* dwarf2read.c (read_subrange_type): Add comment for variable
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004
4 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support in dwarfread.c
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or (at
18 your option) any later version.
19
20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 59 Temple Place - Suite 330,
28 Boston, MA 02111-1307, USA. */
29
30 #include "defs.h"
31 #include "bfd.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "elf/dwarf2.h"
36 #include "buildsym.h"
37 #include "demangle.h"
38 #include "expression.h"
39 #include "filenames.h" /* for DOSish file names */
40 #include "macrotab.h"
41 #include "language.h"
42 #include "complaints.h"
43 #include "bcache.h"
44 #include "dwarf2expr.h"
45 #include "dwarf2loc.h"
46 #include "cp-support.h"
47 #include "hashtab.h"
48 #include "command.h"
49 #include "gdbcmd.h"
50
51 #include <fcntl.h>
52 #include "gdb_string.h"
53 #include "gdb_assert.h"
54 #include <sys/types.h>
55
56 /* A note on memory usage for this file.
57
58 At the present time, this code reads the debug info sections into
59 the objfile's objfile_obstack. A definite improvement for startup
60 time, on platforms which do not emit relocations for debug
61 sections, would be to use mmap instead. The object's complete
62 debug information is loaded into memory, partly to simplify
63 absolute DIE references.
64
65 Whether using obstacks or mmap, the sections should remain loaded
66 until the objfile is released, and pointers into the section data
67 can be used for any other data associated to the objfile (symbol
68 names, type names, location expressions to name a few). */
69
70 #ifndef DWARF2_REG_TO_REGNUM
71 #define DWARF2_REG_TO_REGNUM(REG) (REG)
72 #endif
73
74 #if 0
75 /* .debug_info header for a compilation unit
76 Because of alignment constraints, this structure has padding and cannot
77 be mapped directly onto the beginning of the .debug_info section. */
78 typedef struct comp_unit_header
79 {
80 unsigned int length; /* length of the .debug_info
81 contribution */
82 unsigned short version; /* version number -- 2 for DWARF
83 version 2 */
84 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
85 unsigned char addr_size; /* byte size of an address -- 4 */
86 }
87 _COMP_UNIT_HEADER;
88 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
89 #endif
90
91 /* .debug_pubnames header
92 Because of alignment constraints, this structure has padding and cannot
93 be mapped directly onto the beginning of the .debug_info section. */
94 typedef struct pubnames_header
95 {
96 unsigned int length; /* length of the .debug_pubnames
97 contribution */
98 unsigned char version; /* version number -- 2 for DWARF
99 version 2 */
100 unsigned int info_offset; /* offset into .debug_info section */
101 unsigned int info_size; /* byte size of .debug_info section
102 portion */
103 }
104 _PUBNAMES_HEADER;
105 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
106
107 /* .debug_pubnames header
108 Because of alignment constraints, this structure has padding and cannot
109 be mapped directly onto the beginning of the .debug_info section. */
110 typedef struct aranges_header
111 {
112 unsigned int length; /* byte len of the .debug_aranges
113 contribution */
114 unsigned short version; /* version number -- 2 for DWARF
115 version 2 */
116 unsigned int info_offset; /* offset into .debug_info section */
117 unsigned char addr_size; /* byte size of an address */
118 unsigned char seg_size; /* byte size of segment descriptor */
119 }
120 _ARANGES_HEADER;
121 #define _ACTUAL_ARANGES_HEADER_SIZE 12
122
123 /* .debug_line statement program prologue
124 Because of alignment constraints, this structure has padding and cannot
125 be mapped directly onto the beginning of the .debug_info section. */
126 typedef struct statement_prologue
127 {
128 unsigned int total_length; /* byte length of the statement
129 information */
130 unsigned short version; /* version number -- 2 for DWARF
131 version 2 */
132 unsigned int prologue_length; /* # bytes between prologue &
133 stmt program */
134 unsigned char minimum_instruction_length; /* byte size of
135 smallest instr */
136 unsigned char default_is_stmt; /* initial value of is_stmt
137 register */
138 char line_base;
139 unsigned char line_range;
140 unsigned char opcode_base; /* number assigned to first special
141 opcode */
142 unsigned char *standard_opcode_lengths;
143 }
144 _STATEMENT_PROLOGUE;
145
146 static const struct objfile_data *dwarf2_objfile_data_key;
147
148 struct dwarf2_per_objfile
149 {
150 /* Sizes of debugging sections. */
151 unsigned int info_size;
152 unsigned int abbrev_size;
153 unsigned int line_size;
154 unsigned int pubnames_size;
155 unsigned int aranges_size;
156 unsigned int loc_size;
157 unsigned int macinfo_size;
158 unsigned int str_size;
159 unsigned int ranges_size;
160 unsigned int frame_size;
161 unsigned int eh_frame_size;
162
163 /* Loaded data from the sections. */
164 char *info_buffer;
165 char *abbrev_buffer;
166 char *line_buffer;
167 char *str_buffer;
168 char *macinfo_buffer;
169 char *ranges_buffer;
170 char *loc_buffer;
171
172 /* A list of all the compilation units. This will be set if and
173 only if we have encountered a compilation unit with inter-CU
174 references. */
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
183 };
184
185 static struct dwarf2_per_objfile *dwarf2_per_objfile;
186
187 static asection *dwarf_info_section;
188 static asection *dwarf_abbrev_section;
189 static asection *dwarf_line_section;
190 static asection *dwarf_pubnames_section;
191 static asection *dwarf_aranges_section;
192 static asection *dwarf_loc_section;
193 static asection *dwarf_macinfo_section;
194 static asection *dwarf_str_section;
195 static asection *dwarf_ranges_section;
196 asection *dwarf_frame_section;
197 asection *dwarf_eh_frame_section;
198
199 /* names of the debugging sections */
200
201 #define INFO_SECTION ".debug_info"
202 #define ABBREV_SECTION ".debug_abbrev"
203 #define LINE_SECTION ".debug_line"
204 #define PUBNAMES_SECTION ".debug_pubnames"
205 #define ARANGES_SECTION ".debug_aranges"
206 #define LOC_SECTION ".debug_loc"
207 #define MACINFO_SECTION ".debug_macinfo"
208 #define STR_SECTION ".debug_str"
209 #define RANGES_SECTION ".debug_ranges"
210 #define FRAME_SECTION ".debug_frame"
211 #define EH_FRAME_SECTION ".eh_frame"
212
213 /* local data types */
214
215 /* We hold several abbreviation tables in memory at the same time. */
216 #ifndef ABBREV_HASH_SIZE
217 #define ABBREV_HASH_SIZE 121
218 #endif
219
220 /* The data in a compilation unit header, after target2host
221 translation, looks like this. */
222 struct comp_unit_head
223 {
224 unsigned long length;
225 short version;
226 unsigned int abbrev_offset;
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
229 unsigned int offset_size; /* size of file offsets; either 4 or 8 */
230 unsigned int initial_length_size; /* size of the length field; either
231 4 or 12 */
232
233 /* Offset to the first byte of this compilation unit header in the
234 * .debug_info section, for resolving relative reference dies. */
235
236 unsigned int offset;
237
238 /* Pointer to this compilation unit header in the .debug_info
239 * section */
240
241 char *cu_head_ptr;
242
243 /* Pointer to the first die of this compilatio unit. This will
244 * be the first byte following the compilation unit header. */
245
246 char *first_die_ptr;
247
248 /* Pointer to the next compilation unit header in the program. */
249
250 struct comp_unit_head *next;
251
252 /* Base address of this compilation unit. */
253
254 CORE_ADDR base_address;
255
256 /* Non-zero if base_address has been set. */
257
258 int base_known;
259 };
260
261 /* Internal state when decoding a particular compilation unit. */
262 struct dwarf2_cu
263 {
264 /* The objfile containing this compilation unit. */
265 struct objfile *objfile;
266
267 /* The header of the compilation unit.
268
269 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
270 should logically be moved to the dwarf2_cu structure. */
271 struct comp_unit_head header;
272
273 struct function_range *first_fn, *last_fn, *cached_fn;
274
275 /* The language we are debugging. */
276 enum language language;
277 const struct language_defn *language_defn;
278
279 const char *producer;
280
281 /* The generic symbol table building routines have separate lists for
282 file scope symbols and all all other scopes (local scopes). So
283 we need to select the right one to pass to add_symbol_to_list().
284 We do it by keeping a pointer to the correct list in list_in_scope.
285
286 FIXME: The original dwarf code just treated the file scope as the
287 first local scope, and all other local scopes as nested local
288 scopes, and worked fine. Check to see if we really need to
289 distinguish these in buildsym.c. */
290 struct pending **list_in_scope;
291
292 /* Maintain an array of referenced fundamental types for the current
293 compilation unit being read. For DWARF version 1, we have to construct
294 the fundamental types on the fly, since no information about the
295 fundamental types is supplied. Each such fundamental type is created by
296 calling a language dependent routine to create the type, and then a
297 pointer to that type is then placed in the array at the index specified
298 by it's FT_<TYPENAME> value. The array has a fixed size set by the
299 FT_NUM_MEMBERS compile time constant, which is the number of predefined
300 fundamental types gdb knows how to construct. */
301 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
302
303 /* DWARF abbreviation table associated with this compilation unit. */
304 struct abbrev_info **dwarf2_abbrevs;
305
306 /* Storage for the abbrev table. */
307 struct obstack abbrev_obstack;
308
309 /* Hash table holding all the loaded partial DIEs. */
310 htab_t partial_dies;
311
312 /* Storage for things with the same lifetime as this read-in compilation
313 unit, including partial DIEs. */
314 struct obstack comp_unit_obstack;
315
316 /* When multiple dwarf2_cu structures are living in memory, this field
317 chains them all together, so that they can be released efficiently.
318 We will probably also want a generation counter so that most-recently-used
319 compilation units are cached... */
320 struct dwarf2_per_cu_data *read_in_chain;
321
322 /* Backchain to our per_cu entry if the tree has been built. */
323 struct dwarf2_per_cu_data *per_cu;
324
325 /* How many compilation units ago was this CU last referenced? */
326 int last_used;
327
328 /* Mark used when releasing cached dies. */
329 unsigned int mark : 1;
330
331 /* This flag will be set if this compilation unit might include
332 inter-compilation-unit references. */
333 unsigned int has_form_ref_addr : 1;
334
335 /* This flag will be set if this compilation unit includes any
336 DW_TAG_namespace DIEs. If we know that there are explicit
337 DIEs for namespaces, we don't need to try to infer them
338 from mangled names. */
339 unsigned int has_namespace_info : 1;
340 };
341
342 struct dwarf2_per_cu_data
343 {
344 /* The start offset and length of this compilation unit. 2**31-1
345 bytes should suffice to store the length of any compilation unit
346 - if it doesn't, GDB will fall over anyway. */
347 unsigned long offset;
348 unsigned long length : 31;
349
350 /* Flag indicating this compilation unit will be read in before
351 any of the current compilation units are processed. */
352 unsigned long queued : 1;
353
354 /* Set iff currently read in. */
355 struct dwarf2_cu *cu;
356
357 /* If full symbols for this CU have been read in, then this field
358 holds a map of DIE offsets to types. It isn't always possible
359 to reconstruct this information later, so we have to preserve
360 it. */
361
362 htab_t type_hash;
363 };
364
365 /* The line number information for a compilation unit (found in the
366 .debug_line section) begins with a "statement program header",
367 which contains the following information. */
368 struct line_header
369 {
370 unsigned int total_length;
371 unsigned short version;
372 unsigned int header_length;
373 unsigned char minimum_instruction_length;
374 unsigned char default_is_stmt;
375 int line_base;
376 unsigned char line_range;
377 unsigned char opcode_base;
378
379 /* standard_opcode_lengths[i] is the number of operands for the
380 standard opcode whose value is i. This means that
381 standard_opcode_lengths[0] is unused, and the last meaningful
382 element is standard_opcode_lengths[opcode_base - 1]. */
383 unsigned char *standard_opcode_lengths;
384
385 /* The include_directories table. NOTE! These strings are not
386 allocated with xmalloc; instead, they are pointers into
387 debug_line_buffer. If you try to free them, `free' will get
388 indigestion. */
389 unsigned int num_include_dirs, include_dirs_size;
390 char **include_dirs;
391
392 /* The file_names table. NOTE! These strings are not allocated
393 with xmalloc; instead, they are pointers into debug_line_buffer.
394 Don't try to free them directly. */
395 unsigned int num_file_names, file_names_size;
396 struct file_entry
397 {
398 char *name;
399 unsigned int dir_index;
400 unsigned int mod_time;
401 unsigned int length;
402 int included_p; /* Non-zero if referenced by the Line Number Program. */
403 } *file_names;
404
405 /* The start and end of the statement program following this
406 header. These point into dwarf2_per_objfile->line_buffer. */
407 char *statement_program_start, *statement_program_end;
408 };
409
410 /* When we construct a partial symbol table entry we only
411 need this much information. */
412 struct partial_die_info
413 {
414 /* Offset of this DIE. */
415 unsigned int offset;
416
417 /* DWARF-2 tag for this DIE. */
418 ENUM_BITFIELD(dwarf_tag) tag : 16;
419
420 /* Language code associated with this DIE. This is only used
421 for the compilation unit DIE. */
422 unsigned int language : 8;
423
424 /* Assorted flags describing the data found in this DIE. */
425 unsigned int has_children : 1;
426 unsigned int is_external : 1;
427 unsigned int is_declaration : 1;
428 unsigned int has_type : 1;
429 unsigned int has_specification : 1;
430 unsigned int has_stmt_list : 1;
431 unsigned int has_pc_info : 1;
432
433 /* Flag set if the SCOPE field of this structure has been
434 computed. */
435 unsigned int scope_set : 1;
436
437 /* The name of this DIE. Normally the value of DW_AT_name, but
438 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
439 other fashion. */
440 char *name;
441 char *dirname;
442
443 /* The scope to prepend to our children. This is generally
444 allocated on the comp_unit_obstack, so will disappear
445 when this compilation unit leaves the cache. */
446 char *scope;
447
448 /* The location description associated with this DIE, if any. */
449 struct dwarf_block *locdesc;
450
451 /* If HAS_PC_INFO, the PC range associated with this DIE. */
452 CORE_ADDR lowpc;
453 CORE_ADDR highpc;
454
455 /* Pointer into the info_buffer pointing at the target of
456 DW_AT_sibling, if any. */
457 char *sibling;
458
459 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
460 DW_AT_specification (or DW_AT_abstract_origin or
461 DW_AT_extension). */
462 unsigned int spec_offset;
463
464 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
465 unsigned int line_offset;
466
467 /* Pointers to this DIE's parent, first child, and next sibling,
468 if any. */
469 struct partial_die_info *die_parent, *die_child, *die_sibling;
470 };
471
472 /* This data structure holds the information of an abbrev. */
473 struct abbrev_info
474 {
475 unsigned int number; /* number identifying abbrev */
476 enum dwarf_tag tag; /* dwarf tag */
477 unsigned short has_children; /* boolean */
478 unsigned short num_attrs; /* number of attributes */
479 struct attr_abbrev *attrs; /* an array of attribute descriptions */
480 struct abbrev_info *next; /* next in chain */
481 };
482
483 struct attr_abbrev
484 {
485 enum dwarf_attribute name;
486 enum dwarf_form form;
487 };
488
489 /* This data structure holds a complete die structure. */
490 struct die_info
491 {
492 enum dwarf_tag tag; /* Tag indicating type of die */
493 unsigned int abbrev; /* Abbrev number */
494 unsigned int offset; /* Offset in .debug_info section */
495 unsigned int num_attrs; /* Number of attributes */
496 struct attribute *attrs; /* An array of attributes */
497 struct die_info *next_ref; /* Next die in ref hash table */
498
499 /* The dies in a compilation unit form an n-ary tree. PARENT
500 points to this die's parent; CHILD points to the first child of
501 this node; and all the children of a given node are chained
502 together via their SIBLING fields, terminated by a die whose
503 tag is zero. */
504 struct die_info *child; /* Its first child, if any. */
505 struct die_info *sibling; /* Its next sibling, if any. */
506 struct die_info *parent; /* Its parent, if any. */
507
508 struct type *type; /* Cached type information */
509 };
510
511 /* Attributes have a name and a value */
512 struct attribute
513 {
514 enum dwarf_attribute name;
515 enum dwarf_form form;
516 union
517 {
518 char *str;
519 struct dwarf_block *blk;
520 unsigned long unsnd;
521 long int snd;
522 CORE_ADDR addr;
523 }
524 u;
525 };
526
527 struct function_range
528 {
529 const char *name;
530 CORE_ADDR lowpc, highpc;
531 int seen_line;
532 struct function_range *next;
533 };
534
535 /* Get at parts of an attribute structure */
536
537 #define DW_STRING(attr) ((attr)->u.str)
538 #define DW_UNSND(attr) ((attr)->u.unsnd)
539 #define DW_BLOCK(attr) ((attr)->u.blk)
540 #define DW_SND(attr) ((attr)->u.snd)
541 #define DW_ADDR(attr) ((attr)->u.addr)
542
543 /* Blocks are a bunch of untyped bytes. */
544 struct dwarf_block
545 {
546 unsigned int size;
547 char *data;
548 };
549
550 #ifndef ATTR_ALLOC_CHUNK
551 #define ATTR_ALLOC_CHUNK 4
552 #endif
553
554 /* A hash table of die offsets for following references. */
555 #ifndef REF_HASH_SIZE
556 #define REF_HASH_SIZE 1021
557 #endif
558
559 static struct die_info *die_ref_table[REF_HASH_SIZE];
560
561 /* Allocate fields for structs, unions and enums in this size. */
562 #ifndef DW_FIELD_ALLOC_CHUNK
563 #define DW_FIELD_ALLOC_CHUNK 4
564 #endif
565
566 /* A zeroed version of a partial die for initialization purposes. */
567 static struct partial_die_info zeroed_partial_die;
568
569 /* FIXME: decode_locdesc sets these variables to describe the location
570 to the caller. These ought to be a structure or something. If
571 none of the flags are set, the object lives at the address returned
572 by decode_locdesc. */
573
574 static int isreg; /* Object lives in register.
575 decode_locdesc's return value is
576 the register number. */
577
578 /* We put a pointer to this structure in the read_symtab_private field
579 of the psymtab. */
580
581 struct dwarf2_pinfo
582 {
583 /* Offset in .debug_info for this compilation unit. */
584
585 unsigned long dwarf_info_offset;
586 };
587
588 #define PST_PRIVATE(p) ((struct dwarf2_pinfo *)(p)->read_symtab_private)
589 #define DWARF_INFO_OFFSET(p) (PST_PRIVATE(p)->dwarf_info_offset)
590
591 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
592 but this would require a corresponding change in unpack_field_as_long
593 and friends. */
594 static int bits_per_byte = 8;
595
596 /* The routines that read and process dies for a C struct or C++ class
597 pass lists of data member fields and lists of member function fields
598 in an instance of a field_info structure, as defined below. */
599 struct field_info
600 {
601 /* List of data member and baseclasses fields. */
602 struct nextfield
603 {
604 struct nextfield *next;
605 int accessibility;
606 int virtuality;
607 struct field field;
608 }
609 *fields;
610
611 /* Number of fields. */
612 int nfields;
613
614 /* Number of baseclasses. */
615 int nbaseclasses;
616
617 /* Set if the accesibility of one of the fields is not public. */
618 int non_public_fields;
619
620 /* Member function fields array, entries are allocated in the order they
621 are encountered in the object file. */
622 struct nextfnfield
623 {
624 struct nextfnfield *next;
625 struct fn_field fnfield;
626 }
627 *fnfields;
628
629 /* Member function fieldlist array, contains name of possibly overloaded
630 member function, number of overloaded member functions and a pointer
631 to the head of the member function field chain. */
632 struct fnfieldlist
633 {
634 char *name;
635 int length;
636 struct nextfnfield *head;
637 }
638 *fnfieldlists;
639
640 /* Number of entries in the fnfieldlists array. */
641 int nfnfields;
642 };
643
644 /* Loaded secondary compilation units are kept in memory until they
645 have not been referenced for the processing of this many
646 compilation units. Set this to zero to disable caching. Cache
647 sizes of up to at least twenty will improve startup time for
648 typical inter-CU-reference binaries, at an obvious memory cost. */
649 static int dwarf2_max_cache_age = 5;
650
651 /* Various complaints about symbol reading that don't abort the process */
652
653 static void
654 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
655 {
656 complaint (&symfile_complaints,
657 "statement list doesn't fit in .debug_line section");
658 }
659
660 static void
661 dwarf2_complex_location_expr_complaint (void)
662 {
663 complaint (&symfile_complaints, "location expression too complex");
664 }
665
666 static void
667 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
668 int arg3)
669 {
670 complaint (&symfile_complaints,
671 "const value length mismatch for '%s', got %d, expected %d", arg1,
672 arg2, arg3);
673 }
674
675 static void
676 dwarf2_macros_too_long_complaint (void)
677 {
678 complaint (&symfile_complaints,
679 "macro info runs off end of `.debug_macinfo' section");
680 }
681
682 static void
683 dwarf2_macro_malformed_definition_complaint (const char *arg1)
684 {
685 complaint (&symfile_complaints,
686 "macro debug info contains a malformed macro definition:\n`%s'",
687 arg1);
688 }
689
690 static void
691 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
692 {
693 complaint (&symfile_complaints,
694 "invalid attribute class or form for '%s' in '%s'", arg1, arg2);
695 }
696
697 /* local function prototypes */
698
699 static void dwarf2_locate_sections (bfd *, asection *, void *);
700
701 #if 0
702 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
703 #endif
704
705 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
706 struct objfile *);
707
708 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
709 struct partial_die_info *,
710 struct partial_symtab *);
711
712 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
713
714 static void scan_partial_symbols (struct partial_die_info *,
715 CORE_ADDR *, CORE_ADDR *,
716 struct dwarf2_cu *);
717
718 static void add_partial_symbol (struct partial_die_info *,
719 struct dwarf2_cu *);
720
721 static int pdi_needs_namespace (enum dwarf_tag tag);
722
723 static void add_partial_namespace (struct partial_die_info *pdi,
724 CORE_ADDR *lowpc, CORE_ADDR *highpc,
725 struct dwarf2_cu *cu);
726
727 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
728 struct dwarf2_cu *cu);
729
730 static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
731 char *info_ptr,
732 bfd *abfd,
733 struct dwarf2_cu *cu);
734
735 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
736
737 static void psymtab_to_symtab_1 (struct partial_symtab *);
738
739 char *dwarf2_read_section (struct objfile *, asection *);
740
741 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
742
743 static void dwarf2_free_abbrev_table (void *);
744
745 static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
746
747 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
748 struct dwarf2_cu *);
749
750 static struct partial_die_info *load_partial_dies (bfd *, char *, int,
751 struct dwarf2_cu *);
752
753 static char *read_partial_die (struct partial_die_info *,
754 struct abbrev_info *abbrev, unsigned int,
755 bfd *, char *, struct dwarf2_cu *);
756
757 static struct partial_die_info *find_partial_die (unsigned long,
758 struct dwarf2_cu *,
759 struct dwarf2_cu **);
760
761 static void fixup_partial_die (struct partial_die_info *,
762 struct dwarf2_cu *);
763
764 static char *read_full_die (struct die_info **, bfd *, char *,
765 struct dwarf2_cu *, int *);
766
767 static char *read_attribute (struct attribute *, struct attr_abbrev *,
768 bfd *, char *, struct dwarf2_cu *);
769
770 static char *read_attribute_value (struct attribute *, unsigned,
771 bfd *, char *, struct dwarf2_cu *);
772
773 static unsigned int read_1_byte (bfd *, char *);
774
775 static int read_1_signed_byte (bfd *, char *);
776
777 static unsigned int read_2_bytes (bfd *, char *);
778
779 static unsigned int read_4_bytes (bfd *, char *);
780
781 static unsigned long read_8_bytes (bfd *, char *);
782
783 static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
784 int *bytes_read);
785
786 static LONGEST read_initial_length (bfd *, char *,
787 struct comp_unit_head *, int *bytes_read);
788
789 static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
790 int *bytes_read);
791
792 static char *read_n_bytes (bfd *, char *, unsigned int);
793
794 static char *read_string (bfd *, char *, unsigned int *);
795
796 static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
797 unsigned int *);
798
799 static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
800
801 static long read_signed_leb128 (bfd *, char *, unsigned int *);
802
803 static char *skip_leb128 (bfd *, char *);
804
805 static void set_cu_language (unsigned int, struct dwarf2_cu *);
806
807 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
808 struct dwarf2_cu *);
809
810 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
811 struct dwarf2_cu *cu);
812
813 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
814
815 static struct die_info *die_specification (struct die_info *die,
816 struct dwarf2_cu *);
817
818 static void free_line_header (struct line_header *lh);
819
820 static void add_file_name (struct line_header *, char *, unsigned int,
821 unsigned int, unsigned int);
822
823 static struct line_header *(dwarf_decode_line_header
824 (unsigned int offset,
825 bfd *abfd, struct dwarf2_cu *cu));
826
827 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
828 struct dwarf2_cu *, struct partial_symtab *);
829
830 static void dwarf2_start_subfile (char *, char *);
831
832 static struct symbol *new_symbol (struct die_info *, struct type *,
833 struct dwarf2_cu *);
834
835 static void dwarf2_const_value (struct attribute *, struct symbol *,
836 struct dwarf2_cu *);
837
838 static void dwarf2_const_value_data (struct attribute *attr,
839 struct symbol *sym,
840 int bits);
841
842 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
843
844 static struct type *die_containing_type (struct die_info *,
845 struct dwarf2_cu *);
846
847 #if 0
848 static struct type *type_at_offset (unsigned int, struct objfile *);
849 #endif
850
851 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
852
853 static void read_type_die (struct die_info *, struct dwarf2_cu *);
854
855 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
856
857 static char *typename_concat (struct obstack *, const char *prefix, const char *suffix,
858 struct dwarf2_cu *);
859
860 static void read_typedef (struct die_info *, struct dwarf2_cu *);
861
862 static void read_base_type (struct die_info *, struct dwarf2_cu *);
863
864 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
865
866 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
867
868 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
869
870 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
871
872 static int dwarf2_get_pc_bounds (struct die_info *,
873 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
874
875 static void get_scope_pc_bounds (struct die_info *,
876 CORE_ADDR *, CORE_ADDR *,
877 struct dwarf2_cu *);
878
879 static void dwarf2_add_field (struct field_info *, struct die_info *,
880 struct dwarf2_cu *);
881
882 static void dwarf2_attach_fields_to_type (struct field_info *,
883 struct type *, struct dwarf2_cu *);
884
885 static void dwarf2_add_member_fn (struct field_info *,
886 struct die_info *, struct type *,
887 struct dwarf2_cu *);
888
889 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
890 struct type *, struct dwarf2_cu *);
891
892 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
893
894 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
895
896 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
897
898 static void read_common_block (struct die_info *, struct dwarf2_cu *);
899
900 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
901
902 static const char *namespace_name (struct die_info *die,
903 int *is_anonymous, struct dwarf2_cu *);
904
905 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
906
907 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
908
909 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
910
911 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
912
913 static void read_array_type (struct die_info *, struct dwarf2_cu *);
914
915 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
916 struct dwarf2_cu *);
917
918 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
919
920 static void read_tag_ptr_to_member_type (struct die_info *,
921 struct dwarf2_cu *);
922
923 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
924
925 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
926
927 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
928
929 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
930
931 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
932
933 static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
934
935 static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
936 struct dwarf2_cu *,
937 char **new_info_ptr,
938 struct die_info *parent);
939
940 static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
941 struct dwarf2_cu *,
942 char **new_info_ptr,
943 struct die_info *parent);
944
945 static void free_die_list (struct die_info *);
946
947 static struct cleanup *make_cleanup_free_die_list (struct die_info *);
948
949 static void process_die (struct die_info *, struct dwarf2_cu *);
950
951 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
952
953 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
954
955 static struct die_info *dwarf2_extension (struct die_info *die,
956 struct dwarf2_cu *);
957
958 static char *dwarf_tag_name (unsigned int);
959
960 static char *dwarf_attr_name (unsigned int);
961
962 static char *dwarf_form_name (unsigned int);
963
964 static char *dwarf_stack_op_name (unsigned int);
965
966 static char *dwarf_bool_name (unsigned int);
967
968 static char *dwarf_type_encoding_name (unsigned int);
969
970 #if 0
971 static char *dwarf_cfi_name (unsigned int);
972
973 struct die_info *copy_die (struct die_info *);
974 #endif
975
976 static struct die_info *sibling_die (struct die_info *);
977
978 static void dump_die (struct die_info *);
979
980 static void dump_die_list (struct die_info *);
981
982 static void store_in_ref_table (unsigned int, struct die_info *);
983
984 static void dwarf2_empty_hash_tables (void);
985
986 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
987 struct dwarf2_cu *);
988
989 static int dwarf2_get_attr_constant_value (struct attribute *, int);
990
991 static struct die_info *follow_die_ref (unsigned int);
992
993 static struct type *dwarf2_fundamental_type (struct objfile *, int,
994 struct dwarf2_cu *);
995
996 /* memory allocation interface */
997
998 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
999
1000 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1001
1002 static struct die_info *dwarf_alloc_die (void);
1003
1004 static void initialize_cu_func_list (struct dwarf2_cu *);
1005
1006 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1007 struct dwarf2_cu *);
1008
1009 static void dwarf_decode_macros (struct line_header *, unsigned int,
1010 char *, bfd *, struct dwarf2_cu *);
1011
1012 static int attr_form_is_block (struct attribute *);
1013
1014 static void
1015 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1016 struct dwarf2_cu *cu);
1017
1018 static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1019 struct dwarf2_cu *cu);
1020
1021 static void free_stack_comp_unit (void *);
1022
1023 static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
1024
1025 static void dummy_obstack_deallocate (void *object, void *data);
1026
1027 static hashval_t partial_die_hash (const void *item);
1028
1029 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1030
1031 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1032 (unsigned long offset, struct objfile *objfile);
1033
1034 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1035 (unsigned long offset, struct objfile *objfile);
1036
1037 static void free_one_comp_unit (void *);
1038
1039 static void free_cached_comp_units (void *);
1040
1041 static void age_cached_comp_units (void);
1042
1043 static void free_one_cached_comp_unit (void *);
1044
1045 static void set_die_type (struct die_info *, struct type *,
1046 struct dwarf2_cu *);
1047
1048 #if 0
1049 static void reset_die_and_siblings_types (struct die_info *,
1050 struct dwarf2_cu *);
1051 #endif
1052
1053 static void create_all_comp_units (struct objfile *);
1054
1055 static void dwarf2_mark (struct dwarf2_cu *);
1056
1057 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1058
1059 /* Try to locate the sections we need for DWARF 2 debugging
1060 information and return true if we have enough to do something. */
1061
1062 int
1063 dwarf2_has_info (struct objfile *objfile)
1064 {
1065 struct dwarf2_per_objfile *data;
1066
1067 /* Initialize per-objfile state. */
1068 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1069 memset (data, 0, sizeof (*data));
1070 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1071 dwarf2_per_objfile = data;
1072
1073 dwarf_info_section = 0;
1074 dwarf_abbrev_section = 0;
1075 dwarf_line_section = 0;
1076 dwarf_str_section = 0;
1077 dwarf_macinfo_section = 0;
1078 dwarf_frame_section = 0;
1079 dwarf_eh_frame_section = 0;
1080 dwarf_ranges_section = 0;
1081 dwarf_loc_section = 0;
1082
1083 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1084 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1085 }
1086
1087 /* This function is mapped across the sections and remembers the
1088 offset and size of each of the debugging sections we are interested
1089 in. */
1090
1091 static void
1092 dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
1093 {
1094 if (strcmp (sectp->name, INFO_SECTION) == 0)
1095 {
1096 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1097 dwarf_info_section = sectp;
1098 }
1099 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1100 {
1101 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1102 dwarf_abbrev_section = sectp;
1103 }
1104 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1105 {
1106 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1107 dwarf_line_section = sectp;
1108 }
1109 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1110 {
1111 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1112 dwarf_pubnames_section = sectp;
1113 }
1114 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1115 {
1116 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1117 dwarf_aranges_section = sectp;
1118 }
1119 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1120 {
1121 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1122 dwarf_loc_section = sectp;
1123 }
1124 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1125 {
1126 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1127 dwarf_macinfo_section = sectp;
1128 }
1129 else if (strcmp (sectp->name, STR_SECTION) == 0)
1130 {
1131 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1132 dwarf_str_section = sectp;
1133 }
1134 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1135 {
1136 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1137 dwarf_frame_section = sectp;
1138 }
1139 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1140 {
1141 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1142 if (aflag & SEC_HAS_CONTENTS)
1143 {
1144 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1145 dwarf_eh_frame_section = sectp;
1146 }
1147 }
1148 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1149 {
1150 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1151 dwarf_ranges_section = sectp;
1152 }
1153 }
1154
1155 /* Build a partial symbol table. */
1156
1157 void
1158 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1159 {
1160 /* We definitely need the .debug_info and .debug_abbrev sections */
1161
1162 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1163 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1164
1165 if (dwarf_line_section)
1166 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1167 else
1168 dwarf2_per_objfile->line_buffer = NULL;
1169
1170 if (dwarf_str_section)
1171 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1172 else
1173 dwarf2_per_objfile->str_buffer = NULL;
1174
1175 if (dwarf_macinfo_section)
1176 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1177 dwarf_macinfo_section);
1178 else
1179 dwarf2_per_objfile->macinfo_buffer = NULL;
1180
1181 if (dwarf_ranges_section)
1182 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1183 else
1184 dwarf2_per_objfile->ranges_buffer = NULL;
1185
1186 if (dwarf_loc_section)
1187 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1188 else
1189 dwarf2_per_objfile->loc_buffer = NULL;
1190
1191 if (mainline
1192 || (objfile->global_psymbols.size == 0
1193 && objfile->static_psymbols.size == 0))
1194 {
1195 init_psymbol_list (objfile, 1024);
1196 }
1197
1198 #if 0
1199 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1200 {
1201 /* Things are significantly easier if we have .debug_aranges and
1202 .debug_pubnames sections */
1203
1204 dwarf2_build_psymtabs_easy (objfile, mainline);
1205 }
1206 else
1207 #endif
1208 /* only test this case for now */
1209 {
1210 /* In this case we have to work a bit harder */
1211 dwarf2_build_psymtabs_hard (objfile, mainline);
1212 }
1213 }
1214
1215 #if 0
1216 /* Build the partial symbol table from the information in the
1217 .debug_pubnames and .debug_aranges sections. */
1218
1219 static void
1220 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1221 {
1222 bfd *abfd = objfile->obfd;
1223 char *aranges_buffer, *pubnames_buffer;
1224 char *aranges_ptr, *pubnames_ptr;
1225 unsigned int entry_length, version, info_offset, info_size;
1226
1227 pubnames_buffer = dwarf2_read_section (objfile,
1228 dwarf_pubnames_section);
1229 pubnames_ptr = pubnames_buffer;
1230 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1231 {
1232 struct comp_unit_head cu_header;
1233 int bytes_read;
1234
1235 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1236 &bytes_read);
1237 pubnames_ptr += bytes_read;
1238 version = read_1_byte (abfd, pubnames_ptr);
1239 pubnames_ptr += 1;
1240 info_offset = read_4_bytes (abfd, pubnames_ptr);
1241 pubnames_ptr += 4;
1242 info_size = read_4_bytes (abfd, pubnames_ptr);
1243 pubnames_ptr += 4;
1244 }
1245
1246 aranges_buffer = dwarf2_read_section (objfile,
1247 dwarf_aranges_section);
1248
1249 }
1250 #endif
1251
1252 /* Read in the comp unit header information from the debug_info at
1253 info_ptr. */
1254
1255 static char *
1256 read_comp_unit_head (struct comp_unit_head *cu_header,
1257 char *info_ptr, bfd *abfd)
1258 {
1259 int signed_addr;
1260 int bytes_read;
1261 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1262 &bytes_read);
1263 info_ptr += bytes_read;
1264 cu_header->version = read_2_bytes (abfd, info_ptr);
1265 info_ptr += 2;
1266 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1267 &bytes_read);
1268 info_ptr += bytes_read;
1269 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1270 info_ptr += 1;
1271 signed_addr = bfd_get_sign_extend_vma (abfd);
1272 if (signed_addr < 0)
1273 internal_error (__FILE__, __LINE__,
1274 "read_comp_unit_head: dwarf from non elf file");
1275 cu_header->signed_addr_p = signed_addr;
1276 return info_ptr;
1277 }
1278
1279 static char *
1280 partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1281 bfd *abfd)
1282 {
1283 char *beg_of_comp_unit = info_ptr;
1284
1285 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1286
1287 if (header->version != 2)
1288 error ("Dwarf Error: wrong version in compilation unit header "
1289 "(is %d, should be %d) [in module %s]", header->version,
1290 2, bfd_get_filename (abfd));
1291
1292 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1293 error ("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1294 "(offset 0x%lx + 6) [in module %s]",
1295 (long) header->abbrev_offset,
1296 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1297 bfd_get_filename (abfd));
1298
1299 if (beg_of_comp_unit + header->length + header->initial_length_size
1300 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1301 error ("Dwarf Error: bad length (0x%lx) in compilation unit header "
1302 "(offset 0x%lx + 0) [in module %s]",
1303 (long) header->length,
1304 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1305 bfd_get_filename (abfd));
1306
1307 return info_ptr;
1308 }
1309
1310 /* Allocate a new partial symtab for file named NAME and mark this new
1311 partial symtab as being an include of PST. */
1312
1313 static void
1314 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1315 struct objfile *objfile)
1316 {
1317 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1318
1319 subpst->section_offsets = pst->section_offsets;
1320 subpst->textlow = 0;
1321 subpst->texthigh = 0;
1322
1323 subpst->dependencies = (struct partial_symtab **)
1324 obstack_alloc (&objfile->objfile_obstack,
1325 sizeof (struct partial_symtab *));
1326 subpst->dependencies[0] = pst;
1327 subpst->number_of_dependencies = 1;
1328
1329 subpst->globals_offset = 0;
1330 subpst->n_global_syms = 0;
1331 subpst->statics_offset = 0;
1332 subpst->n_static_syms = 0;
1333 subpst->symtab = NULL;
1334 subpst->read_symtab = pst->read_symtab;
1335 subpst->readin = 0;
1336
1337 /* No private part is necessary for include psymtabs. This property
1338 can be used to differentiate between such include psymtabs and
1339 the regular ones. If it ever happens that a regular psymtab can
1340 legitimally have a NULL private part, then we'll have to add a
1341 dedicated field for that in the dwarf2_pinfo structure. */
1342 subpst->read_symtab_private = NULL;
1343 }
1344
1345 /* Read the Line Number Program data and extract the list of files
1346 included by the source file represented by PST. Build an include
1347 partial symtab for each of these included files.
1348
1349 This procedure assumes that there *is* a Line Number Program in
1350 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1351 before calling this procedure. */
1352
1353 static void
1354 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1355 struct partial_die_info *pdi,
1356 struct partial_symtab *pst)
1357 {
1358 struct objfile *objfile = cu->objfile;
1359 bfd *abfd = objfile->obfd;
1360 struct line_header *lh;
1361
1362 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1363 if (lh == NULL)
1364 return; /* No linetable, so no includes. */
1365
1366 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1367
1368 free_line_header (lh);
1369 }
1370
1371
1372 /* Build the partial symbol table by doing a quick pass through the
1373 .debug_info and .debug_abbrev sections. */
1374
1375 static void
1376 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1377 {
1378 /* Instead of reading this into a big buffer, we should probably use
1379 mmap() on architectures that support it. (FIXME) */
1380 bfd *abfd = objfile->obfd;
1381 char *info_ptr;
1382 char *beg_of_comp_unit;
1383 struct partial_die_info comp_unit_die;
1384 struct partial_symtab *pst;
1385 struct cleanup *back_to;
1386 CORE_ADDR lowpc, highpc, baseaddr;
1387
1388 info_ptr = dwarf2_per_objfile->info_buffer;
1389
1390 /* Any cached compilation units will be linked by the per-objfile
1391 read_in_chain. Make sure to free them when we're done. */
1392 back_to = make_cleanup (free_cached_comp_units, NULL);
1393
1394 /* Since the objects we're extracting from .debug_info vary in
1395 length, only the individual functions to extract them (like
1396 read_comp_unit_head and load_partial_die) can really know whether
1397 the buffer is large enough to hold another complete object.
1398
1399 At the moment, they don't actually check that. If .debug_info
1400 holds just one extra byte after the last compilation unit's dies,
1401 then read_comp_unit_head will happily read off the end of the
1402 buffer. read_partial_die is similarly casual. Those functions
1403 should be fixed.
1404
1405 For this loop condition, simply checking whether there's any data
1406 left at all should be sufficient. */
1407 while (info_ptr < (dwarf2_per_objfile->info_buffer
1408 + dwarf2_per_objfile->info_size))
1409 {
1410 struct cleanup *back_to_inner;
1411 struct dwarf2_cu cu;
1412 struct abbrev_info *abbrev;
1413 unsigned int bytes_read;
1414 struct dwarf2_per_cu_data *this_cu;
1415
1416 beg_of_comp_unit = info_ptr;
1417
1418 memset (&cu, 0, sizeof (cu));
1419
1420 obstack_init (&cu.comp_unit_obstack);
1421
1422 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1423
1424 cu.objfile = objfile;
1425 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1426
1427 /* Complete the cu_header */
1428 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1429 cu.header.first_die_ptr = info_ptr;
1430 cu.header.cu_head_ptr = beg_of_comp_unit;
1431
1432 cu.list_in_scope = &file_symbols;
1433
1434 /* Read the abbrevs for this compilation unit into a table */
1435 dwarf2_read_abbrevs (abfd, &cu);
1436 make_cleanup (dwarf2_free_abbrev_table, &cu);
1437
1438 if (cu.has_form_ref_addr && dwarf2_per_objfile->all_comp_units == NULL)
1439 create_all_comp_units (objfile);
1440
1441 /* Read the compilation unit die */
1442 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1443 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1444 abfd, info_ptr, &cu);
1445
1446 /* Set the language we're debugging */
1447 set_cu_language (comp_unit_die.language, &cu);
1448
1449 /* Allocate a new partial symbol table structure */
1450 pst = start_psymtab_common (objfile, objfile->section_offsets,
1451 comp_unit_die.name ? comp_unit_die.name : "",
1452 comp_unit_die.lowpc,
1453 objfile->global_psymbols.next,
1454 objfile->static_psymbols.next);
1455
1456 if (comp_unit_die.dirname)
1457 pst->dirname = xstrdup (comp_unit_die.dirname);
1458
1459 pst->read_symtab_private = (char *)
1460 obstack_alloc (&objfile->objfile_obstack, sizeof (struct dwarf2_pinfo));
1461 DWARF_INFO_OFFSET (pst) = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1462 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1463
1464 /* Store the function that reads in the rest of the symbol table */
1465 pst->read_symtab = dwarf2_psymtab_to_symtab;
1466
1467 if (dwarf2_per_objfile->all_comp_units != NULL)
1468 {
1469 struct dwarf2_per_cu_data *per_cu;
1470
1471 per_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1472
1473 /* If this compilation unit was already read in, free the
1474 cached copy in order to read it in again. This is
1475 necessary because we skipped some symbols when we first
1476 read in the compilation unit (see load_partial_dies).
1477 This problem could be avoided, but the benefit is
1478 unclear. */
1479 if (per_cu->cu != NULL)
1480 free_one_cached_comp_unit (per_cu->cu);
1481
1482 cu.per_cu = per_cu;
1483
1484 /* Note that this is a pointer to our stack frame, being
1485 added to a global data structure. It will be cleaned up
1486 in free_stack_comp_unit when we finish with this
1487 compilation unit. */
1488 per_cu->cu = &cu;
1489 }
1490 else
1491 cu.per_cu = NULL;
1492
1493 /* Check if comp unit has_children.
1494 If so, read the rest of the partial symbols from this comp unit.
1495 If not, there's no more debug_info for this comp unit. */
1496 if (comp_unit_die.has_children)
1497 {
1498 struct partial_die_info *first_die;
1499
1500 lowpc = ((CORE_ADDR) -1);
1501 highpc = ((CORE_ADDR) 0);
1502
1503 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1504
1505 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1506
1507 /* If we didn't find a lowpc, set it to highpc to avoid
1508 complaints from `maint check'. */
1509 if (lowpc == ((CORE_ADDR) -1))
1510 lowpc = highpc;
1511
1512 /* If the compilation unit didn't have an explicit address range,
1513 then use the information extracted from its child dies. */
1514 if (! comp_unit_die.has_pc_info)
1515 {
1516 comp_unit_die.lowpc = lowpc;
1517 comp_unit_die.highpc = highpc;
1518 }
1519 }
1520 pst->textlow = comp_unit_die.lowpc + baseaddr;
1521 pst->texthigh = comp_unit_die.highpc + baseaddr;
1522
1523 pst->n_global_syms = objfile->global_psymbols.next -
1524 (objfile->global_psymbols.list + pst->globals_offset);
1525 pst->n_static_syms = objfile->static_psymbols.next -
1526 (objfile->static_psymbols.list + pst->statics_offset);
1527 sort_pst_symbols (pst);
1528
1529 /* If there is already a psymtab or symtab for a file of this
1530 name, remove it. (If there is a symtab, more drastic things
1531 also happen.) This happens in VxWorks. */
1532 free_named_symtabs (pst->filename);
1533
1534 if (comp_unit_die.has_stmt_list)
1535 {
1536 /* Get the list of files included in the current compilation unit,
1537 and build a psymtab for each of them. */
1538 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1539 }
1540
1541 info_ptr = beg_of_comp_unit + cu.header.length
1542 + cu.header.initial_length_size;
1543
1544 do_cleanups (back_to_inner);
1545 }
1546 do_cleanups (back_to);
1547 }
1548
1549 /* Load the DIEs for a secondary CU into memory. */
1550
1551 static void
1552 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1553 {
1554 bfd *abfd = objfile->obfd;
1555 char *info_ptr, *beg_of_comp_unit;
1556 struct partial_die_info comp_unit_die;
1557 struct dwarf2_cu *cu;
1558 struct abbrev_info *abbrev;
1559 unsigned int bytes_read;
1560 struct cleanup *back_to;
1561
1562 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1563 beg_of_comp_unit = info_ptr;
1564
1565 cu = xmalloc (sizeof (struct dwarf2_cu));
1566 memset (cu, 0, sizeof (struct dwarf2_cu));
1567
1568 obstack_init (&cu->comp_unit_obstack);
1569
1570 cu->objfile = objfile;
1571 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1572
1573 /* Complete the cu_header. */
1574 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1575 cu->header.first_die_ptr = info_ptr;
1576 cu->header.cu_head_ptr = beg_of_comp_unit;
1577
1578 /* Read the abbrevs for this compilation unit into a table. */
1579 dwarf2_read_abbrevs (abfd, cu);
1580 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1581
1582 /* Read the compilation unit die. */
1583 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1584 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1585 abfd, info_ptr, cu);
1586
1587 /* Set the language we're debugging. */
1588 set_cu_language (comp_unit_die.language, cu);
1589
1590 /* Link this compilation unit into the compilation unit tree. */
1591 this_cu->cu = cu;
1592 cu->per_cu = this_cu;
1593
1594 /* Check if comp unit has_children.
1595 If so, read the rest of the partial symbols from this comp unit.
1596 If not, there's no more debug_info for this comp unit. */
1597 if (comp_unit_die.has_children)
1598 load_partial_dies (abfd, info_ptr, 0, cu);
1599
1600 do_cleanups (back_to);
1601 }
1602
1603 /* Create a list of all compilation units in OBJFILE. We do this only
1604 if an inter-comp-unit reference is found; presumably if there is one,
1605 there will be many, and one will occur early in the .debug_info section.
1606 So there's no point in building this list incrementally. */
1607
1608 static void
1609 create_all_comp_units (struct objfile *objfile)
1610 {
1611 int n_allocated;
1612 int n_comp_units;
1613 struct dwarf2_per_cu_data **all_comp_units;
1614 char *info_ptr = dwarf2_per_objfile->info_buffer;
1615
1616 n_comp_units = 0;
1617 n_allocated = 10;
1618 all_comp_units = xmalloc (n_allocated
1619 * sizeof (struct dwarf2_per_cu_data *));
1620
1621 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1622 {
1623 struct comp_unit_head cu_header;
1624 char *beg_of_comp_unit;
1625 struct dwarf2_per_cu_data *this_cu;
1626 unsigned long offset;
1627 int bytes_read;
1628
1629 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1630
1631 /* Read just enough information to find out where the next
1632 compilation unit is. */
1633 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1634 &cu_header, &bytes_read);
1635
1636 /* Save the compilation unit for later lookup. */
1637 this_cu = obstack_alloc (&objfile->objfile_obstack,
1638 sizeof (struct dwarf2_per_cu_data));
1639 memset (this_cu, 0, sizeof (*this_cu));
1640 this_cu->offset = offset;
1641 this_cu->length = cu_header.length + cu_header.initial_length_size;
1642
1643 if (n_comp_units == n_allocated)
1644 {
1645 n_allocated *= 2;
1646 all_comp_units = xrealloc (all_comp_units,
1647 n_allocated
1648 * sizeof (struct dwarf2_per_cu_data *));
1649 }
1650 all_comp_units[n_comp_units++] = this_cu;
1651
1652 info_ptr = info_ptr + this_cu->length;
1653 }
1654
1655 dwarf2_per_objfile->all_comp_units
1656 = obstack_alloc (&objfile->objfile_obstack,
1657 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1658 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1659 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1660 xfree (all_comp_units);
1661 dwarf2_per_objfile->n_comp_units = n_comp_units;
1662 }
1663
1664 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1665 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1666 in CU. */
1667
1668 static void
1669 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1670 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1671 {
1672 struct objfile *objfile = cu->objfile;
1673 bfd *abfd = objfile->obfd;
1674 struct partial_die_info *pdi;
1675
1676 /* Now, march along the PDI's, descending into ones which have
1677 interesting children but skipping the children of the other ones,
1678 until we reach the end of the compilation unit. */
1679
1680 pdi = first_die;
1681
1682 while (pdi != NULL)
1683 {
1684 fixup_partial_die (pdi, cu);
1685
1686 /* Anonymous namespaces have no name but have interesting
1687 children, so we need to look at them. Ditto for anonymous
1688 enums. */
1689
1690 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1691 || pdi->tag == DW_TAG_enumeration_type)
1692 {
1693 switch (pdi->tag)
1694 {
1695 case DW_TAG_subprogram:
1696 if (pdi->has_pc_info)
1697 {
1698 if (pdi->lowpc < *lowpc)
1699 {
1700 *lowpc = pdi->lowpc;
1701 }
1702 if (pdi->highpc > *highpc)
1703 {
1704 *highpc = pdi->highpc;
1705 }
1706 if (!pdi->is_declaration)
1707 {
1708 add_partial_symbol (pdi, cu);
1709 }
1710 }
1711 break;
1712 case DW_TAG_variable:
1713 case DW_TAG_typedef:
1714 case DW_TAG_union_type:
1715 if (!pdi->is_declaration)
1716 {
1717 add_partial_symbol (pdi, cu);
1718 }
1719 break;
1720 case DW_TAG_class_type:
1721 case DW_TAG_structure_type:
1722 if (!pdi->is_declaration)
1723 {
1724 add_partial_symbol (pdi, cu);
1725 }
1726 break;
1727 case DW_TAG_enumeration_type:
1728 if (!pdi->is_declaration)
1729 add_partial_enumeration (pdi, cu);
1730 break;
1731 case DW_TAG_base_type:
1732 case DW_TAG_subrange_type:
1733 /* File scope base type definitions are added to the partial
1734 symbol table. */
1735 add_partial_symbol (pdi, cu);
1736 break;
1737 case DW_TAG_namespace:
1738 add_partial_namespace (pdi, lowpc, highpc, cu);
1739 break;
1740 default:
1741 break;
1742 }
1743 }
1744
1745 /* If the die has a sibling, skip to the sibling. */
1746
1747 pdi = pdi->die_sibling;
1748 }
1749 }
1750
1751 /* Functions used to compute the fully scoped name of a partial DIE.
1752
1753 Normally, this is simple. For C++, the parent DIE's fully scoped
1754 name is concatenated with "::" and the partial DIE's name. For
1755 Java, the same thing occurs except that "." is used instead of "::".
1756 Enumerators are an exception; they use the scope of their parent
1757 enumeration type, i.e. the name of the enumeration type is not
1758 prepended to the enumerator.
1759
1760 There are two complexities. One is DW_AT_specification; in this
1761 case "parent" means the parent of the target of the specification,
1762 instead of the direct parent of the DIE. The other is compilers
1763 which do not emit DW_TAG_namespace; in this case we try to guess
1764 the fully qualified name of structure types from their members'
1765 linkage names. This must be done using the DIE's children rather
1766 than the children of any DW_AT_specification target. We only need
1767 to do this for structures at the top level, i.e. if the target of
1768 any DW_AT_specification (if any; otherwise the DIE itself) does not
1769 have a parent. */
1770
1771 /* Compute the scope prefix associated with PDI's parent, in
1772 compilation unit CU. The result will be allocated on CU's
1773 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1774 field. NULL is returned if no prefix is necessary. */
1775 static char *
1776 partial_die_parent_scope (struct partial_die_info *pdi,
1777 struct dwarf2_cu *cu)
1778 {
1779 char *grandparent_scope;
1780 struct partial_die_info *parent, *real_pdi;
1781 struct dwarf2_cu *spec_cu;
1782
1783 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1784 then this means the parent of the specification DIE. */
1785
1786 real_pdi = pdi;
1787 spec_cu = cu;
1788 while (real_pdi->has_specification)
1789 real_pdi = find_partial_die (real_pdi->spec_offset, spec_cu, &spec_cu);
1790
1791 parent = real_pdi->die_parent;
1792 if (parent == NULL)
1793 return NULL;
1794
1795 if (parent->scope_set)
1796 return parent->scope;
1797
1798 fixup_partial_die (parent, cu);
1799
1800 grandparent_scope = partial_die_parent_scope (parent, spec_cu);
1801
1802 if (parent->tag == DW_TAG_namespace
1803 || parent->tag == DW_TAG_structure_type
1804 || parent->tag == DW_TAG_class_type
1805 || parent->tag == DW_TAG_union_type)
1806 {
1807 if (grandparent_scope == NULL)
1808 parent->scope = parent->name;
1809 else
1810 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1811 parent->name, cu);
1812 }
1813 else if (parent->tag == DW_TAG_enumeration_type)
1814 /* Enumerators should not get the name of the enumeration as a prefix. */
1815 parent->scope = grandparent_scope;
1816 else
1817 {
1818 /* FIXME drow/2004-04-01: What should we be doing with
1819 function-local names? For partial symbols, we should probably be
1820 ignoring them. */
1821 complaint (&symfile_complaints,
1822 "unhandled containing DIE tag %d for DIE at %d",
1823 parent->tag, pdi->offset);
1824 parent->scope = grandparent_scope;
1825 }
1826
1827 parent->scope_set = 1;
1828 return parent->scope;
1829 }
1830
1831 /* Return the fully scoped name associated with PDI, from compilation unit
1832 CU. The result will be allocated with malloc. */
1833 static char *
1834 partial_die_full_name (struct partial_die_info *pdi,
1835 struct dwarf2_cu *cu)
1836 {
1837 char *parent_scope;
1838
1839 parent_scope = partial_die_parent_scope (pdi, cu);
1840 if (parent_scope == NULL)
1841 return NULL;
1842 else
1843 return typename_concat (NULL, parent_scope, pdi->name, cu);
1844 }
1845
1846 static void
1847 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1848 {
1849 struct objfile *objfile = cu->objfile;
1850 CORE_ADDR addr = 0;
1851 char *actual_name;
1852 const char *my_prefix;
1853 const struct partial_symbol *psym = NULL;
1854 CORE_ADDR baseaddr;
1855 int built_actual_name = 0;
1856
1857 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1858
1859 actual_name = NULL;
1860
1861 if (pdi_needs_namespace (pdi->tag))
1862 {
1863 actual_name = partial_die_full_name (pdi, cu);
1864 if (actual_name)
1865 built_actual_name = 1;
1866 }
1867
1868 if (actual_name == NULL)
1869 actual_name = pdi->name;
1870
1871 switch (pdi->tag)
1872 {
1873 case DW_TAG_subprogram:
1874 if (pdi->is_external)
1875 {
1876 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1877 mst_text, objfile); */
1878 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1879 VAR_DOMAIN, LOC_BLOCK,
1880 &objfile->global_psymbols,
1881 0, pdi->lowpc + baseaddr,
1882 cu->language, objfile);
1883 }
1884 else
1885 {
1886 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1887 mst_file_text, objfile); */
1888 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1889 VAR_DOMAIN, LOC_BLOCK,
1890 &objfile->static_psymbols,
1891 0, pdi->lowpc + baseaddr,
1892 cu->language, objfile);
1893 }
1894 break;
1895 case DW_TAG_variable:
1896 if (pdi->is_external)
1897 {
1898 /* Global Variable.
1899 Don't enter into the minimal symbol tables as there is
1900 a minimal symbol table entry from the ELF symbols already.
1901 Enter into partial symbol table if it has a location
1902 descriptor or a type.
1903 If the location descriptor is missing, new_symbol will create
1904 a LOC_UNRESOLVED symbol, the address of the variable will then
1905 be determined from the minimal symbol table whenever the variable
1906 is referenced.
1907 The address for the partial symbol table entry is not
1908 used by GDB, but it comes in handy for debugging partial symbol
1909 table building. */
1910
1911 if (pdi->locdesc)
1912 addr = decode_locdesc (pdi->locdesc, cu);
1913 if (pdi->locdesc || pdi->has_type)
1914 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1915 VAR_DOMAIN, LOC_STATIC,
1916 &objfile->global_psymbols,
1917 0, addr + baseaddr,
1918 cu->language, objfile);
1919 }
1920 else
1921 {
1922 /* Static Variable. Skip symbols without location descriptors. */
1923 if (pdi->locdesc == NULL)
1924 return;
1925 addr = decode_locdesc (pdi->locdesc, cu);
1926 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1927 mst_file_data, objfile); */
1928 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1929 VAR_DOMAIN, LOC_STATIC,
1930 &objfile->static_psymbols,
1931 0, addr + baseaddr,
1932 cu->language, objfile);
1933 }
1934 break;
1935 case DW_TAG_typedef:
1936 case DW_TAG_base_type:
1937 case DW_TAG_subrange_type:
1938 add_psymbol_to_list (actual_name, strlen (actual_name),
1939 VAR_DOMAIN, LOC_TYPEDEF,
1940 &objfile->static_psymbols,
1941 0, (CORE_ADDR) 0, cu->language, objfile);
1942 break;
1943 case DW_TAG_namespace:
1944 add_psymbol_to_list (actual_name, strlen (actual_name),
1945 VAR_DOMAIN, LOC_TYPEDEF,
1946 &objfile->global_psymbols,
1947 0, (CORE_ADDR) 0, cu->language, objfile);
1948 break;
1949 case DW_TAG_class_type:
1950 case DW_TAG_structure_type:
1951 case DW_TAG_union_type:
1952 case DW_TAG_enumeration_type:
1953 /* Skip aggregate types without children, these are external
1954 references. */
1955 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1956 static vs. global. */
1957 if (pdi->has_children == 0)
1958 return;
1959 add_psymbol_to_list (actual_name, strlen (actual_name),
1960 STRUCT_DOMAIN, LOC_TYPEDEF,
1961 (cu->language == language_cplus
1962 || cu->language == language_java)
1963 ? &objfile->global_psymbols
1964 : &objfile->static_psymbols,
1965 0, (CORE_ADDR) 0, cu->language, objfile);
1966
1967 if (cu->language == language_cplus
1968 || cu->language == language_java)
1969 {
1970 /* For C++ and Java, these implicitly act as typedefs as well. */
1971 add_psymbol_to_list (actual_name, strlen (actual_name),
1972 VAR_DOMAIN, LOC_TYPEDEF,
1973 &objfile->global_psymbols,
1974 0, (CORE_ADDR) 0, cu->language, objfile);
1975 }
1976 break;
1977 case DW_TAG_enumerator:
1978 add_psymbol_to_list (actual_name, strlen (actual_name),
1979 VAR_DOMAIN, LOC_CONST,
1980 (cu->language == language_cplus
1981 || cu->language == language_java)
1982 ? &objfile->global_psymbols
1983 : &objfile->static_psymbols,
1984 0, (CORE_ADDR) 0, cu->language, objfile);
1985 break;
1986 default:
1987 break;
1988 }
1989
1990 /* Check to see if we should scan the name for possible namespace
1991 info. Only do this if this is C++, if we don't have namespace
1992 debugging info in the file, if the psym is of an appropriate type
1993 (otherwise we'll have psym == NULL), and if we actually had a
1994 mangled name to begin with. */
1995
1996 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
1997 cases which do not set PSYM above? */
1998
1999 if (cu->language == language_cplus
2000 && cu->has_namespace_info == 0
2001 && psym != NULL
2002 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2003 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2004 objfile);
2005
2006 if (built_actual_name)
2007 xfree (actual_name);
2008 }
2009
2010 /* Determine whether a die of type TAG living in a C++ class or
2011 namespace needs to have the name of the scope prepended to the
2012 name listed in the die. */
2013
2014 static int
2015 pdi_needs_namespace (enum dwarf_tag tag)
2016 {
2017 switch (tag)
2018 {
2019 case DW_TAG_namespace:
2020 case DW_TAG_typedef:
2021 case DW_TAG_class_type:
2022 case DW_TAG_structure_type:
2023 case DW_TAG_union_type:
2024 case DW_TAG_enumeration_type:
2025 case DW_TAG_enumerator:
2026 return 1;
2027 default:
2028 return 0;
2029 }
2030 }
2031
2032 /* Read a partial die corresponding to a namespace; also, add a symbol
2033 corresponding to that namespace to the symbol table. NAMESPACE is
2034 the name of the enclosing namespace. */
2035
2036 static void
2037 add_partial_namespace (struct partial_die_info *pdi,
2038 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2039 struct dwarf2_cu *cu)
2040 {
2041 struct objfile *objfile = cu->objfile;
2042
2043 /* Add a symbol for the namespace. */
2044
2045 add_partial_symbol (pdi, cu);
2046
2047 /* Now scan partial symbols in that namespace. */
2048
2049 if (pdi->has_children)
2050 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2051 }
2052
2053 /* See if we can figure out if the class lives in a namespace. We do
2054 this by looking for a member function; its demangled name will
2055 contain namespace info, if there is any. */
2056
2057 static void
2058 guess_structure_name (struct partial_die_info *struct_pdi,
2059 struct dwarf2_cu *cu)
2060 {
2061 if ((cu->language == language_cplus
2062 || cu->language == language_java)
2063 && cu->has_namespace_info == 0
2064 && struct_pdi->has_children)
2065 {
2066 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2067 what template types look like, because the demangler
2068 frequently doesn't give the same name as the debug info. We
2069 could fix this by only using the demangled name to get the
2070 prefix (but see comment in read_structure_type). */
2071
2072 struct partial_die_info *child_pdi = struct_pdi->die_child;
2073 struct partial_die_info *real_pdi;
2074 struct dwarf2_cu *spec_cu;
2075
2076 /* If this DIE (this DIE's specification, if any) has a parent, then
2077 we should not do this. We'll prepend the parent's fully qualified
2078 name when we create the partial symbol. */
2079
2080 real_pdi = struct_pdi;
2081 spec_cu = cu;
2082 while (real_pdi->has_specification)
2083 real_pdi = find_partial_die (real_pdi->spec_offset, spec_cu, &spec_cu);
2084
2085 if (real_pdi->die_parent != NULL)
2086 return;
2087
2088 while (child_pdi != NULL)
2089 {
2090 if (child_pdi->tag == DW_TAG_subprogram)
2091 {
2092 char *actual_class_name
2093 = language_class_name_from_physname (cu->language_defn,
2094 child_pdi->name);
2095 if (actual_class_name != NULL)
2096 {
2097 struct_pdi->name
2098 = obsavestring (actual_class_name,
2099 strlen (actual_class_name),
2100 &cu->comp_unit_obstack);
2101 xfree (actual_class_name);
2102 }
2103 break;
2104 }
2105
2106 child_pdi = child_pdi->die_sibling;
2107 }
2108 }
2109 }
2110
2111 /* Read a partial die corresponding to an enumeration type. */
2112
2113 static void
2114 add_partial_enumeration (struct partial_die_info *enum_pdi,
2115 struct dwarf2_cu *cu)
2116 {
2117 struct objfile *objfile = cu->objfile;
2118 bfd *abfd = objfile->obfd;
2119 struct partial_die_info *pdi;
2120
2121 if (enum_pdi->name != NULL)
2122 add_partial_symbol (enum_pdi, cu);
2123
2124 pdi = enum_pdi->die_child;
2125 while (pdi)
2126 {
2127 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2128 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
2129 else
2130 add_partial_symbol (pdi, cu);
2131 pdi = pdi->die_sibling;
2132 }
2133 }
2134
2135 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2136 Return the corresponding abbrev, or NULL if the number is zero (indicating
2137 an empty DIE). In either case *BYTES_READ will be set to the length of
2138 the initial number. */
2139
2140 static struct abbrev_info *
2141 peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
2142 {
2143 bfd *abfd = cu->objfile->obfd;
2144 unsigned int abbrev_number;
2145 struct abbrev_info *abbrev;
2146
2147 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2148
2149 if (abbrev_number == 0)
2150 return NULL;
2151
2152 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2153 if (!abbrev)
2154 {
2155 error ("Dwarf Error: Could not find abbrev number %d [in module %s]", abbrev_number,
2156 bfd_get_filename (abfd));
2157 }
2158
2159 return abbrev;
2160 }
2161
2162 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2163 pointer to the end of a series of DIEs, terminated by an empty
2164 DIE. Any children of the skipped DIEs will also be skipped. */
2165
2166 static char *
2167 skip_children (char *info_ptr, struct dwarf2_cu *cu)
2168 {
2169 struct abbrev_info *abbrev;
2170 unsigned int bytes_read;
2171
2172 while (1)
2173 {
2174 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2175 if (abbrev == NULL)
2176 return info_ptr + bytes_read;
2177 else
2178 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2179 }
2180 }
2181
2182 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2183 should point just after the initial uleb128 of a DIE, and the
2184 abbrev corresponding to that skipped uleb128 should be passed in
2185 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2186 children. */
2187
2188 static char *
2189 skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
2190 struct dwarf2_cu *cu)
2191 {
2192 unsigned int bytes_read;
2193 struct attribute attr;
2194 bfd *abfd = cu->objfile->obfd;
2195 unsigned int form, i;
2196
2197 for (i = 0; i < abbrev->num_attrs; i++)
2198 {
2199 /* The only abbrev we care about is DW_AT_sibling. */
2200 if (abbrev->attrs[i].name == DW_AT_sibling)
2201 {
2202 read_attribute (&attr, &abbrev->attrs[i],
2203 abfd, info_ptr, cu);
2204 if (attr.form == DW_FORM_ref_addr)
2205 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
2206 else
2207 return dwarf2_per_objfile->info_buffer
2208 + dwarf2_get_ref_die_offset (&attr, cu);
2209 }
2210
2211 /* If it isn't DW_AT_sibling, skip this attribute. */
2212 form = abbrev->attrs[i].form;
2213 skip_attribute:
2214 switch (form)
2215 {
2216 case DW_FORM_addr:
2217 case DW_FORM_ref_addr:
2218 info_ptr += cu->header.addr_size;
2219 break;
2220 case DW_FORM_data1:
2221 case DW_FORM_ref1:
2222 case DW_FORM_flag:
2223 info_ptr += 1;
2224 break;
2225 case DW_FORM_data2:
2226 case DW_FORM_ref2:
2227 info_ptr += 2;
2228 break;
2229 case DW_FORM_data4:
2230 case DW_FORM_ref4:
2231 info_ptr += 4;
2232 break;
2233 case DW_FORM_data8:
2234 case DW_FORM_ref8:
2235 info_ptr += 8;
2236 break;
2237 case DW_FORM_string:
2238 read_string (abfd, info_ptr, &bytes_read);
2239 info_ptr += bytes_read;
2240 break;
2241 case DW_FORM_strp:
2242 info_ptr += cu->header.offset_size;
2243 break;
2244 case DW_FORM_block:
2245 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2246 info_ptr += bytes_read;
2247 break;
2248 case DW_FORM_block1:
2249 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2250 break;
2251 case DW_FORM_block2:
2252 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2253 break;
2254 case DW_FORM_block4:
2255 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2256 break;
2257 case DW_FORM_sdata:
2258 case DW_FORM_udata:
2259 case DW_FORM_ref_udata:
2260 info_ptr = skip_leb128 (abfd, info_ptr);
2261 break;
2262 case DW_FORM_indirect:
2263 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2264 info_ptr += bytes_read;
2265 /* We need to continue parsing from here, so just go back to
2266 the top. */
2267 goto skip_attribute;
2268
2269 default:
2270 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
2271 dwarf_form_name (form),
2272 bfd_get_filename (abfd));
2273 }
2274 }
2275
2276 if (abbrev->has_children)
2277 return skip_children (info_ptr, cu);
2278 else
2279 return info_ptr;
2280 }
2281
2282 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2283 the next DIE after ORIG_PDI. */
2284
2285 static char *
2286 locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
2287 bfd *abfd, struct dwarf2_cu *cu)
2288 {
2289 /* Do we know the sibling already? */
2290
2291 if (orig_pdi->sibling)
2292 return orig_pdi->sibling;
2293
2294 /* Are there any children to deal with? */
2295
2296 if (!orig_pdi->has_children)
2297 return info_ptr;
2298
2299 /* Skip the children the long way. */
2300
2301 return skip_children (info_ptr, cu);
2302 }
2303
2304 /* Expand this partial symbol table into a full symbol table. */
2305
2306 static void
2307 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2308 {
2309 /* FIXME: This is barely more than a stub. */
2310 if (pst != NULL)
2311 {
2312 if (pst->readin)
2313 {
2314 warning ("bug: psymtab for %s is already read in.", pst->filename);
2315 }
2316 else
2317 {
2318 if (info_verbose)
2319 {
2320 printf_filtered ("Reading in symbols for %s...", pst->filename);
2321 gdb_flush (gdb_stdout);
2322 }
2323
2324 psymtab_to_symtab_1 (pst);
2325
2326 /* Finish up the debug error message. */
2327 if (info_verbose)
2328 printf_filtered ("done.\n");
2329 }
2330 }
2331 }
2332
2333 static void
2334 psymtab_to_symtab_1 (struct partial_symtab *pst)
2335 {
2336 struct objfile *objfile = pst->objfile;
2337 bfd *abfd = objfile->obfd;
2338 struct dwarf2_cu cu;
2339 struct die_info *dies;
2340 unsigned long offset;
2341 CORE_ADDR lowpc, highpc;
2342 struct die_info *child_die;
2343 char *info_ptr;
2344 struct symtab *symtab;
2345 struct cleanup *back_to;
2346 struct attribute *attr;
2347 CORE_ADDR baseaddr;
2348 int i;
2349
2350 for (i = 0; i < pst->number_of_dependencies; i++)
2351 if (!pst->dependencies[i]->readin)
2352 {
2353 /* Inform about additional files that need to be read in. */
2354 if (info_verbose)
2355 {
2356 fputs_filtered (" ", gdb_stdout);
2357 wrap_here ("");
2358 fputs_filtered ("and ", gdb_stdout);
2359 wrap_here ("");
2360 printf_filtered ("%s...", pst->dependencies[i]->filename);
2361 wrap_here (""); /* Flush output */
2362 gdb_flush (gdb_stdout);
2363 }
2364 psymtab_to_symtab_1 (pst->dependencies[i]);
2365 }
2366
2367 if (pst->read_symtab_private == NULL)
2368 {
2369 /* It's an include file, no symbols to read for it.
2370 Everything is in the parent symtab. */
2371 pst->readin = 1;
2372 return;
2373 }
2374
2375 dwarf2_per_objfile = objfile_data (pst->objfile, dwarf2_objfile_data_key);
2376
2377 /* Set local variables from the partial symbol table info. */
2378 offset = DWARF_INFO_OFFSET (pst);
2379
2380 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2381 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2382
2383 /* We're in the global namespace. */
2384 processing_current_prefix = "";
2385
2386 memset (&cu, 0, sizeof (struct dwarf2_cu));
2387 obstack_init (&cu.comp_unit_obstack);
2388 back_to = make_cleanup (free_stack_comp_unit, &cu);
2389
2390 buildsym_init ();
2391 make_cleanup (really_free_pendings, NULL);
2392
2393 cu.objfile = objfile;
2394
2395 /* read in the comp_unit header */
2396 info_ptr = read_comp_unit_head (&cu.header, info_ptr, abfd);
2397
2398 /* Read the abbrevs for this compilation unit */
2399 dwarf2_read_abbrevs (abfd, &cu);
2400 make_cleanup (dwarf2_free_abbrev_table, &cu);
2401
2402 cu.header.offset = offset;
2403
2404 cu.list_in_scope = &file_symbols;
2405
2406 dies = read_comp_unit (info_ptr, abfd, &cu);
2407
2408 make_cleanup_free_die_list (dies);
2409
2410 /* Find the base address of the compilation unit for range lists and
2411 location lists. It will normally be specified by DW_AT_low_pc.
2412 In DWARF-3 draft 4, the base address could be overridden by
2413 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2414 compilation units with discontinuous ranges. */
2415
2416 cu.header.base_known = 0;
2417 cu.header.base_address = 0;
2418
2419 attr = dwarf2_attr (dies, DW_AT_entry_pc, &cu);
2420 if (attr)
2421 {
2422 cu.header.base_address = DW_ADDR (attr);
2423 cu.header.base_known = 1;
2424 }
2425 else
2426 {
2427 attr = dwarf2_attr (dies, DW_AT_low_pc, &cu);
2428 if (attr)
2429 {
2430 cu.header.base_address = DW_ADDR (attr);
2431 cu.header.base_known = 1;
2432 }
2433 }
2434
2435 /* Do line number decoding in read_file_scope () */
2436 process_die (dies, &cu);
2437
2438 /* Some compilers don't define a DW_AT_high_pc attribute for the
2439 compilation unit. If the DW_AT_high_pc is missing, synthesize
2440 it, by scanning the DIE's below the compilation unit. */
2441 get_scope_pc_bounds (dies, &lowpc, &highpc, &cu);
2442
2443 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2444
2445 /* Set symtab language to language from DW_AT_language.
2446 If the compilation is from a C file generated by language preprocessors,
2447 do not set the language if it was already deduced by start_subfile. */
2448 if (symtab != NULL
2449 && !(cu.language == language_c && symtab->language != language_c))
2450 {
2451 symtab->language = cu.language;
2452 }
2453 pst->symtab = symtab;
2454 pst->readin = 1;
2455
2456 do_cleanups (back_to);
2457 }
2458
2459 /* Process a die and its children. */
2460
2461 static void
2462 process_die (struct die_info *die, struct dwarf2_cu *cu)
2463 {
2464 switch (die->tag)
2465 {
2466 case DW_TAG_padding:
2467 break;
2468 case DW_TAG_compile_unit:
2469 read_file_scope (die, cu);
2470 break;
2471 case DW_TAG_subprogram:
2472 read_subroutine_type (die, cu);
2473 read_func_scope (die, cu);
2474 break;
2475 case DW_TAG_inlined_subroutine:
2476 /* FIXME: These are ignored for now.
2477 They could be used to set breakpoints on all inlined instances
2478 of a function and make GDB `next' properly over inlined functions. */
2479 break;
2480 case DW_TAG_lexical_block:
2481 case DW_TAG_try_block:
2482 case DW_TAG_catch_block:
2483 read_lexical_block_scope (die, cu);
2484 break;
2485 case DW_TAG_class_type:
2486 case DW_TAG_structure_type:
2487 case DW_TAG_union_type:
2488 read_structure_type (die, cu);
2489 process_structure_scope (die, cu);
2490 break;
2491 case DW_TAG_enumeration_type:
2492 read_enumeration_type (die, cu);
2493 process_enumeration_scope (die, cu);
2494 break;
2495
2496 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2497 a symbol or process any children. Therefore it doesn't do anything
2498 that won't be done on-demand by read_type_die. */
2499 case DW_TAG_subroutine_type:
2500 read_subroutine_type (die, cu);
2501 break;
2502 case DW_TAG_array_type:
2503 read_array_type (die, cu);
2504 break;
2505 case DW_TAG_pointer_type:
2506 read_tag_pointer_type (die, cu);
2507 break;
2508 case DW_TAG_ptr_to_member_type:
2509 read_tag_ptr_to_member_type (die, cu);
2510 break;
2511 case DW_TAG_reference_type:
2512 read_tag_reference_type (die, cu);
2513 break;
2514 case DW_TAG_string_type:
2515 read_tag_string_type (die, cu);
2516 break;
2517 /* END FIXME */
2518
2519 case DW_TAG_base_type:
2520 read_base_type (die, cu);
2521 /* Add a typedef symbol for the type definition, if it has a
2522 DW_AT_name. */
2523 new_symbol (die, die->type, cu);
2524 break;
2525 case DW_TAG_subrange_type:
2526 read_subrange_type (die, cu);
2527 /* Add a typedef symbol for the type definition, if it has a
2528 DW_AT_name. */
2529 new_symbol (die, die->type, cu);
2530 break;
2531 case DW_TAG_common_block:
2532 read_common_block (die, cu);
2533 break;
2534 case DW_TAG_common_inclusion:
2535 break;
2536 case DW_TAG_namespace:
2537 processing_has_namespace_info = 1;
2538 read_namespace (die, cu);
2539 break;
2540 case DW_TAG_imported_declaration:
2541 case DW_TAG_imported_module:
2542 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2543 information contained in these. DW_TAG_imported_declaration
2544 dies shouldn't have children; DW_TAG_imported_module dies
2545 shouldn't in the C++ case, but conceivably could in the
2546 Fortran case, so we'll have to replace this gdb_assert if
2547 Fortran compilers start generating that info. */
2548 processing_has_namespace_info = 1;
2549 gdb_assert (die->child == NULL);
2550 break;
2551 default:
2552 new_symbol (die, NULL, cu);
2553 break;
2554 }
2555 }
2556
2557 static void
2558 initialize_cu_func_list (struct dwarf2_cu *cu)
2559 {
2560 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2561 }
2562
2563 static void
2564 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2565 {
2566 struct objfile *objfile = cu->objfile;
2567 struct comp_unit_head *cu_header = &cu->header;
2568 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2569 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2570 CORE_ADDR highpc = ((CORE_ADDR) 0);
2571 struct attribute *attr;
2572 char *name = "<unknown>";
2573 char *comp_dir = NULL;
2574 struct die_info *child_die;
2575 bfd *abfd = objfile->obfd;
2576 struct line_header *line_header = 0;
2577 CORE_ADDR baseaddr;
2578
2579 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2580
2581 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2582
2583 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2584 from finish_block. */
2585 if (lowpc == ((CORE_ADDR) -1))
2586 lowpc = highpc;
2587 lowpc += baseaddr;
2588 highpc += baseaddr;
2589
2590 attr = dwarf2_attr (die, DW_AT_name, cu);
2591 if (attr)
2592 {
2593 name = DW_STRING (attr);
2594 }
2595 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2596 if (attr)
2597 {
2598 comp_dir = DW_STRING (attr);
2599 if (comp_dir)
2600 {
2601 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2602 directory, get rid of it. */
2603 char *cp = strchr (comp_dir, ':');
2604
2605 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2606 comp_dir = cp + 1;
2607 }
2608 }
2609
2610 attr = dwarf2_attr (die, DW_AT_language, cu);
2611 if (attr)
2612 {
2613 set_cu_language (DW_UNSND (attr), cu);
2614 }
2615
2616 attr = dwarf2_attr (die, DW_AT_producer, cu);
2617 if (attr)
2618 cu->producer = DW_STRING (attr);
2619
2620 /* We assume that we're processing GCC output. */
2621 processing_gcc_compilation = 2;
2622 #if 0
2623 /* FIXME:Do something here. */
2624 if (dip->at_producer != NULL)
2625 {
2626 handle_producer (dip->at_producer);
2627 }
2628 #endif
2629
2630 /* The compilation unit may be in a different language or objfile,
2631 zero out all remembered fundamental types. */
2632 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2633
2634 start_symtab (name, comp_dir, lowpc);
2635 record_debugformat ("DWARF 2");
2636
2637 initialize_cu_func_list (cu);
2638
2639 /* Process all dies in compilation unit. */
2640 if (die->child != NULL)
2641 {
2642 child_die = die->child;
2643 while (child_die && child_die->tag)
2644 {
2645 process_die (child_die, cu);
2646 child_die = sibling_die (child_die);
2647 }
2648 }
2649
2650 /* Decode line number information if present. */
2651 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2652 if (attr)
2653 {
2654 unsigned int line_offset = DW_UNSND (attr);
2655 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2656 if (line_header)
2657 {
2658 make_cleanup ((make_cleanup_ftype *) free_line_header,
2659 (void *) line_header);
2660 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2661 }
2662 }
2663
2664 /* Decode macro information, if present. Dwarf 2 macro information
2665 refers to information in the line number info statement program
2666 header, so we can only read it if we've read the header
2667 successfully. */
2668 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2669 if (attr && line_header)
2670 {
2671 unsigned int macro_offset = DW_UNSND (attr);
2672 dwarf_decode_macros (line_header, macro_offset,
2673 comp_dir, abfd, cu);
2674 }
2675 do_cleanups (back_to);
2676 }
2677
2678 static void
2679 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2680 struct dwarf2_cu *cu)
2681 {
2682 struct function_range *thisfn;
2683
2684 thisfn = (struct function_range *)
2685 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2686 thisfn->name = name;
2687 thisfn->lowpc = lowpc;
2688 thisfn->highpc = highpc;
2689 thisfn->seen_line = 0;
2690 thisfn->next = NULL;
2691
2692 if (cu->last_fn == NULL)
2693 cu->first_fn = thisfn;
2694 else
2695 cu->last_fn->next = thisfn;
2696
2697 cu->last_fn = thisfn;
2698 }
2699
2700 static void
2701 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2702 {
2703 struct objfile *objfile = cu->objfile;
2704 struct context_stack *new;
2705 CORE_ADDR lowpc;
2706 CORE_ADDR highpc;
2707 struct die_info *child_die;
2708 struct attribute *attr;
2709 char *name;
2710 const char *previous_prefix = processing_current_prefix;
2711 struct cleanup *back_to = NULL;
2712 CORE_ADDR baseaddr;
2713
2714 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2715
2716 name = dwarf2_linkage_name (die, cu);
2717
2718 /* Ignore functions with missing or empty names and functions with
2719 missing or invalid low and high pc attributes. */
2720 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2721 return;
2722
2723 if (cu->language == language_cplus
2724 || cu->language == language_java)
2725 {
2726 struct die_info *spec_die = die_specification (die, cu);
2727
2728 /* NOTE: carlton/2004-01-23: We have to be careful in the
2729 presence of DW_AT_specification. For example, with GCC 3.4,
2730 given the code
2731
2732 namespace N {
2733 void foo() {
2734 // Definition of N::foo.
2735 }
2736 }
2737
2738 then we'll have a tree of DIEs like this:
2739
2740 1: DW_TAG_compile_unit
2741 2: DW_TAG_namespace // N
2742 3: DW_TAG_subprogram // declaration of N::foo
2743 4: DW_TAG_subprogram // definition of N::foo
2744 DW_AT_specification // refers to die #3
2745
2746 Thus, when processing die #4, we have to pretend that we're
2747 in the context of its DW_AT_specification, namely the contex
2748 of die #3. */
2749
2750 if (spec_die != NULL)
2751 {
2752 char *specification_prefix = determine_prefix (spec_die, cu);
2753 processing_current_prefix = specification_prefix;
2754 back_to = make_cleanup (xfree, specification_prefix);
2755 }
2756 }
2757
2758 lowpc += baseaddr;
2759 highpc += baseaddr;
2760
2761 /* Record the function range for dwarf_decode_lines. */
2762 add_to_cu_func_list (name, lowpc, highpc, cu);
2763
2764 new = push_context (0, lowpc);
2765 new->name = new_symbol (die, die->type, cu);
2766
2767 /* If there is a location expression for DW_AT_frame_base, record
2768 it. */
2769 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2770 if (attr)
2771 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2772 expression is being recorded directly in the function's symbol
2773 and not in a separate frame-base object. I guess this hack is
2774 to avoid adding some sort of frame-base adjunct/annex to the
2775 function's symbol :-(. The problem with doing this is that it
2776 results in a function symbol with a location expression that
2777 has nothing to do with the location of the function, ouch! The
2778 relationship should be: a function's symbol has-a frame base; a
2779 frame-base has-a location expression. */
2780 dwarf2_symbol_mark_computed (attr, new->name, cu);
2781
2782 cu->list_in_scope = &local_symbols;
2783
2784 if (die->child != NULL)
2785 {
2786 child_die = die->child;
2787 while (child_die && child_die->tag)
2788 {
2789 process_die (child_die, cu);
2790 child_die = sibling_die (child_die);
2791 }
2792 }
2793
2794 new = pop_context ();
2795 /* Make a block for the local symbols within. */
2796 finish_block (new->name, &local_symbols, new->old_blocks,
2797 lowpc, highpc, objfile);
2798
2799 /* In C++, we can have functions nested inside functions (e.g., when
2800 a function declares a class that has methods). This means that
2801 when we finish processing a function scope, we may need to go
2802 back to building a containing block's symbol lists. */
2803 local_symbols = new->locals;
2804 param_symbols = new->params;
2805
2806 /* If we've finished processing a top-level function, subsequent
2807 symbols go in the file symbol list. */
2808 if (outermost_context_p ())
2809 cu->list_in_scope = &file_symbols;
2810
2811 processing_current_prefix = previous_prefix;
2812 if (back_to != NULL)
2813 do_cleanups (back_to);
2814 }
2815
2816 /* Process all the DIES contained within a lexical block scope. Start
2817 a new scope, process the dies, and then close the scope. */
2818
2819 static void
2820 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2821 {
2822 struct objfile *objfile = cu->objfile;
2823 struct context_stack *new;
2824 CORE_ADDR lowpc, highpc;
2825 struct die_info *child_die;
2826 CORE_ADDR baseaddr;
2827
2828 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2829
2830 /* Ignore blocks with missing or invalid low and high pc attributes. */
2831 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2832 as multiple lexical blocks? Handling children in a sane way would
2833 be nasty. Might be easier to properly extend generic blocks to
2834 describe ranges. */
2835 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2836 return;
2837 lowpc += baseaddr;
2838 highpc += baseaddr;
2839
2840 push_context (0, lowpc);
2841 if (die->child != NULL)
2842 {
2843 child_die = die->child;
2844 while (child_die && child_die->tag)
2845 {
2846 process_die (child_die, cu);
2847 child_die = sibling_die (child_die);
2848 }
2849 }
2850 new = pop_context ();
2851
2852 if (local_symbols != NULL)
2853 {
2854 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
2855 highpc, objfile);
2856 }
2857 local_symbols = new->locals;
2858 }
2859
2860 /* Get low and high pc attributes from a die. Return 1 if the attributes
2861 are present and valid, otherwise, return 0. Return -1 if the range is
2862 discontinuous, i.e. derived from DW_AT_ranges information. */
2863 static int
2864 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
2865 CORE_ADDR *highpc, struct dwarf2_cu *cu)
2866 {
2867 struct objfile *objfile = cu->objfile;
2868 struct comp_unit_head *cu_header = &cu->header;
2869 struct attribute *attr;
2870 bfd *obfd = objfile->obfd;
2871 CORE_ADDR low = 0;
2872 CORE_ADDR high = 0;
2873 int ret = 0;
2874
2875 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
2876 if (attr)
2877 {
2878 high = DW_ADDR (attr);
2879 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
2880 if (attr)
2881 low = DW_ADDR (attr);
2882 else
2883 /* Found high w/o low attribute. */
2884 return 0;
2885
2886 /* Found consecutive range of addresses. */
2887 ret = 1;
2888 }
2889 else
2890 {
2891 attr = dwarf2_attr (die, DW_AT_ranges, cu);
2892 if (attr != NULL)
2893 {
2894 unsigned int addr_size = cu_header->addr_size;
2895 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
2896 /* Value of the DW_AT_ranges attribute is the offset in the
2897 .debug_ranges section. */
2898 unsigned int offset = DW_UNSND (attr);
2899 /* Base address selection entry. */
2900 CORE_ADDR base;
2901 int found_base;
2902 int dummy;
2903 char *buffer;
2904 CORE_ADDR marker;
2905 int low_set;
2906
2907 found_base = cu_header->base_known;
2908 base = cu_header->base_address;
2909
2910 if (offset >= dwarf2_per_objfile->ranges_size)
2911 {
2912 complaint (&symfile_complaints,
2913 "Offset %d out of bounds for DW_AT_ranges attribute",
2914 offset);
2915 return 0;
2916 }
2917 buffer = dwarf2_per_objfile->ranges_buffer + offset;
2918
2919 /* Read in the largest possible address. */
2920 marker = read_address (obfd, buffer, cu, &dummy);
2921 if ((marker & mask) == mask)
2922 {
2923 /* If we found the largest possible address, then
2924 read the base address. */
2925 base = read_address (obfd, buffer + addr_size, cu, &dummy);
2926 buffer += 2 * addr_size;
2927 offset += 2 * addr_size;
2928 found_base = 1;
2929 }
2930
2931 low_set = 0;
2932
2933 while (1)
2934 {
2935 CORE_ADDR range_beginning, range_end;
2936
2937 range_beginning = read_address (obfd, buffer, cu, &dummy);
2938 buffer += addr_size;
2939 range_end = read_address (obfd, buffer, cu, &dummy);
2940 buffer += addr_size;
2941 offset += 2 * addr_size;
2942
2943 /* An end of list marker is a pair of zero addresses. */
2944 if (range_beginning == 0 && range_end == 0)
2945 /* Found the end of list entry. */
2946 break;
2947
2948 /* Each base address selection entry is a pair of 2 values.
2949 The first is the largest possible address, the second is
2950 the base address. Check for a base address here. */
2951 if ((range_beginning & mask) == mask)
2952 {
2953 /* If we found the largest possible address, then
2954 read the base address. */
2955 base = read_address (obfd, buffer + addr_size, cu, &dummy);
2956 found_base = 1;
2957 continue;
2958 }
2959
2960 if (!found_base)
2961 {
2962 /* We have no valid base address for the ranges
2963 data. */
2964 complaint (&symfile_complaints,
2965 "Invalid .debug_ranges data (no base address)");
2966 return 0;
2967 }
2968
2969 range_beginning += base;
2970 range_end += base;
2971
2972 /* FIXME: This is recording everything as a low-high
2973 segment of consecutive addresses. We should have a
2974 data structure for discontiguous block ranges
2975 instead. */
2976 if (! low_set)
2977 {
2978 low = range_beginning;
2979 high = range_end;
2980 low_set = 1;
2981 }
2982 else
2983 {
2984 if (range_beginning < low)
2985 low = range_beginning;
2986 if (range_end > high)
2987 high = range_end;
2988 }
2989 }
2990
2991 if (! low_set)
2992 /* If the first entry is an end-of-list marker, the range
2993 describes an empty scope, i.e. no instructions. */
2994 return 0;
2995
2996 ret = -1;
2997 }
2998 }
2999
3000 if (high < low)
3001 return 0;
3002
3003 /* When using the GNU linker, .gnu.linkonce. sections are used to
3004 eliminate duplicate copies of functions and vtables and such.
3005 The linker will arbitrarily choose one and discard the others.
3006 The AT_*_pc values for such functions refer to local labels in
3007 these sections. If the section from that file was discarded, the
3008 labels are not in the output, so the relocs get a value of 0.
3009 If this is a discarded function, mark the pc bounds as invalid,
3010 so that GDB will ignore it. */
3011 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
3012 return 0;
3013
3014 *lowpc = low;
3015 *highpc = high;
3016 return ret;
3017 }
3018
3019 /* Get the low and high pc's represented by the scope DIE, and store
3020 them in *LOWPC and *HIGHPC. If the correct values can't be
3021 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3022
3023 static void
3024 get_scope_pc_bounds (struct die_info *die,
3025 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3026 struct dwarf2_cu *cu)
3027 {
3028 CORE_ADDR best_low = (CORE_ADDR) -1;
3029 CORE_ADDR best_high = (CORE_ADDR) 0;
3030 CORE_ADDR current_low, current_high;
3031
3032 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3033 {
3034 best_low = current_low;
3035 best_high = current_high;
3036 }
3037 else
3038 {
3039 struct die_info *child = die->child;
3040
3041 while (child && child->tag)
3042 {
3043 switch (child->tag) {
3044 case DW_TAG_subprogram:
3045 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3046 {
3047 best_low = min (best_low, current_low);
3048 best_high = max (best_high, current_high);
3049 }
3050 break;
3051 case DW_TAG_namespace:
3052 /* FIXME: carlton/2004-01-16: Should we do this for
3053 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3054 that current GCC's always emit the DIEs corresponding
3055 to definitions of methods of classes as children of a
3056 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3057 the DIEs giving the declarations, which could be
3058 anywhere). But I don't see any reason why the
3059 standards says that they have to be there. */
3060 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3061
3062 if (current_low != ((CORE_ADDR) -1))
3063 {
3064 best_low = min (best_low, current_low);
3065 best_high = max (best_high, current_high);
3066 }
3067 break;
3068 default:
3069 /* Ignore. */
3070 break;
3071 }
3072
3073 child = sibling_die (child);
3074 }
3075 }
3076
3077 *lowpc = best_low;
3078 *highpc = best_high;
3079 }
3080
3081 /* Add an aggregate field to the field list. */
3082
3083 static void
3084 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3085 struct dwarf2_cu *cu)
3086 {
3087 struct objfile *objfile = cu->objfile;
3088 struct nextfield *new_field;
3089 struct attribute *attr;
3090 struct field *fp;
3091 char *fieldname = "";
3092
3093 /* Allocate a new field list entry and link it in. */
3094 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3095 make_cleanup (xfree, new_field);
3096 memset (new_field, 0, sizeof (struct nextfield));
3097 new_field->next = fip->fields;
3098 fip->fields = new_field;
3099 fip->nfields++;
3100
3101 /* Handle accessibility and virtuality of field.
3102 The default accessibility for members is public, the default
3103 accessibility for inheritance is private. */
3104 if (die->tag != DW_TAG_inheritance)
3105 new_field->accessibility = DW_ACCESS_public;
3106 else
3107 new_field->accessibility = DW_ACCESS_private;
3108 new_field->virtuality = DW_VIRTUALITY_none;
3109
3110 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3111 if (attr)
3112 new_field->accessibility = DW_UNSND (attr);
3113 if (new_field->accessibility != DW_ACCESS_public)
3114 fip->non_public_fields = 1;
3115 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3116 if (attr)
3117 new_field->virtuality = DW_UNSND (attr);
3118
3119 fp = &new_field->field;
3120
3121 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3122 {
3123 /* Data member other than a C++ static data member. */
3124
3125 /* Get type of field. */
3126 fp->type = die_type (die, cu);
3127
3128 FIELD_STATIC_KIND (*fp) = 0;
3129
3130 /* Get bit size of field (zero if none). */
3131 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3132 if (attr)
3133 {
3134 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3135 }
3136 else
3137 {
3138 FIELD_BITSIZE (*fp) = 0;
3139 }
3140
3141 /* Get bit offset of field. */
3142 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3143 if (attr)
3144 {
3145 FIELD_BITPOS (*fp) =
3146 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3147 }
3148 else
3149 FIELD_BITPOS (*fp) = 0;
3150 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3151 if (attr)
3152 {
3153 if (BITS_BIG_ENDIAN)
3154 {
3155 /* For big endian bits, the DW_AT_bit_offset gives the
3156 additional bit offset from the MSB of the containing
3157 anonymous object to the MSB of the field. We don't
3158 have to do anything special since we don't need to
3159 know the size of the anonymous object. */
3160 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3161 }
3162 else
3163 {
3164 /* For little endian bits, compute the bit offset to the
3165 MSB of the anonymous object, subtract off the number of
3166 bits from the MSB of the field to the MSB of the
3167 object, and then subtract off the number of bits of
3168 the field itself. The result is the bit offset of
3169 the LSB of the field. */
3170 int anonymous_size;
3171 int bit_offset = DW_UNSND (attr);
3172
3173 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3174 if (attr)
3175 {
3176 /* The size of the anonymous object containing
3177 the bit field is explicit, so use the
3178 indicated size (in bytes). */
3179 anonymous_size = DW_UNSND (attr);
3180 }
3181 else
3182 {
3183 /* The size of the anonymous object containing
3184 the bit field must be inferred from the type
3185 attribute of the data member containing the
3186 bit field. */
3187 anonymous_size = TYPE_LENGTH (fp->type);
3188 }
3189 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3190 - bit_offset - FIELD_BITSIZE (*fp);
3191 }
3192 }
3193
3194 /* Get name of field. */
3195 attr = dwarf2_attr (die, DW_AT_name, cu);
3196 if (attr && DW_STRING (attr))
3197 fieldname = DW_STRING (attr);
3198
3199 /* The name is already allocated along with this objfile, so we don't
3200 need to duplicate it for the type. */
3201 fp->name = fieldname;
3202
3203 /* Change accessibility for artificial fields (e.g. virtual table
3204 pointer or virtual base class pointer) to private. */
3205 if (dwarf2_attr (die, DW_AT_artificial, cu))
3206 {
3207 new_field->accessibility = DW_ACCESS_private;
3208 fip->non_public_fields = 1;
3209 }
3210 }
3211 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3212 {
3213 /* C++ static member. */
3214
3215 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3216 is a declaration, but all versions of G++ as of this writing
3217 (so through at least 3.2.1) incorrectly generate
3218 DW_TAG_variable tags. */
3219
3220 char *physname;
3221
3222 /* Get name of field. */
3223 attr = dwarf2_attr (die, DW_AT_name, cu);
3224 if (attr && DW_STRING (attr))
3225 fieldname = DW_STRING (attr);
3226 else
3227 return;
3228
3229 /* Get physical name. */
3230 physname = dwarf2_linkage_name (die, cu);
3231
3232 /* The name is already allocated along with this objfile, so we don't
3233 need to duplicate it for the type. */
3234 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3235 FIELD_TYPE (*fp) = die_type (die, cu);
3236 FIELD_NAME (*fp) = fieldname;
3237 }
3238 else if (die->tag == DW_TAG_inheritance)
3239 {
3240 /* C++ base class field. */
3241 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3242 if (attr)
3243 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3244 * bits_per_byte);
3245 FIELD_BITSIZE (*fp) = 0;
3246 FIELD_STATIC_KIND (*fp) = 0;
3247 FIELD_TYPE (*fp) = die_type (die, cu);
3248 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3249 fip->nbaseclasses++;
3250 }
3251 }
3252
3253 /* Create the vector of fields, and attach it to the type. */
3254
3255 static void
3256 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3257 struct dwarf2_cu *cu)
3258 {
3259 int nfields = fip->nfields;
3260
3261 /* Record the field count, allocate space for the array of fields,
3262 and create blank accessibility bitfields if necessary. */
3263 TYPE_NFIELDS (type) = nfields;
3264 TYPE_FIELDS (type) = (struct field *)
3265 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3266 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3267
3268 if (fip->non_public_fields)
3269 {
3270 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3271
3272 TYPE_FIELD_PRIVATE_BITS (type) =
3273 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3274 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3275
3276 TYPE_FIELD_PROTECTED_BITS (type) =
3277 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3278 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3279
3280 TYPE_FIELD_IGNORE_BITS (type) =
3281 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3282 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3283 }
3284
3285 /* If the type has baseclasses, allocate and clear a bit vector for
3286 TYPE_FIELD_VIRTUAL_BITS. */
3287 if (fip->nbaseclasses)
3288 {
3289 int num_bytes = B_BYTES (fip->nbaseclasses);
3290 char *pointer;
3291
3292 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3293 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3294 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3295 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3296 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3297 }
3298
3299 /* Copy the saved-up fields into the field vector. Start from the head
3300 of the list, adding to the tail of the field array, so that they end
3301 up in the same order in the array in which they were added to the list. */
3302 while (nfields-- > 0)
3303 {
3304 TYPE_FIELD (type, nfields) = fip->fields->field;
3305 switch (fip->fields->accessibility)
3306 {
3307 case DW_ACCESS_private:
3308 SET_TYPE_FIELD_PRIVATE (type, nfields);
3309 break;
3310
3311 case DW_ACCESS_protected:
3312 SET_TYPE_FIELD_PROTECTED (type, nfields);
3313 break;
3314
3315 case DW_ACCESS_public:
3316 break;
3317
3318 default:
3319 /* Unknown accessibility. Complain and treat it as public. */
3320 {
3321 complaint (&symfile_complaints, "unsupported accessibility %d",
3322 fip->fields->accessibility);
3323 }
3324 break;
3325 }
3326 if (nfields < fip->nbaseclasses)
3327 {
3328 switch (fip->fields->virtuality)
3329 {
3330 case DW_VIRTUALITY_virtual:
3331 case DW_VIRTUALITY_pure_virtual:
3332 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3333 break;
3334 }
3335 }
3336 fip->fields = fip->fields->next;
3337 }
3338 }
3339
3340 /* Add a member function to the proper fieldlist. */
3341
3342 static void
3343 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3344 struct type *type, struct dwarf2_cu *cu)
3345 {
3346 struct objfile *objfile = cu->objfile;
3347 struct attribute *attr;
3348 struct fnfieldlist *flp;
3349 int i;
3350 struct fn_field *fnp;
3351 char *fieldname;
3352 char *physname;
3353 struct nextfnfield *new_fnfield;
3354
3355 /* Get name of member function. */
3356 attr = dwarf2_attr (die, DW_AT_name, cu);
3357 if (attr && DW_STRING (attr))
3358 fieldname = DW_STRING (attr);
3359 else
3360 return;
3361
3362 /* Get the mangled name. */
3363 physname = dwarf2_linkage_name (die, cu);
3364
3365 /* Look up member function name in fieldlist. */
3366 for (i = 0; i < fip->nfnfields; i++)
3367 {
3368 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3369 break;
3370 }
3371
3372 /* Create new list element if necessary. */
3373 if (i < fip->nfnfields)
3374 flp = &fip->fnfieldlists[i];
3375 else
3376 {
3377 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3378 {
3379 fip->fnfieldlists = (struct fnfieldlist *)
3380 xrealloc (fip->fnfieldlists,
3381 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3382 * sizeof (struct fnfieldlist));
3383 if (fip->nfnfields == 0)
3384 make_cleanup (free_current_contents, &fip->fnfieldlists);
3385 }
3386 flp = &fip->fnfieldlists[fip->nfnfields];
3387 flp->name = fieldname;
3388 flp->length = 0;
3389 flp->head = NULL;
3390 fip->nfnfields++;
3391 }
3392
3393 /* Create a new member function field and chain it to the field list
3394 entry. */
3395 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3396 make_cleanup (xfree, new_fnfield);
3397 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3398 new_fnfield->next = flp->head;
3399 flp->head = new_fnfield;
3400 flp->length++;
3401
3402 /* Fill in the member function field info. */
3403 fnp = &new_fnfield->fnfield;
3404 /* The name is already allocated along with this objfile, so we don't
3405 need to duplicate it for the type. */
3406 fnp->physname = physname ? physname : "";
3407 fnp->type = alloc_type (objfile);
3408 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3409 {
3410 int nparams = TYPE_NFIELDS (die->type);
3411
3412 /* TYPE is the domain of this method, and DIE->TYPE is the type
3413 of the method itself (TYPE_CODE_METHOD). */
3414 smash_to_method_type (fnp->type, type,
3415 TYPE_TARGET_TYPE (die->type),
3416 TYPE_FIELDS (die->type),
3417 TYPE_NFIELDS (die->type),
3418 TYPE_VARARGS (die->type));
3419
3420 /* Handle static member functions.
3421 Dwarf2 has no clean way to discern C++ static and non-static
3422 member functions. G++ helps GDB by marking the first
3423 parameter for non-static member functions (which is the
3424 this pointer) as artificial. We obtain this information
3425 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3426 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3427 fnp->voffset = VOFFSET_STATIC;
3428 }
3429 else
3430 complaint (&symfile_complaints, "member function type missing for '%s'",
3431 physname);
3432
3433 /* Get fcontext from DW_AT_containing_type if present. */
3434 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3435 fnp->fcontext = die_containing_type (die, cu);
3436
3437 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3438 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3439
3440 /* Get accessibility. */
3441 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3442 if (attr)
3443 {
3444 switch (DW_UNSND (attr))
3445 {
3446 case DW_ACCESS_private:
3447 fnp->is_private = 1;
3448 break;
3449 case DW_ACCESS_protected:
3450 fnp->is_protected = 1;
3451 break;
3452 }
3453 }
3454
3455 /* Check for artificial methods. */
3456 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3457 if (attr && DW_UNSND (attr) != 0)
3458 fnp->is_artificial = 1;
3459
3460 /* Get index in virtual function table if it is a virtual member function. */
3461 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3462 if (attr)
3463 {
3464 /* Support the .debug_loc offsets */
3465 if (attr_form_is_block (attr))
3466 {
3467 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3468 }
3469 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3470 {
3471 dwarf2_complex_location_expr_complaint ();
3472 }
3473 else
3474 {
3475 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3476 fieldname);
3477 }
3478 }
3479 }
3480
3481 /* Create the vector of member function fields, and attach it to the type. */
3482
3483 static void
3484 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3485 struct dwarf2_cu *cu)
3486 {
3487 struct fnfieldlist *flp;
3488 int total_length = 0;
3489 int i;
3490
3491 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3492 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3493 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3494
3495 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3496 {
3497 struct nextfnfield *nfp = flp->head;
3498 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3499 int k;
3500
3501 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3502 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3503 fn_flp->fn_fields = (struct fn_field *)
3504 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3505 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3506 fn_flp->fn_fields[k] = nfp->fnfield;
3507
3508 total_length += flp->length;
3509 }
3510
3511 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3512 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3513 }
3514
3515
3516 /* Returns non-zero if NAME is the name of a vtable member in CU's
3517 language, zero otherwise. */
3518 static int
3519 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3520 {
3521 static const char vptr[] = "_vptr";
3522 static const char vtable[] = "vtable";
3523
3524 /* Look for the C++ and Java forms of the vtable. */
3525 if ((cu->language == language_java
3526 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3527 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3528 && is_cplus_marker (name[sizeof (vptr) - 1])))
3529 return 1;
3530
3531 return 0;
3532 }
3533
3534
3535 /* Called when we find the DIE that starts a structure or union scope
3536 (definition) to process all dies that define the members of the
3537 structure or union.
3538
3539 NOTE: we need to call struct_type regardless of whether or not the
3540 DIE has an at_name attribute, since it might be an anonymous
3541 structure or union. This gets the type entered into our set of
3542 user defined types.
3543
3544 However, if the structure is incomplete (an opaque struct/union)
3545 then suppress creating a symbol table entry for it since gdb only
3546 wants to find the one with the complete definition. Note that if
3547 it is complete, we just call new_symbol, which does it's own
3548 checking about whether the struct/union is anonymous or not (and
3549 suppresses creating a symbol table entry itself). */
3550
3551 static void
3552 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3553 {
3554 struct objfile *objfile = cu->objfile;
3555 struct type *type;
3556 struct attribute *attr;
3557 const char *previous_prefix = processing_current_prefix;
3558 struct cleanup *back_to = NULL;
3559
3560 if (die->type)
3561 return;
3562
3563 type = alloc_type (objfile);
3564
3565 INIT_CPLUS_SPECIFIC (type);
3566 attr = dwarf2_attr (die, DW_AT_name, cu);
3567 if (attr && DW_STRING (attr))
3568 {
3569 if (cu->language == language_cplus
3570 || cu->language == language_java)
3571 {
3572 char *new_prefix = determine_class_name (die, cu);
3573 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3574 strlen (new_prefix),
3575 &objfile->objfile_obstack);
3576 back_to = make_cleanup (xfree, new_prefix);
3577 processing_current_prefix = new_prefix;
3578 }
3579 else
3580 {
3581 /* The name is already allocated along with this objfile, so
3582 we don't need to duplicate it for the type. */
3583 TYPE_TAG_NAME (type) = DW_STRING (attr);
3584 }
3585 }
3586
3587 if (die->tag == DW_TAG_structure_type)
3588 {
3589 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3590 }
3591 else if (die->tag == DW_TAG_union_type)
3592 {
3593 TYPE_CODE (type) = TYPE_CODE_UNION;
3594 }
3595 else
3596 {
3597 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3598 in gdbtypes.h. */
3599 TYPE_CODE (type) = TYPE_CODE_CLASS;
3600 }
3601
3602 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3603 if (attr)
3604 {
3605 TYPE_LENGTH (type) = DW_UNSND (attr);
3606 }
3607 else
3608 {
3609 TYPE_LENGTH (type) = 0;
3610 }
3611
3612 if (die_is_declaration (die, cu))
3613 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3614
3615 /* We need to add the type field to the die immediately so we don't
3616 infinitely recurse when dealing with pointers to the structure
3617 type within the structure itself. */
3618 set_die_type (die, type, cu);
3619
3620 if (die->child != NULL && ! die_is_declaration (die, cu))
3621 {
3622 struct field_info fi;
3623 struct die_info *child_die;
3624 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3625
3626 memset (&fi, 0, sizeof (struct field_info));
3627
3628 child_die = die->child;
3629
3630 while (child_die && child_die->tag)
3631 {
3632 if (child_die->tag == DW_TAG_member
3633 || child_die->tag == DW_TAG_variable)
3634 {
3635 /* NOTE: carlton/2002-11-05: A C++ static data member
3636 should be a DW_TAG_member that is a declaration, but
3637 all versions of G++ as of this writing (so through at
3638 least 3.2.1) incorrectly generate DW_TAG_variable
3639 tags for them instead. */
3640 dwarf2_add_field (&fi, child_die, cu);
3641 }
3642 else if (child_die->tag == DW_TAG_subprogram)
3643 {
3644 /* C++ member function. */
3645 read_type_die (child_die, cu);
3646 dwarf2_add_member_fn (&fi, child_die, type, cu);
3647 }
3648 else if (child_die->tag == DW_TAG_inheritance)
3649 {
3650 /* C++ base class field. */
3651 dwarf2_add_field (&fi, child_die, cu);
3652 }
3653 child_die = sibling_die (child_die);
3654 }
3655
3656 /* Attach fields and member functions to the type. */
3657 if (fi.nfields)
3658 dwarf2_attach_fields_to_type (&fi, type, cu);
3659 if (fi.nfnfields)
3660 {
3661 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3662
3663 /* Get the type which refers to the base class (possibly this
3664 class itself) which contains the vtable pointer for the current
3665 class from the DW_AT_containing_type attribute. */
3666
3667 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3668 {
3669 struct type *t = die_containing_type (die, cu);
3670
3671 TYPE_VPTR_BASETYPE (type) = t;
3672 if (type == t)
3673 {
3674 int i;
3675
3676 /* Our own class provides vtbl ptr. */
3677 for (i = TYPE_NFIELDS (t) - 1;
3678 i >= TYPE_N_BASECLASSES (t);
3679 --i)
3680 {
3681 char *fieldname = TYPE_FIELD_NAME (t, i);
3682
3683 if (is_vtable_name (fieldname, cu))
3684 {
3685 TYPE_VPTR_FIELDNO (type) = i;
3686 break;
3687 }
3688 }
3689
3690 /* Complain if virtual function table field not found. */
3691 if (i < TYPE_N_BASECLASSES (t))
3692 complaint (&symfile_complaints,
3693 "virtual function table pointer not found when defining class '%s'",
3694 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3695 "");
3696 }
3697 else
3698 {
3699 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3700 }
3701 }
3702 }
3703
3704 do_cleanups (back_to);
3705 }
3706
3707 processing_current_prefix = previous_prefix;
3708 if (back_to != NULL)
3709 do_cleanups (back_to);
3710 }
3711
3712 static void
3713 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3714 {
3715 struct objfile *objfile = cu->objfile;
3716 const char *previous_prefix = processing_current_prefix;
3717 struct die_info *child_die = die->child;
3718
3719 if (TYPE_TAG_NAME (die->type) != NULL)
3720 processing_current_prefix = TYPE_TAG_NAME (die->type);
3721
3722 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3723 snapshots) has been known to create a die giving a declaration
3724 for a class that has, as a child, a die giving a definition for a
3725 nested class. So we have to process our children even if the
3726 current die is a declaration. Normally, of course, a declaration
3727 won't have any children at all. */
3728
3729 while (child_die != NULL && child_die->tag)
3730 {
3731 if (child_die->tag == DW_TAG_member
3732 || child_die->tag == DW_TAG_variable
3733 || child_die->tag == DW_TAG_inheritance)
3734 {
3735 /* Do nothing. */
3736 }
3737 else
3738 process_die (child_die, cu);
3739
3740 child_die = sibling_die (child_die);
3741 }
3742
3743 if (die->child != NULL && ! die_is_declaration (die, cu))
3744 new_symbol (die, die->type, cu);
3745
3746 processing_current_prefix = previous_prefix;
3747 }
3748
3749 /* Given a DW_AT_enumeration_type die, set its type. We do not
3750 complete the type's fields yet, or create any symbols. */
3751
3752 static void
3753 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3754 {
3755 struct objfile *objfile = cu->objfile;
3756 struct type *type;
3757 struct attribute *attr;
3758
3759 if (die->type)
3760 return;
3761
3762 type = alloc_type (objfile);
3763
3764 TYPE_CODE (type) = TYPE_CODE_ENUM;
3765 attr = dwarf2_attr (die, DW_AT_name, cu);
3766 if (attr && DW_STRING (attr))
3767 {
3768 char *name = DW_STRING (attr);
3769
3770 if (processing_has_namespace_info)
3771 {
3772 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3773 processing_current_prefix,
3774 name, cu);
3775 }
3776 else
3777 {
3778 /* The name is already allocated along with this objfile, so
3779 we don't need to duplicate it for the type. */
3780 TYPE_TAG_NAME (type) = name;
3781 }
3782 }
3783
3784 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3785 if (attr)
3786 {
3787 TYPE_LENGTH (type) = DW_UNSND (attr);
3788 }
3789 else
3790 {
3791 TYPE_LENGTH (type) = 0;
3792 }
3793
3794 set_die_type (die, type, cu);
3795 }
3796
3797 /* Determine the name of the type represented by DIE, which should be
3798 a named C++ or Java compound type. Return the name in question; the caller
3799 is responsible for xfree()'ing it. */
3800
3801 static char *
3802 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3803 {
3804 struct cleanup *back_to = NULL;
3805 struct die_info *spec_die = die_specification (die, cu);
3806 char *new_prefix = NULL;
3807
3808 /* If this is the definition of a class that is declared by another
3809 die, then processing_current_prefix may not be accurate; see
3810 read_func_scope for a similar example. */
3811 if (spec_die != NULL)
3812 {
3813 char *specification_prefix = determine_prefix (spec_die, cu);
3814 processing_current_prefix = specification_prefix;
3815 back_to = make_cleanup (xfree, specification_prefix);
3816 }
3817
3818 /* If we don't have namespace debug info, guess the name by trying
3819 to demangle the names of members, just like we did in
3820 guess_structure_name. */
3821 if (!processing_has_namespace_info)
3822 {
3823 struct die_info *child;
3824
3825 for (child = die->child;
3826 child != NULL && child->tag != 0;
3827 child = sibling_die (child))
3828 {
3829 if (child->tag == DW_TAG_subprogram)
3830 {
3831 new_prefix
3832 = language_class_name_from_physname (cu->language_defn,
3833 dwarf2_linkage_name
3834 (child, cu));
3835
3836 if (new_prefix != NULL)
3837 break;
3838 }
3839 }
3840 }
3841
3842 if (new_prefix == NULL)
3843 {
3844 const char *name = dwarf2_name (die, cu);
3845 new_prefix = typename_concat (NULL, processing_current_prefix,
3846 name ? name : "<<anonymous>>",
3847 cu);
3848 }
3849
3850 if (back_to != NULL)
3851 do_cleanups (back_to);
3852
3853 return new_prefix;
3854 }
3855
3856 /* Given a pointer to a die which begins an enumeration, process all
3857 the dies that define the members of the enumeration, and create the
3858 symbol for the enumeration type.
3859
3860 NOTE: We reverse the order of the element list. */
3861
3862 static void
3863 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
3864 {
3865 struct objfile *objfile = cu->objfile;
3866 struct die_info *child_die;
3867 struct field *fields;
3868 struct attribute *attr;
3869 struct symbol *sym;
3870 int num_fields;
3871 int unsigned_enum = 1;
3872
3873 num_fields = 0;
3874 fields = NULL;
3875 if (die->child != NULL)
3876 {
3877 child_die = die->child;
3878 while (child_die && child_die->tag)
3879 {
3880 if (child_die->tag != DW_TAG_enumerator)
3881 {
3882 process_die (child_die, cu);
3883 }
3884 else
3885 {
3886 attr = dwarf2_attr (child_die, DW_AT_name, cu);
3887 if (attr)
3888 {
3889 sym = new_symbol (child_die, die->type, cu);
3890 if (SYMBOL_VALUE (sym) < 0)
3891 unsigned_enum = 0;
3892
3893 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
3894 {
3895 fields = (struct field *)
3896 xrealloc (fields,
3897 (num_fields + DW_FIELD_ALLOC_CHUNK)
3898 * sizeof (struct field));
3899 }
3900
3901 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
3902 FIELD_TYPE (fields[num_fields]) = NULL;
3903 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
3904 FIELD_BITSIZE (fields[num_fields]) = 0;
3905 FIELD_STATIC_KIND (fields[num_fields]) = 0;
3906
3907 num_fields++;
3908 }
3909 }
3910
3911 child_die = sibling_die (child_die);
3912 }
3913
3914 if (num_fields)
3915 {
3916 TYPE_NFIELDS (die->type) = num_fields;
3917 TYPE_FIELDS (die->type) = (struct field *)
3918 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
3919 memcpy (TYPE_FIELDS (die->type), fields,
3920 sizeof (struct field) * num_fields);
3921 xfree (fields);
3922 }
3923 if (unsigned_enum)
3924 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
3925 }
3926
3927 new_symbol (die, die->type, cu);
3928 }
3929
3930 /* Extract all information from a DW_TAG_array_type DIE and put it in
3931 the DIE's type field. For now, this only handles one dimensional
3932 arrays. */
3933
3934 static void
3935 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
3936 {
3937 struct objfile *objfile = cu->objfile;
3938 struct die_info *child_die;
3939 struct type *type = NULL;
3940 struct type *element_type, *range_type, *index_type;
3941 struct type **range_types = NULL;
3942 struct attribute *attr;
3943 int ndim = 0;
3944 struct cleanup *back_to;
3945
3946 /* Return if we've already decoded this type. */
3947 if (die->type)
3948 {
3949 return;
3950 }
3951
3952 element_type = die_type (die, cu);
3953
3954 /* Irix 6.2 native cc creates array types without children for
3955 arrays with unspecified length. */
3956 if (die->child == NULL)
3957 {
3958 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
3959 range_type = create_range_type (NULL, index_type, 0, -1);
3960 set_die_type (die, create_array_type (NULL, element_type, range_type),
3961 cu);
3962 return;
3963 }
3964
3965 back_to = make_cleanup (null_cleanup, NULL);
3966 child_die = die->child;
3967 while (child_die && child_die->tag)
3968 {
3969 if (child_die->tag == DW_TAG_subrange_type)
3970 {
3971 read_subrange_type (child_die, cu);
3972
3973 if (child_die->type != NULL)
3974 {
3975 /* The range type was succesfully read. Save it for
3976 the array type creation. */
3977 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
3978 {
3979 range_types = (struct type **)
3980 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
3981 * sizeof (struct type *));
3982 if (ndim == 0)
3983 make_cleanup (free_current_contents, &range_types);
3984 }
3985 range_types[ndim++] = child_die->type;
3986 }
3987 }
3988 child_die = sibling_die (child_die);
3989 }
3990
3991 /* Dwarf2 dimensions are output from left to right, create the
3992 necessary array types in backwards order. */
3993
3994 type = element_type;
3995
3996 if (read_array_order (die, cu) == DW_ORD_col_major)
3997 {
3998 int i = 0;
3999 while (i < ndim)
4000 type = create_array_type (NULL, type, range_types[i++]);
4001 }
4002 else
4003 {
4004 while (ndim-- > 0)
4005 type = create_array_type (NULL, type, range_types[ndim]);
4006 }
4007
4008 /* Understand Dwarf2 support for vector types (like they occur on
4009 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4010 array type. This is not part of the Dwarf2/3 standard yet, but a
4011 custom vendor extension. The main difference between a regular
4012 array and the vector variant is that vectors are passed by value
4013 to functions. */
4014 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4015 if (attr)
4016 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4017
4018 do_cleanups (back_to);
4019
4020 /* Install the type in the die. */
4021 set_die_type (die, type, cu);
4022 }
4023
4024 static enum dwarf_array_dim_ordering
4025 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4026 {
4027 struct attribute *attr;
4028
4029 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4030
4031 if (attr) return DW_SND (attr);
4032
4033 /*
4034 GNU F77 is a special case, as at 08/2004 array type info is the
4035 opposite order to the dwarf2 specification, but data is still
4036 laid out as per normal fortran.
4037
4038 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4039 version checking.
4040 */
4041
4042 if (cu->language == language_fortran &&
4043 cu->producer && strstr (cu->producer, "GNU F77"))
4044 {
4045 return DW_ORD_row_major;
4046 }
4047
4048 switch (cu->language_defn->la_array_ordering)
4049 {
4050 case array_column_major:
4051 return DW_ORD_col_major;
4052 case array_row_major:
4053 default:
4054 return DW_ORD_row_major;
4055 };
4056 }
4057
4058
4059 /* First cut: install each common block member as a global variable. */
4060
4061 static void
4062 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4063 {
4064 struct die_info *child_die;
4065 struct attribute *attr;
4066 struct symbol *sym;
4067 CORE_ADDR base = (CORE_ADDR) 0;
4068
4069 attr = dwarf2_attr (die, DW_AT_location, cu);
4070 if (attr)
4071 {
4072 /* Support the .debug_loc offsets */
4073 if (attr_form_is_block (attr))
4074 {
4075 base = decode_locdesc (DW_BLOCK (attr), cu);
4076 }
4077 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4078 {
4079 dwarf2_complex_location_expr_complaint ();
4080 }
4081 else
4082 {
4083 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4084 "common block member");
4085 }
4086 }
4087 if (die->child != NULL)
4088 {
4089 child_die = die->child;
4090 while (child_die && child_die->tag)
4091 {
4092 sym = new_symbol (child_die, NULL, cu);
4093 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4094 if (attr)
4095 {
4096 SYMBOL_VALUE_ADDRESS (sym) =
4097 base + decode_locdesc (DW_BLOCK (attr), cu);
4098 add_symbol_to_list (sym, &global_symbols);
4099 }
4100 child_die = sibling_die (child_die);
4101 }
4102 }
4103 }
4104
4105 /* Read a C++ namespace. */
4106
4107 static void
4108 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4109 {
4110 struct objfile *objfile = cu->objfile;
4111 const char *previous_prefix = processing_current_prefix;
4112 const char *name;
4113 int is_anonymous;
4114 struct die_info *current_die;
4115 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4116
4117 name = namespace_name (die, &is_anonymous, cu);
4118
4119 /* Now build the name of the current namespace. */
4120
4121 if (previous_prefix[0] == '\0')
4122 {
4123 processing_current_prefix = name;
4124 }
4125 else
4126 {
4127 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4128 make_cleanup (xfree, temp_name);
4129 processing_current_prefix = temp_name;
4130 }
4131
4132 /* Add a symbol associated to this if we haven't seen the namespace
4133 before. Also, add a using directive if it's an anonymous
4134 namespace. */
4135
4136 if (dwarf2_extension (die, cu) == NULL)
4137 {
4138 struct type *type;
4139
4140 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4141 this cast will hopefully become unnecessary. */
4142 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4143 (char *) processing_current_prefix,
4144 objfile);
4145 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4146
4147 new_symbol (die, type, cu);
4148 set_die_type (die, type, cu);
4149
4150 if (is_anonymous)
4151 cp_add_using_directive (processing_current_prefix,
4152 strlen (previous_prefix),
4153 strlen (processing_current_prefix));
4154 }
4155
4156 if (die->child != NULL)
4157 {
4158 struct die_info *child_die = die->child;
4159
4160 while (child_die && child_die->tag)
4161 {
4162 process_die (child_die, cu);
4163 child_die = sibling_die (child_die);
4164 }
4165 }
4166
4167 processing_current_prefix = previous_prefix;
4168 do_cleanups (back_to);
4169 }
4170
4171 /* Return the name of the namespace represented by DIE. Set
4172 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4173 namespace. */
4174
4175 static const char *
4176 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4177 {
4178 struct die_info *current_die;
4179 const char *name = NULL;
4180
4181 /* Loop through the extensions until we find a name. */
4182
4183 for (current_die = die;
4184 current_die != NULL;
4185 current_die = dwarf2_extension (die, cu))
4186 {
4187 name = dwarf2_name (current_die, cu);
4188 if (name != NULL)
4189 break;
4190 }
4191
4192 /* Is it an anonymous namespace? */
4193
4194 *is_anonymous = (name == NULL);
4195 if (*is_anonymous)
4196 name = "(anonymous namespace)";
4197
4198 return name;
4199 }
4200
4201 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4202 the user defined type vector. */
4203
4204 static void
4205 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4206 {
4207 struct comp_unit_head *cu_header = &cu->header;
4208 struct type *type;
4209 struct attribute *attr_byte_size;
4210 struct attribute *attr_address_class;
4211 int byte_size, addr_class;
4212
4213 if (die->type)
4214 {
4215 return;
4216 }
4217
4218 type = lookup_pointer_type (die_type (die, cu));
4219
4220 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4221 if (attr_byte_size)
4222 byte_size = DW_UNSND (attr_byte_size);
4223 else
4224 byte_size = cu_header->addr_size;
4225
4226 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4227 if (attr_address_class)
4228 addr_class = DW_UNSND (attr_address_class);
4229 else
4230 addr_class = DW_ADDR_none;
4231
4232 /* If the pointer size or address class is different than the
4233 default, create a type variant marked as such and set the
4234 length accordingly. */
4235 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4236 {
4237 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4238 {
4239 int type_flags;
4240
4241 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4242 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4243 type = make_type_with_address_space (type, type_flags);
4244 }
4245 else if (TYPE_LENGTH (type) != byte_size)
4246 {
4247 complaint (&symfile_complaints, "invalid pointer size %d", byte_size);
4248 }
4249 else {
4250 /* Should we also complain about unhandled address classes? */
4251 }
4252 }
4253
4254 TYPE_LENGTH (type) = byte_size;
4255 set_die_type (die, type, cu);
4256 }
4257
4258 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4259 the user defined type vector. */
4260
4261 static void
4262 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4263 {
4264 struct objfile *objfile = cu->objfile;
4265 struct type *type;
4266 struct type *to_type;
4267 struct type *domain;
4268
4269 if (die->type)
4270 {
4271 return;
4272 }
4273
4274 type = alloc_type (objfile);
4275 to_type = die_type (die, cu);
4276 domain = die_containing_type (die, cu);
4277 smash_to_member_type (type, domain, to_type);
4278
4279 set_die_type (die, type, cu);
4280 }
4281
4282 /* Extract all information from a DW_TAG_reference_type DIE and add to
4283 the user defined type vector. */
4284
4285 static void
4286 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4287 {
4288 struct comp_unit_head *cu_header = &cu->header;
4289 struct type *type;
4290 struct attribute *attr;
4291
4292 if (die->type)
4293 {
4294 return;
4295 }
4296
4297 type = lookup_reference_type (die_type (die, cu));
4298 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4299 if (attr)
4300 {
4301 TYPE_LENGTH (type) = DW_UNSND (attr);
4302 }
4303 else
4304 {
4305 TYPE_LENGTH (type) = cu_header->addr_size;
4306 }
4307 set_die_type (die, type, cu);
4308 }
4309
4310 static void
4311 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4312 {
4313 struct type *base_type;
4314
4315 if (die->type)
4316 {
4317 return;
4318 }
4319
4320 base_type = die_type (die, cu);
4321 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4322 cu);
4323 }
4324
4325 static void
4326 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4327 {
4328 struct type *base_type;
4329
4330 if (die->type)
4331 {
4332 return;
4333 }
4334
4335 base_type = die_type (die, cu);
4336 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4337 cu);
4338 }
4339
4340 /* Extract all information from a DW_TAG_string_type DIE and add to
4341 the user defined type vector. It isn't really a user defined type,
4342 but it behaves like one, with other DIE's using an AT_user_def_type
4343 attribute to reference it. */
4344
4345 static void
4346 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4347 {
4348 struct objfile *objfile = cu->objfile;
4349 struct type *type, *range_type, *index_type, *char_type;
4350 struct attribute *attr;
4351 unsigned int length;
4352
4353 if (die->type)
4354 {
4355 return;
4356 }
4357
4358 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4359 if (attr)
4360 {
4361 length = DW_UNSND (attr);
4362 }
4363 else
4364 {
4365 /* check for the DW_AT_byte_size attribute */
4366 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4367 if (attr)
4368 {
4369 length = DW_UNSND (attr);
4370 }
4371 else
4372 {
4373 length = 1;
4374 }
4375 }
4376 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4377 range_type = create_range_type (NULL, index_type, 1, length);
4378 if (cu->language == language_fortran)
4379 {
4380 /* Need to create a unique string type for bounds
4381 information */
4382 type = create_string_type (0, range_type);
4383 }
4384 else
4385 {
4386 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4387 type = create_string_type (char_type, range_type);
4388 }
4389 set_die_type (die, type, cu);
4390 }
4391
4392 /* Handle DIES due to C code like:
4393
4394 struct foo
4395 {
4396 int (*funcp)(int a, long l);
4397 int b;
4398 };
4399
4400 ('funcp' generates a DW_TAG_subroutine_type DIE)
4401 */
4402
4403 static void
4404 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4405 {
4406 struct type *type; /* Type that this function returns */
4407 struct type *ftype; /* Function that returns above type */
4408 struct attribute *attr;
4409
4410 /* Decode the type that this subroutine returns */
4411 if (die->type)
4412 {
4413 return;
4414 }
4415 type = die_type (die, cu);
4416 ftype = lookup_function_type (type);
4417
4418 /* All functions in C++ and Java have prototypes. */
4419 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4420 if ((attr && (DW_UNSND (attr) != 0))
4421 || cu->language == language_cplus
4422 || cu->language == language_java)
4423 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4424
4425 if (die->child != NULL)
4426 {
4427 struct die_info *child_die;
4428 int nparams = 0;
4429 int iparams = 0;
4430
4431 /* Count the number of parameters.
4432 FIXME: GDB currently ignores vararg functions, but knows about
4433 vararg member functions. */
4434 child_die = die->child;
4435 while (child_die && child_die->tag)
4436 {
4437 if (child_die->tag == DW_TAG_formal_parameter)
4438 nparams++;
4439 else if (child_die->tag == DW_TAG_unspecified_parameters)
4440 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4441 child_die = sibling_die (child_die);
4442 }
4443
4444 /* Allocate storage for parameters and fill them in. */
4445 TYPE_NFIELDS (ftype) = nparams;
4446 TYPE_FIELDS (ftype) = (struct field *)
4447 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
4448
4449 child_die = die->child;
4450 while (child_die && child_die->tag)
4451 {
4452 if (child_die->tag == DW_TAG_formal_parameter)
4453 {
4454 /* Dwarf2 has no clean way to discern C++ static and non-static
4455 member functions. G++ helps GDB by marking the first
4456 parameter for non-static member functions (which is the
4457 this pointer) as artificial. We pass this information
4458 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4459 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4460 if (attr)
4461 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4462 else
4463 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4464 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4465 iparams++;
4466 }
4467 child_die = sibling_die (child_die);
4468 }
4469 }
4470
4471 set_die_type (die, ftype, cu);
4472 }
4473
4474 static void
4475 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4476 {
4477 struct objfile *objfile = cu->objfile;
4478 struct attribute *attr;
4479 char *name = NULL;
4480
4481 if (!die->type)
4482 {
4483 attr = dwarf2_attr (die, DW_AT_name, cu);
4484 if (attr && DW_STRING (attr))
4485 {
4486 name = DW_STRING (attr);
4487 }
4488 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4489 TYPE_FLAG_TARGET_STUB, name, objfile),
4490 cu);
4491 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4492 }
4493 }
4494
4495 /* Find a representation of a given base type and install
4496 it in the TYPE field of the die. */
4497
4498 static void
4499 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4500 {
4501 struct objfile *objfile = cu->objfile;
4502 struct type *type;
4503 struct attribute *attr;
4504 int encoding = 0, size = 0;
4505
4506 /* If we've already decoded this die, this is a no-op. */
4507 if (die->type)
4508 {
4509 return;
4510 }
4511
4512 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4513 if (attr)
4514 {
4515 encoding = DW_UNSND (attr);
4516 }
4517 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4518 if (attr)
4519 {
4520 size = DW_UNSND (attr);
4521 }
4522 attr = dwarf2_attr (die, DW_AT_name, cu);
4523 if (attr && DW_STRING (attr))
4524 {
4525 enum type_code code = TYPE_CODE_INT;
4526 int type_flags = 0;
4527
4528 switch (encoding)
4529 {
4530 case DW_ATE_address:
4531 /* Turn DW_ATE_address into a void * pointer. */
4532 code = TYPE_CODE_PTR;
4533 type_flags |= TYPE_FLAG_UNSIGNED;
4534 break;
4535 case DW_ATE_boolean:
4536 code = TYPE_CODE_BOOL;
4537 type_flags |= TYPE_FLAG_UNSIGNED;
4538 break;
4539 case DW_ATE_complex_float:
4540 code = TYPE_CODE_COMPLEX;
4541 break;
4542 case DW_ATE_float:
4543 code = TYPE_CODE_FLT;
4544 break;
4545 case DW_ATE_signed:
4546 case DW_ATE_signed_char:
4547 break;
4548 case DW_ATE_unsigned:
4549 case DW_ATE_unsigned_char:
4550 type_flags |= TYPE_FLAG_UNSIGNED;
4551 break;
4552 default:
4553 complaint (&symfile_complaints, "unsupported DW_AT_encoding: '%s'",
4554 dwarf_type_encoding_name (encoding));
4555 break;
4556 }
4557 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4558 if (encoding == DW_ATE_address)
4559 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4560 cu);
4561 else if (encoding == DW_ATE_complex_float)
4562 {
4563 if (size == 32)
4564 TYPE_TARGET_TYPE (type)
4565 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4566 else if (size == 16)
4567 TYPE_TARGET_TYPE (type)
4568 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4569 else if (size == 8)
4570 TYPE_TARGET_TYPE (type)
4571 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4572 }
4573 }
4574 else
4575 {
4576 type = dwarf_base_type (encoding, size, cu);
4577 }
4578 set_die_type (die, type, cu);
4579 }
4580
4581 /* Read the given DW_AT_subrange DIE. */
4582
4583 static void
4584 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4585 {
4586 struct type *base_type;
4587 struct type *range_type;
4588 struct attribute *attr;
4589 int low = 0;
4590 int high = -1;
4591
4592 /* If we have already decoded this die, then nothing more to do. */
4593 if (die->type)
4594 return;
4595
4596 base_type = die_type (die, cu);
4597 if (base_type == NULL)
4598 {
4599 complaint (&symfile_complaints,
4600 "DW_AT_type missing from DW_TAG_subrange_type");
4601 return;
4602 }
4603
4604 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4605 base_type = alloc_type (NULL);
4606
4607 if (cu->language == language_fortran)
4608 {
4609 /* FORTRAN implies a lower bound of 1, if not given. */
4610 low = 1;
4611 }
4612
4613 /* FIXME: For variable sized arrays either of these could be
4614 a variable rather than a constant value. We'll allow it,
4615 but we don't know how to handle it. */
4616 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4617 if (attr)
4618 low = dwarf2_get_attr_constant_value (attr, 0);
4619
4620 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4621 if (attr)
4622 {
4623 if (attr->form == DW_FORM_block1)
4624 {
4625 /* GCC encodes arrays with unspecified or dynamic length
4626 with a DW_FORM_block1 attribute.
4627 FIXME: GDB does not yet know how to handle dynamic
4628 arrays properly, treat them as arrays with unspecified
4629 length for now.
4630
4631 FIXME: jimb/2003-09-22: GDB does not really know
4632 how to handle arrays of unspecified length
4633 either; we just represent them as zero-length
4634 arrays. Choose an appropriate upper bound given
4635 the lower bound we've computed above. */
4636 high = low - 1;
4637 }
4638 else
4639 high = dwarf2_get_attr_constant_value (attr, 1);
4640 }
4641
4642 range_type = create_range_type (NULL, base_type, low, high);
4643
4644 attr = dwarf2_attr (die, DW_AT_name, cu);
4645 if (attr && DW_STRING (attr))
4646 TYPE_NAME (range_type) = DW_STRING (attr);
4647
4648 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4649 if (attr)
4650 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4651
4652 set_die_type (die, range_type, cu);
4653 }
4654
4655
4656 /* Read a whole compilation unit into a linked list of dies. */
4657
4658 static struct die_info *
4659 read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4660 {
4661 /* Reset die reference table; we are
4662 building new ones now. */
4663 dwarf2_empty_hash_tables ();
4664
4665 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4666 }
4667
4668 /* Read a single die and all its descendents. Set the die's sibling
4669 field to NULL; set other fields in the die correctly, and set all
4670 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4671 location of the info_ptr after reading all of those dies. PARENT
4672 is the parent of the die in question. */
4673
4674 static struct die_info *
4675 read_die_and_children (char *info_ptr, bfd *abfd,
4676 struct dwarf2_cu *cu,
4677 char **new_info_ptr,
4678 struct die_info *parent)
4679 {
4680 struct die_info *die;
4681 char *cur_ptr;
4682 int has_children;
4683
4684 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4685 store_in_ref_table (die->offset, die);
4686
4687 if (has_children)
4688 {
4689 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4690 new_info_ptr, die);
4691 }
4692 else
4693 {
4694 die->child = NULL;
4695 *new_info_ptr = cur_ptr;
4696 }
4697
4698 die->sibling = NULL;
4699 die->parent = parent;
4700 return die;
4701 }
4702
4703 /* Read a die, all of its descendents, and all of its siblings; set
4704 all of the fields of all of the dies correctly. Arguments are as
4705 in read_die_and_children. */
4706
4707 static struct die_info *
4708 read_die_and_siblings (char *info_ptr, bfd *abfd,
4709 struct dwarf2_cu *cu,
4710 char **new_info_ptr,
4711 struct die_info *parent)
4712 {
4713 struct die_info *first_die, *last_sibling;
4714 char *cur_ptr;
4715
4716 cur_ptr = info_ptr;
4717 first_die = last_sibling = NULL;
4718
4719 while (1)
4720 {
4721 struct die_info *die
4722 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4723
4724 if (!first_die)
4725 {
4726 first_die = die;
4727 }
4728 else
4729 {
4730 last_sibling->sibling = die;
4731 }
4732
4733 if (die->tag == 0)
4734 {
4735 *new_info_ptr = cur_ptr;
4736 return first_die;
4737 }
4738 else
4739 {
4740 last_sibling = die;
4741 }
4742 }
4743 }
4744
4745 /* Free a linked list of dies. */
4746
4747 static void
4748 free_die_list (struct die_info *dies)
4749 {
4750 struct die_info *die, *next;
4751
4752 die = dies;
4753 while (die)
4754 {
4755 if (die->child != NULL)
4756 free_die_list (die->child);
4757 next = die->sibling;
4758 xfree (die->attrs);
4759 xfree (die);
4760 die = next;
4761 }
4762 }
4763
4764 static void
4765 do_free_die_list_cleanup (void *dies)
4766 {
4767 free_die_list (dies);
4768 }
4769
4770 static struct cleanup *
4771 make_cleanup_free_die_list (struct die_info *dies)
4772 {
4773 return make_cleanup (do_free_die_list_cleanup, dies);
4774 }
4775
4776
4777 /* Read the contents of the section at OFFSET and of size SIZE from the
4778 object file specified by OBJFILE into the objfile_obstack and return it. */
4779
4780 char *
4781 dwarf2_read_section (struct objfile *objfile, asection *sectp)
4782 {
4783 bfd *abfd = objfile->obfd;
4784 char *buf, *retbuf;
4785 bfd_size_type size = bfd_get_section_size (sectp);
4786
4787 if (size == 0)
4788 return NULL;
4789
4790 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size);
4791 retbuf
4792 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4793 if (retbuf != NULL)
4794 return retbuf;
4795
4796 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4797 || bfd_bread (buf, size, abfd) != size)
4798 error ("Dwarf Error: Can't read DWARF data from '%s'",
4799 bfd_get_filename (abfd));
4800
4801 return buf;
4802 }
4803
4804 /* In DWARF version 2, the description of the debugging information is
4805 stored in a separate .debug_abbrev section. Before we read any
4806 dies from a section we read in all abbreviations and install them
4807 in a hash table. This function also sets flags in CU describing
4808 the data found in the abbrev table. */
4809
4810 static void
4811 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
4812 {
4813 struct comp_unit_head *cu_header = &cu->header;
4814 char *abbrev_ptr;
4815 struct abbrev_info *cur_abbrev;
4816 unsigned int abbrev_number, bytes_read, abbrev_name;
4817 unsigned int abbrev_form, hash_number;
4818 struct attr_abbrev *cur_attrs;
4819 unsigned int allocated_attrs;
4820
4821 /* Initialize dwarf2 abbrevs */
4822 obstack_init (&cu->abbrev_obstack);
4823 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4824 (ABBREV_HASH_SIZE
4825 * sizeof (struct abbrev_info *)));
4826 memset (cu->dwarf2_abbrevs, 0,
4827 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
4828
4829 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
4830 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4831 abbrev_ptr += bytes_read;
4832
4833 allocated_attrs = ATTR_ALLOC_CHUNK;
4834 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4835
4836 /* loop until we reach an abbrev number of 0 */
4837 while (abbrev_number)
4838 {
4839 cur_abbrev = dwarf_alloc_abbrev (cu);
4840
4841 /* read in abbrev header */
4842 cur_abbrev->number = abbrev_number;
4843 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4844 abbrev_ptr += bytes_read;
4845 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
4846 abbrev_ptr += 1;
4847
4848 if (cur_abbrev->tag == DW_TAG_namespace)
4849 cu->has_namespace_info = 1;
4850
4851 /* now read in declarations */
4852 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4853 abbrev_ptr += bytes_read;
4854 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4855 abbrev_ptr += bytes_read;
4856 while (abbrev_name)
4857 {
4858 if (cur_abbrev->num_attrs == allocated_attrs)
4859 {
4860 allocated_attrs += ATTR_ALLOC_CHUNK;
4861 cur_attrs
4862 = xrealloc (cur_attrs, (allocated_attrs
4863 * sizeof (struct attr_abbrev)));
4864 }
4865
4866 /* Record whether this compilation unit might have
4867 inter-compilation-unit references. If we don't know what form
4868 this attribute will have, then it might potentially be a
4869 DW_FORM_ref_addr, so we conservatively expect inter-CU
4870 references. */
4871
4872 if (abbrev_form == DW_FORM_ref_addr
4873 || abbrev_form == DW_FORM_indirect)
4874 cu->has_form_ref_addr = 1;
4875
4876 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
4877 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
4878 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4879 abbrev_ptr += bytes_read;
4880 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4881 abbrev_ptr += bytes_read;
4882 }
4883
4884 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
4885 (cur_abbrev->num_attrs
4886 * sizeof (struct attr_abbrev)));
4887 memcpy (cur_abbrev->attrs, cur_attrs,
4888 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
4889
4890 hash_number = abbrev_number % ABBREV_HASH_SIZE;
4891 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
4892 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
4893
4894 /* Get next abbreviation.
4895 Under Irix6 the abbreviations for a compilation unit are not
4896 always properly terminated with an abbrev number of 0.
4897 Exit loop if we encounter an abbreviation which we have
4898 already read (which means we are about to read the abbreviations
4899 for the next compile unit) or if the end of the abbreviation
4900 table is reached. */
4901 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
4902 >= dwarf2_per_objfile->abbrev_size)
4903 break;
4904 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4905 abbrev_ptr += bytes_read;
4906 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
4907 break;
4908 }
4909
4910 xfree (cur_attrs);
4911 }
4912
4913 /* Release the memory used by the abbrev table for a compilation unit. */
4914
4915 static void
4916 dwarf2_free_abbrev_table (void *ptr_to_cu)
4917 {
4918 struct dwarf2_cu *cu = ptr_to_cu;
4919
4920 obstack_free (&cu->abbrev_obstack, NULL);
4921 cu->dwarf2_abbrevs = NULL;
4922 }
4923
4924 /* Lookup an abbrev_info structure in the abbrev hash table. */
4925
4926 static struct abbrev_info *
4927 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
4928 {
4929 unsigned int hash_number;
4930 struct abbrev_info *abbrev;
4931
4932 hash_number = number % ABBREV_HASH_SIZE;
4933 abbrev = cu->dwarf2_abbrevs[hash_number];
4934
4935 while (abbrev)
4936 {
4937 if (abbrev->number == number)
4938 return abbrev;
4939 else
4940 abbrev = abbrev->next;
4941 }
4942 return NULL;
4943 }
4944
4945 /* Returns nonzero if TAG represents a type that we might generate a partial
4946 symbol for. */
4947
4948 static int
4949 is_type_tag_for_partial (int tag)
4950 {
4951 switch (tag)
4952 {
4953 #if 0
4954 /* Some types that would be reasonable to generate partial symbols for,
4955 that we don't at present. */
4956 case DW_TAG_array_type:
4957 case DW_TAG_file_type:
4958 case DW_TAG_ptr_to_member_type:
4959 case DW_TAG_set_type:
4960 case DW_TAG_string_type:
4961 case DW_TAG_subroutine_type:
4962 #endif
4963 case DW_TAG_base_type:
4964 case DW_TAG_class_type:
4965 case DW_TAG_enumeration_type:
4966 case DW_TAG_structure_type:
4967 case DW_TAG_subrange_type:
4968 case DW_TAG_typedef:
4969 case DW_TAG_union_type:
4970 return 1;
4971 default:
4972 return 0;
4973 }
4974 }
4975
4976 /* Load all DIEs that are interesting for partial symbols into memory. */
4977
4978 static struct partial_die_info *
4979 load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
4980 struct dwarf2_cu *cu)
4981 {
4982 struct partial_die_info *part_die;
4983 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
4984 struct abbrev_info *abbrev;
4985 unsigned int bytes_read;
4986
4987 int nesting_level = 1;
4988
4989 parent_die = NULL;
4990 last_die = NULL;
4991
4992 cu->partial_dies
4993 = htab_create_alloc_ex (cu->header.length / 12,
4994 partial_die_hash,
4995 partial_die_eq,
4996 NULL,
4997 &cu->comp_unit_obstack,
4998 hashtab_obstack_allocate,
4999 dummy_obstack_deallocate);
5000
5001 part_die = obstack_alloc (&cu->comp_unit_obstack,
5002 sizeof (struct partial_die_info));
5003
5004 while (1)
5005 {
5006 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5007
5008 /* A NULL abbrev means the end of a series of children. */
5009 if (abbrev == NULL)
5010 {
5011 if (--nesting_level == 0)
5012 {
5013 /* PART_DIE was probably the last thing allocated on the
5014 comp_unit_obstack, so we could call obstack_free
5015 here. We don't do that because the waste is small,
5016 and will be cleaned up when we're done with this
5017 compilation unit. This way, we're also more robust
5018 against other users of the comp_unit_obstack. */
5019 return first_die;
5020 }
5021 info_ptr += bytes_read;
5022 last_die = parent_die;
5023 parent_die = parent_die->die_parent;
5024 continue;
5025 }
5026
5027 /* Check whether this DIE is interesting enough to save. */
5028 if (!is_type_tag_for_partial (abbrev->tag)
5029 && abbrev->tag != DW_TAG_enumerator
5030 && abbrev->tag != DW_TAG_subprogram
5031 && abbrev->tag != DW_TAG_variable
5032 && abbrev->tag != DW_TAG_namespace)
5033 {
5034 /* Otherwise we skip to the next sibling, if any. */
5035 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5036 continue;
5037 }
5038
5039 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5040 abfd, info_ptr, cu);
5041
5042 /* This two-pass algorithm for processing partial symbols has a
5043 high cost in cache pressure. Thus, handle some simple cases
5044 here which cover the majority of C partial symbols. DIEs
5045 which neither have specification tags in them, nor could have
5046 specification tags elsewhere pointing at them, can simply be
5047 processed and discarded.
5048
5049 This segment is also optional; scan_partial_symbols and
5050 add_partial_symbol will handle these DIEs if we chain
5051 them in normally. When compilers which do not emit large
5052 quantities of duplicate debug information are more common,
5053 this code can probably be removed. */
5054
5055 /* Any complete simple types at the top level (pretty much all
5056 of them, for a language without namespaces), can be processed
5057 directly. */
5058 if (parent_die == NULL
5059 && part_die->has_specification == 0
5060 && part_die->is_declaration == 0
5061 && (part_die->tag == DW_TAG_typedef
5062 || part_die->tag == DW_TAG_base_type
5063 || part_die->tag == DW_TAG_subrange_type))
5064 {
5065 if (building_psymtab && part_die->name != NULL)
5066 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5067 VAR_DOMAIN, LOC_TYPEDEF,
5068 &cu->objfile->static_psymbols,
5069 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5070 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5071 continue;
5072 }
5073
5074 /* If we're at the second level, and we're an enumerator, and
5075 our parent has no specification (meaning possibly lives in a
5076 namespace elsewhere), then we can add the partial symbol now
5077 instead of queueing it. */
5078 if (part_die->tag == DW_TAG_enumerator
5079 && parent_die != NULL
5080 && parent_die->die_parent == NULL
5081 && parent_die->tag == DW_TAG_enumeration_type
5082 && parent_die->has_specification == 0)
5083 {
5084 if (part_die->name == NULL)
5085 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
5086 else if (building_psymtab)
5087 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5088 VAR_DOMAIN, LOC_CONST,
5089 (cu->language == language_cplus
5090 || cu->language == language_java)
5091 ? &cu->objfile->global_psymbols
5092 : &cu->objfile->static_psymbols,
5093 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5094
5095 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5096 continue;
5097 }
5098
5099 /* We'll save this DIE so link it in. */
5100 part_die->die_parent = parent_die;
5101 part_die->die_sibling = NULL;
5102 part_die->die_child = NULL;
5103
5104 if (last_die && last_die == parent_die)
5105 last_die->die_child = part_die;
5106 else if (last_die)
5107 last_die->die_sibling = part_die;
5108
5109 last_die = part_die;
5110
5111 if (first_die == NULL)
5112 first_die = part_die;
5113
5114 /* Maybe add the DIE to the hash table. Not all DIEs that we
5115 find interesting need to be in the hash table, because we
5116 also have the parent/sibling/child chains; only those that we
5117 might refer to by offset later during partial symbol reading.
5118
5119 For now this means things that might have be the target of a
5120 DW_AT_specification, DW_AT_abstract_origin, or
5121 DW_AT_extension. DW_AT_extension will refer only to
5122 namespaces; DW_AT_abstract_origin refers to functions (and
5123 many things under the function DIE, but we do not recurse
5124 into function DIEs during partial symbol reading) and
5125 possibly variables as well; DW_AT_specification refers to
5126 declarations. Declarations ought to have the DW_AT_declaration
5127 flag. It happens that GCC forgets to put it in sometimes, but
5128 only for functions, not for types.
5129
5130 Adding more things than necessary to the hash table is harmless
5131 except for the performance cost. Adding too few will result in
5132 internal errors in find_partial_die. */
5133
5134 if (abbrev->tag == DW_TAG_subprogram
5135 || abbrev->tag == DW_TAG_variable
5136 || abbrev->tag == DW_TAG_namespace
5137 || part_die->is_declaration)
5138 {
5139 void **slot;
5140
5141 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5142 part_die->offset, INSERT);
5143 *slot = part_die;
5144 }
5145
5146 part_die = obstack_alloc (&cu->comp_unit_obstack,
5147 sizeof (struct partial_die_info));
5148
5149 /* For some DIEs we want to follow their children (if any). For C
5150 we have no reason to follow the children of structures; for other
5151 languages we have to, both so that we can get at method physnames
5152 to infer fully qualified class names, and for DW_AT_specification. */
5153 if (last_die->has_children
5154 && (last_die->tag == DW_TAG_namespace
5155 || last_die->tag == DW_TAG_enumeration_type
5156 || (cu->language != language_c
5157 && (last_die->tag == DW_TAG_class_type
5158 || last_die->tag == DW_TAG_structure_type
5159 || last_die->tag == DW_TAG_union_type))))
5160 {
5161 nesting_level++;
5162 parent_die = last_die;
5163 continue;
5164 }
5165
5166 /* Otherwise we skip to the next sibling, if any. */
5167 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5168
5169 /* Back to the top, do it again. */
5170 }
5171 }
5172
5173 /* Read a minimal amount of information into the minimal die structure. */
5174
5175 static char *
5176 read_partial_die (struct partial_die_info *part_die,
5177 struct abbrev_info *abbrev,
5178 unsigned int abbrev_len, bfd *abfd,
5179 char *info_ptr, struct dwarf2_cu *cu)
5180 {
5181 unsigned int bytes_read, i;
5182 struct attribute attr;
5183 int has_low_pc_attr = 0;
5184 int has_high_pc_attr = 0;
5185
5186 memset (part_die, 0, sizeof (struct partial_die_info));
5187
5188 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5189
5190 info_ptr += abbrev_len;
5191
5192 if (abbrev == NULL)
5193 return info_ptr;
5194
5195 part_die->tag = abbrev->tag;
5196 part_die->has_children = abbrev->has_children;
5197
5198 for (i = 0; i < abbrev->num_attrs; ++i)
5199 {
5200 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5201
5202 /* Store the data if it is of an attribute we want to keep in a
5203 partial symbol table. */
5204 switch (attr.name)
5205 {
5206 case DW_AT_name:
5207
5208 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5209 if (part_die->name == NULL)
5210 part_die->name = DW_STRING (&attr);
5211 break;
5212 case DW_AT_comp_dir:
5213 if (part_die->dirname == NULL)
5214 part_die->dirname = DW_STRING (&attr);
5215 break;
5216 case DW_AT_MIPS_linkage_name:
5217 part_die->name = DW_STRING (&attr);
5218 break;
5219 case DW_AT_low_pc:
5220 has_low_pc_attr = 1;
5221 part_die->lowpc = DW_ADDR (&attr);
5222 break;
5223 case DW_AT_high_pc:
5224 has_high_pc_attr = 1;
5225 part_die->highpc = DW_ADDR (&attr);
5226 break;
5227 case DW_AT_location:
5228 /* Support the .debug_loc offsets */
5229 if (attr_form_is_block (&attr))
5230 {
5231 part_die->locdesc = DW_BLOCK (&attr);
5232 }
5233 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5234 {
5235 dwarf2_complex_location_expr_complaint ();
5236 }
5237 else
5238 {
5239 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5240 "partial symbol information");
5241 }
5242 break;
5243 case DW_AT_language:
5244 part_die->language = DW_UNSND (&attr);
5245 break;
5246 case DW_AT_external:
5247 part_die->is_external = DW_UNSND (&attr);
5248 break;
5249 case DW_AT_declaration:
5250 part_die->is_declaration = DW_UNSND (&attr);
5251 break;
5252 case DW_AT_type:
5253 part_die->has_type = 1;
5254 break;
5255 case DW_AT_abstract_origin:
5256 case DW_AT_specification:
5257 case DW_AT_extension:
5258 part_die->has_specification = 1;
5259 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5260 break;
5261 case DW_AT_sibling:
5262 /* Ignore absolute siblings, they might point outside of
5263 the current compile unit. */
5264 if (attr.form == DW_FORM_ref_addr)
5265 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
5266 else
5267 part_die->sibling = dwarf2_per_objfile->info_buffer
5268 + dwarf2_get_ref_die_offset (&attr, cu);
5269 break;
5270 case DW_AT_stmt_list:
5271 part_die->has_stmt_list = 1;
5272 part_die->line_offset = DW_UNSND (&attr);
5273 break;
5274 default:
5275 break;
5276 }
5277 }
5278
5279 /* When using the GNU linker, .gnu.linkonce. sections are used to
5280 eliminate duplicate copies of functions and vtables and such.
5281 The linker will arbitrarily choose one and discard the others.
5282 The AT_*_pc values for such functions refer to local labels in
5283 these sections. If the section from that file was discarded, the
5284 labels are not in the output, so the relocs get a value of 0.
5285 If this is a discarded function, mark the pc bounds as invalid,
5286 so that GDB will ignore it. */
5287 if (has_low_pc_attr && has_high_pc_attr
5288 && part_die->lowpc < part_die->highpc
5289 && (part_die->lowpc != 0
5290 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
5291 part_die->has_pc_info = 1;
5292 return info_ptr;
5293 }
5294
5295 /* Find a cached partial DIE at OFFSET in CU. */
5296
5297 static struct partial_die_info *
5298 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5299 {
5300 struct partial_die_info *lookup_die = NULL;
5301 struct partial_die_info part_die;
5302
5303 part_die.offset = offset;
5304 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5305
5306 if (lookup_die == NULL)
5307 internal_error (__FILE__, __LINE__,
5308 "could not find partial DIE in cache\n");
5309
5310 return lookup_die;
5311 }
5312
5313 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5314
5315 static struct partial_die_info *
5316 find_partial_die (unsigned long offset, struct dwarf2_cu *cu,
5317 struct dwarf2_cu **target_cu)
5318 {
5319 struct dwarf2_per_cu_data *per_cu;
5320
5321 if (offset >= cu->header.offset
5322 && offset < cu->header.offset + cu->header.length)
5323 {
5324 *target_cu = cu;
5325 return find_partial_die_in_comp_unit (offset, cu);
5326 }
5327
5328 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5329
5330 /* If this offset isn't pointing into a known compilation unit,
5331 the debug information is probably corrupted. */
5332 if (per_cu == NULL)
5333 error ("Dwarf Error: could not find partial DIE containing "
5334 "offset 0x%lx [in module %s]",
5335 (long) offset, bfd_get_filename (cu->objfile->obfd));
5336
5337 if (per_cu->cu == NULL)
5338 {
5339 load_comp_unit (per_cu, cu->objfile);
5340 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5341 dwarf2_per_objfile->read_in_chain = per_cu;
5342 }
5343
5344 per_cu->cu->last_used = 0;
5345 *target_cu = per_cu->cu;
5346 return find_partial_die_in_comp_unit (offset, per_cu->cu);
5347 }
5348
5349 /* Adjust PART_DIE before generating a symbol for it. This function
5350 may set the is_external flag or change the DIE's name. */
5351
5352 static void
5353 fixup_partial_die (struct partial_die_info *part_die,
5354 struct dwarf2_cu *cu)
5355 {
5356 /* If we found a reference attribute and the DIE has no name, try
5357 to find a name in the referred to DIE. */
5358
5359 if (part_die->name == NULL && part_die->has_specification)
5360 {
5361 struct partial_die_info *spec_die;
5362 struct dwarf2_cu *spec_cu;
5363
5364 spec_die = find_partial_die (part_die->spec_offset, cu, &spec_cu);
5365
5366 fixup_partial_die (spec_die, spec_cu);
5367
5368 if (spec_die->name)
5369 {
5370 part_die->name = spec_die->name;
5371
5372 /* Copy DW_AT_external attribute if it is set. */
5373 if (spec_die->is_external)
5374 part_die->is_external = spec_die->is_external;
5375 }
5376 }
5377
5378 /* Set default names for some unnamed DIEs. */
5379 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5380 || part_die->tag == DW_TAG_class_type))
5381 part_die->name = "(anonymous class)";
5382
5383 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5384 part_die->name = "(anonymous namespace)";
5385
5386 if (part_die->tag == DW_TAG_structure_type
5387 || part_die->tag == DW_TAG_class_type
5388 || part_die->tag == DW_TAG_union_type)
5389 guess_structure_name (part_die, cu);
5390 }
5391
5392 /* Read the die from the .debug_info section buffer. Set DIEP to
5393 point to a newly allocated die with its information, except for its
5394 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5395 whether the die has children or not. */
5396
5397 static char *
5398 read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
5399 struct dwarf2_cu *cu, int *has_children)
5400 {
5401 unsigned int abbrev_number, bytes_read, i, offset;
5402 struct abbrev_info *abbrev;
5403 struct die_info *die;
5404
5405 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5406 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5407 info_ptr += bytes_read;
5408 if (!abbrev_number)
5409 {
5410 die = dwarf_alloc_die ();
5411 die->tag = 0;
5412 die->abbrev = abbrev_number;
5413 die->type = NULL;
5414 *diep = die;
5415 *has_children = 0;
5416 return info_ptr;
5417 }
5418
5419 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5420 if (!abbrev)
5421 {
5422 error ("Dwarf Error: could not find abbrev number %d [in module %s]",
5423 abbrev_number,
5424 bfd_get_filename (abfd));
5425 }
5426 die = dwarf_alloc_die ();
5427 die->offset = offset;
5428 die->tag = abbrev->tag;
5429 die->abbrev = abbrev_number;
5430 die->type = NULL;
5431
5432 die->num_attrs = abbrev->num_attrs;
5433 die->attrs = (struct attribute *)
5434 xmalloc (die->num_attrs * sizeof (struct attribute));
5435
5436 for (i = 0; i < abbrev->num_attrs; ++i)
5437 {
5438 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5439 abfd, info_ptr, cu);
5440 }
5441
5442 *diep = die;
5443 *has_children = abbrev->has_children;
5444 return info_ptr;
5445 }
5446
5447 /* Read an attribute value described by an attribute form. */
5448
5449 static char *
5450 read_attribute_value (struct attribute *attr, unsigned form,
5451 bfd *abfd, char *info_ptr,
5452 struct dwarf2_cu *cu)
5453 {
5454 struct comp_unit_head *cu_header = &cu->header;
5455 unsigned int bytes_read;
5456 struct dwarf_block *blk;
5457
5458 attr->form = form;
5459 switch (form)
5460 {
5461 case DW_FORM_addr:
5462 case DW_FORM_ref_addr:
5463 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5464 info_ptr += bytes_read;
5465 break;
5466 case DW_FORM_block2:
5467 blk = dwarf_alloc_block (cu);
5468 blk->size = read_2_bytes (abfd, info_ptr);
5469 info_ptr += 2;
5470 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5471 info_ptr += blk->size;
5472 DW_BLOCK (attr) = blk;
5473 break;
5474 case DW_FORM_block4:
5475 blk = dwarf_alloc_block (cu);
5476 blk->size = read_4_bytes (abfd, info_ptr);
5477 info_ptr += 4;
5478 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5479 info_ptr += blk->size;
5480 DW_BLOCK (attr) = blk;
5481 break;
5482 case DW_FORM_data2:
5483 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5484 info_ptr += 2;
5485 break;
5486 case DW_FORM_data4:
5487 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5488 info_ptr += 4;
5489 break;
5490 case DW_FORM_data8:
5491 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5492 info_ptr += 8;
5493 break;
5494 case DW_FORM_string:
5495 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5496 info_ptr += bytes_read;
5497 break;
5498 case DW_FORM_strp:
5499 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5500 &bytes_read);
5501 info_ptr += bytes_read;
5502 break;
5503 case DW_FORM_block:
5504 blk = dwarf_alloc_block (cu);
5505 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5506 info_ptr += bytes_read;
5507 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5508 info_ptr += blk->size;
5509 DW_BLOCK (attr) = blk;
5510 break;
5511 case DW_FORM_block1:
5512 blk = dwarf_alloc_block (cu);
5513 blk->size = read_1_byte (abfd, info_ptr);
5514 info_ptr += 1;
5515 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5516 info_ptr += blk->size;
5517 DW_BLOCK (attr) = blk;
5518 break;
5519 case DW_FORM_data1:
5520 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5521 info_ptr += 1;
5522 break;
5523 case DW_FORM_flag:
5524 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5525 info_ptr += 1;
5526 break;
5527 case DW_FORM_sdata:
5528 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5529 info_ptr += bytes_read;
5530 break;
5531 case DW_FORM_udata:
5532 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5533 info_ptr += bytes_read;
5534 break;
5535 case DW_FORM_ref1:
5536 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5537 info_ptr += 1;
5538 break;
5539 case DW_FORM_ref2:
5540 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5541 info_ptr += 2;
5542 break;
5543 case DW_FORM_ref4:
5544 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5545 info_ptr += 4;
5546 break;
5547 case DW_FORM_ref8:
5548 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5549 info_ptr += 8;
5550 break;
5551 case DW_FORM_ref_udata:
5552 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5553 info_ptr += bytes_read;
5554 break;
5555 case DW_FORM_indirect:
5556 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5557 info_ptr += bytes_read;
5558 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5559 break;
5560 default:
5561 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
5562 dwarf_form_name (form),
5563 bfd_get_filename (abfd));
5564 }
5565 return info_ptr;
5566 }
5567
5568 /* Read an attribute described by an abbreviated attribute. */
5569
5570 static char *
5571 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5572 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
5573 {
5574 attr->name = abbrev->name;
5575 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5576 }
5577
5578 /* read dwarf information from a buffer */
5579
5580 static unsigned int
5581 read_1_byte (bfd *abfd, char *buf)
5582 {
5583 return bfd_get_8 (abfd, (bfd_byte *) buf);
5584 }
5585
5586 static int
5587 read_1_signed_byte (bfd *abfd, char *buf)
5588 {
5589 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
5590 }
5591
5592 static unsigned int
5593 read_2_bytes (bfd *abfd, char *buf)
5594 {
5595 return bfd_get_16 (abfd, (bfd_byte *) buf);
5596 }
5597
5598 static int
5599 read_2_signed_bytes (bfd *abfd, char *buf)
5600 {
5601 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5602 }
5603
5604 static unsigned int
5605 read_4_bytes (bfd *abfd, char *buf)
5606 {
5607 return bfd_get_32 (abfd, (bfd_byte *) buf);
5608 }
5609
5610 static int
5611 read_4_signed_bytes (bfd *abfd, char *buf)
5612 {
5613 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5614 }
5615
5616 static unsigned long
5617 read_8_bytes (bfd *abfd, char *buf)
5618 {
5619 return bfd_get_64 (abfd, (bfd_byte *) buf);
5620 }
5621
5622 static CORE_ADDR
5623 read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
5624 {
5625 struct comp_unit_head *cu_header = &cu->header;
5626 CORE_ADDR retval = 0;
5627
5628 if (cu_header->signed_addr_p)
5629 {
5630 switch (cu_header->addr_size)
5631 {
5632 case 2:
5633 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5634 break;
5635 case 4:
5636 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5637 break;
5638 case 8:
5639 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
5640 break;
5641 default:
5642 internal_error (__FILE__, __LINE__,
5643 "read_address: bad switch, signed [in module %s]",
5644 bfd_get_filename (abfd));
5645 }
5646 }
5647 else
5648 {
5649 switch (cu_header->addr_size)
5650 {
5651 case 2:
5652 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
5653 break;
5654 case 4:
5655 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5656 break;
5657 case 8:
5658 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5659 break;
5660 default:
5661 internal_error (__FILE__, __LINE__,
5662 "read_address: bad switch, unsigned [in module %s]",
5663 bfd_get_filename (abfd));
5664 }
5665 }
5666
5667 *bytes_read = cu_header->addr_size;
5668 return retval;
5669 }
5670
5671 /* Read the initial length from a section. The (draft) DWARF 3
5672 specification allows the initial length to take up either 4 bytes
5673 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5674 bytes describe the length and all offsets will be 8 bytes in length
5675 instead of 4.
5676
5677 An older, non-standard 64-bit format is also handled by this
5678 function. The older format in question stores the initial length
5679 as an 8-byte quantity without an escape value. Lengths greater
5680 than 2^32 aren't very common which means that the initial 4 bytes
5681 is almost always zero. Since a length value of zero doesn't make
5682 sense for the 32-bit format, this initial zero can be considered to
5683 be an escape value which indicates the presence of the older 64-bit
5684 format. As written, the code can't detect (old format) lengths
5685 greater than 4GB. If it becomes necessary to handle lengths somewhat
5686 larger than 4GB, we could allow other small values (such as the
5687 non-sensical values of 1, 2, and 3) to also be used as escape values
5688 indicating the presence of the old format.
5689
5690 The value returned via bytes_read should be used to increment
5691 the relevant pointer after calling read_initial_length().
5692
5693 As a side effect, this function sets the fields initial_length_size
5694 and offset_size in cu_header to the values appropriate for the
5695 length field. (The format of the initial length field determines
5696 the width of file offsets to be fetched later with fetch_offset().)
5697
5698 [ Note: read_initial_length() and read_offset() are based on the
5699 document entitled "DWARF Debugging Information Format", revision
5700 3, draft 8, dated November 19, 2001. This document was obtained
5701 from:
5702
5703 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5704
5705 This document is only a draft and is subject to change. (So beware.)
5706
5707 Details regarding the older, non-standard 64-bit format were
5708 determined empirically by examining 64-bit ELF files produced
5709 by the SGI toolchain on an IRIX 6.5 machine.
5710
5711 - Kevin, July 16, 2002
5712 ] */
5713
5714 static LONGEST
5715 read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5716 int *bytes_read)
5717 {
5718 LONGEST retval = 0;
5719
5720 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5721
5722 if (retval == 0xffffffff)
5723 {
5724 retval = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
5725 *bytes_read = 12;
5726 if (cu_header != NULL)
5727 {
5728 cu_header->initial_length_size = 12;
5729 cu_header->offset_size = 8;
5730 }
5731 }
5732 else if (retval == 0)
5733 {
5734 /* Handle (non-standard) 64-bit DWARF2 formats such as that used
5735 by IRIX. */
5736 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5737 *bytes_read = 8;
5738 if (cu_header != NULL)
5739 {
5740 cu_header->initial_length_size = 8;
5741 cu_header->offset_size = 8;
5742 }
5743 }
5744 else
5745 {
5746 *bytes_read = 4;
5747 if (cu_header != NULL)
5748 {
5749 cu_header->initial_length_size = 4;
5750 cu_header->offset_size = 4;
5751 }
5752 }
5753
5754 return retval;
5755 }
5756
5757 /* Read an offset from the data stream. The size of the offset is
5758 given by cu_header->offset_size. */
5759
5760 static LONGEST
5761 read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5762 int *bytes_read)
5763 {
5764 LONGEST retval = 0;
5765
5766 switch (cu_header->offset_size)
5767 {
5768 case 4:
5769 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5770 *bytes_read = 4;
5771 break;
5772 case 8:
5773 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5774 *bytes_read = 8;
5775 break;
5776 default:
5777 internal_error (__FILE__, __LINE__,
5778 "read_offset: bad switch [in module %s]",
5779 bfd_get_filename (abfd));
5780 }
5781
5782 return retval;
5783 }
5784
5785 static char *
5786 read_n_bytes (bfd *abfd, char *buf, unsigned int size)
5787 {
5788 /* If the size of a host char is 8 bits, we can return a pointer
5789 to the buffer, otherwise we have to copy the data to a buffer
5790 allocated on the temporary obstack. */
5791 gdb_assert (HOST_CHAR_BIT == 8);
5792 return buf;
5793 }
5794
5795 static char *
5796 read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5797 {
5798 /* If the size of a host char is 8 bits, we can return a pointer
5799 to the string, otherwise we have to copy the string to a buffer
5800 allocated on the temporary obstack. */
5801 gdb_assert (HOST_CHAR_BIT == 8);
5802 if (*buf == '\0')
5803 {
5804 *bytes_read_ptr = 1;
5805 return NULL;
5806 }
5807 *bytes_read_ptr = strlen (buf) + 1;
5808 return buf;
5809 }
5810
5811 static char *
5812 read_indirect_string (bfd *abfd, char *buf,
5813 const struct comp_unit_head *cu_header,
5814 unsigned int *bytes_read_ptr)
5815 {
5816 LONGEST str_offset = read_offset (abfd, buf, cu_header,
5817 (int *) bytes_read_ptr);
5818
5819 if (dwarf2_per_objfile->str_buffer == NULL)
5820 {
5821 error ("DW_FORM_strp used without .debug_str section [in module %s]",
5822 bfd_get_filename (abfd));
5823 return NULL;
5824 }
5825 if (str_offset >= dwarf2_per_objfile->str_size)
5826 {
5827 error ("DW_FORM_strp pointing outside of .debug_str section [in module %s]",
5828 bfd_get_filename (abfd));
5829 return NULL;
5830 }
5831 gdb_assert (HOST_CHAR_BIT == 8);
5832 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
5833 return NULL;
5834 return dwarf2_per_objfile->str_buffer + str_offset;
5835 }
5836
5837 static unsigned long
5838 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5839 {
5840 unsigned long result;
5841 unsigned int num_read;
5842 int i, shift;
5843 unsigned char byte;
5844
5845 result = 0;
5846 shift = 0;
5847 num_read = 0;
5848 i = 0;
5849 while (1)
5850 {
5851 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
5852 buf++;
5853 num_read++;
5854 result |= ((unsigned long)(byte & 127) << shift);
5855 if ((byte & 128) == 0)
5856 {
5857 break;
5858 }
5859 shift += 7;
5860 }
5861 *bytes_read_ptr = num_read;
5862 return result;
5863 }
5864
5865 static long
5866 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5867 {
5868 long result;
5869 int i, shift, size, num_read;
5870 unsigned char byte;
5871
5872 result = 0;
5873 shift = 0;
5874 size = 32;
5875 num_read = 0;
5876 i = 0;
5877 while (1)
5878 {
5879 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
5880 buf++;
5881 num_read++;
5882 result |= ((long)(byte & 127) << shift);
5883 shift += 7;
5884 if ((byte & 128) == 0)
5885 {
5886 break;
5887 }
5888 }
5889 if ((shift < size) && (byte & 0x40))
5890 {
5891 result |= -(1 << shift);
5892 }
5893 *bytes_read_ptr = num_read;
5894 return result;
5895 }
5896
5897 /* Return a pointer to just past the end of an LEB128 number in BUF. */
5898
5899 static char *
5900 skip_leb128 (bfd *abfd, char *buf)
5901 {
5902 int byte;
5903
5904 while (1)
5905 {
5906 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
5907 buf++;
5908 if ((byte & 128) == 0)
5909 return buf;
5910 }
5911 }
5912
5913 static void
5914 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
5915 {
5916 switch (lang)
5917 {
5918 case DW_LANG_C89:
5919 case DW_LANG_C:
5920 cu->language = language_c;
5921 break;
5922 case DW_LANG_C_plus_plus:
5923 cu->language = language_cplus;
5924 break;
5925 case DW_LANG_Fortran77:
5926 case DW_LANG_Fortran90:
5927 case DW_LANG_Fortran95:
5928 cu->language = language_fortran;
5929 break;
5930 case DW_LANG_Mips_Assembler:
5931 cu->language = language_asm;
5932 break;
5933 case DW_LANG_Java:
5934 cu->language = language_java;
5935 break;
5936 case DW_LANG_Ada83:
5937 case DW_LANG_Ada95:
5938 case DW_LANG_Cobol74:
5939 case DW_LANG_Cobol85:
5940 case DW_LANG_Pascal83:
5941 case DW_LANG_Modula2:
5942 default:
5943 cu->language = language_minimal;
5944 break;
5945 }
5946 cu->language_defn = language_def (cu->language);
5947 }
5948
5949 /* Return the named attribute or NULL if not there. */
5950
5951 static struct attribute *
5952 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
5953 {
5954 unsigned int i;
5955 struct attribute *spec = NULL;
5956
5957 for (i = 0; i < die->num_attrs; ++i)
5958 {
5959 if (die->attrs[i].name == name)
5960 {
5961 return &die->attrs[i];
5962 }
5963 if (die->attrs[i].name == DW_AT_specification
5964 || die->attrs[i].name == DW_AT_abstract_origin)
5965 spec = &die->attrs[i];
5966 }
5967 if (spec)
5968 {
5969 struct die_info *ref_die =
5970 follow_die_ref (dwarf2_get_ref_die_offset (spec, cu));
5971
5972 if (ref_die)
5973 return dwarf2_attr (ref_die, name, cu);
5974 }
5975
5976 return NULL;
5977 }
5978
5979 /* Return non-zero iff the attribute NAME is defined for the given DIE,
5980 and holds a non-zero value. This function should only be used for
5981 DW_FORM_flag attributes. */
5982
5983 static int
5984 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
5985 {
5986 struct attribute *attr = dwarf2_attr (die, name, cu);
5987
5988 return (attr && DW_UNSND (attr));
5989 }
5990
5991 static int
5992 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
5993 {
5994 /* A DIE is a declaration if it has a DW_AT_declaration attribute
5995 which value is non-zero. However, we have to be careful with
5996 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
5997 (via dwarf2_flag_true_p) follows this attribute. So we may
5998 end up accidently finding a declaration attribute that belongs
5999 to a different DIE referenced by the specification attribute,
6000 even though the given DIE does not have a declaration attribute. */
6001 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6002 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6003 }
6004
6005 /* Return the die giving the specification for DIE, if there is
6006 one. */
6007
6008 static struct die_info *
6009 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6010 {
6011 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6012
6013 if (spec_attr == NULL)
6014 return NULL;
6015 else
6016 return follow_die_ref (dwarf2_get_ref_die_offset (spec_attr, cu));
6017 }
6018
6019 /* Free the line_header structure *LH, and any arrays and strings it
6020 refers to. */
6021 static void
6022 free_line_header (struct line_header *lh)
6023 {
6024 if (lh->standard_opcode_lengths)
6025 xfree (lh->standard_opcode_lengths);
6026
6027 /* Remember that all the lh->file_names[i].name pointers are
6028 pointers into debug_line_buffer, and don't need to be freed. */
6029 if (lh->file_names)
6030 xfree (lh->file_names);
6031
6032 /* Similarly for the include directory names. */
6033 if (lh->include_dirs)
6034 xfree (lh->include_dirs);
6035
6036 xfree (lh);
6037 }
6038
6039
6040 /* Add an entry to LH's include directory table. */
6041 static void
6042 add_include_dir (struct line_header *lh, char *include_dir)
6043 {
6044 /* Grow the array if necessary. */
6045 if (lh->include_dirs_size == 0)
6046 {
6047 lh->include_dirs_size = 1; /* for testing */
6048 lh->include_dirs = xmalloc (lh->include_dirs_size
6049 * sizeof (*lh->include_dirs));
6050 }
6051 else if (lh->num_include_dirs >= lh->include_dirs_size)
6052 {
6053 lh->include_dirs_size *= 2;
6054 lh->include_dirs = xrealloc (lh->include_dirs,
6055 (lh->include_dirs_size
6056 * sizeof (*lh->include_dirs)));
6057 }
6058
6059 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6060 }
6061
6062
6063 /* Add an entry to LH's file name table. */
6064 static void
6065 add_file_name (struct line_header *lh,
6066 char *name,
6067 unsigned int dir_index,
6068 unsigned int mod_time,
6069 unsigned int length)
6070 {
6071 struct file_entry *fe;
6072
6073 /* Grow the array if necessary. */
6074 if (lh->file_names_size == 0)
6075 {
6076 lh->file_names_size = 1; /* for testing */
6077 lh->file_names = xmalloc (lh->file_names_size
6078 * sizeof (*lh->file_names));
6079 }
6080 else if (lh->num_file_names >= lh->file_names_size)
6081 {
6082 lh->file_names_size *= 2;
6083 lh->file_names = xrealloc (lh->file_names,
6084 (lh->file_names_size
6085 * sizeof (*lh->file_names)));
6086 }
6087
6088 fe = &lh->file_names[lh->num_file_names++];
6089 fe->name = name;
6090 fe->dir_index = dir_index;
6091 fe->mod_time = mod_time;
6092 fe->length = length;
6093 fe->included_p = 0;
6094 }
6095
6096
6097 /* Read the statement program header starting at OFFSET in
6098 .debug_line, according to the endianness of ABFD. Return a pointer
6099 to a struct line_header, allocated using xmalloc.
6100
6101 NOTE: the strings in the include directory and file name tables of
6102 the returned object point into debug_line_buffer, and must not be
6103 freed. */
6104 static struct line_header *
6105 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6106 struct dwarf2_cu *cu)
6107 {
6108 struct cleanup *back_to;
6109 struct line_header *lh;
6110 char *line_ptr;
6111 int bytes_read;
6112 int i;
6113 char *cur_dir, *cur_file;
6114
6115 if (dwarf2_per_objfile->line_buffer == NULL)
6116 {
6117 complaint (&symfile_complaints, "missing .debug_line section");
6118 return 0;
6119 }
6120
6121 /* Make sure that at least there's room for the total_length field. That
6122 could be 12 bytes long, but we're just going to fudge that. */
6123 if (offset + 4 >= dwarf2_per_objfile->line_size)
6124 {
6125 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6126 return 0;
6127 }
6128
6129 lh = xmalloc (sizeof (*lh));
6130 memset (lh, 0, sizeof (*lh));
6131 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6132 (void *) lh);
6133
6134 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6135
6136 /* read in the header */
6137 lh->total_length = read_initial_length (abfd, line_ptr, NULL, &bytes_read);
6138 line_ptr += bytes_read;
6139 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6140 + dwarf2_per_objfile->line_size))
6141 {
6142 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6143 return 0;
6144 }
6145 lh->statement_program_end = line_ptr + lh->total_length;
6146 lh->version = read_2_bytes (abfd, line_ptr);
6147 line_ptr += 2;
6148 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6149 line_ptr += bytes_read;
6150 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6151 line_ptr += 1;
6152 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6153 line_ptr += 1;
6154 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6155 line_ptr += 1;
6156 lh->line_range = read_1_byte (abfd, line_ptr);
6157 line_ptr += 1;
6158 lh->opcode_base = read_1_byte (abfd, line_ptr);
6159 line_ptr += 1;
6160 lh->standard_opcode_lengths
6161 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
6162
6163 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6164 for (i = 1; i < lh->opcode_base; ++i)
6165 {
6166 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6167 line_ptr += 1;
6168 }
6169
6170 /* Read directory table */
6171 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6172 {
6173 line_ptr += bytes_read;
6174 add_include_dir (lh, cur_dir);
6175 }
6176 line_ptr += bytes_read;
6177
6178 /* Read file name table */
6179 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6180 {
6181 unsigned int dir_index, mod_time, length;
6182
6183 line_ptr += bytes_read;
6184 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6185 line_ptr += bytes_read;
6186 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6187 line_ptr += bytes_read;
6188 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6189 line_ptr += bytes_read;
6190
6191 add_file_name (lh, cur_file, dir_index, mod_time, length);
6192 }
6193 line_ptr += bytes_read;
6194 lh->statement_program_start = line_ptr;
6195
6196 if (line_ptr > (dwarf2_per_objfile->line_buffer
6197 + dwarf2_per_objfile->line_size))
6198 complaint (&symfile_complaints,
6199 "line number info header doesn't fit in `.debug_line' section");
6200
6201 discard_cleanups (back_to);
6202 return lh;
6203 }
6204
6205 /* This function exists to work around a bug in certain compilers
6206 (particularly GCC 2.95), in which the first line number marker of a
6207 function does not show up until after the prologue, right before
6208 the second line number marker. This function shifts ADDRESS down
6209 to the beginning of the function if necessary, and is called on
6210 addresses passed to record_line. */
6211
6212 static CORE_ADDR
6213 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6214 {
6215 struct function_range *fn;
6216
6217 /* Find the function_range containing address. */
6218 if (!cu->first_fn)
6219 return address;
6220
6221 if (!cu->cached_fn)
6222 cu->cached_fn = cu->first_fn;
6223
6224 fn = cu->cached_fn;
6225 while (fn)
6226 if (fn->lowpc <= address && fn->highpc > address)
6227 goto found;
6228 else
6229 fn = fn->next;
6230
6231 fn = cu->first_fn;
6232 while (fn && fn != cu->cached_fn)
6233 if (fn->lowpc <= address && fn->highpc > address)
6234 goto found;
6235 else
6236 fn = fn->next;
6237
6238 return address;
6239
6240 found:
6241 if (fn->seen_line)
6242 return address;
6243 if (address != fn->lowpc)
6244 complaint (&symfile_complaints,
6245 "misplaced first line number at 0x%lx for '%s'",
6246 (unsigned long) address, fn->name);
6247 fn->seen_line = 1;
6248 return fn->lowpc;
6249 }
6250
6251 /* Decode the Line Number Program (LNP) for the given line_header
6252 structure and CU. The actual information extracted and the type
6253 of structures created from the LNP depends on the value of PST.
6254
6255 1. If PST is NULL, then this procedure uses the data from the program
6256 to create all necessary symbol tables, and their linetables.
6257 The compilation directory of the file is passed in COMP_DIR,
6258 and must not be NULL.
6259
6260 2. If PST is not NULL, this procedure reads the program to determine
6261 the list of files included by the unit represented by PST, and
6262 builds all the associated partial symbol tables. In this case,
6263 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6264 is not used to compute the full name of the symtab, and therefore
6265 omitting it when building the partial symtab does not introduce
6266 the potential for inconsistency - a partial symtab and its associated
6267 symbtab having a different fullname -). */
6268
6269 static void
6270 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6271 struct dwarf2_cu *cu, struct partial_symtab *pst)
6272 {
6273 char *line_ptr;
6274 char *line_end;
6275 unsigned int bytes_read;
6276 unsigned char op_code, extended_op, adj_opcode;
6277 CORE_ADDR baseaddr;
6278 struct objfile *objfile = cu->objfile;
6279 const int decode_for_pst_p = (pst != NULL);
6280
6281 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6282
6283 line_ptr = lh->statement_program_start;
6284 line_end = lh->statement_program_end;
6285
6286 /* Read the statement sequences until there's nothing left. */
6287 while (line_ptr < line_end)
6288 {
6289 /* state machine registers */
6290 CORE_ADDR address = 0;
6291 unsigned int file = 1;
6292 unsigned int line = 1;
6293 unsigned int column = 0;
6294 int is_stmt = lh->default_is_stmt;
6295 int basic_block = 0;
6296 int end_sequence = 0;
6297
6298 if (!decode_for_pst_p && lh->num_file_names >= file)
6299 {
6300 /* Start a subfile for the current file of the state machine. */
6301 /* lh->include_dirs and lh->file_names are 0-based, but the
6302 directory and file name numbers in the statement program
6303 are 1-based. */
6304 struct file_entry *fe = &lh->file_names[file - 1];
6305 char *dir;
6306 if (fe->dir_index)
6307 dir = lh->include_dirs[fe->dir_index - 1];
6308 else
6309 dir = comp_dir;
6310 dwarf2_start_subfile (fe->name, dir);
6311 }
6312
6313 /* Decode the table. */
6314 while (!end_sequence)
6315 {
6316 op_code = read_1_byte (abfd, line_ptr);
6317 line_ptr += 1;
6318
6319 if (op_code >= lh->opcode_base)
6320 { /* Special operand. */
6321 adj_opcode = op_code - lh->opcode_base;
6322 address += (adj_opcode / lh->line_range)
6323 * lh->minimum_instruction_length;
6324 line += lh->line_base + (adj_opcode % lh->line_range);
6325 lh->file_names[file - 1].included_p = 1;
6326 if (!decode_for_pst_p)
6327 {
6328 /* append row to matrix using current values */
6329 record_line (current_subfile, line,
6330 check_cu_functions (address, cu));
6331 }
6332 basic_block = 1;
6333 }
6334 else switch (op_code)
6335 {
6336 case DW_LNS_extended_op:
6337 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6338 line_ptr += bytes_read;
6339 extended_op = read_1_byte (abfd, line_ptr);
6340 line_ptr += 1;
6341 switch (extended_op)
6342 {
6343 case DW_LNE_end_sequence:
6344 end_sequence = 1;
6345 lh->file_names[file - 1].included_p = 1;
6346 if (!decode_for_pst_p)
6347 record_line (current_subfile, 0, address);
6348 break;
6349 case DW_LNE_set_address:
6350 address = read_address (abfd, line_ptr, cu, &bytes_read);
6351 line_ptr += bytes_read;
6352 address += baseaddr;
6353 break;
6354 case DW_LNE_define_file:
6355 {
6356 char *cur_file;
6357 unsigned int dir_index, mod_time, length;
6358
6359 cur_file = read_string (abfd, line_ptr, &bytes_read);
6360 line_ptr += bytes_read;
6361 dir_index =
6362 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6363 line_ptr += bytes_read;
6364 mod_time =
6365 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6366 line_ptr += bytes_read;
6367 length =
6368 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6369 line_ptr += bytes_read;
6370 add_file_name (lh, cur_file, dir_index, mod_time, length);
6371 }
6372 break;
6373 default:
6374 complaint (&symfile_complaints,
6375 "mangled .debug_line section");
6376 return;
6377 }
6378 break;
6379 case DW_LNS_copy:
6380 lh->file_names[file - 1].included_p = 1;
6381 if (!decode_for_pst_p)
6382 record_line (current_subfile, line,
6383 check_cu_functions (address, cu));
6384 basic_block = 0;
6385 break;
6386 case DW_LNS_advance_pc:
6387 address += lh->minimum_instruction_length
6388 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6389 line_ptr += bytes_read;
6390 break;
6391 case DW_LNS_advance_line:
6392 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6393 line_ptr += bytes_read;
6394 break;
6395 case DW_LNS_set_file:
6396 {
6397 /* lh->include_dirs and lh->file_names are 0-based,
6398 but the directory and file name numbers in the
6399 statement program are 1-based. */
6400 struct file_entry *fe;
6401 char *dir;
6402 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6403 line_ptr += bytes_read;
6404 fe = &lh->file_names[file - 1];
6405 if (fe->dir_index)
6406 dir = lh->include_dirs[fe->dir_index - 1];
6407 else
6408 dir = comp_dir;
6409 if (!decode_for_pst_p)
6410 dwarf2_start_subfile (fe->name, dir);
6411 }
6412 break;
6413 case DW_LNS_set_column:
6414 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6415 line_ptr += bytes_read;
6416 break;
6417 case DW_LNS_negate_stmt:
6418 is_stmt = (!is_stmt);
6419 break;
6420 case DW_LNS_set_basic_block:
6421 basic_block = 1;
6422 break;
6423 /* Add to the address register of the state machine the
6424 address increment value corresponding to special opcode
6425 255. Ie, this value is scaled by the minimum instruction
6426 length since special opcode 255 would have scaled the
6427 the increment. */
6428 case DW_LNS_const_add_pc:
6429 address += (lh->minimum_instruction_length
6430 * ((255 - lh->opcode_base) / lh->line_range));
6431 break;
6432 case DW_LNS_fixed_advance_pc:
6433 address += read_2_bytes (abfd, line_ptr);
6434 line_ptr += 2;
6435 break;
6436 default:
6437 { /* Unknown standard opcode, ignore it. */
6438 int i;
6439 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6440 {
6441 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6442 line_ptr += bytes_read;
6443 }
6444 }
6445 }
6446 }
6447 }
6448
6449 if (decode_for_pst_p)
6450 {
6451 int file_index;
6452
6453 /* Now that we're done scanning the Line Header Program, we can
6454 create the psymtab of each included file. */
6455 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6456 if (lh->file_names[file_index].included_p == 1)
6457 {
6458 char *include_name = lh->file_names [file_index].name;
6459
6460 if (strcmp (include_name, pst->filename) != 0)
6461 dwarf2_create_include_psymtab (include_name, pst, objfile);
6462 }
6463 }
6464 }
6465
6466 /* Start a subfile for DWARF. FILENAME is the name of the file and
6467 DIRNAME the name of the source directory which contains FILENAME
6468 or NULL if not known.
6469 This routine tries to keep line numbers from identical absolute and
6470 relative file names in a common subfile.
6471
6472 Using the `list' example from the GDB testsuite, which resides in
6473 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6474 of /srcdir/list0.c yields the following debugging information for list0.c:
6475
6476 DW_AT_name: /srcdir/list0.c
6477 DW_AT_comp_dir: /compdir
6478 files.files[0].name: list0.h
6479 files.files[0].dir: /srcdir
6480 files.files[1].name: list0.c
6481 files.files[1].dir: /srcdir
6482
6483 The line number information for list0.c has to end up in a single
6484 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6485
6486 static void
6487 dwarf2_start_subfile (char *filename, char *dirname)
6488 {
6489 /* If the filename isn't absolute, try to match an existing subfile
6490 with the full pathname. */
6491
6492 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6493 {
6494 struct subfile *subfile;
6495 char *fullname = concat (dirname, "/", filename, NULL);
6496
6497 for (subfile = subfiles; subfile; subfile = subfile->next)
6498 {
6499 if (FILENAME_CMP (subfile->name, fullname) == 0)
6500 {
6501 current_subfile = subfile;
6502 xfree (fullname);
6503 return;
6504 }
6505 }
6506 xfree (fullname);
6507 }
6508 start_subfile (filename, dirname);
6509 }
6510
6511 static void
6512 var_decode_location (struct attribute *attr, struct symbol *sym,
6513 struct dwarf2_cu *cu)
6514 {
6515 struct objfile *objfile = cu->objfile;
6516 struct comp_unit_head *cu_header = &cu->header;
6517
6518 /* NOTE drow/2003-01-30: There used to be a comment and some special
6519 code here to turn a symbol with DW_AT_external and a
6520 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6521 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6522 with some versions of binutils) where shared libraries could have
6523 relocations against symbols in their debug information - the
6524 minimal symbol would have the right address, but the debug info
6525 would not. It's no longer necessary, because we will explicitly
6526 apply relocations when we read in the debug information now. */
6527
6528 /* A DW_AT_location attribute with no contents indicates that a
6529 variable has been optimized away. */
6530 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6531 {
6532 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6533 return;
6534 }
6535
6536 /* Handle one degenerate form of location expression specially, to
6537 preserve GDB's previous behavior when section offsets are
6538 specified. If this is just a DW_OP_addr then mark this symbol
6539 as LOC_STATIC. */
6540
6541 if (attr_form_is_block (attr)
6542 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6543 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6544 {
6545 int dummy;
6546
6547 SYMBOL_VALUE_ADDRESS (sym) =
6548 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6549 fixup_symbol_section (sym, objfile);
6550 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6551 SYMBOL_SECTION (sym));
6552 SYMBOL_CLASS (sym) = LOC_STATIC;
6553 return;
6554 }
6555
6556 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6557 expression evaluator, and use LOC_COMPUTED only when necessary
6558 (i.e. when the value of a register or memory location is
6559 referenced, or a thread-local block, etc.). Then again, it might
6560 not be worthwhile. I'm assuming that it isn't unless performance
6561 or memory numbers show me otherwise. */
6562
6563 dwarf2_symbol_mark_computed (attr, sym, cu);
6564 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6565 }
6566
6567 /* Given a pointer to a DWARF information entry, figure out if we need
6568 to make a symbol table entry for it, and if so, create a new entry
6569 and return a pointer to it.
6570 If TYPE is NULL, determine symbol type from the die, otherwise
6571 used the passed type. */
6572
6573 static struct symbol *
6574 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6575 {
6576 struct objfile *objfile = cu->objfile;
6577 struct symbol *sym = NULL;
6578 char *name;
6579 struct attribute *attr = NULL;
6580 struct attribute *attr2 = NULL;
6581 CORE_ADDR baseaddr;
6582
6583 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6584
6585 if (die->tag != DW_TAG_namespace)
6586 name = dwarf2_linkage_name (die, cu);
6587 else
6588 name = TYPE_NAME (type);
6589
6590 if (name)
6591 {
6592 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6593 sizeof (struct symbol));
6594 OBJSTAT (objfile, n_syms++);
6595 memset (sym, 0, sizeof (struct symbol));
6596
6597 /* Cache this symbol's name and the name's demangled form (if any). */
6598 SYMBOL_LANGUAGE (sym) = cu->language;
6599 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
6600
6601 /* Default assumptions.
6602 Use the passed type or decode it from the die. */
6603 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6604 SYMBOL_CLASS (sym) = LOC_STATIC;
6605 if (type != NULL)
6606 SYMBOL_TYPE (sym) = type;
6607 else
6608 SYMBOL_TYPE (sym) = die_type (die, cu);
6609 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
6610 if (attr)
6611 {
6612 SYMBOL_LINE (sym) = DW_UNSND (attr);
6613 }
6614 switch (die->tag)
6615 {
6616 case DW_TAG_label:
6617 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6618 if (attr)
6619 {
6620 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6621 }
6622 SYMBOL_CLASS (sym) = LOC_LABEL;
6623 break;
6624 case DW_TAG_subprogram:
6625 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6626 finish_block. */
6627 SYMBOL_CLASS (sym) = LOC_BLOCK;
6628 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6629 if (attr2 && (DW_UNSND (attr2) != 0))
6630 {
6631 add_symbol_to_list (sym, &global_symbols);
6632 }
6633 else
6634 {
6635 add_symbol_to_list (sym, cu->list_in_scope);
6636 }
6637 break;
6638 case DW_TAG_variable:
6639 /* Compilation with minimal debug info may result in variables
6640 with missing type entries. Change the misleading `void' type
6641 to something sensible. */
6642 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6643 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6644 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6645 "<variable, no debug info>",
6646 objfile);
6647 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6648 if (attr)
6649 {
6650 dwarf2_const_value (attr, sym, cu);
6651 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6652 if (attr2 && (DW_UNSND (attr2) != 0))
6653 add_symbol_to_list (sym, &global_symbols);
6654 else
6655 add_symbol_to_list (sym, cu->list_in_scope);
6656 break;
6657 }
6658 attr = dwarf2_attr (die, DW_AT_location, cu);
6659 if (attr)
6660 {
6661 var_decode_location (attr, sym, cu);
6662 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6663 if (attr2 && (DW_UNSND (attr2) != 0))
6664 add_symbol_to_list (sym, &global_symbols);
6665 else
6666 add_symbol_to_list (sym, cu->list_in_scope);
6667 }
6668 else
6669 {
6670 /* We do not know the address of this symbol.
6671 If it is an external symbol and we have type information
6672 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6673 The address of the variable will then be determined from
6674 the minimal symbol table whenever the variable is
6675 referenced. */
6676 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6677 if (attr2 && (DW_UNSND (attr2) != 0)
6678 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
6679 {
6680 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6681 add_symbol_to_list (sym, &global_symbols);
6682 }
6683 }
6684 break;
6685 case DW_TAG_formal_parameter:
6686 attr = dwarf2_attr (die, DW_AT_location, cu);
6687 if (attr)
6688 {
6689 var_decode_location (attr, sym, cu);
6690 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6691 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6692 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
6693 }
6694 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6695 if (attr)
6696 {
6697 dwarf2_const_value (attr, sym, cu);
6698 }
6699 add_symbol_to_list (sym, cu->list_in_scope);
6700 break;
6701 case DW_TAG_unspecified_parameters:
6702 /* From varargs functions; gdb doesn't seem to have any
6703 interest in this information, so just ignore it for now.
6704 (FIXME?) */
6705 break;
6706 case DW_TAG_class_type:
6707 case DW_TAG_structure_type:
6708 case DW_TAG_union_type:
6709 case DW_TAG_enumeration_type:
6710 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6711 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6712
6713 /* Make sure that the symbol includes appropriate enclosing
6714 classes/namespaces in its name. These are calculated in
6715 read_structure_type, and the correct name is saved in
6716 the type. */
6717
6718 if (cu->language == language_cplus
6719 || cu->language == language_java)
6720 {
6721 struct type *type = SYMBOL_TYPE (sym);
6722
6723 if (TYPE_TAG_NAME (type) != NULL)
6724 {
6725 /* FIXME: carlton/2003-11-10: Should this use
6726 SYMBOL_SET_NAMES instead? (The same problem also
6727 arises further down in this function.) */
6728 /* The type's name is already allocated along with
6729 this objfile, so we don't need to duplicate it
6730 for the symbol. */
6731 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
6732 }
6733 }
6734
6735 {
6736 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
6737 really ever be static objects: otherwise, if you try
6738 to, say, break of a class's method and you're in a file
6739 which doesn't mention that class, it won't work unless
6740 the check for all static symbols in lookup_symbol_aux
6741 saves you. See the OtherFileClass tests in
6742 gdb.c++/namespace.exp. */
6743
6744 struct pending **list_to_add;
6745
6746 list_to_add = (cu->list_in_scope == &file_symbols
6747 && (cu->language == language_cplus
6748 || cu->language == language_java)
6749 ? &global_symbols : cu->list_in_scope);
6750
6751 add_symbol_to_list (sym, list_to_add);
6752
6753 /* The semantics of C++ state that "struct foo { ... }" also
6754 defines a typedef for "foo". A Java class declaration also
6755 defines a typedef for the class. Synthesize a typedef symbol
6756 so that "ptype foo" works as expected. */
6757 if (cu->language == language_cplus
6758 || cu->language == language_java)
6759 {
6760 struct symbol *typedef_sym = (struct symbol *)
6761 obstack_alloc (&objfile->objfile_obstack,
6762 sizeof (struct symbol));
6763 *typedef_sym = *sym;
6764 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
6765 /* The symbol's name is already allocated along with
6766 this objfile, so we don't need to duplicate it for
6767 the type. */
6768 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
6769 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NATURAL_NAME (sym);
6770 add_symbol_to_list (typedef_sym, list_to_add);
6771 }
6772 }
6773 break;
6774 case DW_TAG_typedef:
6775 if (processing_has_namespace_info
6776 && processing_current_prefix[0] != '\0')
6777 {
6778 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6779 processing_current_prefix,
6780 name, cu);
6781 }
6782 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6783 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6784 add_symbol_to_list (sym, cu->list_in_scope);
6785 break;
6786 case DW_TAG_base_type:
6787 case DW_TAG_subrange_type:
6788 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6789 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6790 add_symbol_to_list (sym, cu->list_in_scope);
6791 break;
6792 case DW_TAG_enumerator:
6793 if (processing_has_namespace_info
6794 && processing_current_prefix[0] != '\0')
6795 {
6796 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6797 processing_current_prefix,
6798 name, cu);
6799 }
6800 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6801 if (attr)
6802 {
6803 dwarf2_const_value (attr, sym, cu);
6804 }
6805 {
6806 /* NOTE: carlton/2003-11-10: See comment above in the
6807 DW_TAG_class_type, etc. block. */
6808
6809 struct pending **list_to_add;
6810
6811 list_to_add = (cu->list_in_scope == &file_symbols
6812 && (cu->language == language_cplus
6813 || cu->language == language_java)
6814 ? &global_symbols : cu->list_in_scope);
6815
6816 add_symbol_to_list (sym, list_to_add);
6817 }
6818 break;
6819 case DW_TAG_namespace:
6820 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6821 add_symbol_to_list (sym, &global_symbols);
6822 break;
6823 default:
6824 /* Not a tag we recognize. Hopefully we aren't processing
6825 trash data, but since we must specifically ignore things
6826 we don't recognize, there is nothing else we should do at
6827 this point. */
6828 complaint (&symfile_complaints, "unsupported tag: '%s'",
6829 dwarf_tag_name (die->tag));
6830 break;
6831 }
6832 }
6833 return (sym);
6834 }
6835
6836 /* Copy constant value from an attribute to a symbol. */
6837
6838 static void
6839 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
6840 struct dwarf2_cu *cu)
6841 {
6842 struct objfile *objfile = cu->objfile;
6843 struct comp_unit_head *cu_header = &cu->header;
6844 struct dwarf_block *blk;
6845
6846 switch (attr->form)
6847 {
6848 case DW_FORM_addr:
6849 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
6850 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
6851 cu_header->addr_size,
6852 TYPE_LENGTH (SYMBOL_TYPE
6853 (sym)));
6854 SYMBOL_VALUE_BYTES (sym) = (char *)
6855 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
6856 /* NOTE: cagney/2003-05-09: In-lined store_address call with
6857 it's body - store_unsigned_integer. */
6858 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
6859 DW_ADDR (attr));
6860 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
6861 break;
6862 case DW_FORM_block1:
6863 case DW_FORM_block2:
6864 case DW_FORM_block4:
6865 case DW_FORM_block:
6866 blk = DW_BLOCK (attr);
6867 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
6868 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
6869 blk->size,
6870 TYPE_LENGTH (SYMBOL_TYPE
6871 (sym)));
6872 SYMBOL_VALUE_BYTES (sym) = (char *)
6873 obstack_alloc (&objfile->objfile_obstack, blk->size);
6874 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
6875 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
6876 break;
6877
6878 /* The DW_AT_const_value attributes are supposed to carry the
6879 symbol's value "represented as it would be on the target
6880 architecture." By the time we get here, it's already been
6881 converted to host endianness, so we just need to sign- or
6882 zero-extend it as appropriate. */
6883 case DW_FORM_data1:
6884 dwarf2_const_value_data (attr, sym, 8);
6885 break;
6886 case DW_FORM_data2:
6887 dwarf2_const_value_data (attr, sym, 16);
6888 break;
6889 case DW_FORM_data4:
6890 dwarf2_const_value_data (attr, sym, 32);
6891 break;
6892 case DW_FORM_data8:
6893 dwarf2_const_value_data (attr, sym, 64);
6894 break;
6895
6896 case DW_FORM_sdata:
6897 SYMBOL_VALUE (sym) = DW_SND (attr);
6898 SYMBOL_CLASS (sym) = LOC_CONST;
6899 break;
6900
6901 case DW_FORM_udata:
6902 SYMBOL_VALUE (sym) = DW_UNSND (attr);
6903 SYMBOL_CLASS (sym) = LOC_CONST;
6904 break;
6905
6906 default:
6907 complaint (&symfile_complaints,
6908 "unsupported const value attribute form: '%s'",
6909 dwarf_form_name (attr->form));
6910 SYMBOL_VALUE (sym) = 0;
6911 SYMBOL_CLASS (sym) = LOC_CONST;
6912 break;
6913 }
6914 }
6915
6916
6917 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
6918 or zero-extend it as appropriate for the symbol's type. */
6919 static void
6920 dwarf2_const_value_data (struct attribute *attr,
6921 struct symbol *sym,
6922 int bits)
6923 {
6924 LONGEST l = DW_UNSND (attr);
6925
6926 if (bits < sizeof (l) * 8)
6927 {
6928 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
6929 l &= ((LONGEST) 1 << bits) - 1;
6930 else
6931 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
6932 }
6933
6934 SYMBOL_VALUE (sym) = l;
6935 SYMBOL_CLASS (sym) = LOC_CONST;
6936 }
6937
6938
6939 /* Return the type of the die in question using its DW_AT_type attribute. */
6940
6941 static struct type *
6942 die_type (struct die_info *die, struct dwarf2_cu *cu)
6943 {
6944 struct type *type;
6945 struct attribute *type_attr;
6946 struct die_info *type_die;
6947 unsigned int ref;
6948
6949 type_attr = dwarf2_attr (die, DW_AT_type, cu);
6950 if (!type_attr)
6951 {
6952 /* A missing DW_AT_type represents a void type. */
6953 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
6954 }
6955 else
6956 {
6957 ref = dwarf2_get_ref_die_offset (type_attr, cu);
6958 type_die = follow_die_ref (ref);
6959 if (!type_die)
6960 {
6961 error ("Dwarf Error: Cannot find referent at offset %d [in module %s]",
6962 ref, cu->objfile->name);
6963 return NULL;
6964 }
6965 }
6966 type = tag_type_to_type (type_die, cu);
6967 if (!type)
6968 {
6969 dump_die (type_die);
6970 error ("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]",
6971 cu->objfile->name);
6972 }
6973 return type;
6974 }
6975
6976 /* Return the containing type of the die in question using its
6977 DW_AT_containing_type attribute. */
6978
6979 static struct type *
6980 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
6981 {
6982 struct type *type = NULL;
6983 struct attribute *type_attr;
6984 struct die_info *type_die = NULL;
6985 unsigned int ref;
6986
6987 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
6988 if (type_attr)
6989 {
6990 ref = dwarf2_get_ref_die_offset (type_attr, cu);
6991 type_die = follow_die_ref (ref);
6992 if (!type_die)
6993 {
6994 error ("Dwarf Error: Cannot find referent at offset %d [in module %s]", ref,
6995 cu->objfile->name);
6996 return NULL;
6997 }
6998 type = tag_type_to_type (type_die, cu);
6999 }
7000 if (!type)
7001 {
7002 if (type_die)
7003 dump_die (type_die);
7004 error ("Dwarf Error: Problem turning containing type into gdb type [in module %s]",
7005 cu->objfile->name);
7006 }
7007 return type;
7008 }
7009
7010 #if 0
7011 static struct type *
7012 type_at_offset (unsigned int offset, struct dwarf2_cu *cu)
7013 {
7014 struct die_info *die;
7015 struct type *type;
7016
7017 die = follow_die_ref (offset);
7018 if (!die)
7019 {
7020 error ("Dwarf Error: Cannot find type referent at offset %d.", offset);
7021 return NULL;
7022 }
7023 type = tag_type_to_type (die, cu);
7024 return type;
7025 }
7026 #endif
7027
7028 static struct type *
7029 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7030 {
7031 if (die->type)
7032 {
7033 return die->type;
7034 }
7035 else
7036 {
7037 read_type_die (die, cu);
7038 if (!die->type)
7039 {
7040 dump_die (die);
7041 error ("Dwarf Error: Cannot find type of die [in module %s]",
7042 cu->objfile->name);
7043 }
7044 return die->type;
7045 }
7046 }
7047
7048 static void
7049 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7050 {
7051 char *prefix = determine_prefix (die, cu);
7052 const char *old_prefix = processing_current_prefix;
7053 struct cleanup *back_to = make_cleanup (xfree, prefix);
7054 processing_current_prefix = prefix;
7055
7056 switch (die->tag)
7057 {
7058 case DW_TAG_class_type:
7059 case DW_TAG_structure_type:
7060 case DW_TAG_union_type:
7061 read_structure_type (die, cu);
7062 break;
7063 case DW_TAG_enumeration_type:
7064 read_enumeration_type (die, cu);
7065 break;
7066 case DW_TAG_subprogram:
7067 case DW_TAG_subroutine_type:
7068 read_subroutine_type (die, cu);
7069 break;
7070 case DW_TAG_array_type:
7071 read_array_type (die, cu);
7072 break;
7073 case DW_TAG_pointer_type:
7074 read_tag_pointer_type (die, cu);
7075 break;
7076 case DW_TAG_ptr_to_member_type:
7077 read_tag_ptr_to_member_type (die, cu);
7078 break;
7079 case DW_TAG_reference_type:
7080 read_tag_reference_type (die, cu);
7081 break;
7082 case DW_TAG_const_type:
7083 read_tag_const_type (die, cu);
7084 break;
7085 case DW_TAG_volatile_type:
7086 read_tag_volatile_type (die, cu);
7087 break;
7088 case DW_TAG_string_type:
7089 read_tag_string_type (die, cu);
7090 break;
7091 case DW_TAG_typedef:
7092 read_typedef (die, cu);
7093 break;
7094 case DW_TAG_subrange_type:
7095 read_subrange_type (die, cu);
7096 break;
7097 case DW_TAG_base_type:
7098 read_base_type (die, cu);
7099 break;
7100 default:
7101 complaint (&symfile_complaints, "unexepected tag in read_type_die: '%s'",
7102 dwarf_tag_name (die->tag));
7103 break;
7104 }
7105
7106 processing_current_prefix = old_prefix;
7107 do_cleanups (back_to);
7108 }
7109
7110 /* Return the name of the namespace/class that DIE is defined within,
7111 or "" if we can't tell. The caller should xfree the result. */
7112
7113 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7114 therein) for an example of how to use this function to deal with
7115 DW_AT_specification. */
7116
7117 static char *
7118 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7119 {
7120 struct die_info *parent;
7121
7122 if (cu->language != language_cplus
7123 && cu->language != language_java)
7124 return NULL;
7125
7126 parent = die->parent;
7127
7128 if (parent == NULL)
7129 {
7130 return xstrdup ("");
7131 }
7132 else
7133 {
7134 switch (parent->tag) {
7135 case DW_TAG_namespace:
7136 {
7137 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7138 before doing this check? */
7139 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7140 {
7141 return xstrdup (TYPE_TAG_NAME (parent->type));
7142 }
7143 else
7144 {
7145 int dummy;
7146 char *parent_prefix = determine_prefix (parent, cu);
7147 char *retval = typename_concat (NULL, parent_prefix,
7148 namespace_name (parent, &dummy,
7149 cu),
7150 cu);
7151 xfree (parent_prefix);
7152 return retval;
7153 }
7154 }
7155 break;
7156 case DW_TAG_class_type:
7157 case DW_TAG_structure_type:
7158 {
7159 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7160 {
7161 return xstrdup (TYPE_TAG_NAME (parent->type));
7162 }
7163 else
7164 {
7165 const char *old_prefix = processing_current_prefix;
7166 char *new_prefix = determine_prefix (parent, cu);
7167 char *retval;
7168
7169 processing_current_prefix = new_prefix;
7170 retval = determine_class_name (parent, cu);
7171 processing_current_prefix = old_prefix;
7172
7173 xfree (new_prefix);
7174 return retval;
7175 }
7176 }
7177 default:
7178 return determine_prefix (parent, cu);
7179 }
7180 }
7181 }
7182
7183 /* Return a newly-allocated string formed by concatenating PREFIX and
7184 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7185 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7186 perform an obconcat, otherwise allocate storage for the result. The CU argument
7187 is used to determine the language and hence, the appropriate separator. */
7188
7189 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7190
7191 static char *
7192 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7193 struct dwarf2_cu *cu)
7194 {
7195 char *sep;
7196
7197 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7198 sep = "";
7199 else if (cu->language == language_java)
7200 sep = ".";
7201 else
7202 sep = "::";
7203
7204 if (obs == NULL)
7205 {
7206 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7207 retval[0] = '\0';
7208
7209 if (prefix)
7210 {
7211 strcpy (retval, prefix);
7212 strcat (retval, sep);
7213 }
7214 if (suffix)
7215 strcat (retval, suffix);
7216
7217 return retval;
7218 }
7219 else
7220 {
7221 /* We have an obstack. */
7222 return obconcat (obs, prefix, sep, suffix);
7223 }
7224 }
7225
7226 static struct type *
7227 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7228 {
7229 struct objfile *objfile = cu->objfile;
7230
7231 /* FIXME - this should not produce a new (struct type *)
7232 every time. It should cache base types. */
7233 struct type *type;
7234 switch (encoding)
7235 {
7236 case DW_ATE_address:
7237 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7238 return type;
7239 case DW_ATE_boolean:
7240 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7241 return type;
7242 case DW_ATE_complex_float:
7243 if (size == 16)
7244 {
7245 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7246 }
7247 else
7248 {
7249 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7250 }
7251 return type;
7252 case DW_ATE_float:
7253 if (size == 8)
7254 {
7255 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7256 }
7257 else
7258 {
7259 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7260 }
7261 return type;
7262 case DW_ATE_signed:
7263 switch (size)
7264 {
7265 case 1:
7266 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7267 break;
7268 case 2:
7269 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7270 break;
7271 default:
7272 case 4:
7273 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7274 break;
7275 }
7276 return type;
7277 case DW_ATE_signed_char:
7278 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7279 return type;
7280 case DW_ATE_unsigned:
7281 switch (size)
7282 {
7283 case 1:
7284 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7285 break;
7286 case 2:
7287 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7288 break;
7289 default:
7290 case 4:
7291 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7292 break;
7293 }
7294 return type;
7295 case DW_ATE_unsigned_char:
7296 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7297 return type;
7298 default:
7299 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7300 return type;
7301 }
7302 }
7303
7304 #if 0
7305 struct die_info *
7306 copy_die (struct die_info *old_die)
7307 {
7308 struct die_info *new_die;
7309 int i, num_attrs;
7310
7311 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7312 memset (new_die, 0, sizeof (struct die_info));
7313
7314 new_die->tag = old_die->tag;
7315 new_die->has_children = old_die->has_children;
7316 new_die->abbrev = old_die->abbrev;
7317 new_die->offset = old_die->offset;
7318 new_die->type = NULL;
7319
7320 num_attrs = old_die->num_attrs;
7321 new_die->num_attrs = num_attrs;
7322 new_die->attrs = (struct attribute *)
7323 xmalloc (num_attrs * sizeof (struct attribute));
7324
7325 for (i = 0; i < old_die->num_attrs; ++i)
7326 {
7327 new_die->attrs[i].name = old_die->attrs[i].name;
7328 new_die->attrs[i].form = old_die->attrs[i].form;
7329 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7330 }
7331
7332 new_die->next = NULL;
7333 return new_die;
7334 }
7335 #endif
7336
7337 /* Return sibling of die, NULL if no sibling. */
7338
7339 static struct die_info *
7340 sibling_die (struct die_info *die)
7341 {
7342 return die->sibling;
7343 }
7344
7345 /* Get linkage name of a die, return NULL if not found. */
7346
7347 static char *
7348 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7349 {
7350 struct attribute *attr;
7351
7352 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7353 if (attr && DW_STRING (attr))
7354 return DW_STRING (attr);
7355 attr = dwarf2_attr (die, DW_AT_name, cu);
7356 if (attr && DW_STRING (attr))
7357 return DW_STRING (attr);
7358 return NULL;
7359 }
7360
7361 /* Get name of a die, return NULL if not found. */
7362
7363 static char *
7364 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7365 {
7366 struct attribute *attr;
7367
7368 attr = dwarf2_attr (die, DW_AT_name, cu);
7369 if (attr && DW_STRING (attr))
7370 return DW_STRING (attr);
7371 return NULL;
7372 }
7373
7374 /* Return the die that this die in an extension of, or NULL if there
7375 is none. */
7376
7377 static struct die_info *
7378 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7379 {
7380 struct attribute *attr;
7381 struct die_info *extension_die;
7382 unsigned int ref;
7383
7384 attr = dwarf2_attr (die, DW_AT_extension, cu);
7385 if (attr == NULL)
7386 return NULL;
7387
7388 ref = dwarf2_get_ref_die_offset (attr, cu);
7389 extension_die = follow_die_ref (ref);
7390 if (!extension_die)
7391 {
7392 error ("Dwarf Error: Cannot find referent at offset %d.", ref);
7393 }
7394
7395 return extension_die;
7396 }
7397
7398 /* Convert a DIE tag into its string name. */
7399
7400 static char *
7401 dwarf_tag_name (unsigned tag)
7402 {
7403 switch (tag)
7404 {
7405 case DW_TAG_padding:
7406 return "DW_TAG_padding";
7407 case DW_TAG_array_type:
7408 return "DW_TAG_array_type";
7409 case DW_TAG_class_type:
7410 return "DW_TAG_class_type";
7411 case DW_TAG_entry_point:
7412 return "DW_TAG_entry_point";
7413 case DW_TAG_enumeration_type:
7414 return "DW_TAG_enumeration_type";
7415 case DW_TAG_formal_parameter:
7416 return "DW_TAG_formal_parameter";
7417 case DW_TAG_imported_declaration:
7418 return "DW_TAG_imported_declaration";
7419 case DW_TAG_label:
7420 return "DW_TAG_label";
7421 case DW_TAG_lexical_block:
7422 return "DW_TAG_lexical_block";
7423 case DW_TAG_member:
7424 return "DW_TAG_member";
7425 case DW_TAG_pointer_type:
7426 return "DW_TAG_pointer_type";
7427 case DW_TAG_reference_type:
7428 return "DW_TAG_reference_type";
7429 case DW_TAG_compile_unit:
7430 return "DW_TAG_compile_unit";
7431 case DW_TAG_string_type:
7432 return "DW_TAG_string_type";
7433 case DW_TAG_structure_type:
7434 return "DW_TAG_structure_type";
7435 case DW_TAG_subroutine_type:
7436 return "DW_TAG_subroutine_type";
7437 case DW_TAG_typedef:
7438 return "DW_TAG_typedef";
7439 case DW_TAG_union_type:
7440 return "DW_TAG_union_type";
7441 case DW_TAG_unspecified_parameters:
7442 return "DW_TAG_unspecified_parameters";
7443 case DW_TAG_variant:
7444 return "DW_TAG_variant";
7445 case DW_TAG_common_block:
7446 return "DW_TAG_common_block";
7447 case DW_TAG_common_inclusion:
7448 return "DW_TAG_common_inclusion";
7449 case DW_TAG_inheritance:
7450 return "DW_TAG_inheritance";
7451 case DW_TAG_inlined_subroutine:
7452 return "DW_TAG_inlined_subroutine";
7453 case DW_TAG_module:
7454 return "DW_TAG_module";
7455 case DW_TAG_ptr_to_member_type:
7456 return "DW_TAG_ptr_to_member_type";
7457 case DW_TAG_set_type:
7458 return "DW_TAG_set_type";
7459 case DW_TAG_subrange_type:
7460 return "DW_TAG_subrange_type";
7461 case DW_TAG_with_stmt:
7462 return "DW_TAG_with_stmt";
7463 case DW_TAG_access_declaration:
7464 return "DW_TAG_access_declaration";
7465 case DW_TAG_base_type:
7466 return "DW_TAG_base_type";
7467 case DW_TAG_catch_block:
7468 return "DW_TAG_catch_block";
7469 case DW_TAG_const_type:
7470 return "DW_TAG_const_type";
7471 case DW_TAG_constant:
7472 return "DW_TAG_constant";
7473 case DW_TAG_enumerator:
7474 return "DW_TAG_enumerator";
7475 case DW_TAG_file_type:
7476 return "DW_TAG_file_type";
7477 case DW_TAG_friend:
7478 return "DW_TAG_friend";
7479 case DW_TAG_namelist:
7480 return "DW_TAG_namelist";
7481 case DW_TAG_namelist_item:
7482 return "DW_TAG_namelist_item";
7483 case DW_TAG_packed_type:
7484 return "DW_TAG_packed_type";
7485 case DW_TAG_subprogram:
7486 return "DW_TAG_subprogram";
7487 case DW_TAG_template_type_param:
7488 return "DW_TAG_template_type_param";
7489 case DW_TAG_template_value_param:
7490 return "DW_TAG_template_value_param";
7491 case DW_TAG_thrown_type:
7492 return "DW_TAG_thrown_type";
7493 case DW_TAG_try_block:
7494 return "DW_TAG_try_block";
7495 case DW_TAG_variant_part:
7496 return "DW_TAG_variant_part";
7497 case DW_TAG_variable:
7498 return "DW_TAG_variable";
7499 case DW_TAG_volatile_type:
7500 return "DW_TAG_volatile_type";
7501 case DW_TAG_dwarf_procedure:
7502 return "DW_TAG_dwarf_procedure";
7503 case DW_TAG_restrict_type:
7504 return "DW_TAG_restrict_type";
7505 case DW_TAG_interface_type:
7506 return "DW_TAG_interface_type";
7507 case DW_TAG_namespace:
7508 return "DW_TAG_namespace";
7509 case DW_TAG_imported_module:
7510 return "DW_TAG_imported_module";
7511 case DW_TAG_unspecified_type:
7512 return "DW_TAG_unspecified_type";
7513 case DW_TAG_partial_unit:
7514 return "DW_TAG_partial_unit";
7515 case DW_TAG_imported_unit:
7516 return "DW_TAG_imported_unit";
7517 case DW_TAG_MIPS_loop:
7518 return "DW_TAG_MIPS_loop";
7519 case DW_TAG_format_label:
7520 return "DW_TAG_format_label";
7521 case DW_TAG_function_template:
7522 return "DW_TAG_function_template";
7523 case DW_TAG_class_template:
7524 return "DW_TAG_class_template";
7525 default:
7526 return "DW_TAG_<unknown>";
7527 }
7528 }
7529
7530 /* Convert a DWARF attribute code into its string name. */
7531
7532 static char *
7533 dwarf_attr_name (unsigned attr)
7534 {
7535 switch (attr)
7536 {
7537 case DW_AT_sibling:
7538 return "DW_AT_sibling";
7539 case DW_AT_location:
7540 return "DW_AT_location";
7541 case DW_AT_name:
7542 return "DW_AT_name";
7543 case DW_AT_ordering:
7544 return "DW_AT_ordering";
7545 case DW_AT_subscr_data:
7546 return "DW_AT_subscr_data";
7547 case DW_AT_byte_size:
7548 return "DW_AT_byte_size";
7549 case DW_AT_bit_offset:
7550 return "DW_AT_bit_offset";
7551 case DW_AT_bit_size:
7552 return "DW_AT_bit_size";
7553 case DW_AT_element_list:
7554 return "DW_AT_element_list";
7555 case DW_AT_stmt_list:
7556 return "DW_AT_stmt_list";
7557 case DW_AT_low_pc:
7558 return "DW_AT_low_pc";
7559 case DW_AT_high_pc:
7560 return "DW_AT_high_pc";
7561 case DW_AT_language:
7562 return "DW_AT_language";
7563 case DW_AT_member:
7564 return "DW_AT_member";
7565 case DW_AT_discr:
7566 return "DW_AT_discr";
7567 case DW_AT_discr_value:
7568 return "DW_AT_discr_value";
7569 case DW_AT_visibility:
7570 return "DW_AT_visibility";
7571 case DW_AT_import:
7572 return "DW_AT_import";
7573 case DW_AT_string_length:
7574 return "DW_AT_string_length";
7575 case DW_AT_common_reference:
7576 return "DW_AT_common_reference";
7577 case DW_AT_comp_dir:
7578 return "DW_AT_comp_dir";
7579 case DW_AT_const_value:
7580 return "DW_AT_const_value";
7581 case DW_AT_containing_type:
7582 return "DW_AT_containing_type";
7583 case DW_AT_default_value:
7584 return "DW_AT_default_value";
7585 case DW_AT_inline:
7586 return "DW_AT_inline";
7587 case DW_AT_is_optional:
7588 return "DW_AT_is_optional";
7589 case DW_AT_lower_bound:
7590 return "DW_AT_lower_bound";
7591 case DW_AT_producer:
7592 return "DW_AT_producer";
7593 case DW_AT_prototyped:
7594 return "DW_AT_prototyped";
7595 case DW_AT_return_addr:
7596 return "DW_AT_return_addr";
7597 case DW_AT_start_scope:
7598 return "DW_AT_start_scope";
7599 case DW_AT_stride_size:
7600 return "DW_AT_stride_size";
7601 case DW_AT_upper_bound:
7602 return "DW_AT_upper_bound";
7603 case DW_AT_abstract_origin:
7604 return "DW_AT_abstract_origin";
7605 case DW_AT_accessibility:
7606 return "DW_AT_accessibility";
7607 case DW_AT_address_class:
7608 return "DW_AT_address_class";
7609 case DW_AT_artificial:
7610 return "DW_AT_artificial";
7611 case DW_AT_base_types:
7612 return "DW_AT_base_types";
7613 case DW_AT_calling_convention:
7614 return "DW_AT_calling_convention";
7615 case DW_AT_count:
7616 return "DW_AT_count";
7617 case DW_AT_data_member_location:
7618 return "DW_AT_data_member_location";
7619 case DW_AT_decl_column:
7620 return "DW_AT_decl_column";
7621 case DW_AT_decl_file:
7622 return "DW_AT_decl_file";
7623 case DW_AT_decl_line:
7624 return "DW_AT_decl_line";
7625 case DW_AT_declaration:
7626 return "DW_AT_declaration";
7627 case DW_AT_discr_list:
7628 return "DW_AT_discr_list";
7629 case DW_AT_encoding:
7630 return "DW_AT_encoding";
7631 case DW_AT_external:
7632 return "DW_AT_external";
7633 case DW_AT_frame_base:
7634 return "DW_AT_frame_base";
7635 case DW_AT_friend:
7636 return "DW_AT_friend";
7637 case DW_AT_identifier_case:
7638 return "DW_AT_identifier_case";
7639 case DW_AT_macro_info:
7640 return "DW_AT_macro_info";
7641 case DW_AT_namelist_items:
7642 return "DW_AT_namelist_items";
7643 case DW_AT_priority:
7644 return "DW_AT_priority";
7645 case DW_AT_segment:
7646 return "DW_AT_segment";
7647 case DW_AT_specification:
7648 return "DW_AT_specification";
7649 case DW_AT_static_link:
7650 return "DW_AT_static_link";
7651 case DW_AT_type:
7652 return "DW_AT_type";
7653 case DW_AT_use_location:
7654 return "DW_AT_use_location";
7655 case DW_AT_variable_parameter:
7656 return "DW_AT_variable_parameter";
7657 case DW_AT_virtuality:
7658 return "DW_AT_virtuality";
7659 case DW_AT_vtable_elem_location:
7660 return "DW_AT_vtable_elem_location";
7661 case DW_AT_allocated:
7662 return "DW_AT_allocated";
7663 case DW_AT_associated:
7664 return "DW_AT_associated";
7665 case DW_AT_data_location:
7666 return "DW_AT_data_location";
7667 case DW_AT_stride:
7668 return "DW_AT_stride";
7669 case DW_AT_entry_pc:
7670 return "DW_AT_entry_pc";
7671 case DW_AT_use_UTF8:
7672 return "DW_AT_use_UTF8";
7673 case DW_AT_extension:
7674 return "DW_AT_extension";
7675 case DW_AT_ranges:
7676 return "DW_AT_ranges";
7677 case DW_AT_trampoline:
7678 return "DW_AT_trampoline";
7679 case DW_AT_call_column:
7680 return "DW_AT_call_column";
7681 case DW_AT_call_file:
7682 return "DW_AT_call_file";
7683 case DW_AT_call_line:
7684 return "DW_AT_call_line";
7685 #ifdef MIPS
7686 case DW_AT_MIPS_fde:
7687 return "DW_AT_MIPS_fde";
7688 case DW_AT_MIPS_loop_begin:
7689 return "DW_AT_MIPS_loop_begin";
7690 case DW_AT_MIPS_tail_loop_begin:
7691 return "DW_AT_MIPS_tail_loop_begin";
7692 case DW_AT_MIPS_epilog_begin:
7693 return "DW_AT_MIPS_epilog_begin";
7694 case DW_AT_MIPS_loop_unroll_factor:
7695 return "DW_AT_MIPS_loop_unroll_factor";
7696 case DW_AT_MIPS_software_pipeline_depth:
7697 return "DW_AT_MIPS_software_pipeline_depth";
7698 #endif
7699 case DW_AT_MIPS_linkage_name:
7700 return "DW_AT_MIPS_linkage_name";
7701
7702 case DW_AT_sf_names:
7703 return "DW_AT_sf_names";
7704 case DW_AT_src_info:
7705 return "DW_AT_src_info";
7706 case DW_AT_mac_info:
7707 return "DW_AT_mac_info";
7708 case DW_AT_src_coords:
7709 return "DW_AT_src_coords";
7710 case DW_AT_body_begin:
7711 return "DW_AT_body_begin";
7712 case DW_AT_body_end:
7713 return "DW_AT_body_end";
7714 case DW_AT_GNU_vector:
7715 return "DW_AT_GNU_vector";
7716 default:
7717 return "DW_AT_<unknown>";
7718 }
7719 }
7720
7721 /* Convert a DWARF value form code into its string name. */
7722
7723 static char *
7724 dwarf_form_name (unsigned form)
7725 {
7726 switch (form)
7727 {
7728 case DW_FORM_addr:
7729 return "DW_FORM_addr";
7730 case DW_FORM_block2:
7731 return "DW_FORM_block2";
7732 case DW_FORM_block4:
7733 return "DW_FORM_block4";
7734 case DW_FORM_data2:
7735 return "DW_FORM_data2";
7736 case DW_FORM_data4:
7737 return "DW_FORM_data4";
7738 case DW_FORM_data8:
7739 return "DW_FORM_data8";
7740 case DW_FORM_string:
7741 return "DW_FORM_string";
7742 case DW_FORM_block:
7743 return "DW_FORM_block";
7744 case DW_FORM_block1:
7745 return "DW_FORM_block1";
7746 case DW_FORM_data1:
7747 return "DW_FORM_data1";
7748 case DW_FORM_flag:
7749 return "DW_FORM_flag";
7750 case DW_FORM_sdata:
7751 return "DW_FORM_sdata";
7752 case DW_FORM_strp:
7753 return "DW_FORM_strp";
7754 case DW_FORM_udata:
7755 return "DW_FORM_udata";
7756 case DW_FORM_ref_addr:
7757 return "DW_FORM_ref_addr";
7758 case DW_FORM_ref1:
7759 return "DW_FORM_ref1";
7760 case DW_FORM_ref2:
7761 return "DW_FORM_ref2";
7762 case DW_FORM_ref4:
7763 return "DW_FORM_ref4";
7764 case DW_FORM_ref8:
7765 return "DW_FORM_ref8";
7766 case DW_FORM_ref_udata:
7767 return "DW_FORM_ref_udata";
7768 case DW_FORM_indirect:
7769 return "DW_FORM_indirect";
7770 default:
7771 return "DW_FORM_<unknown>";
7772 }
7773 }
7774
7775 /* Convert a DWARF stack opcode into its string name. */
7776
7777 static char *
7778 dwarf_stack_op_name (unsigned op)
7779 {
7780 switch (op)
7781 {
7782 case DW_OP_addr:
7783 return "DW_OP_addr";
7784 case DW_OP_deref:
7785 return "DW_OP_deref";
7786 case DW_OP_const1u:
7787 return "DW_OP_const1u";
7788 case DW_OP_const1s:
7789 return "DW_OP_const1s";
7790 case DW_OP_const2u:
7791 return "DW_OP_const2u";
7792 case DW_OP_const2s:
7793 return "DW_OP_const2s";
7794 case DW_OP_const4u:
7795 return "DW_OP_const4u";
7796 case DW_OP_const4s:
7797 return "DW_OP_const4s";
7798 case DW_OP_const8u:
7799 return "DW_OP_const8u";
7800 case DW_OP_const8s:
7801 return "DW_OP_const8s";
7802 case DW_OP_constu:
7803 return "DW_OP_constu";
7804 case DW_OP_consts:
7805 return "DW_OP_consts";
7806 case DW_OP_dup:
7807 return "DW_OP_dup";
7808 case DW_OP_drop:
7809 return "DW_OP_drop";
7810 case DW_OP_over:
7811 return "DW_OP_over";
7812 case DW_OP_pick:
7813 return "DW_OP_pick";
7814 case DW_OP_swap:
7815 return "DW_OP_swap";
7816 case DW_OP_rot:
7817 return "DW_OP_rot";
7818 case DW_OP_xderef:
7819 return "DW_OP_xderef";
7820 case DW_OP_abs:
7821 return "DW_OP_abs";
7822 case DW_OP_and:
7823 return "DW_OP_and";
7824 case DW_OP_div:
7825 return "DW_OP_div";
7826 case DW_OP_minus:
7827 return "DW_OP_minus";
7828 case DW_OP_mod:
7829 return "DW_OP_mod";
7830 case DW_OP_mul:
7831 return "DW_OP_mul";
7832 case DW_OP_neg:
7833 return "DW_OP_neg";
7834 case DW_OP_not:
7835 return "DW_OP_not";
7836 case DW_OP_or:
7837 return "DW_OP_or";
7838 case DW_OP_plus:
7839 return "DW_OP_plus";
7840 case DW_OP_plus_uconst:
7841 return "DW_OP_plus_uconst";
7842 case DW_OP_shl:
7843 return "DW_OP_shl";
7844 case DW_OP_shr:
7845 return "DW_OP_shr";
7846 case DW_OP_shra:
7847 return "DW_OP_shra";
7848 case DW_OP_xor:
7849 return "DW_OP_xor";
7850 case DW_OP_bra:
7851 return "DW_OP_bra";
7852 case DW_OP_eq:
7853 return "DW_OP_eq";
7854 case DW_OP_ge:
7855 return "DW_OP_ge";
7856 case DW_OP_gt:
7857 return "DW_OP_gt";
7858 case DW_OP_le:
7859 return "DW_OP_le";
7860 case DW_OP_lt:
7861 return "DW_OP_lt";
7862 case DW_OP_ne:
7863 return "DW_OP_ne";
7864 case DW_OP_skip:
7865 return "DW_OP_skip";
7866 case DW_OP_lit0:
7867 return "DW_OP_lit0";
7868 case DW_OP_lit1:
7869 return "DW_OP_lit1";
7870 case DW_OP_lit2:
7871 return "DW_OP_lit2";
7872 case DW_OP_lit3:
7873 return "DW_OP_lit3";
7874 case DW_OP_lit4:
7875 return "DW_OP_lit4";
7876 case DW_OP_lit5:
7877 return "DW_OP_lit5";
7878 case DW_OP_lit6:
7879 return "DW_OP_lit6";
7880 case DW_OP_lit7:
7881 return "DW_OP_lit7";
7882 case DW_OP_lit8:
7883 return "DW_OP_lit8";
7884 case DW_OP_lit9:
7885 return "DW_OP_lit9";
7886 case DW_OP_lit10:
7887 return "DW_OP_lit10";
7888 case DW_OP_lit11:
7889 return "DW_OP_lit11";
7890 case DW_OP_lit12:
7891 return "DW_OP_lit12";
7892 case DW_OP_lit13:
7893 return "DW_OP_lit13";
7894 case DW_OP_lit14:
7895 return "DW_OP_lit14";
7896 case DW_OP_lit15:
7897 return "DW_OP_lit15";
7898 case DW_OP_lit16:
7899 return "DW_OP_lit16";
7900 case DW_OP_lit17:
7901 return "DW_OP_lit17";
7902 case DW_OP_lit18:
7903 return "DW_OP_lit18";
7904 case DW_OP_lit19:
7905 return "DW_OP_lit19";
7906 case DW_OP_lit20:
7907 return "DW_OP_lit20";
7908 case DW_OP_lit21:
7909 return "DW_OP_lit21";
7910 case DW_OP_lit22:
7911 return "DW_OP_lit22";
7912 case DW_OP_lit23:
7913 return "DW_OP_lit23";
7914 case DW_OP_lit24:
7915 return "DW_OP_lit24";
7916 case DW_OP_lit25:
7917 return "DW_OP_lit25";
7918 case DW_OP_lit26:
7919 return "DW_OP_lit26";
7920 case DW_OP_lit27:
7921 return "DW_OP_lit27";
7922 case DW_OP_lit28:
7923 return "DW_OP_lit28";
7924 case DW_OP_lit29:
7925 return "DW_OP_lit29";
7926 case DW_OP_lit30:
7927 return "DW_OP_lit30";
7928 case DW_OP_lit31:
7929 return "DW_OP_lit31";
7930 case DW_OP_reg0:
7931 return "DW_OP_reg0";
7932 case DW_OP_reg1:
7933 return "DW_OP_reg1";
7934 case DW_OP_reg2:
7935 return "DW_OP_reg2";
7936 case DW_OP_reg3:
7937 return "DW_OP_reg3";
7938 case DW_OP_reg4:
7939 return "DW_OP_reg4";
7940 case DW_OP_reg5:
7941 return "DW_OP_reg5";
7942 case DW_OP_reg6:
7943 return "DW_OP_reg6";
7944 case DW_OP_reg7:
7945 return "DW_OP_reg7";
7946 case DW_OP_reg8:
7947 return "DW_OP_reg8";
7948 case DW_OP_reg9:
7949 return "DW_OP_reg9";
7950 case DW_OP_reg10:
7951 return "DW_OP_reg10";
7952 case DW_OP_reg11:
7953 return "DW_OP_reg11";
7954 case DW_OP_reg12:
7955 return "DW_OP_reg12";
7956 case DW_OP_reg13:
7957 return "DW_OP_reg13";
7958 case DW_OP_reg14:
7959 return "DW_OP_reg14";
7960 case DW_OP_reg15:
7961 return "DW_OP_reg15";
7962 case DW_OP_reg16:
7963 return "DW_OP_reg16";
7964 case DW_OP_reg17:
7965 return "DW_OP_reg17";
7966 case DW_OP_reg18:
7967 return "DW_OP_reg18";
7968 case DW_OP_reg19:
7969 return "DW_OP_reg19";
7970 case DW_OP_reg20:
7971 return "DW_OP_reg20";
7972 case DW_OP_reg21:
7973 return "DW_OP_reg21";
7974 case DW_OP_reg22:
7975 return "DW_OP_reg22";
7976 case DW_OP_reg23:
7977 return "DW_OP_reg23";
7978 case DW_OP_reg24:
7979 return "DW_OP_reg24";
7980 case DW_OP_reg25:
7981 return "DW_OP_reg25";
7982 case DW_OP_reg26:
7983 return "DW_OP_reg26";
7984 case DW_OP_reg27:
7985 return "DW_OP_reg27";
7986 case DW_OP_reg28:
7987 return "DW_OP_reg28";
7988 case DW_OP_reg29:
7989 return "DW_OP_reg29";
7990 case DW_OP_reg30:
7991 return "DW_OP_reg30";
7992 case DW_OP_reg31:
7993 return "DW_OP_reg31";
7994 case DW_OP_breg0:
7995 return "DW_OP_breg0";
7996 case DW_OP_breg1:
7997 return "DW_OP_breg1";
7998 case DW_OP_breg2:
7999 return "DW_OP_breg2";
8000 case DW_OP_breg3:
8001 return "DW_OP_breg3";
8002 case DW_OP_breg4:
8003 return "DW_OP_breg4";
8004 case DW_OP_breg5:
8005 return "DW_OP_breg5";
8006 case DW_OP_breg6:
8007 return "DW_OP_breg6";
8008 case DW_OP_breg7:
8009 return "DW_OP_breg7";
8010 case DW_OP_breg8:
8011 return "DW_OP_breg8";
8012 case DW_OP_breg9:
8013 return "DW_OP_breg9";
8014 case DW_OP_breg10:
8015 return "DW_OP_breg10";
8016 case DW_OP_breg11:
8017 return "DW_OP_breg11";
8018 case DW_OP_breg12:
8019 return "DW_OP_breg12";
8020 case DW_OP_breg13:
8021 return "DW_OP_breg13";
8022 case DW_OP_breg14:
8023 return "DW_OP_breg14";
8024 case DW_OP_breg15:
8025 return "DW_OP_breg15";
8026 case DW_OP_breg16:
8027 return "DW_OP_breg16";
8028 case DW_OP_breg17:
8029 return "DW_OP_breg17";
8030 case DW_OP_breg18:
8031 return "DW_OP_breg18";
8032 case DW_OP_breg19:
8033 return "DW_OP_breg19";
8034 case DW_OP_breg20:
8035 return "DW_OP_breg20";
8036 case DW_OP_breg21:
8037 return "DW_OP_breg21";
8038 case DW_OP_breg22:
8039 return "DW_OP_breg22";
8040 case DW_OP_breg23:
8041 return "DW_OP_breg23";
8042 case DW_OP_breg24:
8043 return "DW_OP_breg24";
8044 case DW_OP_breg25:
8045 return "DW_OP_breg25";
8046 case DW_OP_breg26:
8047 return "DW_OP_breg26";
8048 case DW_OP_breg27:
8049 return "DW_OP_breg27";
8050 case DW_OP_breg28:
8051 return "DW_OP_breg28";
8052 case DW_OP_breg29:
8053 return "DW_OP_breg29";
8054 case DW_OP_breg30:
8055 return "DW_OP_breg30";
8056 case DW_OP_breg31:
8057 return "DW_OP_breg31";
8058 case DW_OP_regx:
8059 return "DW_OP_regx";
8060 case DW_OP_fbreg:
8061 return "DW_OP_fbreg";
8062 case DW_OP_bregx:
8063 return "DW_OP_bregx";
8064 case DW_OP_piece:
8065 return "DW_OP_piece";
8066 case DW_OP_deref_size:
8067 return "DW_OP_deref_size";
8068 case DW_OP_xderef_size:
8069 return "DW_OP_xderef_size";
8070 case DW_OP_nop:
8071 return "DW_OP_nop";
8072 /* DWARF 3 extensions. */
8073 case DW_OP_push_object_address:
8074 return "DW_OP_push_object_address";
8075 case DW_OP_call2:
8076 return "DW_OP_call2";
8077 case DW_OP_call4:
8078 return "DW_OP_call4";
8079 case DW_OP_call_ref:
8080 return "DW_OP_call_ref";
8081 /* GNU extensions. */
8082 case DW_OP_GNU_push_tls_address:
8083 return "DW_OP_GNU_push_tls_address";
8084 default:
8085 return "OP_<unknown>";
8086 }
8087 }
8088
8089 static char *
8090 dwarf_bool_name (unsigned mybool)
8091 {
8092 if (mybool)
8093 return "TRUE";
8094 else
8095 return "FALSE";
8096 }
8097
8098 /* Convert a DWARF type code into its string name. */
8099
8100 static char *
8101 dwarf_type_encoding_name (unsigned enc)
8102 {
8103 switch (enc)
8104 {
8105 case DW_ATE_address:
8106 return "DW_ATE_address";
8107 case DW_ATE_boolean:
8108 return "DW_ATE_boolean";
8109 case DW_ATE_complex_float:
8110 return "DW_ATE_complex_float";
8111 case DW_ATE_float:
8112 return "DW_ATE_float";
8113 case DW_ATE_signed:
8114 return "DW_ATE_signed";
8115 case DW_ATE_signed_char:
8116 return "DW_ATE_signed_char";
8117 case DW_ATE_unsigned:
8118 return "DW_ATE_unsigned";
8119 case DW_ATE_unsigned_char:
8120 return "DW_ATE_unsigned_char";
8121 case DW_ATE_imaginary_float:
8122 return "DW_ATE_imaginary_float";
8123 default:
8124 return "DW_ATE_<unknown>";
8125 }
8126 }
8127
8128 /* Convert a DWARF call frame info operation to its string name. */
8129
8130 #if 0
8131 static char *
8132 dwarf_cfi_name (unsigned cfi_opc)
8133 {
8134 switch (cfi_opc)
8135 {
8136 case DW_CFA_advance_loc:
8137 return "DW_CFA_advance_loc";
8138 case DW_CFA_offset:
8139 return "DW_CFA_offset";
8140 case DW_CFA_restore:
8141 return "DW_CFA_restore";
8142 case DW_CFA_nop:
8143 return "DW_CFA_nop";
8144 case DW_CFA_set_loc:
8145 return "DW_CFA_set_loc";
8146 case DW_CFA_advance_loc1:
8147 return "DW_CFA_advance_loc1";
8148 case DW_CFA_advance_loc2:
8149 return "DW_CFA_advance_loc2";
8150 case DW_CFA_advance_loc4:
8151 return "DW_CFA_advance_loc4";
8152 case DW_CFA_offset_extended:
8153 return "DW_CFA_offset_extended";
8154 case DW_CFA_restore_extended:
8155 return "DW_CFA_restore_extended";
8156 case DW_CFA_undefined:
8157 return "DW_CFA_undefined";
8158 case DW_CFA_same_value:
8159 return "DW_CFA_same_value";
8160 case DW_CFA_register:
8161 return "DW_CFA_register";
8162 case DW_CFA_remember_state:
8163 return "DW_CFA_remember_state";
8164 case DW_CFA_restore_state:
8165 return "DW_CFA_restore_state";
8166 case DW_CFA_def_cfa:
8167 return "DW_CFA_def_cfa";
8168 case DW_CFA_def_cfa_register:
8169 return "DW_CFA_def_cfa_register";
8170 case DW_CFA_def_cfa_offset:
8171 return "DW_CFA_def_cfa_offset";
8172
8173 /* DWARF 3 */
8174 case DW_CFA_def_cfa_expression:
8175 return "DW_CFA_def_cfa_expression";
8176 case DW_CFA_expression:
8177 return "DW_CFA_expression";
8178 case DW_CFA_offset_extended_sf:
8179 return "DW_CFA_offset_extended_sf";
8180 case DW_CFA_def_cfa_sf:
8181 return "DW_CFA_def_cfa_sf";
8182 case DW_CFA_def_cfa_offset_sf:
8183 return "DW_CFA_def_cfa_offset_sf";
8184
8185 /* SGI/MIPS specific */
8186 case DW_CFA_MIPS_advance_loc8:
8187 return "DW_CFA_MIPS_advance_loc8";
8188
8189 /* GNU extensions */
8190 case DW_CFA_GNU_window_save:
8191 return "DW_CFA_GNU_window_save";
8192 case DW_CFA_GNU_args_size:
8193 return "DW_CFA_GNU_args_size";
8194 case DW_CFA_GNU_negative_offset_extended:
8195 return "DW_CFA_GNU_negative_offset_extended";
8196
8197 default:
8198 return "DW_CFA_<unknown>";
8199 }
8200 }
8201 #endif
8202
8203 static void
8204 dump_die (struct die_info *die)
8205 {
8206 unsigned int i;
8207
8208 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8209 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8210 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8211 dwarf_bool_name (die->child != NULL));
8212
8213 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8214 for (i = 0; i < die->num_attrs; ++i)
8215 {
8216 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8217 dwarf_attr_name (die->attrs[i].name),
8218 dwarf_form_name (die->attrs[i].form));
8219 switch (die->attrs[i].form)
8220 {
8221 case DW_FORM_ref_addr:
8222 case DW_FORM_addr:
8223 fprintf_unfiltered (gdb_stderr, "address: ");
8224 print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8225 break;
8226 case DW_FORM_block2:
8227 case DW_FORM_block4:
8228 case DW_FORM_block:
8229 case DW_FORM_block1:
8230 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8231 break;
8232 case DW_FORM_data1:
8233 case DW_FORM_data2:
8234 case DW_FORM_data4:
8235 case DW_FORM_data8:
8236 case DW_FORM_ref1:
8237 case DW_FORM_ref2:
8238 case DW_FORM_ref4:
8239 case DW_FORM_udata:
8240 case DW_FORM_sdata:
8241 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8242 break;
8243 case DW_FORM_string:
8244 case DW_FORM_strp:
8245 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8246 DW_STRING (&die->attrs[i])
8247 ? DW_STRING (&die->attrs[i]) : "");
8248 break;
8249 case DW_FORM_flag:
8250 if (DW_UNSND (&die->attrs[i]))
8251 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8252 else
8253 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8254 break;
8255 case DW_FORM_indirect:
8256 /* the reader will have reduced the indirect form to
8257 the "base form" so this form should not occur */
8258 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8259 break;
8260 default:
8261 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8262 die->attrs[i].form);
8263 }
8264 fprintf_unfiltered (gdb_stderr, "\n");
8265 }
8266 }
8267
8268 static void
8269 dump_die_list (struct die_info *die)
8270 {
8271 while (die)
8272 {
8273 dump_die (die);
8274 if (die->child != NULL)
8275 dump_die_list (die->child);
8276 if (die->sibling != NULL)
8277 dump_die_list (die->sibling);
8278 }
8279 }
8280
8281 static void
8282 store_in_ref_table (unsigned int offset, struct die_info *die)
8283 {
8284 int h;
8285 struct die_info *old;
8286
8287 h = (offset % REF_HASH_SIZE);
8288 old = die_ref_table[h];
8289 die->next_ref = old;
8290 die_ref_table[h] = die;
8291 }
8292
8293
8294 static void
8295 dwarf2_empty_hash_tables (void)
8296 {
8297 memset (die_ref_table, 0, sizeof (die_ref_table));
8298 }
8299
8300 static unsigned int
8301 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8302 {
8303 unsigned int result = 0;
8304
8305 switch (attr->form)
8306 {
8307 case DW_FORM_ref_addr:
8308 result = DW_ADDR (attr);
8309 break;
8310 case DW_FORM_ref1:
8311 case DW_FORM_ref2:
8312 case DW_FORM_ref4:
8313 case DW_FORM_ref8:
8314 case DW_FORM_ref_udata:
8315 result = cu->header.offset + DW_UNSND (attr);
8316 break;
8317 default:
8318 complaint (&symfile_complaints,
8319 "unsupported die ref attribute form: '%s'",
8320 dwarf_form_name (attr->form));
8321 }
8322 return result;
8323 }
8324
8325 /* Return the constant value held by the given attribute. Return -1
8326 if the value held by the attribute is not constant. */
8327
8328 static int
8329 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8330 {
8331 if (attr->form == DW_FORM_sdata)
8332 return DW_SND (attr);
8333 else if (attr->form == DW_FORM_udata
8334 || attr->form == DW_FORM_data1
8335 || attr->form == DW_FORM_data2
8336 || attr->form == DW_FORM_data4
8337 || attr->form == DW_FORM_data8)
8338 return DW_UNSND (attr);
8339 else
8340 {
8341 complaint (&symfile_complaints, "Attribute value is not a constant (%s)",
8342 dwarf_form_name (attr->form));
8343 return default_value;
8344 }
8345 }
8346
8347 static struct die_info *
8348 follow_die_ref (unsigned int offset)
8349 {
8350 struct die_info *die;
8351 int h;
8352
8353 h = (offset % REF_HASH_SIZE);
8354 die = die_ref_table[h];
8355 while (die)
8356 {
8357 if (die->offset == offset)
8358 {
8359 return die;
8360 }
8361 die = die->next_ref;
8362 }
8363 return NULL;
8364 }
8365
8366 static struct type *
8367 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8368 struct dwarf2_cu *cu)
8369 {
8370 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8371 {
8372 error ("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]",
8373 typeid, objfile->name);
8374 }
8375
8376 /* Look for this particular type in the fundamental type vector. If
8377 one is not found, create and install one appropriate for the
8378 current language and the current target machine. */
8379
8380 if (cu->ftypes[typeid] == NULL)
8381 {
8382 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8383 }
8384
8385 return (cu->ftypes[typeid]);
8386 }
8387
8388 /* Decode simple location descriptions.
8389 Given a pointer to a dwarf block that defines a location, compute
8390 the location and return the value.
8391
8392 NOTE drow/2003-11-18: This function is called in two situations
8393 now: for the address of static or global variables (partial symbols
8394 only) and for offsets into structures which are expected to be
8395 (more or less) constant. The partial symbol case should go away,
8396 and only the constant case should remain. That will let this
8397 function complain more accurately. A few special modes are allowed
8398 without complaint for global variables (for instance, global
8399 register values and thread-local values).
8400
8401 A location description containing no operations indicates that the
8402 object is optimized out. The return value is 0 for that case.
8403 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8404 callers will only want a very basic result and this can become a
8405 complaint.
8406
8407 When the result is a register number, the global isreg flag is set,
8408 otherwise it is cleared.
8409
8410 Note that stack[0] is unused except as a default error return.
8411 Note that stack overflow is not yet handled. */
8412
8413 static CORE_ADDR
8414 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8415 {
8416 struct objfile *objfile = cu->objfile;
8417 struct comp_unit_head *cu_header = &cu->header;
8418 int i;
8419 int size = blk->size;
8420 char *data = blk->data;
8421 CORE_ADDR stack[64];
8422 int stacki;
8423 unsigned int bytes_read, unsnd;
8424 unsigned char op;
8425
8426 i = 0;
8427 stacki = 0;
8428 stack[stacki] = 0;
8429 isreg = 0;
8430
8431 while (i < size)
8432 {
8433 op = data[i++];
8434 switch (op)
8435 {
8436 case DW_OP_lit0:
8437 case DW_OP_lit1:
8438 case DW_OP_lit2:
8439 case DW_OP_lit3:
8440 case DW_OP_lit4:
8441 case DW_OP_lit5:
8442 case DW_OP_lit6:
8443 case DW_OP_lit7:
8444 case DW_OP_lit8:
8445 case DW_OP_lit9:
8446 case DW_OP_lit10:
8447 case DW_OP_lit11:
8448 case DW_OP_lit12:
8449 case DW_OP_lit13:
8450 case DW_OP_lit14:
8451 case DW_OP_lit15:
8452 case DW_OP_lit16:
8453 case DW_OP_lit17:
8454 case DW_OP_lit18:
8455 case DW_OP_lit19:
8456 case DW_OP_lit20:
8457 case DW_OP_lit21:
8458 case DW_OP_lit22:
8459 case DW_OP_lit23:
8460 case DW_OP_lit24:
8461 case DW_OP_lit25:
8462 case DW_OP_lit26:
8463 case DW_OP_lit27:
8464 case DW_OP_lit28:
8465 case DW_OP_lit29:
8466 case DW_OP_lit30:
8467 case DW_OP_lit31:
8468 stack[++stacki] = op - DW_OP_lit0;
8469 break;
8470
8471 case DW_OP_reg0:
8472 case DW_OP_reg1:
8473 case DW_OP_reg2:
8474 case DW_OP_reg3:
8475 case DW_OP_reg4:
8476 case DW_OP_reg5:
8477 case DW_OP_reg6:
8478 case DW_OP_reg7:
8479 case DW_OP_reg8:
8480 case DW_OP_reg9:
8481 case DW_OP_reg10:
8482 case DW_OP_reg11:
8483 case DW_OP_reg12:
8484 case DW_OP_reg13:
8485 case DW_OP_reg14:
8486 case DW_OP_reg15:
8487 case DW_OP_reg16:
8488 case DW_OP_reg17:
8489 case DW_OP_reg18:
8490 case DW_OP_reg19:
8491 case DW_OP_reg20:
8492 case DW_OP_reg21:
8493 case DW_OP_reg22:
8494 case DW_OP_reg23:
8495 case DW_OP_reg24:
8496 case DW_OP_reg25:
8497 case DW_OP_reg26:
8498 case DW_OP_reg27:
8499 case DW_OP_reg28:
8500 case DW_OP_reg29:
8501 case DW_OP_reg30:
8502 case DW_OP_reg31:
8503 isreg = 1;
8504 stack[++stacki] = op - DW_OP_reg0;
8505 if (i < size)
8506 dwarf2_complex_location_expr_complaint ();
8507 break;
8508
8509 case DW_OP_regx:
8510 isreg = 1;
8511 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8512 i += bytes_read;
8513 stack[++stacki] = unsnd;
8514 if (i < size)
8515 dwarf2_complex_location_expr_complaint ();
8516 break;
8517
8518 case DW_OP_addr:
8519 stack[++stacki] = read_address (objfile->obfd, &data[i],
8520 cu, &bytes_read);
8521 i += bytes_read;
8522 break;
8523
8524 case DW_OP_const1u:
8525 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8526 i += 1;
8527 break;
8528
8529 case DW_OP_const1s:
8530 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8531 i += 1;
8532 break;
8533
8534 case DW_OP_const2u:
8535 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8536 i += 2;
8537 break;
8538
8539 case DW_OP_const2s:
8540 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8541 i += 2;
8542 break;
8543
8544 case DW_OP_const4u:
8545 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8546 i += 4;
8547 break;
8548
8549 case DW_OP_const4s:
8550 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8551 i += 4;
8552 break;
8553
8554 case DW_OP_constu:
8555 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
8556 &bytes_read);
8557 i += bytes_read;
8558 break;
8559
8560 case DW_OP_consts:
8561 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8562 i += bytes_read;
8563 break;
8564
8565 case DW_OP_dup:
8566 stack[stacki + 1] = stack[stacki];
8567 stacki++;
8568 break;
8569
8570 case DW_OP_plus:
8571 stack[stacki - 1] += stack[stacki];
8572 stacki--;
8573 break;
8574
8575 case DW_OP_plus_uconst:
8576 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8577 i += bytes_read;
8578 break;
8579
8580 case DW_OP_minus:
8581 stack[stacki - 1] -= stack[stacki];
8582 stacki--;
8583 break;
8584
8585 case DW_OP_deref:
8586 /* If we're not the last op, then we definitely can't encode
8587 this using GDB's address_class enum. This is valid for partial
8588 global symbols, although the variable's address will be bogus
8589 in the psymtab. */
8590 if (i < size)
8591 dwarf2_complex_location_expr_complaint ();
8592 break;
8593
8594 case DW_OP_GNU_push_tls_address:
8595 /* The top of the stack has the offset from the beginning
8596 of the thread control block at which the variable is located. */
8597 /* Nothing should follow this operator, so the top of stack would
8598 be returned. */
8599 /* This is valid for partial global symbols, but the variable's
8600 address will be bogus in the psymtab. */
8601 if (i < size)
8602 dwarf2_complex_location_expr_complaint ();
8603 break;
8604
8605 default:
8606 complaint (&symfile_complaints, "unsupported stack op: '%s'",
8607 dwarf_stack_op_name (op));
8608 return (stack[stacki]);
8609 }
8610 }
8611 return (stack[stacki]);
8612 }
8613
8614 /* memory allocation interface */
8615
8616 static struct dwarf_block *
8617 dwarf_alloc_block (struct dwarf2_cu *cu)
8618 {
8619 struct dwarf_block *blk;
8620
8621 blk = (struct dwarf_block *)
8622 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
8623 return (blk);
8624 }
8625
8626 static struct abbrev_info *
8627 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
8628 {
8629 struct abbrev_info *abbrev;
8630
8631 abbrev = (struct abbrev_info *)
8632 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
8633 memset (abbrev, 0, sizeof (struct abbrev_info));
8634 return (abbrev);
8635 }
8636
8637 static struct die_info *
8638 dwarf_alloc_die (void)
8639 {
8640 struct die_info *die;
8641
8642 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8643 memset (die, 0, sizeof (struct die_info));
8644 return (die);
8645 }
8646
8647 \f
8648 /* Macro support. */
8649
8650
8651 /* Return the full name of file number I in *LH's file name table.
8652 Use COMP_DIR as the name of the current directory of the
8653 compilation. The result is allocated using xmalloc; the caller is
8654 responsible for freeing it. */
8655 static char *
8656 file_full_name (int file, struct line_header *lh, const char *comp_dir)
8657 {
8658 struct file_entry *fe = &lh->file_names[file - 1];
8659
8660 if (IS_ABSOLUTE_PATH (fe->name))
8661 return xstrdup (fe->name);
8662 else
8663 {
8664 const char *dir;
8665 int dir_len;
8666 char *full_name;
8667
8668 if (fe->dir_index)
8669 dir = lh->include_dirs[fe->dir_index - 1];
8670 else
8671 dir = comp_dir;
8672
8673 if (dir)
8674 {
8675 dir_len = strlen (dir);
8676 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8677 strcpy (full_name, dir);
8678 full_name[dir_len] = '/';
8679 strcpy (full_name + dir_len + 1, fe->name);
8680 return full_name;
8681 }
8682 else
8683 return xstrdup (fe->name);
8684 }
8685 }
8686
8687
8688 static struct macro_source_file *
8689 macro_start_file (int file, int line,
8690 struct macro_source_file *current_file,
8691 const char *comp_dir,
8692 struct line_header *lh, struct objfile *objfile)
8693 {
8694 /* The full name of this source file. */
8695 char *full_name = file_full_name (file, lh, comp_dir);
8696
8697 /* We don't create a macro table for this compilation unit
8698 at all until we actually get a filename. */
8699 if (! pending_macros)
8700 pending_macros = new_macro_table (&objfile->objfile_obstack,
8701 objfile->macro_cache);
8702
8703 if (! current_file)
8704 /* If we have no current file, then this must be the start_file
8705 directive for the compilation unit's main source file. */
8706 current_file = macro_set_main (pending_macros, full_name);
8707 else
8708 current_file = macro_include (current_file, line, full_name);
8709
8710 xfree (full_name);
8711
8712 return current_file;
8713 }
8714
8715
8716 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8717 followed by a null byte. */
8718 static char *
8719 copy_string (const char *buf, int len)
8720 {
8721 char *s = xmalloc (len + 1);
8722 memcpy (s, buf, len);
8723 s[len] = '\0';
8724
8725 return s;
8726 }
8727
8728
8729 static const char *
8730 consume_improper_spaces (const char *p, const char *body)
8731 {
8732 if (*p == ' ')
8733 {
8734 complaint (&symfile_complaints,
8735 "macro definition contains spaces in formal argument list:\n`%s'",
8736 body);
8737
8738 while (*p == ' ')
8739 p++;
8740 }
8741
8742 return p;
8743 }
8744
8745
8746 static void
8747 parse_macro_definition (struct macro_source_file *file, int line,
8748 const char *body)
8749 {
8750 const char *p;
8751
8752 /* The body string takes one of two forms. For object-like macro
8753 definitions, it should be:
8754
8755 <macro name> " " <definition>
8756
8757 For function-like macro definitions, it should be:
8758
8759 <macro name> "() " <definition>
8760 or
8761 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8762
8763 Spaces may appear only where explicitly indicated, and in the
8764 <definition>.
8765
8766 The Dwarf 2 spec says that an object-like macro's name is always
8767 followed by a space, but versions of GCC around March 2002 omit
8768 the space when the macro's definition is the empty string.
8769
8770 The Dwarf 2 spec says that there should be no spaces between the
8771 formal arguments in a function-like macro's formal argument list,
8772 but versions of GCC around March 2002 include spaces after the
8773 commas. */
8774
8775
8776 /* Find the extent of the macro name. The macro name is terminated
8777 by either a space or null character (for an object-like macro) or
8778 an opening paren (for a function-like macro). */
8779 for (p = body; *p; p++)
8780 if (*p == ' ' || *p == '(')
8781 break;
8782
8783 if (*p == ' ' || *p == '\0')
8784 {
8785 /* It's an object-like macro. */
8786 int name_len = p - body;
8787 char *name = copy_string (body, name_len);
8788 const char *replacement;
8789
8790 if (*p == ' ')
8791 replacement = body + name_len + 1;
8792 else
8793 {
8794 dwarf2_macro_malformed_definition_complaint (body);
8795 replacement = body + name_len;
8796 }
8797
8798 macro_define_object (file, line, name, replacement);
8799
8800 xfree (name);
8801 }
8802 else if (*p == '(')
8803 {
8804 /* It's a function-like macro. */
8805 char *name = copy_string (body, p - body);
8806 int argc = 0;
8807 int argv_size = 1;
8808 char **argv = xmalloc (argv_size * sizeof (*argv));
8809
8810 p++;
8811
8812 p = consume_improper_spaces (p, body);
8813
8814 /* Parse the formal argument list. */
8815 while (*p && *p != ')')
8816 {
8817 /* Find the extent of the current argument name. */
8818 const char *arg_start = p;
8819
8820 while (*p && *p != ',' && *p != ')' && *p != ' ')
8821 p++;
8822
8823 if (! *p || p == arg_start)
8824 dwarf2_macro_malformed_definition_complaint (body);
8825 else
8826 {
8827 /* Make sure argv has room for the new argument. */
8828 if (argc >= argv_size)
8829 {
8830 argv_size *= 2;
8831 argv = xrealloc (argv, argv_size * sizeof (*argv));
8832 }
8833
8834 argv[argc++] = copy_string (arg_start, p - arg_start);
8835 }
8836
8837 p = consume_improper_spaces (p, body);
8838
8839 /* Consume the comma, if present. */
8840 if (*p == ',')
8841 {
8842 p++;
8843
8844 p = consume_improper_spaces (p, body);
8845 }
8846 }
8847
8848 if (*p == ')')
8849 {
8850 p++;
8851
8852 if (*p == ' ')
8853 /* Perfectly formed definition, no complaints. */
8854 macro_define_function (file, line, name,
8855 argc, (const char **) argv,
8856 p + 1);
8857 else if (*p == '\0')
8858 {
8859 /* Complain, but do define it. */
8860 dwarf2_macro_malformed_definition_complaint (body);
8861 macro_define_function (file, line, name,
8862 argc, (const char **) argv,
8863 p);
8864 }
8865 else
8866 /* Just complain. */
8867 dwarf2_macro_malformed_definition_complaint (body);
8868 }
8869 else
8870 /* Just complain. */
8871 dwarf2_macro_malformed_definition_complaint (body);
8872
8873 xfree (name);
8874 {
8875 int i;
8876
8877 for (i = 0; i < argc; i++)
8878 xfree (argv[i]);
8879 }
8880 xfree (argv);
8881 }
8882 else
8883 dwarf2_macro_malformed_definition_complaint (body);
8884 }
8885
8886
8887 static void
8888 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
8889 char *comp_dir, bfd *abfd,
8890 struct dwarf2_cu *cu)
8891 {
8892 char *mac_ptr, *mac_end;
8893 struct macro_source_file *current_file = 0;
8894
8895 if (dwarf2_per_objfile->macinfo_buffer == NULL)
8896 {
8897 complaint (&symfile_complaints, "missing .debug_macinfo section");
8898 return;
8899 }
8900
8901 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
8902 mac_end = dwarf2_per_objfile->macinfo_buffer
8903 + dwarf2_per_objfile->macinfo_size;
8904
8905 for (;;)
8906 {
8907 enum dwarf_macinfo_record_type macinfo_type;
8908
8909 /* Do we at least have room for a macinfo type byte? */
8910 if (mac_ptr >= mac_end)
8911 {
8912 dwarf2_macros_too_long_complaint ();
8913 return;
8914 }
8915
8916 macinfo_type = read_1_byte (abfd, mac_ptr);
8917 mac_ptr++;
8918
8919 switch (macinfo_type)
8920 {
8921 /* A zero macinfo type indicates the end of the macro
8922 information. */
8923 case 0:
8924 return;
8925
8926 case DW_MACINFO_define:
8927 case DW_MACINFO_undef:
8928 {
8929 int bytes_read;
8930 int line;
8931 char *body;
8932
8933 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8934 mac_ptr += bytes_read;
8935 body = read_string (abfd, mac_ptr, &bytes_read);
8936 mac_ptr += bytes_read;
8937
8938 if (! current_file)
8939 complaint (&symfile_complaints,
8940 "debug info gives macro %s outside of any file: %s",
8941 macinfo_type ==
8942 DW_MACINFO_define ? "definition" : macinfo_type ==
8943 DW_MACINFO_undef ? "undefinition" :
8944 "something-or-other", body);
8945 else
8946 {
8947 if (macinfo_type == DW_MACINFO_define)
8948 parse_macro_definition (current_file, line, body);
8949 else if (macinfo_type == DW_MACINFO_undef)
8950 macro_undef (current_file, line, body);
8951 }
8952 }
8953 break;
8954
8955 case DW_MACINFO_start_file:
8956 {
8957 int bytes_read;
8958 int line, file;
8959
8960 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8961 mac_ptr += bytes_read;
8962 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
8963 mac_ptr += bytes_read;
8964
8965 current_file = macro_start_file (file, line,
8966 current_file, comp_dir,
8967 lh, cu->objfile);
8968 }
8969 break;
8970
8971 case DW_MACINFO_end_file:
8972 if (! current_file)
8973 complaint (&symfile_complaints,
8974 "macro debug info has an unmatched `close_file' directive");
8975 else
8976 {
8977 current_file = current_file->included_by;
8978 if (! current_file)
8979 {
8980 enum dwarf_macinfo_record_type next_type;
8981
8982 /* GCC circa March 2002 doesn't produce the zero
8983 type byte marking the end of the compilation
8984 unit. Complain if it's not there, but exit no
8985 matter what. */
8986
8987 /* Do we at least have room for a macinfo type byte? */
8988 if (mac_ptr >= mac_end)
8989 {
8990 dwarf2_macros_too_long_complaint ();
8991 return;
8992 }
8993
8994 /* We don't increment mac_ptr here, so this is just
8995 a look-ahead. */
8996 next_type = read_1_byte (abfd, mac_ptr);
8997 if (next_type != 0)
8998 complaint (&symfile_complaints,
8999 "no terminating 0-type entry for macros in `.debug_macinfo' section");
9000
9001 return;
9002 }
9003 }
9004 break;
9005
9006 case DW_MACINFO_vendor_ext:
9007 {
9008 int bytes_read;
9009 int constant;
9010 char *string;
9011
9012 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9013 mac_ptr += bytes_read;
9014 string = read_string (abfd, mac_ptr, &bytes_read);
9015 mac_ptr += bytes_read;
9016
9017 /* We don't recognize any vendor extensions. */
9018 }
9019 break;
9020 }
9021 }
9022 }
9023
9024 /* Check if the attribute's form is a DW_FORM_block*
9025 if so return true else false. */
9026 static int
9027 attr_form_is_block (struct attribute *attr)
9028 {
9029 return (attr == NULL ? 0 :
9030 attr->form == DW_FORM_block1
9031 || attr->form == DW_FORM_block2
9032 || attr->form == DW_FORM_block4
9033 || attr->form == DW_FORM_block);
9034 }
9035
9036 static void
9037 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9038 struct dwarf2_cu *cu)
9039 {
9040 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9041 {
9042 struct dwarf2_loclist_baton *baton;
9043
9044 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9045 sizeof (struct dwarf2_loclist_baton));
9046 baton->objfile = cu->objfile;
9047
9048 /* We don't know how long the location list is, but make sure we
9049 don't run off the edge of the section. */
9050 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9051 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9052 baton->base_address = cu->header.base_address;
9053 if (cu->header.base_known == 0)
9054 complaint (&symfile_complaints,
9055 "Location list used without specifying the CU base address.");
9056
9057 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9058 SYMBOL_LOCATION_BATON (sym) = baton;
9059 }
9060 else
9061 {
9062 struct dwarf2_locexpr_baton *baton;
9063
9064 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9065 sizeof (struct dwarf2_locexpr_baton));
9066 baton->objfile = cu->objfile;
9067
9068 if (attr_form_is_block (attr))
9069 {
9070 /* Note that we're just copying the block's data pointer
9071 here, not the actual data. We're still pointing into the
9072 info_buffer for SYM's objfile; right now we never release
9073 that buffer, but when we do clean up properly this may
9074 need to change. */
9075 baton->size = DW_BLOCK (attr)->size;
9076 baton->data = DW_BLOCK (attr)->data;
9077 }
9078 else
9079 {
9080 dwarf2_invalid_attrib_class_complaint ("location description",
9081 SYMBOL_NATURAL_NAME (sym));
9082 baton->size = 0;
9083 baton->data = NULL;
9084 }
9085
9086 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9087 SYMBOL_LOCATION_BATON (sym) = baton;
9088 }
9089 }
9090
9091 /* Locate the compilation unit from CU's objfile which contains the
9092 DIE at OFFSET. Returns NULL on failure. */
9093
9094 static struct dwarf2_per_cu_data *
9095 dwarf2_find_containing_comp_unit (unsigned long offset,
9096 struct objfile *objfile)
9097 {
9098 struct dwarf2_per_cu_data *this_cu;
9099 int low, high;
9100
9101 if (dwarf2_per_objfile->all_comp_units == NULL)
9102 error ("Dwarf Error: offset 0x%lx points outside this "
9103 "compilation unit [in module %s]",
9104 offset, bfd_get_filename (objfile->obfd));
9105
9106 low = 0;
9107 high = dwarf2_per_objfile->n_comp_units - 1;
9108 while (high > low)
9109 {
9110 int mid = low + (high - low) / 2;
9111 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9112 high = mid;
9113 else
9114 low = mid + 1;
9115 }
9116 gdb_assert (low == high);
9117 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9118 {
9119 gdb_assert (low > 0);
9120 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9121 return dwarf2_per_objfile->all_comp_units[low-1];
9122 }
9123 else
9124 {
9125 this_cu = dwarf2_per_objfile->all_comp_units[low];
9126 if (low == dwarf2_per_objfile->n_comp_units - 1
9127 && offset >= this_cu->offset + this_cu->length)
9128 error ("invalid dwarf2 offset %ld", offset);
9129 gdb_assert (offset < this_cu->offset + this_cu->length);
9130 return this_cu;
9131 }
9132 }
9133
9134 static struct dwarf2_per_cu_data *
9135 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9136 {
9137 struct dwarf2_per_cu_data *this_cu;
9138 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9139 if (this_cu->offset != offset)
9140 error ("no compilation unit with offset %ld\n", offset);
9141 return this_cu;
9142 }
9143
9144 /* Release one cached compilation unit, CU. We unlink it from the tree
9145 of compilation units, but we don't remove it from the read_in_chain;
9146 the caller is responsible for that. */
9147
9148 static void
9149 free_one_comp_unit (void *data)
9150 {
9151 struct dwarf2_cu *cu = data;
9152
9153 if (cu->per_cu != NULL)
9154 cu->per_cu->cu = NULL;
9155 cu->per_cu = NULL;
9156
9157 obstack_free (&cu->comp_unit_obstack, NULL);
9158
9159 xfree (cu);
9160 }
9161
9162 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9163 when we're finished with it. We can't free the pointer itself, but be
9164 sure to unlink it from the cache. Also release any associated storage
9165 and perform cache maintenance.
9166
9167 Only used during partial symbol parsing. */
9168
9169 static void
9170 free_stack_comp_unit (void *data)
9171 {
9172 struct dwarf2_cu *cu = data;
9173
9174 obstack_free (&cu->comp_unit_obstack, NULL);
9175 cu->partial_dies = NULL;
9176
9177 if (cu->per_cu != NULL)
9178 {
9179 /* This compilation unit is on the stack in our caller, so we
9180 should not xfree it. Just unlink it. */
9181 cu->per_cu->cu = NULL;
9182 cu->per_cu = NULL;
9183
9184 /* If we had a per-cu pointer, then we may have other compilation
9185 units loaded, so age them now. */
9186 age_cached_comp_units ();
9187 }
9188 }
9189
9190 /* Free all cached compilation units. */
9191
9192 static void
9193 free_cached_comp_units (void *data)
9194 {
9195 struct dwarf2_per_cu_data *per_cu, **last_chain;
9196
9197 per_cu = dwarf2_per_objfile->read_in_chain;
9198 last_chain = &dwarf2_per_objfile->read_in_chain;
9199 while (per_cu != NULL)
9200 {
9201 struct dwarf2_per_cu_data *next_cu;
9202
9203 next_cu = per_cu->cu->read_in_chain;
9204
9205 free_one_comp_unit (per_cu->cu);
9206 *last_chain = next_cu;
9207
9208 per_cu = next_cu;
9209 }
9210 }
9211
9212 /* Increase the age counter on each cached compilation unit, and free
9213 any that are too old. */
9214
9215 static void
9216 age_cached_comp_units (void)
9217 {
9218 struct dwarf2_per_cu_data *per_cu, **last_chain;
9219
9220 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9221 per_cu = dwarf2_per_objfile->read_in_chain;
9222 while (per_cu != NULL)
9223 {
9224 per_cu->cu->last_used ++;
9225 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9226 dwarf2_mark (per_cu->cu);
9227 per_cu = per_cu->cu->read_in_chain;
9228 }
9229
9230 per_cu = dwarf2_per_objfile->read_in_chain;
9231 last_chain = &dwarf2_per_objfile->read_in_chain;
9232 while (per_cu != NULL)
9233 {
9234 struct dwarf2_per_cu_data *next_cu;
9235
9236 next_cu = per_cu->cu->read_in_chain;
9237
9238 if (!per_cu->cu->mark)
9239 {
9240 free_one_comp_unit (per_cu->cu);
9241 *last_chain = next_cu;
9242 }
9243 else
9244 last_chain = &per_cu->cu->read_in_chain;
9245
9246 per_cu = next_cu;
9247 }
9248 }
9249
9250 /* Remove a single compilation unit from the cache. */
9251
9252 static void
9253 free_one_cached_comp_unit (void *target_cu)
9254 {
9255 struct dwarf2_per_cu_data *per_cu, **last_chain;
9256
9257 per_cu = dwarf2_per_objfile->read_in_chain;
9258 last_chain = &dwarf2_per_objfile->read_in_chain;
9259 while (per_cu != NULL)
9260 {
9261 struct dwarf2_per_cu_data *next_cu;
9262
9263 next_cu = per_cu->cu->read_in_chain;
9264
9265 if (per_cu->cu == target_cu)
9266 {
9267 free_one_comp_unit (per_cu->cu);
9268 *last_chain = next_cu;
9269 break;
9270 }
9271 else
9272 last_chain = &per_cu->cu->read_in_chain;
9273
9274 per_cu = next_cu;
9275 }
9276 }
9277
9278 /* A pair of DIE offset and GDB type pointer. We store these
9279 in a hash table separate from the DIEs, and preserve them
9280 when the DIEs are flushed out of cache. */
9281
9282 struct dwarf2_offset_and_type
9283 {
9284 unsigned int offset;
9285 struct type *type;
9286 };
9287
9288 /* Hash function for a dwarf2_offset_and_type. */
9289
9290 static hashval_t
9291 offset_and_type_hash (const void *item)
9292 {
9293 const struct dwarf2_offset_and_type *ofs = item;
9294 return ofs->offset;
9295 }
9296
9297 /* Equality function for a dwarf2_offset_and_type. */
9298
9299 static int
9300 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9301 {
9302 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9303 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9304 return ofs_lhs->offset == ofs_rhs->offset;
9305 }
9306
9307 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9308 table if necessary. */
9309
9310 static void
9311 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9312 {
9313 struct dwarf2_offset_and_type **slot, ofs;
9314
9315 die->type = type;
9316
9317 if (cu->per_cu == NULL)
9318 return;
9319
9320 if (cu->per_cu->type_hash == NULL)
9321 cu->per_cu->type_hash
9322 = htab_create_alloc_ex (cu->header.length / 24,
9323 offset_and_type_hash,
9324 offset_and_type_eq,
9325 NULL,
9326 &cu->objfile->objfile_obstack,
9327 hashtab_obstack_allocate,
9328 dummy_obstack_deallocate);
9329
9330 ofs.offset = die->offset;
9331 ofs.type = type;
9332 slot = (struct dwarf2_offset_and_type **)
9333 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9334 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9335 **slot = ofs;
9336 }
9337
9338 #if 0
9339
9340 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9341 have a saved type. */
9342
9343 static struct type *
9344 get_die_type (struct die_info *die, htab_t type_hash)
9345 {
9346 struct dwarf2_offset_and_type *slot, ofs;
9347
9348 ofs.offset = die->offset;
9349 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9350 if (slot)
9351 return slot->type;
9352 else
9353 return NULL;
9354 }
9355
9356 /* Restore the types of the DIE tree starting at START_DIE from the hash
9357 table saved in CU. */
9358
9359 static void
9360 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9361 {
9362 struct die_info *die;
9363
9364 if (cu->per_cu->type_hash == NULL)
9365 return;
9366
9367 for (die = start_die; die != NULL; die = die->sibling)
9368 {
9369 die->type = get_die_type (die, cu->per_cu->type_hash);
9370 if (die->child != NULL)
9371 reset_die_and_siblings_types (die->child, cu);
9372 }
9373 }
9374
9375 #endif
9376
9377 /* Set the mark field in CU and in every other compilation unit in the
9378 cache that we must keep because we are keeping CU. */
9379
9380 static void
9381 dwarf2_mark (struct dwarf2_cu *cu)
9382 {
9383 if (cu->mark)
9384 return;
9385 cu->mark = 1;
9386 }
9387
9388 static void
9389 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9390 {
9391 while (per_cu)
9392 {
9393 per_cu->cu->mark = 0;
9394 per_cu = per_cu->cu->read_in_chain;
9395 }
9396 }
9397
9398 /* Allocation function for the libiberty hash table which uses an
9399 obstack. */
9400
9401 static void *
9402 hashtab_obstack_allocate (void *data, size_t size, size_t count)
9403 {
9404 unsigned int total = size * count;
9405 void *ptr = obstack_alloc ((struct obstack *) data, total);
9406 memset (ptr, 0, total);
9407 return ptr;
9408 }
9409
9410 /* Trivial deallocation function for the libiberty splay tree and hash
9411 table - don't deallocate anything. Rely on later deletion of the
9412 obstack. */
9413
9414 static void
9415 dummy_obstack_deallocate (void *object, void *data)
9416 {
9417 return;
9418 }
9419
9420 /* Trivial hash function for partial_die_info: the hash value of a DIE
9421 is its offset in .debug_info for this objfile. */
9422
9423 static hashval_t
9424 partial_die_hash (const void *item)
9425 {
9426 const struct partial_die_info *part_die = item;
9427 return part_die->offset;
9428 }
9429
9430 /* Trivial comparison function for partial_die_info structures: two DIEs
9431 are equal if they have the same offset. */
9432
9433 static int
9434 partial_die_eq (const void *item_lhs, const void *item_rhs)
9435 {
9436 const struct partial_die_info *part_die_lhs = item_lhs;
9437 const struct partial_die_info *part_die_rhs = item_rhs;
9438 return part_die_lhs->offset == part_die_rhs->offset;
9439 }
9440
9441 static struct cmd_list_element *set_dwarf2_cmdlist;
9442 static struct cmd_list_element *show_dwarf2_cmdlist;
9443
9444 static void
9445 set_dwarf2_cmd (char *args, int from_tty)
9446 {
9447 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9448 }
9449
9450 static void
9451 show_dwarf2_cmd (char *args, int from_tty)
9452 {
9453 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9454 }
9455
9456 void _initialize_dwarf2_read (void);
9457
9458 void
9459 _initialize_dwarf2_read (void)
9460 {
9461 dwarf2_objfile_data_key = register_objfile_data ();
9462
9463 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd,
9464 "Set DWARF 2 specific variables.\n"
9465 "Configure DWARF 2 variables such as the cache size",
9466 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9467 0/*allow-unknown*/, &maintenance_set_cmdlist);
9468
9469 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd,
9470 "Show DWARF 2 specific variables\n"
9471 "Show DWARF 2 variables such as the cache size",
9472 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9473 0/*allow-unknown*/, &maintenance_show_cmdlist);
9474
9475 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
9476 &dwarf2_max_cache_age,
9477 "Set the upper bound on the age of cached "
9478 "dwarf2 compilation units.",
9479 "Show the upper bound on the age of cached "
9480 "dwarf2 compilation units.",
9481 "A higher limit means that cached "
9482 "compilation units will be stored\n"
9483 "in memory longer, and more total memory will "
9484 "be used. Zero disables\n"
9485 "caching, which can slow down startup.",
9486 "The upper bound on the age of cached "
9487 "dwarf2 compilation units is %d.",
9488 NULL, NULL, &set_dwarf2_cmdlist,
9489 &show_dwarf2_cmdlist);
9490 }
This page took 0.221666 seconds and 5 git commands to generate.