbol,
6188 dw2_print_stats,
6189 dw2_debug_names_dump,
6190 dw2_relocate,
6191 dw2_debug_names_expand_symtabs_for_function,
6192 dw2_expand_all_symtabs,
6193 dw2_expand_symtabs_with_fullname,
6194 dw2_map_matching_symbols,
6195 dw2_debug_names_expand_symtabs_matching,
6196 dw2_find_pc_sect_compunit_symtab,
6197 NULL,
6198 dw2_map_symbol_filenames
6199 };
6200
6201 /* See symfile.h. */
6202
6203 bool
6204 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6205 {
6206 struct dwarf2_per_objfile *dwarf2_per_objfile
6207 = get_dwarf2_per_objfile (objfile);
6208
6209 /* If we're about to read full symbols, don't bother with the
6210 indices. In this case we also don't care if some other debug
6211 format is making psymtabs, because they are all about to be
6212 expanded anyway. */
6213 if ((objfile->flags & OBJF_READNOW))
6214 {
6215 int i;
6216
6217 dwarf2_per_objfile->using_index = 1;
6218 create_all_comp_units (dwarf2_per_objfile);
6219 create_all_type_units (dwarf2_per_objfile);
6220 dwarf2_per_objfile->quick_file_names_table =
6221 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6222
6223 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
6224 + dwarf2_per_objfile->n_type_units); ++i)
6225 {
6226 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
6227
6228 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6229 struct dwarf2_per_cu_quick_data);
6230 }
6231
6232 /* Return 1 so that gdb sees the "quick" functions. However,
6233 these functions will be no-ops because we will have expanded
6234 all symtabs. */
6235 *index_kind = dw_index_kind::GDB_INDEX;
6236 return true;
6237 }
6238
6239 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6240 {
6241 *index_kind = dw_index_kind::DEBUG_NAMES;
6242 return true;
6243 }
6244
6245 if (dwarf2_read_index (objfile))
6246 {
6247 *index_kind = dw_index_kind::GDB_INDEX;
6248 return true;
6249 }
6250
6251 return false;
6252 }
6253
6254 \f
6255
6256 /* Build a partial symbol table. */
6257
6258 void
6259 dwarf2_build_psymtabs (struct objfile *objfile)
6260 {
6261 struct dwarf2_per_objfile *dwarf2_per_objfile
6262 = get_dwarf2_per_objfile (objfile);
6263
6264 if (objfile->global_psymbols.capacity () == 0
6265 && objfile->static_psymbols.capacity () == 0)
6266 init_psymbol_list (objfile, 1024);
6267
6268 TRY
6269 {
6270 /* This isn't really ideal: all the data we allocate on the
6271 objfile's obstack is still uselessly kept around. However,
6272 freeing it seems unsafe. */
6273 psymtab_discarder psymtabs (objfile);
6274 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6275 psymtabs.keep ();
6276 }
6277 CATCH (except, RETURN_MASK_ERROR)
6278 {
6279 exception_print (gdb_stderr, except);
6280 }
6281 END_CATCH
6282 }
6283
6284 /* Return the total length of the CU described by HEADER. */
6285
6286 static unsigned int
6287 get_cu_length (const struct comp_unit_head *header)
6288 {
6289 return header->initial_length_size + header->length;
6290 }
6291
6292 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6293
6294 static inline bool
6295 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6296 {
6297 sect_offset bottom = cu_header->sect_off;
6298 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6299
6300 return sect_off >= bottom && sect_off < top;
6301 }
6302
6303 /* Find the base address of the compilation unit for range lists and
6304 location lists. It will normally be specified by DW_AT_low_pc.
6305 In DWARF-3 draft 4, the base address could be overridden by
6306 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6307 compilation units with discontinuous ranges. */
6308
6309 static void
6310 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6311 {
6312 struct attribute *attr;
6313
6314 cu->base_known = 0;
6315 cu->base_address = 0;
6316
6317 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6318 if (attr)
6319 {
6320 cu->base_address = attr_value_as_address (attr);
6321 cu->base_known = 1;
6322 }
6323 else
6324 {
6325 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6326 if (attr)
6327 {
6328 cu->base_address = attr_value_as_address (attr);
6329 cu->base_known = 1;
6330 }
6331 }
6332 }
6333
6334 /* Read in the comp unit header information from the debug_info at info_ptr.
6335 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6336 NOTE: This leaves members offset, first_die_offset to be filled in
6337 by the caller. */
6338
6339 static const gdb_byte *
6340 read_comp_unit_head (struct comp_unit_head *cu_header,
6341 const gdb_byte *info_ptr,
6342 struct dwarf2_section_info *section,
6343 rcuh_kind section_kind)
6344 {
6345 int signed_addr;
6346 unsigned int bytes_read;
6347 const char *filename = get_section_file_name (section);
6348 bfd *abfd = get_section_bfd_owner (section);
6349
6350 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6351 cu_header->initial_length_size = bytes_read;
6352 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6353 info_ptr += bytes_read;
6354 cu_header->version = read_2_bytes (abfd, info_ptr);
6355 info_ptr += 2;
6356 if (cu_header->version < 5)
6357 switch (section_kind)
6358 {
6359 case rcuh_kind::COMPILE:
6360 cu_header->unit_type = DW_UT_compile;
6361 break;
6362 case rcuh_kind::TYPE:
6363 cu_header->unit_type = DW_UT_type;
6364 break;
6365 default:
6366 internal_error (__FILE__, __LINE__,
6367 _("read_comp_unit_head: invalid section_kind"));
6368 }
6369 else
6370 {
6371 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6372 (read_1_byte (abfd, info_ptr));
6373 info_ptr += 1;
6374 switch (cu_header->unit_type)
6375 {
6376 case DW_UT_compile:
6377 if (section_kind != rcuh_kind::COMPILE)
6378 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6379 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6380 filename);
6381 break;
6382 case DW_UT_type:
6383 section_kind = rcuh_kind::TYPE;
6384 break;
6385 default:
6386 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6387 "(is %d, should be %d or %d) [in module %s]"),
6388 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6389 }
6390
6391 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6392 info_ptr += 1;
6393 }
6394 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6395 cu_header,
6396 &bytes_read);
6397 info_ptr += bytes_read;
6398 if (cu_header->version < 5)
6399 {
6400 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6401 info_ptr += 1;
6402 }
6403 signed_addr = bfd_get_sign_extend_vma (abfd);
6404 if (signed_addr < 0)
6405 internal_error (__FILE__, __LINE__,
6406 _("read_comp_unit_head: dwarf from non elf file"));
6407 cu_header->signed_addr_p = signed_addr;
6408
6409 if (section_kind == rcuh_kind::TYPE)
6410 {
6411 LONGEST type_offset;
6412
6413 cu_header->signature = read_8_bytes (abfd, info_ptr);
6414 info_ptr += 8;
6415
6416 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6417 info_ptr += bytes_read;
6418 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6419 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6420 error (_("Dwarf Error: Too big type_offset in compilation unit "
6421 "header (is %s) [in module %s]"), plongest (type_offset),
6422 filename);
6423 }
6424
6425 return info_ptr;
6426 }
6427
6428 /* Helper function that returns the proper abbrev section for
6429 THIS_CU. */
6430
6431 static struct dwarf2_section_info *
6432 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6433 {
6434 struct dwarf2_section_info *abbrev;
6435 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6436
6437 if (this_cu->is_dwz)
6438 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6439 else
6440 abbrev = &dwarf2_per_objfile->abbrev;
6441
6442 return abbrev;
6443 }
6444
6445 /* Subroutine of read_and_check_comp_unit_head and
6446 read_and_check_type_unit_head to simplify them.
6447 Perform various error checking on the header. */
6448
6449 static void
6450 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6451 struct comp_unit_head *header,
6452 struct dwarf2_section_info *section,
6453 struct dwarf2_section_info *abbrev_section)
6454 {
6455 const char *filename = get_section_file_name (section);
6456
6457 if (header->version < 2 || header->version > 5)
6458 error (_("Dwarf Error: wrong version in compilation unit header "
6459 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6460 filename);
6461
6462 if (to_underlying (header->abbrev_sect_off)
6463 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6464 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6465 "(offset %s + 6) [in module %s]"),
6466 sect_offset_str (header->abbrev_sect_off),
6467 sect_offset_str (header->sect_off),
6468 filename);
6469
6470 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6471 avoid potential 32-bit overflow. */
6472 if (((ULONGEST) header->sect_off + get_cu_length (header))
6473 > section->size)
6474 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6475 "(offset %s + 0) [in module %s]"),
6476 header->length, sect_offset_str (header->sect_off),
6477 filename);
6478 }
6479
6480 /* Read in a CU/TU header and perform some basic error checking.
6481 The contents of the header are stored in HEADER.
6482 The result is a pointer to the start of the first DIE. */
6483
6484 static const gdb_byte *
6485 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6486 struct comp_unit_head *header,
6487 struct dwarf2_section_info *section,
6488 struct dwarf2_section_info *abbrev_section,
6489 const gdb_byte *info_ptr,
6490 rcuh_kind section_kind)
6491 {
6492 const gdb_byte *beg_of_comp_unit = info_ptr;
6493
6494 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6495
6496 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6497
6498 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6499
6500 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6501 abbrev_section);
6502
6503 return info_ptr;
6504 }
6505
6506 /* Fetch the abbreviation table offset from a comp or type unit header. */
6507
6508 static sect_offset
6509 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6510 struct dwarf2_section_info *section,
6511 sect_offset sect_off)
6512 {
6513 bfd *abfd = get_section_bfd_owner (section);
6514 const gdb_byte *info_ptr;
6515 unsigned int initial_length_size, offset_size;
6516 uint16_t version;
6517
6518 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6519 info_ptr = section->buffer + to_underlying (sect_off);
6520 read_initial_length (abfd, info_ptr, &initial_length_size);
6521 offset_size = initial_length_size == 4 ? 4 : 8;
6522 info_ptr += initial_length_size;
6523
6524 version = read_2_bytes (abfd, info_ptr);
6525 info_ptr += 2;
6526 if (version >= 5)
6527 {
6528 /* Skip unit type and address size. */
6529 info_ptr += 2;
6530 }
6531
6532 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6533 }
6534
6535 /* Allocate a new partial symtab for file named NAME and mark this new
6536 partial symtab as being an include of PST. */
6537
6538 static void
6539 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6540 struct objfile *objfile)
6541 {
6542 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6543
6544 if (!IS_ABSOLUTE_PATH (subpst->filename))
6545 {
6546 /* It shares objfile->objfile_obstack. */
6547 subpst->dirname = pst->dirname;
6548 }
6549
6550 subpst->textlow = 0;
6551 subpst->texthigh = 0;
6552
6553 subpst->dependencies
6554 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6555 subpst->dependencies[0] = pst;
6556 subpst->number_of_dependencies = 1;
6557
6558 subpst->globals_offset = 0;
6559 subpst->n_global_syms = 0;
6560 subpst->statics_offset = 0;
6561 subpst->n_static_syms = 0;
6562 subpst->compunit_symtab = NULL;
6563 subpst->read_symtab = pst->read_symtab;
6564 subpst->readin = 0;
6565
6566 /* No private part is necessary for include psymtabs. This property
6567 can be used to differentiate between such include psymtabs and
6568 the regular ones. */
6569 subpst->read_symtab_private = NULL;
6570 }
6571
6572 /* Read the Line Number Program data and extract the list of files
6573 included by the source file represented by PST. Build an include
6574 partial symtab for each of these included files. */
6575
6576 static void
6577 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6578 struct die_info *die,
6579 struct partial_symtab *pst)
6580 {
6581 line_header_up lh;
6582 struct attribute *attr;
6583
6584 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6585 if (attr)
6586 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6587 if (lh == NULL)
6588 return; /* No linetable, so no includes. */
6589
6590 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6591 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6592 }
6593
6594 static hashval_t
6595 hash_signatured_type (const void *item)
6596 {
6597 const struct signatured_type *sig_type
6598 = (const struct signatured_type *) item;
6599
6600 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6601 return sig_type->signature;
6602 }
6603
6604 static int
6605 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6606 {
6607 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6608 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6609
6610 return lhs->signature == rhs->signature;
6611 }
6612
6613 /* Allocate a hash table for signatured types. */
6614
6615 static htab_t
6616 allocate_signatured_type_table (struct objfile *objfile)
6617 {
6618 return htab_create_alloc_ex (41,
6619 hash_signatured_type,
6620 eq_signatured_type,
6621 NULL,
6622 &objfile->objfile_obstack,
6623 hashtab_obstack_allocate,
6624 dummy_obstack_deallocate);
6625 }
6626
6627 /* A helper function to add a signatured type CU to a table. */
6628
6629 static int
6630 add_signatured_type_cu_to_table (void **slot, void *datum)
6631 {
6632 struct signatured_type *sigt = (struct signatured_type *) *slot;
6633 struct signatured_type ***datap = (struct signatured_type ***) datum;
6634
6635 **datap = sigt;
6636 ++*datap;
6637
6638 return 1;
6639 }
6640
6641 /* A helper for create_debug_types_hash_table. Read types from SECTION
6642 and fill them into TYPES_HTAB. It will process only type units,
6643 therefore DW_UT_type. */
6644
6645 static void
6646 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6647 struct dwo_file *dwo_file,
6648 dwarf2_section_info *section, htab_t &types_htab,
6649 rcuh_kind section_kind)
6650 {
6651 struct objfile *objfile = dwarf2_per_objfile->objfile;
6652 struct dwarf2_section_info *abbrev_section;
6653 bfd *abfd;
6654 const gdb_byte *info_ptr, *end_ptr;
6655
6656 abbrev_section = (dwo_file != NULL
6657 ? &dwo_file->sections.abbrev
6658 : &dwarf2_per_objfile->abbrev);
6659
6660 if (dwarf_read_debug)
6661 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6662 get_section_name (section),
6663 get_section_file_name (abbrev_section));
6664
6665 dwarf2_read_section (objfile, section);
6666 info_ptr = section->buffer;
6667
6668 if (info_ptr == NULL)
6669 return;
6670
6671 /* We can't set abfd until now because the section may be empty or
6672 not present, in which case the bfd is unknown. */
6673 abfd = get_section_bfd_owner (section);
6674
6675 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6676 because we don't need to read any dies: the signature is in the
6677 header. */
6678
6679 end_ptr = info_ptr + section->size;
6680 while (info_ptr < end_ptr)
6681 {
6682 struct signatured_type *sig_type;
6683 struct dwo_unit *dwo_tu;
6684 void **slot;
6685 const gdb_byte *ptr = info_ptr;
6686 struct comp_unit_head header;
6687 unsigned int length;
6688
6689 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6690
6691 /* Initialize it due to a false compiler warning. */
6692 header.signature = -1;
6693 header.type_cu_offset_in_tu = (cu_offset) -1;
6694
6695 /* We need to read the type's signature in order to build the hash
6696 table, but we don't need anything else just yet. */
6697
6698 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6699 abbrev_section, ptr, section_kind);
6700
6701 length = get_cu_length (&header);
6702
6703 /* Skip dummy type units. */
6704 if (ptr >= info_ptr + length
6705 || peek_abbrev_code (abfd, ptr) == 0
6706 || header.unit_type != DW_UT_type)
6707 {
6708 info_ptr += length;
6709 continue;
6710 }
6711
6712 if (types_htab == NULL)
6713 {
6714 if (dwo_file)
6715 types_htab = allocate_dwo_unit_table (objfile);
6716 else
6717 types_htab = allocate_signatured_type_table (objfile);
6718 }
6719
6720 if (dwo_file)
6721 {
6722 sig_type = NULL;
6723 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6724 struct dwo_unit);
6725 dwo_tu->dwo_file = dwo_file;
6726 dwo_tu->signature = header.signature;
6727 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6728 dwo_tu->section = section;
6729 dwo_tu->sect_off = sect_off;
6730 dwo_tu->length = length;
6731 }
6732 else
6733 {
6734 /* N.B.: type_offset is not usable if this type uses a DWO file.
6735 The real type_offset is in the DWO file. */
6736 dwo_tu = NULL;
6737 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6738 struct signatured_type);
6739 sig_type->signature = header.signature;
6740 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6741 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6742 sig_type->per_cu.is_debug_types = 1;
6743 sig_type->per_cu.section = section;
6744 sig_type->per_cu.sect_off = sect_off;
6745 sig_type->per_cu.length = length;
6746 }
6747
6748 slot = htab_find_slot (types_htab,
6749 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6750 INSERT);
6751 gdb_assert (slot != NULL);
6752 if (*slot != NULL)
6753 {
6754 sect_offset dup_sect_off;
6755
6756 if (dwo_file)
6757 {
6758 const struct dwo_unit *dup_tu
6759 = (const struct dwo_unit *) *slot;
6760
6761 dup_sect_off = dup_tu->sect_off;
6762 }
6763 else
6764 {
6765 const struct signatured_type *dup_tu
6766 = (const struct signatured_type *) *slot;
6767
6768 dup_sect_off = dup_tu->per_cu.sect_off;
6769 }
6770
6771 complaint (&symfile_complaints,
6772 _("debug type entry at offset %s is duplicate to"
6773 " the entry at offset %s, signature %s"),
6774 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6775 hex_string (header.signature));
6776 }
6777 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6778
6779 if (dwarf_read_debug > 1)
6780 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6781 sect_offset_str (sect_off),
6782 hex_string (header.signature));
6783
6784 info_ptr += length;
6785 }
6786 }
6787
6788 /* Create the hash table of all entries in the .debug_types
6789 (or .debug_types.dwo) section(s).
6790 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6791 otherwise it is NULL.
6792
6793 The result is a pointer to the hash table or NULL if there are no types.
6794
6795 Note: This function processes DWO files only, not DWP files. */
6796
6797 static void
6798 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6799 struct dwo_file *dwo_file,
6800 VEC (dwarf2_section_info_def) *types,
6801 htab_t &types_htab)
6802 {
6803 int ix;
6804 struct dwarf2_section_info *section;
6805
6806 if (VEC_empty (dwarf2_section_info_def, types))
6807 return;
6808
6809 for (ix = 0;
6810 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6811 ++ix)
6812 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6813 types_htab, rcuh_kind::TYPE);
6814 }
6815
6816 /* Create the hash table of all entries in the .debug_types section,
6817 and initialize all_type_units.
6818 The result is zero if there is an error (e.g. missing .debug_types section),
6819 otherwise non-zero. */
6820
6821 static int
6822 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6823 {
6824 htab_t types_htab = NULL;
6825 struct signatured_type **iter;
6826
6827 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6828 &dwarf2_per_objfile->info, types_htab,
6829 rcuh_kind::COMPILE);
6830 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6831 dwarf2_per_objfile->types, types_htab);
6832 if (types_htab == NULL)
6833 {
6834 dwarf2_per_objfile->signatured_types = NULL;
6835 return 0;
6836 }
6837
6838 dwarf2_per_objfile->signatured_types = types_htab;
6839
6840 dwarf2_per_objfile->n_type_units
6841 = dwarf2_per_objfile->n_allocated_type_units
6842 = htab_elements (types_htab);
6843 dwarf2_per_objfile->all_type_units =
6844 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
6845 iter = &dwarf2_per_objfile->all_type_units[0];
6846 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
6847 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
6848 == dwarf2_per_objfile->n_type_units);
6849
6850 return 1;
6851 }
6852
6853 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6854 If SLOT is non-NULL, it is the entry to use in the hash table.
6855 Otherwise we find one. */
6856
6857 static struct signatured_type *
6858 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6859 void **slot)
6860 {
6861 struct objfile *objfile = dwarf2_per_objfile->objfile;
6862 int n_type_units = dwarf2_per_objfile->n_type_units;
6863 struct signatured_type *sig_type;
6864
6865 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
6866 ++n_type_units;
6867 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
6868 {
6869 if (dwarf2_per_objfile->n_allocated_type_units == 0)
6870 dwarf2_per_objfile->n_allocated_type_units = 1;
6871 dwarf2_per_objfile->n_allocated_type_units *= 2;
6872 dwarf2_per_objfile->all_type_units
6873 = XRESIZEVEC (struct signatured_type *,
6874 dwarf2_per_objfile->all_type_units,
6875 dwarf2_per_objfile->n_allocated_type_units);
6876 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6877 }
6878 dwarf2_per_objfile->n_type_units = n_type_units;
6879
6880 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6881 struct signatured_type);
6882 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
6883 sig_type->signature = sig;
6884 sig_type->per_cu.is_debug_types = 1;
6885 if (dwarf2_per_objfile->using_index)
6886 {
6887 sig_type->per_cu.v.quick =
6888 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6889 struct dwarf2_per_cu_quick_data);
6890 }
6891
6892 if (slot == NULL)
6893 {
6894 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6895 sig_type, INSERT);
6896 }
6897 gdb_assert (*slot == NULL);
6898 *slot = sig_type;
6899 /* The rest of sig_type must be filled in by the caller. */
6900 return sig_type;
6901 }
6902
6903 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6904 Fill in SIG_ENTRY with DWO_ENTRY. */
6905
6906 static void
6907 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6908 struct signatured_type *sig_entry,
6909 struct dwo_unit *dwo_entry)
6910 {
6911 /* Make sure we're not clobbering something we don't expect to. */
6912 gdb_assert (! sig_entry->per_cu.queued);
6913 gdb_assert (sig_entry->per_cu.cu == NULL);
6914 if (dwarf2_per_objfile->using_index)
6915 {
6916 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6917 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6918 }
6919 else
6920 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6921 gdb_assert (sig_entry->signature == dwo_entry->signature);
6922 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6923 gdb_assert (sig_entry->type_unit_group == NULL);
6924 gdb_assert (sig_entry->dwo_unit == NULL);
6925
6926 sig_entry->per_cu.section = dwo_entry->section;
6927 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6928 sig_entry->per_cu.length = dwo_entry->length;
6929 sig_entry->per_cu.reading_dwo_directly = 1;
6930 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6931 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6932 sig_entry->dwo_unit = dwo_entry;
6933 }
6934
6935 /* Subroutine of lookup_signatured_type.
6936 If we haven't read the TU yet, create the signatured_type data structure
6937 for a TU to be read in directly from a DWO file, bypassing the stub.
6938 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6939 using .gdb_index, then when reading a CU we want to stay in the DWO file
6940 containing that CU. Otherwise we could end up reading several other DWO
6941 files (due to comdat folding) to process the transitive closure of all the
6942 mentioned TUs, and that can be slow. The current DWO file will have every
6943 type signature that it needs.
6944 We only do this for .gdb_index because in the psymtab case we already have
6945 to read all the DWOs to build the type unit groups. */
6946
6947 static struct signatured_type *
6948 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6949 {
6950 struct dwarf2_per_objfile *dwarf2_per_objfile
6951 = cu->per_cu->dwarf2_per_objfile;
6952 struct objfile *objfile = dwarf2_per_objfile->objfile;
6953 struct dwo_file *dwo_file;
6954 struct dwo_unit find_dwo_entry, *dwo_entry;
6955 struct signatured_type find_sig_entry, *sig_entry;
6956 void **slot;
6957
6958 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6959
6960 /* If TU skeletons have been removed then we may not have read in any
6961 TUs yet. */
6962 if (dwarf2_per_objfile->signatured_types == NULL)
6963 {
6964 dwarf2_per_objfile->signatured_types
6965 = allocate_signatured_type_table (objfile);
6966 }
6967
6968 /* We only ever need to read in one copy of a signatured type.
6969 Use the global signatured_types array to do our own comdat-folding
6970 of types. If this is the first time we're reading this TU, and
6971 the TU has an entry in .gdb_index, replace the recorded data from
6972 .gdb_index with this TU. */
6973
6974 find_sig_entry.signature = sig;
6975 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6976 &find_sig_entry, INSERT);
6977 sig_entry = (struct signatured_type *) *slot;
6978
6979 /* We can get here with the TU already read, *or* in the process of being
6980 read. Don't reassign the global entry to point to this DWO if that's
6981 the case. Also note that if the TU is already being read, it may not
6982 have come from a DWO, the program may be a mix of Fission-compiled
6983 code and non-Fission-compiled code. */
6984
6985 /* Have we already tried to read this TU?
6986 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6987 needn't exist in the global table yet). */
6988 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6989 return sig_entry;
6990
6991 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6992 dwo_unit of the TU itself. */
6993 dwo_file = cu->dwo_unit->dwo_file;
6994
6995 /* Ok, this is the first time we're reading this TU. */
6996 if (dwo_file->tus == NULL)
6997 return NULL;
6998 find_dwo_entry.signature = sig;
6999 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7000 if (dwo_entry == NULL)
7001 return NULL;
7002
7003 /* If the global table doesn't have an entry for this TU, add one. */
7004 if (sig_entry == NULL)
7005 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7006
7007 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7008 sig_entry->per_cu.tu_read = 1;
7009 return sig_entry;
7010 }
7011
7012 /* Subroutine of lookup_signatured_type.
7013 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7014 then try the DWP file. If the TU stub (skeleton) has been removed then
7015 it won't be in .gdb_index. */
7016
7017 static struct signatured_type *
7018 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7019 {
7020 struct dwarf2_per_objfile *dwarf2_per_objfile
7021 = cu->per_cu->dwarf2_per_objfile;
7022 struct objfile *objfile = dwarf2_per_objfile->objfile;
7023 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7024 struct dwo_unit *dwo_entry;
7025 struct signatured_type find_sig_entry, *sig_entry;
7026 void **slot;
7027
7028 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7029 gdb_assert (dwp_file != NULL);
7030
7031 /* If TU skeletons have been removed then we may not have read in any
7032 TUs yet. */
7033 if (dwarf2_per_objfile->signatured_types == NULL)
7034 {
7035 dwarf2_per_objfile->signatured_types
7036 = allocate_signatured_type_table (objfile);
7037 }
7038
7039 find_sig_entry.signature = sig;
7040 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7041 &find_sig_entry, INSERT);
7042 sig_entry = (struct signatured_type *) *slot;
7043
7044 /* Have we already tried to read this TU?
7045 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7046 needn't exist in the global table yet). */
7047 if (sig_entry != NULL)
7048 return sig_entry;
7049
7050 if (dwp_file->tus == NULL)
7051 return NULL;
7052 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7053 sig, 1 /* is_debug_types */);
7054 if (dwo_entry == NULL)
7055 return NULL;
7056
7057 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7058 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7059
7060 return sig_entry;
7061 }
7062
7063 /* Lookup a signature based type for DW_FORM_ref_sig8.
7064 Returns NULL if signature SIG is not present in the table.
7065 It is up to the caller to complain about this. */
7066
7067 static struct signatured_type *
7068 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7069 {
7070 struct dwarf2_per_objfile *dwarf2_per_objfile
7071 = cu->per_cu->dwarf2_per_objfile;
7072
7073 if (cu->dwo_unit
7074 && dwarf2_per_objfile->using_index)
7075 {
7076 /* We're in a DWO/DWP file, and we're using .gdb_index.
7077 These cases require special processing. */
7078 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7079 return lookup_dwo_signatured_type (cu, sig);
7080 else
7081 return lookup_dwp_signatured_type (cu, sig);
7082 }
7083 else
7084 {
7085 struct signatured_type find_entry, *entry;
7086
7087 if (dwarf2_per_objfile->signatured_types == NULL)
7088 return NULL;
7089 find_entry.signature = sig;
7090 entry = ((struct signatured_type *)
7091 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7092 return entry;
7093 }
7094 }
7095 \f
7096 /* Low level DIE reading support. */
7097
7098 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7099
7100 static void
7101 init_cu_die_reader (struct die_reader_specs *reader,
7102 struct dwarf2_cu *cu,
7103 struct dwarf2_section_info *section,
7104 struct dwo_file *dwo_file,
7105 struct abbrev_table *abbrev_table)
7106 {
7107 gdb_assert (section->readin && section->buffer != NULL);
7108 reader->abfd = get_section_bfd_owner (section);
7109 reader->cu = cu;
7110 reader->dwo_file = dwo_file;
7111 reader->die_section = section;
7112 reader->buffer = section->buffer;
7113 reader->buffer_end = section->buffer + section->size;
7114 reader->comp_dir = NULL;
7115 reader->abbrev_table = abbrev_table;
7116 }
7117
7118 /* Subroutine of init_cutu_and_read_dies to simplify it.
7119 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7120 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7121 already.
7122
7123 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7124 from it to the DIE in the DWO. If NULL we are skipping the stub.
7125 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7126 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7127 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7128 STUB_COMP_DIR may be non-NULL.
7129 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7130 are filled in with the info of the DIE from the DWO file.
7131 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7132 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7133 kept around for at least as long as *RESULT_READER.
7134
7135 The result is non-zero if a valid (non-dummy) DIE was found. */
7136
7137 static int
7138 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7139 struct dwo_unit *dwo_unit,
7140 struct die_info *stub_comp_unit_die,
7141 const char *stub_comp_dir,
7142 struct die_reader_specs *result_reader,
7143 const gdb_byte **result_info_ptr,
7144 struct die_info **result_comp_unit_die,
7145 int *result_has_children,
7146 abbrev_table_up *result_dwo_abbrev_table)
7147 {
7148 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7149 struct objfile *objfile = dwarf2_per_objfile->objfile;
7150 struct dwarf2_cu *cu = this_cu->cu;
7151 bfd *abfd;
7152 const gdb_byte *begin_info_ptr, *info_ptr;
7153 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7154 int i,num_extra_attrs;
7155 struct dwarf2_section_info *dwo_abbrev_section;
7156 struct attribute *attr;
7157 struct die_info *comp_unit_die;
7158
7159 /* At most one of these may be provided. */
7160 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7161
7162 /* These attributes aren't processed until later:
7163 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7164 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7165 referenced later. However, these attributes are found in the stub
7166 which we won't have later. In order to not impose this complication
7167 on the rest of the code, we read them here and copy them to the
7168 DWO CU/TU die. */
7169
7170 stmt_list = NULL;
7171 low_pc = NULL;
7172 high_pc = NULL;
7173 ranges = NULL;
7174 comp_dir = NULL;
7175
7176 if (stub_comp_unit_die != NULL)
7177 {
7178 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7179 DWO file. */
7180 if (! this_cu->is_debug_types)
7181 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7182 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7183 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7184 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7185 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7186
7187 /* There should be a DW_AT_addr_base attribute here (if needed).
7188 We need the value before we can process DW_FORM_GNU_addr_index. */
7189 cu->addr_base = 0;
7190 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7191 if (attr)
7192 cu->addr_base = DW_UNSND (attr);
7193
7194 /* There should be a DW_AT_ranges_base attribute here (if needed).
7195 We need the value before we can process DW_AT_ranges. */
7196 cu->ranges_base = 0;
7197 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7198 if (attr)
7199 cu->ranges_base = DW_UNSND (attr);
7200 }
7201 else if (stub_comp_dir != NULL)
7202 {
7203 /* Reconstruct the comp_dir attribute to simplify the code below. */
7204 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7205 comp_dir->name = DW_AT_comp_dir;
7206 comp_dir->form = DW_FORM_string;
7207 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7208 DW_STRING (comp_dir) = stub_comp_dir;
7209 }
7210
7211 /* Set up for reading the DWO CU/TU. */
7212 cu->dwo_unit = dwo_unit;
7213 dwarf2_section_info *section = dwo_unit->section;
7214 dwarf2_read_section (objfile, section);
7215 abfd = get_section_bfd_owner (section);
7216 begin_info_ptr = info_ptr = (section->buffer
7217 + to_underlying (dwo_unit->sect_off));
7218 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7219
7220 if (this_cu->is_debug_types)
7221 {
7222 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7223
7224 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7225 &cu->header, section,
7226 dwo_abbrev_section,
7227 info_ptr, rcuh_kind::TYPE);
7228 /* This is not an assert because it can be caused by bad debug info. */
7229 if (sig_type->signature != cu->header.signature)
7230 {
7231 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7232 " TU at offset %s [in module %s]"),
7233 hex_string (sig_type->signature),
7234 hex_string (cu->header.signature),
7235 sect_offset_str (dwo_unit->sect_off),
7236 bfd_get_filename (abfd));
7237 }
7238 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7239 /* For DWOs coming from DWP files, we don't know the CU length
7240 nor the type's offset in the TU until now. */
7241 dwo_unit->length = get_cu_length (&cu->header);
7242 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7243
7244 /* Establish the type offset that can be used to lookup the type.
7245 For DWO files, we don't know it until now. */
7246 sig_type->type_offset_in_section
7247 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7248 }
7249 else
7250 {
7251 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7252 &cu->header, section,
7253 dwo_abbrev_section,
7254 info_ptr, rcuh_kind::COMPILE);
7255 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7256 /* For DWOs coming from DWP files, we don't know the CU length
7257 until now. */
7258 dwo_unit->length = get_cu_length (&cu->header);
7259 }
7260
7261 *result_dwo_abbrev_table
7262 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7263 cu->header.abbrev_sect_off);
7264 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7265 result_dwo_abbrev_table->get ());
7266
7267 /* Read in the die, but leave space to copy over the attributes
7268 from the stub. This has the benefit of simplifying the rest of
7269 the code - all the work to maintain the illusion of a single
7270 DW_TAG_{compile,type}_unit DIE is done here. */
7271 num_extra_attrs = ((stmt_list != NULL)
7272 + (low_pc != NULL)
7273 + (high_pc != NULL)
7274 + (ranges != NULL)
7275 + (comp_dir != NULL));
7276 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7277 result_has_children, num_extra_attrs);
7278
7279 /* Copy over the attributes from the stub to the DIE we just read in. */
7280 comp_unit_die = *result_comp_unit_die;
7281 i = comp_unit_die->num_attrs;
7282 if (stmt_list != NULL)
7283 comp_unit_die->attrs[i++] = *stmt_list;
7284 if (low_pc != NULL)
7285 comp_unit_die->attrs[i++] = *low_pc;
7286 if (high_pc != NULL)
7287 comp_unit_die->attrs[i++] = *high_pc;
7288 if (ranges != NULL)
7289 comp_unit_die->attrs[i++] = *ranges;
7290 if (comp_dir != NULL)
7291 comp_unit_die->attrs[i++] = *comp_dir;
7292 comp_unit_die->num_attrs += num_extra_attrs;
7293
7294 if (dwarf_die_debug)
7295 {
7296 fprintf_unfiltered (gdb_stdlog,
7297 "Read die from %s@0x%x of %s:\n",
7298 get_section_name (section),
7299 (unsigned) (begin_info_ptr - section->buffer),
7300 bfd_get_filename (abfd));
7301 dump_die (comp_unit_die, dwarf_die_debug);
7302 }
7303
7304 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7305 TUs by skipping the stub and going directly to the entry in the DWO file.
7306 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7307 to get it via circuitous means. Blech. */
7308 if (comp_dir != NULL)
7309 result_reader->comp_dir = DW_STRING (comp_dir);
7310
7311 /* Skip dummy compilation units. */
7312 if (info_ptr >= begin_info_ptr + dwo_unit->length
7313 || peek_abbrev_code (abfd, info_ptr) == 0)
7314 return 0;
7315
7316 *result_info_ptr = info_ptr;
7317 return 1;
7318 }
7319
7320 /* Subroutine of init_cutu_and_read_dies to simplify it.
7321 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7322 Returns NULL if the specified DWO unit cannot be found. */
7323
7324 static struct dwo_unit *
7325 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7326 struct die_info *comp_unit_die)
7327 {
7328 struct dwarf2_cu *cu = this_cu->cu;
7329 ULONGEST signature;
7330 struct dwo_unit *dwo_unit;
7331 const char *comp_dir, *dwo_name;
7332
7333 gdb_assert (cu != NULL);
7334
7335 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7336 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7337 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7338
7339 if (this_cu->is_debug_types)
7340 {
7341 struct signatured_type *sig_type;
7342
7343 /* Since this_cu is the first member of struct signatured_type,
7344 we can go from a pointer to one to a pointer to the other. */
7345 sig_type = (struct signatured_type *) this_cu;
7346 signature = sig_type->signature;
7347 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7348 }
7349 else
7350 {
7351 struct attribute *attr;
7352
7353 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7354 if (! attr)
7355 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7356 " [in module %s]"),
7357 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7358 signature = DW_UNSND (attr);
7359 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7360 signature);
7361 }
7362
7363 return dwo_unit;
7364 }
7365
7366 /* Subroutine of init_cutu_and_read_dies to simplify it.
7367 See it for a description of the parameters.
7368 Read a TU directly from a DWO file, bypassing the stub. */
7369
7370 static void
7371 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7372 int use_existing_cu, int keep,
7373 die_reader_func_ftype *die_reader_func,
7374 void *data)
7375 {
7376 std::unique_ptr<dwarf2_cu> new_cu;
7377 struct signatured_type *sig_type;
7378 struct die_reader_specs reader;
7379 const gdb_byte *info_ptr;
7380 struct die_info *comp_unit_die;
7381 int has_children;
7382 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7383
7384 /* Verify we can do the following downcast, and that we have the
7385 data we need. */
7386 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7387 sig_type = (struct signatured_type *) this_cu;
7388 gdb_assert (sig_type->dwo_unit != NULL);
7389
7390 if (use_existing_cu && this_cu->cu != NULL)
7391 {
7392 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7393 /* There's no need to do the rereading_dwo_cu handling that
7394 init_cutu_and_read_dies does since we don't read the stub. */
7395 }
7396 else
7397 {
7398 /* If !use_existing_cu, this_cu->cu must be NULL. */
7399 gdb_assert (this_cu->cu == NULL);
7400 new_cu.reset (new dwarf2_cu (this_cu));
7401 }
7402
7403 /* A future optimization, if needed, would be to use an existing
7404 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7405 could share abbrev tables. */
7406
7407 /* The abbreviation table used by READER, this must live at least as long as
7408 READER. */
7409 abbrev_table_up dwo_abbrev_table;
7410
7411 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7412 NULL /* stub_comp_unit_die */,
7413 sig_type->dwo_unit->dwo_file->comp_dir,
7414 &reader, &info_ptr,
7415 &comp_unit_die, &has_children,
7416 &dwo_abbrev_table) == 0)
7417 {
7418 /* Dummy die. */
7419 return;
7420 }
7421
7422 /* All the "real" work is done here. */
7423 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7424
7425 /* This duplicates the code in init_cutu_and_read_dies,
7426 but the alternative is making the latter more complex.
7427 This function is only for the special case of using DWO files directly:
7428 no point in overly complicating the general case just to handle this. */
7429 if (new_cu != NULL && keep)
7430 {
7431 /* Link this CU into read_in_chain. */
7432 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7433 dwarf2_per_objfile->read_in_chain = this_cu;
7434 /* The chain owns it now. */
7435 new_cu.release ();
7436 }
7437 }
7438
7439 /* Initialize a CU (or TU) and read its DIEs.
7440 If the CU defers to a DWO file, read the DWO file as well.
7441
7442 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7443 Otherwise the table specified in the comp unit header is read in and used.
7444 This is an optimization for when we already have the abbrev table.
7445
7446 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7447 Otherwise, a new CU is allocated with xmalloc.
7448
7449 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7450 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7451
7452 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7453 linker) then DIE_READER_FUNC will not get called. */
7454
7455 static void
7456 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7457 struct abbrev_table *abbrev_table,
7458 int use_existing_cu, int keep,
7459 die_reader_func_ftype *die_reader_func,
7460 void *data)
7461 {
7462 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7463 struct objfile *objfile = dwarf2_per_objfile->objfile;
7464 struct dwarf2_section_info *section = this_cu->section;
7465 bfd *abfd = get_section_bfd_owner (section);
7466 struct dwarf2_cu *cu;
7467 const gdb_byte *begin_info_ptr, *info_ptr;
7468 struct die_reader_specs reader;
7469 struct die_info *comp_unit_die;
7470 int has_children;
7471 struct attribute *attr;
7472 struct signatured_type *sig_type = NULL;
7473 struct dwarf2_section_info *abbrev_section;
7474 /* Non-zero if CU currently points to a DWO file and we need to
7475 reread it. When this happens we need to reread the skeleton die
7476 before we can reread the DWO file (this only applies to CUs, not TUs). */
7477 int rereading_dwo_cu = 0;
7478
7479 if (dwarf_die_debug)
7480 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7481 this_cu->is_debug_types ? "type" : "comp",
7482 sect_offset_str (this_cu->sect_off));
7483
7484 if (use_existing_cu)
7485 gdb_assert (keep);
7486
7487 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7488 file (instead of going through the stub), short-circuit all of this. */
7489 if (this_cu->reading_dwo_directly)
7490 {
7491 /* Narrow down the scope of possibilities to have to understand. */
7492 gdb_assert (this_cu->is_debug_types);
7493 gdb_assert (abbrev_table == NULL);
7494 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7495 die_reader_func, data);
7496 return;
7497 }
7498
7499 /* This is cheap if the section is already read in. */
7500 dwarf2_read_section (objfile, section);
7501
7502 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7503
7504 abbrev_section = get_abbrev_section_for_cu (this_cu);
7505
7506 std::unique_ptr<dwarf2_cu> new_cu;
7507 if (use_existing_cu && this_cu->cu != NULL)
7508 {
7509 cu = this_cu->cu;
7510 /* If this CU is from a DWO file we need to start over, we need to
7511 refetch the attributes from the skeleton CU.
7512 This could be optimized by retrieving those attributes from when we
7513 were here the first time: the previous comp_unit_die was stored in
7514 comp_unit_obstack. But there's no data yet that we need this
7515 optimization. */
7516 if (cu->dwo_unit != NULL)
7517 rereading_dwo_cu = 1;
7518 }
7519 else
7520 {
7521 /* If !use_existing_cu, this_cu->cu must be NULL. */
7522 gdb_assert (this_cu->cu == NULL);
7523 new_cu.reset (new dwarf2_cu (this_cu));
7524 cu = new_cu.get ();
7525 }
7526
7527 /* Get the header. */
7528 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7529 {
7530 /* We already have the header, there's no need to read it in again. */
7531 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7532 }
7533 else
7534 {
7535 if (this_cu->is_debug_types)
7536 {
7537 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7538 &cu->header, section,
7539 abbrev_section, info_ptr,
7540 rcuh_kind::TYPE);
7541
7542 /* Since per_cu is the first member of struct signatured_type,
7543 we can go from a pointer to one to a pointer to the other. */
7544 sig_type = (struct signatured_type *) this_cu;
7545 gdb_assert (sig_type->signature == cu->header.signature);
7546 gdb_assert (sig_type->type_offset_in_tu
7547 == cu->header.type_cu_offset_in_tu);
7548 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7549
7550 /* LENGTH has not been set yet for type units if we're
7551 using .gdb_index. */
7552 this_cu->length = get_cu_length (&cu->header);
7553
7554 /* Establish the type offset that can be used to lookup the type. */
7555 sig_type->type_offset_in_section =
7556 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7557
7558 this_cu->dwarf_version = cu->header.version;
7559 }
7560 else
7561 {
7562 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7563 &cu->header, section,
7564 abbrev_section,
7565 info_ptr,
7566 rcuh_kind::COMPILE);
7567
7568 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7569 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7570 this_cu->dwarf_version = cu->header.version;
7571 }
7572 }
7573
7574 /* Skip dummy compilation units. */
7575 if (info_ptr >= begin_info_ptr + this_cu->length
7576 || peek_abbrev_code (abfd, info_ptr) == 0)
7577 return;
7578
7579 /* If we don't have them yet, read the abbrevs for this compilation unit.
7580 And if we need to read them now, make sure they're freed when we're
7581 done (own the table through ABBREV_TABLE_HOLDER). */
7582 abbrev_table_up abbrev_table_holder;
7583 if (abbrev_table != NULL)
7584 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7585 else
7586 {
7587 abbrev_table_holder
7588 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7589 cu->header.abbrev_sect_off);
7590 abbrev_table = abbrev_table_holder.get ();
7591 }
7592
7593 /* Read the top level CU/TU die. */
7594 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7595 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7596
7597 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7598 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7599 table from the DWO file and pass the ownership over to us. It will be
7600 referenced from READER, so we must make sure to free it after we're done
7601 with READER.
7602
7603 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7604 DWO CU, that this test will fail (the attribute will not be present). */
7605 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7606 abbrev_table_up dwo_abbrev_table;
7607 if (attr)
7608 {
7609 struct dwo_unit *dwo_unit;
7610 struct die_info *dwo_comp_unit_die;
7611
7612 if (has_children)
7613 {
7614 complaint (&symfile_complaints,
7615 _("compilation unit with DW_AT_GNU_dwo_name"
7616 " has children (offset %s) [in module %s]"),
7617 sect_offset_str (this_cu->sect_off),
7618 bfd_get_filename (abfd));
7619 }
7620 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7621 if (dwo_unit != NULL)
7622 {
7623 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7624 comp_unit_die, NULL,
7625 &reader, &info_ptr,
7626 &dwo_comp_unit_die, &has_children,
7627 &dwo_abbrev_table) == 0)
7628 {
7629 /* Dummy die. */
7630 return;
7631 }
7632 comp_unit_die = dwo_comp_unit_die;
7633 }
7634 else
7635 {
7636 /* Yikes, we couldn't find the rest of the DIE, we only have
7637 the stub. A complaint has already been logged. There's
7638 not much more we can do except pass on the stub DIE to
7639 die_reader_func. We don't want to throw an error on bad
7640 debug info. */
7641 }
7642 }
7643
7644 /* All of the above is setup for this call. Yikes. */
7645 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7646
7647 /* Done, clean up. */
7648 if (new_cu != NULL && keep)
7649 {
7650 /* Link this CU into read_in_chain. */
7651 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7652 dwarf2_per_objfile->read_in_chain = this_cu;
7653 /* The chain owns it now. */
7654 new_cu.release ();
7655 }
7656 }
7657
7658 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7659 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7660 to have already done the lookup to find the DWO file).
7661
7662 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7663 THIS_CU->is_debug_types, but nothing else.
7664
7665 We fill in THIS_CU->length.
7666
7667 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7668 linker) then DIE_READER_FUNC will not get called.
7669
7670 THIS_CU->cu is always freed when done.
7671 This is done in order to not leave THIS_CU->cu in a state where we have
7672 to care whether it refers to the "main" CU or the DWO CU. */
7673
7674 static void
7675 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7676 struct dwo_file *dwo_file,
7677 die_reader_func_ftype *die_reader_func,
7678 void *data)
7679 {
7680 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7681 struct objfile *objfile = dwarf2_per_objfile->objfile;
7682 struct dwarf2_section_info *section = this_cu->section;
7683 bfd *abfd = get_section_bfd_owner (section);
7684 struct dwarf2_section_info *abbrev_section;
7685 const gdb_byte *begin_info_ptr, *info_ptr;
7686 struct die_reader_specs reader;
7687 struct die_info *comp_unit_die;
7688 int has_children;
7689
7690 if (dwarf_die_debug)
7691 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7692 this_cu->is_debug_types ? "type" : "comp",
7693 sect_offset_str (this_cu->sect_off));
7694
7695 gdb_assert (this_cu->cu == NULL);
7696
7697 abbrev_section = (dwo_file != NULL
7698 ? &dwo_file->sections.abbrev
7699 : get_abbrev_section_for_cu (this_cu));
7700
7701 /* This is cheap if the section is already read in. */
7702 dwarf2_read_section (objfile, section);
7703
7704 struct dwarf2_cu cu (this_cu);
7705
7706 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7707 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7708 &cu.header, section,
7709 abbrev_section, info_ptr,
7710 (this_cu->is_debug_types
7711 ? rcuh_kind::TYPE
7712 : rcuh_kind::COMPILE));
7713
7714 this_cu->length = get_cu_length (&cu.header);
7715
7716 /* Skip dummy compilation units. */
7717 if (info_ptr >= begin_info_ptr + this_cu->length
7718 || peek_abbrev_code (abfd, info_ptr) == 0)
7719 return;
7720
7721 abbrev_table_up abbrev_table
7722 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7723 cu.header.abbrev_sect_off);
7724
7725 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7726 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7727
7728 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7729 }
7730
7731 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7732 does not lookup the specified DWO file.
7733 This cannot be used to read DWO files.
7734
7735 THIS_CU->cu is always freed when done.
7736 This is done in order to not leave THIS_CU->cu in a state where we have
7737 to care whether it refers to the "main" CU or the DWO CU.
7738 We can revisit this if the data shows there's a performance issue. */
7739
7740 static void
7741 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7742 die_reader_func_ftype *die_reader_func,
7743 void *data)
7744 {
7745 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7746 }
7747 \f
7748 /* Type Unit Groups.
7749
7750 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7751 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7752 so that all types coming from the same compilation (.o file) are grouped
7753 together. A future step could be to put the types in the same symtab as
7754 the CU the types ultimately came from. */
7755
7756 static hashval_t
7757 hash_type_unit_group (const void *item)
7758 {
7759 const struct type_unit_group *tu_group
7760 = (const struct type_unit_group *) item;
7761
7762 return hash_stmt_list_entry (&tu_group->hash);
7763 }
7764
7765 static int
7766 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7767 {
7768 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7769 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7770
7771 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7772 }
7773
7774 /* Allocate a hash table for type unit groups. */
7775
7776 static htab_t
7777 allocate_type_unit_groups_table (struct objfile *objfile)
7778 {
7779 return htab_create_alloc_ex (3,
7780 hash_type_unit_group,
7781 eq_type_unit_group,
7782 NULL,
7783 &objfile->objfile_obstack,
7784 hashtab_obstack_allocate,
7785 dummy_obstack_deallocate);
7786 }
7787
7788 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7789 partial symtabs. We combine several TUs per psymtab to not let the size
7790 of any one psymtab grow too big. */
7791 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7792 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7793
7794 /* Helper routine for get_type_unit_group.
7795 Create the type_unit_group object used to hold one or more TUs. */
7796
7797 static struct type_unit_group *
7798 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7799 {
7800 struct dwarf2_per_objfile *dwarf2_per_objfile
7801 = cu->per_cu->dwarf2_per_objfile;
7802 struct objfile *objfile = dwarf2_per_objfile->objfile;
7803 struct dwarf2_per_cu_data *per_cu;
7804 struct type_unit_group *tu_group;
7805
7806 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7807 struct type_unit_group);
7808 per_cu = &tu_group->per_cu;
7809 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7810
7811 if (dwarf2_per_objfile->using_index)
7812 {
7813 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7814 struct dwarf2_per_cu_quick_data);
7815 }
7816 else
7817 {
7818 unsigned int line_offset = to_underlying (line_offset_struct);
7819 struct partial_symtab *pst;
7820 char *name;
7821
7822 /* Give the symtab a useful name for debug purposes. */
7823 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7824 name = xstrprintf ("<type_units_%d>",
7825 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7826 else
7827 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7828
7829 pst = create_partial_symtab (per_cu, name);
7830 pst->anonymous = 1;
7831
7832 xfree (name);
7833 }
7834
7835 tu_group->hash.dwo_unit = cu->dwo_unit;
7836 tu_group->hash.line_sect_off = line_offset_struct;
7837
7838 return tu_group;
7839 }
7840
7841 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7842 STMT_LIST is a DW_AT_stmt_list attribute. */
7843
7844 static struct type_unit_group *
7845 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7846 {
7847 struct dwarf2_per_objfile *dwarf2_per_objfile
7848 = cu->per_cu->dwarf2_per_objfile;
7849 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7850 struct type_unit_group *tu_group;
7851 void **slot;
7852 unsigned int line_offset;
7853 struct type_unit_group type_unit_group_for_lookup;
7854
7855 if (dwarf2_per_objfile->type_unit_groups == NULL)
7856 {
7857 dwarf2_per_objfile->type_unit_groups =
7858 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7859 }
7860
7861 /* Do we need to create a new group, or can we use an existing one? */
7862
7863 if (stmt_list)
7864 {
7865 line_offset = DW_UNSND (stmt_list);
7866 ++tu_stats->nr_symtab_sharers;
7867 }
7868 else
7869 {
7870 /* Ugh, no stmt_list. Rare, but we have to handle it.
7871 We can do various things here like create one group per TU or
7872 spread them over multiple groups to split up the expansion work.
7873 To avoid worst case scenarios (too many groups or too large groups)
7874 we, umm, group them in bunches. */
7875 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7876 | (tu_stats->nr_stmt_less_type_units
7877 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7878 ++tu_stats->nr_stmt_less_type_units;
7879 }
7880
7881 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7882 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7883 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7884 &type_unit_group_for_lookup, INSERT);
7885 if (*slot != NULL)
7886 {
7887 tu_group = (struct type_unit_group *) *slot;
7888 gdb_assert (tu_group != NULL);
7889 }
7890 else
7891 {
7892 sect_offset line_offset_struct = (sect_offset) line_offset;
7893 tu_group = create_type_unit_group (cu, line_offset_struct);
7894 *slot = tu_group;
7895 ++tu_stats->nr_symtabs;
7896 }
7897
7898 return tu_group;
7899 }
7900 \f
7901 /* Partial symbol tables. */
7902
7903 /* Create a psymtab named NAME and assign it to PER_CU.
7904
7905 The caller must fill in the following details:
7906 dirname, textlow, texthigh. */
7907
7908 static struct partial_symtab *
7909 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7910 {
7911 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7912 struct partial_symtab *pst;
7913
7914 pst = start_psymtab_common (objfile, name, 0,
7915 objfile->global_psymbols,
7916 objfile->static_psymbols);
7917
7918 pst->psymtabs_addrmap_supported = 1;
7919
7920 /* This is the glue that links PST into GDB's symbol API. */
7921 pst->read_symtab_private = per_cu;
7922 pst->read_symtab = dwarf2_read_symtab;
7923 per_cu->v.psymtab = pst;
7924
7925 return pst;
7926 }
7927
7928 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7929 type. */
7930
7931 struct process_psymtab_comp_unit_data
7932 {
7933 /* True if we are reading a DW_TAG_partial_unit. */
7934
7935 int want_partial_unit;
7936
7937 /* The "pretend" language that is used if the CU doesn't declare a
7938 language. */
7939
7940 enum language pretend_language;
7941 };
7942
7943 /* die_reader_func for process_psymtab_comp_unit. */
7944
7945 static void
7946 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7947 const gdb_byte *info_ptr,
7948 struct die_info *comp_unit_die,
7949 int has_children,
7950 void *data)
7951 {
7952 struct dwarf2_cu *cu = reader->cu;
7953 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7954 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7955 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7956 CORE_ADDR baseaddr;
7957 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7958 struct partial_symtab *pst;
7959 enum pc_bounds_kind cu_bounds_kind;
7960 const char *filename;
7961 struct process_psymtab_comp_unit_data *info
7962 = (struct process_psymtab_comp_unit_data *) data;
7963
7964 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7965 return;
7966
7967 gdb_assert (! per_cu->is_debug_types);
7968
7969 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7970
7971 cu->list_in_scope = &file_symbols;
7972
7973 /* Allocate a new partial symbol table structure. */
7974 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7975 if (filename == NULL)
7976 filename = "";
7977
7978 pst = create_partial_symtab (per_cu, filename);
7979
7980 /* This must be done before calling dwarf2_build_include_psymtabs. */
7981 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7982
7983 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7984
7985 dwarf2_find_base_address (comp_unit_die, cu);
7986
7987 /* Possibly set the default values of LOWPC and HIGHPC from
7988 `DW_AT_ranges'. */
7989 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7990 &best_highpc, cu, pst);
7991 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7992 /* Store the contiguous range if it is not empty; it can be empty for
7993 CUs with no code. */
7994 addrmap_set_empty (objfile->psymtabs_addrmap,
7995 gdbarch_adjust_dwarf2_addr (gdbarch,
7996 best_lowpc + baseaddr),
7997 gdbarch_adjust_dwarf2_addr (gdbarch,
7998 best_highpc + baseaddr) - 1,
7999 pst);
8000
8001 /* Check if comp unit has_children.
8002 If so, read the rest of the partial symbols from this comp unit.
8003 If not, there's no more debug_info for this comp unit. */
8004 if (has_children)
8005 {
8006 struct partial_die_info *first_die;
8007 CORE_ADDR lowpc, highpc;
8008
8009 lowpc = ((CORE_ADDR) -1);
8010 highpc = ((CORE_ADDR) 0);
8011
8012 first_die = load_partial_dies (reader, info_ptr, 1);
8013
8014 scan_partial_symbols (first_die, &lowpc, &highpc,
8015 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8016
8017 /* If we didn't find a lowpc, set it to highpc to avoid
8018 complaints from `maint check'. */
8019 if (lowpc == ((CORE_ADDR) -1))
8020 lowpc = highpc;
8021
8022 /* If the compilation unit didn't have an explicit address range,
8023 then use the information extracted from its child dies. */
8024 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8025 {
8026 best_lowpc = lowpc;
8027 best_highpc = highpc;
8028 }
8029 }
8030 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
8031 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
8032
8033 end_psymtab_common (objfile, pst);
8034
8035 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8036 {
8037 int i;
8038 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8039 struct dwarf2_per_cu_data *iter;
8040
8041 /* Fill in 'dependencies' here; we fill in 'users' in a
8042 post-pass. */
8043 pst->number_of_dependencies = len;
8044 pst->dependencies =
8045 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8046 for (i = 0;
8047 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8048 i, iter);
8049 ++i)
8050 pst->dependencies[i] = iter->v.psymtab;
8051
8052 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8053 }
8054
8055 /* Get the list of files included in the current compilation unit,
8056 and build a psymtab for each of them. */
8057 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8058
8059 if (dwarf_read_debug)
8060 {
8061 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8062
8063 fprintf_unfiltered (gdb_stdlog,
8064 "Psymtab for %s unit @%s: %s - %s"
8065 ", %d global, %d static syms\n",
8066 per_cu->is_debug_types ? "type" : "comp",
8067 sect_offset_str (per_cu->sect_off),
8068 paddress (gdbarch, pst->textlow),
8069 paddress (gdbarch, pst->texthigh),
8070 pst->n_global_syms, pst->n_static_syms);
8071 }
8072 }
8073
8074 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8075 Process compilation unit THIS_CU for a psymtab. */
8076
8077 static void
8078 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8079 int want_partial_unit,
8080 enum language pretend_language)
8081 {
8082 /* If this compilation unit was already read in, free the
8083 cached copy in order to read it in again. This is
8084 necessary because we skipped some symbols when we first
8085 read in the compilation unit (see load_partial_dies).
8086 This problem could be avoided, but the benefit is unclear. */
8087 if (this_cu->cu != NULL)
8088 free_one_cached_comp_unit (this_cu);
8089
8090 if (this_cu->is_debug_types)
8091 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8092 NULL);
8093 else
8094 {
8095 process_psymtab_comp_unit_data info;
8096 info.want_partial_unit = want_partial_unit;
8097 info.pretend_language = pretend_language;
8098 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8099 process_psymtab_comp_unit_reader, &info);
8100 }
8101
8102 /* Age out any secondary CUs. */
8103 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8104 }
8105
8106 /* Reader function for build_type_psymtabs. */
8107
8108 static void
8109 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8110 const gdb_byte *info_ptr,
8111 struct die_info *type_unit_die,
8112 int has_children,
8113 void *data)
8114 {
8115 struct dwarf2_per_objfile *dwarf2_per_objfile
8116 = reader->cu->per_cu->dwarf2_per_objfile;
8117 struct objfile *objfile = dwarf2_per_objfile->objfile;
8118 struct dwarf2_cu *cu = reader->cu;
8119 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8120 struct signatured_type *sig_type;
8121 struct type_unit_group *tu_group;
8122 struct attribute *attr;
8123 struct partial_die_info *first_die;
8124 CORE_ADDR lowpc, highpc;
8125 struct partial_symtab *pst;
8126
8127 gdb_assert (data == NULL);
8128 gdb_assert (per_cu->is_debug_types);
8129 sig_type = (struct signatured_type *) per_cu;
8130
8131 if (! has_children)
8132 return;
8133
8134 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8135 tu_group = get_type_unit_group (cu, attr);
8136
8137 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8138
8139 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8140 cu->list_in_scope = &file_symbols;
8141 pst = create_partial_symtab (per_cu, "");
8142 pst->anonymous = 1;
8143
8144 first_die = load_partial_dies (reader, info_ptr, 1);
8145
8146 lowpc = (CORE_ADDR) -1;
8147 highpc = (CORE_ADDR) 0;
8148 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8149
8150 end_psymtab_common (objfile, pst);
8151 }
8152
8153 /* Struct used to sort TUs by their abbreviation table offset. */
8154
8155 struct tu_abbrev_offset
8156 {
8157 struct signatured_type *sig_type;
8158 sect_offset abbrev_offset;
8159 };
8160
8161 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8162
8163 static bool
8164 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8165 const struct tu_abbrev_offset &b)
8166 {
8167 return a.abbrev_offset < b.abbrev_offset;
8168 }
8169
8170 /* Efficiently read all the type units.
8171 This does the bulk of the work for build_type_psymtabs.
8172
8173 The efficiency is because we sort TUs by the abbrev table they use and
8174 only read each abbrev table once. In one program there are 200K TUs
8175 sharing 8K abbrev tables.
8176
8177 The main purpose of this function is to support building the
8178 dwarf2_per_objfile->type_unit_groups table.
8179 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8180 can collapse the search space by grouping them by stmt_list.
8181 The savings can be significant, in the same program from above the 200K TUs
8182 share 8K stmt_list tables.
8183
8184 FUNC is expected to call get_type_unit_group, which will create the
8185 struct type_unit_group if necessary and add it to
8186 dwarf2_per_objfile->type_unit_groups. */
8187
8188 static void
8189 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8190 {
8191 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8192 abbrev_table_up abbrev_table;
8193 sect_offset abbrev_offset;
8194 int i;
8195
8196 /* It's up to the caller to not call us multiple times. */
8197 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8198
8199 if (dwarf2_per_objfile->n_type_units == 0)
8200 return;
8201
8202 /* TUs typically share abbrev tables, and there can be way more TUs than
8203 abbrev tables. Sort by abbrev table to reduce the number of times we
8204 read each abbrev table in.
8205 Alternatives are to punt or to maintain a cache of abbrev tables.
8206 This is simpler and efficient enough for now.
8207
8208 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8209 symtab to use). Typically TUs with the same abbrev offset have the same
8210 stmt_list value too so in practice this should work well.
8211
8212 The basic algorithm here is:
8213
8214 sort TUs by abbrev table
8215 for each TU with same abbrev table:
8216 read abbrev table if first user
8217 read TU top level DIE
8218 [IWBN if DWO skeletons had DW_AT_stmt_list]
8219 call FUNC */
8220
8221 if (dwarf_read_debug)
8222 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8223
8224 /* Sort in a separate table to maintain the order of all_type_units
8225 for .gdb_index: TU indices directly index all_type_units. */
8226 std::vector<struct tu_abbrev_offset> sorted_by_abbrev
8227 (dwarf2_per_objfile->n_type_units);
8228 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8229 {
8230 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
8231
8232 sorted_by_abbrev[i].sig_type = sig_type;
8233 sorted_by_abbrev[i].abbrev_offset =
8234 read_abbrev_offset (dwarf2_per_objfile,
8235 sig_type->per_cu.section,
8236 sig_type->per_cu.sect_off);
8237 }
8238 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8239 sort_tu_by_abbrev_offset);
8240
8241 abbrev_offset = (sect_offset) ~(unsigned) 0;
8242
8243 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8244 {
8245 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
8246
8247 /* Switch to the next abbrev table if necessary. */
8248 if (abbrev_table == NULL
8249 || tu->abbrev_offset != abbrev_offset)
8250 {
8251 abbrev_offset = tu->abbrev_offset;
8252 abbrev_table =
8253 abbrev_table_read_table (dwarf2_per_objfile,
8254 &dwarf2_per_objfile->abbrev,
8255 abbrev_offset);
8256 ++tu_stats->nr_uniq_abbrev_tables;
8257 }
8258
8259 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table.get (),
8260 0, 0, build_type_psymtabs_reader, NULL);
8261 }
8262 }
8263
8264 /* Print collected type unit statistics. */
8265
8266 static void
8267 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8268 {
8269 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8270
8271 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8272 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
8273 dwarf2_per_objfile->n_type_units);
8274 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8275 tu_stats->nr_uniq_abbrev_tables);
8276 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8277 tu_stats->nr_symtabs);
8278 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8279 tu_stats->nr_symtab_sharers);
8280 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8281 tu_stats->nr_stmt_less_type_units);
8282 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8283 tu_stats->nr_all_type_units_reallocs);
8284 }
8285
8286 /* Traversal function for build_type_psymtabs. */
8287
8288 static int
8289 build_type_psymtab_dependencies (void **slot, void *info)
8290 {
8291 struct dwarf2_per_objfile *dwarf2_per_objfile
8292 = (struct dwarf2_per_objfile *) info;
8293 struct objfile *objfile = dwarf2_per_objfile->objfile;
8294 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8295 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8296 struct partial_symtab *pst = per_cu->v.psymtab;
8297 int len = VEC_length (sig_type_ptr, tu_group->tus);
8298 struct signatured_type *iter;
8299 int i;
8300
8301 gdb_assert (len > 0);
8302 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8303
8304 pst->number_of_dependencies = len;
8305 pst->dependencies =
8306 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8307 for (i = 0;
8308 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8309 ++i)
8310 {
8311 gdb_assert (iter->per_cu.is_debug_types);
8312 pst->dependencies[i] = iter->per_cu.v.psymtab;
8313 iter->type_unit_group = tu_group;
8314 }
8315
8316 VEC_free (sig_type_ptr, tu_group->tus);
8317
8318 return 1;
8319 }
8320
8321 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8322 Build partial symbol tables for the .debug_types comp-units. */
8323
8324 static void
8325 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8326 {
8327 if (! create_all_type_units (dwarf2_per_objfile))
8328 return;
8329
8330 build_type_psymtabs_1 (dwarf2_per_objfile);
8331 }
8332
8333 /* Traversal function for process_skeletonless_type_unit.
8334 Read a TU in a DWO file and build partial symbols for it. */
8335
8336 static int
8337 process_skeletonless_type_unit (void **slot, void *info)
8338 {
8339 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8340 struct dwarf2_per_objfile *dwarf2_per_objfile
8341 = (struct dwarf2_per_objfile *) info;
8342 struct signatured_type find_entry, *entry;
8343
8344 /* If this TU doesn't exist in the global table, add it and read it in. */
8345
8346 if (dwarf2_per_objfile->signatured_types == NULL)
8347 {
8348 dwarf2_per_objfile->signatured_types
8349 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8350 }
8351
8352 find_entry.signature = dwo_unit->signature;
8353 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8354 INSERT);
8355 /* If we've already seen this type there's nothing to do. What's happening
8356 is we're doing our own version of comdat-folding here. */
8357 if (*slot != NULL)
8358 return 1;
8359
8360 /* This does the job that create_all_type_units would have done for
8361 this TU. */
8362 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8363 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8364 *slot = entry;
8365
8366 /* This does the job that build_type_psymtabs_1 would have done. */
8367 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8368 build_type_psymtabs_reader, NULL);
8369
8370 return 1;
8371 }
8372
8373 /* Traversal function for process_skeletonless_type_units. */
8374
8375 static int
8376 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8377 {
8378 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8379
8380 if (dwo_file->tus != NULL)
8381 {
8382 htab_traverse_noresize (dwo_file->tus,
8383 process_skeletonless_type_unit, info);
8384 }
8385
8386 return 1;
8387 }
8388
8389 /* Scan all TUs of DWO files, verifying we've processed them.
8390 This is needed in case a TU was emitted without its skeleton.
8391 Note: This can't be done until we know what all the DWO files are. */
8392
8393 static void
8394 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8395 {
8396 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8397 if (get_dwp_file (dwarf2_per_objfile) == NULL
8398 && dwarf2_per_objfile->dwo_files != NULL)
8399 {
8400 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8401 process_dwo_file_for_skeletonless_type_units,
8402 dwarf2_per_objfile);
8403 }
8404 }
8405
8406 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8407
8408 static void
8409 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8410 {
8411 int i;
8412
8413 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8414 {
8415 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8416 struct partial_symtab *pst = per_cu->v.psymtab;
8417 int j;
8418
8419 if (pst == NULL)
8420 continue;
8421
8422 for (j = 0; j < pst->number_of_dependencies; ++j)
8423 {
8424 /* Set the 'user' field only if it is not already set. */
8425 if (pst->dependencies[j]->user == NULL)
8426 pst->dependencies[j]->user = pst;
8427 }
8428 }
8429 }
8430
8431 /* Build the partial symbol table by doing a quick pass through the
8432 .debug_info and .debug_abbrev sections. */
8433
8434 static void
8435 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8436 {
8437 struct cleanup *back_to;
8438 int i;
8439 struct objfile *objfile = dwarf2_per_objfile->objfile;
8440
8441 if (dwarf_read_debug)
8442 {
8443 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8444 objfile_name (objfile));
8445 }
8446
8447 dwarf2_per_objfile->reading_partial_symbols = 1;
8448
8449 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8450
8451 /* Any cached compilation units will be linked by the per-objfile
8452 read_in_chain. Make sure to free them when we're done. */
8453 back_to = make_cleanup (free_cached_comp_units, dwarf2_per_objfile);
8454
8455 build_type_psymtabs (dwarf2_per_objfile);
8456
8457 create_all_comp_units (dwarf2_per_objfile);
8458
8459 /* Create a temporary address map on a temporary obstack. We later
8460 copy this to the final obstack. */
8461 auto_obstack temp_obstack;
8462
8463 scoped_restore save_psymtabs_addrmap
8464 = make_scoped_restore (&objfile->psymtabs_addrmap,
8465 addrmap_create_mutable (&temp_obstack));
8466
8467 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8468 {
8469 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8470
8471 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8472 }
8473
8474 /* This has to wait until we read the CUs, we need the list of DWOs. */
8475 process_skeletonless_type_units (dwarf2_per_objfile);
8476
8477 /* Now that all TUs have been processed we can fill in the dependencies. */
8478 if (dwarf2_per_objfile->type_unit_groups != NULL)
8479 {
8480 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8481 build_type_psymtab_dependencies, dwarf2_per_objfile);
8482 }
8483
8484 if (dwarf_read_debug)
8485 print_tu_stats (dwarf2_per_objfile);
8486
8487 set_partial_user (dwarf2_per_objfile);
8488
8489 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8490 &objfile->objfile_obstack);
8491 /* At this point we want to keep the address map. */
8492 save_psymtabs_addrmap.release ();
8493
8494 do_cleanups (back_to);
8495
8496 if (dwarf_read_debug)
8497 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8498 objfile_name (objfile));
8499 }
8500
8501 /* die_reader_func for load_partial_comp_unit. */
8502
8503 static void
8504 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8505 const gdb_byte *info_ptr,
8506 struct die_info *comp_unit_die,
8507 int has_children,
8508 void *data)
8509 {
8510 struct dwarf2_cu *cu = reader->cu;
8511
8512 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8513
8514 /* Check if comp unit has_children.
8515 If so, read the rest of the partial symbols from this comp unit.
8516 If not, there's no more debug_info for this comp unit. */
8517 if (has_children)
8518 load_partial_dies (reader, info_ptr, 0);
8519 }
8520
8521 /* Load the partial DIEs for a secondary CU into memory.
8522 This is also used when rereading a primary CU with load_all_dies. */
8523
8524 static void
8525 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8526 {
8527 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8528 load_partial_comp_unit_reader, NULL);
8529 }
8530
8531 static void
8532 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8533 struct dwarf2_section_info *section,
8534 struct dwarf2_section_info *abbrev_section,
8535 unsigned int is_dwz,
8536 int *n_allocated,
8537 int *n_comp_units,
8538 struct dwarf2_per_cu_data ***all_comp_units)
8539 {
8540 const gdb_byte *info_ptr;
8541 struct objfile *objfile = dwarf2_per_objfile->objfile;
8542
8543 if (dwarf_read_debug)
8544 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8545 get_section_name (section),
8546 get_section_file_name (section));
8547
8548 dwarf2_read_section (objfile, section);
8549
8550 info_ptr = section->buffer;
8551
8552 while (info_ptr < section->buffer + section->size)
8553 {
8554 struct dwarf2_per_cu_data *this_cu;
8555
8556 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8557
8558 comp_unit_head cu_header;
8559 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8560 abbrev_section, info_ptr,
8561 rcuh_kind::COMPILE);
8562
8563 /* Save the compilation unit for later lookup. */
8564 if (cu_header.unit_type != DW_UT_type)
8565 {
8566 this_cu = XOBNEW (&objfile->objfile_obstack,
8567 struct dwarf2_per_cu_data);
8568 memset (this_cu, 0, sizeof (*this_cu));
8569 }
8570 else
8571 {
8572 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8573 struct signatured_type);
8574 memset (sig_type, 0, sizeof (*sig_type));
8575 sig_type->signature = cu_header.signature;
8576 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8577 this_cu = &sig_type->per_cu;
8578 }
8579 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8580 this_cu->sect_off = sect_off;
8581 this_cu->length = cu_header.length + cu_header.initial_length_size;
8582 this_cu->is_dwz = is_dwz;
8583 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8584 this_cu->section = section;
8585
8586 if (*n_comp_units == *n_allocated)
8587 {
8588 *n_allocated *= 2;
8589 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
8590 *all_comp_units, *n_allocated);
8591 }
8592 (*all_comp_units)[*n_comp_units] = this_cu;
8593 ++*n_comp_units;
8594
8595 info_ptr = info_ptr + this_cu->length;
8596 }
8597 }
8598
8599 /* Create a list of all compilation units in OBJFILE.
8600 This is only done for -readnow and building partial symtabs. */
8601
8602 static void
8603 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8604 {
8605 int n_allocated;
8606 int n_comp_units;
8607 struct dwarf2_per_cu_data **all_comp_units;
8608 struct dwz_file *dwz;
8609 struct objfile *objfile = dwarf2_per_objfile->objfile;
8610
8611 n_comp_units = 0;
8612 n_allocated = 10;
8613 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
8614
8615 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8616 &dwarf2_per_objfile->abbrev, 0,
8617 &n_allocated, &n_comp_units, &all_comp_units);
8618
8619 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8620 if (dwz != NULL)
8621 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8622 1, &n_allocated, &n_comp_units,
8623 &all_comp_units);
8624
8625 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
8626 struct dwarf2_per_cu_data *,
8627 n_comp_units);
8628 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
8629 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
8630 xfree (all_comp_units);
8631 dwarf2_per_objfile->n_comp_units = n_comp_units;
8632 }
8633
8634 /* Process all loaded DIEs for compilation unit CU, starting at
8635 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8636 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8637 DW_AT_ranges). See the comments of add_partial_subprogram on how
8638 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8639
8640 static void
8641 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8642 CORE_ADDR *highpc, int set_addrmap,
8643 struct dwarf2_cu *cu)
8644 {
8645 struct partial_die_info *pdi;
8646
8647 /* Now, march along the PDI's, descending into ones which have
8648 interesting children but skipping the children of the other ones,
8649 until we reach the end of the compilation unit. */
8650
8651 pdi = first_die;
8652
8653 while (pdi != NULL)
8654 {
8655 pdi->fixup (cu);
8656
8657 /* Anonymous namespaces or modules have no name but have interesting
8658 children, so we need to look at them. Ditto for anonymous
8659 enums. */
8660
8661 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8662 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8663 || pdi->tag == DW_TAG_imported_unit
8664 || pdi->tag == DW_TAG_inlined_subroutine)
8665 {
8666 switch (pdi->tag)
8667 {
8668 case DW_TAG_subprogram:
8669 case DW_TAG_inlined_subroutine:
8670 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8671 break;
8672 case DW_TAG_constant:
8673 case DW_TAG_variable:
8674 case DW_TAG_typedef:
8675 case DW_TAG_union_type:
8676 if (!pdi->is_declaration)
8677 {
8678 add_partial_symbol (pdi, cu);
8679 }
8680 break;
8681 case DW_TAG_class_type:
8682 case DW_TAG_interface_type:
8683 case DW_TAG_structure_type:
8684 if (!pdi->is_declaration)
8685 {
8686 add_partial_symbol (pdi, cu);
8687 }
8688 if ((cu->language == language_rust
8689 || cu->language == language_cplus) && pdi->has_children)
8690 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8691 set_addrmap, cu);
8692 break;
8693 case DW_TAG_enumeration_type:
8694 if (!pdi->is_declaration)
8695 add_partial_enumeration (pdi, cu);
8696 break;
8697 case DW_TAG_base_type:
8698 case DW_TAG_subrange_type:
8699 /* File scope base type definitions are added to the partial
8700 symbol table. */
8701 add_partial_symbol (pdi, cu);
8702 break;
8703 case DW_TAG_namespace:
8704 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8705 break;
8706 case DW_TAG_module:
8707 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8708 break;
8709 case DW_TAG_imported_unit:
8710 {
8711 struct dwarf2_per_cu_data *per_cu;
8712
8713 /* For now we don't handle imported units in type units. */
8714 if (cu->per_cu->is_debug_types)
8715 {
8716 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8717 " supported in type units [in module %s]"),
8718 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8719 }
8720
8721 per_cu = dwarf2_find_containing_comp_unit
8722 (pdi->d.sect_off, pdi->is_dwz,
8723 cu->per_cu->dwarf2_per_objfile);
8724
8725 /* Go read the partial unit, if needed. */
8726 if (per_cu->v.psymtab == NULL)
8727 process_psymtab_comp_unit (per_cu, 1, cu->language);
8728
8729 VEC_safe_push (dwarf2_per_cu_ptr,
8730 cu->per_cu->imported_symtabs, per_cu);
8731 }
8732 break;
8733 case DW_TAG_imported_declaration:
8734 add_partial_symbol (pdi, cu);
8735 break;
8736 default:
8737 break;
8738 }
8739 }
8740
8741 /* If the die has a sibling, skip to the sibling. */
8742
8743 pdi = pdi->die_sibling;
8744 }
8745 }
8746
8747 /* Functions used to compute the fully scoped name of a partial DIE.
8748
8749 Normally, this is simple. For C++, the parent DIE's fully scoped
8750 name is concatenated with "::" and the partial DIE's name.
8751 Enumerators are an exception; they use the scope of their parent
8752 enumeration type, i.e. the name of the enumeration type is not
8753 prepended to the enumerator.
8754
8755 There are two complexities. One is DW_AT_specification; in this
8756 case "parent" means the parent of the target of the specification,
8757 instead of the direct parent of the DIE. The other is compilers
8758 which do not emit DW_TAG_namespace; in this case we try to guess
8759 the fully qualified name of structure types from their members'
8760 linkage names. This must be done using the DIE's children rather
8761 than the children of any DW_AT_specification target. We only need
8762 to do this for structures at the top level, i.e. if the target of
8763 any DW_AT_specification (if any; otherwise the DIE itself) does not
8764 have a parent. */
8765
8766 /* Compute the scope prefix associated with PDI's parent, in
8767 compilation unit CU. The result will be allocated on CU's
8768 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8769 field. NULL is returned if no prefix is necessary. */
8770 static const char *
8771 partial_die_parent_scope (struct partial_die_info *pdi,
8772 struct dwarf2_cu *cu)
8773 {
8774 const char *grandparent_scope;
8775 struct partial_die_info *parent, *real_pdi;
8776
8777 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8778 then this means the parent of the specification DIE. */
8779
8780 real_pdi = pdi;
8781 while (real_pdi->has_specification)
8782 real_pdi = find_partial_die (real_pdi->spec_offset,
8783 real_pdi->spec_is_dwz, cu);
8784
8785 parent = real_pdi->die_parent;
8786 if (parent == NULL)
8787 return NULL;
8788
8789 if (parent->scope_set)
8790 return parent->scope;
8791
8792 parent->fixup (cu);
8793
8794 grandparent_scope = partial_die_parent_scope (parent, cu);
8795
8796 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8797 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8798 Work around this problem here. */
8799 if (cu->language == language_cplus
8800 && parent->tag == DW_TAG_namespace
8801 && strcmp (parent->name, "::") == 0
8802 && grandparent_scope == NULL)
8803 {
8804 parent->scope = NULL;
8805 parent->scope_set = 1;
8806 return NULL;
8807 }
8808
8809 if (pdi->tag == DW_TAG_enumerator)
8810 /* Enumerators should not get the name of the enumeration as a prefix. */
8811 parent->scope = grandparent_scope;
8812 else if (parent->tag == DW_TAG_namespace
8813 || parent->tag == DW_TAG_module
8814 || parent->tag == DW_TAG_structure_type
8815 || parent->tag == DW_TAG_class_type
8816 || parent->tag == DW_TAG_interface_type
8817 || parent->tag == DW_TAG_union_type
8818 || parent->tag == DW_TAG_enumeration_type)
8819 {
8820 if (grandparent_scope == NULL)
8821 parent->scope = parent->name;
8822 else
8823 parent->scope = typename_concat (&cu->comp_unit_obstack,
8824 grandparent_scope,
8825 parent->name, 0, cu);
8826 }
8827 else
8828 {
8829 /* FIXME drow/2004-04-01: What should we be doing with
8830 function-local names? For partial symbols, we should probably be
8831 ignoring them. */
8832 complaint (&symfile_complaints,
8833 _("unhandled containing DIE tag %d for DIE at %s"),
8834 parent->tag, sect_offset_str (pdi->sect_off));
8835 parent->scope = grandparent_scope;
8836 }
8837
8838 parent->scope_set = 1;
8839 return parent->scope;
8840 }
8841
8842 /* Return the fully scoped name associated with PDI, from compilation unit
8843 CU. The result will be allocated with malloc. */
8844
8845 static char *
8846 partial_die_full_name (struct partial_die_info *pdi,
8847 struct dwarf2_cu *cu)
8848 {
8849 const char *parent_scope;
8850
8851 /* If this is a template instantiation, we can not work out the
8852 template arguments from partial DIEs. So, unfortunately, we have
8853 to go through the full DIEs. At least any work we do building
8854 types here will be reused if full symbols are loaded later. */
8855 if (pdi->has_template_arguments)
8856 {
8857 pdi->fixup (cu);
8858
8859 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8860 {
8861 struct die_info *die;
8862 struct attribute attr;
8863 struct dwarf2_cu *ref_cu = cu;
8864
8865 /* DW_FORM_ref_addr is using section offset. */
8866 attr.name = (enum dwarf_attribute) 0;
8867 attr.form = DW_FORM_ref_addr;
8868 attr.u.unsnd = to_underlying (pdi->sect_off);
8869 die = follow_die_ref (NULL, &attr, &ref_cu);
8870
8871 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8872 }
8873 }
8874
8875 parent_scope = partial_die_parent_scope (pdi, cu);
8876 if (parent_scope == NULL)
8877 return NULL;
8878 else
8879 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8880 }
8881
8882 static void
8883 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8884 {
8885 struct dwarf2_per_objfile *dwarf2_per_objfile
8886 = cu->per_cu->dwarf2_per_objfile;
8887 struct objfile *objfile = dwarf2_per_objfile->objfile;
8888 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8889 CORE_ADDR addr = 0;
8890 const char *actual_name = NULL;
8891 CORE_ADDR baseaddr;
8892 char *built_actual_name;
8893
8894 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8895
8896 built_actual_name = partial_die_full_name (pdi, cu);
8897 if (built_actual_name != NULL)
8898 actual_name = built_actual_name;
8899
8900 if (actual_name == NULL)
8901 actual_name = pdi->name;
8902
8903 switch (pdi->tag)
8904 {
8905 case DW_TAG_inlined_subroutine:
8906 case DW_TAG_subprogram:
8907 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8908 if (pdi->is_external || cu->language == language_ada)
8909 {
8910 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8911 of the global scope. But in Ada, we want to be able to access
8912 nested procedures globally. So all Ada subprograms are stored
8913 in the global scope. */
8914 add_psymbol_to_list (actual_name, strlen (actual_name),
8915 built_actual_name != NULL,
8916 VAR_DOMAIN, LOC_BLOCK,
8917 &objfile->global_psymbols,
8918 addr, cu->language, objfile);
8919 }
8920 else
8921 {
8922 add_psymbol_to_list (actual_name, strlen (actual_name),
8923 built_actual_name != NULL,
8924 VAR_DOMAIN, LOC_BLOCK,
8925 &objfile->static_psymbols,
8926 addr, cu->language, objfile);
8927 }
8928
8929 if (pdi->main_subprogram && actual_name != NULL)
8930 set_objfile_main_name (objfile, actual_name, cu->language);
8931 break;
8932 case DW_TAG_constant:
8933 {
8934 std::vector<partial_symbol *> *list;
8935
8936 if (pdi->is_external)
8937 list = &objfile->global_psymbols;
8938 else
8939 list = &objfile->static_psymbols;
8940 add_psymbol_to_list (actual_name, strlen (actual_name),
8941 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8942 list, 0, cu->language, objfile);
8943 }
8944 break;
8945 case DW_TAG_variable:
8946 if (pdi->d.locdesc)
8947 addr = decode_locdesc (pdi->d.locdesc, cu);
8948
8949 if (pdi->d.locdesc
8950 && addr == 0
8951 && !dwarf2_per_objfile->has_section_at_zero)
8952 {
8953 /* A global or static variable may also have been stripped
8954 out by the linker if unused, in which case its address
8955 will be nullified; do not add such variables into partial
8956 symbol table then. */
8957 }
8958 else if (pdi->is_external)
8959 {
8960 /* Global Variable.
8961 Don't enter into the minimal symbol tables as there is
8962 a minimal symbol table entry from the ELF symbols already.
8963 Enter into partial symbol table if it has a location
8964 descriptor or a type.
8965 If the location descriptor is missing, new_symbol will create
8966 a LOC_UNRESOLVED symbol, the address of the variable will then
8967 be determined from the minimal symbol table whenever the variable
8968 is referenced.
8969 The address for the partial symbol table entry is not
8970 used by GDB, but it comes in handy for debugging partial symbol
8971 table building. */
8972
8973 if (pdi->d.locdesc || pdi->has_type)
8974 add_psymbol_to_list (actual_name, strlen (actual_name),
8975 built_actual_name != NULL,
8976 VAR_DOMAIN, LOC_STATIC,
8977 &objfile->global_psymbols,
8978 addr + baseaddr,
8979 cu->language, objfile);
8980 }
8981 else
8982 {
8983 int has_loc = pdi->d.locdesc != NULL;
8984
8985 /* Static Variable. Skip symbols whose value we cannot know (those
8986 without location descriptors or constant values). */
8987 if (!has_loc && !pdi->has_const_value)
8988 {
8989 xfree (built_actual_name);
8990 return;
8991 }
8992
8993 add_psymbol_to_list (actual_name, strlen (actual_name),
8994 built_actual_name != NULL,
8995 VAR_DOMAIN, LOC_STATIC,
8996 &objfile->static_psymbols,
8997 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8998 cu->language, objfile);
8999 }
9000 break;
9001 case DW_TAG_typedef:
9002 case DW_TAG_base_type:
9003 case DW_TAG_subrange_type:
9004 add_psymbol_to_list (actual_name, strlen (actual_name),
9005 built_actual_name != NULL,
9006 VAR_DOMAIN, LOC_TYPEDEF,
9007 &objfile->static_psymbols,
9008 0, cu->language, objfile);
9009 break;
9010 case DW_TAG_imported_declaration:
9011 case DW_TAG_namespace:
9012 add_psymbol_to_list (actual_name, strlen (actual_name),
9013 built_actual_name != NULL,
9014 VAR_DOMAIN, LOC_TYPEDEF,
9015 &objfile->global_psymbols,
9016 0, cu->language, objfile);
9017 break;
9018 case DW_TAG_module:
9019 add_psymbol_to_list (actual_name, strlen (actual_name),
9020 built_actual_name != NULL,
9021 MODULE_DOMAIN, LOC_TYPEDEF,
9022 &objfile->global_psymbols,
9023 0, cu->language, objfile);
9024 break;
9025 case DW_TAG_class_type:
9026 case DW_TAG_interface_type:
9027 case DW_TAG_structure_type:
9028 case DW_TAG_union_type:
9029 case DW_TAG_enumeration_type:
9030 /* Skip external references. The DWARF standard says in the section
9031 about "Structure, Union, and Class Type Entries": "An incomplete
9032 structure, union or class type is represented by a structure,
9033 union or class entry that does not have a byte size attribute
9034 and that has a DW_AT_declaration attribute." */
9035 if (!pdi->has_byte_size && pdi->is_declaration)
9036 {
9037 xfree (built_actual_name);
9038 return;
9039 }
9040
9041 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9042 static vs. global. */
9043 add_psymbol_to_list (actual_name, strlen (actual_name),
9044 built_actual_name != NULL,
9045 STRUCT_DOMAIN, LOC_TYPEDEF,
9046 cu->language == language_cplus
9047 ? &objfile->global_psymbols
9048 : &objfile->static_psymbols,
9049 0, cu->language, objfile);
9050
9051 break;
9052 case DW_TAG_enumerator:
9053 add_psymbol_to_list (actual_name, strlen (actual_name),
9054 built_actual_name != NULL,
9055 VAR_DOMAIN, LOC_CONST,
9056 cu->language == language_cplus
9057 ? &objfile->global_psymbols
9058 : &objfile->static_psymbols,
9059 0, cu->language, objfile);
9060 break;
9061 default:
9062 break;
9063 }
9064
9065 xfree (built_actual_name);
9066 }
9067
9068 /* Read a partial die corresponding to a namespace; also, add a symbol
9069 corresponding to that namespace to the symbol table. NAMESPACE is
9070 the name of the enclosing namespace. */
9071
9072 static void
9073 add_partial_namespace (struct partial_die_info *pdi,
9074 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9075 int set_addrmap, struct dwarf2_cu *cu)
9076 {
9077 /* Add a symbol for the namespace. */
9078
9079 add_partial_symbol (pdi, cu);
9080
9081 /* Now scan partial symbols in that namespace. */
9082
9083 if (pdi->has_children)
9084 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9085 }
9086
9087 /* Read a partial die corresponding to a Fortran module. */
9088
9089 static void
9090 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9091 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9092 {
9093 /* Add a symbol for the namespace. */
9094
9095 add_partial_symbol (pdi, cu);
9096
9097 /* Now scan partial symbols in that module. */
9098
9099 if (pdi->has_children)
9100 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9101 }
9102
9103 /* Read a partial die corresponding to a subprogram or an inlined
9104 subprogram and create a partial symbol for that subprogram.
9105 When the CU language allows it, this routine also defines a partial
9106 symbol for each nested subprogram that this subprogram contains.
9107 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9108 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9109
9110 PDI may also be a lexical block, in which case we simply search
9111 recursively for subprograms defined inside that lexical block.
9112 Again, this is only performed when the CU language allows this
9113 type of definitions. */
9114
9115 static void
9116 add_partial_subprogram (struct partial_die_info *pdi,
9117 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9118 int set_addrmap, struct dwarf2_cu *cu)
9119 {
9120 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9121 {
9122 if (pdi->has_pc_info)
9123 {
9124 if (pdi->lowpc < *lowpc)
9125 *lowpc = pdi->lowpc;
9126 if (pdi->highpc > *highpc)
9127 *highpc = pdi->highpc;
9128 if (set_addrmap)
9129 {
9130 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9131 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9132 CORE_ADDR baseaddr;
9133 CORE_ADDR highpc;
9134 CORE_ADDR lowpc;
9135
9136 baseaddr = ANOFFSET (objfile->section_offsets,
9137 SECT_OFF_TEXT (objfile));
9138 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9139 pdi->lowpc + baseaddr);
9140 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9141 pdi->highpc + baseaddr);
9142 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9143 cu->per_cu->v.psymtab);
9144 }
9145 }
9146
9147 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9148 {
9149 if (!pdi->is_declaration)
9150 /* Ignore subprogram DIEs that do not have a name, they are
9151 illegal. Do not emit a complaint at this point, we will
9152 do so when we convert this psymtab into a symtab. */
9153 if (pdi->name)
9154 add_partial_symbol (pdi, cu);
9155 }
9156 }
9157
9158 if (! pdi->has_children)
9159 return;
9160
9161 if (cu->language == language_ada)
9162 {
9163 pdi = pdi->die_child;
9164 while (pdi != NULL)
9165 {
9166 pdi->fixup (cu);
9167 if (pdi->tag == DW_TAG_subprogram
9168 || pdi->tag == DW_TAG_inlined_subroutine
9169 || pdi->tag == DW_TAG_lexical_block)
9170 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9171 pdi = pdi->die_sibling;
9172 }
9173 }
9174 }
9175
9176 /* Read a partial die corresponding to an enumeration type. */
9177
9178 static void
9179 add_partial_enumeration (struct partial_die_info *enum_pdi,
9180 struct dwarf2_cu *cu)
9181 {
9182 struct partial_die_info *pdi;
9183
9184 if (enum_pdi->name != NULL)
9185 add_partial_symbol (enum_pdi, cu);
9186
9187 pdi = enum_pdi->die_child;
9188 while (pdi)
9189 {
9190 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9191 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9192 else
9193 add_partial_symbol (pdi, cu);
9194 pdi = pdi->die_sibling;
9195 }
9196 }
9197
9198 /* Return the initial uleb128 in the die at INFO_PTR. */
9199
9200 static unsigned int
9201 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9202 {
9203 unsigned int bytes_read;
9204
9205 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9206 }
9207
9208 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9209 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9210
9211 Return the corresponding abbrev, or NULL if the number is zero (indicating
9212 an empty DIE). In either case *BYTES_READ will be set to the length of
9213 the initial number. */
9214
9215 static struct abbrev_info *
9216 peek_die_abbrev (const die_reader_specs &reader,
9217 const gdb_byte *info_ptr, unsigned int *bytes_read)
9218 {
9219 dwarf2_cu *cu = reader.cu;
9220 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9221 unsigned int abbrev_number
9222 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9223
9224 if (abbrev_number == 0)
9225 return NULL;
9226
9227 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9228 if (!abbrev)
9229 {
9230 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9231 " at offset %s [in module %s]"),
9232 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9233 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9234 }
9235
9236 return abbrev;
9237 }
9238
9239 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9240 Returns a pointer to the end of a series of DIEs, terminated by an empty
9241 DIE. Any children of the skipped DIEs will also be skipped. */
9242
9243 static const gdb_byte *
9244 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9245 {
9246 while (1)
9247 {
9248 unsigned int bytes_read;
9249 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9250
9251 if (abbrev == NULL)
9252 return info_ptr + bytes_read;
9253 else
9254 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9255 }
9256 }
9257
9258 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9259 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9260 abbrev corresponding to that skipped uleb128 should be passed in
9261 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9262 children. */
9263
9264 static const gdb_byte *
9265 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9266 struct abbrev_info *abbrev)
9267 {
9268 unsigned int bytes_read;
9269 struct attribute attr;
9270 bfd *abfd = reader->abfd;
9271 struct dwarf2_cu *cu = reader->cu;
9272 const gdb_byte *buffer = reader->buffer;
9273 const gdb_byte *buffer_end = reader->buffer_end;
9274 unsigned int form, i;
9275
9276 for (i = 0; i < abbrev->num_attrs; i++)
9277 {
9278 /* The only abbrev we care about is DW_AT_sibling. */
9279 if (abbrev->attrs[i].name == DW_AT_sibling)
9280 {
9281 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9282 if (attr.form == DW_FORM_ref_addr)
9283 complaint (&symfile_complaints,
9284 _("ignoring absolute DW_AT_sibling"));
9285 else
9286 {
9287 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9288 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9289
9290 if (sibling_ptr < info_ptr)
9291 complaint (&symfile_complaints,
9292 _("DW_AT_sibling points backwards"));
9293 else if (sibling_ptr > reader->buffer_end)
9294 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9295 else
9296 return sibling_ptr;
9297 }
9298 }
9299
9300 /* If it isn't DW_AT_sibling, skip this attribute. */
9301 form = abbrev->attrs[i].form;
9302 skip_attribute:
9303 switch (form)
9304 {
9305 case DW_FORM_ref_addr:
9306 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9307 and later it is offset sized. */
9308 if (cu->header.version == 2)
9309 info_ptr += cu->header.addr_size;
9310 else
9311 info_ptr += cu->header.offset_size;
9312 break;
9313 case DW_FORM_GNU_ref_alt:
9314 info_ptr += cu->header.offset_size;
9315 break;
9316 case DW_FORM_addr:
9317 info_ptr += cu->header.addr_size;
9318 break;
9319 case DW_FORM_data1:
9320 case DW_FORM_ref1:
9321 case DW_FORM_flag:
9322 info_ptr += 1;
9323 break;
9324 case DW_FORM_flag_present:
9325 case DW_FORM_implicit_const:
9326 break;
9327 case DW_FORM_data2:
9328 case DW_FORM_ref2:
9329 info_ptr += 2;
9330 break;
9331 case DW_FORM_data4:
9332 case DW_FORM_ref4:
9333 info_ptr += 4;
9334 break;
9335 case DW_FORM_data8:
9336 case DW_FORM_ref8:
9337 case DW_FORM_ref_sig8:
9338 info_ptr += 8;
9339 break;
9340 case DW_FORM_data16:
9341 info_ptr += 16;
9342 break;
9343 case DW_FORM_string:
9344 read_direct_string (abfd, info_ptr, &bytes_read);
9345 info_ptr += bytes_read;
9346 break;
9347 case DW_FORM_sec_offset:
9348 case DW_FORM_strp:
9349 case DW_FORM_GNU_strp_alt:
9350 info_ptr += cu->header.offset_size;
9351 break;
9352 case DW_FORM_exprloc:
9353 case DW_FORM_block:
9354 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9355 info_ptr += bytes_read;
9356 break;
9357 case DW_FORM_block1:
9358 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9359 break;
9360 case DW_FORM_block2:
9361 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9362 break;
9363 case DW_FORM_block4:
9364 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9365 break;
9366 case DW_FORM_sdata:
9367 case DW_FORM_udata:
9368 case DW_FORM_ref_udata:
9369 case DW_FORM_GNU_addr_index:
9370 case DW_FORM_GNU_str_index:
9371 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9372 break;
9373 case DW_FORM_indirect:
9374 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9375 info_ptr += bytes_read;
9376 /* We need to continue parsing from here, so just go back to
9377 the top. */
9378 goto skip_attribute;
9379
9380 default:
9381 error (_("Dwarf Error: Cannot handle %s "
9382 "in DWARF reader [in module %s]"),
9383 dwarf_form_name (form),
9384 bfd_get_filename (abfd));
9385 }
9386 }
9387
9388 if (abbrev->has_children)
9389 return skip_children (reader, info_ptr);
9390 else
9391 return info_ptr;
9392 }
9393
9394 /* Locate ORIG_PDI's sibling.
9395 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9396
9397 static const gdb_byte *
9398 locate_pdi_sibling (const struct die_reader_specs *reader,
9399 struct partial_die_info *orig_pdi,
9400 const gdb_byte *info_ptr)
9401 {
9402 /* Do we know the sibling already? */
9403
9404 if (orig_pdi->sibling)
9405 return orig_pdi->sibling;
9406
9407 /* Are there any children to deal with? */
9408
9409 if (!orig_pdi->has_children)
9410 return info_ptr;
9411
9412 /* Skip the children the long way. */
9413
9414 return skip_children (reader, info_ptr);
9415 }
9416
9417 /* Expand this partial symbol table into a full symbol table. SELF is
9418 not NULL. */
9419
9420 static void
9421 dwarf2_read_symtab (struct partial_symtab *self,
9422 struct objfile *objfile)
9423 {
9424 struct dwarf2_per_objfile *dwarf2_per_objfile
9425 = get_dwarf2_per_objfile (objfile);
9426
9427 if (self->readin)
9428 {
9429 warning (_("bug: psymtab for %s is already read in."),
9430 self->filename);
9431 }
9432 else
9433 {
9434 if (info_verbose)
9435 {
9436 printf_filtered (_("Reading in symbols for %s..."),
9437 self->filename);
9438 gdb_flush (gdb_stdout);
9439 }
9440
9441 /* If this psymtab is constructed from a debug-only objfile, the
9442 has_section_at_zero flag will not necessarily be correct. We
9443 can get the correct value for this flag by looking at the data
9444 associated with the (presumably stripped) associated objfile. */
9445 if (objfile->separate_debug_objfile_backlink)
9446 {
9447 struct dwarf2_per_objfile *dpo_backlink
9448 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9449
9450 dwarf2_per_objfile->has_section_at_zero
9451 = dpo_backlink->has_section_at_zero;
9452 }
9453
9454 dwarf2_per_objfile->reading_partial_symbols = 0;
9455
9456 psymtab_to_symtab_1 (self);
9457
9458 /* Finish up the debug error message. */
9459 if (info_verbose)
9460 printf_filtered (_("done.\n"));
9461 }
9462
9463 process_cu_includes (dwarf2_per_objfile);
9464 }
9465 \f
9466 /* Reading in full CUs. */
9467
9468 /* Add PER_CU to the queue. */
9469
9470 static void
9471 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9472 enum language pretend_language)
9473 {
9474 struct dwarf2_queue_item *item;
9475
9476 per_cu->queued = 1;
9477 item = XNEW (struct dwarf2_queue_item);
9478 item->per_cu = per_cu;
9479 item->pretend_language = pretend_language;
9480 item->next = NULL;
9481
9482 if (dwarf2_queue == NULL)
9483 dwarf2_queue = item;
9484 else
9485 dwarf2_queue_tail->next = item;
9486
9487 dwarf2_queue_tail = item;
9488 }
9489
9490 /* If PER_CU is not yet queued, add it to the queue.
9491 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9492 dependency.
9493 The result is non-zero if PER_CU was queued, otherwise the result is zero
9494 meaning either PER_CU is already queued or it is already loaded.
9495
9496 N.B. There is an invariant here that if a CU is queued then it is loaded.
9497 The caller is required to load PER_CU if we return non-zero. */
9498
9499 static int
9500 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9501 struct dwarf2_per_cu_data *per_cu,
9502 enum language pretend_language)
9503 {
9504 /* We may arrive here during partial symbol reading, if we need full
9505 DIEs to process an unusual case (e.g. template arguments). Do
9506 not queue PER_CU, just tell our caller to load its DIEs. */
9507 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9508 {
9509 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9510 return 1;
9511 return 0;
9512 }
9513
9514 /* Mark the dependence relation so that we don't flush PER_CU
9515 too early. */
9516 if (dependent_cu != NULL)
9517 dwarf2_add_dependence (dependent_cu, per_cu);
9518
9519 /* If it's already on the queue, we have nothing to do. */
9520 if (per_cu->queued)
9521 return 0;
9522
9523 /* If the compilation unit is already loaded, just mark it as
9524 used. */
9525 if (per_cu->cu != NULL)
9526 {
9527 per_cu->cu->last_used = 0;
9528 return 0;
9529 }
9530
9531 /* Add it to the queue. */
9532 queue_comp_unit (per_cu, pretend_language);
9533
9534 return 1;
9535 }
9536
9537 /* Process the queue. */
9538
9539 static void
9540 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9541 {
9542 struct dwarf2_queue_item *item, *next_item;
9543
9544 if (dwarf_read_debug)
9545 {
9546 fprintf_unfiltered (gdb_stdlog,
9547 "Expanding one or more symtabs of objfile %s ...\n",
9548 objfile_name (dwarf2_per_objfile->objfile));
9549 }
9550
9551 /* The queue starts out with one item, but following a DIE reference
9552 may load a new CU, adding it to the end of the queue. */
9553 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9554 {
9555 if ((dwarf2_per_objfile->using_index
9556 ? !item->per_cu->v.quick->compunit_symtab
9557 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9558 /* Skip dummy CUs. */
9559 && item->per_cu->cu != NULL)
9560 {
9561 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9562 unsigned int debug_print_threshold;
9563 char buf[100];
9564
9565 if (per_cu->is_debug_types)
9566 {
9567 struct signatured_type *sig_type =
9568 (struct signatured_type *) per_cu;
9569
9570 sprintf (buf, "TU %s at offset %s",
9571 hex_string (sig_type->signature),
9572 sect_offset_str (per_cu->sect_off));
9573 /* There can be 100s of TUs.
9574 Only print them in verbose mode. */
9575 debug_print_threshold = 2;
9576 }
9577 else
9578 {
9579 sprintf (buf, "CU at offset %s",
9580 sect_offset_str (per_cu->sect_off));
9581 debug_print_threshold = 1;
9582 }
9583
9584 if (dwarf_read_debug >= debug_print_threshold)
9585 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9586
9587 if (per_cu->is_debug_types)
9588 process_full_type_unit (per_cu, item->pretend_language);
9589 else
9590 process_full_comp_unit (per_cu, item->pretend_language);
9591
9592 if (dwarf_read_debug >= debug_print_threshold)
9593 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9594 }
9595
9596 item->per_cu->queued = 0;
9597 next_item = item->next;
9598 xfree (item);
9599 }
9600
9601 dwarf2_queue_tail = NULL;
9602
9603 if (dwarf_read_debug)
9604 {
9605 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9606 objfile_name (dwarf2_per_objfile->objfile));
9607 }
9608 }
9609
9610 /* Read in full symbols for PST, and anything it depends on. */
9611
9612 static void
9613 psymtab_to_symtab_1 (struct partial_symtab *pst)
9614 {
9615 struct dwarf2_per_cu_data *per_cu;
9616 int i;
9617
9618 if (pst->readin)
9619 return;
9620
9621 for (i = 0; i < pst->number_of_dependencies; i++)
9622 if (!pst->dependencies[i]->readin
9623 && pst->dependencies[i]->user == NULL)
9624 {
9625 /* Inform about additional files that need to be read in. */
9626 if (info_verbose)
9627 {
9628 /* FIXME: i18n: Need to make this a single string. */
9629 fputs_filtered (" ", gdb_stdout);
9630 wrap_here ("");
9631 fputs_filtered ("and ", gdb_stdout);
9632 wrap_here ("");
9633 printf_filtered ("%s...", pst->dependencies[i]->filename);
9634 wrap_here (""); /* Flush output. */
9635 gdb_flush (gdb_stdout);
9636 }
9637 psymtab_to_symtab_1 (pst->dependencies[i]);
9638 }
9639
9640 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9641
9642 if (per_cu == NULL)
9643 {
9644 /* It's an include file, no symbols to read for it.
9645 Everything is in the parent symtab. */
9646 pst->readin = 1;
9647 return;
9648 }
9649
9650 dw2_do_instantiate_symtab (per_cu);
9651 }
9652
9653 /* Trivial hash function for die_info: the hash value of a DIE
9654 is its offset in .debug_info for this objfile. */
9655
9656 static hashval_t
9657 die_hash (const void *item)
9658 {
9659 const struct die_info *die = (const struct die_info *) item;
9660
9661 return to_underlying (die->sect_off);
9662 }
9663
9664 /* Trivial comparison function for die_info structures: two DIEs
9665 are equal if they have the same offset. */
9666
9667 static int
9668 die_eq (const void *item_lhs, const void *item_rhs)
9669 {
9670 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9671 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9672
9673 return die_lhs->sect_off == die_rhs->sect_off;
9674 }
9675
9676 /* die_reader_func for load_full_comp_unit.
9677 This is identical to read_signatured_type_reader,
9678 but is kept separate for now. */
9679
9680 static void
9681 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9682 const gdb_byte *info_ptr,
9683 struct die_info *comp_unit_die,
9684 int has_children,
9685 void *data)
9686 {
9687 struct dwarf2_cu *cu = reader->cu;
9688 enum language *language_ptr = (enum language *) data;
9689
9690 gdb_assert (cu->die_hash == NULL);
9691 cu->die_hash =
9692 htab_create_alloc_ex (cu->header.length / 12,
9693 die_hash,
9694 die_eq,
9695 NULL,
9696 &cu->comp_unit_obstack,
9697 hashtab_obstack_allocate,
9698 dummy_obstack_deallocate);
9699
9700 if (has_children)
9701 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9702 &info_ptr, comp_unit_die);
9703 cu->dies = comp_unit_die;
9704 /* comp_unit_die is not stored in die_hash, no need. */
9705
9706 /* We try not to read any attributes in this function, because not
9707 all CUs needed for references have been loaded yet, and symbol
9708 table processing isn't initialized. But we have to set the CU language,
9709 or we won't be able to build types correctly.
9710 Similarly, if we do not read the producer, we can not apply
9711 producer-specific interpretation. */
9712 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9713 }
9714
9715 /* Load the DIEs associated with PER_CU into memory. */
9716
9717 static void
9718 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9719 enum language pretend_language)
9720 {
9721 gdb_assert (! this_cu->is_debug_types);
9722
9723 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
9724 load_full_comp_unit_reader, &pretend_language);
9725 }
9726
9727 /* Add a DIE to the delayed physname list. */
9728
9729 static void
9730 add_to_method_list (struct type *type, int fnfield_index, int index,
9731 const char *name, struct die_info *die,
9732 struct dwarf2_cu *cu)
9733 {
9734 struct delayed_method_info mi;
9735 mi.type = type;
9736 mi.fnfield_index = fnfield_index;
9737 mi.index = index;
9738 mi.name = name;
9739 mi.die = die;
9740 cu->method_list.push_back (mi);
9741 }
9742
9743 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9744 "const" / "volatile". If so, decrements LEN by the length of the
9745 modifier and return true. Otherwise return false. */
9746
9747 template<size_t N>
9748 static bool
9749 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9750 {
9751 size_t mod_len = sizeof (mod) - 1;
9752 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9753 {
9754 len -= mod_len;
9755 return true;
9756 }
9757 return false;
9758 }
9759
9760 /* Compute the physnames of any methods on the CU's method list.
9761
9762 The computation of method physnames is delayed in order to avoid the
9763 (bad) condition that one of the method's formal parameters is of an as yet
9764 incomplete type. */
9765
9766 static void
9767 compute_delayed_physnames (struct dwarf2_cu *cu)
9768 {
9769 /* Only C++ delays computing physnames. */
9770 if (cu->method_list.empty ())
9771 return;
9772 gdb_assert (cu->language == language_cplus);
9773
9774 for (struct delayed_method_info &mi : cu->method_list)
9775 {
9776 const char *physname;
9777 struct fn_fieldlist *fn_flp
9778 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9779 physname = dwarf2_physname (mi.name, mi.die, cu);
9780 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9781 = physname ? physname : "";
9782
9783 /* Since there's no tag to indicate whether a method is a
9784 const/volatile overload, extract that information out of the
9785 demangled name. */
9786 if (physname != NULL)
9787 {
9788 size_t len = strlen (physname);
9789
9790 while (1)
9791 {
9792 if (physname[len] == ')') /* shortcut */
9793 break;
9794 else if (check_modifier (physname, len, " const"))
9795 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9796 else if (check_modifier (physname, len, " volatile"))
9797 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9798 else
9799 break;
9800 }
9801 }
9802 }
9803
9804 /* The list is no longer needed. */
9805 cu->method_list.clear ();
9806 }
9807
9808 /* Go objects should be embedded in a DW_TAG_module DIE,
9809 and it's not clear if/how imported objects will appear.
9810 To keep Go support simple until that's worked out,
9811 go back through what we've read and create something usable.
9812 We could do this while processing each DIE, and feels kinda cleaner,
9813 but that way is more invasive.
9814 This is to, for example, allow the user to type "p var" or "b main"
9815 without having to specify the package name, and allow lookups
9816 of module.object to work in contexts that use the expression
9817 parser. */
9818
9819 static void
9820 fixup_go_packaging (struct dwarf2_cu *cu)
9821 {
9822 char *package_name = NULL;
9823 struct pending *list;
9824 int i;
9825
9826 for (list = global_symbols; list != NULL; list = list->next)
9827 {
9828 for (i = 0; i < list->nsyms; ++i)
9829 {
9830 struct symbol *sym = list->symbol[i];
9831
9832 if (SYMBOL_LANGUAGE (sym) == language_go
9833 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9834 {
9835 char *this_package_name = go_symbol_package_name (sym);
9836
9837 if (this_package_name == NULL)
9838 continue;
9839 if (package_name == NULL)
9840 package_name = this_package_name;
9841 else
9842 {
9843 struct objfile *objfile
9844 = cu->per_cu->dwarf2_per_objfile->objfile;
9845 if (strcmp (package_name, this_package_name) != 0)
9846 complaint (&symfile_complaints,
9847 _("Symtab %s has objects from two different Go packages: %s and %s"),
9848 (symbol_symtab (sym) != NULL
9849 ? symtab_to_filename_for_display
9850 (symbol_symtab (sym))
9851 : objfile_name (objfile)),
9852 this_package_name, package_name);
9853 xfree (this_package_name);
9854 }
9855 }
9856 }
9857 }
9858
9859 if (package_name != NULL)
9860 {
9861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9862 const char *saved_package_name
9863 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9864 package_name,
9865 strlen (package_name));
9866 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9867 saved_package_name);
9868 struct symbol *sym;
9869
9870 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9871
9872 sym = allocate_symbol (objfile);
9873 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9874 SYMBOL_SET_NAMES (sym, saved_package_name,
9875 strlen (saved_package_name), 0, objfile);
9876 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9877 e.g., "main" finds the "main" module and not C's main(). */
9878 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9879 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9880 SYMBOL_TYPE (sym) = type;
9881
9882 add_symbol_to_list (sym, &global_symbols);
9883
9884 xfree (package_name);
9885 }
9886 }
9887
9888 /* Allocate a fully-qualified name consisting of the two parts on the
9889 obstack. */
9890
9891 static const char *
9892 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9893 {
9894 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9895 }
9896
9897 /* A helper that allocates a struct discriminant_info to attach to a
9898 union type. */
9899
9900 static struct discriminant_info *
9901 alloc_discriminant_info (struct type *type, int discriminant_index,
9902 int default_index)
9903 {
9904 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9905 gdb_assert (discriminant_index == -1
9906 || (discriminant_index >= 0
9907 && discriminant_index < TYPE_NFIELDS (type)));
9908 gdb_assert (default_index == -1
9909 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9910
9911 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9912
9913 struct discriminant_info *disc
9914 = ((struct discriminant_info *)
9915 TYPE_ZALLOC (type,
9916 offsetof (struct discriminant_info, discriminants)
9917 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9918 disc->default_index = default_index;
9919 disc->discriminant_index = discriminant_index;
9920
9921 struct dynamic_prop prop;
9922 prop.kind = PROP_UNDEFINED;
9923 prop.data.baton = disc;
9924
9925 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9926
9927 return disc;
9928 }
9929
9930 /* Some versions of rustc emitted enums in an unusual way.
9931
9932 Ordinary enums were emitted as unions. The first element of each
9933 structure in the union was named "RUST$ENUM$DISR". This element
9934 held the discriminant.
9935
9936 These versions of Rust also implemented the "non-zero"
9937 optimization. When the enum had two values, and one is empty and
9938 the other holds a pointer that cannot be zero, the pointer is used
9939 as the discriminant, with a zero value meaning the empty variant.
9940 Here, the union's first member is of the form
9941 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9942 where the fieldnos are the indices of the fields that should be
9943 traversed in order to find the field (which may be several fields deep)
9944 and the variantname is the name of the variant of the case when the
9945 field is zero.
9946
9947 This function recognizes whether TYPE is of one of these forms,
9948 and, if so, smashes it to be a variant type. */
9949
9950 static void
9951 quirk_rust_enum (struct type *type, struct objfile *objfile)
9952 {
9953 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9954
9955 /* We don't need to deal with empty enums. */
9956 if (TYPE_NFIELDS (type) == 0)
9957 return;
9958
9959 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9960 if (TYPE_NFIELDS (type) == 1
9961 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9962 {
9963 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9964
9965 /* Decode the field name to find the offset of the
9966 discriminant. */
9967 ULONGEST bit_offset = 0;
9968 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9969 while (name[0] >= '0' && name[0] <= '9')
9970 {
9971 char *tail;
9972 unsigned long index = strtoul (name, &tail, 10);
9973 name = tail;
9974 if (*name != '$'
9975 || index >= TYPE_NFIELDS (field_type)
9976 || (TYPE_FIELD_LOC_KIND (field_type, index)
9977 != FIELD_LOC_KIND_BITPOS))
9978 {
9979 complaint (&symfile_complaints,
9980 _("Could not parse Rust enum encoding string \"%s\""
9981 "[in module %s]"),
9982 TYPE_FIELD_NAME (type, 0),
9983 objfile_name (objfile));
9984 return;
9985 }
9986 ++name;
9987
9988 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9989 field_type = TYPE_FIELD_TYPE (field_type, index);
9990 }
9991
9992 /* Make a union to hold the variants. */
9993 struct type *union_type = alloc_type (objfile);
9994 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9995 TYPE_NFIELDS (union_type) = 3;
9996 TYPE_FIELDS (union_type)
9997 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9998 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9999
10000 /* Put the discriminant must at index 0. */
10001 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10002 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10003 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10004 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10005
10006 /* The order of fields doesn't really matter, so put the real
10007 field at index 1 and the data-less field at index 2. */
10008 struct discriminant_info *disc
10009 = alloc_discriminant_info (union_type, 0, 1);
10010 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10011 TYPE_FIELD_NAME (union_type, 1)
10012 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10013 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10014 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10015 TYPE_FIELD_NAME (union_type, 1));
10016
10017 const char *dataless_name
10018 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10019 name);
10020 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10021 dataless_name);
10022 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10023 /* NAME points into the original discriminant name, which
10024 already has the correct lifetime. */
10025 TYPE_FIELD_NAME (union_type, 2) = name;
10026 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10027 disc->discriminants[2] = 0;
10028
10029 /* Smash this type to be a structure type. We have to do this
10030 because the type has already been recorded. */
10031 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10032 TYPE_NFIELDS (type) = 1;
10033 TYPE_FIELDS (type)
10034 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10035
10036 /* Install the variant part. */
10037 TYPE_FIELD_TYPE (type, 0) = union_type;
10038 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10039 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10040 }
10041 else if (TYPE_NFIELDS (type) == 1)
10042 {
10043 /* We assume that a union with a single field is a univariant
10044 enum. */
10045 /* Smash this type to be a structure type. We have to do this
10046 because the type has already been recorded. */
10047 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10048
10049 /* Make a union to hold the variants. */
10050 struct type *union_type = alloc_type (objfile);
10051 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10052 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10053 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10054 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10055
10056 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10057 const char *variant_name
10058 = rust_last_path_segment (TYPE_NAME (field_type));
10059 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10060 TYPE_NAME (field_type)
10061 = rust_fully_qualify (&objfile->objfile_obstack,
10062 TYPE_NAME (type), variant_name);
10063
10064 /* Install the union in the outer struct type. */
10065 TYPE_NFIELDS (type) = 1;
10066 TYPE_FIELDS (type)
10067 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10068 TYPE_FIELD_TYPE (type, 0) = union_type;
10069 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10070 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10071
10072 alloc_discriminant_info (union_type, -1, 0);
10073 }
10074 else
10075 {
10076 struct type *disr_type = nullptr;
10077 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10078 {
10079 disr_type = TYPE_FIELD_TYPE (type, i);
10080
10081 if (TYPE_NFIELDS (disr_type) == 0)
10082 {
10083 /* Could be data-less variant, so keep going. */
10084 }
10085 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10086 "RUST$ENUM$DISR") != 0)
10087 {
10088 /* Not a Rust enum. */
10089 return;
10090 }
10091 else
10092 {
10093 /* Found one. */
10094 break;
10095 }
10096 }
10097
10098 /* If we got here without a discriminant, then it's probably
10099 just a union. */
10100 if (disr_type == nullptr)
10101 return;
10102
10103 /* Smash this type to be a structure type. We have to do this
10104 because the type has already been recorded. */
10105 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10106
10107 /* Make a union to hold the variants. */
10108 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10109 struct type *union_type = alloc_type (objfile);
10110 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10111 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10112 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10113 TYPE_FIELDS (union_type)
10114 = (struct field *) TYPE_ZALLOC (union_type,
10115 (TYPE_NFIELDS (union_type)
10116 * sizeof (struct field)));
10117
10118 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10119 TYPE_NFIELDS (type) * sizeof (struct field));
10120
10121 /* Install the discriminant at index 0 in the union. */
10122 TYPE_FIELD (union_type, 0) = *disr_field;
10123 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10124 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10125
10126 /* Install the union in the outer struct type. */
10127 TYPE_FIELD_TYPE (type, 0) = union_type;
10128 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10129 TYPE_NFIELDS (type) = 1;
10130
10131 /* Set the size and offset of the union type. */
10132 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10133
10134 /* We need a way to find the correct discriminant given a
10135 variant name. For convenience we build a map here. */
10136 struct type *enum_type = FIELD_TYPE (*disr_field);
10137 std::unordered_map<std::string, ULONGEST> discriminant_map;
10138 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10139 {
10140 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10141 {
10142 const char *name
10143 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10144 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10145 }
10146 }
10147
10148 int n_fields = TYPE_NFIELDS (union_type);
10149 struct discriminant_info *disc
10150 = alloc_discriminant_info (union_type, 0, -1);
10151 /* Skip the discriminant here. */
10152 for (int i = 1; i < n_fields; ++i)
10153 {
10154 /* Find the final word in the name of this variant's type.
10155 That name can be used to look up the correct
10156 discriminant. */
10157 const char *variant_name
10158 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10159 i)));
10160
10161 auto iter = discriminant_map.find (variant_name);
10162 if (iter != discriminant_map.end ())
10163 disc->discriminants[i] = iter->second;
10164
10165 /* Remove the discriminant field. */
10166 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10167 --TYPE_NFIELDS (sub_type);
10168 ++TYPE_FIELDS (sub_type);
10169 TYPE_FIELD_NAME (union_type, i) = variant_name;
10170 TYPE_NAME (sub_type)
10171 = rust_fully_qualify (&objfile->objfile_obstack,
10172 TYPE_NAME (type), variant_name);
10173 }
10174 }
10175 }
10176
10177 /* Rewrite some Rust unions to be structures with variants parts. */
10178
10179 static void
10180 rust_union_quirks (struct dwarf2_cu *cu)
10181 {
10182 gdb_assert (cu->language == language_rust);
10183 for (struct type *type : cu->rust_unions)
10184 quirk_rust_enum (type, cu->per_cu->dwarf2_per_objfile->objfile);
10185 }
10186
10187 /* Return the symtab for PER_CU. This works properly regardless of
10188 whether we're using the index or psymtabs. */
10189
10190 static struct compunit_symtab *
10191 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10192 {
10193 return (per_cu->dwarf2_per_objfile->using_index
10194 ? per_cu->v.quick->compunit_symtab
10195 : per_cu->v.psymtab->compunit_symtab);
10196 }
10197
10198 /* A helper function for computing the list of all symbol tables
10199 included by PER_CU. */
10200
10201 static void
10202 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10203 htab_t all_children, htab_t all_type_symtabs,
10204 struct dwarf2_per_cu_data *per_cu,
10205 struct compunit_symtab *immediate_parent)
10206 {
10207 void **slot;
10208 int ix;
10209 struct compunit_symtab *cust;
10210 struct dwarf2_per_cu_data *iter;
10211
10212 slot = htab_find_slot (all_children, per_cu, INSERT);
10213 if (*slot != NULL)
10214 {
10215 /* This inclusion and its children have been processed. */
10216 return;
10217 }
10218
10219 *slot = per_cu;
10220 /* Only add a CU if it has a symbol table. */
10221 cust = get_compunit_symtab (per_cu);
10222 if (cust != NULL)
10223 {
10224 /* If this is a type unit only add its symbol table if we haven't
10225 seen it yet (type unit per_cu's can share symtabs). */
10226 if (per_cu->is_debug_types)
10227 {
10228 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10229 if (*slot == NULL)
10230 {
10231 *slot = cust;
10232 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10233 if (cust->user == NULL)
10234 cust->user = immediate_parent;
10235 }
10236 }
10237 else
10238 {
10239 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10240 if (cust->user == NULL)
10241 cust->user = immediate_parent;
10242 }
10243 }
10244
10245 for (ix = 0;
10246 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10247 ++ix)
10248 {
10249 recursively_compute_inclusions (result, all_children,
10250 all_type_symtabs, iter, cust);
10251 }
10252 }
10253
10254 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10255 PER_CU. */
10256
10257 static void
10258 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10259 {
10260 gdb_assert (! per_cu->is_debug_types);
10261
10262 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10263 {
10264 int ix, len;
10265 struct dwarf2_per_cu_data *per_cu_iter;
10266 struct compunit_symtab *compunit_symtab_iter;
10267 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10268 htab_t all_children, all_type_symtabs;
10269 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10270
10271 /* If we don't have a symtab, we can just skip this case. */
10272 if (cust == NULL)
10273 return;
10274
10275 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10276 NULL, xcalloc, xfree);
10277 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10278 NULL, xcalloc, xfree);
10279
10280 for (ix = 0;
10281 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10282 ix, per_cu_iter);
10283 ++ix)
10284 {
10285 recursively_compute_inclusions (&result_symtabs, all_children,
10286 all_type_symtabs, per_cu_iter,
10287 cust);
10288 }
10289
10290 /* Now we have a transitive closure of all the included symtabs. */
10291 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10292 cust->includes
10293 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10294 struct compunit_symtab *, len + 1);
10295 for (ix = 0;
10296 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10297 compunit_symtab_iter);
10298 ++ix)
10299 cust->includes[ix] = compunit_symtab_iter;
10300 cust->includes[len] = NULL;
10301
10302 VEC_free (compunit_symtab_ptr, result_symtabs);
10303 htab_delete (all_children);
10304 htab_delete (all_type_symtabs);
10305 }
10306 }
10307
10308 /* Compute the 'includes' field for the symtabs of all the CUs we just
10309 read. */
10310
10311 static void
10312 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10313 {
10314 int ix;
10315 struct dwarf2_per_cu_data *iter;
10316
10317 for (ix = 0;
10318 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10319 ix, iter);
10320 ++ix)
10321 {
10322 if (! iter->is_debug_types)
10323 compute_compunit_symtab_includes (iter);
10324 }
10325
10326 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10327 }
10328
10329 /* Generate full symbol information for PER_CU, whose DIEs have
10330 already been loaded into memory. */
10331
10332 static void
10333 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10334 enum language pretend_language)
10335 {
10336 struct dwarf2_cu *cu = per_cu->cu;
10337 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10338 struct objfile *objfile = dwarf2_per_objfile->objfile;
10339 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10340 CORE_ADDR lowpc, highpc;
10341 struct compunit_symtab *cust;
10342 CORE_ADDR baseaddr;
10343 struct block *static_block;
10344 CORE_ADDR addr;
10345
10346 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10347
10348 buildsym_init ();
10349 scoped_free_pendings free_pending;
10350
10351 /* Clear the list here in case something was left over. */
10352 cu->method_list.clear ();
10353
10354 cu->list_in_scope = &file_symbols;
10355
10356 cu->language = pretend_language;
10357 cu->language_defn = language_def (cu->language);
10358
10359 /* Do line number decoding in read_file_scope () */
10360 process_die (cu->dies, cu);
10361
10362 /* For now fudge the Go package. */
10363 if (cu->language == language_go)
10364 fixup_go_packaging (cu);
10365
10366 /* Now that we have processed all the DIEs in the CU, all the types
10367 should be complete, and it should now be safe to compute all of the
10368 physnames. */
10369 compute_delayed_physnames (cu);
10370
10371 if (cu->language == language_rust)
10372 rust_union_quirks (cu);
10373
10374 /* Some compilers don't define a DW_AT_high_pc attribute for the
10375 compilation unit. If the DW_AT_high_pc is missing, synthesize
10376 it, by scanning the DIE's below the compilation unit. */
10377 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10378
10379 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10380 static_block = end_symtab_get_static_block (addr, 0, 1);
10381
10382 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10383 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10384 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10385 addrmap to help ensure it has an accurate map of pc values belonging to
10386 this comp unit. */
10387 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10388
10389 cust = end_symtab_from_static_block (static_block,
10390 SECT_OFF_TEXT (objfile), 0);
10391
10392 if (cust != NULL)
10393 {
10394 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10395
10396 /* Set symtab language to language from DW_AT_language. If the
10397 compilation is from a C file generated by language preprocessors, do
10398 not set the language if it was already deduced by start_subfile. */
10399 if (!(cu->language == language_c
10400 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10401 COMPUNIT_FILETABS (cust)->language = cu->language;
10402
10403 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10404 produce DW_AT_location with location lists but it can be possibly
10405 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10406 there were bugs in prologue debug info, fixed later in GCC-4.5
10407 by "unwind info for epilogues" patch (which is not directly related).
10408
10409 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10410 needed, it would be wrong due to missing DW_AT_producer there.
10411
10412 Still one can confuse GDB by using non-standard GCC compilation
10413 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10414 */
10415 if (cu->has_loclist && gcc_4_minor >= 5)
10416 cust->locations_valid = 1;
10417
10418 if (gcc_4_minor >= 5)
10419 cust->epilogue_unwind_valid = 1;
10420
10421 cust->call_site_htab = cu->call_site_htab;
10422 }
10423
10424 if (dwarf2_per_objfile->using_index)
10425 per_cu->v.quick->compunit_symtab = cust;
10426 else
10427 {
10428 struct partial_symtab *pst = per_cu->v.psymtab;
10429 pst->compunit_symtab = cust;
10430 pst->readin = 1;
10431 }
10432
10433 /* Push it for inclusion processing later. */
10434 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10435 }
10436
10437 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10438 already been loaded into memory. */
10439
10440 static void
10441 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10442 enum language pretend_language)
10443 {
10444 struct dwarf2_cu *cu = per_cu->cu;
10445 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10446 struct objfile *objfile = dwarf2_per_objfile->objfile;
10447 struct compunit_symtab *cust;
10448 struct signatured_type *sig_type;
10449
10450 gdb_assert (per_cu->is_debug_types);
10451 sig_type = (struct signatured_type *) per_cu;
10452
10453 buildsym_init ();
10454 scoped_free_pendings free_pending;
10455
10456 /* Clear the list here in case something was left over. */
10457 cu->method_list.clear ();
10458
10459 cu->list_in_scope = &file_symbols;
10460
10461 cu->language = pretend_language;
10462 cu->language_defn = language_def (cu->language);
10463
10464 /* The symbol tables are set up in read_type_unit_scope. */
10465 process_die (cu->dies, cu);
10466
10467 /* For now fudge the Go package. */
10468 if (cu->language == language_go)
10469 fixup_go_packaging (cu);
10470
10471 /* Now that we have processed all the DIEs in the CU, all the types
10472 should be complete, and it should now be safe to compute all of the
10473 physnames. */
10474 compute_delayed_physnames (cu);
10475
10476 if (cu->language == language_rust)
10477 rust_union_quirks (cu);
10478
10479 /* TUs share symbol tables.
10480 If this is the first TU to use this symtab, complete the construction
10481 of it with end_expandable_symtab. Otherwise, complete the addition of
10482 this TU's symbols to the existing symtab. */
10483 if (sig_type->type_unit_group->compunit_symtab == NULL)
10484 {
10485 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10486 sig_type->type_unit_group->compunit_symtab = cust;
10487
10488 if (cust != NULL)
10489 {
10490 /* Set symtab language to language from DW_AT_language. If the
10491 compilation is from a C file generated by language preprocessors,
10492 do not set the language if it was already deduced by
10493 start_subfile. */
10494 if (!(cu->language == language_c
10495 && COMPUNIT_FILETABS (cust)->language != language_c))
10496 COMPUNIT_FILETABS (cust)->language = cu->language;
10497 }
10498 }
10499 else
10500 {
10501 augment_type_symtab ();
10502 cust = sig_type->type_unit_group->compunit_symtab;
10503 }
10504
10505 if (dwarf2_per_objfile->using_index)
10506 per_cu->v.quick->compunit_symtab = cust;
10507 else
10508 {
10509 struct partial_symtab *pst = per_cu->v.psymtab;
10510 pst->compunit_symtab = cust;
10511 pst->readin = 1;
10512 }
10513 }
10514
10515 /* Process an imported unit DIE. */
10516
10517 static void
10518 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10519 {
10520 struct attribute *attr;
10521
10522 /* For now we don't handle imported units in type units. */
10523 if (cu->per_cu->is_debug_types)
10524 {
10525 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10526 " supported in type units [in module %s]"),
10527 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10528 }
10529
10530 attr = dwarf2_attr (die, DW_AT_import, cu);
10531 if (attr != NULL)
10532 {
10533 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10534 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10535 dwarf2_per_cu_data *per_cu
10536 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10537 cu->per_cu->dwarf2_per_objfile);
10538
10539 /* If necessary, add it to the queue and load its DIEs. */
10540 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10541 load_full_comp_unit (per_cu, cu->language);
10542
10543 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10544 per_cu);
10545 }
10546 }
10547
10548 /* RAII object that represents a process_die scope: i.e.,
10549 starts/finishes processing a DIE. */
10550 class process_die_scope
10551 {
10552 public:
10553 process_die_scope (die_info *die, dwarf2_cu *cu)
10554 : m_die (die), m_cu (cu)
10555 {
10556 /* We should only be processing DIEs not already in process. */
10557 gdb_assert (!m_die->in_process);
10558 m_die->in_process = true;
10559 }
10560
10561 ~process_die_scope ()
10562 {
10563 m_die->in_process = false;
10564
10565 /* If we're done processing the DIE for the CU that owns the line
10566 header, we don't need the line header anymore. */
10567 if (m_cu->line_header_die_owner == m_die)
10568 {
10569 delete m_cu->line_header;
10570 m_cu->line_header = NULL;
10571 m_cu->line_header_die_owner = NULL;
10572 }
10573 }
10574
10575 private:
10576 die_info *m_die;
10577 dwarf2_cu *m_cu;
10578 };
10579
10580 /* Process a die and its children. */
10581
10582 static void
10583 process_die (struct die_info *die, struct dwarf2_cu *cu)
10584 {
10585 process_die_scope scope (die, cu);
10586
10587 switch (die->tag)
10588 {
10589 case DW_TAG_padding:
10590 break;
10591 case DW_TAG_compile_unit:
10592 case DW_TAG_partial_unit:
10593 read_file_scope (die, cu);
10594 break;
10595 case DW_TAG_type_unit:
10596 read_type_unit_scope (die, cu);
10597 break;
10598 case DW_TAG_subprogram:
10599 case DW_TAG_inlined_subroutine:
10600 read_func_scope (die, cu);
10601 break;
10602 case DW_TAG_lexical_block:
10603 case DW_TAG_try_block:
10604 case DW_TAG_catch_block:
10605 read_lexical_block_scope (die, cu);
10606 break;
10607 case DW_TAG_call_site:
10608 case DW_TAG_GNU_call_site:
10609 read_call_site_scope (die, cu);
10610 break;
10611 case DW_TAG_class_type:
10612 case DW_TAG_interface_type:
10613 case DW_TAG_structure_type:
10614 case DW_TAG_union_type:
10615 process_structure_scope (die, cu);
10616 break;
10617 case DW_TAG_enumeration_type:
10618 process_enumeration_scope (die, cu);
10619 break;
10620
10621 /* These dies have a type, but processing them does not create
10622 a symbol or recurse to process the children. Therefore we can
10623 read them on-demand through read_type_die. */
10624 case DW_TAG_subroutine_type:
10625 case DW_TAG_set_type:
10626 case DW_TAG_array_type:
10627 case DW_TAG_pointer_type:
10628 case DW_TAG_ptr_to_member_type:
10629 case DW_TAG_reference_type:
10630 case DW_TAG_rvalue_reference_type:
10631 case DW_TAG_string_type:
10632 break;
10633
10634 case DW_TAG_base_type:
10635 case DW_TAG_subrange_type:
10636 case DW_TAG_typedef:
10637 /* Add a typedef symbol for the type definition, if it has a
10638 DW_AT_name. */
10639 new_symbol (die, read_type_die (die, cu), cu);
10640 break;
10641 case DW_TAG_common_block:
10642 read_common_block (die, cu);
10643 break;
10644 case DW_TAG_common_inclusion:
10645 break;
10646 case DW_TAG_namespace:
10647 cu->processing_has_namespace_info = 1;
10648 read_namespace (die, cu);
10649 break;
10650 case DW_TAG_module:
10651 cu->processing_has_namespace_info = 1;
10652 read_module (die, cu);
10653 break;
10654 case DW_TAG_imported_declaration:
10655 cu->processing_has_namespace_info = 1;
10656 if (read_namespace_alias (die, cu))
10657 break;
10658 /* The declaration is not a global namespace alias: fall through. */
10659 case DW_TAG_imported_module:
10660 cu->processing_has_namespace_info = 1;
10661 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10662 || cu->language != language_fortran))
10663 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10664 dwarf_tag_name (die->tag));
10665 read_import_statement (die, cu);
10666 break;
10667
10668 case DW_TAG_imported_unit:
10669 process_imported_unit_die (die, cu);
10670 break;
10671
10672 case DW_TAG_variable:
10673 read_variable (die, cu);
10674 break;
10675
10676 default:
10677 new_symbol (die, NULL, cu);
10678 break;
10679 }
10680 }
10681 \f
10682 /* DWARF name computation. */
10683
10684 /* A helper function for dwarf2_compute_name which determines whether DIE
10685 needs to have the name of the scope prepended to the name listed in the
10686 die. */
10687
10688 static int
10689 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10690 {
10691 struct attribute *attr;
10692
10693 switch (die->tag)
10694 {
10695 case DW_TAG_namespace:
10696 case DW_TAG_typedef:
10697 case DW_TAG_class_type:
10698 case DW_TAG_interface_type:
10699 case DW_TAG_structure_type:
10700 case DW_TAG_union_type:
10701 case DW_TAG_enumeration_type:
10702 case DW_TAG_enumerator:
10703 case DW_TAG_subprogram:
10704 case DW_TAG_inlined_subroutine:
10705 case DW_TAG_member:
10706 case DW_TAG_imported_declaration:
10707 return 1;
10708
10709 case DW_TAG_variable:
10710 case DW_TAG_constant:
10711 /* We only need to prefix "globally" visible variables. These include
10712 any variable marked with DW_AT_external or any variable that
10713 lives in a namespace. [Variables in anonymous namespaces
10714 require prefixing, but they are not DW_AT_external.] */
10715
10716 if (dwarf2_attr (die, DW_AT_specification, cu))
10717 {
10718 struct dwarf2_cu *spec_cu = cu;
10719
10720 return die_needs_namespace (die_specification (die, &spec_cu),
10721 spec_cu);
10722 }
10723
10724 attr = dwarf2_attr (die, DW_AT_external, cu);
10725 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10726 && die->parent->tag != DW_TAG_module)
10727 return 0;
10728 /* A variable in a lexical block of some kind does not need a
10729 namespace, even though in C++ such variables may be external
10730 and have a mangled name. */
10731 if (die->parent->tag == DW_TAG_lexical_block
10732 || die->parent->tag == DW_TAG_try_block
10733 || die->parent->tag == DW_TAG_catch_block
10734 || die->parent->tag == DW_TAG_subprogram)
10735 return 0;
10736 return 1;
10737
10738 default:
10739 return 0;
10740 }
10741 }
10742
10743 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10744 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10745 defined for the given DIE. */
10746
10747 static struct attribute *
10748 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10749 {
10750 struct attribute *attr;
10751
10752 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10753 if (attr == NULL)
10754 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10755
10756 return attr;
10757 }
10758
10759 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10760 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10761 defined for the given DIE. */
10762
10763 static const char *
10764 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10765 {
10766 const char *linkage_name;
10767
10768 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10769 if (linkage_name == NULL)
10770 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10771
10772 return linkage_name;
10773 }
10774
10775 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10776 compute the physname for the object, which include a method's:
10777 - formal parameters (C++),
10778 - receiver type (Go),
10779
10780 The term "physname" is a bit confusing.
10781 For C++, for example, it is the demangled name.
10782 For Go, for example, it's the mangled name.
10783
10784 For Ada, return the DIE's linkage name rather than the fully qualified
10785 name. PHYSNAME is ignored..
10786
10787 The result is allocated on the objfile_obstack and canonicalized. */
10788
10789 static const char *
10790 dwarf2_compute_name (const char *name,
10791 struct die_info *die, struct dwarf2_cu *cu,
10792 int physname)
10793 {
10794 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10795
10796 if (name == NULL)
10797 name = dwarf2_name (die, cu);
10798
10799 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10800 but otherwise compute it by typename_concat inside GDB.
10801 FIXME: Actually this is not really true, or at least not always true.
10802 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10803 Fortran names because there is no mangling standard. So new_symbol
10804 will set the demangled name to the result of dwarf2_full_name, and it is
10805 the demangled name that GDB uses if it exists. */
10806 if (cu->language == language_ada
10807 || (cu->language == language_fortran && physname))
10808 {
10809 /* For Ada unit, we prefer the linkage name over the name, as
10810 the former contains the exported name, which the user expects
10811 to be able to reference. Ideally, we want the user to be able
10812 to reference this entity using either natural or linkage name,
10813 but we haven't started looking at this enhancement yet. */
10814 const char *linkage_name = dw2_linkage_name (die, cu);
10815
10816 if (linkage_name != NULL)
10817 return linkage_name;
10818 }
10819
10820 /* These are the only languages we know how to qualify names in. */
10821 if (name != NULL
10822 && (cu->language == language_cplus
10823 || cu->language == language_fortran || cu->language == language_d
10824 || cu->language == language_rust))
10825 {
10826 if (die_needs_namespace (die, cu))
10827 {
10828 const char *prefix;
10829 const char *canonical_name = NULL;
10830
10831 string_file buf;
10832
10833 prefix = determine_prefix (die, cu);
10834 if (*prefix != '\0')
10835 {
10836 char *prefixed_name = typename_concat (NULL, prefix, name,
10837 physname, cu);
10838
10839 buf.puts (prefixed_name);
10840 xfree (prefixed_name);
10841 }
10842 else
10843 buf.puts (name);
10844
10845 /* Template parameters may be specified in the DIE's DW_AT_name, or
10846 as children with DW_TAG_template_type_param or
10847 DW_TAG_value_type_param. If the latter, add them to the name
10848 here. If the name already has template parameters, then
10849 skip this step; some versions of GCC emit both, and
10850 it is more efficient to use the pre-computed name.
10851
10852 Something to keep in mind about this process: it is very
10853 unlikely, or in some cases downright impossible, to produce
10854 something that will match the mangled name of a function.
10855 If the definition of the function has the same debug info,
10856 we should be able to match up with it anyway. But fallbacks
10857 using the minimal symbol, for instance to find a method
10858 implemented in a stripped copy of libstdc++, will not work.
10859 If we do not have debug info for the definition, we will have to
10860 match them up some other way.
10861
10862 When we do name matching there is a related problem with function
10863 templates; two instantiated function templates are allowed to
10864 differ only by their return types, which we do not add here. */
10865
10866 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10867 {
10868 struct attribute *attr;
10869 struct die_info *child;
10870 int first = 1;
10871
10872 die->building_fullname = 1;
10873
10874 for (child = die->child; child != NULL; child = child->sibling)
10875 {
10876 struct type *type;
10877 LONGEST value;
10878 const gdb_byte *bytes;
10879 struct dwarf2_locexpr_baton *baton;
10880 struct value *v;
10881
10882 if (child->tag != DW_TAG_template_type_param
10883 && child->tag != DW_TAG_template_value_param)
10884 continue;
10885
10886 if (first)
10887 {
10888 buf.puts ("<");
10889 first = 0;
10890 }
10891 else
10892 buf.puts (", ");
10893
10894 attr = dwarf2_attr (child, DW_AT_type, cu);
10895 if (attr == NULL)
10896 {
10897 complaint (&symfile_complaints,
10898 _("template parameter missing DW_AT_type"));
10899 buf.puts ("UNKNOWN_TYPE");
10900 continue;
10901 }
10902 type = die_type (child, cu);
10903
10904 if (child->tag == DW_TAG_template_type_param)
10905 {
10906 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
10907 continue;
10908 }
10909
10910 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10911 if (attr == NULL)
10912 {
10913 complaint (&symfile_complaints,
10914 _("template parameter missing "
10915 "DW_AT_const_value"));
10916 buf.puts ("UNKNOWN_VALUE");
10917 continue;
10918 }
10919
10920 dwarf2_const_value_attr (attr, type, name,
10921 &cu->comp_unit_obstack, cu,
10922 &value, &bytes, &baton);
10923
10924 if (TYPE_NOSIGN (type))
10925 /* GDB prints characters as NUMBER 'CHAR'. If that's
10926 changed, this can use value_print instead. */
10927 c_printchar (value, type, &buf);
10928 else
10929 {
10930 struct value_print_options opts;
10931
10932 if (baton != NULL)
10933 v = dwarf2_evaluate_loc_desc (type, NULL,
10934 baton->data,
10935 baton->size,
10936 baton->per_cu);
10937 else if (bytes != NULL)
10938 {
10939 v = allocate_value (type);
10940 memcpy (value_contents_writeable (v), bytes,
10941 TYPE_LENGTH (type));
10942 }
10943 else
10944 v = value_from_longest (type, value);
10945
10946 /* Specify decimal so that we do not depend on
10947 the radix. */
10948 get_formatted_print_options (&opts, 'd');
10949 opts.raw = 1;
10950 value_print (v, &buf, &opts);
10951 release_value (v);
10952 value_free (v);
10953 }
10954 }
10955
10956 die->building_fullname = 0;
10957
10958 if (!first)
10959 {
10960 /* Close the argument list, with a space if necessary
10961 (nested templates). */
10962 if (!buf.empty () && buf.string ().back () == '>')
10963 buf.puts (" >");
10964 else
10965 buf.puts (">");
10966 }
10967 }
10968
10969 /* For C++ methods, append formal parameter type
10970 information, if PHYSNAME. */
10971
10972 if (physname && die->tag == DW_TAG_subprogram
10973 && cu->language == language_cplus)
10974 {
10975 struct type *type = read_type_die (die, cu);
10976
10977 c_type_print_args (type, &buf, 1, cu->language,
10978 &type_print_raw_options);
10979
10980 if (cu->language == language_cplus)
10981 {
10982 /* Assume that an artificial first parameter is
10983 "this", but do not crash if it is not. RealView
10984 marks unnamed (and thus unused) parameters as
10985 artificial; there is no way to differentiate
10986 the two cases. */
10987 if (TYPE_NFIELDS (type) > 0
10988 && TYPE_FIELD_ARTIFICIAL (type, 0)
10989 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10990 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10991 0))))
10992 buf.puts (" const");
10993 }
10994 }
10995
10996 const std::string &intermediate_name = buf.string ();
10997
10998 if (cu->language == language_cplus)
10999 canonical_name
11000 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11001 &objfile->per_bfd->storage_obstack);
11002
11003 /* If we only computed INTERMEDIATE_NAME, or if
11004 INTERMEDIATE_NAME is already canonical, then we need to
11005 copy it to the appropriate obstack. */
11006 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11007 name = ((const char *)
11008 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11009 intermediate_name.c_str (),
11010 intermediate_name.length ()));
11011 else
11012 name = canonical_name;
11013 }
11014 }
11015
11016 return name;
11017 }
11018
11019 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11020 If scope qualifiers are appropriate they will be added. The result
11021 will be allocated on the storage_obstack, or NULL if the DIE does
11022 not have a name. NAME may either be from a previous call to
11023 dwarf2_name or NULL.
11024
11025 The output string will be canonicalized (if C++). */
11026
11027 static const char *
11028 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11029 {
11030 return dwarf2_compute_name (name, die, cu, 0);
11031 }
11032
11033 /* Construct a physname for the given DIE in CU. NAME may either be
11034 from a previous call to dwarf2_name or NULL. The result will be
11035 allocated on the objfile_objstack or NULL if the DIE does not have a
11036 name.
11037
11038 The output string will be canonicalized (if C++). */
11039
11040 static const char *
11041 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11042 {
11043 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11044 const char *retval, *mangled = NULL, *canon = NULL;
11045 int need_copy = 1;
11046
11047 /* In this case dwarf2_compute_name is just a shortcut not building anything
11048 on its own. */
11049 if (!die_needs_namespace (die, cu))
11050 return dwarf2_compute_name (name, die, cu, 1);
11051
11052 mangled = dw2_linkage_name (die, cu);
11053
11054 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11055 See https://github.com/rust-lang/rust/issues/32925. */
11056 if (cu->language == language_rust && mangled != NULL
11057 && strchr (mangled, '{') != NULL)
11058 mangled = NULL;
11059
11060 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11061 has computed. */
11062 gdb::unique_xmalloc_ptr<char> demangled;
11063 if (mangled != NULL)
11064 {
11065
11066 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11067 {
11068 /* Do nothing (do not demangle the symbol name). */
11069 }
11070 else if (cu->language == language_go)
11071 {
11072 /* This is a lie, but we already lie to the caller new_symbol.
11073 new_symbol assumes we return the mangled name.
11074 This just undoes that lie until things are cleaned up. */
11075 }
11076 else
11077 {
11078 /* Use DMGL_RET_DROP for C++ template functions to suppress
11079 their return type. It is easier for GDB users to search
11080 for such functions as `name(params)' than `long name(params)'.
11081 In such case the minimal symbol names do not match the full
11082 symbol names but for template functions there is never a need
11083 to look up their definition from their declaration so
11084 the only disadvantage remains the minimal symbol variant
11085 `long name(params)' does not have the proper inferior type. */
11086 demangled.reset (gdb_demangle (mangled,
11087 (DMGL_PARAMS | DMGL_ANSI
11088 | DMGL_RET_DROP)));
11089 }
11090 if (demangled)
11091 canon = demangled.get ();
11092 else
11093 {
11094 canon = mangled;
11095 need_copy = 0;
11096 }
11097 }
11098
11099 if (canon == NULL || check_physname)
11100 {
11101 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11102
11103 if (canon != NULL && strcmp (physname, canon) != 0)
11104 {
11105 /* It may not mean a bug in GDB. The compiler could also
11106 compute DW_AT_linkage_name incorrectly. But in such case
11107 GDB would need to be bug-to-bug compatible. */
11108
11109 complaint (&symfile_complaints,
11110 _("Computed physname <%s> does not match demangled <%s> "
11111 "(from linkage <%s>) - DIE at %s [in module %s]"),
11112 physname, canon, mangled, sect_offset_str (die->sect_off),
11113 objfile_name (objfile));
11114
11115 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11116 is available here - over computed PHYSNAME. It is safer
11117 against both buggy GDB and buggy compilers. */
11118
11119 retval = canon;
11120 }
11121 else
11122 {
11123 retval = physname;
11124 need_copy = 0;
11125 }
11126 }
11127 else
11128 retval = canon;
11129
11130 if (need_copy)
11131 retval = ((const char *)
11132 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11133 retval, strlen (retval)));
11134
11135 return retval;
11136 }
11137
11138 /* Inspect DIE in CU for a namespace alias. If one exists, record
11139 a new symbol for it.
11140
11141 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11142
11143 static int
11144 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11145 {
11146 struct attribute *attr;
11147
11148 /* If the die does not have a name, this is not a namespace
11149 alias. */
11150 attr = dwarf2_attr (die, DW_AT_name, cu);
11151 if (attr != NULL)
11152 {
11153 int num;
11154 struct die_info *d = die;
11155 struct dwarf2_cu *imported_cu = cu;
11156
11157 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11158 keep inspecting DIEs until we hit the underlying import. */
11159 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11160 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11161 {
11162 attr = dwarf2_attr (d, DW_AT_import, cu);
11163 if (attr == NULL)
11164 break;
11165
11166 d = follow_die_ref (d, attr, &imported_cu);
11167 if (d->tag != DW_TAG_imported_declaration)
11168 break;
11169 }
11170
11171 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11172 {
11173 complaint (&symfile_complaints,
11174 _("DIE at %s has too many recursively imported "
11175 "declarations"), sect_offset_str (d->sect_off));
11176 return 0;
11177 }
11178
11179 if (attr != NULL)
11180 {
11181 struct type *type;
11182 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11183
11184 type = get_die_type_at_offset (sect_off, cu->per_cu);
11185 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11186 {
11187 /* This declaration is a global namespace alias. Add
11188 a symbol for it whose type is the aliased namespace. */
11189 new_symbol (die, type, cu);
11190 return 1;
11191 }
11192 }
11193 }
11194
11195 return 0;
11196 }
11197
11198 /* Return the using directives repository (global or local?) to use in the
11199 current context for LANGUAGE.
11200
11201 For Ada, imported declarations can materialize renamings, which *may* be
11202 global. However it is impossible (for now?) in DWARF to distinguish
11203 "external" imported declarations and "static" ones. As all imported
11204 declarations seem to be static in all other languages, make them all CU-wide
11205 global only in Ada. */
11206
11207 static struct using_direct **
11208 using_directives (enum language language)
11209 {
11210 if (language == language_ada && context_stack_depth == 0)
11211 return &global_using_directives;
11212 else
11213 return &local_using_directives;
11214 }
11215
11216 /* Read the import statement specified by the given die and record it. */
11217
11218 static void
11219 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11220 {
11221 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11222 struct attribute *import_attr;
11223 struct die_info *imported_die, *child_die;
11224 struct dwarf2_cu *imported_cu;
11225 const char *imported_name;
11226 const char *imported_name_prefix;
11227 const char *canonical_name;
11228 const char *import_alias;
11229 const char *imported_declaration = NULL;
11230 const char *import_prefix;
11231 std::vector<const char *> excludes;
11232
11233 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11234 if (import_attr == NULL)
11235 {
11236 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11237 dwarf_tag_name (die->tag));
11238 return;
11239 }
11240
11241 imported_cu = cu;
11242 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11243 imported_name = dwarf2_name (imported_die, imported_cu);
11244 if (imported_name == NULL)
11245 {
11246 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11247
11248 The import in the following code:
11249 namespace A
11250 {
11251 typedef int B;
11252 }
11253
11254 int main ()
11255 {
11256 using A::B;
11257 B b;
11258 return b;
11259 }
11260
11261 ...
11262 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11263 <52> DW_AT_decl_file : 1
11264 <53> DW_AT_decl_line : 6
11265 <54> DW_AT_import : <0x75>
11266 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11267 <59> DW_AT_name : B
11268 <5b> DW_AT_decl_file : 1
11269 <5c> DW_AT_decl_line : 2
11270 <5d> DW_AT_type : <0x6e>
11271 ...
11272 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11273 <76> DW_AT_byte_size : 4
11274 <77> DW_AT_encoding : 5 (signed)
11275
11276 imports the wrong die ( 0x75 instead of 0x58 ).
11277 This case will be ignored until the gcc bug is fixed. */
11278 return;
11279 }
11280
11281 /* Figure out the local name after import. */
11282 import_alias = dwarf2_name (die, cu);
11283
11284 /* Figure out where the statement is being imported to. */
11285 import_prefix = determine_prefix (die, cu);
11286
11287 /* Figure out what the scope of the imported die is and prepend it
11288 to the name of the imported die. */
11289 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11290
11291 if (imported_die->tag != DW_TAG_namespace
11292 && imported_die->tag != DW_TAG_module)
11293 {
11294 imported_declaration = imported_name;
11295 canonical_name = imported_name_prefix;
11296 }
11297 else if (strlen (imported_name_prefix) > 0)
11298 canonical_name = obconcat (&objfile->objfile_obstack,
11299 imported_name_prefix,
11300 (cu->language == language_d ? "." : "::"),
11301 imported_name, (char *) NULL);
11302 else
11303 canonical_name = imported_name;
11304
11305 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11306 for (child_die = die->child; child_die && child_die->tag;
11307 child_die = sibling_die (child_die))
11308 {
11309 /* DWARF-4: A Fortran use statement with a “rename list” may be
11310 represented by an imported module entry with an import attribute
11311 referring to the module and owned entries corresponding to those
11312 entities that are renamed as part of being imported. */
11313
11314 if (child_die->tag != DW_TAG_imported_declaration)
11315 {
11316 complaint (&symfile_complaints,
11317 _("child DW_TAG_imported_declaration expected "
11318 "- DIE at %s [in module %s]"),
11319 sect_offset_str (child_die->sect_off),
11320 objfile_name (objfile));
11321 continue;
11322 }
11323
11324 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11325 if (import_attr == NULL)
11326 {
11327 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11328 dwarf_tag_name (child_die->tag));
11329 continue;
11330 }
11331
11332 imported_cu = cu;
11333 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11334 &imported_cu);
11335 imported_name = dwarf2_name (imported_die, imported_cu);
11336 if (imported_name == NULL)
11337 {
11338 complaint (&symfile_complaints,
11339 _("child DW_TAG_imported_declaration has unknown "
11340 "imported name - DIE at %s [in module %s]"),
11341 sect_offset_str (child_die->sect_off),
11342 objfile_name (objfile));
11343 continue;
11344 }
11345
11346 excludes.push_back (imported_name);
11347
11348 process_die (child_die, cu);
11349 }
11350
11351 add_using_directive (using_directives (cu->language),
11352 import_prefix,
11353 canonical_name,
11354 import_alias,
11355 imported_declaration,
11356 excludes,
11357 0,
11358 &objfile->objfile_obstack);
11359 }
11360
11361 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11362 types, but gives them a size of zero. Starting with version 14,
11363 ICC is compatible with GCC. */
11364
11365 static int
11366 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11367 {
11368 if (!cu->checked_producer)
11369 check_producer (cu);
11370
11371 return cu->producer_is_icc_lt_14;
11372 }
11373
11374 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11375 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11376 this, it was first present in GCC release 4.3.0. */
11377
11378 static int
11379 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11380 {
11381 if (!cu->checked_producer)
11382 check_producer (cu);
11383
11384 return cu->producer_is_gcc_lt_4_3;
11385 }
11386
11387 static file_and_directory
11388 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11389 {
11390 file_and_directory res;
11391
11392 /* Find the filename. Do not use dwarf2_name here, since the filename
11393 is not a source language identifier. */
11394 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11395 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11396
11397 if (res.comp_dir == NULL
11398 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11399 && IS_ABSOLUTE_PATH (res.name))
11400 {
11401 res.comp_dir_storage = ldirname (res.name);
11402 if (!res.comp_dir_storage.empty ())
11403 res.comp_dir = res.comp_dir_storage.c_str ();
11404 }
11405 if (res.comp_dir != NULL)
11406 {
11407 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11408 directory, get rid of it. */
11409 const char *cp = strchr (res.comp_dir, ':');
11410
11411 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11412 res.comp_dir = cp + 1;
11413 }
11414
11415 if (res.name == NULL)
11416 res.name = "<unknown>";
11417
11418 return res;
11419 }
11420
11421 /* Handle DW_AT_stmt_list for a compilation unit.
11422 DIE is the DW_TAG_compile_unit die for CU.
11423 COMP_DIR is the compilation directory. LOWPC is passed to
11424 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11425
11426 static void
11427 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11428 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11429 {
11430 struct dwarf2_per_objfile *dwarf2_per_objfile
11431 = cu->per_cu->dwarf2_per_objfile;
11432 struct objfile *objfile = dwarf2_per_objfile->objfile;
11433 struct attribute *attr;
11434 struct line_header line_header_local;
11435 hashval_t line_header_local_hash;
11436 void **slot;
11437 int decode_mapping;
11438
11439 gdb_assert (! cu->per_cu->is_debug_types);
11440
11441 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11442 if (attr == NULL)
11443 return;
11444
11445 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11446
11447 /* The line header hash table is only created if needed (it exists to
11448 prevent redundant reading of the line table for partial_units).
11449 If we're given a partial_unit, we'll need it. If we're given a
11450 compile_unit, then use the line header hash table if it's already
11451 created, but don't create one just yet. */
11452
11453 if (dwarf2_per_objfile->line_header_hash == NULL
11454 && die->tag == DW_TAG_partial_unit)
11455 {
11456 dwarf2_per_objfile->line_header_hash
11457 = htab_create_alloc_ex (127, line_header_hash_voidp,
11458 line_header_eq_voidp,
11459 free_line_header_voidp,
11460 &objfile->objfile_obstack,
11461 hashtab_obstack_allocate,
11462 dummy_obstack_deallocate);
11463 }
11464
11465 line_header_local.sect_off = line_offset;
11466 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11467 line_header_local_hash = line_header_hash (&line_header_local);
11468 if (dwarf2_per_objfile->line_header_hash != NULL)
11469 {
11470 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11471 &line_header_local,
11472 line_header_local_hash, NO_INSERT);
11473
11474 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11475 is not present in *SLOT (since if there is something in *SLOT then
11476 it will be for a partial_unit). */
11477 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11478 {
11479 gdb_assert (*slot != NULL);
11480 cu->line_header = (struct line_header *) *slot;
11481 return;
11482 }
11483 }
11484
11485 /* dwarf_decode_line_header does not yet provide sufficient information.
11486 We always have to call also dwarf_decode_lines for it. */
11487 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11488 if (lh == NULL)
11489 return;
11490
11491 cu->line_header = lh.release ();
11492 cu->line_header_die_owner = die;
11493
11494 if (dwarf2_per_objfile->line_header_hash == NULL)
11495 slot = NULL;
11496 else
11497 {
11498 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11499 &line_header_local,
11500 line_header_local_hash, INSERT);
11501 gdb_assert (slot != NULL);
11502 }
11503 if (slot != NULL && *slot == NULL)
11504 {
11505 /* This newly decoded line number information unit will be owned
11506 by line_header_hash hash table. */
11507 *slot = cu->line_header;
11508 cu->line_header_die_owner = NULL;
11509 }
11510 else
11511 {
11512 /* We cannot free any current entry in (*slot) as that struct line_header
11513 may be already used by multiple CUs. Create only temporary decoded
11514 line_header for this CU - it may happen at most once for each line
11515 number information unit. And if we're not using line_header_hash
11516 then this is what we want as well. */
11517 gdb_assert (die->tag != DW_TAG_partial_unit);
11518 }
11519 decode_mapping = (die->tag != DW_TAG_partial_unit);
11520 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11521 decode_mapping);
11522
11523 }
11524
11525 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11526
11527 static void
11528 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11529 {
11530 struct dwarf2_per_objfile *dwarf2_per_objfile
11531 = cu->per_cu->dwarf2_per_objfile;
11532 struct objfile *objfile = dwarf2_per_objfile->objfile;
11533 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11534 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11535 CORE_ADDR highpc = ((CORE_ADDR) 0);
11536 struct attribute *attr;
11537 struct die_info *child_die;
11538 CORE_ADDR baseaddr;
11539
11540 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11541
11542 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11543
11544 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11545 from finish_block. */
11546 if (lowpc == ((CORE_ADDR) -1))
11547 lowpc = highpc;
11548 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11549
11550 file_and_directory fnd = find_file_and_directory (die, cu);
11551
11552 prepare_one_comp_unit (cu, die, cu->language);
11553
11554 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11555 standardised yet. As a workaround for the language detection we fall
11556 back to the DW_AT_producer string. */
11557 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11558 cu->language = language_opencl;
11559
11560 /* Similar hack for Go. */
11561 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11562 set_cu_language (DW_LANG_Go, cu);
11563
11564 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11565
11566 /* Decode line number information if present. We do this before
11567 processing child DIEs, so that the line header table is available
11568 for DW_AT_decl_file. */
11569 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11570
11571 /* Process all dies in compilation unit. */
11572 if (die->child != NULL)
11573 {
11574 child_die = die->child;
11575 while (child_die && child_die->tag)
11576 {
11577 process_die (child_die, cu);
11578 child_die = sibling_die (child_die);
11579 }
11580 }
11581
11582 /* Decode macro information, if present. Dwarf 2 macro information
11583 refers to information in the line number info statement program
11584 header, so we can only read it if we've read the header
11585 successfully. */
11586 attr = dwarf2_attr (die, DW_AT_macros, cu);
11587 if (attr == NULL)
11588 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11589 if (attr && cu->line_header)
11590 {
11591 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11592 complaint (&symfile_complaints,
11593 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11594
11595 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11596 }
11597 else
11598 {
11599 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11600 if (attr && cu->line_header)
11601 {
11602 unsigned int macro_offset = DW_UNSND (attr);
11603
11604 dwarf_decode_macros (cu, macro_offset, 0);
11605 }
11606 }
11607 }
11608
11609 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11610 Create the set of symtabs used by this TU, or if this TU is sharing
11611 symtabs with another TU and the symtabs have already been created
11612 then restore those symtabs in the line header.
11613 We don't need the pc/line-number mapping for type units. */
11614
11615 static void
11616 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11617 {
11618 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11619 struct type_unit_group *tu_group;
11620 int first_time;
11621 struct attribute *attr;
11622 unsigned int i;
11623 struct signatured_type *sig_type;
11624
11625 gdb_assert (per_cu->is_debug_types);
11626 sig_type = (struct signatured_type *) per_cu;
11627
11628 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11629
11630 /* If we're using .gdb_index (includes -readnow) then
11631 per_cu->type_unit_group may not have been set up yet. */
11632 if (sig_type->type_unit_group == NULL)
11633 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11634 tu_group = sig_type->type_unit_group;
11635
11636 /* If we've already processed this stmt_list there's no real need to
11637 do it again, we could fake it and just recreate the part we need
11638 (file name,index -> symtab mapping). If data shows this optimization
11639 is useful we can do it then. */
11640 first_time = tu_group->compunit_symtab == NULL;
11641
11642 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11643 debug info. */
11644 line_header_up lh;
11645 if (attr != NULL)
11646 {
11647 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11648 lh = dwarf_decode_line_header (line_offset, cu);
11649 }
11650 if (lh == NULL)
11651 {
11652 if (first_time)
11653 dwarf2_start_symtab (cu, "", NULL, 0);
11654 else
11655 {
11656 gdb_assert (tu_group->symtabs == NULL);
11657 restart_symtab (tu_group->compunit_symtab, "", 0);
11658 }
11659 return;
11660 }
11661
11662 cu->line_header = lh.release ();
11663 cu->line_header_die_owner = die;
11664
11665 if (first_time)
11666 {
11667 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11668
11669 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11670 still initializing it, and our caller (a few levels up)
11671 process_full_type_unit still needs to know if this is the first
11672 time. */
11673
11674 tu_group->num_symtabs = cu->line_header->file_names.size ();
11675 tu_group->symtabs = XNEWVEC (struct symtab *,
11676 cu->line_header->file_names.size ());
11677
11678 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11679 {
11680 file_entry &fe = cu->line_header->file_names[i];
11681
11682 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11683
11684 if (current_subfile->symtab == NULL)
11685 {
11686 /* NOTE: start_subfile will recognize when it's been
11687 passed a file it has already seen. So we can't
11688 assume there's a simple mapping from
11689 cu->line_header->file_names to subfiles, plus
11690 cu->line_header->file_names may contain dups. */
11691 current_subfile->symtab
11692 = allocate_symtab (cust, current_subfile->name);
11693 }
11694
11695 fe.symtab = current_subfile->symtab;
11696 tu_group->symtabs[i] = fe.symtab;
11697 }
11698 }
11699 else
11700 {
11701 restart_symtab (tu_group->compunit_symtab, "", 0);
11702
11703 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11704 {
11705 file_entry &fe = cu->line_header->file_names[i];
11706
11707 fe.symtab = tu_group->symtabs[i];
11708 }
11709 }
11710
11711 /* The main symtab is allocated last. Type units don't have DW_AT_name
11712 so they don't have a "real" (so to speak) symtab anyway.
11713 There is later code that will assign the main symtab to all symbols
11714 that don't have one. We need to handle the case of a symbol with a
11715 missing symtab (DW_AT_decl_file) anyway. */
11716 }
11717
11718 /* Process DW_TAG_type_unit.
11719 For TUs we want to skip the first top level sibling if it's not the
11720 actual type being defined by this TU. In this case the first top
11721 level sibling is there to provide context only. */
11722
11723 static void
11724 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11725 {
11726 struct die_info *child_die;
11727
11728 prepare_one_comp_unit (cu, die, language_minimal);
11729
11730 /* Initialize (or reinitialize) the machinery for building symtabs.
11731 We do this before processing child DIEs, so that the line header table
11732 is available for DW_AT_decl_file. */
11733 setup_type_unit_groups (die, cu);
11734
11735 if (die->child != NULL)
11736 {
11737 child_die = die->child;
11738 while (child_die && child_die->tag)
11739 {
11740 process_die (child_die, cu);
11741 child_die = sibling_die (child_die);
11742 }
11743 }
11744 }
11745 \f
11746 /* DWO/DWP files.
11747
11748 http://gcc.gnu.org/wiki/DebugFission
11749 http://gcc.gnu.org/wiki/DebugFissionDWP
11750
11751 To simplify handling of both DWO files ("object" files with the DWARF info)
11752 and DWP files (a file with the DWOs packaged up into one file), we treat
11753 DWP files as having a collection of virtual DWO files. */
11754
11755 static hashval_t
11756 hash_dwo_file (const void *item)
11757 {
11758 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11759 hashval_t hash;
11760
11761 hash = htab_hash_string (dwo_file->dwo_name);
11762 if (dwo_file->comp_dir != NULL)
11763 hash += htab_hash_string (dwo_file->comp_dir);
11764 return hash;
11765 }
11766
11767 static int
11768 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11769 {
11770 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11771 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11772
11773 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11774 return 0;
11775 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11776 return lhs->comp_dir == rhs->comp_dir;
11777 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11778 }
11779
11780 /* Allocate a hash table for DWO files. */
11781
11782 static htab_t
11783 allocate_dwo_file_hash_table (struct objfile *objfile)
11784 {
11785 return htab_create_alloc_ex (41,
11786 hash_dwo_file,
11787 eq_dwo_file,
11788 NULL,
11789 &objfile->objfile_obstack,
11790 hashtab_obstack_allocate,
11791 dummy_obstack_deallocate);
11792 }
11793
11794 /* Lookup DWO file DWO_NAME. */
11795
11796 static void **
11797 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11798 const char *dwo_name,
11799 const char *comp_dir)
11800 {
11801 struct dwo_file find_entry;
11802 void **slot;
11803
11804 if (dwarf2_per_objfile->dwo_files == NULL)
11805 dwarf2_per_objfile->dwo_files
11806 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11807
11808 memset (&find_entry, 0, sizeof (find_entry));
11809 find_entry.dwo_name = dwo_name;
11810 find_entry.comp_dir = comp_dir;
11811 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11812
11813 return slot;
11814 }
11815
11816 static hashval_t
11817 hash_dwo_unit (const void *item)
11818 {
11819 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11820
11821 /* This drops the top 32 bits of the id, but is ok for a hash. */
11822 return dwo_unit->signature;
11823 }
11824
11825 static int
11826 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11827 {
11828 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11829 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11830
11831 /* The signature is assumed to be unique within the DWO file.
11832 So while object file CU dwo_id's always have the value zero,
11833 that's OK, assuming each object file DWO file has only one CU,
11834 and that's the rule for now. */
11835 return lhs->signature == rhs->signature;
11836 }
11837
11838 /* Allocate a hash table for DWO CUs,TUs.
11839 There is one of these tables for each of CUs,TUs for each DWO file. */
11840
11841 static htab_t
11842 allocate_dwo_unit_table (struct objfile *objfile)
11843 {
11844 /* Start out with a pretty small number.
11845 Generally DWO files contain only one CU and maybe some TUs. */
11846 return htab_create_alloc_ex (3,
11847 hash_dwo_unit,
11848 eq_dwo_unit,
11849 NULL,
11850 &objfile->objfile_obstack,
11851 hashtab_obstack_allocate,
11852 dummy_obstack_deallocate);
11853 }
11854
11855 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11856
11857 struct create_dwo_cu_data
11858 {
11859 struct dwo_file *dwo_file;
11860 struct dwo_unit dwo_unit;
11861 };
11862
11863 /* die_reader_func for create_dwo_cu. */
11864
11865 static void
11866 create_dwo_cu_reader (const struct die_reader_specs *reader,
11867 const gdb_byte *info_ptr,
11868 struct die_info *comp_unit_die,
11869 int has_children,
11870 void *datap)
11871 {
11872 struct dwarf2_cu *cu = reader->cu;
11873 sect_offset sect_off = cu->per_cu->sect_off;
11874 struct dwarf2_section_info *section = cu->per_cu->section;
11875 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11876 struct dwo_file *dwo_file = data->dwo_file;
11877 struct dwo_unit *dwo_unit = &data->dwo_unit;
11878 struct attribute *attr;
11879
11880 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11881 if (attr == NULL)
11882 {
11883 complaint (&symfile_complaints,
11884 _("Dwarf Error: debug entry at offset %s is missing"
11885 " its dwo_id [in module %s]"),
11886 sect_offset_str (sect_off), dwo_file->dwo_name);
11887 return;
11888 }
11889
11890 dwo_unit->dwo_file = dwo_file;
11891 dwo_unit->signature = DW_UNSND (attr);
11892 dwo_unit->section = section;
11893 dwo_unit->sect_off = sect_off;
11894 dwo_unit->length = cu->per_cu->length;
11895
11896 if (dwarf_read_debug)
11897 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11898 sect_offset_str (sect_off),
11899 hex_string (dwo_unit->signature));
11900 }
11901
11902 /* Create the dwo_units for the CUs in a DWO_FILE.
11903 Note: This function processes DWO files only, not DWP files. */
11904
11905 static void
11906 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11907 struct dwo_file &dwo_file, dwarf2_section_info &section,
11908 htab_t &cus_htab)
11909 {
11910 struct objfile *objfile = dwarf2_per_objfile->objfile;
11911 const gdb_byte *info_ptr, *end_ptr;
11912
11913 dwarf2_read_section (objfile, &section);
11914 info_ptr = section.buffer;
11915
11916 if (info_ptr == NULL)
11917 return;
11918
11919 if (dwarf_read_debug)
11920 {
11921 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11922 get_section_name (&section),
11923 get_section_file_name (&section));
11924 }
11925
11926 end_ptr = info_ptr + section.size;
11927 while (info_ptr < end_ptr)
11928 {
11929 struct dwarf2_per_cu_data per_cu;
11930 struct create_dwo_cu_data create_dwo_cu_data;
11931 struct dwo_unit *dwo_unit;
11932 void **slot;
11933 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11934
11935 memset (&create_dwo_cu_data.dwo_unit, 0,
11936 sizeof (create_dwo_cu_data.dwo_unit));
11937 memset (&per_cu, 0, sizeof (per_cu));
11938 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11939 per_cu.is_debug_types = 0;
11940 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11941 per_cu.section = &section;
11942 create_dwo_cu_data.dwo_file = &dwo_file;
11943
11944 init_cutu_and_read_dies_no_follow (
11945 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11946 info_ptr += per_cu.length;
11947
11948 // If the unit could not be parsed, skip it.
11949 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11950 continue;
11951
11952 if (cus_htab == NULL)
11953 cus_htab = allocate_dwo_unit_table (objfile);
11954
11955 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11956 *dwo_unit = create_dwo_cu_data.dwo_unit;
11957 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11958 gdb_assert (slot != NULL);
11959 if (*slot != NULL)
11960 {
11961 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11962 sect_offset dup_sect_off = dup_cu->sect_off;
11963
11964 complaint (&symfile_complaints,
11965 _("debug cu entry at offset %s is duplicate to"
11966 " the entry at offset %s, signature %s"),
11967 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11968 hex_string (dwo_unit->signature));
11969 }
11970 *slot = (void *)dwo_unit;
11971 }
11972 }
11973
11974 /* DWP file .debug_{cu,tu}_index section format:
11975 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11976
11977 DWP Version 1:
11978
11979 Both index sections have the same format, and serve to map a 64-bit
11980 signature to a set of section numbers. Each section begins with a header,
11981 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11982 indexes, and a pool of 32-bit section numbers. The index sections will be
11983 aligned at 8-byte boundaries in the file.
11984
11985 The index section header consists of:
11986
11987 V, 32 bit version number
11988 -, 32 bits unused
11989 N, 32 bit number of compilation units or type units in the index
11990 M, 32 bit number of slots in the hash table
11991
11992 Numbers are recorded using the byte order of the application binary.
11993
11994 The hash table begins at offset 16 in the section, and consists of an array
11995 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11996 order of the application binary). Unused slots in the hash table are 0.
11997 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11998
11999 The parallel table begins immediately after the hash table
12000 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12001 array of 32-bit indexes (using the byte order of the application binary),
12002 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12003 table contains a 32-bit index into the pool of section numbers. For unused
12004 hash table slots, the corresponding entry in the parallel table will be 0.
12005
12006 The pool of section numbers begins immediately following the hash table
12007 (at offset 16 + 12 * M from the beginning of the section). The pool of
12008 section numbers consists of an array of 32-bit words (using the byte order
12009 of the application binary). Each item in the array is indexed starting
12010 from 0. The hash table entry provides the index of the first section
12011 number in the set. Additional section numbers in the set follow, and the
12012 set is terminated by a 0 entry (section number 0 is not used in ELF).
12013
12014 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12015 section must be the first entry in the set, and the .debug_abbrev.dwo must
12016 be the second entry. Other members of the set may follow in any order.
12017
12018 ---
12019
12020 DWP Version 2:
12021
12022 DWP Version 2 combines all the .debug_info, etc. sections into one,
12023 and the entries in the index tables are now offsets into these sections.
12024 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12025 section.
12026
12027 Index Section Contents:
12028 Header
12029 Hash Table of Signatures dwp_hash_table.hash_table
12030 Parallel Table of Indices dwp_hash_table.unit_table
12031 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12032 Table of Section Sizes dwp_hash_table.v2.sizes
12033
12034 The index section header consists of:
12035
12036 V, 32 bit version number
12037 L, 32 bit number of columns in the table of section offsets
12038 N, 32 bit number of compilation units or type units in the index
12039 M, 32 bit number of slots in the hash table
12040
12041 Numbers are recorded using the byte order of the application binary.
12042
12043 The hash table has the same format as version 1.
12044 The parallel table of indices has the same format as version 1,
12045 except that the entries are origin-1 indices into the table of sections
12046 offsets and the table of section sizes.
12047
12048 The table of offsets begins immediately following the parallel table
12049 (at offset 16 + 12 * M from the beginning of the section). The table is
12050 a two-dimensional array of 32-bit words (using the byte order of the
12051 application binary), with L columns and N+1 rows, in row-major order.
12052 Each row in the array is indexed starting from 0. The first row provides
12053 a key to the remaining rows: each column in this row provides an identifier
12054 for a debug section, and the offsets in the same column of subsequent rows
12055 refer to that section. The section identifiers are:
12056
12057 DW_SECT_INFO 1 .debug_info.dwo
12058 DW_SECT_TYPES 2 .debug_types.dwo
12059 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12060 DW_SECT_LINE 4 .debug_line.dwo
12061 DW_SECT_LOC 5 .debug_loc.dwo
12062 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12063 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12064 DW_SECT_MACRO 8 .debug_macro.dwo
12065
12066 The offsets provided by the CU and TU index sections are the base offsets
12067 for the contributions made by each CU or TU to the corresponding section
12068 in the package file. Each CU and TU header contains an abbrev_offset
12069 field, used to find the abbreviations table for that CU or TU within the
12070 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12071 be interpreted as relative to the base offset given in the index section.
12072 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12073 should be interpreted as relative to the base offset for .debug_line.dwo,
12074 and offsets into other debug sections obtained from DWARF attributes should
12075 also be interpreted as relative to the corresponding base offset.
12076
12077 The table of sizes begins immediately following the table of offsets.
12078 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12079 with L columns and N rows, in row-major order. Each row in the array is
12080 indexed starting from 1 (row 0 is shared by the two tables).
12081
12082 ---
12083
12084 Hash table lookup is handled the same in version 1 and 2:
12085
12086 We assume that N and M will not exceed 2^32 - 1.
12087 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12088
12089 Given a 64-bit compilation unit signature or a type signature S, an entry
12090 in the hash table is located as follows:
12091
12092 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12093 the low-order k bits all set to 1.
12094
12095 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12096
12097 3) If the hash table entry at index H matches the signature, use that
12098 entry. If the hash table entry at index H is unused (all zeroes),
12099 terminate the search: the signature is not present in the table.
12100
12101 4) Let H = (H + H') modulo M. Repeat at Step 3.
12102
12103 Because M > N and H' and M are relatively prime, the search is guaranteed
12104 to stop at an unused slot or find the match. */
12105
12106 /* Create a hash table to map DWO IDs to their CU/TU entry in
12107 .debug_{info,types}.dwo in DWP_FILE.
12108 Returns NULL if there isn't one.
12109 Note: This function processes DWP files only, not DWO files. */
12110
12111 static struct dwp_hash_table *
12112 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12113 struct dwp_file *dwp_file, int is_debug_types)
12114 {
12115 struct objfile *objfile = dwarf2_per_objfile->objfile;
12116 bfd *dbfd = dwp_file->dbfd;
12117 const gdb_byte *index_ptr, *index_end;
12118 struct dwarf2_section_info *index;
12119 uint32_t version, nr_columns, nr_units, nr_slots;
12120 struct dwp_hash_table *htab;
12121
12122 if (is_debug_types)
12123 index = &dwp_file->sections.tu_index;
12124 else
12125 index = &dwp_file->sections.cu_index;
12126
12127 if (dwarf2_section_empty_p (index))
12128 return NULL;
12129 dwarf2_read_section (objfile, index);
12130
12131 index_ptr = index->buffer;
12132 index_end = index_ptr + index->size;
12133
12134 version = read_4_bytes (dbfd, index_ptr);
12135 index_ptr += 4;
12136 if (version == 2)
12137 nr_columns = read_4_bytes (dbfd, index_ptr);
12138 else
12139 nr_columns = 0;
12140 index_ptr += 4;
12141 nr_units = read_4_bytes (dbfd, index_ptr);
12142 index_ptr += 4;
12143 nr_slots = read_4_bytes (dbfd, index_ptr);
12144 index_ptr += 4;
12145
12146 if (version != 1 && version != 2)
12147 {
12148 error (_("Dwarf Error: unsupported DWP file version (%s)"
12149 " [in module %s]"),
12150 pulongest (version), dwp_file->name);
12151 }
12152 if (nr_slots != (nr_slots & -nr_slots))
12153 {
12154 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12155 " is not power of 2 [in module %s]"),
12156 pulongest (nr_slots), dwp_file->name);
12157 }
12158
12159 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12160 htab->version = version;
12161 htab->nr_columns = nr_columns;
12162 htab->nr_units = nr_units;
12163 htab->nr_slots = nr_slots;
12164 htab->hash_table = index_ptr;
12165 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12166
12167 /* Exit early if the table is empty. */
12168 if (nr_slots == 0 || nr_units == 0
12169 || (version == 2 && nr_columns == 0))
12170 {
12171 /* All must be zero. */
12172 if (nr_slots != 0 || nr_units != 0
12173 || (version == 2 && nr_columns != 0))
12174 {
12175 complaint (&symfile_complaints,
12176 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12177 " all zero [in modules %s]"),
12178 dwp_file->name);
12179 }
12180 return htab;
12181 }
12182
12183 if (version == 1)
12184 {
12185 htab->section_pool.v1.indices =
12186 htab->unit_table + sizeof (uint32_t) * nr_slots;
12187 /* It's harder to decide whether the section is too small in v1.
12188 V1 is deprecated anyway so we punt. */
12189 }
12190 else
12191 {
12192 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12193 int *ids = htab->section_pool.v2.section_ids;
12194 /* Reverse map for error checking. */
12195 int ids_seen[DW_SECT_MAX + 1];
12196 int i;
12197
12198 if (nr_columns < 2)
12199 {
12200 error (_("Dwarf Error: bad DWP hash table, too few columns"
12201 " in section table [in module %s]"),
12202 dwp_file->name);
12203 }
12204 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12205 {
12206 error (_("Dwarf Error: bad DWP hash table, too many columns"
12207 " in section table [in module %s]"),
12208 dwp_file->name);
12209 }
12210 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12211 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12212 for (i = 0; i < nr_columns; ++i)
12213 {
12214 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12215
12216 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12217 {
12218 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12219 " in section table [in module %s]"),
12220 id, dwp_file->name);
12221 }
12222 if (ids_seen[id] != -1)
12223 {
12224 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12225 " id %d in section table [in module %s]"),
12226 id, dwp_file->name);
12227 }
12228 ids_seen[id] = i;
12229 ids[i] = id;
12230 }
12231 /* Must have exactly one info or types section. */
12232 if (((ids_seen[DW_SECT_INFO] != -1)
12233 + (ids_seen[DW_SECT_TYPES] != -1))
12234 != 1)
12235 {
12236 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12237 " DWO info/types section [in module %s]"),
12238 dwp_file->name);
12239 }
12240 /* Must have an abbrev section. */
12241 if (ids_seen[DW_SECT_ABBREV] == -1)
12242 {
12243 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12244 " section [in module %s]"),
12245 dwp_file->name);
12246 }
12247 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12248 htab->section_pool.v2.sizes =
12249 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12250 * nr_units * nr_columns);
12251 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12252 * nr_units * nr_columns))
12253 > index_end)
12254 {
12255 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12256 " [in module %s]"),
12257 dwp_file->name);
12258 }
12259 }
12260
12261 return htab;
12262 }
12263
12264 /* Update SECTIONS with the data from SECTP.
12265
12266 This function is like the other "locate" section routines that are
12267 passed to bfd_map_over_sections, but in this context the sections to
12268 read comes from the DWP V1 hash table, not the full ELF section table.
12269
12270 The result is non-zero for success, or zero if an error was found. */
12271
12272 static int
12273 locate_v1_virtual_dwo_sections (asection *sectp,
12274 struct virtual_v1_dwo_sections *sections)
12275 {
12276 const struct dwop_section_names *names = &dwop_section_names;
12277
12278 if (section_is_p (sectp->name, &names->abbrev_dwo))
12279 {
12280 /* There can be only one. */
12281 if (sections->abbrev.s.section != NULL)
12282 return 0;
12283 sections->abbrev.s.section = sectp;
12284 sections->abbrev.size = bfd_get_section_size (sectp);
12285 }
12286 else if (section_is_p (sectp->name, &names->info_dwo)
12287 || section_is_p (sectp->name, &names->types_dwo))
12288 {
12289 /* There can be only one. */
12290 if (sections->info_or_types.s.section != NULL)
12291 return 0;
12292 sections->info_or_types.s.section = sectp;
12293 sections->info_or_types.size = bfd_get_section_size (sectp);
12294 }
12295 else if (section_is_p (sectp->name, &names->line_dwo))
12296 {
12297 /* There can be only one. */
12298 if (sections->line.s.section != NULL)
12299 return 0;
12300 sections->line.s.section = sectp;
12301 sections->line.size = bfd_get_section_size (sectp);
12302 }
12303 else if (section_is_p (sectp->name, &names->loc_dwo))
12304 {
12305 /* There can be only one. */
12306 if (sections->loc.s.section != NULL)
12307 return 0;
12308 sections->loc.s.section = sectp;
12309 sections->loc.size = bfd_get_section_size (sectp);
12310 }
12311 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12312 {
12313 /* There can be only one. */
12314 if (sections->macinfo.s.section != NULL)
12315 return 0;
12316 sections->macinfo.s.section = sectp;
12317 sections->macinfo.size = bfd_get_section_size (sectp);
12318 }
12319 else if (section_is_p (sectp->name, &names->macro_dwo))
12320 {
12321 /* There can be only one. */
12322 if (sections->macro.s.section != NULL)
12323 return 0;
12324 sections->macro.s.section = sectp;
12325 sections->macro.size = bfd_get_section_size (sectp);
12326 }
12327 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12328 {
12329 /* There can be only one. */
12330 if (sections->str_offsets.s.section != NULL)
12331 return 0;
12332 sections->str_offsets.s.section = sectp;
12333 sections->str_offsets.size = bfd_get_section_size (sectp);
12334 }
12335 else
12336 {
12337 /* No other kind of section is valid. */
12338 return 0;
12339 }
12340
12341 return 1;
12342 }
12343
12344 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12345 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12346 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12347 This is for DWP version 1 files. */
12348
12349 static struct dwo_unit *
12350 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12351 struct dwp_file *dwp_file,
12352 uint32_t unit_index,
12353 const char *comp_dir,
12354 ULONGEST signature, int is_debug_types)
12355 {
12356 struct objfile *objfile = dwarf2_per_objfile->objfile;
12357 const struct dwp_hash_table *dwp_htab =
12358 is_debug_types ? dwp_file->tus : dwp_file->cus;
12359 bfd *dbfd = dwp_file->dbfd;
12360 const char *kind = is_debug_types ? "TU" : "CU";
12361 struct dwo_file *dwo_file;
12362 struct dwo_unit *dwo_unit;
12363 struct virtual_v1_dwo_sections sections;
12364 void **dwo_file_slot;
12365 int i;
12366
12367 gdb_assert (dwp_file->version == 1);
12368
12369 if (dwarf_read_debug)
12370 {
12371 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12372 kind,
12373 pulongest (unit_index), hex_string (signature),
12374 dwp_file->name);
12375 }
12376
12377 /* Fetch the sections of this DWO unit.
12378 Put a limit on the number of sections we look for so that bad data
12379 doesn't cause us to loop forever. */
12380
12381 #define MAX_NR_V1_DWO_SECTIONS \
12382 (1 /* .debug_info or .debug_types */ \
12383 + 1 /* .debug_abbrev */ \
12384 + 1 /* .debug_line */ \
12385 + 1 /* .debug_loc */ \
12386 + 1 /* .debug_str_offsets */ \
12387 + 1 /* .debug_macro or .debug_macinfo */ \
12388 + 1 /* trailing zero */)
12389
12390 memset (&sections, 0, sizeof (sections));
12391
12392 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12393 {
12394 asection *sectp;
12395 uint32_t section_nr =
12396 read_4_bytes (dbfd,
12397 dwp_htab->section_pool.v1.indices
12398 + (unit_index + i) * sizeof (uint32_t));
12399
12400 if (section_nr == 0)
12401 break;
12402 if (section_nr >= dwp_file->num_sections)
12403 {
12404 error (_("Dwarf Error: bad DWP hash table, section number too large"
12405 " [in module %s]"),
12406 dwp_file->name);
12407 }
12408
12409 sectp = dwp_file->elf_sections[section_nr];
12410 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12411 {
12412 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12413 " [in module %s]"),
12414 dwp_file->name);
12415 }
12416 }
12417
12418 if (i < 2
12419 || dwarf2_section_empty_p (&sections.info_or_types)
12420 || dwarf2_section_empty_p (&sections.abbrev))
12421 {
12422 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12423 " [in module %s]"),
12424 dwp_file->name);
12425 }
12426 if (i == MAX_NR_V1_DWO_SECTIONS)
12427 {
12428 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12429 " [in module %s]"),
12430 dwp_file->name);
12431 }
12432
12433 /* It's easier for the rest of the code if we fake a struct dwo_file and
12434 have dwo_unit "live" in that. At least for now.
12435
12436 The DWP file can be made up of a random collection of CUs and TUs.
12437 However, for each CU + set of TUs that came from the same original DWO
12438 file, we can combine them back into a virtual DWO file to save space
12439 (fewer struct dwo_file objects to allocate). Remember that for really
12440 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12441
12442 std::string virtual_dwo_name =
12443 string_printf ("virtual-dwo/%d-%d-%d-%d",
12444 get_section_id (&sections.abbrev),
12445 get_section_id (&sections.line),
12446 get_section_id (&sections.loc),
12447 get_section_id (&sections.str_offsets));
12448 /* Can we use an existing virtual DWO file? */
12449 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12450 virtual_dwo_name.c_str (),
12451 comp_dir);
12452 /* Create one if necessary. */
12453 if (*dwo_file_slot == NULL)
12454 {
12455 if (dwarf_read_debug)
12456 {
12457 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12458 virtual_dwo_name.c_str ());
12459 }
12460 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12461 dwo_file->dwo_name
12462 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12463 virtual_dwo_name.c_str (),
12464 virtual_dwo_name.size ());
12465 dwo_file->comp_dir = comp_dir;
12466 dwo_file->sections.abbrev = sections.abbrev;
12467 dwo_file->sections.line = sections.line;
12468 dwo_file->sections.loc = sections.loc;
12469 dwo_file->sections.macinfo = sections.macinfo;
12470 dwo_file->sections.macro = sections.macro;
12471 dwo_file->sections.str_offsets = sections.str_offsets;
12472 /* The "str" section is global to the entire DWP file. */
12473 dwo_file->sections.str = dwp_file->sections.str;
12474 /* The info or types section is assigned below to dwo_unit,
12475 there's no need to record it in dwo_file.
12476 Also, we can't simply record type sections in dwo_file because
12477 we record a pointer into the vector in dwo_unit. As we collect more
12478 types we'll grow the vector and eventually have to reallocate space
12479 for it, invalidating all copies of pointers into the previous
12480 contents. */
12481 *dwo_file_slot = dwo_file;
12482 }
12483 else
12484 {
12485 if (dwarf_read_debug)
12486 {
12487 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12488 virtual_dwo_name.c_str ());
12489 }
12490 dwo_file = (struct dwo_file *) *dwo_file_slot;
12491 }
12492
12493 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12494 dwo_unit->dwo_file = dwo_file;
12495 dwo_unit->signature = signature;
12496 dwo_unit->section =
12497 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12498 *dwo_unit->section = sections.info_or_types;
12499 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12500
12501 return dwo_unit;
12502 }
12503
12504 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12505 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12506 piece within that section used by a TU/CU, return a virtual section
12507 of just that piece. */
12508
12509 static struct dwarf2_section_info
12510 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12511 struct dwarf2_section_info *section,
12512 bfd_size_type offset, bfd_size_type size)
12513 {
12514 struct dwarf2_section_info result;
12515 asection *sectp;
12516
12517 gdb_assert (section != NULL);
12518 gdb_assert (!section->is_virtual);
12519
12520 memset (&result, 0, sizeof (result));
12521 result.s.containing_section = section;
12522 result.is_virtual = 1;
12523
12524 if (size == 0)
12525 return result;
12526
12527 sectp = get_section_bfd_section (section);
12528
12529 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12530 bounds of the real section. This is a pretty-rare event, so just
12531 flag an error (easier) instead of a warning and trying to cope. */
12532 if (sectp == NULL
12533 || offset + size > bfd_get_section_size (sectp))
12534 {
12535 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12536 " in section %s [in module %s]"),
12537 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12538 objfile_name (dwarf2_per_objfile->objfile));
12539 }
12540
12541 result.virtual_offset = offset;
12542 result.size = size;
12543 return result;
12544 }
12545
12546 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12547 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12548 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12549 This is for DWP version 2 files. */
12550
12551 static struct dwo_unit *
12552 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12553 struct dwp_file *dwp_file,
12554 uint32_t unit_index,
12555 const char *comp_dir,
12556 ULONGEST signature, int is_debug_types)
12557 {
12558 struct objfile *objfile = dwarf2_per_objfile->objfile;
12559 const struct dwp_hash_table *dwp_htab =
12560 is_debug_types ? dwp_file->tus : dwp_file->cus;
12561 bfd *dbfd = dwp_file->dbfd;
12562 const char *kind = is_debug_types ? "TU" : "CU";
12563 struct dwo_file *dwo_file;
12564 struct dwo_unit *dwo_unit;
12565 struct virtual_v2_dwo_sections sections;
12566 void **dwo_file_slot;
12567 int i;
12568
12569 gdb_assert (dwp_file->version == 2);
12570
12571 if (dwarf_read_debug)
12572 {
12573 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12574 kind,
12575 pulongest (unit_index), hex_string (signature),
12576 dwp_file->name);
12577 }
12578
12579 /* Fetch the section offsets of this DWO unit. */
12580
12581 memset (&sections, 0, sizeof (sections));
12582
12583 for (i = 0; i < dwp_htab->nr_columns; ++i)
12584 {
12585 uint32_t offset = read_4_bytes (dbfd,
12586 dwp_htab->section_pool.v2.offsets
12587 + (((unit_index - 1) * dwp_htab->nr_columns
12588 + i)
12589 * sizeof (uint32_t)));
12590 uint32_t size = read_4_bytes (dbfd,
12591 dwp_htab->section_pool.v2.sizes
12592 + (((unit_index - 1) * dwp_htab->nr_columns
12593 + i)
12594 * sizeof (uint32_t)));
12595
12596 switch (dwp_htab->section_pool.v2.section_ids[i])
12597 {
12598 case DW_SECT_INFO:
12599 case DW_SECT_TYPES:
12600 sections.info_or_types_offset = offset;
12601 sections.info_or_types_size = size;
12602 break;
12603 case DW_SECT_ABBREV:
12604 sections.abbrev_offset = offset;
12605 sections.abbrev_size = size;
12606 break;
12607 case DW_SECT_LINE:
12608 sections.line_offset = offset;
12609 sections.line_size = size;
12610 break;
12611 case DW_SECT_LOC:
12612 sections.loc_offset = offset;
12613 sections.loc_size = size;
12614 break;
12615 case DW_SECT_STR_OFFSETS:
12616 sections.str_offsets_offset = offset;
12617 sections.str_offsets_size = size;
12618 break;
12619 case DW_SECT_MACINFO:
12620 sections.macinfo_offset = offset;
12621 sections.macinfo_size = size;
12622 break;
12623 case DW_SECT_MACRO:
12624 sections.macro_offset = offset;
12625 sections.macro_size = size;
12626 break;
12627 }
12628 }
12629
12630 /* It's easier for the rest of the code if we fake a struct dwo_file and
12631 have dwo_unit "live" in that. At least for now.
12632
12633 The DWP file can be made up of a random collection of CUs and TUs.
12634 However, for each CU + set of TUs that came from the same original DWO
12635 file, we can combine them back into a virtual DWO file to save space
12636 (fewer struct dwo_file objects to allocate). Remember that for really
12637 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12638
12639 std::string virtual_dwo_name =
12640 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12641 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12642 (long) (sections.line_size ? sections.line_offset : 0),
12643 (long) (sections.loc_size ? sections.loc_offset : 0),
12644 (long) (sections.str_offsets_size
12645 ? sections.str_offsets_offset : 0));
12646 /* Can we use an existing virtual DWO file? */
12647 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12648 virtual_dwo_name.c_str (),
12649 comp_dir);
12650 /* Create one if necessary. */
12651 if (*dwo_file_slot == NULL)
12652 {
12653 if (dwarf_read_debug)
12654 {
12655 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12656 virtual_dwo_name.c_str ());
12657 }
12658 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12659 dwo_file->dwo_name
12660 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12661 virtual_dwo_name.c_str (),
12662 virtual_dwo_name.size ());
12663 dwo_file->comp_dir = comp_dir;
12664 dwo_file->sections.abbrev =
12665 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12666 sections.abbrev_offset, sections.abbrev_size);
12667 dwo_file->sections.line =
12668 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12669 sections.line_offset, sections.line_size);
12670 dwo_file->sections.loc =
12671 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12672 sections.loc_offset, sections.loc_size);
12673 dwo_file->sections.macinfo =
12674 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12675 sections.macinfo_offset, sections.macinfo_size);
12676 dwo_file->sections.macro =
12677 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12678 sections.macro_offset, sections.macro_size);
12679 dwo_file->sections.str_offsets =
12680 create_dwp_v2_section (dwarf2_per_objfile,
12681 &dwp_file->sections.str_offsets,
12682 sections.str_offsets_offset,
12683 sections.str_offsets_size);
12684 /* The "str" section is global to the entire DWP file. */
12685 dwo_file->sections.str = dwp_file->sections.str;
12686 /* The info or types section is assigned below to dwo_unit,
12687 there's no need to record it in dwo_file.
12688 Also, we can't simply record type sections in dwo_file because
12689 we record a pointer into the vector in dwo_unit. As we collect more
12690 types we'll grow the vector and eventually have to reallocate space
12691 for it, invalidating all copies of pointers into the previous
12692 contents. */
12693 *dwo_file_slot = dwo_file;
12694 }
12695 else
12696 {
12697 if (dwarf_read_debug)
12698 {
12699 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12700 virtual_dwo_name.c_str ());
12701 }
12702 dwo_file = (struct dwo_file *) *dwo_file_slot;
12703 }
12704
12705 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12706 dwo_unit->dwo_file = dwo_file;
12707 dwo_unit->signature = signature;
12708 dwo_unit->section =
12709 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12710 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12711 is_debug_types
12712 ? &dwp_file->sections.types
12713 : &dwp_file->sections.info,
12714 sections.info_or_types_offset,
12715 sections.info_or_types_size);
12716 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12717
12718 return dwo_unit;
12719 }
12720
12721 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12722 Returns NULL if the signature isn't found. */
12723
12724 static struct dwo_unit *
12725 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12726 struct dwp_file *dwp_file, const char *comp_dir,
12727 ULONGEST signature, int is_debug_types)
12728 {
12729 const struct dwp_hash_table *dwp_htab =
12730 is_debug_types ? dwp_file->tus : dwp_file->cus;
12731 bfd *dbfd = dwp_file->dbfd;
12732 uint32_t mask = dwp_htab->nr_slots - 1;
12733 uint32_t hash = signature & mask;
12734 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12735 unsigned int i;
12736 void **slot;
12737 struct dwo_unit find_dwo_cu;
12738
12739 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12740 find_dwo_cu.signature = signature;
12741 slot = htab_find_slot (is_debug_types
12742 ? dwp_file->loaded_tus
12743 : dwp_file->loaded_cus,
12744 &find_dwo_cu, INSERT);
12745
12746 if (*slot != NULL)
12747 return (struct dwo_unit *) *slot;
12748
12749 /* Use a for loop so that we don't loop forever on bad debug info. */
12750 for (i = 0; i < dwp_htab->nr_slots; ++i)
12751 {
12752 ULONGEST signature_in_table;
12753
12754 signature_in_table =
12755 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12756 if (signature_in_table == signature)
12757 {
12758 uint32_t unit_index =
12759 read_4_bytes (dbfd,
12760 dwp_htab->unit_table + hash * sizeof (uint32_t));
12761
12762 if (dwp_file->version == 1)
12763 {
12764 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12765 dwp_file, unit_index,
12766 comp_dir, signature,
12767 is_debug_types);
12768 }
12769 else
12770 {
12771 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12772 dwp_file, unit_index,
12773 comp_dir, signature,
12774 is_debug_types);
12775 }
12776 return (struct dwo_unit *) *slot;
12777 }
12778 if (signature_in_table == 0)
12779 return NULL;
12780 hash = (hash + hash2) & mask;
12781 }
12782
12783 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12784 " [in module %s]"),
12785 dwp_file->name);
12786 }
12787
12788 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12789 Open the file specified by FILE_NAME and hand it off to BFD for
12790 preliminary analysis. Return a newly initialized bfd *, which
12791 includes a canonicalized copy of FILE_NAME.
12792 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12793 SEARCH_CWD is true if the current directory is to be searched.
12794 It will be searched before debug-file-directory.
12795 If successful, the file is added to the bfd include table of the
12796 objfile's bfd (see gdb_bfd_record_inclusion).
12797 If unable to find/open the file, return NULL.
12798 NOTE: This function is derived from symfile_bfd_open. */
12799
12800 static gdb_bfd_ref_ptr
12801 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12802 const char *file_name, int is_dwp, int search_cwd)
12803 {
12804 int desc;
12805 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12806 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12807 to debug_file_directory. */
12808 const char *search_path;
12809 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12810
12811 gdb::unique_xmalloc_ptr<char> search_path_holder;
12812 if (search_cwd)
12813 {
12814 if (*debug_file_directory != '\0')
12815 {
12816 search_path_holder.reset (concat (".", dirname_separator_string,
12817 debug_file_directory,
12818 (char *) NULL));
12819 search_path = search_path_holder.get ();
12820 }
12821 else
12822 search_path = ".";
12823 }
12824 else
12825 search_path = debug_file_directory;
12826
12827 openp_flags flags = OPF_RETURN_REALPATH;
12828 if (is_dwp)
12829 flags |= OPF_SEARCH_IN_PATH;
12830
12831 gdb::unique_xmalloc_ptr<char> absolute_name;
12832 desc = openp (search_path, flags, file_name,
12833 O_RDONLY | O_BINARY, &absolute_name);
12834 if (desc < 0)
12835 return NULL;
12836
12837 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12838 gnutarget, desc));
12839 if (sym_bfd == NULL)
12840 return NULL;
12841 bfd_set_cacheable (sym_bfd.get (), 1);
12842
12843 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12844 return NULL;
12845
12846 /* Success. Record the bfd as having been included by the objfile's bfd.
12847 This is important because things like demangled_names_hash lives in the
12848 objfile's per_bfd space and may have references to things like symbol
12849 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12850 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12851
12852 return sym_bfd;
12853 }
12854
12855 /* Try to open DWO file FILE_NAME.
12856 COMP_DIR is the DW_AT_comp_dir attribute.
12857 The result is the bfd handle of the file.
12858 If there is a problem finding or opening the file, return NULL.
12859 Upon success, the canonicalized path of the file is stored in the bfd,
12860 same as symfile_bfd_open. */
12861
12862 static gdb_bfd_ref_ptr
12863 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12864 const char *file_name, const char *comp_dir)
12865 {
12866 if (IS_ABSOLUTE_PATH (file_name))
12867 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12868 0 /*is_dwp*/, 0 /*search_cwd*/);
12869
12870 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12871
12872 if (comp_dir != NULL)
12873 {
12874 char *path_to_try = concat (comp_dir, SLASH_STRING,
12875 file_name, (char *) NULL);
12876
12877 /* NOTE: If comp_dir is a relative path, this will also try the
12878 search path, which seems useful. */
12879 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12880 path_to_try,
12881 0 /*is_dwp*/,
12882 1 /*search_cwd*/));
12883 xfree (path_to_try);
12884 if (abfd != NULL)
12885 return abfd;
12886 }
12887
12888 /* That didn't work, try debug-file-directory, which, despite its name,
12889 is a list of paths. */
12890
12891 if (*debug_file_directory == '\0')
12892 return NULL;
12893
12894 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12895 0 /*is_dwp*/, 1 /*search_cwd*/);
12896 }
12897
12898 /* This function is mapped across the sections and remembers the offset and
12899 size of each of the DWO debugging sections we are interested in. */
12900
12901 static void
12902 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12903 {
12904 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12905 const struct dwop_section_names *names = &dwop_section_names;
12906
12907 if (section_is_p (sectp->name, &names->abbrev_dwo))
12908 {
12909 dwo_sections->abbrev.s.section = sectp;
12910 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12911 }
12912 else if (section_is_p (sectp->name, &names->info_dwo))
12913 {
12914 dwo_sections->info.s.section = sectp;
12915 dwo_sections->info.size = bfd_get_section_size (sectp);
12916 }
12917 else if (section_is_p (sectp->name, &names->line_dwo))
12918 {
12919 dwo_sections->line.s.section = sectp;
12920 dwo_sections->line.size = bfd_get_section_size (sectp);
12921 }
12922 else if (section_is_p (sectp->name, &names->loc_dwo))
12923 {
12924 dwo_sections->loc.s.section = sectp;
12925 dwo_sections->loc.size = bfd_get_section_size (sectp);
12926 }
12927 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12928 {
12929 dwo_sections->macinfo.s.section = sectp;
12930 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12931 }
12932 else if (section_is_p (sectp->name, &names->macro_dwo))
12933 {
12934 dwo_sections->macro.s.section = sectp;
12935 dwo_sections->macro.size = bfd_get_section_size (sectp);
12936 }
12937 else if (section_is_p (sectp->name, &names->str_dwo))
12938 {
12939 dwo_sections->str.s.section = sectp;
12940 dwo_sections->str.size = bfd_get_section_size (sectp);
12941 }
12942 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12943 {
12944 dwo_sections->str_offsets.s.section = sectp;
12945 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12946 }
12947 else if (section_is_p (sectp->name, &names->types_dwo))
12948 {
12949 struct dwarf2_section_info type_section;
12950
12951 memset (&type_section, 0, sizeof (type_section));
12952 type_section.s.section = sectp;
12953 type_section.size = bfd_get_section_size (sectp);
12954 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12955 &type_section);
12956 }
12957 }
12958
12959 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12960 by PER_CU. This is for the non-DWP case.
12961 The result is NULL if DWO_NAME can't be found. */
12962
12963 static struct dwo_file *
12964 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12965 const char *dwo_name, const char *comp_dir)
12966 {
12967 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12968 struct objfile *objfile = dwarf2_per_objfile->objfile;
12969 struct dwo_file *dwo_file;
12970 struct cleanup *cleanups;
12971
12972 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12973 if (dbfd == NULL)
12974 {
12975 if (dwarf_read_debug)
12976 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12977 return NULL;
12978 }
12979 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12980 dwo_file->dwo_name = dwo_name;
12981 dwo_file->comp_dir = comp_dir;
12982 dwo_file->dbfd = dbfd.release ();
12983
12984 free_dwo_file_cleanup_data *cleanup_data = XNEW (free_dwo_file_cleanup_data);
12985 cleanup_data->dwo_file = dwo_file;
12986 cleanup_data->dwarf2_per_objfile = dwarf2_per_objfile;
12987
12988 cleanups = make_cleanup (free_dwo_file_cleanup, cleanup_data);
12989
12990 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12991 &dwo_file->sections);
12992
12993 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12994 dwo_file->cus);
12995
12996 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file,
12997 dwo_file->sections.types, dwo_file->tus);
12998
12999 discard_cleanups (cleanups);
13000
13001 if (dwarf_read_debug)
13002 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13003
13004 return dwo_file;
13005 }
13006
13007 /* This function is mapped across the sections and remembers the offset and
13008 size of each of the DWP debugging sections common to version 1 and 2 that
13009 we are interested in. */
13010
13011 static void
13012 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13013 void *dwp_file_ptr)
13014 {
13015 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13016 const struct dwop_section_names *names = &dwop_section_names;
13017 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13018
13019 /* Record the ELF section number for later lookup: this is what the
13020 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13021 gdb_assert (elf_section_nr < dwp_file->num_sections);
13022 dwp_file->elf_sections[elf_section_nr] = sectp;
13023
13024 /* Look for specific sections that we need. */
13025 if (section_is_p (sectp->name, &names->str_dwo))
13026 {
13027 dwp_file->sections.str.s.section = sectp;
13028 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13029 }
13030 else if (section_is_p (sectp->name, &names->cu_index))
13031 {
13032 dwp_file->sections.cu_index.s.section = sectp;
13033 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13034 }
13035 else if (section_is_p (sectp->name, &names->tu_index))
13036 {
13037 dwp_file->sections.tu_index.s.section = sectp;
13038 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13039 }
13040 }
13041
13042 /* This function is mapped across the sections and remembers the offset and
13043 size of each of the DWP version 2 debugging sections that we are interested
13044 in. This is split into a separate function because we don't know if we
13045 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13046
13047 static void
13048 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13049 {
13050 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13051 const struct dwop_section_names *names = &dwop_section_names;
13052 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13053
13054 /* Record the ELF section number for later lookup: this is what the
13055 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13056 gdb_assert (elf_section_nr < dwp_file->num_sections);
13057 dwp_file->elf_sections[elf_section_nr] = sectp;
13058
13059 /* Look for specific sections that we need. */
13060 if (section_is_p (sectp->name, &names->abbrev_dwo))
13061 {
13062 dwp_file->sections.abbrev.s.section = sectp;
13063 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13064 }
13065 else if (section_is_p (sectp->name, &names->info_dwo))
13066 {
13067 dwp_file->sections.info.s.section = sectp;
13068 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13069 }
13070 else if (section_is_p (sectp->name, &names->line_dwo))
13071 {
13072 dwp_file->sections.line.s.section = sectp;
13073 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13074 }
13075 else if (section_is_p (sectp->name, &names->loc_dwo))
13076 {
13077 dwp_file->sections.loc.s.section = sectp;
13078 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13079 }
13080 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13081 {
13082 dwp_file->sections.macinfo.s.section = sectp;
13083 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13084 }
13085 else if (section_is_p (sectp->name, &names->macro_dwo))
13086 {
13087 dwp_file->sections.macro.s.section = sectp;
13088 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13089 }
13090 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13091 {
13092 dwp_file->sections.str_offsets.s.section = sectp;
13093 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13094 }
13095 else if (section_is_p (sectp->name, &names->types_dwo))
13096 {
13097 dwp_file->sections.types.s.section = sectp;
13098 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13099 }
13100 }
13101
13102 /* Hash function for dwp_file loaded CUs/TUs. */
13103
13104 static hashval_t
13105 hash_dwp_loaded_cutus (const void *item)
13106 {
13107 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13108
13109 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13110 return dwo_unit->signature;
13111 }
13112
13113 /* Equality function for dwp_file loaded CUs/TUs. */
13114
13115 static int
13116 eq_dwp_loaded_cutus (const void *a, const void *b)
13117 {
13118 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13119 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13120
13121 return dua->signature == dub->signature;
13122 }
13123
13124 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13125
13126 static htab_t
13127 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13128 {
13129 return htab_create_alloc_ex (3,
13130 hash_dwp_loaded_cutus,
13131 eq_dwp_loaded_cutus,
13132 NULL,
13133 &objfile->objfile_obstack,
13134 hashtab_obstack_allocate,
13135 dummy_obstack_deallocate);
13136 }
13137
13138 /* Try to open DWP file FILE_NAME.
13139 The result is the bfd handle of the file.
13140 If there is a problem finding or opening the file, return NULL.
13141 Upon success, the canonicalized path of the file is stored in the bfd,
13142 same as symfile_bfd_open. */
13143
13144 static gdb_bfd_ref_ptr
13145 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13146 const char *file_name)
13147 {
13148 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13149 1 /*is_dwp*/,
13150 1 /*search_cwd*/));
13151 if (abfd != NULL)
13152 return abfd;
13153
13154 /* Work around upstream bug 15652.
13155 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13156 [Whether that's a "bug" is debatable, but it is getting in our way.]
13157 We have no real idea where the dwp file is, because gdb's realpath-ing
13158 of the executable's path may have discarded the needed info.
13159 [IWBN if the dwp file name was recorded in the executable, akin to
13160 .gnu_debuglink, but that doesn't exist yet.]
13161 Strip the directory from FILE_NAME and search again. */
13162 if (*debug_file_directory != '\0')
13163 {
13164 /* Don't implicitly search the current directory here.
13165 If the user wants to search "." to handle this case,
13166 it must be added to debug-file-directory. */
13167 return try_open_dwop_file (dwarf2_per_objfile,
13168 lbasename (file_name), 1 /*is_dwp*/,
13169 0 /*search_cwd*/);
13170 }
13171
13172 return NULL;
13173 }
13174
13175 /* Initialize the use of the DWP file for the current objfile.
13176 By convention the name of the DWP file is ${objfile}.dwp.
13177 The result is NULL if it can't be found. */
13178
13179 static struct dwp_file *
13180 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13181 {
13182 struct objfile *objfile = dwarf2_per_objfile->objfile;
13183 struct dwp_file *dwp_file;
13184
13185 /* Try to find first .dwp for the binary file before any symbolic links
13186 resolving. */
13187
13188 /* If the objfile is a debug file, find the name of the real binary
13189 file and get the name of dwp file from there. */
13190 std::string dwp_name;
13191 if (objfile->separate_debug_objfile_backlink != NULL)
13192 {
13193 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13194 const char *backlink_basename = lbasename (backlink->original_name);
13195
13196 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13197 }
13198 else
13199 dwp_name = objfile->original_name;
13200
13201 dwp_name += ".dwp";
13202
13203 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13204 if (dbfd == NULL
13205 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13206 {
13207 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13208 dwp_name = objfile_name (objfile);
13209 dwp_name += ".dwp";
13210 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13211 }
13212
13213 if (dbfd == NULL)
13214 {
13215 if (dwarf_read_debug)
13216 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13217 return NULL;
13218 }
13219 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13220 dwp_file->name = bfd_get_filename (dbfd.get ());
13221 dwp_file->dbfd = dbfd.release ();
13222
13223 /* +1: section 0 is unused */
13224 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13225 dwp_file->elf_sections =
13226 OBSTACK_CALLOC (&objfile->objfile_obstack,
13227 dwp_file->num_sections, asection *);
13228
13229 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13230 dwp_file);
13231
13232 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13233
13234 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13235
13236 /* The DWP file version is stored in the hash table. Oh well. */
13237 if (dwp_file->cus && dwp_file->tus
13238 && dwp_file->cus->version != dwp_file->tus->version)
13239 {
13240 /* Technically speaking, we should try to limp along, but this is
13241 pretty bizarre. We use pulongest here because that's the established
13242 portability solution (e.g, we cannot use %u for uint32_t). */
13243 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13244 " TU version %s [in DWP file %s]"),
13245 pulongest (dwp_file->cus->version),
13246 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13247 }
13248
13249 if (dwp_file->cus)
13250 dwp_file->version = dwp_file->cus->version;
13251 else if (dwp_file->tus)
13252 dwp_file->version = dwp_file->tus->version;
13253 else
13254 dwp_file->version = 2;
13255
13256 if (dwp_file->version == 2)
13257 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13258 dwp_file);
13259
13260 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13261 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13262
13263 if (dwarf_read_debug)
13264 {
13265 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13266 fprintf_unfiltered (gdb_stdlog,
13267 " %s CUs, %s TUs\n",
13268 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13269 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13270 }
13271
13272 return dwp_file;
13273 }
13274
13275 /* Wrapper around open_and_init_dwp_file, only open it once. */
13276
13277 static struct dwp_file *
13278 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13279 {
13280 if (! dwarf2_per_objfile->dwp_checked)
13281 {
13282 dwarf2_per_objfile->dwp_file
13283 = open_and_init_dwp_file (dwarf2_per_objfile);
13284 dwarf2_per_objfile->dwp_checked = 1;
13285 }
13286 return dwarf2_per_objfile->dwp_file;
13287 }
13288
13289 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13290 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13291 or in the DWP file for the objfile, referenced by THIS_UNIT.
13292 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13293 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13294
13295 This is called, for example, when wanting to read a variable with a
13296 complex location. Therefore we don't want to do file i/o for every call.
13297 Therefore we don't want to look for a DWO file on every call.
13298 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13299 then we check if we've already seen DWO_NAME, and only THEN do we check
13300 for a DWO file.
13301
13302 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13303 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13304
13305 static struct dwo_unit *
13306 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13307 const char *dwo_name, const char *comp_dir,
13308 ULONGEST signature, int is_debug_types)
13309 {
13310 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13311 struct objfile *objfile = dwarf2_per_objfile->objfile;
13312 const char *kind = is_debug_types ? "TU" : "CU";
13313 void **dwo_file_slot;
13314 struct dwo_file *dwo_file;
13315 struct dwp_file *dwp_file;
13316
13317 /* First see if there's a DWP file.
13318 If we have a DWP file but didn't find the DWO inside it, don't
13319 look for the original DWO file. It makes gdb behave differently
13320 depending on whether one is debugging in the build tree. */
13321
13322 dwp_file = get_dwp_file (dwarf2_per_objfile);
13323 if (dwp_file != NULL)
13324 {
13325 const struct dwp_hash_table *dwp_htab =
13326 is_debug_types ? dwp_file->tus : dwp_file->cus;
13327
13328 if (dwp_htab != NULL)
13329 {
13330 struct dwo_unit *dwo_cutu =
13331 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13332 signature, is_debug_types);
13333
13334 if (dwo_cutu != NULL)
13335 {
13336 if (dwarf_read_debug)
13337 {
13338 fprintf_unfiltered (gdb_stdlog,
13339 "Virtual DWO %s %s found: @%s\n",
13340 kind, hex_string (signature),
13341 host_address_to_string (dwo_cutu));
13342 }
13343 return dwo_cutu;
13344 }
13345 }
13346 }
13347 else
13348 {
13349 /* No DWP file, look for the DWO file. */
13350
13351 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13352 dwo_name, comp_dir);
13353 if (*dwo_file_slot == NULL)
13354 {
13355 /* Read in the file and build a table of the CUs/TUs it contains. */
13356 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13357 }
13358 /* NOTE: This will be NULL if unable to open the file. */
13359 dwo_file = (struct dwo_file *) *dwo_file_slot;
13360
13361 if (dwo_file != NULL)
13362 {
13363 struct dwo_unit *dwo_cutu = NULL;
13364
13365 if (is_debug_types && dwo_file->tus)
13366 {
13367 struct dwo_unit find_dwo_cutu;
13368
13369 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13370 find_dwo_cutu.signature = signature;
13371 dwo_cutu
13372 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13373 }
13374 else if (!is_debug_types && dwo_file->cus)
13375 {
13376 struct dwo_unit find_dwo_cutu;
13377
13378 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13379 find_dwo_cutu.signature = signature;
13380 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13381 &find_dwo_cutu);
13382 }
13383
13384 if (dwo_cutu != NULL)
13385 {
13386 if (dwarf_read_debug)
13387 {
13388 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13389 kind, dwo_name, hex_string (signature),
13390 host_address_to_string (dwo_cutu));
13391 }
13392 return dwo_cutu;
13393 }
13394 }
13395 }
13396
13397 /* We didn't find it. This could mean a dwo_id mismatch, or
13398 someone deleted the DWO/DWP file, or the search path isn't set up
13399 correctly to find the file. */
13400
13401 if (dwarf_read_debug)
13402 {
13403 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13404 kind, dwo_name, hex_string (signature));
13405 }
13406
13407 /* This is a warning and not a complaint because it can be caused by
13408 pilot error (e.g., user accidentally deleting the DWO). */
13409 {
13410 /* Print the name of the DWP file if we looked there, helps the user
13411 better diagnose the problem. */
13412 std::string dwp_text;
13413
13414 if (dwp_file != NULL)
13415 dwp_text = string_printf (" [in DWP file %s]",
13416 lbasename (dwp_file->name));
13417
13418 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13419 " [in module %s]"),
13420 kind, dwo_name, hex_string (signature),
13421 dwp_text.c_str (),
13422 this_unit->is_debug_types ? "TU" : "CU",
13423 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13424 }
13425 return NULL;
13426 }
13427
13428 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13429 See lookup_dwo_cutu_unit for details. */
13430
13431 static struct dwo_unit *
13432 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13433 const char *dwo_name, const char *comp_dir,
13434 ULONGEST signature)
13435 {
13436 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13437 }
13438
13439 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13440 See lookup_dwo_cutu_unit for details. */
13441
13442 static struct dwo_unit *
13443 lookup_dwo_type_unit (struct signatured_type *this_tu,
13444 const char *dwo_name, const char *comp_dir)
13445 {
13446 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13447 }
13448
13449 /* Traversal function for queue_and_load_all_dwo_tus. */
13450
13451 static int
13452 queue_and_load_dwo_tu (void **slot, void *info)
13453 {
13454 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13455 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13456 ULONGEST signature = dwo_unit->signature;
13457 struct signatured_type *sig_type =
13458 lookup_dwo_signatured_type (per_cu->cu, signature);
13459
13460 if (sig_type != NULL)
13461 {
13462 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13463
13464 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13465 a real dependency of PER_CU on SIG_TYPE. That is detected later
13466 while processing PER_CU. */
13467 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13468 load_full_type_unit (sig_cu);
13469 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13470 }
13471
13472 return 1;
13473 }
13474
13475 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13476 The DWO may have the only definition of the type, though it may not be
13477 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13478 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13479
13480 static void
13481 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13482 {
13483 struct dwo_unit *dwo_unit;
13484 struct dwo_file *dwo_file;
13485
13486 gdb_assert (!per_cu->is_debug_types);
13487 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13488 gdb_assert (per_cu->cu != NULL);
13489
13490 dwo_unit = per_cu->cu->dwo_unit;
13491 gdb_assert (dwo_unit != NULL);
13492
13493 dwo_file = dwo_unit->dwo_file;
13494 if (dwo_file->tus != NULL)
13495 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13496 }
13497
13498 /* Free all resources associated with DWO_FILE.
13499 Close the DWO file and munmap the sections.
13500 All memory should be on the objfile obstack. */
13501
13502 static void
13503 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
13504 {
13505
13506 /* Note: dbfd is NULL for virtual DWO files. */
13507 gdb_bfd_unref (dwo_file->dbfd);
13508
13509 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13510 }
13511
13512 /* Wrapper for free_dwo_file for use in cleanups. */
13513
13514 static void
13515 free_dwo_file_cleanup (void *arg)
13516 {
13517 struct free_dwo_file_cleanup_data *data
13518 = (struct free_dwo_file_cleanup_data *) arg;
13519 struct objfile *objfile = data->dwarf2_per_objfile->objfile;
13520
13521 free_dwo_file (data->dwo_file, objfile);
13522
13523 xfree (data);
13524 }
13525
13526 /* Traversal function for free_dwo_files. */
13527
13528 static int
13529 free_dwo_file_from_slot (void **slot, void *info)
13530 {
13531 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13532 struct objfile *objfile = (struct objfile *) info;
13533
13534 free_dwo_file (dwo_file, objfile);
13535
13536 return 1;
13537 }
13538
13539 /* Free all resources associated with DWO_FILES. */
13540
13541 static void
13542 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13543 {
13544 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13545 }
13546 \f
13547 /* Read in various DIEs. */
13548
13549 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13550 Inherit only the children of the DW_AT_abstract_origin DIE not being
13551 already referenced by DW_AT_abstract_origin from the children of the
13552 current DIE. */
13553
13554 static void
13555 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13556 {
13557 struct die_info *child_die;
13558 sect_offset *offsetp;
13559 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13560 struct die_info *origin_die;
13561 /* Iterator of the ORIGIN_DIE children. */
13562 struct die_info *origin_child_die;
13563 struct attribute *attr;
13564 struct dwarf2_cu *origin_cu;
13565 struct pending **origin_previous_list_in_scope;
13566
13567 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13568 if (!attr)
13569 return;
13570
13571 /* Note that following die references may follow to a die in a
13572 different cu. */
13573
13574 origin_cu = cu;
13575 origin_die = follow_die_ref (die, attr, &origin_cu);
13576
13577 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13578 symbols in. */
13579 origin_previous_list_in_scope = origin_cu->list_in_scope;
13580 origin_cu->list_in_scope = cu->list_in_scope;
13581
13582 if (die->tag != origin_die->tag
13583 && !(die->tag == DW_TAG_inlined_subroutine
13584 && origin_die->tag == DW_TAG_subprogram))
13585 complaint (&symfile_complaints,
13586 _("DIE %s and its abstract origin %s have different tags"),
13587 sect_offset_str (die->sect_off),
13588 sect_offset_str (origin_die->sect_off));
13589
13590 std::vector<sect_offset> offsets;
13591
13592 for (child_die = die->child;
13593 child_die && child_die->tag;
13594 child_die = sibling_die (child_die))
13595 {
13596 struct die_info *child_origin_die;
13597 struct dwarf2_cu *child_origin_cu;
13598
13599 /* We are trying to process concrete instance entries:
13600 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13601 it's not relevant to our analysis here. i.e. detecting DIEs that are
13602 present in the abstract instance but not referenced in the concrete
13603 one. */
13604 if (child_die->tag == DW_TAG_call_site
13605 || child_die->tag == DW_TAG_GNU_call_site)
13606 continue;
13607
13608 /* For each CHILD_DIE, find the corresponding child of
13609 ORIGIN_DIE. If there is more than one layer of
13610 DW_AT_abstract_origin, follow them all; there shouldn't be,
13611 but GCC versions at least through 4.4 generate this (GCC PR
13612 40573). */
13613 child_origin_die = child_die;
13614 child_origin_cu = cu;
13615 while (1)
13616 {
13617 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13618 child_origin_cu);
13619 if (attr == NULL)
13620 break;
13621 child_origin_die = follow_die_ref (child_origin_die, attr,
13622 &child_origin_cu);
13623 }
13624
13625 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13626 counterpart may exist. */
13627 if (child_origin_die != child_die)
13628 {
13629 if (child_die->tag != child_origin_die->tag
13630 && !(child_die->tag == DW_TAG_inlined_subroutine
13631 && child_origin_die->tag == DW_TAG_subprogram))
13632 complaint (&symfile_complaints,
13633 _("Child DIE %s and its abstract origin %s have "
13634 "different tags"),
13635 sect_offset_str (child_die->sect_off),
13636 sect_offset_str (child_origin_die->sect_off));
13637 if (child_origin_die->parent != origin_die)
13638 complaint (&symfile_complaints,
13639 _("Child DIE %s and its abstract origin %s have "
13640 "different parents"),
13641 sect_offset_str (child_die->sect_off),
13642 sect_offset_str (child_origin_die->sect_off));
13643 else
13644 offsets.push_back (child_origin_die->sect_off);
13645 }
13646 }
13647 std::sort (offsets.begin (), offsets.end ());
13648 sect_offset *offsets_end = offsets.data () + offsets.size ();
13649 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13650 if (offsetp[-1] == *offsetp)
13651 complaint (&symfile_complaints,
13652 _("Multiple children of DIE %s refer "
13653 "to DIE %s as their abstract origin"),
13654 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13655
13656 offsetp = offsets.data ();
13657 origin_child_die = origin_die->child;
13658 while (origin_child_die && origin_child_die->tag)
13659 {
13660 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13661 while (offsetp < offsets_end
13662 && *offsetp < origin_child_die->sect_off)
13663 offsetp++;
13664 if (offsetp >= offsets_end
13665 || *offsetp > origin_child_die->sect_off)
13666 {
13667 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13668 Check whether we're already processing ORIGIN_CHILD_DIE.
13669 This can happen with mutually referenced abstract_origins.
13670 PR 16581. */
13671 if (!origin_child_die->in_process)
13672 process_die (origin_child_die, origin_cu);
13673 }
13674 origin_child_die = sibling_die (origin_child_die);
13675 }
13676 origin_cu->list_in_scope = origin_previous_list_in_scope;
13677 }
13678
13679 static void
13680 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13681 {
13682 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13683 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13684 struct context_stack *newobj;
13685 CORE_ADDR lowpc;
13686 CORE_ADDR highpc;
13687 struct die_info *child_die;
13688 struct attribute *attr, *call_line, *call_file;
13689 const char *name;
13690 CORE_ADDR baseaddr;
13691 struct block *block;
13692 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13693 std::vector<struct symbol *> template_args;
13694 struct template_symbol *templ_func = NULL;
13695
13696 if (inlined_func)
13697 {
13698 /* If we do not have call site information, we can't show the
13699 caller of this inlined function. That's too confusing, so
13700 only use the scope for local variables. */
13701 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13702 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13703 if (call_line == NULL || call_file == NULL)
13704 {
13705 read_lexical_block_scope (die, cu);
13706 return;
13707 }
13708 }
13709
13710 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13711
13712 name = dwarf2_name (die, cu);
13713
13714 /* Ignore functions with missing or empty names. These are actually
13715 illegal according to the DWARF standard. */
13716 if (name == NULL)
13717 {
13718 complaint (&symfile_complaints,
13719 _("missing name for subprogram DIE at %s"),
13720 sect_offset_str (die->sect_off));
13721 return;
13722 }
13723
13724 /* Ignore functions with missing or invalid low and high pc attributes. */
13725 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13726 <= PC_BOUNDS_INVALID)
13727 {
13728 attr = dwarf2_attr (die, DW_AT_external, cu);
13729 if (!attr || !DW_UNSND (attr))
13730 complaint (&symfile_complaints,
13731 _("cannot get low and high bounds "
13732 "for subprogram DIE at %s"),
13733 sect_offset_str (die->sect_off));
13734 return;
13735 }
13736
13737 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13738 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13739
13740 /* If we have any template arguments, then we must allocate a
13741 different sort of symbol. */
13742 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13743 {
13744 if (child_die->tag == DW_TAG_template_type_param
13745 || child_die->tag == DW_TAG_template_value_param)
13746 {
13747 templ_func = allocate_template_symbol (objfile);
13748 templ_func->subclass = SYMBOL_TEMPLATE;
13749 break;
13750 }
13751 }
13752
13753 newobj = push_context (0, lowpc);
13754 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13755 (struct symbol *) templ_func);
13756
13757 /* If there is a location expression for DW_AT_frame_base, record
13758 it. */
13759 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13760 if (attr)
13761 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13762
13763 /* If there is a location for the static link, record it. */
13764 newobj->static_link = NULL;
13765 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13766 if (attr)
13767 {
13768 newobj->static_link
13769 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13770 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13771 }
13772
13773 cu->list_in_scope = &local_symbols;
13774
13775 if (die->child != NULL)
13776 {
13777 child_die = die->child;
13778 while (child_die && child_die->tag)
13779 {
13780 if (child_die->tag == DW_TAG_template_type_param
13781 || child_die->tag == DW_TAG_template_value_param)
13782 {
13783 struct symbol *arg = new_symbol (child_die, NULL, cu);
13784
13785 if (arg != NULL)
13786 template_args.push_back (arg);
13787 }
13788 else
13789 process_die (child_die, cu);
13790 child_die = sibling_die (child_die);
13791 }
13792 }
13793
13794 inherit_abstract_dies (die, cu);
13795
13796 /* If we have a DW_AT_specification, we might need to import using
13797 directives from the context of the specification DIE. See the
13798 comment in determine_prefix. */
13799 if (cu->language == language_cplus
13800 && dwarf2_attr (die, DW_AT_specification, cu))
13801 {
13802 struct dwarf2_cu *spec_cu = cu;
13803 struct die_info *spec_die = die_specification (die, &spec_cu);
13804
13805 while (spec_die)
13806 {
13807 child_die = spec_die->child;
13808 while (child_die && child_die->tag)
13809 {
13810 if (child_die->tag == DW_TAG_imported_module)
13811 process_die (child_die, spec_cu);
13812 child_die = sibling_die (child_die);
13813 }
13814
13815 /* In some cases, GCC generates specification DIEs that
13816 themselves contain DW_AT_specification attributes. */
13817 spec_die = die_specification (spec_die, &spec_cu);
13818 }
13819 }
13820
13821 newobj = pop_context ();
13822 /* Make a block for the local symbols within. */
13823 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13824 newobj->static_link, lowpc, highpc);
13825
13826 /* For C++, set the block's scope. */
13827 if ((cu->language == language_cplus
13828 || cu->language == language_fortran
13829 || cu->language == language_d
13830 || cu->language == language_rust)
13831 && cu->processing_has_namespace_info)
13832 block_set_scope (block, determine_prefix (die, cu),
13833 &objfile->objfile_obstack);
13834
13835 /* If we have address ranges, record them. */
13836 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13837
13838 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13839
13840 /* Attach template arguments to function. */
13841 if (!template_args.empty ())
13842 {
13843 gdb_assert (templ_func != NULL);
13844
13845 templ_func->n_template_arguments = template_args.size ();
13846 templ_func->template_arguments
13847 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13848 templ_func->n_template_arguments);
13849 memcpy (templ_func->template_arguments,
13850 template_args.data (),
13851 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13852 }
13853
13854 /* In C++, we can have functions nested inside functions (e.g., when
13855 a function declares a class that has methods). This means that
13856 when we finish processing a function scope, we may need to go
13857 back to building a containing block's symbol lists. */
13858 local_symbols = newobj->locals;
13859 local_using_directives = newobj->local_using_directives;
13860
13861 /* If we've finished processing a top-level function, subsequent
13862 symbols go in the file symbol list. */
13863 if (outermost_context_p ())
13864 cu->list_in_scope = &file_symbols;
13865 }
13866
13867 /* Process all the DIES contained within a lexical block scope. Start
13868 a new scope, process the dies, and then close the scope. */
13869
13870 static void
13871 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13872 {
13873 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13874 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13875 struct context_stack *newobj;
13876 CORE_ADDR lowpc, highpc;
13877 struct die_info *child_die;
13878 CORE_ADDR baseaddr;
13879
13880 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13881
13882 /* Ignore blocks with missing or invalid low and high pc attributes. */
13883 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13884 as multiple lexical blocks? Handling children in a sane way would
13885 be nasty. Might be easier to properly extend generic blocks to
13886 describe ranges. */
13887 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13888 {
13889 case PC_BOUNDS_NOT_PRESENT:
13890 /* DW_TAG_lexical_block has no attributes, process its children as if
13891 there was no wrapping by that DW_TAG_lexical_block.
13892 GCC does no longer produces such DWARF since GCC r224161. */
13893 for (child_die = die->child;
13894 child_die != NULL && child_die->tag;
13895 child_die = sibling_die (child_die))
13896 process_die (child_die, cu);
13897 return;
13898 case PC_BOUNDS_INVALID:
13899 return;
13900 }
13901 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13902 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13903
13904 push_context (0, lowpc);
13905 if (die->child != NULL)
13906 {
13907 child_die = die->child;
13908 while (child_die && child_die->tag)
13909 {
13910 process_die (child_die, cu);
13911 child_die = sibling_die (child_die);
13912 }
13913 }
13914 inherit_abstract_dies (die, cu);
13915 newobj = pop_context ();
13916
13917 if (local_symbols != NULL || local_using_directives != NULL)
13918 {
13919 struct block *block
13920 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13921 newobj->start_addr, highpc);
13922
13923 /* Note that recording ranges after traversing children, as we
13924 do here, means that recording a parent's ranges entails
13925 walking across all its children's ranges as they appear in
13926 the address map, which is quadratic behavior.
13927
13928 It would be nicer to record the parent's ranges before
13929 traversing its children, simply overriding whatever you find
13930 there. But since we don't even decide whether to create a
13931 block until after we've traversed its children, that's hard
13932 to do. */
13933 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13934 }
13935 local_symbols = newobj->locals;
13936 local_using_directives = newobj->local_using_directives;
13937 }
13938
13939 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13940
13941 static void
13942 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13943 {
13944 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13945 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13946 CORE_ADDR pc, baseaddr;
13947 struct attribute *attr;
13948 struct call_site *call_site, call_site_local;
13949 void **slot;
13950 int nparams;
13951 struct die_info *child_die;
13952
13953 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13954
13955 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13956 if (attr == NULL)
13957 {
13958 /* This was a pre-DWARF-5 GNU extension alias
13959 for DW_AT_call_return_pc. */
13960 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13961 }
13962 if (!attr)
13963 {
13964 complaint (&symfile_complaints,
13965 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
13966 "DIE %s [in module %s]"),
13967 sect_offset_str (die->sect_off), objfile_name (objfile));
13968 return;
13969 }
13970 pc = attr_value_as_address (attr) + baseaddr;
13971 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13972
13973 if (cu->call_site_htab == NULL)
13974 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13975 NULL, &objfile->objfile_obstack,
13976 hashtab_obstack_allocate, NULL);
13977 call_site_local.pc = pc;
13978 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13979 if (*slot != NULL)
13980 {
13981 complaint (&symfile_complaints,
13982 _("Duplicate PC %s for DW_TAG_call_site "
13983 "DIE %s [in module %s]"),
13984 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13985 objfile_name (objfile));
13986 return;
13987 }
13988
13989 /* Count parameters at the caller. */
13990
13991 nparams = 0;
13992 for (child_die = die->child; child_die && child_die->tag;
13993 child_die = sibling_die (child_die))
13994 {
13995 if (child_die->tag != DW_TAG_call_site_parameter
13996 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13997 {
13998 complaint (&symfile_complaints,
13999 _("Tag %d is not DW_TAG_call_site_parameter in "
14000 "DW_TAG_call_site child DIE %s [in module %s]"),
14001 child_die->tag, sect_offset_str (child_die->sect_off),
14002 objfile_name (objfile));
14003 continue;
14004 }
14005
14006 nparams++;
14007 }
14008
14009 call_site
14010 = ((struct call_site *)
14011 obstack_alloc (&objfile->objfile_obstack,
14012 sizeof (*call_site)
14013 + (sizeof (*call_site->parameter) * (nparams - 1))));
14014 *slot = call_site;
14015 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14016 call_site->pc = pc;
14017
14018 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14019 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14020 {
14021 struct die_info *func_die;
14022
14023 /* Skip also over DW_TAG_inlined_subroutine. */
14024 for (func_die = die->parent;
14025 func_die && func_die->tag != DW_TAG_subprogram
14026 && func_die->tag != DW_TAG_subroutine_type;
14027 func_die = func_die->parent);
14028
14029 /* DW_AT_call_all_calls is a superset
14030 of DW_AT_call_all_tail_calls. */
14031 if (func_die
14032 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14033 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14034 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14035 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14036 {
14037 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14038 not complete. But keep CALL_SITE for look ups via call_site_htab,
14039 both the initial caller containing the real return address PC and
14040 the final callee containing the current PC of a chain of tail
14041 calls do not need to have the tail call list complete. But any
14042 function candidate for a virtual tail call frame searched via
14043 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14044 determined unambiguously. */
14045 }
14046 else
14047 {
14048 struct type *func_type = NULL;
14049
14050 if (func_die)
14051 func_type = get_die_type (func_die, cu);
14052 if (func_type != NULL)
14053 {
14054 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14055
14056 /* Enlist this call site to the function. */
14057 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14058 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14059 }
14060 else
14061 complaint (&symfile_complaints,
14062 _("Cannot find function owning DW_TAG_call_site "
14063 "DIE %s [in module %s]"),
14064 sect_offset_str (die->sect_off), objfile_name (objfile));
14065 }
14066 }
14067
14068 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14069 if (attr == NULL)
14070 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14071 if (attr == NULL)
14072 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14073 if (attr == NULL)
14074 {
14075 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14076 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14077 }
14078 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14079 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14080 /* Keep NULL DWARF_BLOCK. */;
14081 else if (attr_form_is_block (attr))
14082 {
14083 struct dwarf2_locexpr_baton *dlbaton;
14084
14085 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14086 dlbaton->data = DW_BLOCK (attr)->data;
14087 dlbaton->size = DW_BLOCK (attr)->size;
14088 dlbaton->per_cu = cu->per_cu;
14089
14090 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14091 }
14092 else if (attr_form_is_ref (attr))
14093 {
14094 struct dwarf2_cu *target_cu = cu;
14095 struct die_info *target_die;
14096
14097 target_die = follow_die_ref (die, attr, &target_cu);
14098 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14099 if (die_is_declaration (target_die, target_cu))
14100 {
14101 const char *target_physname;
14102
14103 /* Prefer the mangled name; otherwise compute the demangled one. */
14104 target_physname = dw2_linkage_name (target_die, target_cu);
14105 if (target_physname == NULL)
14106 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14107 if (target_physname == NULL)
14108 complaint (&symfile_complaints,
14109 _("DW_AT_call_target target DIE has invalid "
14110 "physname, for referencing DIE %s [in module %s]"),
14111 sect_offset_str (die->sect_off), objfile_name (objfile));
14112 else
14113 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14114 }
14115 else
14116 {
14117 CORE_ADDR lowpc;
14118
14119 /* DW_AT_entry_pc should be preferred. */
14120 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14121 <= PC_BOUNDS_INVALID)
14122 complaint (&symfile_complaints,
14123 _("DW_AT_call_target target DIE has invalid "
14124 "low pc, for referencing DIE %s [in module %s]"),
14125 sect_offset_str (die->sect_off), objfile_name (objfile));
14126 else
14127 {
14128 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14129 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14130 }
14131 }
14132 }
14133 else
14134 complaint (&symfile_complaints,
14135 _("DW_TAG_call_site DW_AT_call_target is neither "
14136 "block nor reference, for DIE %s [in module %s]"),
14137 sect_offset_str (die->sect_off), objfile_name (objfile));
14138
14139 call_site->per_cu = cu->per_cu;
14140
14141 for (child_die = die->child;
14142 child_die && child_die->tag;
14143 child_die = sibling_die (child_die))
14144 {
14145 struct call_site_parameter *parameter;
14146 struct attribute *loc, *origin;
14147
14148 if (child_die->tag != DW_TAG_call_site_parameter
14149 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14150 {
14151 /* Already printed the complaint above. */
14152 continue;
14153 }
14154
14155 gdb_assert (call_site->parameter_count < nparams);
14156 parameter = &call_site->parameter[call_site->parameter_count];
14157
14158 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14159 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14160 register is contained in DW_AT_call_value. */
14161
14162 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14163 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14164 if (origin == NULL)
14165 {
14166 /* This was a pre-DWARF-5 GNU extension alias
14167 for DW_AT_call_parameter. */
14168 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14169 }
14170 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14171 {
14172 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14173
14174 sect_offset sect_off
14175 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14176 if (!offset_in_cu_p (&cu->header, sect_off))
14177 {
14178 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14179 binding can be done only inside one CU. Such referenced DIE
14180 therefore cannot be even moved to DW_TAG_partial_unit. */
14181 complaint (&symfile_complaints,
14182 _("DW_AT_call_parameter offset is not in CU for "
14183 "DW_TAG_call_site child DIE %s [in module %s]"),
14184 sect_offset_str (child_die->sect_off),
14185 objfile_name (objfile));
14186 continue;
14187 }
14188 parameter->u.param_cu_off
14189 = (cu_offset) (sect_off - cu->header.sect_off);
14190 }
14191 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14192 {
14193 complaint (&symfile_complaints,
14194 _("No DW_FORM_block* DW_AT_location for "
14195 "DW_TAG_call_site child DIE %s [in module %s]"),
14196 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14197 continue;
14198 }
14199 else
14200 {
14201 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14202 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14203 if (parameter->u.dwarf_reg != -1)
14204 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14205 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14206 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14207 &parameter->u.fb_offset))
14208 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14209 else
14210 {
14211 complaint (&symfile_complaints,
14212 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14213 "for DW_FORM_block* DW_AT_location is supported for "
14214 "DW_TAG_call_site child DIE %s "
14215 "[in module %s]"),
14216 sect_offset_str (child_die->sect_off),
14217 objfile_name (objfile));
14218 continue;
14219 }
14220 }
14221
14222 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14223 if (attr == NULL)
14224 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14225 if (!attr_form_is_block (attr))
14226 {
14227 complaint (&symfile_complaints,
14228 _("No DW_FORM_block* DW_AT_call_value for "
14229 "DW_TAG_call_site child DIE %s [in module %s]"),
14230 sect_offset_str (child_die->sect_off),
14231 objfile_name (objfile));
14232 continue;
14233 }
14234 parameter->value = DW_BLOCK (attr)->data;
14235 parameter->value_size = DW_BLOCK (attr)->size;
14236
14237 /* Parameters are not pre-cleared by memset above. */
14238 parameter->data_value = NULL;
14239 parameter->data_value_size = 0;
14240 call_site->parameter_count++;
14241
14242 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14243 if (attr == NULL)
14244 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14245 if (attr)
14246 {
14247 if (!attr_form_is_block (attr))
14248 complaint (&symfile_complaints,
14249 _("No DW_FORM_block* DW_AT_call_data_value for "
14250 "DW_TAG_call_site child DIE %s [in module %s]"),
14251 sect_offset_str (child_die->sect_off),
14252 objfile_name (objfile));
14253 else
14254 {
14255 parameter->data_value = DW_BLOCK (attr)->data;
14256 parameter->data_value_size = DW_BLOCK (attr)->size;
14257 }
14258 }
14259 }
14260 }
14261
14262 /* Helper function for read_variable. If DIE represents a virtual
14263 table, then return the type of the concrete object that is
14264 associated with the virtual table. Otherwise, return NULL. */
14265
14266 static struct type *
14267 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14268 {
14269 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14270 if (attr == NULL)
14271 return NULL;
14272
14273 /* Find the type DIE. */
14274 struct die_info *type_die = NULL;
14275 struct dwarf2_cu *type_cu = cu;
14276
14277 if (attr_form_is_ref (attr))
14278 type_die = follow_die_ref (die, attr, &type_cu);
14279 if (type_die == NULL)
14280 return NULL;
14281
14282 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14283 return NULL;
14284 return die_containing_type (type_die, type_cu);
14285 }
14286
14287 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14288
14289 static void
14290 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14291 {
14292 struct rust_vtable_symbol *storage = NULL;
14293
14294 if (cu->language == language_rust)
14295 {
14296 struct type *containing_type = rust_containing_type (die, cu);
14297
14298 if (containing_type != NULL)
14299 {
14300 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14301
14302 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14303 struct rust_vtable_symbol);
14304 initialize_objfile_symbol (storage);
14305 storage->concrete_type = containing_type;
14306 storage->subclass = SYMBOL_RUST_VTABLE;
14307 }
14308 }
14309
14310 new_symbol (die, NULL, cu, storage);
14311 }
14312
14313 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14314 reading .debug_rnglists.
14315 Callback's type should be:
14316 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14317 Return true if the attributes are present and valid, otherwise,
14318 return false. */
14319
14320 template <typename Callback>
14321 static bool
14322 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14323 Callback &&callback)
14324 {
14325 struct dwarf2_per_objfile *dwarf2_per_objfile
14326 = cu->per_cu->dwarf2_per_objfile;
14327 struct objfile *objfile = dwarf2_per_objfile->objfile;
14328 bfd *obfd = objfile->obfd;
14329 /* Base address selection entry. */
14330 CORE_ADDR base;
14331 int found_base;
14332 const gdb_byte *buffer;
14333 CORE_ADDR baseaddr;
14334 bool overflow = false;
14335
14336 found_base = cu->base_known;
14337 base = cu->base_address;
14338
14339 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14340 if (offset >= dwarf2_per_objfile->rnglists.size)
14341 {
14342 complaint (&symfile_complaints,
14343 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14344 offset);
14345 return false;
14346 }
14347 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14348
14349 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14350
14351 while (1)
14352 {
14353 /* Initialize it due to a false compiler warning. */
14354 CORE_ADDR range_beginning = 0, range_end = 0;
14355 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14356 + dwarf2_per_objfile->rnglists.size);
14357 unsigned int bytes_read;
14358
14359 if (buffer == buf_end)
14360 {
14361 overflow = true;
14362 break;
14363 }
14364 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14365 switch (rlet)
14366 {
14367 case DW_RLE_end_of_list:
14368 break;
14369 case DW_RLE_base_address:
14370 if (buffer + cu->header.addr_size > buf_end)
14371 {
14372 overflow = true;
14373 break;
14374 }
14375 base = read_address (obfd, buffer, cu, &bytes_read);
14376 found_base = 1;
14377 buffer += bytes_read;
14378 break;
14379 case DW_RLE_start_length:
14380 if (buffer + cu->header.addr_size > buf_end)
14381 {
14382 overflow = true;
14383 break;
14384 }
14385 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14386 buffer += bytes_read;
14387 range_end = (range_beginning
14388 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14389 buffer += bytes_read;
14390 if (buffer > buf_end)
14391 {
14392 overflow = true;
14393 break;
14394 }
14395 break;
14396 case DW_RLE_offset_pair:
14397 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14398 buffer += bytes_read;
14399 if (buffer > buf_end)
14400 {
14401 overflow = true;
14402 break;
14403 }
14404 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14405 buffer += bytes_read;
14406 if (buffer > buf_end)
14407 {
14408 overflow = true;
14409 break;
14410 }
14411 break;
14412 case DW_RLE_start_end:
14413 if (buffer + 2 * cu->header.addr_size > buf_end)
14414 {
14415 overflow = true;
14416 break;
14417 }
14418 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14419 buffer += bytes_read;
14420 range_end = read_address (obfd, buffer, cu, &bytes_read);
14421 buffer += bytes_read;
14422 break;
14423 default:
14424 complaint (&symfile_complaints,
14425 _("Invalid .debug_rnglists data (no base address)"));
14426 return false;
14427 }
14428 if (rlet == DW_RLE_end_of_list || overflow)
14429 break;
14430 if (rlet == DW_RLE_base_address)
14431 continue;
14432
14433 if (!found_base)
14434 {
14435 /* We have no valid base address for the ranges
14436 data. */
14437 complaint (&symfile_complaints,
14438 _("Invalid .debug_rnglists data (no base address)"));
14439 return false;
14440 }
14441
14442 if (range_beginning > range_end)
14443 {
14444 /* Inverted range entries are invalid. */
14445 complaint (&symfile_complaints,
14446 _("Invalid .debug_rnglists data (inverted range)"));
14447 return false;
14448 }
14449
14450 /* Empty range entries have no effect. */
14451 if (range_beginning == range_end)
14452 continue;
14453
14454 range_beginning += base;
14455 range_end += base;
14456
14457 /* A not-uncommon case of bad debug info.
14458 Don't pollute the addrmap with bad data. */
14459 if (range_beginning + baseaddr == 0
14460 && !dwarf2_per_objfile->has_section_at_zero)
14461 {
14462 complaint (&symfile_complaints,
14463 _(".debug_rnglists entry has start address of zero"
14464 " [in module %s]"), objfile_name (objfile));
14465 continue;
14466 }
14467
14468 callback (range_beginning, range_end);
14469 }
14470
14471 if (overflow)
14472 {
14473 complaint (&symfile_complaints,
14474 _("Offset %d is not terminated "
14475 "for DW_AT_ranges attribute"),
14476 offset);
14477 return false;
14478 }
14479
14480 return true;
14481 }
14482
14483 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14484 Callback's type should be:
14485 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14486 Return 1 if the attributes are present and valid, otherwise, return 0. */
14487
14488 template <typename Callback>
14489 static int
14490 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14491 Callback &&callback)
14492 {
14493 struct dwarf2_per_objfile *dwarf2_per_objfile
14494 = cu->per_cu->dwarf2_per_objfile;
14495 struct objfile *objfile = dwarf2_per_objfile->objfile;
14496 struct comp_unit_head *cu_header = &cu->header;
14497 bfd *obfd = objfile->obfd;
14498 unsigned int addr_size = cu_header->addr_size;
14499 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14500 /* Base address selection entry. */
14501 CORE_ADDR base;
14502 int found_base;
14503 unsigned int dummy;
14504 const gdb_byte *buffer;
14505 CORE_ADDR baseaddr;
14506
14507 if (cu_header->version >= 5)
14508 return dwarf2_rnglists_process (offset, cu, callback);
14509
14510 found_base = cu->base_known;
14511 base = cu->base_address;
14512
14513 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14514 if (offset >= dwarf2_per_objfile->ranges.size)
14515 {
14516 complaint (&symfile_complaints,
14517 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14518 offset);
14519 return 0;
14520 }
14521 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14522
14523 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14524
14525 while (1)
14526 {
14527 CORE_ADDR range_beginning, range_end;
14528
14529 range_beginning = read_address (obfd, buffer, cu, &dummy);
14530 buffer += addr_size;
14531 range_end = read_address (obfd, buffer, cu, &dummy);
14532 buffer += addr_size;
14533 offset += 2 * addr_size;
14534
14535 /* An end of list marker is a pair of zero addresses. */
14536 if (range_beginning == 0 && range_end == 0)
14537 /* Found the end of list entry. */
14538 break;
14539
14540 /* Each base address selection entry is a pair of 2 values.
14541 The first is the largest possible address, the second is
14542 the base address. Check for a base address here. */
14543 if ((range_beginning & mask) == mask)
14544 {
14545 /* If we found the largest possible address, then we already
14546 have the base address in range_end. */
14547 base = range_end;
14548 found_base = 1;
14549 continue;
14550 }
14551
14552 if (!found_base)
14553 {
14554 /* We have no valid base address for the ranges
14555 data. */
14556 complaint (&symfile_complaints,
14557 _("Invalid .debug_ranges data (no base address)"));
14558 return 0;
14559 }
14560
14561 if (range_beginning > range_end)
14562 {
14563 /* Inverted range entries are invalid. */
14564 complaint (&symfile_complaints,
14565 _("Invalid .debug_ranges data (inverted range)"));
14566 return 0;
14567 }
14568
14569 /* Empty range entries have no effect. */
14570 if (range_beginning == range_end)
14571 continue;
14572
14573 range_beginning += base;
14574 range_end += base;
14575
14576 /* A not-uncommon case of bad debug info.
14577 Don't pollute the addrmap with bad data. */
14578 if (range_beginning + baseaddr == 0
14579 && !dwarf2_per_objfile->has_section_at_zero)
14580 {
14581 complaint (&symfile_complaints,
14582 _(".debug_ranges entry has start address of zero"
14583 " [in module %s]"), objfile_name (objfile));
14584 continue;
14585 }
14586
14587 callback (range_beginning, range_end);
14588 }
14589
14590 return 1;
14591 }
14592
14593 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14594 Return 1 if the attributes are present and valid, otherwise, return 0.
14595 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14596
14597 static int
14598 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14599 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14600 struct partial_symtab *ranges_pst)
14601 {
14602 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14603 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14604 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14605 SECT_OFF_TEXT (objfile));
14606 int low_set = 0;
14607 CORE_ADDR low = 0;
14608 CORE_ADDR high = 0;
14609 int retval;
14610
14611 retval = dwarf2_ranges_process (offset, cu,
14612 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14613 {
14614 if (ranges_pst != NULL)
14615 {
14616 CORE_ADDR lowpc;
14617 CORE_ADDR highpc;
14618
14619 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14620 range_beginning + baseaddr);
14621 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14622 range_end + baseaddr);
14623 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14624 ranges_pst);
14625 }
14626
14627 /* FIXME: This is recording everything as a low-high
14628 segment of consecutive addresses. We should have a
14629 data structure for discontiguous block ranges
14630 instead. */
14631 if (! low_set)
14632 {
14633 low = range_beginning;
14634 high = range_end;
14635 low_set = 1;
14636 }
14637 else
14638 {
14639 if (range_beginning < low)
14640 low = range_beginning;
14641 if (range_end > high)
14642 high = range_end;
14643 }
14644 });
14645 if (!retval)
14646 return 0;
14647
14648 if (! low_set)
14649 /* If the first entry is an end-of-list marker, the range
14650 describes an empty scope, i.e. no instructions. */
14651 return 0;
14652
14653 if (low_return)
14654 *low_return = low;
14655 if (high_return)
14656 *high_return = high;
14657 return 1;
14658 }
14659
14660 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14661 definition for the return value. *LOWPC and *HIGHPC are set iff
14662 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14663
14664 static enum pc_bounds_kind
14665 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14666 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14667 struct partial_symtab *pst)
14668 {
14669 struct dwarf2_per_objfile *dwarf2_per_objfile
14670 = cu->per_cu->dwarf2_per_objfile;
14671 struct attribute *attr;
14672 struct attribute *attr_high;
14673 CORE_ADDR low = 0;
14674 CORE_ADDR high = 0;
14675 enum pc_bounds_kind ret;
14676
14677 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14678 if (attr_high)
14679 {
14680 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14681 if (attr)
14682 {
14683 low = attr_value_as_address (attr);
14684 high = attr_value_as_address (attr_high);
14685 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14686 high += low;
14687 }
14688 else
14689 /* Found high w/o low attribute. */
14690 return PC_BOUNDS_INVALID;
14691
14692 /* Found consecutive range of addresses. */
14693 ret = PC_BOUNDS_HIGH_LOW;
14694 }
14695 else
14696 {
14697 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14698 if (attr != NULL)
14699 {
14700 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14701 We take advantage of the fact that DW_AT_ranges does not appear
14702 in DW_TAG_compile_unit of DWO files. */
14703 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14704 unsigned int ranges_offset = (DW_UNSND (attr)
14705 + (need_ranges_base
14706 ? cu->ranges_base
14707 : 0));
14708
14709 /* Value of the DW_AT_ranges attribute is the offset in the
14710 .debug_ranges section. */
14711 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14712 return PC_BOUNDS_INVALID;
14713 /* Found discontinuous range of addresses. */
14714 ret = PC_BOUNDS_RANGES;
14715 }
14716 else
14717 return PC_BOUNDS_NOT_PRESENT;
14718 }
14719
14720 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14721 if (high <= low)
14722 return PC_BOUNDS_INVALID;
14723
14724 /* When using the GNU linker, .gnu.linkonce. sections are used to
14725 eliminate duplicate copies of functions and vtables and such.
14726 The linker will arbitrarily choose one and discard the others.
14727 The AT_*_pc values for such functions refer to local labels in
14728 these sections. If the section from that file was discarded, the
14729 labels are not in the output, so the relocs get a value of 0.
14730 If this is a discarded function, mark the pc bounds as invalid,
14731 so that GDB will ignore it. */
14732 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14733 return PC_BOUNDS_INVALID;
14734
14735 *lowpc = low;
14736 if (highpc)
14737 *highpc = high;
14738 return ret;
14739 }
14740
14741 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14742 its low and high PC addresses. Do nothing if these addresses could not
14743 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14744 and HIGHPC to the high address if greater than HIGHPC. */
14745
14746 static void
14747 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14748 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14749 struct dwarf2_cu *cu)
14750 {
14751 CORE_ADDR low, high;
14752 struct die_info *child = die->child;
14753
14754 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14755 {
14756 *lowpc = std::min (*lowpc, low);
14757 *highpc = std::max (*highpc, high);
14758 }
14759
14760 /* If the language does not allow nested subprograms (either inside
14761 subprograms or lexical blocks), we're done. */
14762 if (cu->language != language_ada)
14763 return;
14764
14765 /* Check all the children of the given DIE. If it contains nested
14766 subprograms, then check their pc bounds. Likewise, we need to
14767 check lexical blocks as well, as they may also contain subprogram
14768 definitions. */
14769 while (child && child->tag)
14770 {
14771 if (child->tag == DW_TAG_subprogram
14772 || child->tag == DW_TAG_lexical_block)
14773 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14774 child = sibling_die (child);
14775 }
14776 }
14777
14778 /* Get the low and high pc's represented by the scope DIE, and store
14779 them in *LOWPC and *HIGHPC. If the correct values can't be
14780 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14781
14782 static void
14783 get_scope_pc_bounds (struct die_info *die,
14784 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14785 struct dwarf2_cu *cu)
14786 {
14787 CORE_ADDR best_low = (CORE_ADDR) -1;
14788 CORE_ADDR best_high = (CORE_ADDR) 0;
14789 CORE_ADDR current_low, current_high;
14790
14791 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14792 >= PC_BOUNDS_RANGES)
14793 {
14794 best_low = current_low;
14795 best_high = current_high;
14796 }
14797 else
14798 {
14799 struct die_info *child = die->child;
14800
14801 while (child && child->tag)
14802 {
14803 switch (child->tag) {
14804 case DW_TAG_subprogram:
14805 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14806 break;
14807 case DW_TAG_namespace:
14808 case DW_TAG_module:
14809 /* FIXME: carlton/2004-01-16: Should we do this for
14810 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14811 that current GCC's always emit the DIEs corresponding
14812 to definitions of methods of classes as children of a
14813 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14814 the DIEs giving the declarations, which could be
14815 anywhere). But I don't see any reason why the
14816 standards says that they have to be there. */
14817 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14818
14819 if (current_low != ((CORE_ADDR) -1))
14820 {
14821 best_low = std::min (best_low, current_low);
14822 best_high = std::max (best_high, current_high);
14823 }
14824 break;
14825 default:
14826 /* Ignore. */
14827 break;
14828 }
14829
14830 child = sibling_die (child);
14831 }
14832 }
14833
14834 *lowpc = best_low;
14835 *highpc = best_high;
14836 }
14837
14838 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14839 in DIE. */
14840
14841 static void
14842 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14843 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14844 {
14845 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14846 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14847 struct attribute *attr;
14848 struct attribute *attr_high;
14849
14850 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14851 if (attr_high)
14852 {
14853 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14854 if (attr)
14855 {
14856 CORE_ADDR low = attr_value_as_address (attr);
14857 CORE_ADDR high = attr_value_as_address (attr_high);
14858
14859 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14860 high += low;
14861
14862 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14863 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14864 record_block_range (block, low, high - 1);
14865 }
14866 }
14867
14868 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14869 if (attr)
14870 {
14871 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14872 We take advantage of the fact that DW_AT_ranges does not appear
14873 in DW_TAG_compile_unit of DWO files. */
14874 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14875
14876 /* The value of the DW_AT_ranges attribute is the offset of the
14877 address range list in the .debug_ranges section. */
14878 unsigned long offset = (DW_UNSND (attr)
14879 + (need_ranges_base ? cu->ranges_base : 0));
14880 const gdb_byte *buffer;
14881
14882 /* For some target architectures, but not others, the
14883 read_address function sign-extends the addresses it returns.
14884 To recognize base address selection entries, we need a
14885 mask. */
14886 unsigned int addr_size = cu->header.addr_size;
14887 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14888
14889 /* The base address, to which the next pair is relative. Note
14890 that this 'base' is a DWARF concept: most entries in a range
14891 list are relative, to reduce the number of relocs against the
14892 debugging information. This is separate from this function's
14893 'baseaddr' argument, which GDB uses to relocate debugging
14894 information from a shared library based on the address at
14895 which the library was loaded. */
14896 CORE_ADDR base = cu->base_address;
14897 int base_known = cu->base_known;
14898
14899 dwarf2_ranges_process (offset, cu,
14900 [&] (CORE_ADDR start, CORE_ADDR end)
14901 {
14902 start += baseaddr;
14903 end += baseaddr;
14904 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14905 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14906 record_block_range (block, start, end - 1);
14907 });
14908 }
14909 }
14910
14911 /* Check whether the producer field indicates either of GCC < 4.6, or the
14912 Intel C/C++ compiler, and cache the result in CU. */
14913
14914 static void
14915 check_producer (struct dwarf2_cu *cu)
14916 {
14917 int major, minor;
14918
14919 if (cu->producer == NULL)
14920 {
14921 /* For unknown compilers expect their behavior is DWARF version
14922 compliant.
14923
14924 GCC started to support .debug_types sections by -gdwarf-4 since
14925 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14926 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14927 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14928 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14929 }
14930 else if (producer_is_gcc (cu->producer, &major, &minor))
14931 {
14932 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14933 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14934 }
14935 else if (producer_is_icc (cu->producer, &major, &minor))
14936 cu->producer_is_icc_lt_14 = major < 14;
14937 else
14938 {
14939 /* For other non-GCC compilers, expect their behavior is DWARF version
14940 compliant. */
14941 }
14942
14943 cu->checked_producer = 1;
14944 }
14945
14946 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14947 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14948 during 4.6.0 experimental. */
14949
14950 static int
14951 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14952 {
14953 if (!cu->checked_producer)
14954 check_producer (cu);
14955
14956 return cu->producer_is_gxx_lt_4_6;
14957 }
14958
14959 /* Return the default accessibility type if it is not overriden by
14960 DW_AT_accessibility. */
14961
14962 static enum dwarf_access_attribute
14963 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14964 {
14965 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14966 {
14967 /* The default DWARF 2 accessibility for members is public, the default
14968 accessibility for inheritance is private. */
14969
14970 if (die->tag != DW_TAG_inheritance)
14971 return DW_ACCESS_public;
14972 else
14973 return DW_ACCESS_private;
14974 }
14975 else
14976 {
14977 /* DWARF 3+ defines the default accessibility a different way. The same
14978 rules apply now for DW_TAG_inheritance as for the members and it only
14979 depends on the container kind. */
14980
14981 if (die->parent->tag == DW_TAG_class_type)
14982 return DW_ACCESS_private;
14983 else
14984 return DW_ACCESS_public;
14985 }
14986 }
14987
14988 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14989 offset. If the attribute was not found return 0, otherwise return
14990 1. If it was found but could not properly be handled, set *OFFSET
14991 to 0. */
14992
14993 static int
14994 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14995 LONGEST *offset)
14996 {
14997 struct attribute *attr;
14998
14999 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15000 if (attr != NULL)
15001 {
15002 *offset = 0;
15003
15004 /* Note that we do not check for a section offset first here.
15005 This is because DW_AT_data_member_location is new in DWARF 4,
15006 so if we see it, we can assume that a constant form is really
15007 a constant and not a section offset. */
15008 if (attr_form_is_constant (attr))
15009 *offset = dwarf2_get_attr_constant_value (attr, 0);
15010 else if (attr_form_is_section_offset (attr))
15011 dwarf2_complex_location_expr_complaint ();
15012 else if (attr_form_is_block (attr))
15013 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15014 else
15015 dwarf2_complex_location_expr_complaint ();
15016
15017 return 1;
15018 }
15019
15020 return 0;
15021 }
15022
15023 /* Add an aggregate field to the field list. */
15024
15025 static void
15026 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15027 struct dwarf2_cu *cu)
15028 {
15029 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15030 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15031 struct nextfield *new_field;
15032 struct attribute *attr;
15033 struct field *fp;
15034 const char *fieldname = "";
15035
15036 if (die->tag == DW_TAG_inheritance)
15037 {
15038 fip->baseclasses.emplace_back ();
15039 new_field = &fip->baseclasses.back ();
15040 }
15041 else
15042 {
15043 fip->fields.emplace_back ();
15044 new_field = &fip->fields.back ();
15045 }
15046
15047 fip->nfields++;
15048
15049 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15050 if (attr)
15051 new_field->accessibility = DW_UNSND (attr);
15052 else
15053 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15054 if (new_field->accessibility != DW_ACCESS_public)
15055 fip->non_public_fields = 1;
15056
15057 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15058 if (attr)
15059 new_field->virtuality = DW_UNSND (attr);
15060 else
15061 new_field->virtuality = DW_VIRTUALITY_none;
15062
15063 fp = &new_field->field;
15064
15065 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15066 {
15067 LONGEST offset;
15068
15069 /* Data member other than a C++ static data member. */
15070
15071 /* Get type of field. */
15072 fp->type = die_type (die, cu);
15073
15074 SET_FIELD_BITPOS (*fp, 0);
15075
15076 /* Get bit size of field (zero if none). */
15077 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15078 if (attr)
15079 {
15080 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15081 }
15082 else
15083 {
15084 FIELD_BITSIZE (*fp) = 0;
15085 }
15086
15087 /* Get bit offset of field. */
15088 if (handle_data_member_location (die, cu, &offset))
15089 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15090 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15091 if (attr)
15092 {
15093 if (gdbarch_bits_big_endian (gdbarch))
15094 {
15095 /* For big endian bits, the DW_AT_bit_offset gives the
15096 additional bit offset from the MSB of the containing
15097 anonymous object to the MSB of the field. We don't
15098 have to do anything special since we don't need to
15099 know the size of the anonymous object. */
15100 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15101 }
15102 else
15103 {
15104 /* For little endian bits, compute the bit offset to the
15105 MSB of the anonymous object, subtract off the number of
15106 bits from the MSB of the field to the MSB of the
15107 object, and then subtract off the number of bits of
15108 the field itself. The result is the bit offset of
15109 the LSB of the field. */
15110 int anonymous_size;
15111 int bit_offset = DW_UNSND (attr);
15112
15113 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15114 if (attr)
15115 {
15116 /* The size of the anonymous object containing
15117 the bit field is explicit, so use the
15118 indicated size (in bytes). */
15119 anonymous_size = DW_UNSND (attr);
15120 }
15121 else
15122 {
15123 /* The size of the anonymous object containing
15124 the bit field must be inferred from the type
15125 attribute of the data member containing the
15126 bit field. */
15127 anonymous_size = TYPE_LENGTH (fp->type);
15128 }
15129 SET_FIELD_BITPOS (*fp,
15130 (FIELD_BITPOS (*fp)
15131 + anonymous_size * bits_per_byte
15132 - bit_offset - FIELD_BITSIZE (*fp)));
15133 }
15134 }
15135 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15136 if (attr != NULL)
15137 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15138 + dwarf2_get_attr_constant_value (attr, 0)));
15139
15140 /* Get name of field. */
15141 fieldname = dwarf2_name (die, cu);
15142 if (fieldname == NULL)
15143 fieldname = "";
15144
15145 /* The name is already allocated along with this objfile, so we don't
15146 need to duplicate it for the type. */
15147 fp->name = fieldname;
15148
15149 /* Change accessibility for artificial fields (e.g. virtual table
15150 pointer or virtual base class pointer) to private. */
15151 if (dwarf2_attr (die, DW_AT_artificial, cu))
15152 {
15153 FIELD_ARTIFICIAL (*fp) = 1;
15154 new_field->accessibility = DW_ACCESS_private;
15155 fip->non_public_fields = 1;
15156 }
15157 }
15158 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15159 {
15160 /* C++ static member. */
15161
15162 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15163 is a declaration, but all versions of G++ as of this writing
15164 (so through at least 3.2.1) incorrectly generate
15165 DW_TAG_variable tags. */
15166
15167 const char *physname;
15168
15169 /* Get name of field. */
15170 fieldname = dwarf2_name (die, cu);
15171 if (fieldname == NULL)
15172 return;
15173
15174 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15175 if (attr
15176 /* Only create a symbol if this is an external value.
15177 new_symbol checks this and puts the value in the global symbol
15178 table, which we want. If it is not external, new_symbol
15179 will try to put the value in cu->list_in_scope which is wrong. */
15180 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15181 {
15182 /* A static const member, not much different than an enum as far as
15183 we're concerned, except that we can support more types. */
15184 new_symbol (die, NULL, cu);
15185 }
15186
15187 /* Get physical name. */
15188 physname = dwarf2_physname (fieldname, die, cu);
15189
15190 /* The name is already allocated along with this objfile, so we don't
15191 need to duplicate it for the type. */
15192 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15193 FIELD_TYPE (*fp) = die_type (die, cu);
15194 FIELD_NAME (*fp) = fieldname;
15195 }
15196 else if (die->tag == DW_TAG_inheritance)
15197 {
15198 LONGEST offset;
15199
15200 /* C++ base class field. */
15201 if (handle_data_member_location (die, cu, &offset))
15202 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15203 FIELD_BITSIZE (*fp) = 0;
15204 FIELD_TYPE (*fp) = die_type (die, cu);
15205 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15206 }
15207 else if (die->tag == DW_TAG_variant_part)
15208 {
15209 /* process_structure_scope will treat this DIE as a union. */
15210 process_structure_scope (die, cu);
15211
15212 /* The variant part is relative to the start of the enclosing
15213 structure. */
15214 SET_FIELD_BITPOS (*fp, 0);
15215 fp->type = get_die_type (die, cu);
15216 fp->artificial = 1;
15217 fp->name = "<<variant>>";
15218 }
15219 else
15220 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15221 }
15222
15223 /* Can the type given by DIE define another type? */
15224
15225 static bool
15226 type_can_define_types (const struct die_info *die)
15227 {
15228 switch (die->tag)
15229 {
15230 case DW_TAG_typedef:
15231 case DW_TAG_class_type:
15232 case DW_TAG_structure_type:
15233 case DW_TAG_union_type:
15234 case DW_TAG_enumeration_type:
15235 return true;
15236
15237 default:
15238 return false;
15239 }
15240 }
15241
15242 /* Add a type definition defined in the scope of the FIP's class. */
15243
15244 static void
15245 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15246 struct dwarf2_cu *cu)
15247 {
15248 struct decl_field fp;
15249 memset (&fp, 0, sizeof (fp));
15250
15251 gdb_assert (type_can_define_types (die));
15252
15253 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15254 fp.name = dwarf2_name (die, cu);
15255 fp.type = read_type_die (die, cu);
15256
15257 /* Save accessibility. */
15258 enum dwarf_access_attribute accessibility;
15259 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15260 if (attr != NULL)
15261 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15262 else
15263 accessibility = dwarf2_default_access_attribute (die, cu);
15264 switch (accessibility)
15265 {
15266 case DW_ACCESS_public:
15267 /* The assumed value if neither private nor protected. */
15268 break;
15269 case DW_ACCESS_private:
15270 fp.is_private = 1;
15271 break;
15272 case DW_ACCESS_protected:
15273 fp.is_protected = 1;
15274 break;
15275 default:
15276 complaint (&symfile_complaints,
15277 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15278 }
15279
15280 if (die->tag == DW_TAG_typedef)
15281 fip->typedef_field_list.push_back (fp);
15282 else
15283 fip->nested_types_list.push_back (fp);
15284 }
15285
15286 /* Create the vector of fields, and attach it to the type. */
15287
15288 static void
15289 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15290 struct dwarf2_cu *cu)
15291 {
15292 int nfields = fip->nfields;
15293
15294 /* Record the field count, allocate space for the array of fields,
15295 and create blank accessibility bitfields if necessary. */
15296 TYPE_NFIELDS (type) = nfields;
15297 TYPE_FIELDS (type) = (struct field *)
15298 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15299
15300 if (fip->non_public_fields && cu->language != language_ada)
15301 {
15302 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15303
15304 TYPE_FIELD_PRIVATE_BITS (type) =
15305 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15306 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15307
15308 TYPE_FIELD_PROTECTED_BITS (type) =
15309 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15310 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15311
15312 TYPE_FIELD_IGNORE_BITS (type) =
15313 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15314 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15315 }
15316
15317 /* If the type has baseclasses, allocate and clear a bit vector for
15318 TYPE_FIELD_VIRTUAL_BITS. */
15319 if (!fip->baseclasses.empty () && cu->language != language_ada)
15320 {
15321 int num_bytes = B_BYTES (fip->baseclasses.size ());
15322 unsigned char *pointer;
15323
15324 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15325 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15326 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15327 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15328 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15329 }
15330
15331 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15332 {
15333 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15334
15335 for (int index = 0; index < nfields; ++index)
15336 {
15337 struct nextfield &field = fip->fields[index];
15338
15339 if (field.variant.is_discriminant)
15340 di->discriminant_index = index;
15341 else if (field.variant.default_branch)
15342 di->default_index = index;
15343 else
15344 di->discriminants[index] = field.variant.discriminant_value;
15345 }
15346 }
15347
15348 /* Copy the saved-up fields into the field vector. */
15349 for (int i = 0; i < nfields; ++i)
15350 {
15351 struct nextfield &field
15352 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15353 : fip->fields[i - fip->baseclasses.size ()]);
15354
15355 TYPE_FIELD (type, i) = field.field;
15356 switch (field.accessibility)
15357 {
15358 case DW_ACCESS_private:
15359 if (cu->language != language_ada)
15360 SET_TYPE_FIELD_PRIVATE (type, i);
15361 break;
15362
15363 case DW_ACCESS_protected:
15364 if (cu->language != language_ada)
15365 SET_TYPE_FIELD_PROTECTED (type, i);
15366 break;
15367
15368 case DW_ACCESS_public:
15369 break;
15370
15371 default:
15372 /* Unknown accessibility. Complain and treat it as public. */
15373 {
15374 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15375 field.accessibility);
15376 }
15377 break;
15378 }
15379 if (i < fip->baseclasses.size ())
15380 {
15381 switch (field.virtuality)
15382 {
15383 case DW_VIRTUALITY_virtual:
15384 case DW_VIRTUALITY_pure_virtual:
15385 if (cu->language == language_ada)
15386 error (_("unexpected virtuality in component of Ada type"));
15387 SET_TYPE_FIELD_VIRTUAL (type, i);
15388 break;
15389 }
15390 }
15391 }
15392 }
15393
15394 /* Return true if this member function is a constructor, false
15395 otherwise. */
15396
15397 static int
15398 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15399 {
15400 const char *fieldname;
15401 const char *type_name;
15402 int len;
15403
15404 if (die->parent == NULL)
15405 return 0;
15406
15407 if (die->parent->tag != DW_TAG_structure_type
15408 && die->parent->tag != DW_TAG_union_type
15409 && die->parent->tag != DW_TAG_class_type)
15410 return 0;
15411
15412 fieldname = dwarf2_name (die, cu);
15413 type_name = dwarf2_name (die->parent, cu);
15414 if (fieldname == NULL || type_name == NULL)
15415 return 0;
15416
15417 len = strlen (fieldname);
15418 return (strncmp (fieldname, type_name, len) == 0
15419 && (type_name[len] == '\0' || type_name[len] == '<'));
15420 }
15421
15422 /* Add a member function to the proper fieldlist. */
15423
15424 static void
15425 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15426 struct type *type, struct dwarf2_cu *cu)
15427 {
15428 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15429 struct attribute *attr;
15430 int i;
15431 struct fnfieldlist *flp = nullptr;
15432 struct fn_field *fnp;
15433 const char *fieldname;
15434 struct type *this_type;
15435 enum dwarf_access_attribute accessibility;
15436
15437 if (cu->language == language_ada)
15438 error (_("unexpected member function in Ada type"));
15439
15440 /* Get name of member function. */
15441 fieldname = dwarf2_name (die, cu);
15442 if (fieldname == NULL)
15443 return;
15444
15445 /* Look up member function name in fieldlist. */
15446 for (i = 0; i < fip->fnfieldlists.size (); i++)
15447 {
15448 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15449 {
15450 flp = &fip->fnfieldlists[i];
15451 break;
15452 }
15453 }
15454
15455 /* Create a new fnfieldlist if necessary. */
15456 if (flp == nullptr)
15457 {
15458 fip->fnfieldlists.emplace_back ();
15459 flp = &fip->fnfieldlists.back ();
15460 flp->name = fieldname;
15461 i = fip->fnfieldlists.size () - 1;
15462 }
15463
15464 /* Create a new member function field and add it to the vector of
15465 fnfieldlists. */
15466 flp->fnfields.emplace_back ();
15467 fnp = &flp->fnfields.back ();
15468
15469 /* Delay processing of the physname until later. */
15470 if (cu->language == language_cplus)
15471 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15472 die, cu);
15473 else
15474 {
15475 const char *physname = dwarf2_physname (fieldname, die, cu);
15476 fnp->physname = physname ? physname : "";
15477 }
15478
15479 fnp->type = alloc_type (objfile);
15480 this_type = read_type_die (die, cu);
15481 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15482 {
15483 int nparams = TYPE_NFIELDS (this_type);
15484
15485 /* TYPE is the domain of this method, and THIS_TYPE is the type
15486 of the method itself (TYPE_CODE_METHOD). */
15487 smash_to_method_type (fnp->type, type,
15488 TYPE_TARGET_TYPE (this_type),
15489 TYPE_FIELDS (this_type),
15490 TYPE_NFIELDS (this_type),
15491 TYPE_VARARGS (this_type));
15492
15493 /* Handle static member functions.
15494 Dwarf2 has no clean way to discern C++ static and non-static
15495 member functions. G++ helps GDB by marking the first
15496 parameter for non-static member functions (which is the this
15497 pointer) as artificial. We obtain this information from
15498 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15499 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15500 fnp->voffset = VOFFSET_STATIC;
15501 }
15502 else
15503 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15504 dwarf2_full_name (fieldname, die, cu));
15505
15506 /* Get fcontext from DW_AT_containing_type if present. */
15507 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15508 fnp->fcontext = die_containing_type (die, cu);
15509
15510 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15511 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15512
15513 /* Get accessibility. */
15514 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15515 if (attr)
15516 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15517 else
15518 accessibility = dwarf2_default_access_attribute (die, cu);
15519 switch (accessibility)
15520 {
15521 case DW_ACCESS_private:
15522 fnp->is_private = 1;
15523 break;
15524 case DW_ACCESS_protected:
15525 fnp->is_protected = 1;
15526 break;
15527 }
15528
15529 /* Check for artificial methods. */
15530 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15531 if (attr && DW_UNSND (attr) != 0)
15532 fnp->is_artificial = 1;
15533
15534 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15535
15536 /* Get index in virtual function table if it is a virtual member
15537 function. For older versions of GCC, this is an offset in the
15538 appropriate virtual table, as specified by DW_AT_containing_type.
15539 For everyone else, it is an expression to be evaluated relative
15540 to the object address. */
15541
15542 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15543 if (attr)
15544 {
15545 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15546 {
15547 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15548 {
15549 /* Old-style GCC. */
15550 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15551 }
15552 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15553 || (DW_BLOCK (attr)->size > 1
15554 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15555 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15556 {
15557 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15558 if ((fnp->voffset % cu->header.addr_size) != 0)
15559 dwarf2_complex_location_expr_complaint ();
15560 else
15561 fnp->voffset /= cu->header.addr_size;
15562 fnp->voffset += 2;
15563 }
15564 else
15565 dwarf2_complex_location_expr_complaint ();
15566
15567 if (!fnp->fcontext)
15568 {
15569 /* If there is no `this' field and no DW_AT_containing_type,
15570 we cannot actually find a base class context for the
15571 vtable! */
15572 if (TYPE_NFIELDS (this_type) == 0
15573 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15574 {
15575 complaint (&symfile_complaints,
15576 _("cannot determine context for virtual member "
15577 "function \"%s\" (offset %s)"),
15578 fieldname, sect_offset_str (die->sect_off));
15579 }
15580 else
15581 {
15582 fnp->fcontext
15583 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15584 }
15585 }
15586 }
15587 else if (attr_form_is_section_offset (attr))
15588 {
15589 dwarf2_complex_location_expr_complaint ();
15590 }
15591 else
15592 {
15593 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15594 fieldname);
15595 }
15596 }
15597 else
15598 {
15599 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15600 if (attr && DW_UNSND (attr))
15601 {
15602 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15603 complaint (&symfile_complaints,
15604 _("Member function \"%s\" (offset %s) is virtual "
15605 "but the vtable offset is not specified"),
15606 fieldname, sect_offset_str (die->sect_off));
15607 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15608 TYPE_CPLUS_DYNAMIC (type) = 1;
15609 }
15610 }
15611 }
15612
15613 /* Create the vector of member function fields, and attach it to the type. */
15614
15615 static void
15616 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15617 struct dwarf2_cu *cu)
15618 {
15619 if (cu->language == language_ada)
15620 error (_("unexpected member functions in Ada type"));
15621
15622 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15623 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15624 TYPE_ALLOC (type,
15625 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15626
15627 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15628 {
15629 struct fnfieldlist &nf = fip->fnfieldlists[i];
15630 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15631
15632 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15633 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15634 fn_flp->fn_fields = (struct fn_field *)
15635 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15636
15637 for (int k = 0; k < nf.fnfields.size (); ++k)
15638 fn_flp->fn_fields[k] = nf.fnfields[k];
15639 }
15640
15641 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15642 }
15643
15644 /* Returns non-zero if NAME is the name of a vtable member in CU's
15645 language, zero otherwise. */
15646 static int
15647 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15648 {
15649 static const char vptr[] = "_vptr";
15650
15651 /* Look for the C++ form of the vtable. */
15652 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15653 return 1;
15654
15655 return 0;
15656 }
15657
15658 /* GCC outputs unnamed structures that are really pointers to member
15659 functions, with the ABI-specified layout. If TYPE describes
15660 such a structure, smash it into a member function type.
15661
15662 GCC shouldn't do this; it should just output pointer to member DIEs.
15663 This is GCC PR debug/28767. */
15664
15665 static void
15666 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15667 {
15668 struct type *pfn_type, *self_type, *new_type;
15669
15670 /* Check for a structure with no name and two children. */
15671 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15672 return;
15673
15674 /* Check for __pfn and __delta members. */
15675 if (TYPE_FIELD_NAME (type, 0) == NULL
15676 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15677 || TYPE_FIELD_NAME (type, 1) == NULL
15678 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15679 return;
15680
15681 /* Find the type of the method. */
15682 pfn_type = TYPE_FIELD_TYPE (type, 0);
15683 if (pfn_type == NULL
15684 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15685 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15686 return;
15687
15688 /* Look for the "this" argument. */
15689 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15690 if (TYPE_NFIELDS (pfn_type) == 0
15691 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15692 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15693 return;
15694
15695 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15696 new_type = alloc_type (objfile);
15697 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15698 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15699 TYPE_VARARGS (pfn_type));
15700 smash_to_methodptr_type (type, new_type);
15701 }
15702
15703
15704 /* Called when we find the DIE that starts a structure or union scope
15705 (definition) to create a type for the structure or union. Fill in
15706 the type's name and general properties; the members will not be
15707 processed until process_structure_scope. A symbol table entry for
15708 the type will also not be done until process_structure_scope (assuming
15709 the type has a name).
15710
15711 NOTE: we need to call these functions regardless of whether or not the
15712 DIE has a DW_AT_name attribute, since it might be an anonymous
15713 structure or union. This gets the type entered into our set of
15714 user defined types. */
15715
15716 static struct type *
15717 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15718 {
15719 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15720 struct type *type;
15721 struct attribute *attr;
15722 const char *name;
15723
15724 /* If the definition of this type lives in .debug_types, read that type.
15725 Don't follow DW_AT_specification though, that will take us back up
15726 the chain and we want to go down. */
15727 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15728 if (attr)
15729 {
15730 type = get_DW_AT_signature_type (die, attr, cu);
15731
15732 /* The type's CU may not be the same as CU.
15733 Ensure TYPE is recorded with CU in die_type_hash. */
15734 return set_die_type (die, type, cu);
15735 }
15736
15737 type = alloc_type (objfile);
15738 INIT_CPLUS_SPECIFIC (type);
15739
15740 name = dwarf2_name (die, cu);
15741 if (name != NULL)
15742 {
15743 if (cu->language == language_cplus
15744 || cu->language == language_d
15745 || cu->language == language_rust)
15746 {
15747 const char *full_name = dwarf2_full_name (name, die, cu);
15748
15749 /* dwarf2_full_name might have already finished building the DIE's
15750 type. If so, there is no need to continue. */
15751 if (get_die_type (die, cu) != NULL)
15752 return get_die_type (die, cu);
15753
15754 TYPE_TAG_NAME (type) = full_name;
15755 if (die->tag == DW_TAG_structure_type
15756 || die->tag == DW_TAG_class_type)
15757 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15758 }
15759 else
15760 {
15761 /* The name is already allocated along with this objfile, so
15762 we don't need to duplicate it for the type. */
15763 TYPE_TAG_NAME (type) = name;
15764 if (die->tag == DW_TAG_class_type)
15765 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15766 }
15767 }
15768
15769 if (die->tag == DW_TAG_structure_type)
15770 {
15771 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15772 }
15773 else if (die->tag == DW_TAG_union_type)
15774 {
15775 TYPE_CODE (type) = TYPE_CODE_UNION;
15776 }
15777 else if (die->tag == DW_TAG_variant_part)
15778 {
15779 TYPE_CODE (type) = TYPE_CODE_UNION;
15780 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15781 }
15782 else
15783 {
15784 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15785 }
15786
15787 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15788 TYPE_DECLARED_CLASS (type) = 1;
15789
15790 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15791 if (attr)
15792 {
15793 if (attr_form_is_constant (attr))
15794 TYPE_LENGTH (type) = DW_UNSND (attr);
15795 else
15796 {
15797 /* For the moment, dynamic type sizes are not supported
15798 by GDB's struct type. The actual size is determined
15799 on-demand when resolving the type of a given object,
15800 so set the type's length to zero for now. Otherwise,
15801 we record an expression as the length, and that expression
15802 could lead to a very large value, which could eventually
15803 lead to us trying to allocate that much memory when creating
15804 a value of that type. */
15805 TYPE_LENGTH (type) = 0;
15806 }
15807 }
15808 else
15809 {
15810 TYPE_LENGTH (type) = 0;
15811 }
15812
15813 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15814 {
15815 /* ICC<14 does not output the required DW_AT_declaration on
15816 incomplete types, but gives them a size of zero. */
15817 TYPE_STUB (type) = 1;
15818 }
15819 else
15820 TYPE_STUB_SUPPORTED (type) = 1;
15821
15822 if (die_is_declaration (die, cu))
15823 TYPE_STUB (type) = 1;
15824 else if (attr == NULL && die->child == NULL
15825 && producer_is_realview (cu->producer))
15826 /* RealView does not output the required DW_AT_declaration
15827 on incomplete types. */
15828 TYPE_STUB (type) = 1;
15829
15830 /* We need to add the type field to the die immediately so we don't
15831 infinitely recurse when dealing with pointers to the structure
15832 type within the structure itself. */
15833 set_die_type (die, type, cu);
15834
15835 /* set_die_type should be already done. */
15836 set_descriptive_type (type, die, cu);
15837
15838 return type;
15839 }
15840
15841 /* A helper for process_structure_scope that handles a single member
15842 DIE. */
15843
15844 static void
15845 handle_struct_member_die (struct die_info *child_die, struct type *type,
15846 struct field_info *fi,
15847 std::vector<struct symbol *> *template_args,
15848 struct dwarf2_cu *cu)
15849 {
15850 if (child_die->tag == DW_TAG_member
15851 || child_die->tag == DW_TAG_variable
15852 || child_die->tag == DW_TAG_variant_part)
15853 {
15854 /* NOTE: carlton/2002-11-05: A C++ static data member
15855 should be a DW_TAG_member that is a declaration, but
15856 all versions of G++ as of this writing (so through at
15857 least 3.2.1) incorrectly generate DW_TAG_variable
15858 tags for them instead. */
15859 dwarf2_add_field (fi, child_die, cu);
15860 }
15861 else if (child_die->tag == DW_TAG_subprogram)
15862 {
15863 /* Rust doesn't have member functions in the C++ sense.
15864 However, it does emit ordinary functions as children
15865 of a struct DIE. */
15866 if (cu->language == language_rust)
15867 read_func_scope (child_die, cu);
15868 else
15869 {
15870 /* C++ member function. */
15871 dwarf2_add_member_fn (fi, child_die, type, cu);
15872 }
15873 }
15874 else if (child_die->tag == DW_TAG_inheritance)
15875 {
15876 /* C++ base class field. */
15877 dwarf2_add_field (fi, child_die, cu);
15878 }
15879 else if (type_can_define_types (child_die))
15880 dwarf2_add_type_defn (fi, child_die, cu);
15881 else if (child_die->tag == DW_TAG_template_type_param
15882 || child_die->tag == DW_TAG_template_value_param)
15883 {
15884 struct symbol *arg = new_symbol (child_die, NULL, cu);
15885
15886 if (arg != NULL)
15887 template_args->push_back (arg);
15888 }
15889 else if (child_die->tag == DW_TAG_variant)
15890 {
15891 /* In a variant we want to get the discriminant and also add a
15892 field for our sole member child. */
15893 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15894
15895 for (struct die_info *variant_child = child_die->child;
15896 variant_child != NULL;
15897 variant_child = sibling_die (variant_child))
15898 {
15899 if (variant_child->tag == DW_TAG_member)
15900 {
15901 handle_struct_member_die (variant_child, type, fi,
15902 template_args, cu);
15903 /* Only handle the one. */
15904 break;
15905 }
15906 }
15907
15908 /* We don't handle this but we might as well report it if we see
15909 it. */
15910 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15911 complaint (&symfile_complaints,
15912 _("DW_AT_discr_list is not supported yet"
15913 " - DIE at %s [in module %s]"),
15914 sect_offset_str (child_die->sect_off),
15915 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15916
15917 /* The first field was just added, so we can stash the
15918 discriminant there. */
15919 gdb_assert (!fi->fields.empty ());
15920 if (discr == NULL)
15921 fi->fields.back ().variant.default_branch = true;
15922 else
15923 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15924 }
15925 }
15926
15927 /* Finish creating a structure or union type, including filling in
15928 its members and creating a symbol for it. */
15929
15930 static void
15931 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15932 {
15933 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15934 struct die_info *child_die;
15935 struct type *type;
15936
15937 type = get_die_type (die, cu);
15938 if (type == NULL)
15939 type = read_structure_type (die, cu);
15940
15941 /* When reading a DW_TAG_variant_part, we need to notice when we
15942 read the discriminant member, so we can record it later in the
15943 discriminant_info. */
15944 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15945 sect_offset discr_offset;
15946
15947 if (is_variant_part)
15948 {
15949 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15950 if (discr == NULL)
15951 {
15952 /* Maybe it's a univariant form, an extension we support.
15953 In this case arrange not to check the offset. */
15954 is_variant_part = false;
15955 }
15956 else if (attr_form_is_ref (discr))
15957 {
15958 struct dwarf2_cu *target_cu = cu;
15959 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15960
15961 discr_offset = target_die->sect_off;
15962 }
15963 else
15964 {
15965 complaint (&symfile_complaints,
15966 _("DW_AT_discr does not have DIE reference form"
15967 " - DIE at %s [in module %s]"),
15968 sect_offset_str (die->sect_off),
15969 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15970 is_variant_part = false;
15971 }
15972 }
15973
15974 if (die->child != NULL && ! die_is_declaration (die, cu))
15975 {
15976 struct field_info fi;
15977 std::vector<struct symbol *> template_args;
15978
15979 child_die = die->child;
15980
15981 while (child_die && child_die->tag)
15982 {
15983 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15984
15985 if (is_variant_part && discr_offset == child_die->sect_off)
15986 fi.fields.back ().variant.is_discriminant = true;
15987
15988 child_die = sibling_die (child_die);
15989 }
15990
15991 /* Attach template arguments to type. */
15992 if (!template_args.empty ())
15993 {
15994 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15995 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15996 TYPE_TEMPLATE_ARGUMENTS (type)
15997 = XOBNEWVEC (&objfile->objfile_obstack,
15998 struct symbol *,
15999 TYPE_N_TEMPLATE_ARGUMENTS (type));
16000 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16001 template_args.data (),
16002 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16003 * sizeof (struct symbol *)));
16004 }
16005
16006 /* Attach fields and member functions to the type. */
16007 if (fi.nfields)
16008 dwarf2_attach_fields_to_type (&fi, type, cu);
16009 if (!fi.fnfieldlists.empty ())
16010 {
16011 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16012
16013 /* Get the type which refers to the base class (possibly this
16014 class itself) which contains the vtable pointer for the current
16015 class from the DW_AT_containing_type attribute. This use of
16016 DW_AT_containing_type is a GNU extension. */
16017
16018 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16019 {
16020 struct type *t = die_containing_type (die, cu);
16021
16022 set_type_vptr_basetype (type, t);
16023 if (type == t)
16024 {
16025 int i;
16026
16027 /* Our own class provides vtbl ptr. */
16028 for (i = TYPE_NFIELDS (t) - 1;
16029 i >= TYPE_N_BASECLASSES (t);
16030 --i)
16031 {
16032 const char *fieldname = TYPE_FIELD_NAME (t, i);
16033
16034 if (is_vtable_name (fieldname, cu))
16035 {
16036 set_type_vptr_fieldno (type, i);
16037 break;
16038 }
16039 }
16040
16041 /* Complain if virtual function table field not found. */
16042 if (i < TYPE_N_BASECLASSES (t))
16043 complaint (&symfile_complaints,
16044 _("virtual function table pointer "
16045 "not found when defining class '%s'"),
16046 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
16047 "");
16048 }
16049 else
16050 {
16051 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16052 }
16053 }
16054 else if (cu->producer
16055 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16056 {
16057 /* The IBM XLC compiler does not provide direct indication
16058 of the containing type, but the vtable pointer is
16059 always named __vfp. */
16060
16061 int i;
16062
16063 for (i = TYPE_NFIELDS (type) - 1;
16064 i >= TYPE_N_BASECLASSES (type);
16065 --i)
16066 {
16067 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16068 {
16069 set_type_vptr_fieldno (type, i);
16070 set_type_vptr_basetype (type, type);
16071 break;
16072 }
16073 }
16074 }
16075 }
16076
16077 /* Copy fi.typedef_field_list linked list elements content into the
16078 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16079 if (!fi.typedef_field_list.empty ())
16080 {
16081 int count = fi.typedef_field_list.size ();
16082
16083 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16084 TYPE_TYPEDEF_FIELD_ARRAY (type)
16085 = ((struct decl_field *)
16086 TYPE_ALLOC (type,
16087 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16088 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16089
16090 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16091 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16092 }
16093
16094 /* Copy fi.nested_types_list linked list elements content into the
16095 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16096 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16097 {
16098 int count = fi.nested_types_list.size ();
16099
16100 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16101 TYPE_NESTED_TYPES_ARRAY (type)
16102 = ((struct decl_field *)
16103 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16104 TYPE_NESTED_TYPES_COUNT (type) = count;
16105
16106 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16107 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16108 }
16109 }
16110
16111 quirk_gcc_member_function_pointer (type, objfile);
16112 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16113 cu->rust_unions.push_back (type);
16114
16115 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16116 snapshots) has been known to create a die giving a declaration
16117 for a class that has, as a child, a die giving a definition for a
16118 nested class. So we have to process our children even if the
16119 current die is a declaration. Normally, of course, a declaration
16120 won't have any children at all. */
16121
16122 child_die = die->child;
16123
16124 while (child_die != NULL && child_die->tag)
16125 {
16126 if (child_die->tag == DW_TAG_member
16127 || child_die->tag == DW_TAG_variable
16128 || child_die->tag == DW_TAG_inheritance
16129 || child_die->tag == DW_TAG_template_value_param
16130 || child_die->tag == DW_TAG_template_type_param)
16131 {
16132 /* Do nothing. */
16133 }
16134 else
16135 process_die (child_die, cu);
16136
16137 child_die = sibling_die (child_die);
16138 }
16139
16140 /* Do not consider external references. According to the DWARF standard,
16141 these DIEs are identified by the fact that they have no byte_size
16142 attribute, and a declaration attribute. */
16143 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16144 || !die_is_declaration (die, cu))
16145 new_symbol (die, type, cu);
16146 }
16147
16148 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16149 update TYPE using some information only available in DIE's children. */
16150
16151 static void
16152 update_enumeration_type_from_children (struct die_info *die,
16153 struct type *type,
16154 struct dwarf2_cu *cu)
16155 {
16156 struct die_info *child_die;
16157 int unsigned_enum = 1;
16158 int flag_enum = 1;
16159 ULONGEST mask = 0;
16160
16161 auto_obstack obstack;
16162
16163 for (child_die = die->child;
16164 child_die != NULL && child_die->tag;
16165 child_die = sibling_die (child_die))
16166 {
16167 struct attribute *attr;
16168 LONGEST value;
16169 const gdb_byte *bytes;
16170 struct dwarf2_locexpr_baton *baton;
16171 const char *name;
16172
16173 if (child_die->tag != DW_TAG_enumerator)
16174 continue;
16175
16176 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16177 if (attr == NULL)
16178 continue;
16179
16180 name = dwarf2_name (child_die, cu);
16181 if (name == NULL)
16182 name = "<anonymous enumerator>";
16183
16184 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16185 &value, &bytes, &baton);
16186 if (value < 0)
16187 {
16188 unsigned_enum = 0;
16189 flag_enum = 0;
16190 }
16191 else if ((mask & value) != 0)
16192 flag_enum = 0;
16193 else
16194 mask |= value;
16195
16196 /* If we already know that the enum type is neither unsigned, nor
16197 a flag type, no need to look at the rest of the enumerates. */
16198 if (!unsigned_enum && !flag_enum)
16199 break;
16200 }
16201
16202 if (unsigned_enum)
16203 TYPE_UNSIGNED (type) = 1;
16204 if (flag_enum)
16205 TYPE_FLAG_ENUM (type) = 1;
16206 }
16207
16208 /* Given a DW_AT_enumeration_type die, set its type. We do not
16209 complete the type's fields yet, or create any symbols. */
16210
16211 static struct type *
16212 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16213 {
16214 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16215 struct type *type;
16216 struct attribute *attr;
16217 const char *name;
16218
16219 /* If the definition of this type lives in .debug_types, read that type.
16220 Don't follow DW_AT_specification though, that will take us back up
16221 the chain and we want to go down. */
16222 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16223 if (attr)
16224 {
16225 type = get_DW_AT_signature_type (die, attr, cu);
16226
16227 /* The type's CU may not be the same as CU.
16228 Ensure TYPE is recorded with CU in die_type_hash. */
16229 return set_die_type (die, type, cu);
16230 }
16231
16232 type = alloc_type (objfile);
16233
16234 TYPE_CODE (type) = TYPE_CODE_ENUM;
16235 name = dwarf2_full_name (NULL, die, cu);
16236 if (name != NULL)
16237 TYPE_TAG_NAME (type) = name;
16238
16239 attr = dwarf2_attr (die, DW_AT_type, cu);
16240 if (attr != NULL)
16241 {
16242 struct type *underlying_type = die_type (die, cu);
16243
16244 TYPE_TARGET_TYPE (type) = underlying_type;
16245 }
16246
16247 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16248 if (attr)
16249 {
16250 TYPE_LENGTH (type) = DW_UNSND (attr);
16251 }
16252 else
16253 {
16254 TYPE_LENGTH (type) = 0;
16255 }
16256
16257 /* The enumeration DIE can be incomplete. In Ada, any type can be
16258 declared as private in the package spec, and then defined only
16259 inside the package body. Such types are known as Taft Amendment
16260 Types. When another package uses such a type, an incomplete DIE
16261 may be generated by the compiler. */
16262 if (die_is_declaration (die, cu))
16263 TYPE_STUB (type) = 1;
16264
16265 /* Finish the creation of this type by using the enum's children.
16266 We must call this even when the underlying type has been provided
16267 so that we can determine if we're looking at a "flag" enum. */
16268 update_enumeration_type_from_children (die, type, cu);
16269
16270 /* If this type has an underlying type that is not a stub, then we
16271 may use its attributes. We always use the "unsigned" attribute
16272 in this situation, because ordinarily we guess whether the type
16273 is unsigned -- but the guess can be wrong and the underlying type
16274 can tell us the reality. However, we defer to a local size
16275 attribute if one exists, because this lets the compiler override
16276 the underlying type if needed. */
16277 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16278 {
16279 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16280 if (TYPE_LENGTH (type) == 0)
16281 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16282 }
16283
16284 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16285
16286 return set_die_type (die, type, cu);
16287 }
16288
16289 /* Given a pointer to a die which begins an enumeration, process all
16290 the dies that define the members of the enumeration, and create the
16291 symbol for the enumeration type.
16292
16293 NOTE: We reverse the order of the element list. */
16294
16295 static void
16296 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16297 {
16298 struct type *this_type;
16299
16300 this_type = get_die_type (die, cu);
16301 if (this_type == NULL)
16302 this_type = read_enumeration_type (die, cu);
16303
16304 if (die->child != NULL)
16305 {
16306 struct die_info *child_die;
16307 struct symbol *sym;
16308 struct field *fields = NULL;
16309 int num_fields = 0;
16310 const char *name;
16311
16312 child_die = die->child;
16313 while (child_die && child_die->tag)
16314 {
16315 if (child_die->tag != DW_TAG_enumerator)
16316 {
16317 process_die (child_die, cu);
16318 }
16319 else
16320 {
16321 name = dwarf2_name (child_die, cu);
16322 if (name)
16323 {
16324 sym = new_symbol (child_die, this_type, cu);
16325
16326 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16327 {
16328 fields = (struct field *)
16329 xrealloc (fields,
16330 (num_fields + DW_FIELD_ALLOC_CHUNK)
16331 * sizeof (struct field));
16332 }
16333
16334 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16335 FIELD_TYPE (fields[num_fields]) = NULL;
16336 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16337 FIELD_BITSIZE (fields[num_fields]) = 0;
16338
16339 num_fields++;
16340 }
16341 }
16342
16343 child_die = sibling_die (child_die);
16344 }
16345
16346 if (num_fields)
16347 {
16348 TYPE_NFIELDS (this_type) = num_fields;
16349 TYPE_FIELDS (this_type) = (struct field *)
16350 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16351 memcpy (TYPE_FIELDS (this_type), fields,
16352 sizeof (struct field) * num_fields);
16353 xfree (fields);
16354 }
16355 }
16356
16357 /* If we are reading an enum from a .debug_types unit, and the enum
16358 is a declaration, and the enum is not the signatured type in the
16359 unit, then we do not want to add a symbol for it. Adding a
16360 symbol would in some cases obscure the true definition of the
16361 enum, giving users an incomplete type when the definition is
16362 actually available. Note that we do not want to do this for all
16363 enums which are just declarations, because C++0x allows forward
16364 enum declarations. */
16365 if (cu->per_cu->is_debug_types
16366 && die_is_declaration (die, cu))
16367 {
16368 struct signatured_type *sig_type;
16369
16370 sig_type = (struct signatured_type *) cu->per_cu;
16371 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16372 if (sig_type->type_offset_in_section != die->sect_off)
16373 return;
16374 }
16375
16376 new_symbol (die, this_type, cu);
16377 }
16378
16379 /* Extract all information from a DW_TAG_array_type DIE and put it in
16380 the DIE's type field. For now, this only handles one dimensional
16381 arrays. */
16382
16383 static struct type *
16384 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16385 {
16386 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16387 struct die_info *child_die;
16388 struct type *type;
16389 struct type *element_type, *range_type, *index_type;
16390 struct attribute *attr;
16391 const char *name;
16392 struct dynamic_prop *byte_stride_prop = NULL;
16393 unsigned int bit_stride = 0;
16394
16395 element_type = die_type (die, cu);
16396
16397 /* The die_type call above may have already set the type for this DIE. */
16398 type = get_die_type (die, cu);
16399 if (type)
16400 return type;
16401
16402 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16403 if (attr != NULL)
16404 {
16405 int stride_ok;
16406
16407 byte_stride_prop
16408 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16409 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16410 if (!stride_ok)
16411 {
16412 complaint (&symfile_complaints,
16413 _("unable to read array DW_AT_byte_stride "
16414 " - DIE at %s [in module %s]"),
16415 sect_offset_str (die->sect_off),
16416 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16417 /* Ignore this attribute. We will likely not be able to print
16418 arrays of this type correctly, but there is little we can do
16419 to help if we cannot read the attribute's value. */
16420 byte_stride_prop = NULL;
16421 }
16422 }
16423
16424 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16425 if (attr != NULL)
16426 bit_stride = DW_UNSND (attr);
16427
16428 /* Irix 6.2 native cc creates array types without children for
16429 arrays with unspecified length. */
16430 if (die->child == NULL)
16431 {
16432 index_type = objfile_type (objfile)->builtin_int;
16433 range_type = create_static_range_type (NULL, index_type, 0, -1);
16434 type = create_array_type_with_stride (NULL, element_type, range_type,
16435 byte_stride_prop, bit_stride);
16436 return set_die_type (die, type, cu);
16437 }
16438
16439 std::vector<struct type *> range_types;
16440 child_die = die->child;
16441 while (child_die && child_die->tag)
16442 {
16443 if (child_die->tag == DW_TAG_subrange_type)
16444 {
16445 struct type *child_type = read_type_die (child_die, cu);
16446
16447 if (child_type != NULL)
16448 {
16449 /* The range type was succesfully read. Save it for the
16450 array type creation. */
16451 range_types.push_back (child_type);
16452 }
16453 }
16454 child_die = sibling_die (child_die);
16455 }
16456
16457 /* Dwarf2 dimensions are output from left to right, create the
16458 necessary array types in backwards order. */
16459
16460 type = element_type;
16461
16462 if (read_array_order (die, cu) == DW_ORD_col_major)
16463 {
16464 int i = 0;
16465
16466 while (i < range_types.size ())
16467 type = create_array_type_with_stride (NULL, type, range_types[i++],
16468 byte_stride_prop, bit_stride);
16469 }
16470 else
16471 {
16472 size_t ndim = range_types.size ();
16473 while (ndim-- > 0)
16474 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16475 byte_stride_prop, bit_stride);
16476 }
16477
16478 /* Understand Dwarf2 support for vector types (like they occur on
16479 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16480 array type. This is not part of the Dwarf2/3 standard yet, but a
16481 custom vendor extension. The main difference between a regular
16482 array and the vector variant is that vectors are passed by value
16483 to functions. */
16484 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16485 if (attr)
16486 make_vector_type (type);
16487
16488 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16489 implementation may choose to implement triple vectors using this
16490 attribute. */
16491 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16492 if (attr)
16493 {
16494 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16495 TYPE_LENGTH (type) = DW_UNSND (attr);
16496 else
16497 complaint (&symfile_complaints,
16498 _("DW_AT_byte_size for array type smaller "
16499 "than the total size of elements"));
16500 }
16501
16502 name = dwarf2_name (die, cu);
16503 if (name)
16504 TYPE_NAME (type) = name;
16505
16506 /* Install the type in the die. */
16507 set_die_type (die, type, cu);
16508
16509 /* set_die_type should be already done. */
16510 set_descriptive_type (type, die, cu);
16511
16512 return type;
16513 }
16514
16515 static enum dwarf_array_dim_ordering
16516 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16517 {
16518 struct attribute *attr;
16519
16520 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16521
16522 if (attr)
16523 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16524
16525 /* GNU F77 is a special case, as at 08/2004 array type info is the
16526 opposite order to the dwarf2 specification, but data is still
16527 laid out as per normal fortran.
16528
16529 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16530 version checking. */
16531
16532 if (cu->language == language_fortran
16533 && cu->producer && strstr (cu->producer, "GNU F77"))
16534 {
16535 return DW_ORD_row_major;
16536 }
16537
16538 switch (cu->language_defn->la_array_ordering)
16539 {
16540 case array_column_major:
16541 return DW_ORD_col_major;
16542 case array_row_major:
16543 default:
16544 return DW_ORD_row_major;
16545 };
16546 }
16547
16548 /* Extract all information from a DW_TAG_set_type DIE and put it in
16549 the DIE's type field. */
16550
16551 static struct type *
16552 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16553 {
16554 struct type *domain_type, *set_type;
16555 struct attribute *attr;
16556
16557 domain_type = die_type (die, cu);
16558
16559 /* The die_type call above may have already set the type for this DIE. */
16560 set_type = get_die_type (die, cu);
16561 if (set_type)
16562 return set_type;
16563
16564 set_type = create_set_type (NULL, domain_type);
16565
16566 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16567 if (attr)
16568 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16569
16570 return set_die_type (die, set_type, cu);
16571 }
16572
16573 /* A helper for read_common_block that creates a locexpr baton.
16574 SYM is the symbol which we are marking as computed.
16575 COMMON_DIE is the DIE for the common block.
16576 COMMON_LOC is the location expression attribute for the common
16577 block itself.
16578 MEMBER_LOC is the location expression attribute for the particular
16579 member of the common block that we are processing.
16580 CU is the CU from which the above come. */
16581
16582 static void
16583 mark_common_block_symbol_computed (struct symbol *sym,
16584 struct die_info *common_die,
16585 struct attribute *common_loc,
16586 struct attribute *member_loc,
16587 struct dwarf2_cu *cu)
16588 {
16589 struct dwarf2_per_objfile *dwarf2_per_objfile
16590 = cu->per_cu->dwarf2_per_objfile;
16591 struct objfile *objfile = dwarf2_per_objfile->objfile;
16592 struct dwarf2_locexpr_baton *baton;
16593 gdb_byte *ptr;
16594 unsigned int cu_off;
16595 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16596 LONGEST offset = 0;
16597
16598 gdb_assert (common_loc && member_loc);
16599 gdb_assert (attr_form_is_block (common_loc));
16600 gdb_assert (attr_form_is_block (member_loc)
16601 || attr_form_is_constant (member_loc));
16602
16603 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16604 baton->per_cu = cu->per_cu;
16605 gdb_assert (baton->per_cu);
16606
16607 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16608
16609 if (attr_form_is_constant (member_loc))
16610 {
16611 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16612 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16613 }
16614 else
16615 baton->size += DW_BLOCK (member_loc)->size;
16616
16617 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16618 baton->data = ptr;
16619
16620 *ptr++ = DW_OP_call4;
16621 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16622 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16623 ptr += 4;
16624
16625 if (attr_form_is_constant (member_loc))
16626 {
16627 *ptr++ = DW_OP_addr;
16628 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16629 ptr += cu->header.addr_size;
16630 }
16631 else
16632 {
16633 /* We have to copy the data here, because DW_OP_call4 will only
16634 use a DW_AT_location attribute. */
16635 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16636 ptr += DW_BLOCK (member_loc)->size;
16637 }
16638
16639 *ptr++ = DW_OP_plus;
16640 gdb_assert (ptr - baton->data == baton->size);
16641
16642 SYMBOL_LOCATION_BATON (sym) = baton;
16643 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16644 }
16645
16646 /* Create appropriate locally-scoped variables for all the
16647 DW_TAG_common_block entries. Also create a struct common_block
16648 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16649 is used to sepate the common blocks name namespace from regular
16650 variable names. */
16651
16652 static void
16653 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16654 {
16655 struct attribute *attr;
16656
16657 attr = dwarf2_attr (die, DW_AT_location, cu);
16658 if (attr)
16659 {
16660 /* Support the .debug_loc offsets. */
16661 if (attr_form_is_block (attr))
16662 {
16663 /* Ok. */
16664 }
16665 else if (attr_form_is_section_offset (attr))
16666 {
16667 dwarf2_complex_location_expr_complaint ();
16668 attr = NULL;
16669 }
16670 else
16671 {
16672 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16673 "common block member");
16674 attr = NULL;
16675 }
16676 }
16677
16678 if (die->child != NULL)
16679 {
16680 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16681 struct die_info *child_die;
16682 size_t n_entries = 0, size;
16683 struct common_block *common_block;
16684 struct symbol *sym;
16685
16686 for (child_die = die->child;
16687 child_die && child_die->tag;
16688 child_die = sibling_die (child_die))
16689 ++n_entries;
16690
16691 size = (sizeof (struct common_block)
16692 + (n_entries - 1) * sizeof (struct symbol *));
16693 common_block
16694 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16695 size);
16696 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16697 common_block->n_entries = 0;
16698
16699 for (child_die = die->child;
16700 child_die && child_die->tag;
16701 child_die = sibling_die (child_die))
16702 {
16703 /* Create the symbol in the DW_TAG_common_block block in the current
16704 symbol scope. */
16705 sym = new_symbol (child_die, NULL, cu);
16706 if (sym != NULL)
16707 {
16708 struct attribute *member_loc;
16709
16710 common_block->contents[common_block->n_entries++] = sym;
16711
16712 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16713 cu);
16714 if (member_loc)
16715 {
16716 /* GDB has handled this for a long time, but it is
16717 not specified by DWARF. It seems to have been
16718 emitted by gfortran at least as recently as:
16719 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16720 complaint (&symfile_complaints,
16721 _("Variable in common block has "
16722 "DW_AT_data_member_location "
16723 "- DIE at %s [in module %s]"),
16724 sect_offset_str (child_die->sect_off),
16725 objfile_name (objfile));
16726
16727 if (attr_form_is_section_offset (member_loc))
16728 dwarf2_complex_location_expr_complaint ();
16729 else if (attr_form_is_constant (member_loc)
16730 || attr_form_is_block (member_loc))
16731 {
16732 if (attr)
16733 mark_common_block_symbol_computed (sym, die, attr,
16734 member_loc, cu);
16735 }
16736 else
16737 dwarf2_complex_location_expr_complaint ();
16738 }
16739 }
16740 }
16741
16742 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16743 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16744 }
16745 }
16746
16747 /* Create a type for a C++ namespace. */
16748
16749 static struct type *
16750 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16751 {
16752 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16753 const char *previous_prefix, *name;
16754 int is_anonymous;
16755 struct type *type;
16756
16757 /* For extensions, reuse the type of the original namespace. */
16758 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16759 {
16760 struct die_info *ext_die;
16761 struct dwarf2_cu *ext_cu = cu;
16762
16763 ext_die = dwarf2_extension (die, &ext_cu);
16764 type = read_type_die (ext_die, ext_cu);
16765
16766 /* EXT_CU may not be the same as CU.
16767 Ensure TYPE is recorded with CU in die_type_hash. */
16768 return set_die_type (die, type, cu);
16769 }
16770
16771 name = namespace_name (die, &is_anonymous, cu);
16772
16773 /* Now build the name of the current namespace. */
16774
16775 previous_prefix = determine_prefix (die, cu);
16776 if (previous_prefix[0] != '\0')
16777 name = typename_concat (&objfile->objfile_obstack,
16778 previous_prefix, name, 0, cu);
16779
16780 /* Create the type. */
16781 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16782 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16783
16784 return set_die_type (die, type, cu);
16785 }
16786
16787 /* Read a namespace scope. */
16788
16789 static void
16790 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16791 {
16792 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16793 int is_anonymous;
16794
16795 /* Add a symbol associated to this if we haven't seen the namespace
16796 before. Also, add a using directive if it's an anonymous
16797 namespace. */
16798
16799 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16800 {
16801 struct type *type;
16802
16803 type = read_type_die (die, cu);
16804 new_symbol (die, type, cu);
16805
16806 namespace_name (die, &is_anonymous, cu);
16807 if (is_anonymous)
16808 {
16809 const char *previous_prefix = determine_prefix (die, cu);
16810
16811 std::vector<const char *> excludes;
16812 add_using_directive (using_directives (cu->language),
16813 previous_prefix, TYPE_NAME (type), NULL,
16814 NULL, excludes, 0, &objfile->objfile_obstack);
16815 }
16816 }
16817
16818 if (die->child != NULL)
16819 {
16820 struct die_info *child_die = die->child;
16821
16822 while (child_die && child_die->tag)
16823 {
16824 process_die (child_die, cu);
16825 child_die = sibling_die (child_die);
16826 }
16827 }
16828 }
16829
16830 /* Read a Fortran module as type. This DIE can be only a declaration used for
16831 imported module. Still we need that type as local Fortran "use ... only"
16832 declaration imports depend on the created type in determine_prefix. */
16833
16834 static struct type *
16835 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16836 {
16837 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16838 const char *module_name;
16839 struct type *type;
16840
16841 module_name = dwarf2_name (die, cu);
16842 if (!module_name)
16843 complaint (&symfile_complaints,
16844 _("DW_TAG_module has no name, offset %s"),
16845 sect_offset_str (die->sect_off));
16846 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16847
16848 /* determine_prefix uses TYPE_TAG_NAME. */
16849 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16850
16851 return set_die_type (die, type, cu);
16852 }
16853
16854 /* Read a Fortran module. */
16855
16856 static void
16857 read_module (struct die_info *die, struct dwarf2_cu *cu)
16858 {
16859 struct die_info *child_die = die->child;
16860 struct type *type;
16861
16862 type = read_type_die (die, cu);
16863 new_symbol (die, type, cu);
16864
16865 while (child_die && child_die->tag)
16866 {
16867 process_die (child_die, cu);
16868 child_die = sibling_die (child_die);
16869 }
16870 }
16871
16872 /* Return the name of the namespace represented by DIE. Set
16873 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16874 namespace. */
16875
16876 static const char *
16877 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16878 {
16879 struct die_info *current_die;
16880 const char *name = NULL;
16881
16882 /* Loop through the extensions until we find a name. */
16883
16884 for (current_die = die;
16885 current_die != NULL;
16886 current_die = dwarf2_extension (die, &cu))
16887 {
16888 /* We don't use dwarf2_name here so that we can detect the absence
16889 of a name -> anonymous namespace. */
16890 name = dwarf2_string_attr (die, DW_AT_name, cu);
16891
16892 if (name != NULL)
16893 break;
16894 }
16895
16896 /* Is it an anonymous namespace? */
16897
16898 *is_anonymous = (name == NULL);
16899 if (*is_anonymous)
16900 name = CP_ANONYMOUS_NAMESPACE_STR;
16901
16902 return name;
16903 }
16904
16905 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16906 the user defined type vector. */
16907
16908 static struct type *
16909 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16910 {
16911 struct gdbarch *gdbarch
16912 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16913 struct comp_unit_head *cu_header = &cu->header;
16914 struct type *type;
16915 struct attribute *attr_byte_size;
16916 struct attribute *attr_address_class;
16917 int byte_size, addr_class;
16918 struct type *target_type;
16919
16920 target_type = die_type (die, cu);
16921
16922 /* The die_type call above may have already set the type for this DIE. */
16923 type = get_die_type (die, cu);
16924 if (type)
16925 return type;
16926
16927 type = lookup_pointer_type (target_type);
16928
16929 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16930 if (attr_byte_size)
16931 byte_size = DW_UNSND (attr_byte_size);
16932 else
16933 byte_size = cu_header->addr_size;
16934
16935 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16936 if (attr_address_class)
16937 addr_class = DW_UNSND (attr_address_class);
16938 else
16939 addr_class = DW_ADDR_none;
16940
16941 /* If the pointer size or address class is different than the
16942 default, create a type variant marked as such and set the
16943 length accordingly. */
16944 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
16945 {
16946 if (gdbarch_address_class_type_flags_p (gdbarch))
16947 {
16948 int type_flags;
16949
16950 type_flags = gdbarch_address_class_type_flags
16951 (gdbarch, byte_size, addr_class);
16952 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16953 == 0);
16954 type = make_type_with_address_space (type, type_flags);
16955 }
16956 else if (TYPE_LENGTH (type) != byte_size)
16957 {
16958 complaint (&symfile_complaints,
16959 _("invalid pointer size %d"), byte_size);
16960 }
16961 else
16962 {
16963 /* Should we also complain about unhandled address classes? */
16964 }
16965 }
16966
16967 TYPE_LENGTH (type) = byte_size;
16968 return set_die_type (die, type, cu);
16969 }
16970
16971 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16972 the user defined type vector. */
16973
16974 static struct type *
16975 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16976 {
16977 struct type *type;
16978 struct type *to_type;
16979 struct type *domain;
16980
16981 to_type = die_type (die, cu);
16982 domain = die_containing_type (die, cu);
16983
16984 /* The calls above may have already set the type for this DIE. */
16985 type = get_die_type (die, cu);
16986 if (type)
16987 return type;
16988
16989 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16990 type = lookup_methodptr_type (to_type);
16991 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16992 {
16993 struct type *new_type
16994 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16995
16996 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16997 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16998 TYPE_VARARGS (to_type));
16999 type = lookup_methodptr_type (new_type);
17000 }
17001 else
17002 type = lookup_memberptr_type (to_type, domain);
17003
17004 return set_die_type (die, type, cu);
17005 }
17006
17007 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17008 the user defined type vector. */
17009
17010 static struct type *
17011 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17012 enum type_code refcode)
17013 {
17014 struct comp_unit_head *cu_header = &cu->header;
17015 struct type *type, *target_type;
17016 struct attribute *attr;
17017
17018 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17019
17020 target_type = die_type (die, cu);
17021
17022 /* The die_type call above may have already set the type for this DIE. */
17023 type = get_die_type (die, cu);
17024 if (type)
17025 return type;
17026
17027 type = lookup_reference_type (target_type, refcode);
17028 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17029 if (attr)
17030 {
17031 TYPE_LENGTH (type) = DW_UNSND (attr);
17032 }
17033 else
17034 {
17035 TYPE_LENGTH (type) = cu_header->addr_size;
17036 }
17037 return set_die_type (die, type, cu);
17038 }
17039
17040 /* Add the given cv-qualifiers to the element type of the array. GCC
17041 outputs DWARF type qualifiers that apply to an array, not the
17042 element type. But GDB relies on the array element type to carry
17043 the cv-qualifiers. This mimics section 6.7.3 of the C99
17044 specification. */
17045
17046 static struct type *
17047 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17048 struct type *base_type, int cnst, int voltl)
17049 {
17050 struct type *el_type, *inner_array;
17051
17052 base_type = copy_type (base_type);
17053 inner_array = base_type;
17054
17055 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17056 {
17057 TYPE_TARGET_TYPE (inner_array) =
17058 copy_type (TYPE_TARGET_TYPE (inner_array));
17059 inner_array = TYPE_TARGET_TYPE (inner_array);
17060 }
17061
17062 el_type = TYPE_TARGET_TYPE (inner_array);
17063 cnst |= TYPE_CONST (el_type);
17064 voltl |= TYPE_VOLATILE (el_type);
17065 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17066
17067 return set_die_type (die, base_type, cu);
17068 }
17069
17070 static struct type *
17071 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17072 {
17073 struct type *base_type, *cv_type;
17074
17075 base_type = die_type (die, cu);
17076
17077 /* The die_type call above may have already set the type for this DIE. */
17078 cv_type = get_die_type (die, cu);
17079 if (cv_type)
17080 return cv_type;
17081
17082 /* In case the const qualifier is applied to an array type, the element type
17083 is so qualified, not the array type (section 6.7.3 of C99). */
17084 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17085 return add_array_cv_type (die, cu, base_type, 1, 0);
17086
17087 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17088 return set_die_type (die, cv_type, cu);
17089 }
17090
17091 static struct type *
17092 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17093 {
17094 struct type *base_type, *cv_type;
17095
17096 base_type = die_type (die, cu);
17097
17098 /* The die_type call above may have already set the type for this DIE. */
17099 cv_type = get_die_type (die, cu);
17100 if (cv_type)
17101 return cv_type;
17102
17103 /* In case the volatile qualifier is applied to an array type, the
17104 element type is so qualified, not the array type (section 6.7.3
17105 of C99). */
17106 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17107 return add_array_cv_type (die, cu, base_type, 0, 1);
17108
17109 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17110 return set_die_type (die, cv_type, cu);
17111 }
17112
17113 /* Handle DW_TAG_restrict_type. */
17114
17115 static struct type *
17116 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17117 {
17118 struct type *base_type, *cv_type;
17119
17120 base_type = die_type (die, cu);
17121
17122 /* The die_type call above may have already set the type for this DIE. */
17123 cv_type = get_die_type (die, cu);
17124 if (cv_type)
17125 return cv_type;
17126
17127 cv_type = make_restrict_type (base_type);
17128 return set_die_type (die, cv_type, cu);
17129 }
17130
17131 /* Handle DW_TAG_atomic_type. */
17132
17133 static struct type *
17134 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17135 {
17136 struct type *base_type, *cv_type;
17137
17138 base_type = die_type (die, cu);
17139
17140 /* The die_type call above may have already set the type for this DIE. */
17141 cv_type = get_die_type (die, cu);
17142 if (cv_type)
17143 return cv_type;
17144
17145 cv_type = make_atomic_type (base_type);
17146 return set_die_type (die, cv_type, cu);
17147 }
17148
17149 /* Extract all information from a DW_TAG_string_type DIE and add to
17150 the user defined type vector. It isn't really a user defined type,
17151 but it behaves like one, with other DIE's using an AT_user_def_type
17152 attribute to reference it. */
17153
17154 static struct type *
17155 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17156 {
17157 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17158 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17159 struct type *type, *range_type, *index_type, *char_type;
17160 struct attribute *attr;
17161 unsigned int length;
17162
17163 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17164 if (attr)
17165 {
17166 length = DW_UNSND (attr);
17167 }
17168 else
17169 {
17170 /* Check for the DW_AT_byte_size attribute. */
17171 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17172 if (attr)
17173 {
17174 length = DW_UNSND (attr);
17175 }
17176 else
17177 {
17178 length = 1;
17179 }
17180 }
17181
17182 index_type = objfile_type (objfile)->builtin_int;
17183 range_type = create_static_range_type (NULL, index_type, 1, length);
17184 char_type = language_string_char_type (cu->language_defn, gdbarch);
17185 type = create_string_type (NULL, char_type, range_type);
17186
17187 return set_die_type (die, type, cu);
17188 }
17189
17190 /* Assuming that DIE corresponds to a function, returns nonzero
17191 if the function is prototyped. */
17192
17193 static int
17194 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17195 {
17196 struct attribute *attr;
17197
17198 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17199 if (attr && (DW_UNSND (attr) != 0))
17200 return 1;
17201
17202 /* The DWARF standard implies that the DW_AT_prototyped attribute
17203 is only meaninful for C, but the concept also extends to other
17204 languages that allow unprototyped functions (Eg: Objective C).
17205 For all other languages, assume that functions are always
17206 prototyped. */
17207 if (cu->language != language_c
17208 && cu->language != language_objc
17209 && cu->language != language_opencl)
17210 return 1;
17211
17212 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17213 prototyped and unprototyped functions; default to prototyped,
17214 since that is more common in modern code (and RealView warns
17215 about unprototyped functions). */
17216 if (producer_is_realview (cu->producer))
17217 return 1;
17218
17219 return 0;
17220 }
17221
17222 /* Handle DIES due to C code like:
17223
17224 struct foo
17225 {
17226 int (*funcp)(int a, long l);
17227 int b;
17228 };
17229
17230 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17231
17232 static struct type *
17233 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17234 {
17235 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17236 struct type *type; /* Type that this function returns. */
17237 struct type *ftype; /* Function that returns above type. */
17238 struct attribute *attr;
17239
17240 type = die_type (die, cu);
17241
17242 /* The die_type call above may have already set the type for this DIE. */
17243 ftype = get_die_type (die, cu);
17244 if (ftype)
17245 return ftype;
17246
17247 ftype = lookup_function_type (type);
17248
17249 if (prototyped_function_p (die, cu))
17250 TYPE_PROTOTYPED (ftype) = 1;
17251
17252 /* Store the calling convention in the type if it's available in
17253 the subroutine die. Otherwise set the calling convention to
17254 the default value DW_CC_normal. */
17255 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17256 if (attr)
17257 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17258 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17259 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17260 else
17261 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17262
17263 /* Record whether the function returns normally to its caller or not
17264 if the DWARF producer set that information. */
17265 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17266 if (attr && (DW_UNSND (attr) != 0))
17267 TYPE_NO_RETURN (ftype) = 1;
17268
17269 /* We need to add the subroutine type to the die immediately so
17270 we don't infinitely recurse when dealing with parameters
17271 declared as the same subroutine type. */
17272 set_die_type (die, ftype, cu);
17273
17274 if (die->child != NULL)
17275 {
17276 struct type *void_type = objfile_type (objfile)->builtin_void;
17277 struct die_info *child_die;
17278 int nparams, iparams;
17279
17280 /* Count the number of parameters.
17281 FIXME: GDB currently ignores vararg functions, but knows about
17282 vararg member functions. */
17283 nparams = 0;
17284 child_die = die->child;
17285 while (child_die && child_die->tag)
17286 {
17287 if (child_die->tag == DW_TAG_formal_parameter)
17288 nparams++;
17289 else if (child_die->tag == DW_TAG_unspecified_parameters)
17290 TYPE_VARARGS (ftype) = 1;
17291 child_die = sibling_die (child_die);
17292 }
17293
17294 /* Allocate storage for parameters and fill them in. */
17295 TYPE_NFIELDS (ftype) = nparams;
17296 TYPE_FIELDS (ftype) = (struct field *)
17297 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17298
17299 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17300 even if we error out during the parameters reading below. */
17301 for (iparams = 0; iparams < nparams; iparams++)
17302 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17303
17304 iparams = 0;
17305 child_die = die->child;
17306 while (child_die && child_die->tag)
17307 {
17308 if (child_die->tag == DW_TAG_formal_parameter)
17309 {
17310 struct type *arg_type;
17311
17312 /* DWARF version 2 has no clean way to discern C++
17313 static and non-static member functions. G++ helps
17314 GDB by marking the first parameter for non-static
17315 member functions (which is the this pointer) as
17316 artificial. We pass this information to
17317 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17318
17319 DWARF version 3 added DW_AT_object_pointer, which GCC
17320 4.5 does not yet generate. */
17321 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17322 if (attr)
17323 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17324 else
17325 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17326 arg_type = die_type (child_die, cu);
17327
17328 /* RealView does not mark THIS as const, which the testsuite
17329 expects. GCC marks THIS as const in method definitions,
17330 but not in the class specifications (GCC PR 43053). */
17331 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17332 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17333 {
17334 int is_this = 0;
17335 struct dwarf2_cu *arg_cu = cu;
17336 const char *name = dwarf2_name (child_die, cu);
17337
17338 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17339 if (attr)
17340 {
17341 /* If the compiler emits this, use it. */
17342 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17343 is_this = 1;
17344 }
17345 else if (name && strcmp (name, "this") == 0)
17346 /* Function definitions will have the argument names. */
17347 is_this = 1;
17348 else if (name == NULL && iparams == 0)
17349 /* Declarations may not have the names, so like
17350 elsewhere in GDB, assume an artificial first
17351 argument is "this". */
17352 is_this = 1;
17353
17354 if (is_this)
17355 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17356 arg_type, 0);
17357 }
17358
17359 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17360 iparams++;
17361 }
17362 child_die = sibling_die (child_die);
17363 }
17364 }
17365
17366 return ftype;
17367 }
17368
17369 static struct type *
17370 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17371 {
17372 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17373 const char *name = NULL;
17374 struct type *this_type, *target_type;
17375
17376 name = dwarf2_full_name (NULL, die, cu);
17377 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17378 TYPE_TARGET_STUB (this_type) = 1;
17379 set_die_type (die, this_type, cu);
17380 target_type = die_type (die, cu);
17381 if (target_type != this_type)
17382 TYPE_TARGET_TYPE (this_type) = target_type;
17383 else
17384 {
17385 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17386 spec and cause infinite loops in GDB. */
17387 complaint (&symfile_complaints,
17388 _("Self-referential DW_TAG_typedef "
17389 "- DIE at %s [in module %s]"),
17390 sect_offset_str (die->sect_off), objfile_name (objfile));
17391 TYPE_TARGET_TYPE (this_type) = NULL;
17392 }
17393 return this_type;
17394 }
17395
17396 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17397 (which may be different from NAME) to the architecture back-end to allow
17398 it to guess the correct format if necessary. */
17399
17400 static struct type *
17401 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17402 const char *name_hint)
17403 {
17404 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17405 const struct floatformat **format;
17406 struct type *type;
17407
17408 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17409 if (format)
17410 type = init_float_type (objfile, bits, name, format);
17411 else
17412 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17413
17414 return type;
17415 }
17416
17417 /* Find a representation of a given base type and install
17418 it in the TYPE field of the die. */
17419
17420 static struct type *
17421 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17422 {
17423 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17424 struct type *type;
17425 struct attribute *attr;
17426 int encoding = 0, bits = 0;
17427 const char *name;
17428
17429 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17430 if (attr)
17431 {
17432 encoding = DW_UNSND (attr);
17433 }
17434 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17435 if (attr)
17436 {
17437 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17438 }
17439 name = dwarf2_name (die, cu);
17440 if (!name)
17441 {
17442 complaint (&symfile_complaints,
17443 _("DW_AT_name missing from DW_TAG_base_type"));
17444 }
17445
17446 switch (encoding)
17447 {
17448 case DW_ATE_address:
17449 /* Turn DW_ATE_address into a void * pointer. */
17450 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17451 type = init_pointer_type (objfile, bits, name, type);
17452 break;
17453 case DW_ATE_boolean:
17454 type = init_boolean_type (objfile, bits, 1, name);
17455 break;
17456 case DW_ATE_complex_float:
17457 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17458 type = init_complex_type (objfile, name, type);
17459 break;
17460 case DW_ATE_decimal_float:
17461 type = init_decfloat_type (objfile, bits, name);
17462 break;
17463 case DW_ATE_float:
17464 type = dwarf2_init_float_type (objfile, bits, name, name);
17465 break;
17466 case DW_ATE_signed:
17467 type = init_integer_type (objfile, bits, 0, name);
17468 break;
17469 case DW_ATE_unsigned:
17470 if (cu->language == language_fortran
17471 && name
17472 && startswith (name, "character("))
17473 type = init_character_type (objfile, bits, 1, name);
17474 else
17475 type = init_integer_type (objfile, bits, 1, name);
17476 break;
17477 case DW_ATE_signed_char:
17478 if (cu->language == language_ada || cu->language == language_m2
17479 || cu->language == language_pascal
17480 || cu->language == language_fortran)
17481 type = init_character_type (objfile, bits, 0, name);
17482 else
17483 type = init_integer_type (objfile, bits, 0, name);
17484 break;
17485 case DW_ATE_unsigned_char:
17486 if (cu->language == language_ada || cu->language == language_m2
17487 || cu->language == language_pascal
17488 || cu->language == language_fortran
17489 || cu->language == language_rust)
17490 type = init_character_type (objfile, bits, 1, name);
17491 else
17492 type = init_integer_type (objfile, bits, 1, name);
17493 break;
17494 case DW_ATE_UTF:
17495 {
17496 gdbarch *arch = get_objfile_arch (objfile);
17497
17498 if (bits == 16)
17499 type = builtin_type (arch)->builtin_char16;
17500 else if (bits == 32)
17501 type = builtin_type (arch)->builtin_char32;
17502 else
17503 {
17504 complaint (&symfile_complaints,
17505 _("unsupported DW_ATE_UTF bit size: '%d'"),
17506 bits);
17507 type = init_integer_type (objfile, bits, 1, name);
17508 }
17509 return set_die_type (die, type, cu);
17510 }
17511 break;
17512
17513 default:
17514 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17515 dwarf_type_encoding_name (encoding));
17516 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17517 break;
17518 }
17519
17520 if (name && strcmp (name, "char") == 0)
17521 TYPE_NOSIGN (type) = 1;
17522
17523 return set_die_type (die, type, cu);
17524 }
17525
17526 /* Parse dwarf attribute if it's a block, reference or constant and put the
17527 resulting value of the attribute into struct bound_prop.
17528 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17529
17530 static int
17531 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17532 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17533 {
17534 struct dwarf2_property_baton *baton;
17535 struct obstack *obstack
17536 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17537
17538 if (attr == NULL || prop == NULL)
17539 return 0;
17540
17541 if (attr_form_is_block (attr))
17542 {
17543 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17544 baton->referenced_type = NULL;
17545 baton->locexpr.per_cu = cu->per_cu;
17546 baton->locexpr.size = DW_BLOCK (attr)->size;
17547 baton->locexpr.data = DW_BLOCK (attr)->data;
17548 prop->data.baton = baton;
17549 prop->kind = PROP_LOCEXPR;
17550 gdb_assert (prop->data.baton != NULL);
17551 }
17552 else if (attr_form_is_ref (attr))
17553 {
17554 struct dwarf2_cu *target_cu = cu;
17555 struct die_info *target_die;
17556 struct attribute *target_attr;
17557
17558 target_die = follow_die_ref (die, attr, &target_cu);
17559 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17560 if (target_attr == NULL)
17561 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17562 target_cu);
17563 if (target_attr == NULL)
17564 return 0;
17565
17566 switch (target_attr->name)
17567 {
17568 case DW_AT_location:
17569 if (attr_form_is_section_offset (target_attr))
17570 {
17571 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17572 baton->referenced_type = die_type (target_die, target_cu);
17573 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17574 prop->data.baton = baton;
17575 prop->kind = PROP_LOCLIST;
17576 gdb_assert (prop->data.baton != NULL);
17577 }
17578 else if (attr_form_is_block (target_attr))
17579 {
17580 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17581 baton->referenced_type = die_type (target_die, target_cu);
17582 baton->locexpr.per_cu = cu->per_cu;
17583 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17584 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17585 prop->data.baton = baton;
17586 prop->kind = PROP_LOCEXPR;
17587 gdb_assert (prop->data.baton != NULL);
17588 }
17589 else
17590 {
17591 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17592 "dynamic property");
17593 return 0;
17594 }
17595 break;
17596 case DW_AT_data_member_location:
17597 {
17598 LONGEST offset;
17599
17600 if (!handle_data_member_location (target_die, target_cu,
17601 &offset))
17602 return 0;
17603
17604 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17605 baton->referenced_type = read_type_die (target_die->parent,
17606 target_cu);
17607 baton->offset_info.offset = offset;
17608 baton->offset_info.type = die_type (target_die, target_cu);
17609 prop->data.baton = baton;
17610 prop->kind = PROP_ADDR_OFFSET;
17611 break;
17612 }
17613 }
17614 }
17615 else if (attr_form_is_constant (attr))
17616 {
17617 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17618 prop->kind = PROP_CONST;
17619 }
17620 else
17621 {
17622 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17623 dwarf2_name (die, cu));
17624 return 0;
17625 }
17626
17627 return 1;
17628 }
17629
17630 /* Read the given DW_AT_subrange DIE. */
17631
17632 static struct type *
17633 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17634 {
17635 struct type *base_type, *orig_base_type;
17636 struct type *range_type;
17637 struct attribute *attr;
17638 struct dynamic_prop low, high;
17639 int low_default_is_valid;
17640 int high_bound_is_count = 0;
17641 const char *name;
17642 LONGEST negative_mask;
17643
17644 orig_base_type = die_type (die, cu);
17645 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17646 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17647 creating the range type, but we use the result of check_typedef
17648 when examining properties of the type. */
17649 base_type = check_typedef (orig_base_type);
17650
17651 /* The die_type call above may have already set the type for this DIE. */
17652 range_type = get_die_type (die, cu);
17653 if (range_type)
17654 return range_type;
17655
17656 low.kind = PROP_CONST;
17657 high.kind = PROP_CONST;
17658 high.data.const_val = 0;
17659
17660 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17661 omitting DW_AT_lower_bound. */
17662 switch (cu->language)
17663 {
17664 case language_c:
17665 case language_cplus:
17666 low.data.const_val = 0;
17667 low_default_is_valid = 1;
17668 break;
17669 case language_fortran:
17670 low.data.const_val = 1;
17671 low_default_is_valid = 1;
17672 break;
17673 case language_d:
17674 case language_objc:
17675 case language_rust:
17676 low.data.const_val = 0;
17677 low_default_is_valid = (cu->header.version >= 4);
17678 break;
17679 case language_ada:
17680 case language_m2:
17681 case language_pascal:
17682 low.data.const_val = 1;
17683 low_default_is_valid = (cu->header.version >= 4);
17684 break;
17685 default:
17686 low.data.const_val = 0;
17687 low_default_is_valid = 0;
17688 break;
17689 }
17690
17691 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17692 if (attr)
17693 attr_to_dynamic_prop (attr, die, cu, &low);
17694 else if (!low_default_is_valid)
17695 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17696 "- DIE at %s [in module %s]"),
17697 sect_offset_str (die->sect_off),
17698 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17699
17700 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17701 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17702 {
17703 attr = dwarf2_attr (die, DW_AT_count, cu);
17704 if (attr_to_dynamic_prop (attr, die, cu, &high))
17705 {
17706 /* If bounds are constant do the final calculation here. */
17707 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17708 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17709 else
17710 high_bound_is_count = 1;
17711 }
17712 }
17713
17714 /* Dwarf-2 specifications explicitly allows to create subrange types
17715 without specifying a base type.
17716 In that case, the base type must be set to the type of
17717 the lower bound, upper bound or count, in that order, if any of these
17718 three attributes references an object that has a type.
17719 If no base type is found, the Dwarf-2 specifications say that
17720 a signed integer type of size equal to the size of an address should
17721 be used.
17722 For the following C code: `extern char gdb_int [];'
17723 GCC produces an empty range DIE.
17724 FIXME: muller/2010-05-28: Possible references to object for low bound,
17725 high bound or count are not yet handled by this code. */
17726 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17727 {
17728 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17729 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17730 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17731 struct type *int_type = objfile_type (objfile)->builtin_int;
17732
17733 /* Test "int", "long int", and "long long int" objfile types,
17734 and select the first one having a size above or equal to the
17735 architecture address size. */
17736 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17737 base_type = int_type;
17738 else
17739 {
17740 int_type = objfile_type (objfile)->builtin_long;
17741 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17742 base_type = int_type;
17743 else
17744 {
17745 int_type = objfile_type (objfile)->builtin_long_long;
17746 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17747 base_type = int_type;
17748 }
17749 }
17750 }
17751
17752 /* Normally, the DWARF producers are expected to use a signed
17753 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17754 But this is unfortunately not always the case, as witnessed
17755 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17756 is used instead. To work around that ambiguity, we treat
17757 the bounds as signed, and thus sign-extend their values, when
17758 the base type is signed. */
17759 negative_mask =
17760 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17761 if (low.kind == PROP_CONST
17762 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17763 low.data.const_val |= negative_mask;
17764 if (high.kind == PROP_CONST
17765 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17766 high.data.const_val |= negative_mask;
17767
17768 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17769
17770 if (high_bound_is_count)
17771 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17772
17773 /* Ada expects an empty array on no boundary attributes. */
17774 if (attr == NULL && cu->language != language_ada)
17775 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17776
17777 name = dwarf2_name (die, cu);
17778 if (name)
17779 TYPE_NAME (range_type) = name;
17780
17781 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17782 if (attr)
17783 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17784
17785 set_die_type (die, range_type, cu);
17786
17787 /* set_die_type should be already done. */
17788 set_descriptive_type (range_type, die, cu);
17789
17790 return range_type;
17791 }
17792
17793 static struct type *
17794 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17795 {
17796 struct type *type;
17797
17798 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17799 NULL);
17800 TYPE_NAME (type) = dwarf2_name (die, cu);
17801
17802 /* In Ada, an unspecified type is typically used when the description
17803 of the type is defered to a different unit. When encountering
17804 such a type, we treat it as a stub, and try to resolve it later on,
17805 when needed. */
17806 if (cu->language == language_ada)
17807 TYPE_STUB (type) = 1;
17808
17809 return set_die_type (die, type, cu);
17810 }
17811
17812 /* Read a single die and all its descendents. Set the die's sibling
17813 field to NULL; set other fields in the die correctly, and set all
17814 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17815 location of the info_ptr after reading all of those dies. PARENT
17816 is the parent of the die in question. */
17817
17818 static struct die_info *
17819 read_die_and_children (const struct die_reader_specs *reader,
17820 const gdb_byte *info_ptr,
17821 const gdb_byte **new_info_ptr,
17822 struct die_info *parent)
17823 {
17824 struct die_info *die;
17825 const gdb_byte *cur_ptr;
17826 int has_children;
17827
17828 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17829 if (die == NULL)
17830 {
17831 *new_info_ptr = cur_ptr;
17832 return NULL;
17833 }
17834 store_in_ref_table (die, reader->cu);
17835
17836 if (has_children)
17837 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17838 else
17839 {
17840 die->child = NULL;
17841 *new_info_ptr = cur_ptr;
17842 }
17843
17844 die->sibling = NULL;
17845 die->parent = parent;
17846 return die;
17847 }
17848
17849 /* Read a die, all of its descendents, and all of its siblings; set
17850 all of the fields of all of the dies correctly. Arguments are as
17851 in read_die_and_children. */
17852
17853 static struct die_info *
17854 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17855 const gdb_byte *info_ptr,
17856 const gdb_byte **new_info_ptr,
17857 struct die_info *parent)
17858 {
17859 struct die_info *first_die, *last_sibling;
17860 const gdb_byte *cur_ptr;
17861
17862 cur_ptr = info_ptr;
17863 first_die = last_sibling = NULL;
17864
17865 while (1)
17866 {
17867 struct die_info *die
17868 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17869
17870 if (die == NULL)
17871 {
17872 *new_info_ptr = cur_ptr;
17873 return first_die;
17874 }
17875
17876 if (!first_die)
17877 first_die = die;
17878 else
17879 last_sibling->sibling = die;
17880
17881 last_sibling = die;
17882 }
17883 }
17884
17885 /* Read a die, all of its descendents, and all of its siblings; set
17886 all of the fields of all of the dies correctly. Arguments are as
17887 in read_die_and_children.
17888 This the main entry point for reading a DIE and all its children. */
17889
17890 static struct die_info *
17891 read_die_and_siblings (const struct die_reader_specs *reader,
17892 const gdb_byte *info_ptr,
17893 const gdb_byte **new_info_ptr,
17894 struct die_info *parent)
17895 {
17896 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17897 new_info_ptr, parent);
17898
17899 if (dwarf_die_debug)
17900 {
17901 fprintf_unfiltered (gdb_stdlog,
17902 "Read die from %s@0x%x of %s:\n",
17903 get_section_name (reader->die_section),
17904 (unsigned) (info_ptr - reader->die_section->buffer),
17905 bfd_get_filename (reader->abfd));
17906 dump_die (die, dwarf_die_debug);
17907 }
17908
17909 return die;
17910 }
17911
17912 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17913 attributes.
17914 The caller is responsible for filling in the extra attributes
17915 and updating (*DIEP)->num_attrs.
17916 Set DIEP to point to a newly allocated die with its information,
17917 except for its child, sibling, and parent fields.
17918 Set HAS_CHILDREN to tell whether the die has children or not. */
17919
17920 static const gdb_byte *
17921 read_full_die_1 (const struct die_reader_specs *reader,
17922 struct die_info **diep, const gdb_byte *info_ptr,
17923 int *has_children, int num_extra_attrs)
17924 {
17925 unsigned int abbrev_number, bytes_read, i;
17926 struct abbrev_info *abbrev;
17927 struct die_info *die;
17928 struct dwarf2_cu *cu = reader->cu;
17929 bfd *abfd = reader->abfd;
17930
17931 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17932 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17933 info_ptr += bytes_read;
17934 if (!abbrev_number)
17935 {
17936 *diep = NULL;
17937 *has_children = 0;
17938 return info_ptr;
17939 }
17940
17941 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17942 if (!abbrev)
17943 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17944 abbrev_number,
17945 bfd_get_filename (abfd));
17946
17947 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17948 die->sect_off = sect_off;
17949 die->tag = abbrev->tag;
17950 die->abbrev = abbrev_number;
17951
17952 /* Make the result usable.
17953 The caller needs to update num_attrs after adding the extra
17954 attributes. */
17955 die->num_attrs = abbrev->num_attrs;
17956
17957 for (i = 0; i < abbrev->num_attrs; ++i)
17958 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17959 info_ptr);
17960
17961 *diep = die;
17962 *has_children = abbrev->has_children;
17963 return info_ptr;
17964 }
17965
17966 /* Read a die and all its attributes.
17967 Set DIEP to point to a newly allocated die with its information,
17968 except for its child, sibling, and parent fields.
17969 Set HAS_CHILDREN to tell whether the die has children or not. */
17970
17971 static const gdb_byte *
17972 read_full_die (const struct die_reader_specs *reader,
17973 struct die_info **diep, const gdb_byte *info_ptr,
17974 int *has_children)
17975 {
17976 const gdb_byte *result;
17977
17978 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17979
17980 if (dwarf_die_debug)
17981 {
17982 fprintf_unfiltered (gdb_stdlog,
17983 "Read die from %s@0x%x of %s:\n",
17984 get_section_name (reader->die_section),
17985 (unsigned) (info_ptr - reader->die_section->buffer),
17986 bfd_get_filename (reader->abfd));
17987 dump_die (*diep, dwarf_die_debug);
17988 }
17989
17990 return result;
17991 }
17992 \f
17993 /* Abbreviation tables.
17994
17995 In DWARF version 2, the description of the debugging information is
17996 stored in a separate .debug_abbrev section. Before we read any
17997 dies from a section we read in all abbreviations and install them
17998 in a hash table. */
17999
18000 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18001
18002 struct abbrev_info *
18003 abbrev_table::alloc_abbrev ()
18004 {
18005 struct abbrev_info *abbrev;
18006
18007 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18008 memset (abbrev, 0, sizeof (struct abbrev_info));
18009
18010 return abbrev;
18011 }
18012
18013 /* Add an abbreviation to the table. */
18014
18015 void
18016 abbrev_table::add_abbrev (unsigned int abbrev_number,
18017 struct abbrev_info *abbrev)
18018 {
18019 unsigned int hash_number;
18020
18021 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18022 abbrev->next = m_abbrevs[hash_number];
18023 m_abbrevs[hash_number] = abbrev;
18024 }
18025
18026 /* Look up an abbrev in the table.
18027 Returns NULL if the abbrev is not found. */
18028
18029 struct abbrev_info *
18030 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18031 {
18032 unsigned int hash_number;
18033 struct abbrev_info *abbrev;
18034
18035 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18036 abbrev = m_abbrevs[hash_number];
18037
18038 while (abbrev)
18039 {
18040 if (abbrev->number == abbrev_number)
18041 return abbrev;
18042 abbrev = abbrev->next;
18043 }
18044 return NULL;
18045 }
18046
18047 /* Read in an abbrev table. */
18048
18049 static abbrev_table_up
18050 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18051 struct dwarf2_section_info *section,
18052 sect_offset sect_off)
18053 {
18054 struct objfile *objfile = dwarf2_per_objfile->objfile;
18055 bfd *abfd = get_section_bfd_owner (section);
18056 const gdb_byte *abbrev_ptr;
18057 struct abbrev_info *cur_abbrev;
18058 unsigned int abbrev_number, bytes_read, abbrev_name;
18059 unsigned int abbrev_form;
18060 struct attr_abbrev *cur_attrs;
18061 unsigned int allocated_attrs;
18062
18063 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18064
18065 dwarf2_read_section (objfile, section);
18066 abbrev_ptr = section->buffer + to_underlying (sect_off);
18067 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18068 abbrev_ptr += bytes_read;
18069
18070 allocated_attrs = ATTR_ALLOC_CHUNK;
18071 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18072
18073 /* Loop until we reach an abbrev number of 0. */
18074 while (abbrev_number)
18075 {
18076 cur_abbrev = abbrev_table->alloc_abbrev ();
18077
18078 /* read in abbrev header */
18079 cur_abbrev->number = abbrev_number;
18080 cur_abbrev->tag
18081 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18082 abbrev_ptr += bytes_read;
18083 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18084 abbrev_ptr += 1;
18085
18086 /* now read in declarations */
18087 for (;;)
18088 {
18089 LONGEST implicit_const;
18090
18091 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18092 abbrev_ptr += bytes_read;
18093 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18094 abbrev_ptr += bytes_read;
18095 if (abbrev_form == DW_FORM_implicit_const)
18096 {
18097 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18098 &bytes_read);
18099 abbrev_ptr += bytes_read;
18100 }
18101 else
18102 {
18103 /* Initialize it due to a false compiler warning. */
18104 implicit_const = -1;
18105 }
18106
18107 if (abbrev_name == 0)
18108 break;
18109
18110 if (cur_abbrev->num_attrs == allocated_attrs)
18111 {
18112 allocated_attrs += ATTR_ALLOC_CHUNK;
18113 cur_attrs
18114 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18115 }
18116
18117 cur_attrs[cur_abbrev->num_attrs].name
18118 = (enum dwarf_attribute) abbrev_name;
18119 cur_attrs[cur_abbrev->num_attrs].form
18120 = (enum dwarf_form) abbrev_form;
18121 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18122 ++cur_abbrev->num_attrs;
18123 }
18124
18125 cur_abbrev->attrs =
18126 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18127 cur_abbrev->num_attrs);
18128 memcpy (cur_abbrev->attrs, cur_attrs,
18129 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18130
18131 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18132
18133 /* Get next abbreviation.
18134 Under Irix6 the abbreviations for a compilation unit are not
18135 always properly terminated with an abbrev number of 0.
18136 Exit loop if we encounter an abbreviation which we have
18137 already read (which means we are about to read the abbreviations
18138 for the next compile unit) or if the end of the abbreviation
18139 table is reached. */
18140 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18141 break;
18142 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18143 abbrev_ptr += bytes_read;
18144 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18145 break;
18146 }
18147
18148 xfree (cur_attrs);
18149 return abbrev_table;
18150 }
18151
18152 /* Returns nonzero if TAG represents a type that we might generate a partial
18153 symbol for. */
18154
18155 static int
18156 is_type_tag_for_partial (int tag)
18157 {
18158 switch (tag)
18159 {
18160 #if 0
18161 /* Some types that would be reasonable to generate partial symbols for,
18162 that we don't at present. */
18163 case DW_TAG_array_type:
18164 case DW_TAG_file_type:
18165 case DW_TAG_ptr_to_member_type:
18166 case DW_TAG_set_type:
18167 case DW_TAG_string_type:
18168 case DW_TAG_subroutine_type:
18169 #endif
18170 case DW_TAG_base_type:
18171 case DW_TAG_class_type:
18172 case DW_TAG_interface_type:
18173 case DW_TAG_enumeration_type:
18174 case DW_TAG_structure_type:
18175 case DW_TAG_subrange_type:
18176 case DW_TAG_typedef:
18177 case DW_TAG_union_type:
18178 return 1;
18179 default:
18180 return 0;
18181 }
18182 }
18183
18184 /* Load all DIEs that are interesting for partial symbols into memory. */
18185
18186 static struct partial_die_info *
18187 load_partial_dies (const struct die_reader_specs *reader,
18188 const gdb_byte *info_ptr, int building_psymtab)
18189 {
18190 struct dwarf2_cu *cu = reader->cu;
18191 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18192 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18193 unsigned int bytes_read;
18194 unsigned int load_all = 0;
18195 int nesting_level = 1;
18196
18197 parent_die = NULL;
18198 last_die = NULL;
18199
18200 gdb_assert (cu->per_cu != NULL);
18201 if (cu->per_cu->load_all_dies)
18202 load_all = 1;
18203
18204 cu->partial_dies
18205 = htab_create_alloc_ex (cu->header.length / 12,
18206 partial_die_hash,
18207 partial_die_eq,
18208 NULL,
18209 &cu->comp_unit_obstack,
18210 hashtab_obstack_allocate,
18211 dummy_obstack_deallocate);
18212
18213 while (1)
18214 {
18215 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18216
18217 /* A NULL abbrev means the end of a series of children. */
18218 if (abbrev == NULL)
18219 {
18220 if (--nesting_level == 0)
18221 return first_die;
18222
18223 info_ptr += bytes_read;
18224 last_die = parent_die;
18225 parent_die = parent_die->die_parent;
18226 continue;
18227 }
18228
18229 /* Check for template arguments. We never save these; if
18230 they're seen, we just mark the parent, and go on our way. */
18231 if (parent_die != NULL
18232 && cu->language == language_cplus
18233 && (abbrev->tag == DW_TAG_template_type_param
18234 || abbrev->tag == DW_TAG_template_value_param))
18235 {
18236 parent_die->has_template_arguments = 1;
18237
18238 if (!load_all)
18239 {
18240 /* We don't need a partial DIE for the template argument. */
18241 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18242 continue;
18243 }
18244 }
18245
18246 /* We only recurse into c++ subprograms looking for template arguments.
18247 Skip their other children. */
18248 if (!load_all
18249 && cu->language == language_cplus
18250 && parent_die != NULL
18251 && parent_die->tag == DW_TAG_subprogram)
18252 {
18253 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18254 continue;
18255 }
18256
18257 /* Check whether this DIE is interesting enough to save. Normally
18258 we would not be interested in members here, but there may be
18259 later variables referencing them via DW_AT_specification (for
18260 static members). */
18261 if (!load_all
18262 && !is_type_tag_for_partial (abbrev->tag)
18263 && abbrev->tag != DW_TAG_constant
18264 && abbrev->tag != DW_TAG_enumerator
18265 && abbrev->tag != DW_TAG_subprogram
18266 && abbrev->tag != DW_TAG_inlined_subroutine
18267 && abbrev->tag != DW_TAG_lexical_block
18268 && abbrev->tag != DW_TAG_variable
18269 && abbrev->tag != DW_TAG_namespace
18270 && abbrev->tag != DW_TAG_module
18271 && abbrev->tag != DW_TAG_member
18272 && abbrev->tag != DW_TAG_imported_unit
18273 && abbrev->tag != DW_TAG_imported_declaration)
18274 {
18275 /* Otherwise we skip to the next sibling, if any. */
18276 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18277 continue;
18278 }
18279
18280 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18281 abbrev);
18282
18283 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18284
18285 /* This two-pass algorithm for processing partial symbols has a
18286 high cost in cache pressure. Thus, handle some simple cases
18287 here which cover the majority of C partial symbols. DIEs
18288 which neither have specification tags in them, nor could have
18289 specification tags elsewhere pointing at them, can simply be
18290 processed and discarded.
18291
18292 This segment is also optional; scan_partial_symbols and
18293 add_partial_symbol will handle these DIEs if we chain
18294 them in normally. When compilers which do not emit large
18295 quantities of duplicate debug information are more common,
18296 this code can probably be removed. */
18297
18298 /* Any complete simple types at the top level (pretty much all
18299 of them, for a language without namespaces), can be processed
18300 directly. */
18301 if (parent_die == NULL
18302 && pdi.has_specification == 0
18303 && pdi.is_declaration == 0
18304 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18305 || pdi.tag == DW_TAG_base_type
18306 || pdi.tag == DW_TAG_subrange_type))
18307 {
18308 if (building_psymtab && pdi.name != NULL)
18309 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18310 VAR_DOMAIN, LOC_TYPEDEF,
18311 &objfile->static_psymbols,
18312 0, cu->language, objfile);
18313 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18314 continue;
18315 }
18316
18317 /* The exception for DW_TAG_typedef with has_children above is
18318 a workaround of GCC PR debug/47510. In the case of this complaint
18319 type_name_no_tag_or_error will error on such types later.
18320
18321 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18322 it could not find the child DIEs referenced later, this is checked
18323 above. In correct DWARF DW_TAG_typedef should have no children. */
18324
18325 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18326 complaint (&symfile_complaints,
18327 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18328 "- DIE at %s [in module %s]"),
18329 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18330
18331 /* If we're at the second level, and we're an enumerator, and
18332 our parent has no specification (meaning possibly lives in a
18333 namespace elsewhere), then we can add the partial symbol now
18334 instead of queueing it. */
18335 if (pdi.tag == DW_TAG_enumerator
18336 && parent_die != NULL
18337 && parent_die->die_parent == NULL
18338 && parent_die->tag == DW_TAG_enumeration_type
18339 && parent_die->has_specification == 0)
18340 {
18341 if (pdi.name == NULL)
18342 complaint (&symfile_complaints,
18343 _("malformed enumerator DIE ignored"));
18344 else if (building_psymtab)
18345 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18346 VAR_DOMAIN, LOC_CONST,
18347 cu->language == language_cplus
18348 ? &objfile->global_psymbols
18349 : &objfile->static_psymbols,
18350 0, cu->language, objfile);
18351
18352 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18353 continue;
18354 }
18355
18356 struct partial_die_info *part_die
18357 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18358
18359 /* We'll save this DIE so link it in. */
18360 part_die->die_parent = parent_die;
18361 part_die->die_sibling = NULL;
18362 part_die->die_child = NULL;
18363
18364 if (last_die && last_die == parent_die)
18365 last_die->die_child = part_die;
18366 else if (last_die)
18367 last_die->die_sibling = part_die;
18368
18369 last_die = part_die;
18370
18371 if (first_die == NULL)
18372 first_die = part_die;
18373
18374 /* Maybe add the DIE to the hash table. Not all DIEs that we
18375 find interesting need to be in the hash table, because we
18376 also have the parent/sibling/child chains; only those that we
18377 might refer to by offset later during partial symbol reading.
18378
18379 For now this means things that might have be the target of a
18380 DW_AT_specification, DW_AT_abstract_origin, or
18381 DW_AT_extension. DW_AT_extension will refer only to
18382 namespaces; DW_AT_abstract_origin refers to functions (and
18383 many things under the function DIE, but we do not recurse
18384 into function DIEs during partial symbol reading) and
18385 possibly variables as well; DW_AT_specification refers to
18386 declarations. Declarations ought to have the DW_AT_declaration
18387 flag. It happens that GCC forgets to put it in sometimes, but
18388 only for functions, not for types.
18389
18390 Adding more things than necessary to the hash table is harmless
18391 except for the performance cost. Adding too few will result in
18392 wasted time in find_partial_die, when we reread the compilation
18393 unit with load_all_dies set. */
18394
18395 if (load_all
18396 || abbrev->tag == DW_TAG_constant
18397 || abbrev->tag == DW_TAG_subprogram
18398 || abbrev->tag == DW_TAG_variable
18399 || abbrev->tag == DW_TAG_namespace
18400 || part_die->is_declaration)
18401 {
18402 void **slot;
18403
18404 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18405 to_underlying (part_die->sect_off),
18406 INSERT);
18407 *slot = part_die;
18408 }
18409
18410 /* For some DIEs we want to follow their children (if any). For C
18411 we have no reason to follow the children of structures; for other
18412 languages we have to, so that we can get at method physnames
18413 to infer fully qualified class names, for DW_AT_specification,
18414 and for C++ template arguments. For C++, we also look one level
18415 inside functions to find template arguments (if the name of the
18416 function does not already contain the template arguments).
18417
18418 For Ada, we need to scan the children of subprograms and lexical
18419 blocks as well because Ada allows the definition of nested
18420 entities that could be interesting for the debugger, such as
18421 nested subprograms for instance. */
18422 if (last_die->has_children
18423 && (load_all
18424 || last_die->tag == DW_TAG_namespace
18425 || last_die->tag == DW_TAG_module
18426 || last_die->tag == DW_TAG_enumeration_type
18427 || (cu->language == language_cplus
18428 && last_die->tag == DW_TAG_subprogram
18429 && (last_die->name == NULL
18430 || strchr (last_die->name, '<') == NULL))
18431 || (cu->language != language_c
18432 && (last_die->tag == DW_TAG_class_type
18433 || last_die->tag == DW_TAG_interface_type
18434 || last_die->tag == DW_TAG_structure_type
18435 || last_die->tag == DW_TAG_union_type))
18436 || (cu->language == language_ada
18437 && (last_die->tag == DW_TAG_subprogram
18438 || last_die->tag == DW_TAG_lexical_block))))
18439 {
18440 nesting_level++;
18441 parent_die = last_die;
18442 continue;
18443 }
18444
18445 /* Otherwise we skip to the next sibling, if any. */
18446 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18447
18448 /* Back to the top, do it again. */
18449 }
18450 }
18451
18452 partial_die_info::partial_die_info (sect_offset sect_off_,
18453 struct abbrev_info *abbrev)
18454 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18455 {
18456 }
18457
18458 /* Read a minimal amount of information into the minimal die structure.
18459 INFO_PTR should point just after the initial uleb128 of a DIE. */
18460
18461 const gdb_byte *
18462 partial_die_info::read (const struct die_reader_specs *reader,
18463 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18464 {
18465 struct dwarf2_cu *cu = reader->cu;
18466 struct dwarf2_per_objfile *dwarf2_per_objfile
18467 = cu->per_cu->dwarf2_per_objfile;
18468 unsigned int i;
18469 int has_low_pc_attr = 0;
18470 int has_high_pc_attr = 0;
18471 int high_pc_relative = 0;
18472
18473 for (i = 0; i < abbrev.num_attrs; ++i)
18474 {
18475 struct attribute attr;
18476
18477 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18478
18479 /* Store the data if it is of an attribute we want to keep in a
18480 partial symbol table. */
18481 switch (attr.name)
18482 {
18483 case DW_AT_name:
18484 switch (tag)
18485 {
18486 case DW_TAG_compile_unit:
18487 case DW_TAG_partial_unit:
18488 case DW_TAG_type_unit:
18489 /* Compilation units have a DW_AT_name that is a filename, not
18490 a source language identifier. */
18491 case DW_TAG_enumeration_type:
18492 case DW_TAG_enumerator:
18493 /* These tags always have simple identifiers already; no need
18494 to canonicalize them. */
18495 name = DW_STRING (&attr);
18496 break;
18497 default:
18498 {
18499 struct objfile *objfile = dwarf2_per_objfile->objfile;
18500
18501 name
18502 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18503 &objfile->per_bfd->storage_obstack);
18504 }
18505 break;
18506 }
18507 break;
18508 case DW_AT_linkage_name:
18509 case DW_AT_MIPS_linkage_name:
18510 /* Note that both forms of linkage name might appear. We
18511 assume they will be the same, and we only store the last
18512 one we see. */
18513 if (cu->language == language_ada)
18514 name = DW_STRING (&attr);
18515 linkage_name = DW_STRING (&attr);
18516 break;
18517 case DW_AT_low_pc:
18518 has_low_pc_attr = 1;
18519 lowpc = attr_value_as_address (&attr);
18520 break;
18521 case DW_AT_high_pc:
18522 has_high_pc_attr = 1;
18523 highpc = attr_value_as_address (&attr);
18524 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18525 high_pc_relative = 1;
18526 break;
18527 case DW_AT_location:
18528 /* Support the .debug_loc offsets. */
18529 if (attr_form_is_block (&attr))
18530 {
18531 d.locdesc = DW_BLOCK (&attr);
18532 }
18533 else if (attr_form_is_section_offset (&attr))
18534 {
18535 dwarf2_complex_location_expr_complaint ();
18536 }
18537 else
18538 {
18539 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18540 "partial symbol information");
18541 }
18542 break;
18543 case DW_AT_external:
18544 is_external = DW_UNSND (&attr);
18545 break;
18546 case DW_AT_declaration:
18547 is_declaration = DW_UNSND (&attr);
18548 break;
18549 case DW_AT_type:
18550 has_type = 1;
18551 break;
18552 case DW_AT_abstract_origin:
18553 case DW_AT_specification:
18554 case DW_AT_extension:
18555 has_specification = 1;
18556 spec_offset = dwarf2_get_ref_die_offset (&attr);
18557 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18558 || cu->per_cu->is_dwz);
18559 break;
18560 case DW_AT_sibling:
18561 /* Ignore absolute siblings, they might point outside of
18562 the current compile unit. */
18563 if (attr.form == DW_FORM_ref_addr)
18564 complaint (&symfile_complaints,
18565 _("ignoring absolute DW_AT_sibling"));
18566 else
18567 {
18568 const gdb_byte *buffer = reader->buffer;
18569 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18570 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18571
18572 if (sibling_ptr < info_ptr)
18573 complaint (&symfile_complaints,
18574 _("DW_AT_sibling points backwards"));
18575 else if (sibling_ptr > reader->buffer_end)
18576 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18577 else
18578 sibling = sibling_ptr;
18579 }
18580 break;
18581 case DW_AT_byte_size:
18582 has_byte_size = 1;
18583 break;
18584 case DW_AT_const_value:
18585 has_const_value = 1;
18586 break;
18587 case DW_AT_calling_convention:
18588 /* DWARF doesn't provide a way to identify a program's source-level
18589 entry point. DW_AT_calling_convention attributes are only meant
18590 to describe functions' calling conventions.
18591
18592 However, because it's a necessary piece of information in
18593 Fortran, and before DWARF 4 DW_CC_program was the only
18594 piece of debugging information whose definition refers to
18595 a 'main program' at all, several compilers marked Fortran
18596 main programs with DW_CC_program --- even when those
18597 functions use the standard calling conventions.
18598
18599 Although DWARF now specifies a way to provide this
18600 information, we support this practice for backward
18601 compatibility. */
18602 if (DW_UNSND (&attr) == DW_CC_program
18603 && cu->language == language_fortran)
18604 main_subprogram = 1;
18605 break;
18606 case DW_AT_inline:
18607 if (DW_UNSND (&attr) == DW_INL_inlined
18608 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18609 may_be_inlined = 1;
18610 break;
18611
18612 case DW_AT_import:
18613 if (tag == DW_TAG_imported_unit)
18614 {
18615 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18616 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18617 || cu->per_cu->is_dwz);
18618 }
18619 break;
18620
18621 case DW_AT_main_subprogram:
18622 main_subprogram = DW_UNSND (&attr);
18623 break;
18624
18625 default:
18626 break;
18627 }
18628 }
18629
18630 if (high_pc_relative)
18631 highpc += lowpc;
18632
18633 if (has_low_pc_attr && has_high_pc_attr)
18634 {
18635 /* When using the GNU linker, .gnu.linkonce. sections are used to
18636 eliminate duplicate copies of functions and vtables and such.
18637 The linker will arbitrarily choose one and discard the others.
18638 The AT_*_pc values for such functions refer to local labels in
18639 these sections. If the section from that file was discarded, the
18640 labels are not in the output, so the relocs get a value of 0.
18641 If this is a discarded function, mark the pc bounds as invalid,
18642 so that GDB will ignore it. */
18643 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18644 {
18645 struct objfile *objfile = dwarf2_per_objfile->objfile;
18646 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18647
18648 complaint (&symfile_complaints,
18649 _("DW_AT_low_pc %s is zero "
18650 "for DIE at %s [in module %s]"),
18651 paddress (gdbarch, lowpc),
18652 sect_offset_str (sect_off),
18653 objfile_name (objfile));
18654 }
18655 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18656 else if (lowpc >= highpc)
18657 {
18658 struct objfile *objfile = dwarf2_per_objfile->objfile;
18659 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18660
18661 complaint (&symfile_complaints,
18662 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18663 "for DIE at %s [in module %s]"),
18664 paddress (gdbarch, lowpc),
18665 paddress (gdbarch, highpc),
18666 sect_offset_str (sect_off),
18667 objfile_name (objfile));
18668 }
18669 else
18670 has_pc_info = 1;
18671 }
18672
18673 return info_ptr;
18674 }
18675
18676 /* Find a cached partial DIE at OFFSET in CU. */
18677
18678 struct partial_die_info *
18679 dwarf2_cu::find_partial_die (sect_offset sect_off)
18680 {
18681 struct partial_die_info *lookup_die = NULL;
18682 struct partial_die_info part_die (sect_off);
18683
18684 lookup_die = ((struct partial_die_info *)
18685 htab_find_with_hash (partial_dies, &part_die,
18686 to_underlying (sect_off)));
18687
18688 return lookup_die;
18689 }
18690
18691 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18692 except in the case of .debug_types DIEs which do not reference
18693 outside their CU (they do however referencing other types via
18694 DW_FORM_ref_sig8). */
18695
18696 static struct partial_die_info *
18697 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18698 {
18699 struct dwarf2_per_objfile *dwarf2_per_objfile
18700 = cu->per_cu->dwarf2_per_objfile;
18701 struct objfile *objfile = dwarf2_per_objfile->objfile;
18702 struct dwarf2_per_cu_data *per_cu = NULL;
18703 struct partial_die_info *pd = NULL;
18704
18705 if (offset_in_dwz == cu->per_cu->is_dwz
18706 && offset_in_cu_p (&cu->header, sect_off))
18707 {
18708 pd = cu->find_partial_die (sect_off);
18709 if (pd != NULL)
18710 return pd;
18711 /* We missed recording what we needed.
18712 Load all dies and try again. */
18713 per_cu = cu->per_cu;
18714 }
18715 else
18716 {
18717 /* TUs don't reference other CUs/TUs (except via type signatures). */
18718 if (cu->per_cu->is_debug_types)
18719 {
18720 error (_("Dwarf Error: Type Unit at offset %s contains"
18721 " external reference to offset %s [in module %s].\n"),
18722 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18723 bfd_get_filename (objfile->obfd));
18724 }
18725 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18726 dwarf2_per_objfile);
18727
18728 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18729 load_partial_comp_unit (per_cu);
18730
18731 per_cu->cu->last_used = 0;
18732 pd = per_cu->cu->find_partial_die (sect_off);
18733 }
18734
18735 /* If we didn't find it, and not all dies have been loaded,
18736 load them all and try again. */
18737
18738 if (pd == NULL && per_cu->load_all_dies == 0)
18739 {
18740 per_cu->load_all_dies = 1;
18741
18742 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18743 THIS_CU->cu may already be in use. So we can't just free it and
18744 replace its DIEs with the ones we read in. Instead, we leave those
18745 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18746 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18747 set. */
18748 load_partial_comp_unit (per_cu);
18749
18750 pd = per_cu->cu->find_partial_die (sect_off);
18751 }
18752
18753 if (pd == NULL)
18754 internal_error (__FILE__, __LINE__,
18755 _("could not find partial DIE %s "
18756 "in cache [from module %s]\n"),
18757 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18758 return pd;
18759 }
18760
18761 /* See if we can figure out if the class lives in a namespace. We do
18762 this by looking for a member function; its demangled name will
18763 contain namespace info, if there is any. */
18764
18765 static void
18766 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18767 struct dwarf2_cu *cu)
18768 {
18769 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18770 what template types look like, because the demangler
18771 frequently doesn't give the same name as the debug info. We
18772 could fix this by only using the demangled name to get the
18773 prefix (but see comment in read_structure_type). */
18774
18775 struct partial_die_info *real_pdi;
18776 struct partial_die_info *child_pdi;
18777
18778 /* If this DIE (this DIE's specification, if any) has a parent, then
18779 we should not do this. We'll prepend the parent's fully qualified
18780 name when we create the partial symbol. */
18781
18782 real_pdi = struct_pdi;
18783 while (real_pdi->has_specification)
18784 real_pdi = find_partial_die (real_pdi->spec_offset,
18785 real_pdi->spec_is_dwz, cu);
18786
18787 if (real_pdi->die_parent != NULL)
18788 return;
18789
18790 for (child_pdi = struct_pdi->die_child;
18791 child_pdi != NULL;
18792 child_pdi = child_pdi->die_sibling)
18793 {
18794 if (child_pdi->tag == DW_TAG_subprogram
18795 && child_pdi->linkage_name != NULL)
18796 {
18797 char *actual_class_name
18798 = language_class_name_from_physname (cu->language_defn,
18799 child_pdi->linkage_name);
18800 if (actual_class_name != NULL)
18801 {
18802 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18803 struct_pdi->name
18804 = ((const char *)
18805 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18806 actual_class_name,
18807 strlen (actual_class_name)));
18808 xfree (actual_class_name);
18809 }
18810 break;
18811 }
18812 }
18813 }
18814
18815 void
18816 partial_die_info::fixup (struct dwarf2_cu *cu)
18817 {
18818 /* Once we've fixed up a die, there's no point in doing so again.
18819 This also avoids a memory leak if we were to call
18820 guess_partial_die_structure_name multiple times. */
18821 if (fixup_called)
18822 return;
18823
18824 /* If we found a reference attribute and the DIE has no name, try
18825 to find a name in the referred to DIE. */
18826
18827 if (name == NULL && has_specification)
18828 {
18829 struct partial_die_info *spec_die;
18830
18831 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18832
18833 spec_die->fixup (cu);
18834
18835 if (spec_die->name)
18836 {
18837 name = spec_die->name;
18838
18839 /* Copy DW_AT_external attribute if it is set. */
18840 if (spec_die->is_external)
18841 is_external = spec_die->is_external;
18842 }
18843 }
18844
18845 /* Set default names for some unnamed DIEs. */
18846
18847 if (name == NULL && tag == DW_TAG_namespace)
18848 name = CP_ANONYMOUS_NAMESPACE_STR;
18849
18850 /* If there is no parent die to provide a namespace, and there are
18851 children, see if we can determine the namespace from their linkage
18852 name. */
18853 if (cu->language == language_cplus
18854 && !VEC_empty (dwarf2_section_info_def,
18855 cu->per_cu->dwarf2_per_objfile->types)
18856 && die_parent == NULL
18857 && has_children
18858 && (tag == DW_TAG_class_type
18859 || tag == DW_TAG_structure_type
18860 || tag == DW_TAG_union_type))
18861 guess_partial_die_structure_name (this, cu);
18862
18863 /* GCC might emit a nameless struct or union that has a linkage
18864 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18865 if (name == NULL
18866 && (tag == DW_TAG_class_type
18867 || tag == DW_TAG_interface_type
18868 || tag == DW_TAG_structure_type
18869 || tag == DW_TAG_union_type)
18870 && linkage_name != NULL)
18871 {
18872 char *demangled;
18873
18874 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18875 if (demangled)
18876 {
18877 const char *base;
18878
18879 /* Strip any leading namespaces/classes, keep only the base name.
18880 DW_AT_name for named DIEs does not contain the prefixes. */
18881 base = strrchr (demangled, ':');
18882 if (base && base > demangled && base[-1] == ':')
18883 base++;
18884 else
18885 base = demangled;
18886
18887 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18888 name
18889 = ((const char *)
18890 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18891 base, strlen (base)));
18892 xfree (demangled);
18893 }
18894 }
18895
18896 fixup_called = 1;
18897 }
18898
18899 /* Read an attribute value described by an attribute form. */
18900
18901 static const gdb_byte *
18902 read_attribute_value (const struct die_reader_specs *reader,
18903 struct attribute *attr, unsigned form,
18904 LONGEST implicit_const, const gdb_byte *info_ptr)
18905 {
18906 struct dwarf2_cu *cu = reader->cu;
18907 struct dwarf2_per_objfile *dwarf2_per_objfile
18908 = cu->per_cu->dwarf2_per_objfile;
18909 struct objfile *objfile = dwarf2_per_objfile->objfile;
18910 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18911 bfd *abfd = reader->abfd;
18912 struct comp_unit_head *cu_header = &cu->header;
18913 unsigned int bytes_read;
18914 struct dwarf_block *blk;
18915
18916 attr->form = (enum dwarf_form) form;
18917 switch (form)
18918 {
18919 case DW_FORM_ref_addr:
18920 if (cu->header.version == 2)
18921 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18922 else
18923 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18924 &cu->header, &bytes_read);
18925 info_ptr += bytes_read;
18926 break;
18927 case DW_FORM_GNU_ref_alt:
18928 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18929 info_ptr += bytes_read;
18930 break;
18931 case DW_FORM_addr:
18932 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18933 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18934 info_ptr += bytes_read;
18935 break;
18936 case DW_FORM_block2:
18937 blk = dwarf_alloc_block (cu);
18938 blk->size = read_2_bytes (abfd, info_ptr);
18939 info_ptr += 2;
18940 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18941 info_ptr += blk->size;
18942 DW_BLOCK (attr) = blk;
18943 break;
18944 case DW_FORM_block4:
18945 blk = dwarf_alloc_block (cu);
18946 blk->size = read_4_bytes (abfd, info_ptr);
18947 info_ptr += 4;
18948 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18949 info_ptr += blk->size;
18950 DW_BLOCK (attr) = blk;
18951 break;
18952 case DW_FORM_data2:
18953 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18954 info_ptr += 2;
18955 break;
18956 case DW_FORM_data4:
18957 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18958 info_ptr += 4;
18959 break;
18960 case DW_FORM_data8:
18961 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18962 info_ptr += 8;
18963 break;
18964 case DW_FORM_data16:
18965 blk = dwarf_alloc_block (cu);
18966 blk->size = 16;
18967 blk->data = read_n_bytes (abfd, info_ptr, 16);
18968 info_ptr += 16;
18969 DW_BLOCK (attr) = blk;
18970 break;
18971 case DW_FORM_sec_offset:
18972 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18973 info_ptr += bytes_read;
18974 break;
18975 case DW_FORM_string:
18976 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18977 DW_STRING_IS_CANONICAL (attr) = 0;
18978 info_ptr += bytes_read;
18979 break;
18980 case DW_FORM_strp:
18981 if (!cu->per_cu->is_dwz)
18982 {
18983 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18984 abfd, info_ptr, cu_header,
18985 &bytes_read);
18986 DW_STRING_IS_CANONICAL (attr) = 0;
18987 info_ptr += bytes_read;
18988 break;
18989 }
18990 /* FALLTHROUGH */
18991 case DW_FORM_line_strp:
18992 if (!cu->per_cu->is_dwz)
18993 {
18994 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18995 abfd, info_ptr,
18996 cu_header, &bytes_read);
18997 DW_STRING_IS_CANONICAL (attr) = 0;
18998 info_ptr += bytes_read;
18999 break;
19000 }
19001 /* FALLTHROUGH */
19002 case DW_FORM_GNU_strp_alt:
19003 {
19004 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19005 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19006 &bytes_read);
19007
19008 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19009 dwz, str_offset);
19010 DW_STRING_IS_CANONICAL (attr) = 0;
19011 info_ptr += bytes_read;
19012 }
19013 break;
19014 case DW_FORM_exprloc:
19015 case DW_FORM_block:
19016 blk = dwarf_alloc_block (cu);
19017 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19018 info_ptr += bytes_read;
19019 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19020 info_ptr += blk->size;
19021 DW_BLOCK (attr) = blk;
19022 break;
19023 case DW_FORM_block1:
19024 blk = dwarf_alloc_block (cu);
19025 blk->size = read_1_byte (abfd, info_ptr);
19026 info_ptr += 1;
19027 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19028 info_ptr += blk->size;
19029 DW_BLOCK (attr) = blk;
19030 break;
19031 case DW_FORM_data1:
19032 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19033 info_ptr += 1;
19034 break;
19035 case DW_FORM_flag:
19036 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19037 info_ptr += 1;
19038 break;
19039 case DW_FORM_flag_present:
19040 DW_UNSND (attr) = 1;
19041 break;
19042 case DW_FORM_sdata:
19043 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19044 info_ptr += bytes_read;
19045 break;
19046 case DW_FORM_udata:
19047 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19048 info_ptr += bytes_read;
19049 break;
19050 case DW_FORM_ref1:
19051 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19052 + read_1_byte (abfd, info_ptr));
19053 info_ptr += 1;
19054 break;
19055 case DW_FORM_ref2:
19056 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19057 + read_2_bytes (abfd, info_ptr));
19058 info_ptr += 2;
19059 break;
19060 case DW_FORM_ref4:
19061 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19062 + read_4_bytes (abfd, info_ptr));
19063 info_ptr += 4;
19064 break;
19065 case DW_FORM_ref8:
19066 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19067 + read_8_bytes (abfd, info_ptr));
19068 info_ptr += 8;
19069 break;
19070 case DW_FORM_ref_sig8:
19071 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19072 info_ptr += 8;
19073 break;
19074 case DW_FORM_ref_udata:
19075 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19076 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19077 info_ptr += bytes_read;
19078 break;
19079 case DW_FORM_indirect:
19080 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19081 info_ptr += bytes_read;
19082 if (form == DW_FORM_implicit_const)
19083 {
19084 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19085 info_ptr += bytes_read;
19086 }
19087 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19088 info_ptr);
19089 break;
19090 case DW_FORM_implicit_const:
19091 DW_SND (attr) = implicit_const;
19092 break;
19093 case DW_FORM_GNU_addr_index:
19094 if (reader->dwo_file == NULL)
19095 {
19096 /* For now flag a hard error.
19097 Later we can turn this into a complaint. */
19098 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19099 dwarf_form_name (form),
19100 bfd_get_filename (abfd));
19101 }
19102 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19103 info_ptr += bytes_read;
19104 break;
19105 case DW_FORM_GNU_str_index:
19106 if (reader->dwo_file == NULL)
19107 {
19108 /* For now flag a hard error.
19109 Later we can turn this into a complaint if warranted. */
19110 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19111 dwarf_form_name (form),
19112 bfd_get_filename (abfd));
19113 }
19114 {
19115 ULONGEST str_index =
19116 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19117
19118 DW_STRING (attr) = read_str_index (reader, str_index);
19119 DW_STRING_IS_CANONICAL (attr) = 0;
19120 info_ptr += bytes_read;
19121 }
19122 break;
19123 default:
19124 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19125 dwarf_form_name (form),
19126 bfd_get_filename (abfd));
19127 }
19128
19129 /* Super hack. */
19130 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19131 attr->form = DW_FORM_GNU_ref_alt;
19132
19133 /* We have seen instances where the compiler tried to emit a byte
19134 size attribute of -1 which ended up being encoded as an unsigned
19135 0xffffffff. Although 0xffffffff is technically a valid size value,
19136 an object of this size seems pretty unlikely so we can relatively
19137 safely treat these cases as if the size attribute was invalid and
19138 treat them as zero by default. */
19139 if (attr->name == DW_AT_byte_size
19140 && form == DW_FORM_data4
19141 && DW_UNSND (attr) >= 0xffffffff)
19142 {
19143 complaint
19144 (&symfile_complaints,
19145 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19146 hex_string (DW_UNSND (attr)));
19147 DW_UNSND (attr) = 0;
19148 }
19149
19150 return info_ptr;
19151 }
19152
19153 /* Read an attribute described by an abbreviated attribute. */
19154
19155 static const gdb_byte *
19156 read_attribute (const struct die_reader_specs *reader,
19157 struct attribute *attr, struct attr_abbrev *abbrev,
19158 const gdb_byte *info_ptr)
19159 {
19160 attr->name = abbrev->name;
19161 return read_attribute_value (reader, attr, abbrev->form,
19162 abbrev->implicit_const, info_ptr);
19163 }
19164
19165 /* Read dwarf information from a buffer. */
19166
19167 static unsigned int
19168 read_1_byte (bfd *abfd, const gdb_byte *buf)
19169 {
19170 return bfd_get_8 (abfd, buf);
19171 }
19172
19173 static int
19174 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19175 {
19176 return bfd_get_signed_8 (abfd, buf);
19177 }
19178
19179 static unsigned int
19180 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19181 {
19182 return bfd_get_16 (abfd, buf);
19183 }
19184
19185 static int
19186 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19187 {
19188 return bfd_get_signed_16 (abfd, buf);
19189 }
19190
19191 static unsigned int
19192 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19193 {
19194 return bfd_get_32 (abfd, buf);
19195 }
19196
19197 static int
19198 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19199 {
19200 return bfd_get_signed_32 (abfd, buf);
19201 }
19202
19203 static ULONGEST
19204 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19205 {
19206 return bfd_get_64 (abfd, buf);
19207 }
19208
19209 static CORE_ADDR
19210 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19211 unsigned int *bytes_read)
19212 {
19213 struct comp_unit_head *cu_header = &cu->header;
19214 CORE_ADDR retval = 0;
19215
19216 if (cu_header->signed_addr_p)
19217 {
19218 switch (cu_header->addr_size)
19219 {
19220 case 2:
19221 retval = bfd_get_signed_16 (abfd, buf);
19222 break;
19223 case 4:
19224 retval = bfd_get_signed_32 (abfd, buf);
19225 break;
19226 case 8:
19227 retval = bfd_get_signed_64 (abfd, buf);
19228 break;
19229 default:
19230 internal_error (__FILE__, __LINE__,
19231 _("read_address: bad switch, signed [in module %s]"),
19232 bfd_get_filename (abfd));
19233 }
19234 }
19235 else
19236 {
19237 switch (cu_header->addr_size)
19238 {
19239 case 2:
19240 retval = bfd_get_16 (abfd, buf);
19241 break;
19242 case 4:
19243 retval = bfd_get_32 (abfd, buf);
19244 break;
19245 case 8:
19246 retval = bfd_get_64 (abfd, buf);
19247 break;
19248 default:
19249 internal_error (__FILE__, __LINE__,
19250 _("read_address: bad switch, "
19251 "unsigned [in module %s]"),
19252 bfd_get_filename (abfd));
19253 }
19254 }
19255
19256 *bytes_read = cu_header->addr_size;
19257 return retval;
19258 }
19259
19260 /* Read the initial length from a section. The (draft) DWARF 3
19261 specification allows the initial length to take up either 4 bytes
19262 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19263 bytes describe the length and all offsets will be 8 bytes in length
19264 instead of 4.
19265
19266 An older, non-standard 64-bit format is also handled by this
19267 function. The older format in question stores the initial length
19268 as an 8-byte quantity without an escape value. Lengths greater
19269 than 2^32 aren't very common which means that the initial 4 bytes
19270 is almost always zero. Since a length value of zero doesn't make
19271 sense for the 32-bit format, this initial zero can be considered to
19272 be an escape value which indicates the presence of the older 64-bit
19273 format. As written, the code can't detect (old format) lengths
19274 greater than 4GB. If it becomes necessary to handle lengths
19275 somewhat larger than 4GB, we could allow other small values (such
19276 as the non-sensical values of 1, 2, and 3) to also be used as
19277 escape values indicating the presence of the old format.
19278
19279 The value returned via bytes_read should be used to increment the
19280 relevant pointer after calling read_initial_length().
19281
19282 [ Note: read_initial_length() and read_offset() are based on the
19283 document entitled "DWARF Debugging Information Format", revision
19284 3, draft 8, dated November 19, 2001. This document was obtained
19285 from:
19286
19287 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19288
19289 This document is only a draft and is subject to change. (So beware.)
19290
19291 Details regarding the older, non-standard 64-bit format were
19292 determined empirically by examining 64-bit ELF files produced by
19293 the SGI toolchain on an IRIX 6.5 machine.
19294
19295 - Kevin, July 16, 2002
19296 ] */
19297
19298 static LONGEST
19299 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19300 {
19301 LONGEST length = bfd_get_32 (abfd, buf);
19302
19303 if (length == 0xffffffff)
19304 {
19305 length = bfd_get_64 (abfd, buf + 4);
19306 *bytes_read = 12;
19307 }
19308 else if (length == 0)
19309 {
19310 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19311 length = bfd_get_64 (abfd, buf);
19312 *bytes_read = 8;
19313 }
19314 else
19315 {
19316 *bytes_read = 4;
19317 }
19318
19319 return length;
19320 }
19321
19322 /* Cover function for read_initial_length.
19323 Returns the length of the object at BUF, and stores the size of the
19324 initial length in *BYTES_READ and stores the size that offsets will be in
19325 *OFFSET_SIZE.
19326 If the initial length size is not equivalent to that specified in
19327 CU_HEADER then issue a complaint.
19328 This is useful when reading non-comp-unit headers. */
19329
19330 static LONGEST
19331 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19332 const struct comp_unit_head *cu_header,
19333 unsigned int *bytes_read,
19334 unsigned int *offset_size)
19335 {
19336 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19337
19338 gdb_assert (cu_header->initial_length_size == 4
19339 || cu_header->initial_length_size == 8
19340 || cu_header->initial_length_size == 12);
19341
19342 if (cu_header->initial_length_size != *bytes_read)
19343 complaint (&symfile_complaints,
19344 _("intermixed 32-bit and 64-bit DWARF sections"));
19345
19346 *offset_size = (*bytes_read == 4) ? 4 : 8;
19347 return length;
19348 }
19349
19350 /* Read an offset from the data stream. The size of the offset is
19351 given by cu_header->offset_size. */
19352
19353 static LONGEST
19354 read_offset (bfd *abfd, const gdb_byte *buf,
19355 const struct comp_unit_head *cu_header,
19356 unsigned int *bytes_read)
19357 {
19358 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19359
19360 *bytes_read = cu_header->offset_size;
19361 return offset;
19362 }
19363
19364 /* Read an offset from the data stream. */
19365
19366 static LONGEST
19367 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19368 {
19369 LONGEST retval = 0;
19370
19371 switch (offset_size)
19372 {
19373 case 4:
19374 retval = bfd_get_32 (abfd, buf);
19375 break;
19376 case 8:
19377 retval = bfd_get_64 (abfd, buf);
19378 break;
19379 default:
19380 internal_error (__FILE__, __LINE__,
19381 _("read_offset_1: bad switch [in module %s]"),
19382 bfd_get_filename (abfd));
19383 }
19384
19385 return retval;
19386 }
19387
19388 static const gdb_byte *
19389 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19390 {
19391 /* If the size of a host char is 8 bits, we can return a pointer
19392 to the buffer, otherwise we have to copy the data to a buffer
19393 allocated on the temporary obstack. */
19394 gdb_assert (HOST_CHAR_BIT == 8);
19395 return buf;
19396 }
19397
19398 static const char *
19399 read_direct_string (bfd *abfd, const gdb_byte *buf,
19400 unsigned int *bytes_read_ptr)
19401 {
19402 /* If the size of a host char is 8 bits, we can return a pointer
19403 to the string, otherwise we have to copy the string to a buffer
19404 allocated on the temporary obstack. */
19405 gdb_assert (HOST_CHAR_BIT == 8);
19406 if (*buf == '\0')
19407 {
19408 *bytes_read_ptr = 1;
19409 return NULL;
19410 }
19411 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19412 return (const char *) buf;
19413 }
19414
19415 /* Return pointer to string at section SECT offset STR_OFFSET with error
19416 reporting strings FORM_NAME and SECT_NAME. */
19417
19418 static const char *
19419 read_indirect_string_at_offset_from (struct objfile *objfile,
19420 bfd *abfd, LONGEST str_offset,
19421 struct dwarf2_section_info *sect,
19422 const char *form_name,
19423 const char *sect_name)
19424 {
19425 dwarf2_read_section (objfile, sect);
19426 if (sect->buffer == NULL)
19427 error (_("%s used without %s section [in module %s]"),
19428 form_name, sect_name, bfd_get_filename (abfd));
19429 if (str_offset >= sect->size)
19430 error (_("%s pointing outside of %s section [in module %s]"),
19431 form_name, sect_name, bfd_get_filename (abfd));
19432 gdb_assert (HOST_CHAR_BIT == 8);
19433 if (sect->buffer[str_offset] == '\0')
19434 return NULL;
19435 return (const char *) (sect->buffer + str_offset);
19436 }
19437
19438 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19439
19440 static const char *
19441 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19442 bfd *abfd, LONGEST str_offset)
19443 {
19444 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19445 abfd, str_offset,
19446 &dwarf2_per_objfile->str,
19447 "DW_FORM_strp", ".debug_str");
19448 }
19449
19450 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19451
19452 static const char *
19453 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19454 bfd *abfd, LONGEST str_offset)
19455 {
19456 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19457 abfd, str_offset,
19458 &dwarf2_per_objfile->line_str,
19459 "DW_FORM_line_strp",
19460 ".debug_line_str");
19461 }
19462
19463 /* Read a string at offset STR_OFFSET in the .debug_str section from
19464 the .dwz file DWZ. Throw an error if the offset is too large. If
19465 the string consists of a single NUL byte, return NULL; otherwise
19466 return a pointer to the string. */
19467
19468 static const char *
19469 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19470 LONGEST str_offset)
19471 {
19472 dwarf2_read_section (objfile, &dwz->str);
19473
19474 if (dwz->str.buffer == NULL)
19475 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19476 "section [in module %s]"),
19477 bfd_get_filename (dwz->dwz_bfd));
19478 if (str_offset >= dwz->str.size)
19479 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19480 ".debug_str section [in module %s]"),
19481 bfd_get_filename (dwz->dwz_bfd));
19482 gdb_assert (HOST_CHAR_BIT == 8);
19483 if (dwz->str.buffer[str_offset] == '\0')
19484 return NULL;
19485 return (const char *) (dwz->str.buffer + str_offset);
19486 }
19487
19488 /* Return pointer to string at .debug_str offset as read from BUF.
19489 BUF is assumed to be in a compilation unit described by CU_HEADER.
19490 Return *BYTES_READ_PTR count of bytes read from BUF. */
19491
19492 static const char *
19493 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19494 const gdb_byte *buf,
19495 const struct comp_unit_head *cu_header,
19496 unsigned int *bytes_read_ptr)
19497 {
19498 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19499
19500 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19501 }
19502
19503 /* Return pointer to string at .debug_line_str offset as read from BUF.
19504 BUF is assumed to be in a compilation unit described by CU_HEADER.
19505 Return *BYTES_READ_PTR count of bytes read from BUF. */
19506
19507 static const char *
19508 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19509 bfd *abfd, const gdb_byte *buf,
19510 const struct comp_unit_head *cu_header,
19511 unsigned int *bytes_read_ptr)
19512 {
19513 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19514
19515 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19516 str_offset);
19517 }
19518
19519 ULONGEST
19520 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19521 unsigned int *bytes_read_ptr)
19522 {
19523 ULONGEST result;
19524 unsigned int num_read;
19525 int shift;
19526 unsigned char byte;
19527
19528 result = 0;
19529 shift = 0;
19530 num_read = 0;
19531 while (1)
19532 {
19533 byte = bfd_get_8 (abfd, buf);
19534 buf++;
19535 num_read++;
19536 result |= ((ULONGEST) (byte & 127) << shift);
19537 if ((byte & 128) == 0)
19538 {
19539 break;
19540 }
19541 shift += 7;
19542 }
19543 *bytes_read_ptr = num_read;
19544 return result;
19545 }
19546
19547 static LONGEST
19548 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19549 unsigned int *bytes_read_ptr)
19550 {
19551 LONGEST result;
19552 int shift, num_read;
19553 unsigned char byte;
19554
19555 result = 0;
19556 shift = 0;
19557 num_read = 0;
19558 while (1)
19559 {
19560 byte = bfd_get_8 (abfd, buf);
19561 buf++;
19562 num_read++;
19563 result |= ((LONGEST) (byte & 127) << shift);
19564 shift += 7;
19565 if ((byte & 128) == 0)
19566 {
19567 break;
19568 }
19569 }
19570 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19571 result |= -(((LONGEST) 1) << shift);
19572 *bytes_read_ptr = num_read;
19573 return result;
19574 }
19575
19576 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19577 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19578 ADDR_SIZE is the size of addresses from the CU header. */
19579
19580 static CORE_ADDR
19581 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19582 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19583 {
19584 struct objfile *objfile = dwarf2_per_objfile->objfile;
19585 bfd *abfd = objfile->obfd;
19586 const gdb_byte *info_ptr;
19587
19588 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19589 if (dwarf2_per_objfile->addr.buffer == NULL)
19590 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19591 objfile_name (objfile));
19592 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19593 error (_("DW_FORM_addr_index pointing outside of "
19594 ".debug_addr section [in module %s]"),
19595 objfile_name (objfile));
19596 info_ptr = (dwarf2_per_objfile->addr.buffer
19597 + addr_base + addr_index * addr_size);
19598 if (addr_size == 4)
19599 return bfd_get_32 (abfd, info_ptr);
19600 else
19601 return bfd_get_64 (abfd, info_ptr);
19602 }
19603
19604 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19605
19606 static CORE_ADDR
19607 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19608 {
19609 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19610 cu->addr_base, cu->header.addr_size);
19611 }
19612
19613 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19614
19615 static CORE_ADDR
19616 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19617 unsigned int *bytes_read)
19618 {
19619 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19620 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19621
19622 return read_addr_index (cu, addr_index);
19623 }
19624
19625 /* Data structure to pass results from dwarf2_read_addr_index_reader
19626 back to dwarf2_read_addr_index. */
19627
19628 struct dwarf2_read_addr_index_data
19629 {
19630 ULONGEST addr_base;
19631 int addr_size;
19632 };
19633
19634 /* die_reader_func for dwarf2_read_addr_index. */
19635
19636 static void
19637 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19638 const gdb_byte *info_ptr,
19639 struct die_info *comp_unit_die,
19640 int has_children,
19641 void *data)
19642 {
19643 struct dwarf2_cu *cu = reader->cu;
19644 struct dwarf2_read_addr_index_data *aidata =
19645 (struct dwarf2_read_addr_index_data *) data;
19646
19647 aidata->addr_base = cu->addr_base;
19648 aidata->addr_size = cu->header.addr_size;
19649 }
19650
19651 /* Given an index in .debug_addr, fetch the value.
19652 NOTE: This can be called during dwarf expression evaluation,
19653 long after the debug information has been read, and thus per_cu->cu
19654 may no longer exist. */
19655
19656 CORE_ADDR
19657 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19658 unsigned int addr_index)
19659 {
19660 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19661 struct objfile *objfile = dwarf2_per_objfile->objfile;
19662 struct dwarf2_cu *cu = per_cu->cu;
19663 ULONGEST addr_base;
19664 int addr_size;
19665
19666 /* We need addr_base and addr_size.
19667 If we don't have PER_CU->cu, we have to get it.
19668 Nasty, but the alternative is storing the needed info in PER_CU,
19669 which at this point doesn't seem justified: it's not clear how frequently
19670 it would get used and it would increase the size of every PER_CU.
19671 Entry points like dwarf2_per_cu_addr_size do a similar thing
19672 so we're not in uncharted territory here.
19673 Alas we need to be a bit more complicated as addr_base is contained
19674 in the DIE.
19675
19676 We don't need to read the entire CU(/TU).
19677 We just need the header and top level die.
19678
19679 IWBN to use the aging mechanism to let us lazily later discard the CU.
19680 For now we skip this optimization. */
19681
19682 if (cu != NULL)
19683 {
19684 addr_base = cu->addr_base;
19685 addr_size = cu->header.addr_size;
19686 }
19687 else
19688 {
19689 struct dwarf2_read_addr_index_data aidata;
19690
19691 /* Note: We can't use init_cutu_and_read_dies_simple here,
19692 we need addr_base. */
19693 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
19694 dwarf2_read_addr_index_reader, &aidata);
19695 addr_base = aidata.addr_base;
19696 addr_size = aidata.addr_size;
19697 }
19698
19699 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19700 addr_size);
19701 }
19702
19703 /* Given a DW_FORM_GNU_str_index, fetch the string.
19704 This is only used by the Fission support. */
19705
19706 static const char *
19707 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19708 {
19709 struct dwarf2_cu *cu = reader->cu;
19710 struct dwarf2_per_objfile *dwarf2_per_objfile
19711 = cu->per_cu->dwarf2_per_objfile;
19712 struct objfile *objfile = dwarf2_per_objfile->objfile;
19713 const char *objf_name = objfile_name (objfile);
19714 bfd *abfd = objfile->obfd;
19715 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19716 struct dwarf2_section_info *str_offsets_section =
19717 &reader->dwo_file->sections.str_offsets;
19718 const gdb_byte *info_ptr;
19719 ULONGEST str_offset;
19720 static const char form_name[] = "DW_FORM_GNU_str_index";
19721
19722 dwarf2_read_section (objfile, str_section);
19723 dwarf2_read_section (objfile, str_offsets_section);
19724 if (str_section->buffer == NULL)
19725 error (_("%s used without .debug_str.dwo section"
19726 " in CU at offset %s [in module %s]"),
19727 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19728 if (str_offsets_section->buffer == NULL)
19729 error (_("%s used without .debug_str_offsets.dwo section"
19730 " in CU at offset %s [in module %s]"),
19731 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19732 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19733 error (_("%s pointing outside of .debug_str_offsets.dwo"
19734 " section in CU at offset %s [in module %s]"),
19735 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19736 info_ptr = (str_offsets_section->buffer
19737 + str_index * cu->header.offset_size);
19738 if (cu->header.offset_size == 4)
19739 str_offset = bfd_get_32 (abfd, info_ptr);
19740 else
19741 str_offset = bfd_get_64 (abfd, info_ptr);
19742 if (str_offset >= str_section->size)
19743 error (_("Offset from %s pointing outside of"
19744 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19745 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19746 return (const char *) (str_section->buffer + str_offset);
19747 }
19748
19749 /* Return the length of an LEB128 number in BUF. */
19750
19751 static int
19752 leb128_size (const gdb_byte *buf)
19753 {
19754 const gdb_byte *begin = buf;
19755 gdb_byte byte;
19756
19757 while (1)
19758 {
19759 byte = *buf++;
19760 if ((byte & 128) == 0)
19761 return buf - begin;
19762 }
19763 }
19764
19765 static void
19766 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19767 {
19768 switch (lang)
19769 {
19770 case DW_LANG_C89:
19771 case DW_LANG_C99:
19772 case DW_LANG_C11:
19773 case DW_LANG_C:
19774 case DW_LANG_UPC:
19775 cu->language = language_c;
19776 break;
19777 case DW_LANG_Java:
19778 case DW_LANG_C_plus_plus:
19779 case DW_LANG_C_plus_plus_11:
19780 case DW_LANG_C_plus_plus_14:
19781 cu->language = language_cplus;
19782 break;
19783 case DW_LANG_D:
19784 cu->language = language_d;
19785 break;
19786 case DW_LANG_Fortran77:
19787 case DW_LANG_Fortran90:
19788 case DW_LANG_Fortran95:
19789 case DW_LANG_Fortran03:
19790 case DW_LANG_Fortran08:
19791 cu->language = language_fortran;
19792 break;
19793 case DW_LANG_Go:
19794 cu->language = language_go;
19795 break;
19796 case DW_LANG_Mips_Assembler:
19797 cu->language = language_asm;
19798 break;
19799 case DW_LANG_Ada83:
19800 case DW_LANG_Ada95:
19801 cu->language = language_ada;
19802 break;
19803 case DW_LANG_Modula2:
19804 cu->language = language_m2;
19805 break;
19806 case DW_LANG_Pascal83:
19807 cu->language = language_pascal;
19808 break;
19809 case DW_LANG_ObjC:
19810 cu->language = language_objc;
19811 break;
19812 case DW_LANG_Rust:
19813 case DW_LANG_Rust_old:
19814 cu->language = language_rust;
19815 break;
19816 case DW_LANG_Cobol74:
19817 case DW_LANG_Cobol85:
19818 default:
19819 cu->language = language_minimal;
19820 break;
19821 }
19822 cu->language_defn = language_def (cu->language);
19823 }
19824
19825 /* Return the named attribute or NULL if not there. */
19826
19827 static struct attribute *
19828 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19829 {
19830 for (;;)
19831 {
19832 unsigned int i;
19833 struct attribute *spec = NULL;
19834
19835 for (i = 0; i < die->num_attrs; ++i)
19836 {
19837 if (die->attrs[i].name == name)
19838 return &die->attrs[i];
19839 if (die->attrs[i].name == DW_AT_specification
19840 || die->attrs[i].name == DW_AT_abstract_origin)
19841 spec = &die->attrs[i];
19842 }
19843
19844 if (!spec)
19845 break;
19846
19847 die = follow_die_ref (die, spec, &cu);
19848 }
19849
19850 return NULL;
19851 }
19852
19853 /* Return the named attribute or NULL if not there,
19854 but do not follow DW_AT_specification, etc.
19855 This is for use in contexts where we're reading .debug_types dies.
19856 Following DW_AT_specification, DW_AT_abstract_origin will take us
19857 back up the chain, and we want to go down. */
19858
19859 static struct attribute *
19860 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19861 {
19862 unsigned int i;
19863
19864 for (i = 0; i < die->num_attrs; ++i)
19865 if (die->attrs[i].name == name)
19866 return &die->attrs[i];
19867
19868 return NULL;
19869 }
19870
19871 /* Return the string associated with a string-typed attribute, or NULL if it
19872 is either not found or is of an incorrect type. */
19873
19874 static const char *
19875 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19876 {
19877 struct attribute *attr;
19878 const char *str = NULL;
19879
19880 attr = dwarf2_attr (die, name, cu);
19881
19882 if (attr != NULL)
19883 {
19884 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19885 || attr->form == DW_FORM_string
19886 || attr->form == DW_FORM_GNU_str_index
19887 || attr->form == DW_FORM_GNU_strp_alt)
19888 str = DW_STRING (attr);
19889 else
19890 complaint (&symfile_complaints,
19891 _("string type expected for attribute %s for "
19892 "DIE at %s in module %s"),
19893 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19894 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19895 }
19896
19897 return str;
19898 }
19899
19900 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19901 and holds a non-zero value. This function should only be used for
19902 DW_FORM_flag or DW_FORM_flag_present attributes. */
19903
19904 static int
19905 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19906 {
19907 struct attribute *attr = dwarf2_attr (die, name, cu);
19908
19909 return (attr && DW_UNSND (attr));
19910 }
19911
19912 static int
19913 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19914 {
19915 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19916 which value is non-zero. However, we have to be careful with
19917 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19918 (via dwarf2_flag_true_p) follows this attribute. So we may
19919 end up accidently finding a declaration attribute that belongs
19920 to a different DIE referenced by the specification attribute,
19921 even though the given DIE does not have a declaration attribute. */
19922 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19923 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19924 }
19925
19926 /* Return the die giving the specification for DIE, if there is
19927 one. *SPEC_CU is the CU containing DIE on input, and the CU
19928 containing the return value on output. If there is no
19929 specification, but there is an abstract origin, that is
19930 returned. */
19931
19932 static struct die_info *
19933 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19934 {
19935 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19936 *spec_cu);
19937
19938 if (spec_attr == NULL)
19939 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19940
19941 if (spec_attr == NULL)
19942 return NULL;
19943 else
19944 return follow_die_ref (die, spec_attr, spec_cu);
19945 }
19946
19947 /* Stub for free_line_header to match void * callback types. */
19948
19949 static void
19950 free_line_header_voidp (void *arg)
19951 {
19952 struct line_header *lh = (struct line_header *) arg;
19953
19954 delete lh;
19955 }
19956
19957 void
19958 line_header::add_include_dir (const char *include_dir)
19959 {
19960 if (dwarf_line_debug >= 2)
19961 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19962 include_dirs.size () + 1, include_dir);
19963
19964 include_dirs.push_back (include_dir);
19965 }
19966
19967 void
19968 line_header::add_file_name (const char *name,
19969 dir_index d_index,
19970 unsigned int mod_time,
19971 unsigned int length)
19972 {
19973 if (dwarf_line_debug >= 2)
19974 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19975 (unsigned) file_names.size () + 1, name);
19976
19977 file_names.emplace_back (name, d_index, mod_time, length);
19978 }
19979
19980 /* A convenience function to find the proper .debug_line section for a CU. */
19981
19982 static struct dwarf2_section_info *
19983 get_debug_line_section (struct dwarf2_cu *cu)
19984 {
19985 struct dwarf2_section_info *section;
19986 struct dwarf2_per_objfile *dwarf2_per_objfile
19987 = cu->per_cu->dwarf2_per_objfile;
19988
19989 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19990 DWO file. */
19991 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19992 section = &cu->dwo_unit->dwo_file->sections.line;
19993 else if (cu->per_cu->is_dwz)
19994 {
19995 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19996
19997 section = &dwz->line;
19998 }
19999 else
20000 section = &dwarf2_per_objfile->line;
20001
20002 return section;
20003 }
20004
20005 /* Read directory or file name entry format, starting with byte of
20006 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20007 entries count and the entries themselves in the described entry
20008 format. */
20009
20010 static void
20011 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20012 bfd *abfd, const gdb_byte **bufp,
20013 struct line_header *lh,
20014 const struct comp_unit_head *cu_header,
20015 void (*callback) (struct line_header *lh,
20016 const char *name,
20017 dir_index d_index,
20018 unsigned int mod_time,
20019 unsigned int length))
20020 {
20021 gdb_byte format_count, formati;
20022 ULONGEST data_count, datai;
20023 const gdb_byte *buf = *bufp;
20024 const gdb_byte *format_header_data;
20025 unsigned int bytes_read;
20026
20027 format_count = read_1_byte (abfd, buf);
20028 buf += 1;
20029 format_header_data = buf;
20030 for (formati = 0; formati < format_count; formati++)
20031 {
20032 read_unsigned_leb128 (abfd, buf, &bytes_read);
20033 buf += bytes_read;
20034 read_unsigned_leb128 (abfd, buf, &bytes_read);
20035 buf += bytes_read;
20036 }
20037
20038 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20039 buf += bytes_read;
20040 for (datai = 0; datai < data_count; datai++)
20041 {
20042 const gdb_byte *format = format_header_data;
20043 struct file_entry fe;
20044
20045 for (formati = 0; formati < format_count; formati++)
20046 {
20047 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20048 format += bytes_read;
20049
20050 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20051 format += bytes_read;
20052
20053 gdb::optional<const char *> string;
20054 gdb::optional<unsigned int> uint;
20055
20056 switch (form)
20057 {
20058 case DW_FORM_string:
20059 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20060 buf += bytes_read;
20061 break;
20062
20063 case DW_FORM_line_strp:
20064 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20065 abfd, buf,
20066 cu_header,
20067 &bytes_read));
20068 buf += bytes_read;
20069 break;
20070
20071 case DW_FORM_data1:
20072 uint.emplace (read_1_byte (abfd, buf));
20073 buf += 1;
20074 break;
20075
20076 case DW_FORM_data2:
20077 uint.emplace (read_2_bytes (abfd, buf));
20078 buf += 2;
20079 break;
20080
20081 case DW_FORM_data4:
20082 uint.emplace (read_4_bytes (abfd, buf));
20083 buf += 4;
20084 break;
20085
20086 case DW_FORM_data8:
20087 uint.emplace (read_8_bytes (abfd, buf));
20088 buf += 8;
20089 break;
20090
20091 case DW_FORM_udata:
20092 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20093 buf += bytes_read;
20094 break;
20095
20096 case DW_FORM_block:
20097 /* It is valid only for DW_LNCT_timestamp which is ignored by
20098 current GDB. */
20099 break;
20100 }
20101
20102 switch (content_type)
20103 {
20104 case DW_LNCT_path:
20105 if (string.has_value ())
20106 fe.name = *string;
20107 break;
20108 case DW_LNCT_directory_index:
20109 if (uint.has_value ())
20110 fe.d_index = (dir_index) *uint;
20111 break;
20112 case DW_LNCT_timestamp:
20113 if (uint.has_value ())
20114 fe.mod_time = *uint;
20115 break;
20116 case DW_LNCT_size:
20117 if (uint.has_value ())
20118 fe.length = *uint;
20119 break;
20120 case DW_LNCT_MD5:
20121 break;
20122 default:
20123 complaint (&symfile_complaints,
20124 _("Unknown format content type %s"),
20125 pulongest (content_type));
20126 }
20127 }
20128
20129 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20130 }
20131
20132 *bufp = buf;
20133 }
20134
20135 /* Read the statement program header starting at OFFSET in
20136 .debug_line, or .debug_line.dwo. Return a pointer
20137 to a struct line_header, allocated using xmalloc.
20138 Returns NULL if there is a problem reading the header, e.g., if it
20139 has a version we don't understand.
20140
20141 NOTE: the strings in the include directory and file name tables of
20142 the returned object point into the dwarf line section buffer,
20143 and must not be freed. */
20144
20145 static line_header_up
20146 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20147 {
20148 const gdb_byte *line_ptr;
20149 unsigned int bytes_read, offset_size;
20150 int i;
20151 const char *cur_dir, *cur_file;
20152 struct dwarf2_section_info *section;
20153 bfd *abfd;
20154 struct dwarf2_per_objfile *dwarf2_per_objfile
20155 = cu->per_cu->dwarf2_per_objfile;
20156
20157 section = get_debug_line_section (cu);
20158 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20159 if (section->buffer == NULL)
20160 {
20161 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20162 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20163 else
20164 complaint (&symfile_complaints, _("missing .debug_line section"));
20165 return 0;
20166 }
20167
20168 /* We can't do this until we know the section is non-empty.
20169 Only then do we know we have such a section. */
20170 abfd = get_section_bfd_owner (section);
20171
20172 /* Make sure that at least there's room for the total_length field.
20173 That could be 12 bytes long, but we're just going to fudge that. */
20174 if (to_underlying (sect_off) + 4 >= section->size)
20175 {
20176 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20177 return 0;
20178 }
20179
20180 line_header_up lh (new line_header ());
20181
20182 lh->sect_off = sect_off;
20183 lh->offset_in_dwz = cu->per_cu->is_dwz;
20184
20185 line_ptr = section->buffer + to_underlying (sect_off);
20186
20187 /* Read in the header. */
20188 lh->total_length =
20189 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20190 &bytes_read, &offset_size);
20191 line_ptr += bytes_read;
20192 if (line_ptr + lh->total_length > (section->buffer + section->size))
20193 {
20194 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20195 return 0;
20196 }
20197 lh->statement_program_end = line_ptr + lh->total_length;
20198 lh->version = read_2_bytes (abfd, line_ptr);
20199 line_ptr += 2;
20200 if (lh->version > 5)
20201 {
20202 /* This is a version we don't understand. The format could have
20203 changed in ways we don't handle properly so just punt. */
20204 complaint (&symfile_complaints,
20205 _("unsupported version in .debug_line section"));
20206 return NULL;
20207 }
20208 if (lh->version >= 5)
20209 {
20210 gdb_byte segment_selector_size;
20211
20212 /* Skip address size. */
20213 read_1_byte (abfd, line_ptr);
20214 line_ptr += 1;
20215
20216 segment_selector_size = read_1_byte (abfd, line_ptr);
20217 line_ptr += 1;
20218 if (segment_selector_size != 0)
20219 {
20220 complaint (&symfile_complaints,
20221 _("unsupported segment selector size %u "
20222 "in .debug_line section"),
20223 segment_selector_size);
20224 return NULL;
20225 }
20226 }
20227 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20228 line_ptr += offset_size;
20229 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20230 line_ptr += 1;
20231 if (lh->version >= 4)
20232 {
20233 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20234 line_ptr += 1;
20235 }
20236 else
20237 lh->maximum_ops_per_instruction = 1;
20238
20239 if (lh->maximum_ops_per_instruction == 0)
20240 {
20241 lh->maximum_ops_per_instruction = 1;
20242 complaint (&symfile_complaints,
20243 _("invalid maximum_ops_per_instruction "
20244 "in `.debug_line' section"));
20245 }
20246
20247 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20248 line_ptr += 1;
20249 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20250 line_ptr += 1;
20251 lh->line_range = read_1_byte (abfd, line_ptr);
20252 line_ptr += 1;
20253 lh->opcode_base = read_1_byte (abfd, line_ptr);
20254 line_ptr += 1;
20255 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20256
20257 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20258 for (i = 1; i < lh->opcode_base; ++i)
20259 {
20260 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20261 line_ptr += 1;
20262 }
20263
20264 if (lh->version >= 5)
20265 {
20266 /* Read directory table. */
20267 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20268 &cu->header,
20269 [] (struct line_header *lh, const char *name,
20270 dir_index d_index, unsigned int mod_time,
20271 unsigned int length)
20272 {
20273 lh->add_include_dir (name);
20274 });
20275
20276 /* Read file name table. */
20277 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20278 &cu->header,
20279 [] (struct line_header *lh, const char *name,
20280 dir_index d_index, unsigned int mod_time,
20281 unsigned int length)
20282 {
20283 lh->add_file_name (name, d_index, mod_time, length);
20284 });
20285 }
20286 else
20287 {
20288 /* Read directory table. */
20289 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20290 {
20291 line_ptr += bytes_read;
20292 lh->add_include_dir (cur_dir);
20293 }
20294 line_ptr += bytes_read;
20295
20296 /* Read file name table. */
20297 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20298 {
20299 unsigned int mod_time, length;
20300 dir_index d_index;
20301
20302 line_ptr += bytes_read;
20303 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20304 line_ptr += bytes_read;
20305 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20306 line_ptr += bytes_read;
20307 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20308 line_ptr += bytes_read;
20309
20310 lh->add_file_name (cur_file, d_index, mod_time, length);
20311 }
20312 line_ptr += bytes_read;
20313 }
20314 lh->statement_program_start = line_ptr;
20315
20316 if (line_ptr > (section->buffer + section->size))
20317 complaint (&symfile_complaints,
20318 _("line number info header doesn't "
20319 "fit in `.debug_line' section"));
20320
20321 return lh;
20322 }
20323
20324 /* Subroutine of dwarf_decode_lines to simplify it.
20325 Return the file name of the psymtab for included file FILE_INDEX
20326 in line header LH of PST.
20327 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20328 If space for the result is malloc'd, *NAME_HOLDER will be set.
20329 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20330
20331 static const char *
20332 psymtab_include_file_name (const struct line_header *lh, int file_index,
20333 const struct partial_symtab *pst,
20334 const char *comp_dir,
20335 gdb::unique_xmalloc_ptr<char> *name_holder)
20336 {
20337 const file_entry &fe = lh->file_names[file_index];
20338 const char *include_name = fe.name;
20339 const char *include_name_to_compare = include_name;
20340 const char *pst_filename;
20341 int file_is_pst;
20342
20343 const char *dir_name = fe.include_dir (lh);
20344
20345 gdb::unique_xmalloc_ptr<char> hold_compare;
20346 if (!IS_ABSOLUTE_PATH (include_name)
20347 && (dir_name != NULL || comp_dir != NULL))
20348 {
20349 /* Avoid creating a duplicate psymtab for PST.
20350 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20351 Before we do the comparison, however, we need to account
20352 for DIR_NAME and COMP_DIR.
20353 First prepend dir_name (if non-NULL). If we still don't
20354 have an absolute path prepend comp_dir (if non-NULL).
20355 However, the directory we record in the include-file's
20356 psymtab does not contain COMP_DIR (to match the
20357 corresponding symtab(s)).
20358
20359 Example:
20360
20361 bash$ cd /tmp
20362 bash$ gcc -g ./hello.c
20363 include_name = "hello.c"
20364 dir_name = "."
20365 DW_AT_comp_dir = comp_dir = "/tmp"
20366 DW_AT_name = "./hello.c"
20367
20368 */
20369
20370 if (dir_name != NULL)
20371 {
20372 name_holder->reset (concat (dir_name, SLASH_STRING,
20373 include_name, (char *) NULL));
20374 include_name = name_holder->get ();
20375 include_name_to_compare = include_name;
20376 }
20377 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20378 {
20379 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20380 include_name, (char *) NULL));
20381 include_name_to_compare = hold_compare.get ();
20382 }
20383 }
20384
20385 pst_filename = pst->filename;
20386 gdb::unique_xmalloc_ptr<char> copied_name;
20387 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20388 {
20389 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20390 pst_filename, (char *) NULL));
20391 pst_filename = copied_name.get ();
20392 }
20393
20394 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20395
20396 if (file_is_pst)
20397 return NULL;
20398 return include_name;
20399 }
20400
20401 /* State machine to track the state of the line number program. */
20402
20403 class lnp_state_machine
20404 {
20405 public:
20406 /* Initialize a machine state for the start of a line number
20407 program. */
20408 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20409
20410 file_entry *current_file ()
20411 {
20412 /* lh->file_names is 0-based, but the file name numbers in the
20413 statement program are 1-based. */
20414 return m_line_header->file_name_at (m_file);
20415 }
20416
20417 /* Record the line in the state machine. END_SEQUENCE is true if
20418 we're processing the end of a sequence. */
20419 void record_line (bool end_sequence);
20420
20421 /* Check address and if invalid nop-out the rest of the lines in this
20422 sequence. */
20423 void check_line_address (struct dwarf2_cu *cu,
20424 const gdb_byte *line_ptr,
20425 CORE_ADDR lowpc, CORE_ADDR address);
20426
20427 void handle_set_discriminator (unsigned int discriminator)
20428 {
20429 m_discriminator = discriminator;
20430 m_line_has_non_zero_discriminator |= discriminator != 0;
20431 }
20432
20433 /* Handle DW_LNE_set_address. */
20434 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20435 {
20436 m_op_index = 0;
20437 address += baseaddr;
20438 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20439 }
20440
20441 /* Handle DW_LNS_advance_pc. */
20442 void handle_advance_pc (CORE_ADDR adjust);
20443
20444 /* Handle a special opcode. */
20445 void handle_special_opcode (unsigned char op_code);
20446
20447 /* Handle DW_LNS_advance_line. */
20448 void handle_advance_line (int line_delta)
20449 {
20450 advance_line (line_delta);
20451 }
20452
20453 /* Handle DW_LNS_set_file. */
20454 void handle_set_file (file_name_index file);
20455
20456 /* Handle DW_LNS_negate_stmt. */
20457 void handle_negate_stmt ()
20458 {
20459 m_is_stmt = !m_is_stmt;
20460 }
20461
20462 /* Handle DW_LNS_const_add_pc. */
20463 void handle_const_add_pc ();
20464
20465 /* Handle DW_LNS_fixed_advance_pc. */
20466 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20467 {
20468 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20469 m_op_index = 0;
20470 }
20471
20472 /* Handle DW_LNS_copy. */
20473 void handle_copy ()
20474 {
20475 record_line (false);
20476 m_discriminator = 0;
20477 }
20478
20479 /* Handle DW_LNE_end_sequence. */
20480 void handle_end_sequence ()
20481 {
20482 m_record_line_callback = ::record_line;
20483 }
20484
20485 private:
20486 /* Advance the line by LINE_DELTA. */
20487 void advance_line (int line_delta)
20488 {
20489 m_line += line_delta;
20490
20491 if (line_delta != 0)
20492 m_line_has_non_zero_discriminator = m_discriminator != 0;
20493 }
20494
20495 gdbarch *m_gdbarch;
20496
20497 /* True if we're recording lines.
20498 Otherwise we're building partial symtabs and are just interested in
20499 finding include files mentioned by the line number program. */
20500 bool m_record_lines_p;
20501
20502 /* The line number header. */
20503 line_header *m_line_header;
20504
20505 /* These are part of the standard DWARF line number state machine,
20506 and initialized according to the DWARF spec. */
20507
20508 unsigned char m_op_index = 0;
20509 /* The line table index (1-based) of the current file. */
20510 file_name_index m_file = (file_name_index) 1;
20511 unsigned int m_line = 1;
20512
20513 /* These are initialized in the constructor. */
20514
20515 CORE_ADDR m_address;
20516 bool m_is_stmt;
20517 unsigned int m_discriminator;
20518
20519 /* Additional bits of state we need to track. */
20520
20521 /* The last file that we called dwarf2_start_subfile for.
20522 This is only used for TLLs. */
20523 unsigned int m_last_file = 0;
20524 /* The last file a line number was recorded for. */
20525 struct subfile *m_last_subfile = NULL;
20526
20527 /* The function to call to record a line. */
20528 record_line_ftype *m_record_line_callback = NULL;
20529
20530 /* The last line number that was recorded, used to coalesce
20531 consecutive entries for the same line. This can happen, for
20532 example, when discriminators are present. PR 17276. */
20533 unsigned int m_last_line = 0;
20534 bool m_line_has_non_zero_discriminator = false;
20535 };
20536
20537 void
20538 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20539 {
20540 CORE_ADDR addr_adj = (((m_op_index + adjust)
20541 / m_line_header->maximum_ops_per_instruction)
20542 * m_line_header->minimum_instruction_length);
20543 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20544 m_op_index = ((m_op_index + adjust)
20545 % m_line_header->maximum_ops_per_instruction);
20546 }
20547
20548 void
20549 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20550 {
20551 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20552 CORE_ADDR addr_adj = (((m_op_index
20553 + (adj_opcode / m_line_header->line_range))
20554 / m_line_header->maximum_ops_per_instruction)
20555 * m_line_header->minimum_instruction_length);
20556 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20557 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20558 % m_line_header->maximum_ops_per_instruction);
20559
20560 int line_delta = (m_line_header->line_base
20561 + (adj_opcode % m_line_header->line_range));
20562 advance_line (line_delta);
20563 record_line (false);
20564 m_discriminator = 0;
20565 }
20566
20567 void
20568 lnp_state_machine::handle_set_file (file_name_index file)
20569 {
20570 m_file = file;
20571
20572 const file_entry *fe = current_file ();
20573 if (fe == NULL)
20574 dwarf2_debug_line_missing_file_complaint ();
20575 else if (m_record_lines_p)
20576 {
20577 const char *dir = fe->include_dir (m_line_header);
20578
20579 m_last_subfile = current_subfile;
20580 m_line_has_non_zero_discriminator = m_discriminator != 0;
20581 dwarf2_start_subfile (fe->name, dir);
20582 }
20583 }
20584
20585 void
20586 lnp_state_machine::handle_const_add_pc ()
20587 {
20588 CORE_ADDR adjust
20589 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20590
20591 CORE_ADDR addr_adj
20592 = (((m_op_index + adjust)
20593 / m_line_header->maximum_ops_per_instruction)
20594 * m_line_header->minimum_instruction_length);
20595
20596 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20597 m_op_index = ((m_op_index + adjust)
20598 % m_line_header->maximum_ops_per_instruction);
20599 }
20600
20601 /* Ignore this record_line request. */
20602
20603 static void
20604 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20605 {
20606 return;
20607 }
20608
20609 /* Return non-zero if we should add LINE to the line number table.
20610 LINE is the line to add, LAST_LINE is the last line that was added,
20611 LAST_SUBFILE is the subfile for LAST_LINE.
20612 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20613 had a non-zero discriminator.
20614
20615 We have to be careful in the presence of discriminators.
20616 E.g., for this line:
20617
20618 for (i = 0; i < 100000; i++);
20619
20620 clang can emit four line number entries for that one line,
20621 each with a different discriminator.
20622 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20623
20624 However, we want gdb to coalesce all four entries into one.
20625 Otherwise the user could stepi into the middle of the line and
20626 gdb would get confused about whether the pc really was in the
20627 middle of the line.
20628
20629 Things are further complicated by the fact that two consecutive
20630 line number entries for the same line is a heuristic used by gcc
20631 to denote the end of the prologue. So we can't just discard duplicate
20632 entries, we have to be selective about it. The heuristic we use is
20633 that we only collapse consecutive entries for the same line if at least
20634 one of those entries has a non-zero discriminator. PR 17276.
20635
20636 Note: Addresses in the line number state machine can never go backwards
20637 within one sequence, thus this coalescing is ok. */
20638
20639 static int
20640 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20641 int line_has_non_zero_discriminator,
20642 struct subfile *last_subfile)
20643 {
20644 if (current_subfile != last_subfile)
20645 return 1;
20646 if (line != last_line)
20647 return 1;
20648 /* Same line for the same file that we've seen already.
20649 As a last check, for pr 17276, only record the line if the line
20650 has never had a non-zero discriminator. */
20651 if (!line_has_non_zero_discriminator)
20652 return 1;
20653 return 0;
20654 }
20655
20656 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20657 in the line table of subfile SUBFILE. */
20658
20659 static void
20660 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20661 unsigned int line, CORE_ADDR address,
20662 record_line_ftype p_record_line)
20663 {
20664 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20665
20666 if (dwarf_line_debug)
20667 {
20668 fprintf_unfiltered (gdb_stdlog,
20669 "Recording line %u, file %s, address %s\n",
20670 line, lbasename (subfile->name),
20671 paddress (gdbarch, address));
20672 }
20673
20674 (*p_record_line) (subfile, line, addr);
20675 }
20676
20677 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20678 Mark the end of a set of line number records.
20679 The arguments are the same as for dwarf_record_line_1.
20680 If SUBFILE is NULL the request is ignored. */
20681
20682 static void
20683 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20684 CORE_ADDR address, record_line_ftype p_record_line)
20685 {
20686 if (subfile == NULL)
20687 return;
20688
20689 if (dwarf_line_debug)
20690 {
20691 fprintf_unfiltered (gdb_stdlog,
20692 "Finishing current line, file %s, address %s\n",
20693 lbasename (subfile->name),
20694 paddress (gdbarch, address));
20695 }
20696
20697 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20698 }
20699
20700 void
20701 lnp_state_machine::record_line (bool end_sequence)
20702 {
20703 if (dwarf_line_debug)
20704 {
20705 fprintf_unfiltered (gdb_stdlog,
20706 "Processing actual line %u: file %u,"
20707 " address %s, is_stmt %u, discrim %u\n",
20708 m_line, to_underlying (m_file),
20709 paddress (m_gdbarch, m_address),
20710 m_is_stmt, m_discriminator);
20711 }
20712
20713 file_entry *fe = current_file ();
20714
20715 if (fe == NULL)
20716 dwarf2_debug_line_missing_file_complaint ();
20717 /* For now we ignore lines not starting on an instruction boundary.
20718 But not when processing end_sequence for compatibility with the
20719 previous version of the code. */
20720 else if (m_op_index == 0 || end_sequence)
20721 {
20722 fe->included_p = 1;
20723 if (m_record_lines_p && m_is_stmt)
20724 {
20725 if (m_last_subfile != current_subfile || end_sequence)
20726 {
20727 dwarf_finish_line (m_gdbarch, m_last_subfile,
20728 m_address, m_record_line_callback);
20729 }
20730
20731 if (!end_sequence)
20732 {
20733 if (dwarf_record_line_p (m_line, m_last_line,
20734 m_line_has_non_zero_discriminator,
20735 m_last_subfile))
20736 {
20737 dwarf_record_line_1 (m_gdbarch, current_subfile,
20738 m_line, m_address,
20739 m_record_line_callback);
20740 }
20741 m_last_subfile = current_subfile;
20742 m_last_line = m_line;
20743 }
20744 }
20745 }
20746 }
20747
20748 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20749 bool record_lines_p)
20750 {
20751 m_gdbarch = arch;
20752 m_record_lines_p = record_lines_p;
20753 m_line_header = lh;
20754
20755 m_record_line_callback = ::record_line;
20756
20757 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20758 was a line entry for it so that the backend has a chance to adjust it
20759 and also record it in case it needs it. This is currently used by MIPS
20760 code, cf. `mips_adjust_dwarf2_line'. */
20761 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20762 m_is_stmt = lh->default_is_stmt;
20763 m_discriminator = 0;
20764 }
20765
20766 void
20767 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20768 const gdb_byte *line_ptr,
20769 CORE_ADDR lowpc, CORE_ADDR address)
20770 {
20771 /* If address < lowpc then it's not a usable value, it's outside the
20772 pc range of the CU. However, we restrict the test to only address
20773 values of zero to preserve GDB's previous behaviour which is to
20774 handle the specific case of a function being GC'd by the linker. */
20775
20776 if (address == 0 && address < lowpc)
20777 {
20778 /* This line table is for a function which has been
20779 GCd by the linker. Ignore it. PR gdb/12528 */
20780
20781 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20782 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20783
20784 complaint (&symfile_complaints,
20785 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20786 line_offset, objfile_name (objfile));
20787 m_record_line_callback = noop_record_line;
20788 /* Note: record_line_callback is left as noop_record_line until
20789 we see DW_LNE_end_sequence. */
20790 }
20791 }
20792
20793 /* Subroutine of dwarf_decode_lines to simplify it.
20794 Process the line number information in LH.
20795 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20796 program in order to set included_p for every referenced header. */
20797
20798 static void
20799 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20800 const int decode_for_pst_p, CORE_ADDR lowpc)
20801 {
20802 const gdb_byte *line_ptr, *extended_end;
20803 const gdb_byte *line_end;
20804 unsigned int bytes_read, extended_len;
20805 unsigned char op_code, extended_op;
20806 CORE_ADDR baseaddr;
20807 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20808 bfd *abfd = objfile->obfd;
20809 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20810 /* True if we're recording line info (as opposed to building partial
20811 symtabs and just interested in finding include files mentioned by
20812 the line number program). */
20813 bool record_lines_p = !decode_for_pst_p;
20814
20815 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20816
20817 line_ptr = lh->statement_program_start;
20818 line_end = lh->statement_program_end;
20819
20820 /* Read the statement sequences until there's nothing left. */
20821 while (line_ptr < line_end)
20822 {
20823 /* The DWARF line number program state machine. Reset the state
20824 machine at the start of each sequence. */
20825 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20826 bool end_sequence = false;
20827
20828 if (record_lines_p)
20829 {
20830 /* Start a subfile for the current file of the state
20831 machine. */
20832 const file_entry *fe = state_machine.current_file ();
20833
20834 if (fe != NULL)
20835 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20836 }
20837
20838 /* Decode the table. */
20839 while (line_ptr < line_end && !end_sequence)
20840 {
20841 op_code = read_1_byte (abfd, line_ptr);
20842 line_ptr += 1;
20843
20844 if (op_code >= lh->opcode_base)
20845 {
20846 /* Special opcode. */
20847 state_machine.handle_special_opcode (op_code);
20848 }
20849 else switch (op_code)
20850 {
20851 case DW_LNS_extended_op:
20852 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20853 &bytes_read);
20854 line_ptr += bytes_read;
20855 extended_end = line_ptr + extended_len;
20856 extended_op = read_1_byte (abfd, line_ptr);
20857 line_ptr += 1;
20858 switch (extended_op)
20859 {
20860 case DW_LNE_end_sequence:
20861 state_machine.handle_end_sequence ();
20862 end_sequence = true;
20863 break;
20864 case DW_LNE_set_address:
20865 {
20866 CORE_ADDR address
20867 = read_address (abfd, line_ptr, cu, &bytes_read);
20868 line_ptr += bytes_read;
20869
20870 state_machine.check_line_address (cu, line_ptr,
20871 lowpc, address);
20872 state_machine.handle_set_address (baseaddr, address);
20873 }
20874 break;
20875 case DW_LNE_define_file:
20876 {
20877 const char *cur_file;
20878 unsigned int mod_time, length;
20879 dir_index dindex;
20880
20881 cur_file = read_direct_string (abfd, line_ptr,
20882 &bytes_read);
20883 line_ptr += bytes_read;
20884 dindex = (dir_index)
20885 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20886 line_ptr += bytes_read;
20887 mod_time =
20888 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20889 line_ptr += bytes_read;
20890 length =
20891 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20892 line_ptr += bytes_read;
20893 lh->add_file_name (cur_file, dindex, mod_time, length);
20894 }
20895 break;
20896 case DW_LNE_set_discriminator:
20897 {
20898 /* The discriminator is not interesting to the
20899 debugger; just ignore it. We still need to
20900 check its value though:
20901 if there are consecutive entries for the same
20902 (non-prologue) line we want to coalesce them.
20903 PR 17276. */
20904 unsigned int discr
20905 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20906 line_ptr += bytes_read;
20907
20908 state_machine.handle_set_discriminator (discr);
20909 }
20910 break;
20911 default:
20912 complaint (&symfile_complaints,
20913 _("mangled .debug_line section"));
20914 return;
20915 }
20916 /* Make sure that we parsed the extended op correctly. If e.g.
20917 we expected a different address size than the producer used,
20918 we may have read the wrong number of bytes. */
20919 if (line_ptr != extended_end)
20920 {
20921 complaint (&symfile_complaints,
20922 _("mangled .debug_line section"));
20923 return;
20924 }
20925 break;
20926 case DW_LNS_copy:
20927 state_machine.handle_copy ();
20928 break;
20929 case DW_LNS_advance_pc:
20930 {
20931 CORE_ADDR adjust
20932 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20933 line_ptr += bytes_read;
20934
20935 state_machine.handle_advance_pc (adjust);
20936 }
20937 break;
20938 case DW_LNS_advance_line:
20939 {
20940 int line_delta
20941 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20942 line_ptr += bytes_read;
20943
20944 state_machine.handle_advance_line (line_delta);
20945 }
20946 break;
20947 case DW_LNS_set_file:
20948 {
20949 file_name_index file
20950 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20951 &bytes_read);
20952 line_ptr += bytes_read;
20953
20954 state_machine.handle_set_file (file);
20955 }
20956 break;
20957 case DW_LNS_set_column:
20958 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20959 line_ptr += bytes_read;
20960 break;
20961 case DW_LNS_negate_stmt:
20962 state_machine.handle_negate_stmt ();
20963 break;
20964 case DW_LNS_set_basic_block:
20965 break;
20966 /* Add to the address register of the state machine the
20967 address increment value corresponding to special opcode
20968 255. I.e., this value is scaled by the minimum
20969 instruction length since special opcode 255 would have
20970 scaled the increment. */
20971 case DW_LNS_const_add_pc:
20972 state_machine.handle_const_add_pc ();
20973 break;
20974 case DW_LNS_fixed_advance_pc:
20975 {
20976 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20977 line_ptr += 2;
20978
20979 state_machine.handle_fixed_advance_pc (addr_adj);
20980 }
20981 break;
20982 default:
20983 {
20984 /* Unknown standard opcode, ignore it. */
20985 int i;
20986
20987 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20988 {
20989 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20990 line_ptr += bytes_read;
20991 }
20992 }
20993 }
20994 }
20995
20996 if (!end_sequence)
20997 dwarf2_debug_line_missing_end_sequence_complaint ();
20998
20999 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21000 in which case we still finish recording the last line). */
21001 state_machine.record_line (true);
21002 }
21003 }
21004
21005 /* Decode the Line Number Program (LNP) for the given line_header
21006 structure and CU. The actual information extracted and the type
21007 of structures created from the LNP depends on the value of PST.
21008
21009 1. If PST is NULL, then this procedure uses the data from the program
21010 to create all necessary symbol tables, and their linetables.
21011
21012 2. If PST is not NULL, this procedure reads the program to determine
21013 the list of files included by the unit represented by PST, and
21014 builds all the associated partial symbol tables.
21015
21016 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21017 It is used for relative paths in the line table.
21018 NOTE: When processing partial symtabs (pst != NULL),
21019 comp_dir == pst->dirname.
21020
21021 NOTE: It is important that psymtabs have the same file name (via strcmp)
21022 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21023 symtab we don't use it in the name of the psymtabs we create.
21024 E.g. expand_line_sal requires this when finding psymtabs to expand.
21025 A good testcase for this is mb-inline.exp.
21026
21027 LOWPC is the lowest address in CU (or 0 if not known).
21028
21029 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21030 for its PC<->lines mapping information. Otherwise only the filename
21031 table is read in. */
21032
21033 static void
21034 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21035 struct dwarf2_cu *cu, struct partial_symtab *pst,
21036 CORE_ADDR lowpc, int decode_mapping)
21037 {
21038 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21039 const int decode_for_pst_p = (pst != NULL);
21040
21041 if (decode_mapping)
21042 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21043
21044 if (decode_for_pst_p)
21045 {
21046 int file_index;
21047
21048 /* Now that we're done scanning the Line Header Program, we can
21049 create the psymtab of each included file. */
21050 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21051 if (lh->file_names[file_index].included_p == 1)
21052 {
21053 gdb::unique_xmalloc_ptr<char> name_holder;
21054 const char *include_name =
21055 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21056 &name_holder);
21057 if (include_name != NULL)
21058 dwarf2_create_include_psymtab (include_name, pst, objfile);
21059 }
21060 }
21061 else
21062 {
21063 /* Make sure a symtab is created for every file, even files
21064 which contain only variables (i.e. no code with associated
21065 line numbers). */
21066 struct compunit_symtab *cust = buildsym_compunit_symtab ();
21067 int i;
21068
21069 for (i = 0; i < lh->file_names.size (); i++)
21070 {
21071 file_entry &fe = lh->file_names[i];
21072
21073 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
21074
21075 if (current_subfile->symtab == NULL)
21076 {
21077 current_subfile->symtab
21078 = allocate_symtab (cust, current_subfile->name);
21079 }
21080 fe.symtab = current_subfile->symtab;
21081 }
21082 }
21083 }
21084
21085 /* Start a subfile for DWARF. FILENAME is the name of the file and
21086 DIRNAME the name of the source directory which contains FILENAME
21087 or NULL if not known.
21088 This routine tries to keep line numbers from identical absolute and
21089 relative file names in a common subfile.
21090
21091 Using the `list' example from the GDB testsuite, which resides in
21092 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21093 of /srcdir/list0.c yields the following debugging information for list0.c:
21094
21095 DW_AT_name: /srcdir/list0.c
21096 DW_AT_comp_dir: /compdir
21097 files.files[0].name: list0.h
21098 files.files[0].dir: /srcdir
21099 files.files[1].name: list0.c
21100 files.files[1].dir: /srcdir
21101
21102 The line number information for list0.c has to end up in a single
21103 subfile, so that `break /srcdir/list0.c:1' works as expected.
21104 start_subfile will ensure that this happens provided that we pass the
21105 concatenation of files.files[1].dir and files.files[1].name as the
21106 subfile's name. */
21107
21108 static void
21109 dwarf2_start_subfile (const char *filename, const char *dirname)
21110 {
21111 char *copy = NULL;
21112
21113 /* In order not to lose the line information directory,
21114 we concatenate it to the filename when it makes sense.
21115 Note that the Dwarf3 standard says (speaking of filenames in line
21116 information): ``The directory index is ignored for file names
21117 that represent full path names''. Thus ignoring dirname in the
21118 `else' branch below isn't an issue. */
21119
21120 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21121 {
21122 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21123 filename = copy;
21124 }
21125
21126 start_subfile (filename);
21127
21128 if (copy != NULL)
21129 xfree (copy);
21130 }
21131
21132 /* Start a symtab for DWARF.
21133 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21134
21135 static struct compunit_symtab *
21136 dwarf2_start_symtab (struct dwarf2_cu *cu,
21137 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21138 {
21139 struct compunit_symtab *cust
21140 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21141 low_pc, cu->language);
21142
21143 record_debugformat ("DWARF 2");
21144 record_producer (cu->producer);
21145
21146 /* We assume that we're processing GCC output. */
21147 processing_gcc_compilation = 2;
21148
21149 cu->processing_has_namespace_info = 0;
21150
21151 return cust;
21152 }
21153
21154 static void
21155 var_decode_location (struct attribute *attr, struct symbol *sym,
21156 struct dwarf2_cu *cu)
21157 {
21158 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21159 struct comp_unit_head *cu_header = &cu->header;
21160
21161 /* NOTE drow/2003-01-30: There used to be a comment and some special
21162 code here to turn a symbol with DW_AT_external and a
21163 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21164 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21165 with some versions of binutils) where shared libraries could have
21166 relocations against symbols in their debug information - the
21167 minimal symbol would have the right address, but the debug info
21168 would not. It's no longer necessary, because we will explicitly
21169 apply relocations when we read in the debug information now. */
21170
21171 /* A DW_AT_location attribute with no contents indicates that a
21172 variable has been optimized away. */
21173 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21174 {
21175 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21176 return;
21177 }
21178
21179 /* Handle one degenerate form of location expression specially, to
21180 preserve GDB's previous behavior when section offsets are
21181 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21182 then mark this symbol as LOC_STATIC. */
21183
21184 if (attr_form_is_block (attr)
21185 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21186 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21187 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21188 && (DW_BLOCK (attr)->size
21189 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21190 {
21191 unsigned int dummy;
21192
21193 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21194 SYMBOL_VALUE_ADDRESS (sym) =
21195 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21196 else
21197 SYMBOL_VALUE_ADDRESS (sym) =
21198 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21199 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21200 fixup_symbol_section (sym, objfile);
21201 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21202 SYMBOL_SECTION (sym));
21203 return;
21204 }
21205
21206 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21207 expression evaluator, and use LOC_COMPUTED only when necessary
21208 (i.e. when the value of a register or memory location is
21209 referenced, or a thread-local block, etc.). Then again, it might
21210 not be worthwhile. I'm assuming that it isn't unless performance
21211 or memory numbers show me otherwise. */
21212
21213 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21214
21215 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21216 cu->has_loclist = 1;
21217 }
21218
21219 /* Given a pointer to a DWARF information entry, figure out if we need
21220 to make a symbol table entry for it, and if so, create a new entry
21221 and return a pointer to it.
21222 If TYPE is NULL, determine symbol type from the die, otherwise
21223 used the passed type.
21224 If SPACE is not NULL, use it to hold the new symbol. If it is
21225 NULL, allocate a new symbol on the objfile's obstack. */
21226
21227 static struct symbol *
21228 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21229 struct symbol *space)
21230 {
21231 struct dwarf2_per_objfile *dwarf2_per_objfile
21232 = cu->per_cu->dwarf2_per_objfile;
21233 struct objfile *objfile = dwarf2_per_objfile->objfile;
21234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21235 struct symbol *sym = NULL;
21236 const char *name;
21237 struct attribute *attr = NULL;
21238 struct attribute *attr2 = NULL;
21239 CORE_ADDR baseaddr;
21240 struct pending **list_to_add = NULL;
21241
21242 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21243
21244 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21245
21246 name = dwarf2_name (die, cu);
21247 if (name)
21248 {
21249 const char *linkagename;
21250 int suppress_add = 0;
21251
21252 if (space)
21253 sym = space;
21254 else
21255 sym = allocate_symbol (objfile);
21256 OBJSTAT (objfile, n_syms++);
21257
21258 /* Cache this symbol's name and the name's demangled form (if any). */
21259 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21260 linkagename = dwarf2_physname (name, die, cu);
21261 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21262
21263 /* Fortran does not have mangling standard and the mangling does differ
21264 between gfortran, iFort etc. */
21265 if (cu->language == language_fortran
21266 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21267 symbol_set_demangled_name (&(sym->ginfo),
21268 dwarf2_full_name (name, die, cu),
21269 NULL);
21270
21271 /* Default assumptions.
21272 Use the passed type or decode it from the die. */
21273 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21274 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21275 if (type != NULL)
21276 SYMBOL_TYPE (sym) = type;
21277 else
21278 SYMBOL_TYPE (sym) = die_type (die, cu);
21279 attr = dwarf2_attr (die,
21280 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21281 cu);
21282 if (attr)
21283 {
21284 SYMBOL_LINE (sym) = DW_UNSND (attr);
21285 }
21286
21287 attr = dwarf2_attr (die,
21288 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21289 cu);
21290 if (attr)
21291 {
21292 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21293 struct file_entry *fe;
21294
21295 if (cu->line_header != NULL)
21296 fe = cu->line_header->file_name_at (file_index);
21297 else
21298 fe = NULL;
21299
21300 if (fe == NULL)
21301 complaint (&symfile_complaints,
21302 _("file index out of range"));
21303 else
21304 symbol_set_symtab (sym, fe->symtab);
21305 }
21306
21307 switch (die->tag)
21308 {
21309 case DW_TAG_label:
21310 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21311 if (attr)
21312 {
21313 CORE_ADDR addr;
21314
21315 addr = attr_value_as_address (attr);
21316 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21317 SYMBOL_VALUE_ADDRESS (sym) = addr;
21318 }
21319 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21320 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21321 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21322 add_symbol_to_list (sym, cu->list_in_scope);
21323 break;
21324 case DW_TAG_subprogram:
21325 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21326 finish_block. */
21327 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21328 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21329 if ((attr2 && (DW_UNSND (attr2) != 0))
21330 || cu->language == language_ada)
21331 {
21332 /* Subprograms marked external are stored as a global symbol.
21333 Ada subprograms, whether marked external or not, are always
21334 stored as a global symbol, because we want to be able to
21335 access them globally. For instance, we want to be able
21336 to break on a nested subprogram without having to
21337 specify the context. */
21338 list_to_add = &global_symbols;
21339 }
21340 else
21341 {
21342 list_to_add = cu->list_in_scope;
21343 }
21344 break;
21345 case DW_TAG_inlined_subroutine:
21346 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21347 finish_block. */
21348 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21349 SYMBOL_INLINED (sym) = 1;
21350 list_to_add = cu->list_in_scope;
21351 break;
21352 case DW_TAG_template_value_param:
21353 suppress_add = 1;
21354 /* Fall through. */
21355 case DW_TAG_constant:
21356 case DW_TAG_variable:
21357 case DW_TAG_member:
21358 /* Compilation with minimal debug info may result in
21359 variables with missing type entries. Change the
21360 misleading `void' type to something sensible. */
21361 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21362 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21363
21364 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21365 /* In the case of DW_TAG_member, we should only be called for
21366 static const members. */
21367 if (die->tag == DW_TAG_member)
21368 {
21369 /* dwarf2_add_field uses die_is_declaration,
21370 so we do the same. */
21371 gdb_assert (die_is_declaration (die, cu));
21372 gdb_assert (attr);
21373 }
21374 if (attr)
21375 {
21376 dwarf2_const_value (attr, sym, cu);
21377 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21378 if (!suppress_add)
21379 {
21380 if (attr2 && (DW_UNSND (attr2) != 0))
21381 list_to_add = &global_symbols;
21382 else
21383 list_to_add = cu->list_in_scope;
21384 }
21385 break;
21386 }
21387 attr = dwarf2_attr (die, DW_AT_location, cu);
21388 if (attr)
21389 {
21390 var_decode_location (attr, sym, cu);
21391 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21392
21393 /* Fortran explicitly imports any global symbols to the local
21394 scope by DW_TAG_common_block. */
21395 if (cu->language == language_fortran && die->parent
21396 && die->parent->tag == DW_TAG_common_block)
21397 attr2 = NULL;
21398
21399 if (SYMBOL_CLASS (sym) == LOC_STATIC
21400 && SYMBOL_VALUE_ADDRESS (sym) == 0
21401 && !dwarf2_per_objfile->has_section_at_zero)
21402 {
21403 /* When a static variable is eliminated by the linker,
21404 the corresponding debug information is not stripped
21405 out, but the variable address is set to null;
21406 do not add such variables into symbol table. */
21407 }
21408 else if (attr2 && (DW_UNSND (attr2) != 0))
21409 {
21410 /* Workaround gfortran PR debug/40040 - it uses
21411 DW_AT_location for variables in -fPIC libraries which may
21412 get overriden by other libraries/executable and get
21413 a different address. Resolve it by the minimal symbol
21414 which may come from inferior's executable using copy
21415 relocation. Make this workaround only for gfortran as for
21416 other compilers GDB cannot guess the minimal symbol
21417 Fortran mangling kind. */
21418 if (cu->language == language_fortran && die->parent
21419 && die->parent->tag == DW_TAG_module
21420 && cu->producer
21421 && startswith (cu->producer, "GNU Fortran"))
21422 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21423
21424 /* A variable with DW_AT_external is never static,
21425 but it may be block-scoped. */
21426 list_to_add = (cu->list_in_scope == &file_symbols
21427 ? &global_symbols : cu->list_in_scope);
21428 }
21429 else
21430 list_to_add = cu->list_in_scope;
21431 }
21432 else
21433 {
21434 /* We do not know the address of this symbol.
21435 If it is an external symbol and we have type information
21436 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21437 The address of the variable will then be determined from
21438 the minimal symbol table whenever the variable is
21439 referenced. */
21440 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21441
21442 /* Fortran explicitly imports any global symbols to the local
21443 scope by DW_TAG_common_block. */
21444 if (cu->language == language_fortran && die->parent
21445 && die->parent->tag == DW_TAG_common_block)
21446 {
21447 /* SYMBOL_CLASS doesn't matter here because
21448 read_common_block is going to reset it. */
21449 if (!suppress_add)
21450 list_to_add = cu->list_in_scope;
21451 }
21452 else if (attr2 && (DW_UNSND (attr2) != 0)
21453 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21454 {
21455 /* A variable with DW_AT_external is never static, but it
21456 may be block-scoped. */
21457 list_to_add = (cu->list_in_scope == &file_symbols
21458 ? &global_symbols : cu->list_in_scope);
21459
21460 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21461 }
21462 else if (!die_is_declaration (die, cu))
21463 {
21464 /* Use the default LOC_OPTIMIZED_OUT class. */
21465 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21466 if (!suppress_add)
21467 list_to_add = cu->list_in_scope;
21468 }
21469 }
21470 break;
21471 case DW_TAG_formal_parameter:
21472 /* If we are inside a function, mark this as an argument. If
21473 not, we might be looking at an argument to an inlined function
21474 when we do not have enough information to show inlined frames;
21475 pretend it's a local variable in that case so that the user can
21476 still see it. */
21477 if (context_stack_depth > 0
21478 && context_stack[context_stack_depth - 1].name != NULL)
21479 SYMBOL_IS_ARGUMENT (sym) = 1;
21480 attr = dwarf2_attr (die, DW_AT_location, cu);
21481 if (attr)
21482 {
21483 var_decode_location (attr, sym, cu);
21484 }
21485 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21486 if (attr)
21487 {
21488 dwarf2_const_value (attr, sym, cu);
21489 }
21490
21491 list_to_add = cu->list_in_scope;
21492 break;
21493 case DW_TAG_unspecified_parameters:
21494 /* From varargs functions; gdb doesn't seem to have any
21495 interest in this information, so just ignore it for now.
21496 (FIXME?) */
21497 break;
21498 case DW_TAG_template_type_param:
21499 suppress_add = 1;
21500 /* Fall through. */
21501 case DW_TAG_class_type:
21502 case DW_TAG_interface_type:
21503 case DW_TAG_structure_type:
21504 case DW_TAG_union_type:
21505 case DW_TAG_set_type:
21506 case DW_TAG_enumeration_type:
21507 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21508 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21509
21510 {
21511 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21512 really ever be static objects: otherwise, if you try
21513 to, say, break of a class's method and you're in a file
21514 which doesn't mention that class, it won't work unless
21515 the check for all static symbols in lookup_symbol_aux
21516 saves you. See the OtherFileClass tests in
21517 gdb.c++/namespace.exp. */
21518
21519 if (!suppress_add)
21520 {
21521 list_to_add = (cu->list_in_scope == &file_symbols
21522 && cu->language == language_cplus
21523 ? &global_symbols : cu->list_in_scope);
21524
21525 /* The semantics of C++ state that "struct foo {
21526 ... }" also defines a typedef for "foo". */
21527 if (cu->language == language_cplus
21528 || cu->language == language_ada
21529 || cu->language == language_d
21530 || cu->language == language_rust)
21531 {
21532 /* The symbol's name is already allocated along
21533 with this objfile, so we don't need to
21534 duplicate it for the type. */
21535 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21536 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21537 }
21538 }
21539 }
21540 break;
21541 case DW_TAG_typedef:
21542 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21543 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21544 list_to_add = cu->list_in_scope;
21545 break;
21546 case DW_TAG_base_type:
21547 case DW_TAG_subrange_type:
21548 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21549 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21550 list_to_add = cu->list_in_scope;
21551 break;
21552 case DW_TAG_enumerator:
21553 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21554 if (attr)
21555 {
21556 dwarf2_const_value (attr, sym, cu);
21557 }
21558 {
21559 /* NOTE: carlton/2003-11-10: See comment above in the
21560 DW_TAG_class_type, etc. block. */
21561
21562 list_to_add = (cu->list_in_scope == &file_symbols
21563 && cu->language == language_cplus
21564 ? &global_symbols : cu->list_in_scope);
21565 }
21566 break;
21567 case DW_TAG_imported_declaration:
21568 case DW_TAG_namespace:
21569 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21570 list_to_add = &global_symbols;
21571 break;
21572 case DW_TAG_module:
21573 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21574 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21575 list_to_add = &global_symbols;
21576 break;
21577 case DW_TAG_common_block:
21578 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21579 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21580 add_symbol_to_list (sym, cu->list_in_scope);
21581 break;
21582 default:
21583 /* Not a tag we recognize. Hopefully we aren't processing
21584 trash data, but since we must specifically ignore things
21585 we don't recognize, there is nothing else we should do at
21586 this point. */
21587 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21588 dwarf_tag_name (die->tag));
21589 break;
21590 }
21591
21592 if (suppress_add)
21593 {
21594 sym->hash_next = objfile->template_symbols;
21595 objfile->template_symbols = sym;
21596 list_to_add = NULL;
21597 }
21598
21599 if (list_to_add != NULL)
21600 add_symbol_to_list (sym, list_to_add);
21601
21602 /* For the benefit of old versions of GCC, check for anonymous
21603 namespaces based on the demangled name. */
21604 if (!cu->processing_has_namespace_info
21605 && cu->language == language_cplus)
21606 cp_scan_for_anonymous_namespaces (sym, objfile);
21607 }
21608 return (sym);
21609 }
21610
21611 /* Given an attr with a DW_FORM_dataN value in host byte order,
21612 zero-extend it as appropriate for the symbol's type. The DWARF
21613 standard (v4) is not entirely clear about the meaning of using
21614 DW_FORM_dataN for a constant with a signed type, where the type is
21615 wider than the data. The conclusion of a discussion on the DWARF
21616 list was that this is unspecified. We choose to always zero-extend
21617 because that is the interpretation long in use by GCC. */
21618
21619 static gdb_byte *
21620 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21621 struct dwarf2_cu *cu, LONGEST *value, int bits)
21622 {
21623 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21624 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21625 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21626 LONGEST l = DW_UNSND (attr);
21627
21628 if (bits < sizeof (*value) * 8)
21629 {
21630 l &= ((LONGEST) 1 << bits) - 1;
21631 *value = l;
21632 }
21633 else if (bits == sizeof (*value) * 8)
21634 *value = l;
21635 else
21636 {
21637 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21638 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21639 return bytes;
21640 }
21641
21642 return NULL;
21643 }
21644
21645 /* Read a constant value from an attribute. Either set *VALUE, or if
21646 the value does not fit in *VALUE, set *BYTES - either already
21647 allocated on the objfile obstack, or newly allocated on OBSTACK,
21648 or, set *BATON, if we translated the constant to a location
21649 expression. */
21650
21651 static void
21652 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21653 const char *name, struct obstack *obstack,
21654 struct dwarf2_cu *cu,
21655 LONGEST *value, const gdb_byte **bytes,
21656 struct dwarf2_locexpr_baton **baton)
21657 {
21658 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21659 struct comp_unit_head *cu_header = &cu->header;
21660 struct dwarf_block *blk;
21661 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21662 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21663
21664 *value = 0;
21665 *bytes = NULL;
21666 *baton = NULL;
21667
21668 switch (attr->form)
21669 {
21670 case DW_FORM_addr:
21671 case DW_FORM_GNU_addr_index:
21672 {
21673 gdb_byte *data;
21674
21675 if (TYPE_LENGTH (type) != cu_header->addr_size)
21676 dwarf2_const_value_length_mismatch_complaint (name,
21677 cu_header->addr_size,
21678 TYPE_LENGTH (type));
21679 /* Symbols of this form are reasonably rare, so we just
21680 piggyback on the existing location code rather than writing
21681 a new implementation of symbol_computed_ops. */
21682 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21683 (*baton)->per_cu = cu->per_cu;
21684 gdb_assert ((*baton)->per_cu);
21685
21686 (*baton)->size = 2 + cu_header->addr_size;
21687 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21688 (*baton)->data = data;
21689
21690 data[0] = DW_OP_addr;
21691 store_unsigned_integer (&data[1], cu_header->addr_size,
21692 byte_order, DW_ADDR (attr));
21693 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21694 }
21695 break;
21696 case DW_FORM_string:
21697 case DW_FORM_strp:
21698 case DW_FORM_GNU_str_index:
21699 case DW_FORM_GNU_strp_alt:
21700 /* DW_STRING is already allocated on the objfile obstack, point
21701 directly to it. */
21702 *bytes = (const gdb_byte *) DW_STRING (attr);
21703 break;
21704 case DW_FORM_block1:
21705 case DW_FORM_block2:
21706 case DW_FORM_block4:
21707 case DW_FORM_block:
21708 case DW_FORM_exprloc:
21709 case DW_FORM_data16:
21710 blk = DW_BLOCK (attr);
21711 if (TYPE_LENGTH (type) != blk->size)
21712 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21713 TYPE_LENGTH (type));
21714 *bytes = blk->data;
21715 break;
21716
21717 /* The DW_AT_const_value attributes are supposed to carry the
21718 symbol's value "represented as it would be on the target
21719 architecture." By the time we get here, it's already been
21720 converted to host endianness, so we just need to sign- or
21721 zero-extend it as appropriate. */
21722 case DW_FORM_data1:
21723 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21724 break;
21725 case DW_FORM_data2:
21726 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21727 break;
21728 case DW_FORM_data4:
21729 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21730 break;
21731 case DW_FORM_data8:
21732 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21733 break;
21734
21735 case DW_FORM_sdata:
21736 case DW_FORM_implicit_const:
21737 *value = DW_SND (attr);
21738 break;
21739
21740 case DW_FORM_udata:
21741 *value = DW_UNSND (attr);
21742 break;
21743
21744 default:
21745 complaint (&symfile_complaints,
21746 _("unsupported const value attribute form: '%s'"),
21747 dwarf_form_name (attr->form));
21748 *value = 0;
21749 break;
21750 }
21751 }
21752
21753
21754 /* Copy constant value from an attribute to a symbol. */
21755
21756 static void
21757 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21758 struct dwarf2_cu *cu)
21759 {
21760 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21761 LONGEST value;
21762 const gdb_byte *bytes;
21763 struct dwarf2_locexpr_baton *baton;
21764
21765 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21766 SYMBOL_PRINT_NAME (sym),
21767 &objfile->objfile_obstack, cu,
21768 &value, &bytes, &baton);
21769
21770 if (baton != NULL)
21771 {
21772 SYMBOL_LOCATION_BATON (sym) = baton;
21773 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21774 }
21775 else if (bytes != NULL)
21776 {
21777 SYMBOL_VALUE_BYTES (sym) = bytes;
21778 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21779 }
21780 else
21781 {
21782 SYMBOL_VALUE (sym) = value;
21783 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21784 }
21785 }
21786
21787 /* Return the type of the die in question using its DW_AT_type attribute. */
21788
21789 static struct type *
21790 die_type (struct die_info *die, struct dwarf2_cu *cu)
21791 {
21792 struct attribute *type_attr;
21793
21794 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21795 if (!type_attr)
21796 {
21797 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21798 /* A missing DW_AT_type represents a void type. */
21799 return objfile_type (objfile)->builtin_void;
21800 }
21801
21802 return lookup_die_type (die, type_attr, cu);
21803 }
21804
21805 /* True iff CU's producer generates GNAT Ada auxiliary information
21806 that allows to find parallel types through that information instead
21807 of having to do expensive parallel lookups by type name. */
21808
21809 static int
21810 need_gnat_info (struct dwarf2_cu *cu)
21811 {
21812 /* Assume that the Ada compiler was GNAT, which always produces
21813 the auxiliary information. */
21814 return (cu->language == language_ada);
21815 }
21816
21817 /* Return the auxiliary type of the die in question using its
21818 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21819 attribute is not present. */
21820
21821 static struct type *
21822 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21823 {
21824 struct attribute *type_attr;
21825
21826 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21827 if (!type_attr)
21828 return NULL;
21829
21830 return lookup_die_type (die, type_attr, cu);
21831 }
21832
21833 /* If DIE has a descriptive_type attribute, then set the TYPE's
21834 descriptive type accordingly. */
21835
21836 static void
21837 set_descriptive_type (struct type *type, struct die_info *die,
21838 struct dwarf2_cu *cu)
21839 {
21840 struct type *descriptive_type = die_descriptive_type (die, cu);
21841
21842 if (descriptive_type)
21843 {
21844 ALLOCATE_GNAT_AUX_TYPE (type);
21845 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21846 }
21847 }
21848
21849 /* Return the containing type of the die in question using its
21850 DW_AT_containing_type attribute. */
21851
21852 static struct type *
21853 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21854 {
21855 struct attribute *type_attr;
21856 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21857
21858 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21859 if (!type_attr)
21860 error (_("Dwarf Error: Problem turning containing type into gdb type "
21861 "[in module %s]"), objfile_name (objfile));
21862
21863 return lookup_die_type (die, type_attr, cu);
21864 }
21865
21866 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21867
21868 static struct type *
21869 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21870 {
21871 struct dwarf2_per_objfile *dwarf2_per_objfile
21872 = cu->per_cu->dwarf2_per_objfile;
21873 struct objfile *objfile = dwarf2_per_objfile->objfile;
21874 char *message, *saved;
21875
21876 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21877 objfile_name (objfile),
21878 sect_offset_str (cu->header.sect_off),
21879 sect_offset_str (die->sect_off));
21880 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21881 message, strlen (message));
21882 xfree (message);
21883
21884 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21885 }
21886
21887 /* Look up the type of DIE in CU using its type attribute ATTR.
21888 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21889 DW_AT_containing_type.
21890 If there is no type substitute an error marker. */
21891
21892 static struct type *
21893 lookup_die_type (struct die_info *die, const struct attribute *attr,
21894 struct dwarf2_cu *cu)
21895 {
21896 struct dwarf2_per_objfile *dwarf2_per_objfile
21897 = cu->per_cu->dwarf2_per_objfile;
21898 struct objfile *objfile = dwarf2_per_objfile->objfile;
21899 struct type *this_type;
21900
21901 gdb_assert (attr->name == DW_AT_type
21902 || attr->name == DW_AT_GNAT_descriptive_type
21903 || attr->name == DW_AT_containing_type);
21904
21905 /* First see if we have it cached. */
21906
21907 if (attr->form == DW_FORM_GNU_ref_alt)
21908 {
21909 struct dwarf2_per_cu_data *per_cu;
21910 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21911
21912 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21913 dwarf2_per_objfile);
21914 this_type = get_die_type_at_offset (sect_off, per_cu);
21915 }
21916 else if (attr_form_is_ref (attr))
21917 {
21918 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21919
21920 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21921 }
21922 else if (attr->form == DW_FORM_ref_sig8)
21923 {
21924 ULONGEST signature = DW_SIGNATURE (attr);
21925
21926 return get_signatured_type (die, signature, cu);
21927 }
21928 else
21929 {
21930 complaint (&symfile_complaints,
21931 _("Dwarf Error: Bad type attribute %s in DIE"
21932 " at %s [in module %s]"),
21933 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21934 objfile_name (objfile));
21935 return build_error_marker_type (cu, die);
21936 }
21937
21938 /* If not cached we need to read it in. */
21939
21940 if (this_type == NULL)
21941 {
21942 struct die_info *type_die = NULL;
21943 struct dwarf2_cu *type_cu = cu;
21944
21945 if (attr_form_is_ref (attr))
21946 type_die = follow_die_ref (die, attr, &type_cu);
21947 if (type_die == NULL)
21948 return build_error_marker_type (cu, die);
21949 /* If we find the type now, it's probably because the type came
21950 from an inter-CU reference and the type's CU got expanded before
21951 ours. */
21952 this_type = read_type_die (type_die, type_cu);
21953 }
21954
21955 /* If we still don't have a type use an error marker. */
21956
21957 if (this_type == NULL)
21958 return build_error_marker_type (cu, die);
21959
21960 return this_type;
21961 }
21962
21963 /* Return the type in DIE, CU.
21964 Returns NULL for invalid types.
21965
21966 This first does a lookup in die_type_hash,
21967 and only reads the die in if necessary.
21968
21969 NOTE: This can be called when reading in partial or full symbols. */
21970
21971 static struct type *
21972 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21973 {
21974 struct type *this_type;
21975
21976 this_type = get_die_type (die, cu);
21977 if (this_type)
21978 return this_type;
21979
21980 return read_type_die_1 (die, cu);
21981 }
21982
21983 /* Read the type in DIE, CU.
21984 Returns NULL for invalid types. */
21985
21986 static struct type *
21987 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21988 {
21989 struct type *this_type = NULL;
21990
21991 switch (die->tag)
21992 {
21993 case DW_TAG_class_type:
21994 case DW_TAG_interface_type:
21995 case DW_TAG_structure_type:
21996 case DW_TAG_union_type:
21997 this_type = read_structure_type (die, cu);
21998 break;
21999 case DW_TAG_enumeration_type:
22000 this_type = read_enumeration_type (die, cu);
22001 break;
22002 case DW_TAG_subprogram:
22003 case DW_TAG_subroutine_type:
22004 case DW_TAG_inlined_subroutine:
22005 this_type = read_subroutine_type (die, cu);
22006 break;
22007 case DW_TAG_array_type:
22008 this_type = read_array_type (die, cu);
22009 break;
22010 case DW_TAG_set_type:
22011 this_type = read_set_type (die, cu);
22012 break;
22013 case DW_TAG_pointer_type:
22014 this_type = read_tag_pointer_type (die, cu);
22015 break;
22016 case DW_TAG_ptr_to_member_type:
22017 this_type = read_tag_ptr_to_member_type (die, cu);
22018 break;
22019 case DW_TAG_reference_type:
22020 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22021 break;
22022 case DW_TAG_rvalue_reference_type:
22023 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22024 break;
22025 case DW_TAG_const_type:
22026 this_type = read_tag_const_type (die, cu);
22027 break;
22028 case DW_TAG_volatile_type:
22029 this_type = read_tag_volatile_type (die, cu);
22030 break;
22031 case DW_TAG_restrict_type:
22032 this_type = read_tag_restrict_type (die, cu);
22033 break;
22034 case DW_TAG_string_type:
22035 this_type = read_tag_string_type (die, cu);
22036 break;
22037 case DW_TAG_typedef:
22038 this_type = read_typedef (die, cu);
22039 break;
22040 case DW_TAG_subrange_type:
22041 this_type = read_subrange_type (die, cu);
22042 break;
22043 case DW_TAG_base_type:
22044 this_type = read_base_type (die, cu);
22045 break;
22046 case DW_TAG_unspecified_type:
22047 this_type = read_unspecified_type (die, cu);
22048 break;
22049 case DW_TAG_namespace:
22050 this_type = read_namespace_type (die, cu);
22051 break;
22052 case DW_TAG_module:
22053 this_type = read_module_type (die, cu);
22054 break;
22055 case DW_TAG_atomic_type:
22056 this_type = read_tag_atomic_type (die, cu);
22057 break;
22058 default:
22059 complaint (&symfile_complaints,
22060 _("unexpected tag in read_type_die: '%s'"),
22061 dwarf_tag_name (die->tag));
22062 break;
22063 }
22064
22065 return this_type;
22066 }
22067
22068 /* See if we can figure out if the class lives in a namespace. We do
22069 this by looking for a member function; its demangled name will
22070 contain namespace info, if there is any.
22071 Return the computed name or NULL.
22072 Space for the result is allocated on the objfile's obstack.
22073 This is the full-die version of guess_partial_die_structure_name.
22074 In this case we know DIE has no useful parent. */
22075
22076 static char *
22077 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22078 {
22079 struct die_info *spec_die;
22080 struct dwarf2_cu *spec_cu;
22081 struct die_info *child;
22082 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22083
22084 spec_cu = cu;
22085 spec_die = die_specification (die, &spec_cu);
22086 if (spec_die != NULL)
22087 {
22088 die = spec_die;
22089 cu = spec_cu;
22090 }
22091
22092 for (child = die->child;
22093 child != NULL;
22094 child = child->sibling)
22095 {
22096 if (child->tag == DW_TAG_subprogram)
22097 {
22098 const char *linkage_name = dw2_linkage_name (child, cu);
22099
22100 if (linkage_name != NULL)
22101 {
22102 char *actual_name
22103 = language_class_name_from_physname (cu->language_defn,
22104 linkage_name);
22105 char *name = NULL;
22106
22107 if (actual_name != NULL)
22108 {
22109 const char *die_name = dwarf2_name (die, cu);
22110
22111 if (die_name != NULL
22112 && strcmp (die_name, actual_name) != 0)
22113 {
22114 /* Strip off the class name from the full name.
22115 We want the prefix. */
22116 int die_name_len = strlen (die_name);
22117 int actual_name_len = strlen (actual_name);
22118
22119 /* Test for '::' as a sanity check. */
22120 if (actual_name_len > die_name_len + 2
22121 && actual_name[actual_name_len
22122 - die_name_len - 1] == ':')
22123 name = (char *) obstack_copy0 (
22124 &objfile->per_bfd->storage_obstack,
22125 actual_name, actual_name_len - die_name_len - 2);
22126 }
22127 }
22128 xfree (actual_name);
22129 return name;
22130 }
22131 }
22132 }
22133
22134 return NULL;
22135 }
22136
22137 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22138 prefix part in such case. See
22139 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22140
22141 static const char *
22142 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22143 {
22144 struct attribute *attr;
22145 const char *base;
22146
22147 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22148 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22149 return NULL;
22150
22151 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22152 return NULL;
22153
22154 attr = dw2_linkage_name_attr (die, cu);
22155 if (attr == NULL || DW_STRING (attr) == NULL)
22156 return NULL;
22157
22158 /* dwarf2_name had to be already called. */
22159 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22160
22161 /* Strip the base name, keep any leading namespaces/classes. */
22162 base = strrchr (DW_STRING (attr), ':');
22163 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22164 return "";
22165
22166 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22167 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22168 DW_STRING (attr),
22169 &base[-1] - DW_STRING (attr));
22170 }
22171
22172 /* Return the name of the namespace/class that DIE is defined within,
22173 or "" if we can't tell. The caller should not xfree the result.
22174
22175 For example, if we're within the method foo() in the following
22176 code:
22177
22178 namespace N {
22179 class C {
22180 void foo () {
22181 }
22182 };
22183 }
22184
22185 then determine_prefix on foo's die will return "N::C". */
22186
22187 static const char *
22188 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22189 {
22190 struct dwarf2_per_objfile *dwarf2_per_objfile
22191 = cu->per_cu->dwarf2_per_objfile;
22192 struct die_info *parent, *spec_die;
22193 struct dwarf2_cu *spec_cu;
22194 struct type *parent_type;
22195 const char *retval;
22196
22197 if (cu->language != language_cplus
22198 && cu->language != language_fortran && cu->language != language_d
22199 && cu->language != language_rust)
22200 return "";
22201
22202 retval = anonymous_struct_prefix (die, cu);
22203 if (retval)
22204 return retval;
22205
22206 /* We have to be careful in the presence of DW_AT_specification.
22207 For example, with GCC 3.4, given the code
22208
22209 namespace N {
22210 void foo() {
22211 // Definition of N::foo.
22212 }
22213 }
22214
22215 then we'll have a tree of DIEs like this:
22216
22217 1: DW_TAG_compile_unit
22218 2: DW_TAG_namespace // N
22219 3: DW_TAG_subprogram // declaration of N::foo
22220 4: DW_TAG_subprogram // definition of N::foo
22221 DW_AT_specification // refers to die #3
22222
22223 Thus, when processing die #4, we have to pretend that we're in
22224 the context of its DW_AT_specification, namely the contex of die
22225 #3. */
22226 spec_cu = cu;
22227 spec_die = die_specification (die, &spec_cu);
22228 if (spec_die == NULL)
22229 parent = die->parent;
22230 else
22231 {
22232 parent = spec_die->parent;
22233 cu = spec_cu;
22234 }
22235
22236 if (parent == NULL)
22237 return "";
22238 else if (parent->building_fullname)
22239 {
22240 const char *name;
22241 const char *parent_name;
22242
22243 /* It has been seen on RealView 2.2 built binaries,
22244 DW_TAG_template_type_param types actually _defined_ as
22245 children of the parent class:
22246
22247 enum E {};
22248 template class <class Enum> Class{};
22249 Class<enum E> class_e;
22250
22251 1: DW_TAG_class_type (Class)
22252 2: DW_TAG_enumeration_type (E)
22253 3: DW_TAG_enumerator (enum1:0)
22254 3: DW_TAG_enumerator (enum2:1)
22255 ...
22256 2: DW_TAG_template_type_param
22257 DW_AT_type DW_FORM_ref_udata (E)
22258
22259 Besides being broken debug info, it can put GDB into an
22260 infinite loop. Consider:
22261
22262 When we're building the full name for Class<E>, we'll start
22263 at Class, and go look over its template type parameters,
22264 finding E. We'll then try to build the full name of E, and
22265 reach here. We're now trying to build the full name of E,
22266 and look over the parent DIE for containing scope. In the
22267 broken case, if we followed the parent DIE of E, we'd again
22268 find Class, and once again go look at its template type
22269 arguments, etc., etc. Simply don't consider such parent die
22270 as source-level parent of this die (it can't be, the language
22271 doesn't allow it), and break the loop here. */
22272 name = dwarf2_name (die, cu);
22273 parent_name = dwarf2_name (parent, cu);
22274 complaint (&symfile_complaints,
22275 _("template param type '%s' defined within parent '%s'"),
22276 name ? name : "<unknown>",
22277 parent_name ? parent_name : "<unknown>");
22278 return "";
22279 }
22280 else
22281 switch (parent->tag)
22282 {
22283 case DW_TAG_namespace:
22284 parent_type = read_type_die (parent, cu);
22285 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22286 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22287 Work around this problem here. */
22288 if (cu->language == language_cplus
22289 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22290 return "";
22291 /* We give a name to even anonymous namespaces. */
22292 return TYPE_TAG_NAME (parent_type);
22293 case DW_TAG_class_type:
22294 case DW_TAG_interface_type:
22295 case DW_TAG_structure_type:
22296 case DW_TAG_union_type:
22297 case DW_TAG_module:
22298 parent_type = read_type_die (parent, cu);
22299 if (TYPE_TAG_NAME (parent_type) != NULL)
22300 return TYPE_TAG_NAME (parent_type);
22301 else
22302 /* An anonymous structure is only allowed non-static data
22303 members; no typedefs, no member functions, et cetera.
22304 So it does not need a prefix. */
22305 return "";
22306 case DW_TAG_compile_unit:
22307 case DW_TAG_partial_unit:
22308 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22309 if (cu->language == language_cplus
22310 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22311 && die->child != NULL
22312 && (die->tag == DW_TAG_class_type
22313 || die->tag == DW_TAG_structure_type
22314 || die->tag == DW_TAG_union_type))
22315 {
22316 char *name = guess_full_die_structure_name (die, cu);
22317 if (name != NULL)
22318 return name;
22319 }
22320 return "";
22321 case DW_TAG_enumeration_type:
22322 parent_type = read_type_die (parent, cu);
22323 if (TYPE_DECLARED_CLASS (parent_type))
22324 {
22325 if (TYPE_TAG_NAME (parent_type) != NULL)
22326 return TYPE_TAG_NAME (parent_type);
22327 return "";
22328 }
22329 /* Fall through. */
22330 default:
22331 return determine_prefix (parent, cu);
22332 }
22333 }
22334
22335 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22336 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22337 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22338 an obconcat, otherwise allocate storage for the result. The CU argument is
22339 used to determine the language and hence, the appropriate separator. */
22340
22341 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22342
22343 static char *
22344 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22345 int physname, struct dwarf2_cu *cu)
22346 {
22347 const char *lead = "";
22348 const char *sep;
22349
22350 if (suffix == NULL || suffix[0] == '\0'
22351 || prefix == NULL || prefix[0] == '\0')
22352 sep = "";
22353 else if (cu->language == language_d)
22354 {
22355 /* For D, the 'main' function could be defined in any module, but it
22356 should never be prefixed. */
22357 if (strcmp (suffix, "D main") == 0)
22358 {
22359 prefix = "";
22360 sep = "";
22361 }
22362 else
22363 sep = ".";
22364 }
22365 else if (cu->language == language_fortran && physname)
22366 {
22367 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22368 DW_AT_MIPS_linkage_name is preferred and used instead. */
22369
22370 lead = "__";
22371 sep = "_MOD_";
22372 }
22373 else
22374 sep = "::";
22375
22376 if (prefix == NULL)
22377 prefix = "";
22378 if (suffix == NULL)
22379 suffix = "";
22380
22381 if (obs == NULL)
22382 {
22383 char *retval
22384 = ((char *)
22385 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22386
22387 strcpy (retval, lead);
22388 strcat (retval, prefix);
22389 strcat (retval, sep);
22390 strcat (retval, suffix);
22391 return retval;
22392 }
22393 else
22394 {
22395 /* We have an obstack. */
22396 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22397 }
22398 }
22399
22400 /* Return sibling of die, NULL if no sibling. */
22401
22402 static struct die_info *
22403 sibling_die (struct die_info *die)
22404 {
22405 return die->sibling;
22406 }
22407
22408 /* Get name of a die, return NULL if not found. */
22409
22410 static const char *
22411 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22412 struct obstack *obstack)
22413 {
22414 if (name && cu->language == language_cplus)
22415 {
22416 std::string canon_name = cp_canonicalize_string (name);
22417
22418 if (!canon_name.empty ())
22419 {
22420 if (canon_name != name)
22421 name = (const char *) obstack_copy0 (obstack,
22422 canon_name.c_str (),
22423 canon_name.length ());
22424 }
22425 }
22426
22427 return name;
22428 }
22429
22430 /* Get name of a die, return NULL if not found.
22431 Anonymous namespaces are converted to their magic string. */
22432
22433 static const char *
22434 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22435 {
22436 struct attribute *attr;
22437 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22438
22439 attr = dwarf2_attr (die, DW_AT_name, cu);
22440 if ((!attr || !DW_STRING (attr))
22441 && die->tag != DW_TAG_namespace
22442 && die->tag != DW_TAG_class_type
22443 && die->tag != DW_TAG_interface_type
22444 && die->tag != DW_TAG_structure_type
22445 && die->tag != DW_TAG_union_type)
22446 return NULL;
22447
22448 switch (die->tag)
22449 {
22450 case DW_TAG_compile_unit:
22451 case DW_TAG_partial_unit:
22452 /* Compilation units have a DW_AT_name that is a filename, not
22453 a source language identifier. */
22454 case DW_TAG_enumeration_type:
22455 case DW_TAG_enumerator:
22456 /* These tags always have simple identifiers already; no need
22457 to canonicalize them. */
22458 return DW_STRING (attr);
22459
22460 case DW_TAG_namespace:
22461 if (attr != NULL && DW_STRING (attr) != NULL)
22462 return DW_STRING (attr);
22463 return CP_ANONYMOUS_NAMESPACE_STR;
22464
22465 case DW_TAG_class_type:
22466 case DW_TAG_interface_type:
22467 case DW_TAG_structure_type:
22468 case DW_TAG_union_type:
22469 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22470 structures or unions. These were of the form "._%d" in GCC 4.1,
22471 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22472 and GCC 4.4. We work around this problem by ignoring these. */
22473 if (attr && DW_STRING (attr)
22474 && (startswith (DW_STRING (attr), "._")
22475 || startswith (DW_STRING (attr), "<anonymous")))
22476 return NULL;
22477
22478 /* GCC might emit a nameless typedef that has a linkage name. See
22479 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22480 if (!attr || DW_STRING (attr) == NULL)
22481 {
22482 char *demangled = NULL;
22483
22484 attr = dw2_linkage_name_attr (die, cu);
22485 if (attr == NULL || DW_STRING (attr) == NULL)
22486 return NULL;
22487
22488 /* Avoid demangling DW_STRING (attr) the second time on a second
22489 call for the same DIE. */
22490 if (!DW_STRING_IS_CANONICAL (attr))
22491 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22492
22493 if (demangled)
22494 {
22495 const char *base;
22496
22497 /* FIXME: we already did this for the partial symbol... */
22498 DW_STRING (attr)
22499 = ((const char *)
22500 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22501 demangled, strlen (demangled)));
22502 DW_STRING_IS_CANONICAL (attr) = 1;
22503 xfree (demangled);
22504
22505 /* Strip any leading namespaces/classes, keep only the base name.
22506 DW_AT_name for named DIEs does not contain the prefixes. */
22507 base = strrchr (DW_STRING (attr), ':');
22508 if (base && base > DW_STRING (attr) && base[-1] == ':')
22509 return &base[1];
22510 else
22511 return DW_STRING (attr);
22512 }
22513 }
22514 break;
22515
22516 default:
22517 break;
22518 }
22519
22520 if (!DW_STRING_IS_CANONICAL (attr))
22521 {
22522 DW_STRING (attr)
22523 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22524 &objfile->per_bfd->storage_obstack);
22525 DW_STRING_IS_CANONICAL (attr) = 1;
22526 }
22527 return DW_STRING (attr);
22528 }
22529
22530 /* Return the die that this die in an extension of, or NULL if there
22531 is none. *EXT_CU is the CU containing DIE on input, and the CU
22532 containing the return value on output. */
22533
22534 static struct die_info *
22535 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22536 {
22537 struct attribute *attr;
22538
22539 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22540 if (attr == NULL)
22541 return NULL;
22542
22543 return follow_die_ref (die, attr, ext_cu);
22544 }
22545
22546 /* Convert a DIE tag into its string name. */
22547
22548 static const char *
22549 dwarf_tag_name (unsigned tag)
22550 {
22551 const char *name = get_DW_TAG_name (tag);
22552
22553 if (name == NULL)
22554 return "DW_TAG_<unknown>";
22555
22556 return name;
22557 }
22558
22559 /* Convert a DWARF attribute code into its string name. */
22560
22561 static const char *
22562 dwarf_attr_name (unsigned attr)
22563 {
22564 const char *name;
22565
22566 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22567 if (attr == DW_AT_MIPS_fde)
22568 return "DW_AT_MIPS_fde";
22569 #else
22570 if (attr == DW_AT_HP_block_index)
22571 return "DW_AT_HP_block_index";
22572 #endif
22573
22574 name = get_DW_AT_name (attr);
22575
22576 if (name == NULL)
22577 return "DW_AT_<unknown>";
22578
22579 return name;
22580 }
22581
22582 /* Convert a DWARF value form code into its string name. */
22583
22584 static const char *
22585 dwarf_form_name (unsigned form)
22586 {
22587 const char *name = get_DW_FORM_name (form);
22588
22589 if (name == NULL)
22590 return "DW_FORM_<unknown>";
22591
22592 return name;
22593 }
22594
22595 static const char *
22596 dwarf_bool_name (unsigned mybool)
22597 {
22598 if (mybool)
22599 return "TRUE";
22600 else
22601 return "FALSE";
22602 }
22603
22604 /* Convert a DWARF type code into its string name. */
22605
22606 static const char *
22607 dwarf_type_encoding_name (unsigned enc)
22608 {
22609 const char *name = get_DW_ATE_name (enc);
22610
22611 if (name == NULL)
22612 return "DW_ATE_<unknown>";
22613
22614 return name;
22615 }
22616
22617 static void
22618 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22619 {
22620 unsigned int i;
22621
22622 print_spaces (indent, f);
22623 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22624 dwarf_tag_name (die->tag), die->abbrev,
22625 sect_offset_str (die->sect_off));
22626
22627 if (die->parent != NULL)
22628 {
22629 print_spaces (indent, f);
22630 fprintf_unfiltered (f, " parent at offset: %s\n",
22631 sect_offset_str (die->parent->sect_off));
22632 }
22633
22634 print_spaces (indent, f);
22635 fprintf_unfiltered (f, " has children: %s\n",
22636 dwarf_bool_name (die->child != NULL));
22637
22638 print_spaces (indent, f);
22639 fprintf_unfiltered (f, " attributes:\n");
22640
22641 for (i = 0; i < die->num_attrs; ++i)
22642 {
22643 print_spaces (indent, f);
22644 fprintf_unfiltered (f, " %s (%s) ",
22645 dwarf_attr_name (die->attrs[i].name),
22646 dwarf_form_name (die->attrs[i].form));
22647
22648 switch (die->attrs[i].form)
22649 {
22650 case DW_FORM_addr:
22651 case DW_FORM_GNU_addr_index:
22652 fprintf_unfiltered (f, "address: ");
22653 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22654 break;
22655 case DW_FORM_block2:
22656 case DW_FORM_block4:
22657 case DW_FORM_block:
22658 case DW_FORM_block1:
22659 fprintf_unfiltered (f, "block: size %s",
22660 pulongest (DW_BLOCK (&die->attrs[i])->size));
22661 break;
22662 case DW_FORM_exprloc:
22663 fprintf_unfiltered (f, "expression: size %s",
22664 pulongest (DW_BLOCK (&die->attrs[i])->size));
22665 break;
22666 case DW_FORM_data16:
22667 fprintf_unfiltered (f, "constant of 16 bytes");
22668 break;
22669 case DW_FORM_ref_addr:
22670 fprintf_unfiltered (f, "ref address: ");
22671 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22672 break;
22673 case DW_FORM_GNU_ref_alt:
22674 fprintf_unfiltered (f, "alt ref address: ");
22675 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22676 break;
22677 case DW_FORM_ref1:
22678 case DW_FORM_ref2:
22679 case DW_FORM_ref4:
22680 case DW_FORM_ref8:
22681 case DW_FORM_ref_udata:
22682 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22683 (long) (DW_UNSND (&die->attrs[i])));
22684 break;
22685 case DW_FORM_data1:
22686 case DW_FORM_data2:
22687 case DW_FORM_data4:
22688 case DW_FORM_data8:
22689 case DW_FORM_udata:
22690 case DW_FORM_sdata:
22691 fprintf_unfiltered (f, "constant: %s",
22692 pulongest (DW_UNSND (&die->attrs[i])));
22693 break;
22694 case DW_FORM_sec_offset:
22695 fprintf_unfiltered (f, "section offset: %s",
22696 pulongest (DW_UNSND (&die->attrs[i])));
22697 break;
22698 case DW_FORM_ref_sig8:
22699 fprintf_unfiltered (f, "signature: %s",
22700 hex_string (DW_SIGNATURE (&die->attrs[i])));
22701 break;
22702 case DW_FORM_string:
22703 case DW_FORM_strp:
22704 case DW_FORM_line_strp:
22705 case DW_FORM_GNU_str_index:
22706 case DW_FORM_GNU_strp_alt:
22707 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22708 DW_STRING (&die->attrs[i])
22709 ? DW_STRING (&die->attrs[i]) : "",
22710 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22711 break;
22712 case DW_FORM_flag:
22713 if (DW_UNSND (&die->attrs[i]))
22714 fprintf_unfiltered (f, "flag: TRUE");
22715 else
22716 fprintf_unfiltered (f, "flag: FALSE");
22717 break;
22718 case DW_FORM_flag_present:
22719 fprintf_unfiltered (f, "flag: TRUE");
22720 break;
22721 case DW_FORM_indirect:
22722 /* The reader will have reduced the indirect form to
22723 the "base form" so this form should not occur. */
22724 fprintf_unfiltered (f,
22725 "unexpected attribute form: DW_FORM_indirect");
22726 break;
22727 case DW_FORM_implicit_const:
22728 fprintf_unfiltered (f, "constant: %s",
22729 plongest (DW_SND (&die->attrs[i])));
22730 break;
22731 default:
22732 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22733 die->attrs[i].form);
22734 break;
22735 }
22736 fprintf_unfiltered (f, "\n");
22737 }
22738 }
22739
22740 static void
22741 dump_die_for_error (struct die_info *die)
22742 {
22743 dump_die_shallow (gdb_stderr, 0, die);
22744 }
22745
22746 static void
22747 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22748 {
22749 int indent = level * 4;
22750
22751 gdb_assert (die != NULL);
22752
22753 if (level >= max_level)
22754 return;
22755
22756 dump_die_shallow (f, indent, die);
22757
22758 if (die->child != NULL)
22759 {
22760 print_spaces (indent, f);
22761 fprintf_unfiltered (f, " Children:");
22762 if (level + 1 < max_level)
22763 {
22764 fprintf_unfiltered (f, "\n");
22765 dump_die_1 (f, level + 1, max_level, die->child);
22766 }
22767 else
22768 {
22769 fprintf_unfiltered (f,
22770 " [not printed, max nesting level reached]\n");
22771 }
22772 }
22773
22774 if (die->sibling != NULL && level > 0)
22775 {
22776 dump_die_1 (f, level, max_level, die->sibling);
22777 }
22778 }
22779
22780 /* This is called from the pdie macro in gdbinit.in.
22781 It's not static so gcc will keep a copy callable from gdb. */
22782
22783 void
22784 dump_die (struct die_info *die, int max_level)
22785 {
22786 dump_die_1 (gdb_stdlog, 0, max_level, die);
22787 }
22788
22789 static void
22790 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22791 {
22792 void **slot;
22793
22794 slot = htab_find_slot_with_hash (cu->die_hash, die,
22795 to_underlying (die->sect_off),
22796 INSERT);
22797
22798 *slot = die;
22799 }
22800
22801 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22802 required kind. */
22803
22804 static sect_offset
22805 dwarf2_get_ref_die_offset (const struct attribute *attr)
22806 {
22807 if (attr_form_is_ref (attr))
22808 return (sect_offset) DW_UNSND (attr);
22809
22810 complaint (&symfile_complaints,
22811 _("unsupported die ref attribute form: '%s'"),
22812 dwarf_form_name (attr->form));
22813 return {};
22814 }
22815
22816 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22817 * the value held by the attribute is not constant. */
22818
22819 static LONGEST
22820 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22821 {
22822 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22823 return DW_SND (attr);
22824 else if (attr->form == DW_FORM_udata
22825 || attr->form == DW_FORM_data1
22826 || attr->form == DW_FORM_data2
22827 || attr->form == DW_FORM_data4
22828 || attr->form == DW_FORM_data8)
22829 return DW_UNSND (attr);
22830 else
22831 {
22832 /* For DW_FORM_data16 see attr_form_is_constant. */
22833 complaint (&symfile_complaints,
22834 _("Attribute value is not a constant (%s)"),
22835 dwarf_form_name (attr->form));
22836 return default_value;
22837 }
22838 }
22839
22840 /* Follow reference or signature attribute ATTR of SRC_DIE.
22841 On entry *REF_CU is the CU of SRC_DIE.
22842 On exit *REF_CU is the CU of the result. */
22843
22844 static struct die_info *
22845 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22846 struct dwarf2_cu **ref_cu)
22847 {
22848 struct die_info *die;
22849
22850 if (attr_form_is_ref (attr))
22851 die = follow_die_ref (src_die, attr, ref_cu);
22852 else if (attr->form == DW_FORM_ref_sig8)
22853 die = follow_die_sig (src_die, attr, ref_cu);
22854 else
22855 {
22856 dump_die_for_error (src_die);
22857 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22858 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22859 }
22860
22861 return die;
22862 }
22863
22864 /* Follow reference OFFSET.
22865 On entry *REF_CU is the CU of the source die referencing OFFSET.
22866 On exit *REF_CU is the CU of the result.
22867 Returns NULL if OFFSET is invalid. */
22868
22869 static struct die_info *
22870 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22871 struct dwarf2_cu **ref_cu)
22872 {
22873 struct die_info temp_die;
22874 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22875 struct dwarf2_per_objfile *dwarf2_per_objfile
22876 = cu->per_cu->dwarf2_per_objfile;
22877 struct objfile *objfile = dwarf2_per_objfile->objfile;
22878
22879 gdb_assert (cu->per_cu != NULL);
22880
22881 target_cu = cu;
22882
22883 if (cu->per_cu->is_debug_types)
22884 {
22885 /* .debug_types CUs cannot reference anything outside their CU.
22886 If they need to, they have to reference a signatured type via
22887 DW_FORM_ref_sig8. */
22888 if (!offset_in_cu_p (&cu->header, sect_off))
22889 return NULL;
22890 }
22891 else if (offset_in_dwz != cu->per_cu->is_dwz
22892 || !offset_in_cu_p (&cu->header, sect_off))
22893 {
22894 struct dwarf2_per_cu_data *per_cu;
22895
22896 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22897 dwarf2_per_objfile);
22898
22899 /* If necessary, add it to the queue and load its DIEs. */
22900 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22901 load_full_comp_unit (per_cu, cu->language);
22902
22903 target_cu = per_cu->cu;
22904 }
22905 else if (cu->dies == NULL)
22906 {
22907 /* We're loading full DIEs during partial symbol reading. */
22908 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22909 load_full_comp_unit (cu->per_cu, language_minimal);
22910 }
22911
22912 *ref_cu = target_cu;
22913 temp_die.sect_off = sect_off;
22914 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22915 &temp_die,
22916 to_underlying (sect_off));
22917 }
22918
22919 /* Follow reference attribute ATTR of SRC_DIE.
22920 On entry *REF_CU is the CU of SRC_DIE.
22921 On exit *REF_CU is the CU of the result. */
22922
22923 static struct die_info *
22924 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22925 struct dwarf2_cu **ref_cu)
22926 {
22927 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22928 struct dwarf2_cu *cu = *ref_cu;
22929 struct die_info *die;
22930
22931 die = follow_die_offset (sect_off,
22932 (attr->form == DW_FORM_GNU_ref_alt
22933 || cu->per_cu->is_dwz),
22934 ref_cu);
22935 if (!die)
22936 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22937 "at %s [in module %s]"),
22938 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22939 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22940
22941 return die;
22942 }
22943
22944 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22945 Returned value is intended for DW_OP_call*. Returned
22946 dwarf2_locexpr_baton->data has lifetime of
22947 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22948
22949 struct dwarf2_locexpr_baton
22950 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22951 struct dwarf2_per_cu_data *per_cu,
22952 CORE_ADDR (*get_frame_pc) (void *baton),
22953 void *baton)
22954 {
22955 struct dwarf2_cu *cu;
22956 struct die_info *die;
22957 struct attribute *attr;
22958 struct dwarf2_locexpr_baton retval;
22959 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22960 struct dwarf2_per_objfile *dwarf2_per_objfile
22961 = get_dwarf2_per_objfile (objfile);
22962
22963 if (per_cu->cu == NULL)
22964 load_cu (per_cu);
22965 cu = per_cu->cu;
22966 if (cu == NULL)
22967 {
22968 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22969 Instead just throw an error, not much else we can do. */
22970 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22971 sect_offset_str (sect_off), objfile_name (objfile));
22972 }
22973
22974 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22975 if (!die)
22976 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22977 sect_offset_str (sect_off), objfile_name (objfile));
22978
22979 attr = dwarf2_attr (die, DW_AT_location, cu);
22980 if (!attr)
22981 {
22982 /* DWARF: "If there is no such attribute, then there is no effect.".
22983 DATA is ignored if SIZE is 0. */
22984
22985 retval.data = NULL;
22986 retval.size = 0;
22987 }
22988 else if (attr_form_is_section_offset (attr))
22989 {
22990 struct dwarf2_loclist_baton loclist_baton;
22991 CORE_ADDR pc = (*get_frame_pc) (baton);
22992 size_t size;
22993
22994 fill_in_loclist_baton (cu, &loclist_baton, attr);
22995
22996 retval.data = dwarf2_find_location_expression (&loclist_baton,
22997 &size, pc);
22998 retval.size = size;
22999 }
23000 else
23001 {
23002 if (!attr_form_is_block (attr))
23003 error (_("Dwarf Error: DIE at %s referenced in module %s "
23004 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23005 sect_offset_str (sect_off), objfile_name (objfile));
23006
23007 retval.data = DW_BLOCK (attr)->data;
23008 retval.size = DW_BLOCK (attr)->size;
23009 }
23010 retval.per_cu = cu->per_cu;
23011
23012 age_cached_comp_units (dwarf2_per_objfile);
23013
23014 return retval;
23015 }
23016
23017 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23018 offset. */
23019
23020 struct dwarf2_locexpr_baton
23021 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23022 struct dwarf2_per_cu_data *per_cu,
23023 CORE_ADDR (*get_frame_pc) (void *baton),
23024 void *baton)
23025 {
23026 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23027
23028 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23029 }
23030
23031 /* Write a constant of a given type as target-ordered bytes into
23032 OBSTACK. */
23033
23034 static const gdb_byte *
23035 write_constant_as_bytes (struct obstack *obstack,
23036 enum bfd_endian byte_order,
23037 struct type *type,
23038 ULONGEST value,
23039 LONGEST *len)
23040 {
23041 gdb_byte *result;
23042
23043 *len = TYPE_LENGTH (type);
23044 result = (gdb_byte *) obstack_alloc (obstack, *len);
23045 store_unsigned_integer (result, *len, byte_order, value);
23046
23047 return result;
23048 }
23049
23050 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23051 pointer to the constant bytes and set LEN to the length of the
23052 data. If memory is needed, allocate it on OBSTACK. If the DIE
23053 does not have a DW_AT_const_value, return NULL. */
23054
23055 const gdb_byte *
23056 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23057 struct dwarf2_per_cu_data *per_cu,
23058 struct obstack *obstack,
23059 LONGEST *len)
23060 {
23061 struct dwarf2_cu *cu;
23062 struct die_info *die;
23063 struct attribute *attr;
23064 const gdb_byte *result = NULL;
23065 struct type *type;
23066 LONGEST value;
23067 enum bfd_endian byte_order;
23068 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23069
23070 if (per_cu->cu == NULL)
23071 load_cu (per_cu);
23072 cu = per_cu->cu;
23073 if (cu == NULL)
23074 {
23075 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23076 Instead just throw an error, not much else we can do. */
23077 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23078 sect_offset_str (sect_off), objfile_name (objfile));
23079 }
23080
23081 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23082 if (!die)
23083 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23084 sect_offset_str (sect_off), objfile_name (objfile));
23085
23086 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23087 if (attr == NULL)
23088 return NULL;
23089
23090 byte_order = (bfd_big_endian (objfile->obfd)
23091 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23092
23093 switch (attr->form)
23094 {
23095 case DW_FORM_addr:
23096 case DW_FORM_GNU_addr_index:
23097 {
23098 gdb_byte *tem;
23099
23100 *len = cu->header.addr_size;
23101 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23102 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23103 result = tem;
23104 }
23105 break;
23106 case DW_FORM_string:
23107 case DW_FORM_strp:
23108 case DW_FORM_GNU_str_index:
23109 case DW_FORM_GNU_strp_alt:
23110 /* DW_STRING is already allocated on the objfile obstack, point
23111 directly to it. */
23112 result = (const gdb_byte *) DW_STRING (attr);
23113 *len = strlen (DW_STRING (attr));
23114 break;
23115 case DW_FORM_block1:
23116 case DW_FORM_block2:
23117 case DW_FORM_block4:
23118 case DW_FORM_block:
23119 case DW_FORM_exprloc:
23120 case DW_FORM_data16:
23121 result = DW_BLOCK (attr)->data;
23122 *len = DW_BLOCK (attr)->size;
23123 break;
23124
23125 /* The DW_AT_const_value attributes are supposed to carry the
23126 symbol's value "represented as it would be on the target
23127 architecture." By the time we get here, it's already been
23128 converted to host endianness, so we just need to sign- or
23129 zero-extend it as appropriate. */
23130 case DW_FORM_data1:
23131 type = die_type (die, cu);
23132 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23133 if (result == NULL)
23134 result = write_constant_as_bytes (obstack, byte_order,
23135 type, value, len);
23136 break;
23137 case DW_FORM_data2:
23138 type = die_type (die, cu);
23139 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23140 if (result == NULL)
23141 result = write_constant_as_bytes (obstack, byte_order,
23142 type, value, len);
23143 break;
23144 case DW_FORM_data4:
23145 type = die_type (die, cu);
23146 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23147 if (result == NULL)
23148 result = write_constant_as_bytes (obstack, byte_order,
23149 type, value, len);
23150 break;
23151 case DW_FORM_data8:
23152 type = die_type (die, cu);
23153 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23154 if (result == NULL)
23155 result = write_constant_as_bytes (obstack, byte_order,
23156 type, value, len);
23157 break;
23158
23159 case DW_FORM_sdata:
23160 case DW_FORM_implicit_const:
23161 type = die_type (die, cu);
23162 result = write_constant_as_bytes (obstack, byte_order,
23163 type, DW_SND (attr), len);
23164 break;
23165
23166 case DW_FORM_udata:
23167 type = die_type (die, cu);
23168 result = write_constant_as_bytes (obstack, byte_order,
23169 type, DW_UNSND (attr), len);
23170 break;
23171
23172 default:
23173 complaint (&symfile_complaints,
23174 _("unsupported const value attribute form: '%s'"),
23175 dwarf_form_name (attr->form));
23176 break;
23177 }
23178
23179 return result;
23180 }
23181
23182 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23183 valid type for this die is found. */
23184
23185 struct type *
23186 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23187 struct dwarf2_per_cu_data *per_cu)
23188 {
23189 struct dwarf2_cu *cu;
23190 struct die_info *die;
23191
23192 if (per_cu->cu == NULL)
23193 load_cu (per_cu);
23194 cu = per_cu->cu;
23195 if (!cu)
23196 return NULL;
23197
23198 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23199 if (!die)
23200 return NULL;
23201
23202 return die_type (die, cu);
23203 }
23204
23205 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23206 PER_CU. */
23207
23208 struct type *
23209 dwarf2_get_die_type (cu_offset die_offset,
23210 struct dwarf2_per_cu_data *per_cu)
23211 {
23212 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23213 return get_die_type_at_offset (die_offset_sect, per_cu);
23214 }
23215
23216 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23217 On entry *REF_CU is the CU of SRC_DIE.
23218 On exit *REF_CU is the CU of the result.
23219 Returns NULL if the referenced DIE isn't found. */
23220
23221 static struct die_info *
23222 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23223 struct dwarf2_cu **ref_cu)
23224 {
23225 struct die_info temp_die;
23226 struct dwarf2_cu *sig_cu;
23227 struct die_info *die;
23228
23229 /* While it might be nice to assert sig_type->type == NULL here,
23230 we can get here for DW_AT_imported_declaration where we need
23231 the DIE not the type. */
23232
23233 /* If necessary, add it to the queue and load its DIEs. */
23234
23235 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23236 read_signatured_type (sig_type);
23237
23238 sig_cu = sig_type->per_cu.cu;
23239 gdb_assert (sig_cu != NULL);
23240 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23241 temp_die.sect_off = sig_type->type_offset_in_section;
23242 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23243 to_underlying (temp_die.sect_off));
23244 if (die)
23245 {
23246 struct dwarf2_per_objfile *dwarf2_per_objfile
23247 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23248
23249 /* For .gdb_index version 7 keep track of included TUs.
23250 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23251 if (dwarf2_per_objfile->index_table != NULL
23252 && dwarf2_per_objfile->index_table->version <= 7)
23253 {
23254 VEC_safe_push (dwarf2_per_cu_ptr,
23255 (*ref_cu)->per_cu->imported_symtabs,
23256 sig_cu->per_cu);
23257 }
23258
23259 *ref_cu = sig_cu;
23260 return die;
23261 }
23262
23263 return NULL;
23264 }
23265
23266 /* Follow signatured type referenced by ATTR in SRC_DIE.
23267 On entry *REF_CU is the CU of SRC_DIE.
23268 On exit *REF_CU is the CU of the result.
23269 The result is the DIE of the type.
23270 If the referenced type cannot be found an error is thrown. */
23271
23272 static struct die_info *
23273 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23274 struct dwarf2_cu **ref_cu)
23275 {
23276 ULONGEST signature = DW_SIGNATURE (attr);
23277 struct signatured_type *sig_type;
23278 struct die_info *die;
23279
23280 gdb_assert (attr->form == DW_FORM_ref_sig8);
23281
23282 sig_type = lookup_signatured_type (*ref_cu, signature);
23283 /* sig_type will be NULL if the signatured type is missing from
23284 the debug info. */
23285 if (sig_type == NULL)
23286 {
23287 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23288 " from DIE at %s [in module %s]"),
23289 hex_string (signature), sect_offset_str (src_die->sect_off),
23290 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23291 }
23292
23293 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23294 if (die == NULL)
23295 {
23296 dump_die_for_error (src_die);
23297 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23298 " from DIE at %s [in module %s]"),
23299 hex_string (signature), sect_offset_str (src_die->sect_off),
23300 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23301 }
23302
23303 return die;
23304 }
23305
23306 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23307 reading in and processing the type unit if necessary. */
23308
23309 static struct type *
23310 get_signatured_type (struct die_info *die, ULONGEST signature,
23311 struct dwarf2_cu *cu)
23312 {
23313 struct dwarf2_per_objfile *dwarf2_per_objfile
23314 = cu->per_cu->dwarf2_per_objfile;
23315 struct signatured_type *sig_type;
23316 struct dwarf2_cu *type_cu;
23317 struct die_info *type_die;
23318 struct type *type;
23319
23320 sig_type = lookup_signatured_type (cu, signature);
23321 /* sig_type will be NULL if the signatured type is missing from
23322 the debug info. */
23323 if (sig_type == NULL)
23324 {
23325 complaint (&symfile_complaints,
23326 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23327 " from DIE at %s [in module %s]"),
23328 hex_string (signature), sect_offset_str (die->sect_off),
23329 objfile_name (dwarf2_per_objfile->objfile));
23330 return build_error_marker_type (cu, die);
23331 }
23332
23333 /* If we already know the type we're done. */
23334 if (sig_type->type != NULL)
23335 return sig_type->type;
23336
23337 type_cu = cu;
23338 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23339 if (type_die != NULL)
23340 {
23341 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23342 is created. This is important, for example, because for c++ classes
23343 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23344 type = read_type_die (type_die, type_cu);
23345 if (type == NULL)
23346 {
23347 complaint (&symfile_complaints,
23348 _("Dwarf Error: Cannot build signatured type %s"
23349 " referenced from DIE at %s [in module %s]"),
23350 hex_string (signature), sect_offset_str (die->sect_off),
23351 objfile_name (dwarf2_per_objfile->objfile));
23352 type = build_error_marker_type (cu, die);
23353 }
23354 }
23355 else
23356 {
23357 complaint (&symfile_complaints,
23358 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23359 " from DIE at %s [in module %s]"),
23360 hex_string (signature), sect_offset_str (die->sect_off),
23361 objfile_name (dwarf2_per_objfile->objfile));
23362 type = build_error_marker_type (cu, die);
23363 }
23364 sig_type->type = type;
23365
23366 return type;
23367 }
23368
23369 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23370 reading in and processing the type unit if necessary. */
23371
23372 static struct type *
23373 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23374 struct dwarf2_cu *cu) /* ARI: editCase function */
23375 {
23376 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23377 if (attr_form_is_ref (attr))
23378 {
23379 struct dwarf2_cu *type_cu = cu;
23380 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23381
23382 return read_type_die (type_die, type_cu);
23383 }
23384 else if (attr->form == DW_FORM_ref_sig8)
23385 {
23386 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23387 }
23388 else
23389 {
23390 struct dwarf2_per_objfile *dwarf2_per_objfile
23391 = cu->per_cu->dwarf2_per_objfile;
23392
23393 complaint (&symfile_complaints,
23394 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23395 " at %s [in module %s]"),
23396 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23397 objfile_name (dwarf2_per_objfile->objfile));
23398 return build_error_marker_type (cu, die);
23399 }
23400 }
23401
23402 /* Load the DIEs associated with type unit PER_CU into memory. */
23403
23404 static void
23405 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23406 {
23407 struct signatured_type *sig_type;
23408
23409 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23410 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23411
23412 /* We have the per_cu, but we need the signatured_type.
23413 Fortunately this is an easy translation. */
23414 gdb_assert (per_cu->is_debug_types);
23415 sig_type = (struct signatured_type *) per_cu;
23416
23417 gdb_assert (per_cu->cu == NULL);
23418
23419 read_signatured_type (sig_type);
23420
23421 gdb_assert (per_cu->cu != NULL);
23422 }
23423
23424 /* die_reader_func for read_signatured_type.
23425 This is identical to load_full_comp_unit_reader,
23426 but is kept separate for now. */
23427
23428 static void
23429 read_signatured_type_reader (const struct die_reader_specs *reader,
23430 const gdb_byte *info_ptr,
23431 struct die_info *comp_unit_die,
23432 int has_children,
23433 void *data)
23434 {
23435 struct dwarf2_cu *cu = reader->cu;
23436
23437 gdb_assert (cu->die_hash == NULL);
23438 cu->die_hash =
23439 htab_create_alloc_ex (cu->header.length / 12,
23440 die_hash,
23441 die_eq,
23442 NULL,
23443 &cu->comp_unit_obstack,
23444 hashtab_obstack_allocate,
23445 dummy_obstack_deallocate);
23446
23447 if (has_children)
23448 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23449 &info_ptr, comp_unit_die);
23450 cu->dies = comp_unit_die;
23451 /* comp_unit_die is not stored in die_hash, no need. */
23452
23453 /* We try not to read any attributes in this function, because not
23454 all CUs needed for references have been loaded yet, and symbol
23455 table processing isn't initialized. But we have to set the CU language,
23456 or we won't be able to build types correctly.
23457 Similarly, if we do not read the producer, we can not apply
23458 producer-specific interpretation. */
23459 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23460 }
23461
23462 /* Read in a signatured type and build its CU and DIEs.
23463 If the type is a stub for the real type in a DWO file,
23464 read in the real type from the DWO file as well. */
23465
23466 static void
23467 read_signatured_type (struct signatured_type *sig_type)
23468 {
23469 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23470
23471 gdb_assert (per_cu->is_debug_types);
23472 gdb_assert (per_cu->cu == NULL);
23473
23474 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23475 read_signatured_type_reader, NULL);
23476 sig_type->per_cu.tu_read = 1;
23477 }
23478
23479 /* Decode simple location descriptions.
23480 Given a pointer to a dwarf block that defines a location, compute
23481 the location and return the value.
23482
23483 NOTE drow/2003-11-18: This function is called in two situations
23484 now: for the address of static or global variables (partial symbols
23485 only) and for offsets into structures which are expected to be
23486 (more or less) constant. The partial symbol case should go away,
23487 and only the constant case should remain. That will let this
23488 function complain more accurately. A few special modes are allowed
23489 without complaint for global variables (for instance, global
23490 register values and thread-local values).
23491
23492 A location description containing no operations indicates that the
23493 object is optimized out. The return value is 0 for that case.
23494 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23495 callers will only want a very basic result and this can become a
23496 complaint.
23497
23498 Note that stack[0] is unused except as a default error return. */
23499
23500 static CORE_ADDR
23501 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23502 {
23503 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23504 size_t i;
23505 size_t size = blk->size;
23506 const gdb_byte *data = blk->data;
23507 CORE_ADDR stack[64];
23508 int stacki;
23509 unsigned int bytes_read, unsnd;
23510 gdb_byte op;
23511
23512 i = 0;
23513 stacki = 0;
23514 stack[stacki] = 0;
23515 stack[++stacki] = 0;
23516
23517 while (i < size)
23518 {
23519 op = data[i++];
23520 switch (op)
23521 {
23522 case DW_OP_lit0:
23523 case DW_OP_lit1:
23524 case DW_OP_lit2:
23525 case DW_OP_lit3:
23526 case DW_OP_lit4:
23527 case DW_OP_lit5:
23528 case DW_OP_lit6:
23529 case DW_OP_lit7:
23530 case DW_OP_lit8:
23531 case DW_OP_lit9:
23532 case DW_OP_lit10:
23533 case DW_OP_lit11:
23534 case DW_OP_lit12:
23535 case DW_OP_lit13:
23536 case DW_OP_lit14:
23537 case DW_OP_lit15:
23538 case DW_OP_lit16:
23539 case DW_OP_lit17:
23540 case DW_OP_lit18:
23541 case DW_OP_lit19:
23542 case DW_OP_lit20:
23543 case DW_OP_lit21:
23544 case DW_OP_lit22:
23545 case DW_OP_lit23:
23546 case DW_OP_lit24:
23547 case DW_OP_lit25:
23548 case DW_OP_lit26:
23549 case DW_OP_lit27:
23550 case DW_OP_lit28:
23551 case DW_OP_lit29:
23552 case DW_OP_lit30:
23553 case DW_OP_lit31:
23554 stack[++stacki] = op - DW_OP_lit0;
23555 break;
23556
23557 case DW_OP_reg0:
23558 case DW_OP_reg1:
23559 case DW_OP_reg2:
23560 case DW_OP_reg3:
23561 case DW_OP_reg4:
23562 case DW_OP_reg5:
23563 case DW_OP_reg6:
23564 case DW_OP_reg7:
23565 case DW_OP_reg8:
23566 case DW_OP_reg9:
23567 case DW_OP_reg10:
23568 case DW_OP_reg11:
23569 case DW_OP_reg12:
23570 case DW_OP_reg13:
23571 case DW_OP_reg14:
23572 case DW_OP_reg15:
23573 case DW_OP_reg16:
23574 case DW_OP_reg17:
23575 case DW_OP_reg18:
23576 case DW_OP_reg19:
23577 case DW_OP_reg20:
23578 case DW_OP_reg21:
23579 case DW_OP_reg22:
23580 case DW_OP_reg23:
23581 case DW_OP_reg24:
23582 case DW_OP_reg25:
23583 case DW_OP_reg26:
23584 case DW_OP_reg27:
23585 case DW_OP_reg28:
23586 case DW_OP_reg29:
23587 case DW_OP_reg30:
23588 case DW_OP_reg31:
23589 stack[++stacki] = op - DW_OP_reg0;
23590 if (i < size)
23591 dwarf2_complex_location_expr_complaint ();
23592 break;
23593
23594 case DW_OP_regx:
23595 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23596 i += bytes_read;
23597 stack[++stacki] = unsnd;
23598 if (i < size)
23599 dwarf2_complex_location_expr_complaint ();
23600 break;
23601
23602 case DW_OP_addr:
23603 stack[++stacki] = read_address (objfile->obfd, &data[i],
23604 cu, &bytes_read);
23605 i += bytes_read;
23606 break;
23607
23608 case DW_OP_const1u:
23609 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23610 i += 1;
23611 break;
23612
23613 case DW_OP_const1s:
23614 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23615 i += 1;
23616 break;
23617
23618 case DW_OP_const2u:
23619 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23620 i += 2;
23621 break;
23622
23623 case DW_OP_const2s:
23624 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23625 i += 2;
23626 break;
23627
23628 case DW_OP_const4u:
23629 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23630 i += 4;
23631 break;
23632
23633 case DW_OP_const4s:
23634 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23635 i += 4;
23636 break;
23637
23638 case DW_OP_const8u:
23639 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23640 i += 8;
23641 break;
23642
23643 case DW_OP_constu:
23644 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23645 &bytes_read);
23646 i += bytes_read;
23647 break;
23648
23649 case DW_OP_consts:
23650 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23651 i += bytes_read;
23652 break;
23653
23654 case DW_OP_dup:
23655 stack[stacki + 1] = stack[stacki];
23656 stacki++;
23657 break;
23658
23659 case DW_OP_plus:
23660 stack[stacki - 1] += stack[stacki];
23661 stacki--;
23662 break;
23663
23664 case DW_OP_plus_uconst:
23665 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23666 &bytes_read);
23667 i += bytes_read;
23668 break;
23669
23670 case DW_OP_minus:
23671 stack[stacki - 1] -= stack[stacki];
23672 stacki--;
23673 break;
23674
23675 case DW_OP_deref:
23676 /* If we're not the last op, then we definitely can't encode
23677 this using GDB's address_class enum. This is valid for partial
23678 global symbols, although the variable's address will be bogus
23679 in the psymtab. */
23680 if (i < size)
23681 dwarf2_complex_location_expr_complaint ();
23682 break;
23683
23684 case DW_OP_GNU_push_tls_address:
23685 case DW_OP_form_tls_address:
23686 /* The top of the stack has the offset from the beginning
23687 of the thread control block at which the variable is located. */
23688 /* Nothing should follow this operator, so the top of stack would
23689 be returned. */
23690 /* This is valid for partial global symbols, but the variable's
23691 address will be bogus in the psymtab. Make it always at least
23692 non-zero to not look as a variable garbage collected by linker
23693 which have DW_OP_addr 0. */
23694 if (i < size)
23695 dwarf2_complex_location_expr_complaint ();
23696 stack[stacki]++;
23697 break;
23698
23699 case DW_OP_GNU_uninit:
23700 break;
23701
23702 case DW_OP_GNU_addr_index:
23703 case DW_OP_GNU_const_index:
23704 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23705 &bytes_read);
23706 i += bytes_read;
23707 break;
23708
23709 default:
23710 {
23711 const char *name = get_DW_OP_name (op);
23712
23713 if (name)
23714 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23715 name);
23716 else
23717 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23718 op);
23719 }
23720
23721 return (stack[stacki]);
23722 }
23723
23724 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23725 outside of the allocated space. Also enforce minimum>0. */
23726 if (stacki >= ARRAY_SIZE (stack) - 1)
23727 {
23728 complaint (&symfile_complaints,
23729 _("location description stack overflow"));
23730 return 0;
23731 }
23732
23733 if (stacki <= 0)
23734 {
23735 complaint (&symfile_complaints,
23736 _("location description stack underflow"));
23737 return 0;
23738 }
23739 }
23740 return (stack[stacki]);
23741 }
23742
23743 /* memory allocation interface */
23744
23745 static struct dwarf_block *
23746 dwarf_alloc_block (struct dwarf2_cu *cu)
23747 {
23748 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23749 }
23750
23751 static struct die_info *
23752 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23753 {
23754 struct die_info *die;
23755 size_t size = sizeof (struct die_info);
23756
23757 if (num_attrs > 1)
23758 size += (num_attrs - 1) * sizeof (struct attribute);
23759
23760 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23761 memset (die, 0, sizeof (struct die_info));
23762 return (die);
23763 }
23764
23765 \f
23766 /* Macro support. */
23767
23768 /* Return file name relative to the compilation directory of file number I in
23769 *LH's file name table. The result is allocated using xmalloc; the caller is
23770 responsible for freeing it. */
23771
23772 static char *
23773 file_file_name (int file, struct line_header *lh)
23774 {
23775 /* Is the file number a valid index into the line header's file name
23776 table? Remember that file numbers start with one, not zero. */
23777 if (1 <= file && file <= lh->file_names.size ())
23778 {
23779 const file_entry &fe = lh->file_names[file - 1];
23780
23781 if (!IS_ABSOLUTE_PATH (fe.name))
23782 {
23783 const char *dir = fe.include_dir (lh);
23784 if (dir != NULL)
23785 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23786 }
23787 return xstrdup (fe.name);
23788 }
23789 else
23790 {
23791 /* The compiler produced a bogus file number. We can at least
23792 record the macro definitions made in the file, even if we
23793 won't be able to find the file by name. */
23794 char fake_name[80];
23795
23796 xsnprintf (fake_name, sizeof (fake_name),
23797 "<bad macro file number %d>", file);
23798
23799 complaint (&symfile_complaints,
23800 _("bad file number in macro information (%d)"),
23801 file);
23802
23803 return xstrdup (fake_name);
23804 }
23805 }
23806
23807 /* Return the full name of file number I in *LH's file name table.
23808 Use COMP_DIR as the name of the current directory of the
23809 compilation. The result is allocated using xmalloc; the caller is
23810 responsible for freeing it. */
23811 static char *
23812 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23813 {
23814 /* Is the file number a valid index into the line header's file name
23815 table? Remember that file numbers start with one, not zero. */
23816 if (1 <= file && file <= lh->file_names.size ())
23817 {
23818 char *relative = file_file_name (file, lh);
23819
23820 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23821 return relative;
23822 return reconcat (relative, comp_dir, SLASH_STRING,
23823 relative, (char *) NULL);
23824 }
23825 else
23826 return file_file_name (file, lh);
23827 }
23828
23829
23830 static struct macro_source_file *
23831 macro_start_file (int file, int line,
23832 struct macro_source_file *current_file,
23833 struct line_header *lh)
23834 {
23835 /* File name relative to the compilation directory of this source file. */
23836 char *file_name = file_file_name (file, lh);
23837
23838 if (! current_file)
23839 {
23840 /* Note: We don't create a macro table for this compilation unit
23841 at all until we actually get a filename. */
23842 struct macro_table *macro_table = get_macro_table ();
23843
23844 /* If we have no current file, then this must be the start_file
23845 directive for the compilation unit's main source file. */
23846 current_file = macro_set_main (macro_table, file_name);
23847 macro_define_special (macro_table);
23848 }
23849 else
23850 current_file = macro_include (current_file, line, file_name);
23851
23852 xfree (file_name);
23853
23854 return current_file;
23855 }
23856
23857 static const char *
23858 consume_improper_spaces (const char *p, const char *body)
23859 {
23860 if (*p == ' ')
23861 {
23862 complaint (&symfile_complaints,
23863 _("macro definition contains spaces "
23864 "in formal argument list:\n`%s'"),
23865 body);
23866
23867 while (*p == ' ')
23868 p++;
23869 }
23870
23871 return p;
23872 }
23873
23874
23875 static void
23876 parse_macro_definition (struct macro_source_file *file, int line,
23877 const char *body)
23878 {
23879 const char *p;
23880
23881 /* The body string takes one of two forms. For object-like macro
23882 definitions, it should be:
23883
23884 <macro name> " " <definition>
23885
23886 For function-like macro definitions, it should be:
23887
23888 <macro name> "() " <definition>
23889 or
23890 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23891
23892 Spaces may appear only where explicitly indicated, and in the
23893 <definition>.
23894
23895 The Dwarf 2 spec says that an object-like macro's name is always
23896 followed by a space, but versions of GCC around March 2002 omit
23897 the space when the macro's definition is the empty string.
23898
23899 The Dwarf 2 spec says that there should be no spaces between the
23900 formal arguments in a function-like macro's formal argument list,
23901 but versions of GCC around March 2002 include spaces after the
23902 commas. */
23903
23904
23905 /* Find the extent of the macro name. The macro name is terminated
23906 by either a space or null character (for an object-like macro) or
23907 an opening paren (for a function-like macro). */
23908 for (p = body; *p; p++)
23909 if (*p == ' ' || *p == '(')
23910 break;
23911
23912 if (*p == ' ' || *p == '\0')
23913 {
23914 /* It's an object-like macro. */
23915 int name_len = p - body;
23916 char *name = savestring (body, name_len);
23917 const char *replacement;
23918
23919 if (*p == ' ')
23920 replacement = body + name_len + 1;
23921 else
23922 {
23923 dwarf2_macro_malformed_definition_complaint (body);
23924 replacement = body + name_len;
23925 }
23926
23927 macro_define_object (file, line, name, replacement);
23928
23929 xfree (name);
23930 }
23931 else if (*p == '(')
23932 {
23933 /* It's a function-like macro. */
23934 char *name = savestring (body, p - body);
23935 int argc = 0;
23936 int argv_size = 1;
23937 char **argv = XNEWVEC (char *, argv_size);
23938
23939 p++;
23940
23941 p = consume_improper_spaces (p, body);
23942
23943 /* Parse the formal argument list. */
23944 while (*p && *p != ')')
23945 {
23946 /* Find the extent of the current argument name. */
23947 const char *arg_start = p;
23948
23949 while (*p && *p != ',' && *p != ')' && *p != ' ')
23950 p++;
23951
23952 if (! *p || p == arg_start)
23953 dwarf2_macro_malformed_definition_complaint (body);
23954 else
23955 {
23956 /* Make sure argv has room for the new argument. */
23957 if (argc >= argv_size)
23958 {
23959 argv_size *= 2;
23960 argv = XRESIZEVEC (char *, argv, argv_size);
23961 }
23962
23963 argv[argc++] = savestring (arg_start, p - arg_start);
23964 }
23965
23966 p = consume_improper_spaces (p, body);
23967
23968 /* Consume the comma, if present. */
23969 if (*p == ',')
23970 {
23971 p++;
23972
23973 p = consume_improper_spaces (p, body);
23974 }
23975 }
23976
23977 if (*p == ')')
23978 {
23979 p++;
23980
23981 if (*p == ' ')
23982 /* Perfectly formed definition, no complaints. */
23983 macro_define_function (file, line, name,
23984 argc, (const char **) argv,
23985 p + 1);
23986 else if (*p == '\0')
23987 {
23988 /* Complain, but do define it. */
23989 dwarf2_macro_malformed_definition_complaint (body);
23990 macro_define_function (file, line, name,
23991 argc, (const char **) argv,
23992 p);
23993 }
23994 else
23995 /* Just complain. */
23996 dwarf2_macro_malformed_definition_complaint (body);
23997 }
23998 else
23999 /* Just complain. */
24000 dwarf2_macro_malformed_definition_complaint (body);
24001
24002 xfree (name);
24003 {
24004 int i;
24005
24006 for (i = 0; i < argc; i++)
24007 xfree (argv[i]);
24008 }
24009 xfree (argv);
24010 }
24011 else
24012 dwarf2_macro_malformed_definition_complaint (body);
24013 }
24014
24015 /* Skip some bytes from BYTES according to the form given in FORM.
24016 Returns the new pointer. */
24017
24018 static const gdb_byte *
24019 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24020 enum dwarf_form form,
24021 unsigned int offset_size,
24022 struct dwarf2_section_info *section)
24023 {
24024 unsigned int bytes_read;
24025
24026 switch (form)
24027 {
24028 case DW_FORM_data1:
24029 case DW_FORM_flag:
24030 ++bytes;
24031 break;
24032
24033 case DW_FORM_data2:
24034 bytes += 2;
24035 break;
24036
24037 case DW_FORM_data4:
24038 bytes += 4;
24039 break;
24040
24041 case DW_FORM_data8:
24042 bytes += 8;
24043 break;
24044
24045 case DW_FORM_data16:
24046 bytes += 16;
24047 break;
24048
24049 case DW_FORM_string:
24050 read_direct_string (abfd, bytes, &bytes_read);
24051 bytes += bytes_read;
24052 break;
24053
24054 case DW_FORM_sec_offset:
24055 case DW_FORM_strp:
24056 case DW_FORM_GNU_strp_alt:
24057 bytes += offset_size;
24058 break;
24059
24060 case DW_FORM_block:
24061 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24062 bytes += bytes_read;
24063 break;
24064
24065 case DW_FORM_block1:
24066 bytes += 1 + read_1_byte (abfd, bytes);
24067 break;
24068 case DW_FORM_block2:
24069 bytes += 2 + read_2_bytes (abfd, bytes);
24070 break;
24071 case DW_FORM_block4:
24072 bytes += 4 + read_4_bytes (abfd, bytes);
24073 break;
24074
24075 case DW_FORM_sdata:
24076 case DW_FORM_udata:
24077 case DW_FORM_GNU_addr_index:
24078 case DW_FORM_GNU_str_index:
24079 bytes = gdb_skip_leb128 (bytes, buffer_end);
24080 if (bytes == NULL)
24081 {
24082 dwarf2_section_buffer_overflow_complaint (section);
24083 return NULL;
24084 }
24085 break;
24086
24087 case DW_FORM_implicit_const:
24088 break;
24089
24090 default:
24091 {
24092 complaint (&symfile_complaints,
24093 _("invalid form 0x%x in `%s'"),
24094 form, get_section_name (section));
24095 return NULL;
24096 }
24097 }
24098
24099 return bytes;
24100 }
24101
24102 /* A helper for dwarf_decode_macros that handles skipping an unknown
24103 opcode. Returns an updated pointer to the macro data buffer; or,
24104 on error, issues a complaint and returns NULL. */
24105
24106 static const gdb_byte *
24107 skip_unknown_opcode (unsigned int opcode,
24108 const gdb_byte **opcode_definitions,
24109 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24110 bfd *abfd,
24111 unsigned int offset_size,
24112 struct dwarf2_section_info *section)
24113 {
24114 unsigned int bytes_read, i;
24115 unsigned long arg;
24116 const gdb_byte *defn;
24117
24118 if (opcode_definitions[opcode] == NULL)
24119 {
24120 complaint (&symfile_complaints,
24121 _("unrecognized DW_MACFINO opcode 0x%x"),
24122 opcode);
24123 return NULL;
24124 }
24125
24126 defn = opcode_definitions[opcode];
24127 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24128 defn += bytes_read;
24129
24130 for (i = 0; i < arg; ++i)
24131 {
24132 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24133 (enum dwarf_form) defn[i], offset_size,
24134 section);
24135 if (mac_ptr == NULL)
24136 {
24137 /* skip_form_bytes already issued the complaint. */
24138 return NULL;
24139 }
24140 }
24141
24142 return mac_ptr;
24143 }
24144
24145 /* A helper function which parses the header of a macro section.
24146 If the macro section is the extended (for now called "GNU") type,
24147 then this updates *OFFSET_SIZE. Returns a pointer to just after
24148 the header, or issues a complaint and returns NULL on error. */
24149
24150 static const gdb_byte *
24151 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24152 bfd *abfd,
24153 const gdb_byte *mac_ptr,
24154 unsigned int *offset_size,
24155 int section_is_gnu)
24156 {
24157 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24158
24159 if (section_is_gnu)
24160 {
24161 unsigned int version, flags;
24162
24163 version = read_2_bytes (abfd, mac_ptr);
24164 if (version != 4 && version != 5)
24165 {
24166 complaint (&symfile_complaints,
24167 _("unrecognized version `%d' in .debug_macro section"),
24168 version);
24169 return NULL;
24170 }
24171 mac_ptr += 2;
24172
24173 flags = read_1_byte (abfd, mac_ptr);
24174 ++mac_ptr;
24175 *offset_size = (flags & 1) ? 8 : 4;
24176
24177 if ((flags & 2) != 0)
24178 /* We don't need the line table offset. */
24179 mac_ptr += *offset_size;
24180
24181 /* Vendor opcode descriptions. */
24182 if ((flags & 4) != 0)
24183 {
24184 unsigned int i, count;
24185
24186 count = read_1_byte (abfd, mac_ptr);
24187 ++mac_ptr;
24188 for (i = 0; i < count; ++i)
24189 {
24190 unsigned int opcode, bytes_read;
24191 unsigned long arg;
24192
24193 opcode = read_1_byte (abfd, mac_ptr);
24194 ++mac_ptr;
24195 opcode_definitions[opcode] = mac_ptr;
24196 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24197 mac_ptr += bytes_read;
24198 mac_ptr += arg;
24199 }
24200 }
24201 }
24202
24203 return mac_ptr;
24204 }
24205
24206 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24207 including DW_MACRO_import. */
24208
24209 static void
24210 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24211 bfd *abfd,
24212 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24213 struct macro_source_file *current_file,
24214 struct line_header *lh,
24215 struct dwarf2_section_info *section,
24216 int section_is_gnu, int section_is_dwz,
24217 unsigned int offset_size,
24218 htab_t include_hash)
24219 {
24220 struct objfile *objfile = dwarf2_per_objfile->objfile;
24221 enum dwarf_macro_record_type macinfo_type;
24222 int at_commandline;
24223 const gdb_byte *opcode_definitions[256];
24224
24225 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24226 &offset_size, section_is_gnu);
24227 if (mac_ptr == NULL)
24228 {
24229 /* We already issued a complaint. */
24230 return;
24231 }
24232
24233 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24234 GDB is still reading the definitions from command line. First
24235 DW_MACINFO_start_file will need to be ignored as it was already executed
24236 to create CURRENT_FILE for the main source holding also the command line
24237 definitions. On first met DW_MACINFO_start_file this flag is reset to
24238 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24239
24240 at_commandline = 1;
24241
24242 do
24243 {
24244 /* Do we at least have room for a macinfo type byte? */
24245 if (mac_ptr >= mac_end)
24246 {
24247 dwarf2_section_buffer_overflow_complaint (section);
24248 break;
24249 }
24250
24251 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24252 mac_ptr++;
24253
24254 /* Note that we rely on the fact that the corresponding GNU and
24255 DWARF constants are the same. */
24256 DIAGNOSTIC_PUSH
24257 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24258 switch (macinfo_type)
24259 {
24260 /* A zero macinfo type indicates the end of the macro
24261 information. */
24262 case 0:
24263 break;
24264
24265 case DW_MACRO_define:
24266 case DW_MACRO_undef:
24267 case DW_MACRO_define_strp:
24268 case DW_MACRO_undef_strp:
24269 case DW_MACRO_define_sup:
24270 case DW_MACRO_undef_sup:
24271 {
24272 unsigned int bytes_read;
24273 int line;
24274 const char *body;
24275 int is_define;
24276
24277 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24278 mac_ptr += bytes_read;
24279
24280 if (macinfo_type == DW_MACRO_define
24281 || macinfo_type == DW_MACRO_undef)
24282 {
24283 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24284 mac_ptr += bytes_read;
24285 }
24286 else
24287 {
24288 LONGEST str_offset;
24289
24290 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24291 mac_ptr += offset_size;
24292
24293 if (macinfo_type == DW_MACRO_define_sup
24294 || macinfo_type == DW_MACRO_undef_sup
24295 || section_is_dwz)
24296 {
24297 struct dwz_file *dwz
24298 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24299
24300 body = read_indirect_string_from_dwz (objfile,
24301 dwz, str_offset);
24302 }
24303 else
24304 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24305 abfd, str_offset);
24306 }
24307
24308 is_define = (macinfo_type == DW_MACRO_define
24309 || macinfo_type == DW_MACRO_define_strp
24310 || macinfo_type == DW_MACRO_define_sup);
24311 if (! current_file)
24312 {
24313 /* DWARF violation as no main source is present. */
24314 complaint (&symfile_complaints,
24315 _("debug info with no main source gives macro %s "
24316 "on line %d: %s"),
24317 is_define ? _("definition") : _("undefinition"),
24318 line, body);
24319 break;
24320 }
24321 if ((line == 0 && !at_commandline)
24322 || (line != 0 && at_commandline))
24323 complaint (&symfile_complaints,
24324 _("debug info gives %s macro %s with %s line %d: %s"),
24325 at_commandline ? _("command-line") : _("in-file"),
24326 is_define ? _("definition") : _("undefinition"),
24327 line == 0 ? _("zero") : _("non-zero"), line, body);
24328
24329 if (is_define)
24330 parse_macro_definition (current_file, line, body);
24331 else
24332 {
24333 gdb_assert (macinfo_type == DW_MACRO_undef
24334 || macinfo_type == DW_MACRO_undef_strp
24335 || macinfo_type == DW_MACRO_undef_sup);
24336 macro_undef (current_file, line, body);
24337 }
24338 }
24339 break;
24340
24341 case DW_MACRO_start_file:
24342 {
24343 unsigned int bytes_read;
24344 int line, file;
24345
24346 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24347 mac_ptr += bytes_read;
24348 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24349 mac_ptr += bytes_read;
24350
24351 if ((line == 0 && !at_commandline)
24352 || (line != 0 && at_commandline))
24353 complaint (&symfile_complaints,
24354 _("debug info gives source %d included "
24355 "from %s at %s line %d"),
24356 file, at_commandline ? _("command-line") : _("file"),
24357 line == 0 ? _("zero") : _("non-zero"), line);
24358
24359 if (at_commandline)
24360 {
24361 /* This DW_MACRO_start_file was executed in the
24362 pass one. */
24363 at_commandline = 0;
24364 }
24365 else
24366 current_file = macro_start_file (file, line, current_file, lh);
24367 }
24368 break;
24369
24370 case DW_MACRO_end_file:
24371 if (! current_file)
24372 complaint (&symfile_complaints,
24373 _("macro debug info has an unmatched "
24374 "`close_file' directive"));
24375 else
24376 {
24377 current_file = current_file->included_by;
24378 if (! current_file)
24379 {
24380 enum dwarf_macro_record_type next_type;
24381
24382 /* GCC circa March 2002 doesn't produce the zero
24383 type byte marking the end of the compilation
24384 unit. Complain if it's not there, but exit no
24385 matter what. */
24386
24387 /* Do we at least have room for a macinfo type byte? */
24388 if (mac_ptr >= mac_end)
24389 {
24390 dwarf2_section_buffer_overflow_complaint (section);
24391 return;
24392 }
24393
24394 /* We don't increment mac_ptr here, so this is just
24395 a look-ahead. */
24396 next_type
24397 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24398 mac_ptr);
24399 if (next_type != 0)
24400 complaint (&symfile_complaints,
24401 _("no terminating 0-type entry for "
24402 "macros in `.debug_macinfo' section"));
24403
24404 return;
24405 }
24406 }
24407 break;
24408
24409 case DW_MACRO_import:
24410 case DW_MACRO_import_sup:
24411 {
24412 LONGEST offset;
24413 void **slot;
24414 bfd *include_bfd = abfd;
24415 struct dwarf2_section_info *include_section = section;
24416 const gdb_byte *include_mac_end = mac_end;
24417 int is_dwz = section_is_dwz;
24418 const gdb_byte *new_mac_ptr;
24419
24420 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24421 mac_ptr += offset_size;
24422
24423 if (macinfo_type == DW_MACRO_import_sup)
24424 {
24425 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24426
24427 dwarf2_read_section (objfile, &dwz->macro);
24428
24429 include_section = &dwz->macro;
24430 include_bfd = get_section_bfd_owner (include_section);
24431 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24432 is_dwz = 1;
24433 }
24434
24435 new_mac_ptr = include_section->buffer + offset;
24436 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24437
24438 if (*slot != NULL)
24439 {
24440 /* This has actually happened; see
24441 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24442 complaint (&symfile_complaints,
24443 _("recursive DW_MACRO_import in "
24444 ".debug_macro section"));
24445 }
24446 else
24447 {
24448 *slot = (void *) new_mac_ptr;
24449
24450 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24451 include_bfd, new_mac_ptr,
24452 include_mac_end, current_file, lh,
24453 section, section_is_gnu, is_dwz,
24454 offset_size, include_hash);
24455
24456 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24457 }
24458 }
24459 break;
24460
24461 case DW_MACINFO_vendor_ext:
24462 if (!section_is_gnu)
24463 {
24464 unsigned int bytes_read;
24465
24466 /* This reads the constant, but since we don't recognize
24467 any vendor extensions, we ignore it. */
24468 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24469 mac_ptr += bytes_read;
24470 read_direct_string (abfd, mac_ptr, &bytes_read);
24471 mac_ptr += bytes_read;
24472
24473 /* We don't recognize any vendor extensions. */
24474 break;
24475 }
24476 /* FALLTHROUGH */
24477
24478 default:
24479 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24480 mac_ptr, mac_end, abfd, offset_size,
24481 section);
24482 if (mac_ptr == NULL)
24483 return;
24484 break;
24485 }
24486 DIAGNOSTIC_POP
24487 } while (macinfo_type != 0);
24488 }
24489
24490 static void
24491 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24492 int section_is_gnu)
24493 {
24494 struct dwarf2_per_objfile *dwarf2_per_objfile
24495 = cu->per_cu->dwarf2_per_objfile;
24496 struct objfile *objfile = dwarf2_per_objfile->objfile;
24497 struct line_header *lh = cu->line_header;
24498 bfd *abfd;
24499 const gdb_byte *mac_ptr, *mac_end;
24500 struct macro_source_file *current_file = 0;
24501 enum dwarf_macro_record_type macinfo_type;
24502 unsigned int offset_size = cu->header.offset_size;
24503 const gdb_byte *opcode_definitions[256];
24504 void **slot;
24505 struct dwarf2_section_info *section;
24506 const char *section_name;
24507
24508 if (cu->dwo_unit != NULL)
24509 {
24510 if (section_is_gnu)
24511 {
24512 section = &cu->dwo_unit->dwo_file->sections.macro;
24513 section_name = ".debug_macro.dwo";
24514 }
24515 else
24516 {
24517 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24518 section_name = ".debug_macinfo.dwo";
24519 }
24520 }
24521 else
24522 {
24523 if (section_is_gnu)
24524 {
24525 section = &dwarf2_per_objfile->macro;
24526 section_name = ".debug_macro";
24527 }
24528 else
24529 {
24530 section = &dwarf2_per_objfile->macinfo;
24531 section_name = ".debug_macinfo";
24532 }
24533 }
24534
24535 dwarf2_read_section (objfile, section);
24536 if (section->buffer == NULL)
24537 {
24538 complaint (&symfile_complaints, _("missing %s section"), section_name);
24539 return;
24540 }
24541 abfd = get_section_bfd_owner (section);
24542
24543 /* First pass: Find the name of the base filename.
24544 This filename is needed in order to process all macros whose definition
24545 (or undefinition) comes from the command line. These macros are defined
24546 before the first DW_MACINFO_start_file entry, and yet still need to be
24547 associated to the base file.
24548
24549 To determine the base file name, we scan the macro definitions until we
24550 reach the first DW_MACINFO_start_file entry. We then initialize
24551 CURRENT_FILE accordingly so that any macro definition found before the
24552 first DW_MACINFO_start_file can still be associated to the base file. */
24553
24554 mac_ptr = section->buffer + offset;
24555 mac_end = section->buffer + section->size;
24556
24557 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24558 &offset_size, section_is_gnu);
24559 if (mac_ptr == NULL)
24560 {
24561 /* We already issued a complaint. */
24562 return;
24563 }
24564
24565 do
24566 {
24567 /* Do we at least have room for a macinfo type byte? */
24568 if (mac_ptr >= mac_end)
24569 {
24570 /* Complaint is printed during the second pass as GDB will probably
24571 stop the first pass earlier upon finding
24572 DW_MACINFO_start_file. */
24573 break;
24574 }
24575
24576 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24577 mac_ptr++;
24578
24579 /* Note that we rely on the fact that the corresponding GNU and
24580 DWARF constants are the same. */
24581 DIAGNOSTIC_PUSH
24582 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24583 switch (macinfo_type)
24584 {
24585 /* A zero macinfo type indicates the end of the macro
24586 information. */
24587 case 0:
24588 break;
24589
24590 case DW_MACRO_define:
24591 case DW_MACRO_undef:
24592 /* Only skip the data by MAC_PTR. */
24593 {
24594 unsigned int bytes_read;
24595
24596 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24597 mac_ptr += bytes_read;
24598 read_direct_string (abfd, mac_ptr, &bytes_read);
24599 mac_ptr += bytes_read;
24600 }
24601 break;
24602
24603 case DW_MACRO_start_file:
24604 {
24605 unsigned int bytes_read;
24606 int line, file;
24607
24608 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24609 mac_ptr += bytes_read;
24610 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24611 mac_ptr += bytes_read;
24612
24613 current_file = macro_start_file (file, line, current_file, lh);
24614 }
24615 break;
24616
24617 case DW_MACRO_end_file:
24618 /* No data to skip by MAC_PTR. */
24619 break;
24620
24621 case DW_MACRO_define_strp:
24622 case DW_MACRO_undef_strp:
24623 case DW_MACRO_define_sup:
24624 case DW_MACRO_undef_sup:
24625 {
24626 unsigned int bytes_read;
24627
24628 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24629 mac_ptr += bytes_read;
24630 mac_ptr += offset_size;
24631 }
24632 break;
24633
24634 case DW_MACRO_import:
24635 case DW_MACRO_import_sup:
24636 /* Note that, according to the spec, a transparent include
24637 chain cannot call DW_MACRO_start_file. So, we can just
24638 skip this opcode. */
24639 mac_ptr += offset_size;
24640 break;
24641
24642 case DW_MACINFO_vendor_ext:
24643 /* Only skip the data by MAC_PTR. */
24644 if (!section_is_gnu)
24645 {
24646 unsigned int bytes_read;
24647
24648 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24649 mac_ptr += bytes_read;
24650 read_direct_string (abfd, mac_ptr, &bytes_read);
24651 mac_ptr += bytes_read;
24652 }
24653 /* FALLTHROUGH */
24654
24655 default:
24656 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24657 mac_ptr, mac_end, abfd, offset_size,
24658 section);
24659 if (mac_ptr == NULL)
24660 return;
24661 break;
24662 }
24663 DIAGNOSTIC_POP
24664 } while (macinfo_type != 0 && current_file == NULL);
24665
24666 /* Second pass: Process all entries.
24667
24668 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24669 command-line macro definitions/undefinitions. This flag is unset when we
24670 reach the first DW_MACINFO_start_file entry. */
24671
24672 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24673 htab_eq_pointer,
24674 NULL, xcalloc, xfree));
24675 mac_ptr = section->buffer + offset;
24676 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24677 *slot = (void *) mac_ptr;
24678 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24679 abfd, mac_ptr, mac_end,
24680 current_file, lh, section,
24681 section_is_gnu, 0, offset_size,
24682 include_hash.get ());
24683 }
24684
24685 /* Check if the attribute's form is a DW_FORM_block*
24686 if so return true else false. */
24687
24688 static int
24689 attr_form_is_block (const struct attribute *attr)
24690 {
24691 return (attr == NULL ? 0 :
24692 attr->form == DW_FORM_block1
24693 || attr->form == DW_FORM_block2
24694 || attr->form == DW_FORM_block4
24695 || attr->form == DW_FORM_block
24696 || attr->form == DW_FORM_exprloc);
24697 }
24698
24699 /* Return non-zero if ATTR's value is a section offset --- classes
24700 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24701 You may use DW_UNSND (attr) to retrieve such offsets.
24702
24703 Section 7.5.4, "Attribute Encodings", explains that no attribute
24704 may have a value that belongs to more than one of these classes; it
24705 would be ambiguous if we did, because we use the same forms for all
24706 of them. */
24707
24708 static int
24709 attr_form_is_section_offset (const struct attribute *attr)
24710 {
24711 return (attr->form == DW_FORM_data4
24712 || attr->form == DW_FORM_data8
24713 || attr->form == DW_FORM_sec_offset);
24714 }
24715
24716 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24717 zero otherwise. When this function returns true, you can apply
24718 dwarf2_get_attr_constant_value to it.
24719
24720 However, note that for some attributes you must check
24721 attr_form_is_section_offset before using this test. DW_FORM_data4
24722 and DW_FORM_data8 are members of both the constant class, and of
24723 the classes that contain offsets into other debug sections
24724 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24725 that, if an attribute's can be either a constant or one of the
24726 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24727 taken as section offsets, not constants.
24728
24729 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24730 cannot handle that. */
24731
24732 static int
24733 attr_form_is_constant (const struct attribute *attr)
24734 {
24735 switch (attr->form)
24736 {
24737 case DW_FORM_sdata:
24738 case DW_FORM_udata:
24739 case DW_FORM_data1:
24740 case DW_FORM_data2:
24741 case DW_FORM_data4:
24742 case DW_FORM_data8:
24743 case DW_FORM_implicit_const:
24744 return 1;
24745 default:
24746 return 0;
24747 }
24748 }
24749
24750
24751 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24752 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24753
24754 static int
24755 attr_form_is_ref (const struct attribute *attr)
24756 {
24757 switch (attr->form)
24758 {
24759 case DW_FORM_ref_addr:
24760 case DW_FORM_ref1:
24761 case DW_FORM_ref2:
24762 case DW_FORM_ref4:
24763 case DW_FORM_ref8:
24764 case DW_FORM_ref_udata:
24765 case DW_FORM_GNU_ref_alt:
24766 return 1;
24767 default:
24768 return 0;
24769 }
24770 }
24771
24772 /* Return the .debug_loc section to use for CU.
24773 For DWO files use .debug_loc.dwo. */
24774
24775 static struct dwarf2_section_info *
24776 cu_debug_loc_section (struct dwarf2_cu *cu)
24777 {
24778 struct dwarf2_per_objfile *dwarf2_per_objfile
24779 = cu->per_cu->dwarf2_per_objfile;
24780
24781 if (cu->dwo_unit)
24782 {
24783 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24784
24785 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24786 }
24787 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24788 : &dwarf2_per_objfile->loc);
24789 }
24790
24791 /* A helper function that fills in a dwarf2_loclist_baton. */
24792
24793 static void
24794 fill_in_loclist_baton (struct dwarf2_cu *cu,
24795 struct dwarf2_loclist_baton *baton,
24796 const struct attribute *attr)
24797 {
24798 struct dwarf2_per_objfile *dwarf2_per_objfile
24799 = cu->per_cu->dwarf2_per_objfile;
24800 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24801
24802 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24803
24804 baton->per_cu = cu->per_cu;
24805 gdb_assert (baton->per_cu);
24806 /* We don't know how long the location list is, but make sure we
24807 don't run off the edge of the section. */
24808 baton->size = section->size - DW_UNSND (attr);
24809 baton->data = section->buffer + DW_UNSND (attr);
24810 baton->base_address = cu->base_address;
24811 baton->from_dwo = cu->dwo_unit != NULL;
24812 }
24813
24814 static void
24815 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24816 struct dwarf2_cu *cu, int is_block)
24817 {
24818 struct dwarf2_per_objfile *dwarf2_per_objfile
24819 = cu->per_cu->dwarf2_per_objfile;
24820 struct objfile *objfile = dwarf2_per_objfile->objfile;
24821 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24822
24823 if (attr_form_is_section_offset (attr)
24824 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24825 the section. If so, fall through to the complaint in the
24826 other branch. */
24827 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24828 {
24829 struct dwarf2_loclist_baton *baton;
24830
24831 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24832
24833 fill_in_loclist_baton (cu, baton, attr);
24834
24835 if (cu->base_known == 0)
24836 complaint (&symfile_complaints,
24837 _("Location list used without "
24838 "specifying the CU base address."));
24839
24840 SYMBOL_ACLASS_INDEX (sym) = (is_block
24841 ? dwarf2_loclist_block_index
24842 : dwarf2_loclist_index);
24843 SYMBOL_LOCATION_BATON (sym) = baton;
24844 }
24845 else
24846 {
24847 struct dwarf2_locexpr_baton *baton;
24848
24849 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24850 baton->per_cu = cu->per_cu;
24851 gdb_assert (baton->per_cu);
24852
24853 if (attr_form_is_block (attr))
24854 {
24855 /* Note that we're just copying the block's data pointer
24856 here, not the actual data. We're still pointing into the
24857 info_buffer for SYM's objfile; right now we never release
24858 that buffer, but when we do clean up properly this may
24859 need to change. */
24860 baton->size = DW_BLOCK (attr)->size;
24861 baton->data = DW_BLOCK (attr)->data;
24862 }
24863 else
24864 {
24865 dwarf2_invalid_attrib_class_complaint ("location description",
24866 SYMBOL_NATURAL_NAME (sym));
24867 baton->size = 0;
24868 }
24869
24870 SYMBOL_ACLASS_INDEX (sym) = (is_block
24871 ? dwarf2_locexpr_block_index
24872 : dwarf2_locexpr_index);
24873 SYMBOL_LOCATION_BATON (sym) = baton;
24874 }
24875 }
24876
24877 /* Return the OBJFILE associated with the compilation unit CU. If CU
24878 came from a separate debuginfo file, then the master objfile is
24879 returned. */
24880
24881 struct objfile *
24882 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24883 {
24884 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24885
24886 /* Return the master objfile, so that we can report and look up the
24887 correct file containing this variable. */
24888 if (objfile->separate_debug_objfile_backlink)
24889 objfile = objfile->separate_debug_objfile_backlink;
24890
24891 return objfile;
24892 }
24893
24894 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24895 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24896 CU_HEADERP first. */
24897
24898 static const struct comp_unit_head *
24899 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24900 struct dwarf2_per_cu_data *per_cu)
24901 {
24902 const gdb_byte *info_ptr;
24903
24904 if (per_cu->cu)
24905 return &per_cu->cu->header;
24906
24907 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24908
24909 memset (cu_headerp, 0, sizeof (*cu_headerp));
24910 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24911 rcuh_kind::COMPILE);
24912
24913 return cu_headerp;
24914 }
24915
24916 /* Return the address size given in the compilation unit header for CU. */
24917
24918 int
24919 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24920 {
24921 struct comp_unit_head cu_header_local;
24922 const struct comp_unit_head *cu_headerp;
24923
24924 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24925
24926 return cu_headerp->addr_size;
24927 }
24928
24929 /* Return the offset size given in the compilation unit header for CU. */
24930
24931 int
24932 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24933 {
24934 struct comp_unit_head cu_header_local;
24935 const struct comp_unit_head *cu_headerp;
24936
24937 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24938
24939 return cu_headerp->offset_size;
24940 }
24941
24942 /* See its dwarf2loc.h declaration. */
24943
24944 int
24945 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24946 {
24947 struct comp_unit_head cu_header_local;
24948 const struct comp_unit_head *cu_headerp;
24949
24950 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24951
24952 if (cu_headerp->version == 2)
24953 return cu_headerp->addr_size;
24954 else
24955 return cu_headerp->offset_size;
24956 }
24957
24958 /* Return the text offset of the CU. The returned offset comes from
24959 this CU's objfile. If this objfile came from a separate debuginfo
24960 file, then the offset may be different from the corresponding
24961 offset in the parent objfile. */
24962
24963 CORE_ADDR
24964 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24965 {
24966 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24967
24968 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24969 }
24970
24971 /* Return DWARF version number of PER_CU. */
24972
24973 short
24974 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24975 {
24976 return per_cu->dwarf_version;
24977 }
24978
24979 /* Locate the .debug_info compilation unit from CU's objfile which contains
24980 the DIE at OFFSET. Raises an error on failure. */
24981
24982 static struct dwarf2_per_cu_data *
24983 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24984 unsigned int offset_in_dwz,
24985 struct dwarf2_per_objfile *dwarf2_per_objfile)
24986 {
24987 struct dwarf2_per_cu_data *this_cu;
24988 int low, high;
24989 const sect_offset *cu_off;
24990
24991 low = 0;
24992 high = dwarf2_per_objfile->n_comp_units - 1;
24993 while (high > low)
24994 {
24995 struct dwarf2_per_cu_data *mid_cu;
24996 int mid = low + (high - low) / 2;
24997
24998 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24999 cu_off = &mid_cu->sect_off;
25000 if (mid_cu->is_dwz > offset_in_dwz
25001 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25002 high = mid;
25003 else
25004 low = mid + 1;
25005 }
25006 gdb_assert (low == high);
25007 this_cu = dwarf2_per_objfile->all_comp_units[low];
25008 cu_off = &this_cu->sect_off;
25009 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25010 {
25011 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25012 error (_("Dwarf Error: could not find partial DIE containing "
25013 "offset %s [in module %s]"),
25014 sect_offset_str (sect_off),
25015 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25016
25017 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25018 <= sect_off);
25019 return dwarf2_per_objfile->all_comp_units[low-1];
25020 }
25021 else
25022 {
25023 this_cu = dwarf2_per_objfile->all_comp_units[low];
25024 if (low == dwarf2_per_objfile->n_comp_units - 1
25025 && sect_off >= this_cu->sect_off + this_cu->length)
25026 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25027 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25028 return this_cu;
25029 }
25030 }
25031
25032 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25033
25034 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25035 : per_cu (per_cu_),
25036 mark (0),
25037 has_loclist (0),
25038 checked_producer (0),
25039 producer_is_gxx_lt_4_6 (0),
25040 producer_is_gcc_lt_4_3 (0),
25041 producer_is_icc_lt_14 (0),
25042 processing_has_namespace_info (0)
25043 {
25044 per_cu->cu = this;
25045 }
25046
25047 /* Destroy a dwarf2_cu. */
25048
25049 dwarf2_cu::~dwarf2_cu ()
25050 {
25051 per_cu->cu = NULL;
25052 }
25053
25054 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25055
25056 static void
25057 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25058 enum language pretend_language)
25059 {
25060 struct attribute *attr;
25061
25062 /* Set the language we're debugging. */
25063 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25064 if (attr)
25065 set_cu_language (DW_UNSND (attr), cu);
25066 else
25067 {
25068 cu->language = pretend_language;
25069 cu->language_defn = language_def (cu->language);
25070 }
25071
25072 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25073 }
25074
25075 /* Free all cached compilation units. */
25076
25077 static void
25078 free_cached_comp_units (void *data)
25079 {
25080 struct dwarf2_per_objfile *dwarf2_per_objfile
25081 = (struct dwarf2_per_objfile *) data;
25082
25083 dwarf2_per_objfile->free_cached_comp_units ();
25084 }
25085
25086 /* Increase the age counter on each cached compilation unit, and free
25087 any that are too old. */
25088
25089 static void
25090 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25091 {
25092 struct dwarf2_per_cu_data *per_cu, **last_chain;
25093
25094 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25095 per_cu = dwarf2_per_objfile->read_in_chain;
25096 while (per_cu != NULL)
25097 {
25098 per_cu->cu->last_used ++;
25099 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25100 dwarf2_mark (per_cu->cu);
25101 per_cu = per_cu->cu->read_in_chain;
25102 }
25103
25104 per_cu = dwarf2_per_objfile->read_in_chain;
25105 last_chain = &dwarf2_per_objfile->read_in_chain;
25106 while (per_cu != NULL)
25107 {
25108 struct dwarf2_per_cu_data *next_cu;
25109
25110 next_cu = per_cu->cu->read_in_chain;
25111
25112 if (!per_cu->cu->mark)
25113 {
25114 delete per_cu->cu;
25115 *last_chain = next_cu;
25116 }
25117 else
25118 last_chain = &per_cu->cu->read_in_chain;
25119
25120 per_cu = next_cu;
25121 }
25122 }
25123
25124 /* Remove a single compilation unit from the cache. */
25125
25126 static void
25127 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25128 {
25129 struct dwarf2_per_cu_data *per_cu, **last_chain;
25130 struct dwarf2_per_objfile *dwarf2_per_objfile
25131 = target_per_cu->dwarf2_per_objfile;
25132
25133 per_cu = dwarf2_per_objfile->read_in_chain;
25134 last_chain = &dwarf2_per_objfile->read_in_chain;
25135 while (per_cu != NULL)
25136 {
25137 struct dwarf2_per_cu_data *next_cu;
25138
25139 next_cu = per_cu->cu->read_in_chain;
25140
25141 if (per_cu == target_per_cu)
25142 {
25143 delete per_cu->cu;
25144 per_cu->cu = NULL;
25145 *last_chain = next_cu;
25146 break;
25147 }
25148 else
25149 last_chain = &per_cu->cu->read_in_chain;
25150
25151 per_cu = next_cu;
25152 }
25153 }
25154
25155 /* Release all extra memory associated with OBJFILE. */
25156
25157 void
25158 dwarf2_free_objfile (struct objfile *objfile)
25159 {
25160 struct dwarf2_per_objfile *dwarf2_per_objfile
25161 = get_dwarf2_per_objfile (objfile);
25162
25163 delete dwarf2_per_objfile;
25164 }
25165
25166 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25167 We store these in a hash table separate from the DIEs, and preserve them
25168 when the DIEs are flushed out of cache.
25169
25170 The CU "per_cu" pointer is needed because offset alone is not enough to
25171 uniquely identify the type. A file may have multiple .debug_types sections,
25172 or the type may come from a DWO file. Furthermore, while it's more logical
25173 to use per_cu->section+offset, with Fission the section with the data is in
25174 the DWO file but we don't know that section at the point we need it.
25175 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25176 because we can enter the lookup routine, get_die_type_at_offset, from
25177 outside this file, and thus won't necessarily have PER_CU->cu.
25178 Fortunately, PER_CU is stable for the life of the objfile. */
25179
25180 struct dwarf2_per_cu_offset_and_type
25181 {
25182 const struct dwarf2_per_cu_data *per_cu;
25183 sect_offset sect_off;
25184 struct type *type;
25185 };
25186
25187 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25188
25189 static hashval_t
25190 per_cu_offset_and_type_hash (const void *item)
25191 {
25192 const struct dwarf2_per_cu_offset_and_type *ofs
25193 = (const struct dwarf2_per_cu_offset_and_type *) item;
25194
25195 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25196 }
25197
25198 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25199
25200 static int
25201 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25202 {
25203 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25204 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25205 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25206 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25207
25208 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25209 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25210 }
25211
25212 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25213 table if necessary. For convenience, return TYPE.
25214
25215 The DIEs reading must have careful ordering to:
25216 * Not cause infite loops trying to read in DIEs as a prerequisite for
25217 reading current DIE.
25218 * Not trying to dereference contents of still incompletely read in types
25219 while reading in other DIEs.
25220 * Enable referencing still incompletely read in types just by a pointer to
25221 the type without accessing its fields.
25222
25223 Therefore caller should follow these rules:
25224 * Try to fetch any prerequisite types we may need to build this DIE type
25225 before building the type and calling set_die_type.
25226 * After building type call set_die_type for current DIE as soon as
25227 possible before fetching more types to complete the current type.
25228 * Make the type as complete as possible before fetching more types. */
25229
25230 static struct type *
25231 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25232 {
25233 struct dwarf2_per_objfile *dwarf2_per_objfile
25234 = cu->per_cu->dwarf2_per_objfile;
25235 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25236 struct objfile *objfile = dwarf2_per_objfile->objfile;
25237 struct attribute *attr;
25238 struct dynamic_prop prop;
25239
25240 /* For Ada types, make sure that the gnat-specific data is always
25241 initialized (if not already set). There are a few types where
25242 we should not be doing so, because the type-specific area is
25243 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25244 where the type-specific area is used to store the floatformat).
25245 But this is not a problem, because the gnat-specific information
25246 is actually not needed for these types. */
25247 if (need_gnat_info (cu)
25248 && TYPE_CODE (type) != TYPE_CODE_FUNC
25249 && TYPE_CODE (type) != TYPE_CODE_FLT
25250 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25251 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25252 && TYPE_CODE (type) != TYPE_CODE_METHOD
25253 && !HAVE_GNAT_AUX_INFO (type))
25254 INIT_GNAT_SPECIFIC (type);
25255
25256 /* Read DW_AT_allocated and set in type. */
25257 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25258 if (attr_form_is_block (attr))
25259 {
25260 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25261 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25262 }
25263 else if (attr != NULL)
25264 {
25265 complaint (&symfile_complaints,
25266 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25267 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25268 sect_offset_str (die->sect_off));
25269 }
25270
25271 /* Read DW_AT_associated and set in type. */
25272 attr = dwarf2_attr (die, DW_AT_associated, cu);
25273 if (attr_form_is_block (attr))
25274 {
25275 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25276 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25277 }
25278 else if (attr != NULL)
25279 {
25280 complaint (&symfile_complaints,
25281 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25282 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25283 sect_offset_str (die->sect_off));
25284 }
25285
25286 /* Read DW_AT_data_location and set in type. */
25287 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25288 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25289 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25290
25291 if (dwarf2_per_objfile->die_type_hash == NULL)
25292 {
25293 dwarf2_per_objfile->die_type_hash =
25294 htab_create_alloc_ex (127,
25295 per_cu_offset_and_type_hash,
25296 per_cu_offset_and_type_eq,
25297 NULL,
25298 &objfile->objfile_obstack,
25299 hashtab_obstack_allocate,
25300 dummy_obstack_deallocate);
25301 }
25302
25303 ofs.per_cu = cu->per_cu;
25304 ofs.sect_off = die->sect_off;
25305 ofs.type = type;
25306 slot = (struct dwarf2_per_cu_offset_and_type **)
25307 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25308 if (*slot)
25309 complaint (&symfile_complaints,
25310 _("A problem internal to GDB: DIE %s has type already set"),
25311 sect_offset_str (die->sect_off));
25312 *slot = XOBNEW (&objfile->objfile_obstack,
25313 struct dwarf2_per_cu_offset_and_type);
25314 **slot = ofs;
25315 return type;
25316 }
25317
25318 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25319 or return NULL if the die does not have a saved type. */
25320
25321 static struct type *
25322 get_die_type_at_offset (sect_offset sect_off,
25323 struct dwarf2_per_cu_data *per_cu)
25324 {
25325 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25326 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25327
25328 if (dwarf2_per_objfile->die_type_hash == NULL)
25329 return NULL;
25330
25331 ofs.per_cu = per_cu;
25332 ofs.sect_off = sect_off;
25333 slot = ((struct dwarf2_per_cu_offset_and_type *)
25334 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25335 if (slot)
25336 return slot->type;
25337 else
25338 return NULL;
25339 }
25340
25341 /* Look up the type for DIE in CU in die_type_hash,
25342 or return NULL if DIE does not have a saved type. */
25343
25344 static struct type *
25345 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25346 {
25347 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25348 }
25349
25350 /* Add a dependence relationship from CU to REF_PER_CU. */
25351
25352 static void
25353 dwarf2_add_dependence (struct dwarf2_cu *cu,
25354 struct dwarf2_per_cu_data *ref_per_cu)
25355 {
25356 void **slot;
25357
25358 if (cu->dependencies == NULL)
25359 cu->dependencies
25360 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25361 NULL, &cu->comp_unit_obstack,
25362 hashtab_obstack_allocate,
25363 dummy_obstack_deallocate);
25364
25365 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25366 if (*slot == NULL)
25367 *slot = ref_per_cu;
25368 }
25369
25370 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25371 Set the mark field in every compilation unit in the
25372 cache that we must keep because we are keeping CU. */
25373
25374 static int
25375 dwarf2_mark_helper (void **slot, void *data)
25376 {
25377 struct dwarf2_per_cu_data *per_cu;
25378
25379 per_cu = (struct dwarf2_per_cu_data *) *slot;
25380
25381 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25382 reading of the chain. As such dependencies remain valid it is not much
25383 useful to track and undo them during QUIT cleanups. */
25384 if (per_cu->cu == NULL)
25385 return 1;
25386
25387 if (per_cu->cu->mark)
25388 return 1;
25389 per_cu->cu->mark = 1;
25390
25391 if (per_cu->cu->dependencies != NULL)
25392 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25393
25394 return 1;
25395 }
25396
25397 /* Set the mark field in CU and in every other compilation unit in the
25398 cache that we must keep because we are keeping CU. */
25399
25400 static void
25401 dwarf2_mark (struct dwarf2_cu *cu)
25402 {
25403 if (cu->mark)
25404 return;
25405 cu->mark = 1;
25406 if (cu->dependencies != NULL)
25407 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25408 }
25409
25410 static void
25411 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25412 {
25413 while (per_cu)
25414 {
25415 per_cu->cu->mark = 0;
25416 per_cu = per_cu->cu->read_in_chain;
25417 }
25418 }
25419
25420 /* Trivial hash function for partial_die_info: the hash value of a DIE
25421 is its offset in .debug_info for this objfile. */
25422
25423 static hashval_t
25424 partial_die_hash (const void *item)
25425 {
25426 const struct partial_die_info *part_die
25427 = (const struct partial_die_info *) item;
25428
25429 return to_underlying (part_die->sect_off);
25430 }
25431
25432 /* Trivial comparison function for partial_die_info structures: two DIEs
25433 are equal if they have the same offset. */
25434
25435 static int
25436 partial_die_eq (const void *item_lhs, const void *item_rhs)
25437 {
25438 const struct partial_die_info *part_die_lhs
25439 = (const struct partial_die_info *) item_lhs;
25440 const struct partial_die_info *part_die_rhs
25441 = (const struct partial_die_info *) item_rhs;
25442
25443 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25444 }
25445
25446 static struct cmd_list_element *set_dwarf_cmdlist;
25447 static struct cmd_list_element *show_dwarf_cmdlist;
25448
25449 static void
25450 set_dwarf_cmd (const char *args, int from_tty)
25451 {
25452 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25453 gdb_stdout);
25454 }
25455
25456 static void
25457 show_dwarf_cmd (const char *args, int from_tty)
25458 {
25459 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25460 }
25461
25462 int dwarf_always_disassemble;
25463
25464 static void
25465 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25466 struct cmd_list_element *c, const char *value)
25467 {
25468 fprintf_filtered (file,
25469 _("Whether to always disassemble "
25470 "DWARF expressions is %s.\n"),
25471 value);
25472 }
25473
25474 static void
25475 show_check_physname (struct ui_file *file, int from_tty,
25476 struct cmd_list_element *c, const char *value)
25477 {
25478 fprintf_filtered (file,
25479 _("Whether to check \"physname\" is %s.\n"),
25480 value);
25481 }
25482
25483 void
25484 _initialize_dwarf2_read (void)
25485 {
25486
25487 dwarf2_objfile_data_key = register_objfile_data ();
25488
25489 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25490 Set DWARF specific variables.\n\
25491 Configure DWARF variables such as the cache size"),
25492 &set_dwarf_cmdlist, "maintenance set dwarf ",
25493 0/*allow-unknown*/, &maintenance_set_cmdlist);
25494
25495 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25496 Show DWARF specific variables\n\
25497 Show DWARF variables such as the cache size"),
25498 &show_dwarf_cmdlist, "maintenance show dwarf ",
25499 0/*allow-unknown*/, &maintenance_show_cmdlist);
25500
25501 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25502 &dwarf_max_cache_age, _("\
25503 Set the upper bound on the age of cached DWARF compilation units."), _("\
25504 Show the upper bound on the age of cached DWARF compilation units."), _("\
25505 A higher limit means that cached compilation units will be stored\n\
25506 in memory longer, and more total memory will be used. Zero disables\n\
25507 caching, which can slow down startup."),
25508 NULL,
25509 show_dwarf_max_cache_age,
25510 &set_dwarf_cmdlist,
25511 &show_dwarf_cmdlist);
25512
25513 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25514 &dwarf_always_disassemble, _("\
25515 Set whether `info address' always disassembles DWARF expressions."), _("\
25516 Show whether `info address' always disassembles DWARF expressions."), _("\
25517 When enabled, DWARF expressions are always printed in an assembly-like\n\
25518 syntax. When disabled, expressions will be printed in a more\n\
25519 conversational style, when possible."),
25520 NULL,
25521 show_dwarf_always_disassemble,
25522 &set_dwarf_cmdlist,
25523 &show_dwarf_cmdlist);
25524
25525 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25526 Set debugging of the DWARF reader."), _("\
25527 Show debugging of the DWARF reader."), _("\
25528 When enabled (non-zero), debugging messages are printed during DWARF\n\
25529 reading and symtab expansion. A value of 1 (one) provides basic\n\
25530 information. A value greater than 1 provides more verbose information."),
25531 NULL,
25532 NULL,
25533 &setdebuglist, &showdebuglist);
25534
25535 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25536 Set debugging of the DWARF DIE reader."), _("\
25537 Show debugging of the DWARF DIE reader."), _("\
25538 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25539 The value is the maximum depth to print."),
25540 NULL,
25541 NULL,
25542 &setdebuglist, &showdebuglist);
25543
25544 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25545 Set debugging of the dwarf line reader."), _("\
25546 Show debugging of the dwarf line reader."), _("\
25547 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25548 A value of 1 (one) provides basic information.\n\
25549 A value greater than 1 provides more verbose information."),
25550 NULL,
25551 NULL,
25552 &setdebuglist, &showdebuglist);
25553
25554 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25555 Set cross-checking of \"physname\" code against demangler."), _("\
25556 Show cross-checking of \"physname\" code against demangler."), _("\
25557 When enabled, GDB's internal \"physname\" code is checked against\n\
25558 the demangler."),
25559 NULL, show_check_physname,
25560 &setdebuglist, &showdebuglist);
25561
25562 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25563 no_class, &use_deprecated_index_sections, _("\
25564 Set whether to use deprecated gdb_index sections."), _("\
25565 Show whether to use deprecated gdb_index sections."), _("\
25566 When enabled, deprecated .gdb_index sections are used anyway.\n\
25567 Normally they are ignored either because of a missing feature or\n\
25568 performance issue.\n\
25569 Warning: This option must be enabled before gdb reads the file."),
25570 NULL,
25571 NULL,
25572 &setlist, &showlist);
25573
25574 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25575 &dwarf2_locexpr_funcs);
25576 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25577 &dwarf2_loclist_funcs);
25578
25579 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25580 &dwarf2_block_frame_base_locexpr_funcs);
25581 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25582 &dwarf2_block_frame_base_loclist_funcs);
25583
25584 #if GDB_SELF_TEST
25585 selftests::register_test ("dw2_expand_symtabs_matching",
25586 selftests::dw2_expand_symtabs_matching::run_test);
25587 #endif
25588 }
This page took 0.580925 seconds and 5 git commands to generate.