Remove TYPE_TAG_NAME
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
814 : name (name_),
815 dbfd (std::move (abfd))
816 {
817 }
818
819 /* Name of the file. */
820 const char *name;
821
822 /* File format version. */
823 int version = 0;
824
825 /* The bfd. */
826 gdb_bfd_ref_ptr dbfd;
827
828 /* Section info for this file. */
829 struct dwp_sections sections {};
830
831 /* Table of CUs in the file. */
832 const struct dwp_hash_table *cus = nullptr;
833
834 /* Table of TUs in the file. */
835 const struct dwp_hash_table *tus = nullptr;
836
837 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
838 htab_t loaded_cus {};
839 htab_t loaded_tus {};
840
841 /* Table to map ELF section numbers to their sections.
842 This is only needed for the DWP V1 file format. */
843 unsigned int num_sections = 0;
844 asection **elf_sections = nullptr;
845 };
846
847 /* This represents a '.dwz' file. */
848
849 struct dwz_file
850 {
851 dwz_file (gdb_bfd_ref_ptr &&bfd)
852 : dwz_bfd (std::move (bfd))
853 {
854 }
855
856 /* A dwz file can only contain a few sections. */
857 struct dwarf2_section_info abbrev {};
858 struct dwarf2_section_info info {};
859 struct dwarf2_section_info str {};
860 struct dwarf2_section_info line {};
861 struct dwarf2_section_info macro {};
862 struct dwarf2_section_info gdb_index {};
863 struct dwarf2_section_info debug_names {};
864
865 /* The dwz's BFD. */
866 gdb_bfd_ref_ptr dwz_bfd;
867 };
868
869 /* Struct used to pass misc. parameters to read_die_and_children, et
870 al. which are used for both .debug_info and .debug_types dies.
871 All parameters here are unchanging for the life of the call. This
872 struct exists to abstract away the constant parameters of die reading. */
873
874 struct die_reader_specs
875 {
876 /* The bfd of die_section. */
877 bfd* abfd;
878
879 /* The CU of the DIE we are parsing. */
880 struct dwarf2_cu *cu;
881
882 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
883 struct dwo_file *dwo_file;
884
885 /* The section the die comes from.
886 This is either .debug_info or .debug_types, or the .dwo variants. */
887 struct dwarf2_section_info *die_section;
888
889 /* die_section->buffer. */
890 const gdb_byte *buffer;
891
892 /* The end of the buffer. */
893 const gdb_byte *buffer_end;
894
895 /* The value of the DW_AT_comp_dir attribute. */
896 const char *comp_dir;
897
898 /* The abbreviation table to use when reading the DIEs. */
899 struct abbrev_table *abbrev_table;
900 };
901
902 /* Type of function passed to init_cutu_and_read_dies, et.al. */
903 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
904 const gdb_byte *info_ptr,
905 struct die_info *comp_unit_die,
906 int has_children,
907 void *data);
908
909 /* A 1-based directory index. This is a strong typedef to prevent
910 accidentally using a directory index as a 0-based index into an
911 array/vector. */
912 enum class dir_index : unsigned int {};
913
914 /* Likewise, a 1-based file name index. */
915 enum class file_name_index : unsigned int {};
916
917 struct file_entry
918 {
919 file_entry () = default;
920
921 file_entry (const char *name_, dir_index d_index_,
922 unsigned int mod_time_, unsigned int length_)
923 : name (name_),
924 d_index (d_index_),
925 mod_time (mod_time_),
926 length (length_)
927 {}
928
929 /* Return the include directory at D_INDEX stored in LH. Returns
930 NULL if D_INDEX is out of bounds. */
931 const char *include_dir (const line_header *lh) const;
932
933 /* The file name. Note this is an observing pointer. The memory is
934 owned by debug_line_buffer. */
935 const char *name {};
936
937 /* The directory index (1-based). */
938 dir_index d_index {};
939
940 unsigned int mod_time {};
941
942 unsigned int length {};
943
944 /* True if referenced by the Line Number Program. */
945 bool included_p {};
946
947 /* The associated symbol table, if any. */
948 struct symtab *symtab {};
949 };
950
951 /* The line number information for a compilation unit (found in the
952 .debug_line section) begins with a "statement program header",
953 which contains the following information. */
954 struct line_header
955 {
956 line_header ()
957 : offset_in_dwz {}
958 {}
959
960 /* Add an entry to the include directory table. */
961 void add_include_dir (const char *include_dir);
962
963 /* Add an entry to the file name table. */
964 void add_file_name (const char *name, dir_index d_index,
965 unsigned int mod_time, unsigned int length);
966
967 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
968 is out of bounds. */
969 const char *include_dir_at (dir_index index) const
970 {
971 /* Convert directory index number (1-based) to vector index
972 (0-based). */
973 size_t vec_index = to_underlying (index) - 1;
974
975 if (vec_index >= include_dirs.size ())
976 return NULL;
977 return include_dirs[vec_index];
978 }
979
980 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
981 is out of bounds. */
982 file_entry *file_name_at (file_name_index index)
983 {
984 /* Convert file name index number (1-based) to vector index
985 (0-based). */
986 size_t vec_index = to_underlying (index) - 1;
987
988 if (vec_index >= file_names.size ())
989 return NULL;
990 return &file_names[vec_index];
991 }
992
993 /* Const version of the above. */
994 const file_entry *file_name_at (unsigned int index) const
995 {
996 if (index >= file_names.size ())
997 return NULL;
998 return &file_names[index];
999 }
1000
1001 /* Offset of line number information in .debug_line section. */
1002 sect_offset sect_off {};
1003
1004 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1005 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1006
1007 unsigned int total_length {};
1008 unsigned short version {};
1009 unsigned int header_length {};
1010 unsigned char minimum_instruction_length {};
1011 unsigned char maximum_ops_per_instruction {};
1012 unsigned char default_is_stmt {};
1013 int line_base {};
1014 unsigned char line_range {};
1015 unsigned char opcode_base {};
1016
1017 /* standard_opcode_lengths[i] is the number of operands for the
1018 standard opcode whose value is i. This means that
1019 standard_opcode_lengths[0] is unused, and the last meaningful
1020 element is standard_opcode_lengths[opcode_base - 1]. */
1021 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1022
1023 /* The include_directories table. Note these are observing
1024 pointers. The memory is owned by debug_line_buffer. */
1025 std::vector<const char *> include_dirs;
1026
1027 /* The file_names table. */
1028 std::vector<file_entry> file_names;
1029
1030 /* The start and end of the statement program following this
1031 header. These point into dwarf2_per_objfile->line_buffer. */
1032 const gdb_byte *statement_program_start {}, *statement_program_end {};
1033 };
1034
1035 typedef std::unique_ptr<line_header> line_header_up;
1036
1037 const char *
1038 file_entry::include_dir (const line_header *lh) const
1039 {
1040 return lh->include_dir_at (d_index);
1041 }
1042
1043 /* When we construct a partial symbol table entry we only
1044 need this much information. */
1045 struct partial_die_info : public allocate_on_obstack
1046 {
1047 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1048
1049 /* Disable assign but still keep copy ctor, which is needed
1050 load_partial_dies. */
1051 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1052
1053 /* Adjust the partial die before generating a symbol for it. This
1054 function may set the is_external flag or change the DIE's
1055 name. */
1056 void fixup (struct dwarf2_cu *cu);
1057
1058 /* Read a minimal amount of information into the minimal die
1059 structure. */
1060 const gdb_byte *read (const struct die_reader_specs *reader,
1061 const struct abbrev_info &abbrev,
1062 const gdb_byte *info_ptr);
1063
1064 /* Offset of this DIE. */
1065 const sect_offset sect_off;
1066
1067 /* DWARF-2 tag for this DIE. */
1068 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1069
1070 /* Assorted flags describing the data found in this DIE. */
1071 const unsigned int has_children : 1;
1072
1073 unsigned int is_external : 1;
1074 unsigned int is_declaration : 1;
1075 unsigned int has_type : 1;
1076 unsigned int has_specification : 1;
1077 unsigned int has_pc_info : 1;
1078 unsigned int may_be_inlined : 1;
1079
1080 /* This DIE has been marked DW_AT_main_subprogram. */
1081 unsigned int main_subprogram : 1;
1082
1083 /* Flag set if the SCOPE field of this structure has been
1084 computed. */
1085 unsigned int scope_set : 1;
1086
1087 /* Flag set if the DIE has a byte_size attribute. */
1088 unsigned int has_byte_size : 1;
1089
1090 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1091 unsigned int has_const_value : 1;
1092
1093 /* Flag set if any of the DIE's children are template arguments. */
1094 unsigned int has_template_arguments : 1;
1095
1096 /* Flag set if fixup has been called on this die. */
1097 unsigned int fixup_called : 1;
1098
1099 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1100 unsigned int is_dwz : 1;
1101
1102 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1103 unsigned int spec_is_dwz : 1;
1104
1105 /* The name of this DIE. Normally the value of DW_AT_name, but
1106 sometimes a default name for unnamed DIEs. */
1107 const char *name = nullptr;
1108
1109 /* The linkage name, if present. */
1110 const char *linkage_name = nullptr;
1111
1112 /* The scope to prepend to our children. This is generally
1113 allocated on the comp_unit_obstack, so will disappear
1114 when this compilation unit leaves the cache. */
1115 const char *scope = nullptr;
1116
1117 /* Some data associated with the partial DIE. The tag determines
1118 which field is live. */
1119 union
1120 {
1121 /* The location description associated with this DIE, if any. */
1122 struct dwarf_block *locdesc;
1123 /* The offset of an import, for DW_TAG_imported_unit. */
1124 sect_offset sect_off;
1125 } d {};
1126
1127 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1128 CORE_ADDR lowpc = 0;
1129 CORE_ADDR highpc = 0;
1130
1131 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1132 DW_AT_sibling, if any. */
1133 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1134 could return DW_AT_sibling values to its caller load_partial_dies. */
1135 const gdb_byte *sibling = nullptr;
1136
1137 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1138 DW_AT_specification (or DW_AT_abstract_origin or
1139 DW_AT_extension). */
1140 sect_offset spec_offset {};
1141
1142 /* Pointers to this DIE's parent, first child, and next sibling,
1143 if any. */
1144 struct partial_die_info *die_parent = nullptr;
1145 struct partial_die_info *die_child = nullptr;
1146 struct partial_die_info *die_sibling = nullptr;
1147
1148 friend struct partial_die_info *
1149 dwarf2_cu::find_partial_die (sect_offset sect_off);
1150
1151 private:
1152 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1153 partial_die_info (sect_offset sect_off)
1154 : partial_die_info (sect_off, DW_TAG_padding, 0)
1155 {
1156 }
1157
1158 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1159 int has_children_)
1160 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1161 {
1162 is_external = 0;
1163 is_declaration = 0;
1164 has_type = 0;
1165 has_specification = 0;
1166 has_pc_info = 0;
1167 may_be_inlined = 0;
1168 main_subprogram = 0;
1169 scope_set = 0;
1170 has_byte_size = 0;
1171 has_const_value = 0;
1172 has_template_arguments = 0;
1173 fixup_called = 0;
1174 is_dwz = 0;
1175 spec_is_dwz = 0;
1176 }
1177 };
1178
1179 /* This data structure holds the information of an abbrev. */
1180 struct abbrev_info
1181 {
1182 unsigned int number; /* number identifying abbrev */
1183 enum dwarf_tag tag; /* dwarf tag */
1184 unsigned short has_children; /* boolean */
1185 unsigned short num_attrs; /* number of attributes */
1186 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1187 struct abbrev_info *next; /* next in chain */
1188 };
1189
1190 struct attr_abbrev
1191 {
1192 ENUM_BITFIELD(dwarf_attribute) name : 16;
1193 ENUM_BITFIELD(dwarf_form) form : 16;
1194
1195 /* It is valid only if FORM is DW_FORM_implicit_const. */
1196 LONGEST implicit_const;
1197 };
1198
1199 /* Size of abbrev_table.abbrev_hash_table. */
1200 #define ABBREV_HASH_SIZE 121
1201
1202 /* Top level data structure to contain an abbreviation table. */
1203
1204 struct abbrev_table
1205 {
1206 explicit abbrev_table (sect_offset off)
1207 : sect_off (off)
1208 {
1209 m_abbrevs =
1210 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1211 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1212 }
1213
1214 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1215
1216 /* Allocate space for a struct abbrev_info object in
1217 ABBREV_TABLE. */
1218 struct abbrev_info *alloc_abbrev ();
1219
1220 /* Add an abbreviation to the table. */
1221 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1222
1223 /* Look up an abbrev in the table.
1224 Returns NULL if the abbrev is not found. */
1225
1226 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1227
1228
1229 /* Where the abbrev table came from.
1230 This is used as a sanity check when the table is used. */
1231 const sect_offset sect_off;
1232
1233 /* Storage for the abbrev table. */
1234 auto_obstack abbrev_obstack;
1235
1236 private:
1237
1238 /* Hash table of abbrevs.
1239 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1240 It could be statically allocated, but the previous code didn't so we
1241 don't either. */
1242 struct abbrev_info **m_abbrevs;
1243 };
1244
1245 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1246
1247 /* Attributes have a name and a value. */
1248 struct attribute
1249 {
1250 ENUM_BITFIELD(dwarf_attribute) name : 16;
1251 ENUM_BITFIELD(dwarf_form) form : 15;
1252
1253 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1254 field should be in u.str (existing only for DW_STRING) but it is kept
1255 here for better struct attribute alignment. */
1256 unsigned int string_is_canonical : 1;
1257
1258 union
1259 {
1260 const char *str;
1261 struct dwarf_block *blk;
1262 ULONGEST unsnd;
1263 LONGEST snd;
1264 CORE_ADDR addr;
1265 ULONGEST signature;
1266 }
1267 u;
1268 };
1269
1270 /* This data structure holds a complete die structure. */
1271 struct die_info
1272 {
1273 /* DWARF-2 tag for this DIE. */
1274 ENUM_BITFIELD(dwarf_tag) tag : 16;
1275
1276 /* Number of attributes */
1277 unsigned char num_attrs;
1278
1279 /* True if we're presently building the full type name for the
1280 type derived from this DIE. */
1281 unsigned char building_fullname : 1;
1282
1283 /* True if this die is in process. PR 16581. */
1284 unsigned char in_process : 1;
1285
1286 /* Abbrev number */
1287 unsigned int abbrev;
1288
1289 /* Offset in .debug_info or .debug_types section. */
1290 sect_offset sect_off;
1291
1292 /* The dies in a compilation unit form an n-ary tree. PARENT
1293 points to this die's parent; CHILD points to the first child of
1294 this node; and all the children of a given node are chained
1295 together via their SIBLING fields. */
1296 struct die_info *child; /* Its first child, if any. */
1297 struct die_info *sibling; /* Its next sibling, if any. */
1298 struct die_info *parent; /* Its parent, if any. */
1299
1300 /* An array of attributes, with NUM_ATTRS elements. There may be
1301 zero, but it's not common and zero-sized arrays are not
1302 sufficiently portable C. */
1303 struct attribute attrs[1];
1304 };
1305
1306 /* Get at parts of an attribute structure. */
1307
1308 #define DW_STRING(attr) ((attr)->u.str)
1309 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1310 #define DW_UNSND(attr) ((attr)->u.unsnd)
1311 #define DW_BLOCK(attr) ((attr)->u.blk)
1312 #define DW_SND(attr) ((attr)->u.snd)
1313 #define DW_ADDR(attr) ((attr)->u.addr)
1314 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1315
1316 /* Blocks are a bunch of untyped bytes. */
1317 struct dwarf_block
1318 {
1319 size_t size;
1320
1321 /* Valid only if SIZE is not zero. */
1322 const gdb_byte *data;
1323 };
1324
1325 #ifndef ATTR_ALLOC_CHUNK
1326 #define ATTR_ALLOC_CHUNK 4
1327 #endif
1328
1329 /* Allocate fields for structs, unions and enums in this size. */
1330 #ifndef DW_FIELD_ALLOC_CHUNK
1331 #define DW_FIELD_ALLOC_CHUNK 4
1332 #endif
1333
1334 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1335 but this would require a corresponding change in unpack_field_as_long
1336 and friends. */
1337 static int bits_per_byte = 8;
1338
1339 /* When reading a variant or variant part, we track a bit more
1340 information about the field, and store it in an object of this
1341 type. */
1342
1343 struct variant_field
1344 {
1345 /* If we see a DW_TAG_variant, then this will be the discriminant
1346 value. */
1347 ULONGEST discriminant_value;
1348 /* If we see a DW_TAG_variant, then this will be set if this is the
1349 default branch. */
1350 bool default_branch;
1351 /* While reading a DW_TAG_variant_part, this will be set if this
1352 field is the discriminant. */
1353 bool is_discriminant;
1354 };
1355
1356 struct nextfield
1357 {
1358 int accessibility = 0;
1359 int virtuality = 0;
1360 /* Extra information to describe a variant or variant part. */
1361 struct variant_field variant {};
1362 struct field field {};
1363 };
1364
1365 struct fnfieldlist
1366 {
1367 const char *name = nullptr;
1368 std::vector<struct fn_field> fnfields;
1369 };
1370
1371 /* The routines that read and process dies for a C struct or C++ class
1372 pass lists of data member fields and lists of member function fields
1373 in an instance of a field_info structure, as defined below. */
1374 struct field_info
1375 {
1376 /* List of data member and baseclasses fields. */
1377 std::vector<struct nextfield> fields;
1378 std::vector<struct nextfield> baseclasses;
1379
1380 /* Number of fields (including baseclasses). */
1381 int nfields = 0;
1382
1383 /* Set if the accesibility of one of the fields is not public. */
1384 int non_public_fields = 0;
1385
1386 /* Member function fieldlist array, contains name of possibly overloaded
1387 member function, number of overloaded member functions and a pointer
1388 to the head of the member function field chain. */
1389 std::vector<struct fnfieldlist> fnfieldlists;
1390
1391 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1392 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1393 std::vector<struct decl_field> typedef_field_list;
1394
1395 /* Nested types defined by this class and the number of elements in this
1396 list. */
1397 std::vector<struct decl_field> nested_types_list;
1398 };
1399
1400 /* One item on the queue of compilation units to read in full symbols
1401 for. */
1402 struct dwarf2_queue_item
1403 {
1404 struct dwarf2_per_cu_data *per_cu;
1405 enum language pretend_language;
1406 struct dwarf2_queue_item *next;
1407 };
1408
1409 /* The current queue. */
1410 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1411
1412 /* Loaded secondary compilation units are kept in memory until they
1413 have not been referenced for the processing of this many
1414 compilation units. Set this to zero to disable caching. Cache
1415 sizes of up to at least twenty will improve startup time for
1416 typical inter-CU-reference binaries, at an obvious memory cost. */
1417 static int dwarf_max_cache_age = 5;
1418 static void
1419 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421 {
1422 fprintf_filtered (file, _("The upper bound on the age of cached "
1423 "DWARF compilation units is %s.\n"),
1424 value);
1425 }
1426 \f
1427 /* local function prototypes */
1428
1429 static const char *get_section_name (const struct dwarf2_section_info *);
1430
1431 static const char *get_section_file_name (const struct dwarf2_section_info *);
1432
1433 static void dwarf2_find_base_address (struct die_info *die,
1434 struct dwarf2_cu *cu);
1435
1436 static struct partial_symtab *create_partial_symtab
1437 (struct dwarf2_per_cu_data *per_cu, const char *name);
1438
1439 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1440 const gdb_byte *info_ptr,
1441 struct die_info *type_unit_die,
1442 int has_children, void *data);
1443
1444 static void dwarf2_build_psymtabs_hard
1445 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1446
1447 static void scan_partial_symbols (struct partial_die_info *,
1448 CORE_ADDR *, CORE_ADDR *,
1449 int, struct dwarf2_cu *);
1450
1451 static void add_partial_symbol (struct partial_die_info *,
1452 struct dwarf2_cu *);
1453
1454 static void add_partial_namespace (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int set_addrmap, struct dwarf2_cu *cu);
1457
1458 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1459 CORE_ADDR *highpc, int set_addrmap,
1460 struct dwarf2_cu *cu);
1461
1462 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1463 struct dwarf2_cu *cu);
1464
1465 static void add_partial_subprogram (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int need_pc, struct dwarf2_cu *cu);
1468
1469 static void dwarf2_read_symtab (struct partial_symtab *,
1470 struct objfile *);
1471
1472 static void psymtab_to_symtab_1 (struct partial_symtab *);
1473
1474 static abbrev_table_up abbrev_table_read_table
1475 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1476 sect_offset);
1477
1478 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1479
1480 static struct partial_die_info *load_partial_dies
1481 (const struct die_reader_specs *, const gdb_byte *, int);
1482
1483 static struct partial_die_info *find_partial_die (sect_offset, int,
1484 struct dwarf2_cu *);
1485
1486 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1487 struct attribute *, struct attr_abbrev *,
1488 const gdb_byte *);
1489
1490 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1491
1492 static int read_1_signed_byte (bfd *, const gdb_byte *);
1493
1494 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1495
1496 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1497
1498 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1499
1500 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1501 unsigned int *);
1502
1503 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static LONGEST read_checked_initial_length_and_offset
1506 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1507 unsigned int *, unsigned int *);
1508
1509 static LONGEST read_offset (bfd *, const gdb_byte *,
1510 const struct comp_unit_head *,
1511 unsigned int *);
1512
1513 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1514
1515 static sect_offset read_abbrev_offset
1516 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1517 struct dwarf2_section_info *, sect_offset);
1518
1519 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1520
1521 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1522
1523 static const char *read_indirect_string
1524 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1525 const struct comp_unit_head *, unsigned int *);
1526
1527 static const char *read_indirect_line_string
1528 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1529 const struct comp_unit_head *, unsigned int *);
1530
1531 static const char *read_indirect_string_at_offset
1532 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1533 LONGEST str_offset);
1534
1535 static const char *read_indirect_string_from_dwz
1536 (struct objfile *objfile, struct dwz_file *, LONGEST);
1537
1538 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1539
1540 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1541 const gdb_byte *,
1542 unsigned int *);
1543
1544 static const char *read_str_index (const struct die_reader_specs *reader,
1545 ULONGEST str_index);
1546
1547 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1548
1549 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1550 struct dwarf2_cu *);
1551
1552 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1553 unsigned int);
1554
1555 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1556 struct dwarf2_cu *cu);
1557
1558 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1559 struct dwarf2_cu *cu);
1560
1561 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1562
1563 static struct die_info *die_specification (struct die_info *die,
1564 struct dwarf2_cu **);
1565
1566 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1567 struct dwarf2_cu *cu);
1568
1569 static void dwarf_decode_lines (struct line_header *, const char *,
1570 struct dwarf2_cu *, struct partial_symtab *,
1571 CORE_ADDR, int decode_mapping);
1572
1573 static void dwarf2_start_subfile (const char *, const char *);
1574
1575 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1576 const char *, const char *,
1577 CORE_ADDR);
1578
1579 static struct symbol *new_symbol (struct die_info *, struct type *,
1580 struct dwarf2_cu *, struct symbol * = NULL);
1581
1582 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1583 struct dwarf2_cu *);
1584
1585 static void dwarf2_const_value_attr (const struct attribute *attr,
1586 struct type *type,
1587 const char *name,
1588 struct obstack *obstack,
1589 struct dwarf2_cu *cu, LONGEST *value,
1590 const gdb_byte **bytes,
1591 struct dwarf2_locexpr_baton **baton);
1592
1593 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1594
1595 static int need_gnat_info (struct dwarf2_cu *);
1596
1597 static struct type *die_descriptive_type (struct die_info *,
1598 struct dwarf2_cu *);
1599
1600 static void set_descriptive_type (struct type *, struct die_info *,
1601 struct dwarf2_cu *);
1602
1603 static struct type *die_containing_type (struct die_info *,
1604 struct dwarf2_cu *);
1605
1606 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1607 struct dwarf2_cu *);
1608
1609 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1610
1611 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1612
1613 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1614
1615 static char *typename_concat (struct obstack *obs, const char *prefix,
1616 const char *suffix, int physname,
1617 struct dwarf2_cu *cu);
1618
1619 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1620
1621 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1624
1625 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1626
1627 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1628
1629 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1630
1631 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1632 struct dwarf2_cu *, struct partial_symtab *);
1633
1634 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1635 values. Keep the items ordered with increasing constraints compliance. */
1636 enum pc_bounds_kind
1637 {
1638 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1639 PC_BOUNDS_NOT_PRESENT,
1640
1641 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1642 were present but they do not form a valid range of PC addresses. */
1643 PC_BOUNDS_INVALID,
1644
1645 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1646 PC_BOUNDS_RANGES,
1647
1648 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1649 PC_BOUNDS_HIGH_LOW,
1650 };
1651
1652 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1653 CORE_ADDR *, CORE_ADDR *,
1654 struct dwarf2_cu *,
1655 struct partial_symtab *);
1656
1657 static void get_scope_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *);
1660
1661 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1662 CORE_ADDR, struct dwarf2_cu *);
1663
1664 static void dwarf2_add_field (struct field_info *, struct die_info *,
1665 struct dwarf2_cu *);
1666
1667 static void dwarf2_attach_fields_to_type (struct field_info *,
1668 struct type *, struct dwarf2_cu *);
1669
1670 static void dwarf2_add_member_fn (struct field_info *,
1671 struct die_info *, struct type *,
1672 struct dwarf2_cu *);
1673
1674 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1675 struct type *,
1676 struct dwarf2_cu *);
1677
1678 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1679
1680 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1681
1682 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1683
1684 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1685
1686 static struct using_direct **using_directives (enum language);
1687
1688 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1689
1690 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1691
1692 static struct type *read_module_type (struct die_info *die,
1693 struct dwarf2_cu *cu);
1694
1695 static const char *namespace_name (struct die_info *die,
1696 int *is_anonymous, struct dwarf2_cu *);
1697
1698 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1699
1700 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1701
1702 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1703 struct dwarf2_cu *);
1704
1705 static struct die_info *read_die_and_siblings_1
1706 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1707 struct die_info *);
1708
1709 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1710 const gdb_byte *info_ptr,
1711 const gdb_byte **new_info_ptr,
1712 struct die_info *parent);
1713
1714 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1715 struct die_info **, const gdb_byte *,
1716 int *, int);
1717
1718 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1719 struct die_info **, const gdb_byte *,
1720 int *);
1721
1722 static void process_die (struct die_info *, struct dwarf2_cu *);
1723
1724 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1725 struct obstack *);
1726
1727 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1728
1729 static const char *dwarf2_full_name (const char *name,
1730 struct die_info *die,
1731 struct dwarf2_cu *cu);
1732
1733 static const char *dwarf2_physname (const char *name, struct die_info *die,
1734 struct dwarf2_cu *cu);
1735
1736 static struct die_info *dwarf2_extension (struct die_info *die,
1737 struct dwarf2_cu **);
1738
1739 static const char *dwarf_tag_name (unsigned int);
1740
1741 static const char *dwarf_attr_name (unsigned int);
1742
1743 static const char *dwarf_form_name (unsigned int);
1744
1745 static const char *dwarf_bool_name (unsigned int);
1746
1747 static const char *dwarf_type_encoding_name (unsigned int);
1748
1749 static struct die_info *sibling_die (struct die_info *);
1750
1751 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1752
1753 static void dump_die_for_error (struct die_info *);
1754
1755 static void dump_die_1 (struct ui_file *, int level, int max_level,
1756 struct die_info *);
1757
1758 /*static*/ void dump_die (struct die_info *, int max_level);
1759
1760 static void store_in_ref_table (struct die_info *,
1761 struct dwarf2_cu *);
1762
1763 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1764
1765 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1766
1767 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1768 const struct attribute *,
1769 struct dwarf2_cu **);
1770
1771 static struct die_info *follow_die_ref (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu **);
1774
1775 static struct die_info *follow_die_sig (struct die_info *,
1776 const struct attribute *,
1777 struct dwarf2_cu **);
1778
1779 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1780 struct dwarf2_cu *);
1781
1782 static struct type *get_DW_AT_signature_type (struct die_info *,
1783 const struct attribute *,
1784 struct dwarf2_cu *);
1785
1786 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1787
1788 static void read_signatured_type (struct signatured_type *);
1789
1790 static int attr_to_dynamic_prop (const struct attribute *attr,
1791 struct die_info *die, struct dwarf2_cu *cu,
1792 struct dynamic_prop *prop);
1793
1794 /* memory allocation interface */
1795
1796 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1797
1798 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1799
1800 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1801
1802 static int attr_form_is_block (const struct attribute *);
1803
1804 static int attr_form_is_section_offset (const struct attribute *);
1805
1806 static int attr_form_is_constant (const struct attribute *);
1807
1808 static int attr_form_is_ref (const struct attribute *);
1809
1810 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1811 struct dwarf2_loclist_baton *baton,
1812 const struct attribute *attr);
1813
1814 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1815 struct symbol *sym,
1816 struct dwarf2_cu *cu,
1817 int is_block);
1818
1819 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1820 const gdb_byte *info_ptr,
1821 struct abbrev_info *abbrev);
1822
1823 static hashval_t partial_die_hash (const void *item);
1824
1825 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1826
1827 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1828 (sect_offset sect_off, unsigned int offset_in_dwz,
1829 struct dwarf2_per_objfile *dwarf2_per_objfile);
1830
1831 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1832 struct die_info *comp_unit_die,
1833 enum language pretend_language);
1834
1835 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1836
1837 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1838
1839 static struct type *set_die_type (struct die_info *, struct type *,
1840 struct dwarf2_cu *);
1841
1842 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1843
1844 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1845
1846 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1847 enum language);
1848
1849 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1850 enum language);
1851
1852 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1853 enum language);
1854
1855 static void dwarf2_add_dependence (struct dwarf2_cu *,
1856 struct dwarf2_per_cu_data *);
1857
1858 static void dwarf2_mark (struct dwarf2_cu *);
1859
1860 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1861
1862 static struct type *get_die_type_at_offset (sect_offset,
1863 struct dwarf2_per_cu_data *);
1864
1865 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1866
1867 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1868 enum language pretend_language);
1869
1870 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1871
1872 /* Class, the destructor of which frees all allocated queue entries. This
1873 will only have work to do if an error was thrown while processing the
1874 dwarf. If no error was thrown then the queue entries should have all
1875 been processed, and freed, as we went along. */
1876
1877 class dwarf2_queue_guard
1878 {
1879 public:
1880 dwarf2_queue_guard () = default;
1881
1882 /* Free any entries remaining on the queue. There should only be
1883 entries left if we hit an error while processing the dwarf. */
1884 ~dwarf2_queue_guard ()
1885 {
1886 struct dwarf2_queue_item *item, *last;
1887
1888 item = dwarf2_queue;
1889 while (item)
1890 {
1891 /* Anything still marked queued is likely to be in an
1892 inconsistent state, so discard it. */
1893 if (item->per_cu->queued)
1894 {
1895 if (item->per_cu->cu != NULL)
1896 free_one_cached_comp_unit (item->per_cu);
1897 item->per_cu->queued = 0;
1898 }
1899
1900 last = item;
1901 item = item->next;
1902 xfree (last);
1903 }
1904
1905 dwarf2_queue = dwarf2_queue_tail = NULL;
1906 }
1907 };
1908
1909 /* The return type of find_file_and_directory. Note, the enclosed
1910 string pointers are only valid while this object is valid. */
1911
1912 struct file_and_directory
1913 {
1914 /* The filename. This is never NULL. */
1915 const char *name;
1916
1917 /* The compilation directory. NULL if not known. If we needed to
1918 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1919 points directly to the DW_AT_comp_dir string attribute owned by
1920 the obstack that owns the DIE. */
1921 const char *comp_dir;
1922
1923 /* If we needed to build a new string for comp_dir, this is what
1924 owns the storage. */
1925 std::string comp_dir_storage;
1926 };
1927
1928 static file_and_directory find_file_and_directory (struct die_info *die,
1929 struct dwarf2_cu *cu);
1930
1931 static char *file_full_name (int file, struct line_header *lh,
1932 const char *comp_dir);
1933
1934 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1935 enum class rcuh_kind { COMPILE, TYPE };
1936
1937 static const gdb_byte *read_and_check_comp_unit_head
1938 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1939 struct comp_unit_head *header,
1940 struct dwarf2_section_info *section,
1941 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1942 rcuh_kind section_kind);
1943
1944 static void init_cutu_and_read_dies
1945 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1946 int use_existing_cu, int keep, bool skip_partial,
1947 die_reader_func_ftype *die_reader_func, void *data);
1948
1949 static void init_cutu_and_read_dies_simple
1950 (struct dwarf2_per_cu_data *this_cu,
1951 die_reader_func_ftype *die_reader_func, void *data);
1952
1953 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1954
1955 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1956
1957 static struct dwo_unit *lookup_dwo_unit_in_dwp
1958 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1959 struct dwp_file *dwp_file, const char *comp_dir,
1960 ULONGEST signature, int is_debug_types);
1961
1962 static struct dwp_file *get_dwp_file
1963 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1964
1965 static struct dwo_unit *lookup_dwo_comp_unit
1966 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1967
1968 static struct dwo_unit *lookup_dwo_type_unit
1969 (struct signatured_type *, const char *, const char *);
1970
1971 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1972
1973 static void free_dwo_file (struct dwo_file *);
1974
1975 /* A unique_ptr helper to free a dwo_file. */
1976
1977 struct dwo_file_deleter
1978 {
1979 void operator() (struct dwo_file *df) const
1980 {
1981 free_dwo_file (df);
1982 }
1983 };
1984
1985 /* A unique pointer to a dwo_file. */
1986
1987 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1988
1989 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1990
1991 static void check_producer (struct dwarf2_cu *cu);
1992
1993 static void free_line_header_voidp (void *arg);
1994 \f
1995 /* Various complaints about symbol reading that don't abort the process. */
1996
1997 static void
1998 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1999 {
2000 complaint (_("statement list doesn't fit in .debug_line section"));
2001 }
2002
2003 static void
2004 dwarf2_debug_line_missing_file_complaint (void)
2005 {
2006 complaint (_(".debug_line section has line data without a file"));
2007 }
2008
2009 static void
2010 dwarf2_debug_line_missing_end_sequence_complaint (void)
2011 {
2012 complaint (_(".debug_line section has line "
2013 "program sequence without an end"));
2014 }
2015
2016 static void
2017 dwarf2_complex_location_expr_complaint (void)
2018 {
2019 complaint (_("location expression too complex"));
2020 }
2021
2022 static void
2023 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2024 int arg3)
2025 {
2026 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2027 arg1, arg2, arg3);
2028 }
2029
2030 static void
2031 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2032 {
2033 complaint (_("debug info runs off end of %s section"
2034 " [in module %s]"),
2035 get_section_name (section),
2036 get_section_file_name (section));
2037 }
2038
2039 static void
2040 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2041 {
2042 complaint (_("macro debug info contains a "
2043 "malformed macro definition:\n`%s'"),
2044 arg1);
2045 }
2046
2047 static void
2048 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2049 {
2050 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2051 arg1, arg2);
2052 }
2053
2054 /* Hash function for line_header_hash. */
2055
2056 static hashval_t
2057 line_header_hash (const struct line_header *ofs)
2058 {
2059 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2060 }
2061
2062 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2063
2064 static hashval_t
2065 line_header_hash_voidp (const void *item)
2066 {
2067 const struct line_header *ofs = (const struct line_header *) item;
2068
2069 return line_header_hash (ofs);
2070 }
2071
2072 /* Equality function for line_header_hash. */
2073
2074 static int
2075 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2076 {
2077 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2078 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2079
2080 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2081 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2082 }
2083
2084 \f
2085
2086 /* Read the given attribute value as an address, taking the attribute's
2087 form into account. */
2088
2089 static CORE_ADDR
2090 attr_value_as_address (struct attribute *attr)
2091 {
2092 CORE_ADDR addr;
2093
2094 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2095 {
2096 /* Aside from a few clearly defined exceptions, attributes that
2097 contain an address must always be in DW_FORM_addr form.
2098 Unfortunately, some compilers happen to be violating this
2099 requirement by encoding addresses using other forms, such
2100 as DW_FORM_data4 for example. For those broken compilers,
2101 we try to do our best, without any guarantee of success,
2102 to interpret the address correctly. It would also be nice
2103 to generate a complaint, but that would require us to maintain
2104 a list of legitimate cases where a non-address form is allowed,
2105 as well as update callers to pass in at least the CU's DWARF
2106 version. This is more overhead than what we're willing to
2107 expand for a pretty rare case. */
2108 addr = DW_UNSND (attr);
2109 }
2110 else
2111 addr = DW_ADDR (attr);
2112
2113 return addr;
2114 }
2115
2116 /* See declaration. */
2117
2118 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2119 const dwarf2_debug_sections *names)
2120 : objfile (objfile_)
2121 {
2122 if (names == NULL)
2123 names = &dwarf2_elf_names;
2124
2125 bfd *obfd = objfile->obfd;
2126
2127 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2128 locate_sections (obfd, sec, *names);
2129 }
2130
2131 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2132
2133 dwarf2_per_objfile::~dwarf2_per_objfile ()
2134 {
2135 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2136 free_cached_comp_units ();
2137
2138 if (quick_file_names_table)
2139 htab_delete (quick_file_names_table);
2140
2141 if (line_header_hash)
2142 htab_delete (line_header_hash);
2143
2144 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2145 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2146
2147 for (signatured_type *sig_type : all_type_units)
2148 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2149
2150 VEC_free (dwarf2_section_info_def, types);
2151
2152 if (dwo_files != NULL)
2153 free_dwo_files (dwo_files, objfile);
2154
2155 /* Everything else should be on the objfile obstack. */
2156 }
2157
2158 /* See declaration. */
2159
2160 void
2161 dwarf2_per_objfile::free_cached_comp_units ()
2162 {
2163 dwarf2_per_cu_data *per_cu = read_in_chain;
2164 dwarf2_per_cu_data **last_chain = &read_in_chain;
2165 while (per_cu != NULL)
2166 {
2167 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2168
2169 delete per_cu->cu;
2170 *last_chain = next_cu;
2171 per_cu = next_cu;
2172 }
2173 }
2174
2175 /* A helper class that calls free_cached_comp_units on
2176 destruction. */
2177
2178 class free_cached_comp_units
2179 {
2180 public:
2181
2182 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2183 : m_per_objfile (per_objfile)
2184 {
2185 }
2186
2187 ~free_cached_comp_units ()
2188 {
2189 m_per_objfile->free_cached_comp_units ();
2190 }
2191
2192 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2193
2194 private:
2195
2196 dwarf2_per_objfile *m_per_objfile;
2197 };
2198
2199 /* Try to locate the sections we need for DWARF 2 debugging
2200 information and return true if we have enough to do something.
2201 NAMES points to the dwarf2 section names, or is NULL if the standard
2202 ELF names are used. */
2203
2204 int
2205 dwarf2_has_info (struct objfile *objfile,
2206 const struct dwarf2_debug_sections *names)
2207 {
2208 if (objfile->flags & OBJF_READNEVER)
2209 return 0;
2210
2211 struct dwarf2_per_objfile *dwarf2_per_objfile
2212 = get_dwarf2_per_objfile (objfile);
2213
2214 if (dwarf2_per_objfile == NULL)
2215 {
2216 /* Initialize per-objfile state. */
2217 dwarf2_per_objfile
2218 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2219 names);
2220 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2221 }
2222 return (!dwarf2_per_objfile->info.is_virtual
2223 && dwarf2_per_objfile->info.s.section != NULL
2224 && !dwarf2_per_objfile->abbrev.is_virtual
2225 && dwarf2_per_objfile->abbrev.s.section != NULL);
2226 }
2227
2228 /* Return the containing section of virtual section SECTION. */
2229
2230 static struct dwarf2_section_info *
2231 get_containing_section (const struct dwarf2_section_info *section)
2232 {
2233 gdb_assert (section->is_virtual);
2234 return section->s.containing_section;
2235 }
2236
2237 /* Return the bfd owner of SECTION. */
2238
2239 static struct bfd *
2240 get_section_bfd_owner (const struct dwarf2_section_info *section)
2241 {
2242 if (section->is_virtual)
2243 {
2244 section = get_containing_section (section);
2245 gdb_assert (!section->is_virtual);
2246 }
2247 return section->s.section->owner;
2248 }
2249
2250 /* Return the bfd section of SECTION.
2251 Returns NULL if the section is not present. */
2252
2253 static asection *
2254 get_section_bfd_section (const struct dwarf2_section_info *section)
2255 {
2256 if (section->is_virtual)
2257 {
2258 section = get_containing_section (section);
2259 gdb_assert (!section->is_virtual);
2260 }
2261 return section->s.section;
2262 }
2263
2264 /* Return the name of SECTION. */
2265
2266 static const char *
2267 get_section_name (const struct dwarf2_section_info *section)
2268 {
2269 asection *sectp = get_section_bfd_section (section);
2270
2271 gdb_assert (sectp != NULL);
2272 return bfd_section_name (get_section_bfd_owner (section), sectp);
2273 }
2274
2275 /* Return the name of the file SECTION is in. */
2276
2277 static const char *
2278 get_section_file_name (const struct dwarf2_section_info *section)
2279 {
2280 bfd *abfd = get_section_bfd_owner (section);
2281
2282 return bfd_get_filename (abfd);
2283 }
2284
2285 /* Return the id of SECTION.
2286 Returns 0 if SECTION doesn't exist. */
2287
2288 static int
2289 get_section_id (const struct dwarf2_section_info *section)
2290 {
2291 asection *sectp = get_section_bfd_section (section);
2292
2293 if (sectp == NULL)
2294 return 0;
2295 return sectp->id;
2296 }
2297
2298 /* Return the flags of SECTION.
2299 SECTION (or containing section if this is a virtual section) must exist. */
2300
2301 static int
2302 get_section_flags (const struct dwarf2_section_info *section)
2303 {
2304 asection *sectp = get_section_bfd_section (section);
2305
2306 gdb_assert (sectp != NULL);
2307 return bfd_get_section_flags (sectp->owner, sectp);
2308 }
2309
2310 /* When loading sections, we look either for uncompressed section or for
2311 compressed section names. */
2312
2313 static int
2314 section_is_p (const char *section_name,
2315 const struct dwarf2_section_names *names)
2316 {
2317 if (names->normal != NULL
2318 && strcmp (section_name, names->normal) == 0)
2319 return 1;
2320 if (names->compressed != NULL
2321 && strcmp (section_name, names->compressed) == 0)
2322 return 1;
2323 return 0;
2324 }
2325
2326 /* See declaration. */
2327
2328 void
2329 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2330 const dwarf2_debug_sections &names)
2331 {
2332 flagword aflag = bfd_get_section_flags (abfd, sectp);
2333
2334 if ((aflag & SEC_HAS_CONTENTS) == 0)
2335 {
2336 }
2337 else if (section_is_p (sectp->name, &names.info))
2338 {
2339 this->info.s.section = sectp;
2340 this->info.size = bfd_get_section_size (sectp);
2341 }
2342 else if (section_is_p (sectp->name, &names.abbrev))
2343 {
2344 this->abbrev.s.section = sectp;
2345 this->abbrev.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &names.line))
2348 {
2349 this->line.s.section = sectp;
2350 this->line.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.loc))
2353 {
2354 this->loc.s.section = sectp;
2355 this->loc.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.loclists))
2358 {
2359 this->loclists.s.section = sectp;
2360 this->loclists.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.macinfo))
2363 {
2364 this->macinfo.s.section = sectp;
2365 this->macinfo.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.macro))
2368 {
2369 this->macro.s.section = sectp;
2370 this->macro.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.str))
2373 {
2374 this->str.s.section = sectp;
2375 this->str.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.line_str))
2378 {
2379 this->line_str.s.section = sectp;
2380 this->line_str.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.addr))
2383 {
2384 this->addr.s.section = sectp;
2385 this->addr.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.frame))
2388 {
2389 this->frame.s.section = sectp;
2390 this->frame.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.eh_frame))
2393 {
2394 this->eh_frame.s.section = sectp;
2395 this->eh_frame.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.ranges))
2398 {
2399 this->ranges.s.section = sectp;
2400 this->ranges.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.rnglists))
2403 {
2404 this->rnglists.s.section = sectp;
2405 this->rnglists.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.types))
2408 {
2409 struct dwarf2_section_info type_section;
2410
2411 memset (&type_section, 0, sizeof (type_section));
2412 type_section.s.section = sectp;
2413 type_section.size = bfd_get_section_size (sectp);
2414
2415 VEC_safe_push (dwarf2_section_info_def, this->types,
2416 &type_section);
2417 }
2418 else if (section_is_p (sectp->name, &names.gdb_index))
2419 {
2420 this->gdb_index.s.section = sectp;
2421 this->gdb_index.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.debug_names))
2424 {
2425 this->debug_names.s.section = sectp;
2426 this->debug_names.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.debug_aranges))
2429 {
2430 this->debug_aranges.s.section = sectp;
2431 this->debug_aranges.size = bfd_get_section_size (sectp);
2432 }
2433
2434 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2435 && bfd_section_vma (abfd, sectp) == 0)
2436 this->has_section_at_zero = true;
2437 }
2438
2439 /* A helper function that decides whether a section is empty,
2440 or not present. */
2441
2442 static int
2443 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2444 {
2445 if (section->is_virtual)
2446 return section->size == 0;
2447 return section->s.section == NULL || section->size == 0;
2448 }
2449
2450 /* See dwarf2read.h. */
2451
2452 void
2453 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2454 {
2455 asection *sectp;
2456 bfd *abfd;
2457 gdb_byte *buf, *retbuf;
2458
2459 if (info->readin)
2460 return;
2461 info->buffer = NULL;
2462 info->readin = 1;
2463
2464 if (dwarf2_section_empty_p (info))
2465 return;
2466
2467 sectp = get_section_bfd_section (info);
2468
2469 /* If this is a virtual section we need to read in the real one first. */
2470 if (info->is_virtual)
2471 {
2472 struct dwarf2_section_info *containing_section =
2473 get_containing_section (info);
2474
2475 gdb_assert (sectp != NULL);
2476 if ((sectp->flags & SEC_RELOC) != 0)
2477 {
2478 error (_("Dwarf Error: DWP format V2 with relocations is not"
2479 " supported in section %s [in module %s]"),
2480 get_section_name (info), get_section_file_name (info));
2481 }
2482 dwarf2_read_section (objfile, containing_section);
2483 /* Other code should have already caught virtual sections that don't
2484 fit. */
2485 gdb_assert (info->virtual_offset + info->size
2486 <= containing_section->size);
2487 /* If the real section is empty or there was a problem reading the
2488 section we shouldn't get here. */
2489 gdb_assert (containing_section->buffer != NULL);
2490 info->buffer = containing_section->buffer + info->virtual_offset;
2491 return;
2492 }
2493
2494 /* If the section has relocations, we must read it ourselves.
2495 Otherwise we attach it to the BFD. */
2496 if ((sectp->flags & SEC_RELOC) == 0)
2497 {
2498 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2499 return;
2500 }
2501
2502 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2503 info->buffer = buf;
2504
2505 /* When debugging .o files, we may need to apply relocations; see
2506 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2507 We never compress sections in .o files, so we only need to
2508 try this when the section is not compressed. */
2509 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2510 if (retbuf != NULL)
2511 {
2512 info->buffer = retbuf;
2513 return;
2514 }
2515
2516 abfd = get_section_bfd_owner (info);
2517 gdb_assert (abfd != NULL);
2518
2519 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2520 || bfd_bread (buf, info->size, abfd) != info->size)
2521 {
2522 error (_("Dwarf Error: Can't read DWARF data"
2523 " in section %s [in module %s]"),
2524 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2525 }
2526 }
2527
2528 /* A helper function that returns the size of a section in a safe way.
2529 If you are positive that the section has been read before using the
2530 size, then it is safe to refer to the dwarf2_section_info object's
2531 "size" field directly. In other cases, you must call this
2532 function, because for compressed sections the size field is not set
2533 correctly until the section has been read. */
2534
2535 static bfd_size_type
2536 dwarf2_section_size (struct objfile *objfile,
2537 struct dwarf2_section_info *info)
2538 {
2539 if (!info->readin)
2540 dwarf2_read_section (objfile, info);
2541 return info->size;
2542 }
2543
2544 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2545 SECTION_NAME. */
2546
2547 void
2548 dwarf2_get_section_info (struct objfile *objfile,
2549 enum dwarf2_section_enum sect,
2550 asection **sectp, const gdb_byte **bufp,
2551 bfd_size_type *sizep)
2552 {
2553 struct dwarf2_per_objfile *data
2554 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2555 dwarf2_objfile_data_key);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2633 there is no .gnu_debugaltlink section in the file. Error if there
2634 is such a section but the file cannot be found. */
2635
2636 static struct dwz_file *
2637 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2638 {
2639 const char *filename;
2640 bfd_size_type buildid_len_arg;
2641 size_t buildid_len;
2642 bfd_byte *buildid;
2643
2644 if (dwarf2_per_objfile->dwz_file != NULL)
2645 return dwarf2_per_objfile->dwz_file.get ();
2646
2647 bfd_set_error (bfd_error_no_error);
2648 gdb::unique_xmalloc_ptr<char> data
2649 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2650 &buildid_len_arg, &buildid));
2651 if (data == NULL)
2652 {
2653 if (bfd_get_error () == bfd_error_no_error)
2654 return NULL;
2655 error (_("could not read '.gnu_debugaltlink' section: %s"),
2656 bfd_errmsg (bfd_get_error ()));
2657 }
2658
2659 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2660
2661 buildid_len = (size_t) buildid_len_arg;
2662
2663 filename = data.get ();
2664
2665 std::string abs_storage;
2666 if (!IS_ABSOLUTE_PATH (filename))
2667 {
2668 gdb::unique_xmalloc_ptr<char> abs
2669 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2670
2671 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2672 filename = abs_storage.c_str ();
2673 }
2674
2675 /* First try the file name given in the section. If that doesn't
2676 work, try to use the build-id instead. */
2677 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2678 if (dwz_bfd != NULL)
2679 {
2680 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2681 dwz_bfd.release ();
2682 }
2683
2684 if (dwz_bfd == NULL)
2685 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2686
2687 if (dwz_bfd == NULL)
2688 error (_("could not find '.gnu_debugaltlink' file for %s"),
2689 objfile_name (dwarf2_per_objfile->objfile));
2690
2691 std::unique_ptr<struct dwz_file> result
2692 (new struct dwz_file (std::move (dwz_bfd)));
2693
2694 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2695 result.get ());
2696
2697 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2698 result->dwz_bfd.get ());
2699 dwarf2_per_objfile->dwz_file = std::move (result);
2700 return dwarf2_per_objfile->dwz_file.get ();
2701 }
2702 \f
2703 /* DWARF quick_symbols_functions support. */
2704
2705 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2706 unique line tables, so we maintain a separate table of all .debug_line
2707 derived entries to support the sharing.
2708 All the quick functions need is the list of file names. We discard the
2709 line_header when we're done and don't need to record it here. */
2710 struct quick_file_names
2711 {
2712 /* The data used to construct the hash key. */
2713 struct stmt_list_hash hash;
2714
2715 /* The number of entries in file_names, real_names. */
2716 unsigned int num_file_names;
2717
2718 /* The file names from the line table, after being run through
2719 file_full_name. */
2720 const char **file_names;
2721
2722 /* The file names from the line table after being run through
2723 gdb_realpath. These are computed lazily. */
2724 const char **real_names;
2725 };
2726
2727 /* When using the index (and thus not using psymtabs), each CU has an
2728 object of this type. This is used to hold information needed by
2729 the various "quick" methods. */
2730 struct dwarf2_per_cu_quick_data
2731 {
2732 /* The file table. This can be NULL if there was no file table
2733 or it's currently not read in.
2734 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2735 struct quick_file_names *file_names;
2736
2737 /* The corresponding symbol table. This is NULL if symbols for this
2738 CU have not yet been read. */
2739 struct compunit_symtab *compunit_symtab;
2740
2741 /* A temporary mark bit used when iterating over all CUs in
2742 expand_symtabs_matching. */
2743 unsigned int mark : 1;
2744
2745 /* True if we've tried to read the file table and found there isn't one.
2746 There will be no point in trying to read it again next time. */
2747 unsigned int no_file_data : 1;
2748 };
2749
2750 /* Utility hash function for a stmt_list_hash. */
2751
2752 static hashval_t
2753 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2754 {
2755 hashval_t v = 0;
2756
2757 if (stmt_list_hash->dwo_unit != NULL)
2758 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2759 v += to_underlying (stmt_list_hash->line_sect_off);
2760 return v;
2761 }
2762
2763 /* Utility equality function for a stmt_list_hash. */
2764
2765 static int
2766 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2767 const struct stmt_list_hash *rhs)
2768 {
2769 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2770 return 0;
2771 if (lhs->dwo_unit != NULL
2772 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2773 return 0;
2774
2775 return lhs->line_sect_off == rhs->line_sect_off;
2776 }
2777
2778 /* Hash function for a quick_file_names. */
2779
2780 static hashval_t
2781 hash_file_name_entry (const void *e)
2782 {
2783 const struct quick_file_names *file_data
2784 = (const struct quick_file_names *) e;
2785
2786 return hash_stmt_list_entry (&file_data->hash);
2787 }
2788
2789 /* Equality function for a quick_file_names. */
2790
2791 static int
2792 eq_file_name_entry (const void *a, const void *b)
2793 {
2794 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2795 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2796
2797 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2798 }
2799
2800 /* Delete function for a quick_file_names. */
2801
2802 static void
2803 delete_file_name_entry (void *e)
2804 {
2805 struct quick_file_names *file_data = (struct quick_file_names *) e;
2806 int i;
2807
2808 for (i = 0; i < file_data->num_file_names; ++i)
2809 {
2810 xfree ((void*) file_data->file_names[i]);
2811 if (file_data->real_names)
2812 xfree ((void*) file_data->real_names[i]);
2813 }
2814
2815 /* The space for the struct itself lives on objfile_obstack,
2816 so we don't free it here. */
2817 }
2818
2819 /* Create a quick_file_names hash table. */
2820
2821 static htab_t
2822 create_quick_file_names_table (unsigned int nr_initial_entries)
2823 {
2824 return htab_create_alloc (nr_initial_entries,
2825 hash_file_name_entry, eq_file_name_entry,
2826 delete_file_name_entry, xcalloc, xfree);
2827 }
2828
2829 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2830 have to be created afterwards. You should call age_cached_comp_units after
2831 processing PER_CU->CU. dw2_setup must have been already called. */
2832
2833 static void
2834 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2835 {
2836 if (per_cu->is_debug_types)
2837 load_full_type_unit (per_cu);
2838 else
2839 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2840
2841 if (per_cu->cu == NULL)
2842 return; /* Dummy CU. */
2843
2844 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2845 }
2846
2847 /* Read in the symbols for PER_CU. */
2848
2849 static void
2850 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2851 {
2852 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2853
2854 /* Skip type_unit_groups, reading the type units they contain
2855 is handled elsewhere. */
2856 if (IS_TYPE_UNIT_GROUP (per_cu))
2857 return;
2858
2859 /* The destructor of dwarf2_queue_guard frees any entries left on
2860 the queue. After this point we're guaranteed to leave this function
2861 with the dwarf queue empty. */
2862 dwarf2_queue_guard q_guard;
2863
2864 if (dwarf2_per_objfile->using_index
2865 ? per_cu->v.quick->compunit_symtab == NULL
2866 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2867 {
2868 queue_comp_unit (per_cu, language_minimal);
2869 load_cu (per_cu, skip_partial);
2870
2871 /* If we just loaded a CU from a DWO, and we're working with an index
2872 that may badly handle TUs, load all the TUs in that DWO as well.
2873 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2874 if (!per_cu->is_debug_types
2875 && per_cu->cu != NULL
2876 && per_cu->cu->dwo_unit != NULL
2877 && dwarf2_per_objfile->index_table != NULL
2878 && dwarf2_per_objfile->index_table->version <= 7
2879 /* DWP files aren't supported yet. */
2880 && get_dwp_file (dwarf2_per_objfile) == NULL)
2881 queue_and_load_all_dwo_tus (per_cu);
2882 }
2883
2884 process_queue (dwarf2_per_objfile);
2885
2886 /* Age the cache, releasing compilation units that have not
2887 been used recently. */
2888 age_cached_comp_units (dwarf2_per_objfile);
2889 }
2890
2891 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2892 the objfile from which this CU came. Returns the resulting symbol
2893 table. */
2894
2895 static struct compunit_symtab *
2896 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2897 {
2898 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2899
2900 gdb_assert (dwarf2_per_objfile->using_index);
2901 if (!per_cu->v.quick->compunit_symtab)
2902 {
2903 free_cached_comp_units freer (dwarf2_per_objfile);
2904 scoped_restore decrementer = increment_reading_symtab ();
2905 dw2_do_instantiate_symtab (per_cu, skip_partial);
2906 process_cu_includes (dwarf2_per_objfile);
2907 }
2908
2909 return per_cu->v.quick->compunit_symtab;
2910 }
2911
2912 /* See declaration. */
2913
2914 dwarf2_per_cu_data *
2915 dwarf2_per_objfile::get_cutu (int index)
2916 {
2917 if (index >= this->all_comp_units.size ())
2918 {
2919 index -= this->all_comp_units.size ();
2920 gdb_assert (index < this->all_type_units.size ());
2921 return &this->all_type_units[index]->per_cu;
2922 }
2923
2924 return this->all_comp_units[index];
2925 }
2926
2927 /* See declaration. */
2928
2929 dwarf2_per_cu_data *
2930 dwarf2_per_objfile::get_cu (int index)
2931 {
2932 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2933
2934 return this->all_comp_units[index];
2935 }
2936
2937 /* See declaration. */
2938
2939 signatured_type *
2940 dwarf2_per_objfile::get_tu (int index)
2941 {
2942 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2943
2944 return this->all_type_units[index];
2945 }
2946
2947 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2948 objfile_obstack, and constructed with the specified field
2949 values. */
2950
2951 static dwarf2_per_cu_data *
2952 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2953 struct dwarf2_section_info *section,
2954 int is_dwz,
2955 sect_offset sect_off, ULONGEST length)
2956 {
2957 struct objfile *objfile = dwarf2_per_objfile->objfile;
2958 dwarf2_per_cu_data *the_cu
2959 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_data);
2961 the_cu->sect_off = sect_off;
2962 the_cu->length = length;
2963 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2964 the_cu->section = section;
2965 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct dwarf2_per_cu_quick_data);
2967 the_cu->is_dwz = is_dwz;
2968 return the_cu;
2969 }
2970
2971 /* A helper for create_cus_from_index that handles a given list of
2972 CUs. */
2973
2974 static void
2975 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2976 const gdb_byte *cu_list, offset_type n_elements,
2977 struct dwarf2_section_info *section,
2978 int is_dwz)
2979 {
2980 for (offset_type i = 0; i < n_elements; i += 2)
2981 {
2982 gdb_static_assert (sizeof (ULONGEST) >= 8);
2983
2984 sect_offset sect_off
2985 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2986 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2987 cu_list += 2 * 8;
2988
2989 dwarf2_per_cu_data *per_cu
2990 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2991 sect_off, length);
2992 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2993 }
2994 }
2995
2996 /* Read the CU list from the mapped index, and use it to create all
2997 the CU objects for this objfile. */
2998
2999 static void
3000 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 const gdb_byte *cu_list, offset_type cu_list_elements,
3002 const gdb_byte *dwz_list, offset_type dwz_elements)
3003 {
3004 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3005 dwarf2_per_objfile->all_comp_units.reserve
3006 ((cu_list_elements + dwz_elements) / 2);
3007
3008 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3009 &dwarf2_per_objfile->info, 0);
3010
3011 if (dwz_elements == 0)
3012 return;
3013
3014 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3015 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3016 &dwz->info, 1);
3017 }
3018
3019 /* Create the signatured type hash table from the index. */
3020
3021 static void
3022 create_signatured_type_table_from_index
3023 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3024 struct dwarf2_section_info *section,
3025 const gdb_byte *bytes,
3026 offset_type elements)
3027 {
3028 struct objfile *objfile = dwarf2_per_objfile->objfile;
3029
3030 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3031 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3032
3033 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3034
3035 for (offset_type i = 0; i < elements; i += 3)
3036 {
3037 struct signatured_type *sig_type;
3038 ULONGEST signature;
3039 void **slot;
3040 cu_offset type_offset_in_tu;
3041
3042 gdb_static_assert (sizeof (ULONGEST) >= 8);
3043 sect_offset sect_off
3044 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3045 type_offset_in_tu
3046 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3047 BFD_ENDIAN_LITTLE);
3048 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3049 bytes += 3 * 8;
3050
3051 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3052 struct signatured_type);
3053 sig_type->signature = signature;
3054 sig_type->type_offset_in_tu = type_offset_in_tu;
3055 sig_type->per_cu.is_debug_types = 1;
3056 sig_type->per_cu.section = section;
3057 sig_type->per_cu.sect_off = sect_off;
3058 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3059 sig_type->per_cu.v.quick
3060 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3061 struct dwarf2_per_cu_quick_data);
3062
3063 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3064 *slot = sig_type;
3065
3066 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3067 }
3068
3069 dwarf2_per_objfile->signatured_types = sig_types_hash;
3070 }
3071
3072 /* Create the signatured type hash table from .debug_names. */
3073
3074 static void
3075 create_signatured_type_table_from_debug_names
3076 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3077 const mapped_debug_names &map,
3078 struct dwarf2_section_info *section,
3079 struct dwarf2_section_info *abbrev_section)
3080 {
3081 struct objfile *objfile = dwarf2_per_objfile->objfile;
3082
3083 dwarf2_read_section (objfile, section);
3084 dwarf2_read_section (objfile, abbrev_section);
3085
3086 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3087 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3088
3089 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3090
3091 for (uint32_t i = 0; i < map.tu_count; ++i)
3092 {
3093 struct signatured_type *sig_type;
3094 void **slot;
3095
3096 sect_offset sect_off
3097 = (sect_offset) (extract_unsigned_integer
3098 (map.tu_table_reordered + i * map.offset_size,
3099 map.offset_size,
3100 map.dwarf5_byte_order));
3101
3102 comp_unit_head cu_header;
3103 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3104 abbrev_section,
3105 section->buffer + to_underlying (sect_off),
3106 rcuh_kind::TYPE);
3107
3108 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3109 struct signatured_type);
3110 sig_type->signature = cu_header.signature;
3111 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3112 sig_type->per_cu.is_debug_types = 1;
3113 sig_type->per_cu.section = section;
3114 sig_type->per_cu.sect_off = sect_off;
3115 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3116 sig_type->per_cu.v.quick
3117 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3118 struct dwarf2_per_cu_quick_data);
3119
3120 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3121 *slot = sig_type;
3122
3123 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3124 }
3125
3126 dwarf2_per_objfile->signatured_types = sig_types_hash;
3127 }
3128
3129 /* Read the address map data from the mapped index, and use it to
3130 populate the objfile's psymtabs_addrmap. */
3131
3132 static void
3133 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3134 struct mapped_index *index)
3135 {
3136 struct objfile *objfile = dwarf2_per_objfile->objfile;
3137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3138 const gdb_byte *iter, *end;
3139 struct addrmap *mutable_map;
3140 CORE_ADDR baseaddr;
3141
3142 auto_obstack temp_obstack;
3143
3144 mutable_map = addrmap_create_mutable (&temp_obstack);
3145
3146 iter = index->address_table.data ();
3147 end = iter + index->address_table.size ();
3148
3149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3150
3151 while (iter < end)
3152 {
3153 ULONGEST hi, lo, cu_index;
3154 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3157 iter += 8;
3158 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3159 iter += 4;
3160
3161 if (lo > hi)
3162 {
3163 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3164 hex_string (lo), hex_string (hi));
3165 continue;
3166 }
3167
3168 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3169 {
3170 complaint (_(".gdb_index address table has invalid CU number %u"),
3171 (unsigned) cu_index);
3172 continue;
3173 }
3174
3175 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3176 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3177 addrmap_set_empty (mutable_map, lo, hi - 1,
3178 dwarf2_per_objfile->get_cu (cu_index));
3179 }
3180
3181 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3182 &objfile->objfile_obstack);
3183 }
3184
3185 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3186 populate the objfile's psymtabs_addrmap. */
3187
3188 static void
3189 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3190 struct dwarf2_section_info *section)
3191 {
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3193 bfd *abfd = objfile->obfd;
3194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3195 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3196 SECT_OFF_TEXT (objfile));
3197
3198 auto_obstack temp_obstack;
3199 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3200
3201 std::unordered_map<sect_offset,
3202 dwarf2_per_cu_data *,
3203 gdb::hash_enum<sect_offset>>
3204 debug_info_offset_to_per_cu;
3205 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3206 {
3207 const auto insertpair
3208 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3209 if (!insertpair.second)
3210 {
3211 warning (_("Section .debug_aranges in %s has duplicate "
3212 "debug_info_offset %s, ignoring .debug_aranges."),
3213 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3214 return;
3215 }
3216 }
3217
3218 dwarf2_read_section (objfile, section);
3219
3220 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3221
3222 const gdb_byte *addr = section->buffer;
3223
3224 while (addr < section->buffer + section->size)
3225 {
3226 const gdb_byte *const entry_addr = addr;
3227 unsigned int bytes_read;
3228
3229 const LONGEST entry_length = read_initial_length (abfd, addr,
3230 &bytes_read);
3231 addr += bytes_read;
3232
3233 const gdb_byte *const entry_end = addr + entry_length;
3234 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3235 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3236 if (addr + entry_length > section->buffer + section->size)
3237 {
3238 warning (_("Section .debug_aranges in %s entry at offset %zu "
3239 "length %s exceeds section length %s, "
3240 "ignoring .debug_aranges."),
3241 objfile_name (objfile), entry_addr - section->buffer,
3242 plongest (bytes_read + entry_length),
3243 pulongest (section->size));
3244 return;
3245 }
3246
3247 /* The version number. */
3248 const uint16_t version = read_2_bytes (abfd, addr);
3249 addr += 2;
3250 if (version != 2)
3251 {
3252 warning (_("Section .debug_aranges in %s entry at offset %zu "
3253 "has unsupported version %d, ignoring .debug_aranges."),
3254 objfile_name (objfile), entry_addr - section->buffer,
3255 version);
3256 return;
3257 }
3258
3259 const uint64_t debug_info_offset
3260 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3261 addr += offset_size;
3262 const auto per_cu_it
3263 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3264 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3265 {
3266 warning (_("Section .debug_aranges in %s entry at offset %zu "
3267 "debug_info_offset %s does not exists, "
3268 "ignoring .debug_aranges."),
3269 objfile_name (objfile), entry_addr - section->buffer,
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 segment_selector_size);
3293 return;
3294 }
3295
3296 /* Must pad to an alignment boundary that is twice the address
3297 size. It is undocumented by the DWARF standard but GCC does
3298 use it. */
3299 for (size_t padding = ((-(addr - section->buffer))
3300 & (2 * address_size - 1));
3301 padding > 0; padding--)
3302 if (*addr++ != 0)
3303 {
3304 warning (_("Section .debug_aranges in %s entry at offset %zu "
3305 "padding is not zero, ignoring .debug_aranges."),
3306 objfile_name (objfile), entry_addr - section->buffer);
3307 return;
3308 }
3309
3310 for (;;)
3311 {
3312 if (addr + 2 * address_size > entry_end)
3313 {
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "address list is not properly terminated, "
3316 "ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3318 return;
3319 }
3320 ULONGEST start = extract_unsigned_integer (addr, address_size,
3321 dwarf5_byte_order);
3322 addr += address_size;
3323 ULONGEST length = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 if (start == 0 && length == 0)
3327 break;
3328 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3329 {
3330 /* Symbol was eliminated due to a COMDAT group. */
3331 continue;
3332 }
3333 ULONGEST end = start + length;
3334 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3335 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3336 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3337 }
3338 }
3339
3340 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3341 &objfile->objfile_obstack);
3342 }
3343
3344 /* Find a slot in the mapped index INDEX for the object named NAME.
3345 If NAME is found, set *VEC_OUT to point to the CU vector in the
3346 constant pool and return true. If NAME cannot be found, return
3347 false. */
3348
3349 static bool
3350 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3351 offset_type **vec_out)
3352 {
3353 offset_type hash;
3354 offset_type slot, step;
3355 int (*cmp) (const char *, const char *);
3356
3357 gdb::unique_xmalloc_ptr<char> without_params;
3358 if (current_language->la_language == language_cplus
3359 || current_language->la_language == language_fortran
3360 || current_language->la_language == language_d)
3361 {
3362 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3363 not contain any. */
3364
3365 if (strchr (name, '(') != NULL)
3366 {
3367 without_params = cp_remove_params (name);
3368
3369 if (without_params != NULL)
3370 name = without_params.get ();
3371 }
3372 }
3373
3374 /* Index version 4 did not support case insensitive searches. But the
3375 indices for case insensitive languages are built in lowercase, therefore
3376 simulate our NAME being searched is also lowercased. */
3377 hash = mapped_index_string_hash ((index->version == 4
3378 && case_sensitivity == case_sensitive_off
3379 ? 5 : index->version),
3380 name);
3381
3382 slot = hash & (index->symbol_table.size () - 1);
3383 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3384 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3385
3386 for (;;)
3387 {
3388 const char *str;
3389
3390 const auto &bucket = index->symbol_table[slot];
3391 if (bucket.name == 0 && bucket.vec == 0)
3392 return false;
3393
3394 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3395 if (!cmp (name, str))
3396 {
3397 *vec_out = (offset_type *) (index->constant_pool
3398 + MAYBE_SWAP (bucket.vec));
3399 return true;
3400 }
3401
3402 slot = (slot + step) & (index->symbol_table.size () - 1);
3403 }
3404 }
3405
3406 /* A helper function that reads the .gdb_index from SECTION and fills
3407 in MAP. FILENAME is the name of the file containing the section;
3408 it is used for error reporting. DEPRECATED_OK is true if it is
3409 ok to use deprecated sections.
3410
3411 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3412 out parameters that are filled in with information about the CU and
3413 TU lists in the section.
3414
3415 Returns 1 if all went well, 0 otherwise. */
3416
3417 static bool
3418 read_index_from_section (struct objfile *objfile,
3419 const char *filename,
3420 bool deprecated_ok,
3421 struct dwarf2_section_info *section,
3422 struct mapped_index *map,
3423 const gdb_byte **cu_list,
3424 offset_type *cu_list_elements,
3425 const gdb_byte **types_list,
3426 offset_type *types_list_elements)
3427 {
3428 const gdb_byte *addr;
3429 offset_type version;
3430 offset_type *metadata;
3431 int i;
3432
3433 if (dwarf2_section_empty_p (section))
3434 return 0;
3435
3436 /* Older elfutils strip versions could keep the section in the main
3437 executable while splitting it for the separate debug info file. */
3438 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3439 return 0;
3440
3441 dwarf2_read_section (objfile, section);
3442
3443 addr = section->buffer;
3444 /* Version check. */
3445 version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3449 indices. */
3450 if (version < 4)
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3456 filename);
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
3474 warning (_("\
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3478 filename);
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3490
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3493 if (version > 8)
3494 return 0;
3495
3496 map->version = version;
3497
3498 metadata = (offset_type *) (addr + sizeof (offset_type));
3499
3500 i = 0;
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
3504 ++i;
3505
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
3510 ++i;
3511
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3516 ++i;
3517
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3524
3525 ++i;
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3527
3528 return 1;
3529 }
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3536 {
3537 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3538 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3539 struct dwz_file *dwz;
3540 struct objfile *objfile = dwarf2_per_objfile->objfile;
3541
3542 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3543 if (!read_index_from_section (objfile, objfile_name (objfile),
3544 use_deprecated_index_sections,
3545 &dwarf2_per_objfile->gdb_index, map.get (),
3546 &cu_list, &cu_list_elements,
3547 &types_list, &types_list_elements))
3548 return 0;
3549
3550 /* Don't use the index if it's empty. */
3551 if (map->symbol_table.empty ())
3552 return 0;
3553
3554 /* If there is a .dwz file, read it so we can get its CU list as
3555 well. */
3556 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3557 if (dwz != NULL)
3558 {
3559 struct mapped_index dwz_map;
3560 const gdb_byte *dwz_types_ignore;
3561 offset_type dwz_types_elements_ignore;
3562
3563 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3564 1,
3565 &dwz->gdb_index, &dwz_map,
3566 &dwz_list, &dwz_list_elements,
3567 &dwz_types_ignore,
3568 &dwz_types_elements_ignore))
3569 {
3570 warning (_("could not read '.gdb_index' section from %s; skipping"),
3571 bfd_get_filename (dwz->dwz_bfd));
3572 return 0;
3573 }
3574 }
3575
3576 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3577 dwz_list, dwz_list_elements);
3578
3579 if (types_list_elements)
3580 {
3581 struct dwarf2_section_info *section;
3582
3583 /* We can only handle a single .debug_types when we have an
3584 index. */
3585 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3586 return 0;
3587
3588 section = VEC_index (dwarf2_section_info_def,
3589 dwarf2_per_objfile->types, 0);
3590
3591 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3592 types_list, types_list_elements);
3593 }
3594
3595 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3596
3597 dwarf2_per_objfile->index_table = std::move (map);
3598 dwarf2_per_objfile->using_index = 1;
3599 dwarf2_per_objfile->quick_file_names_table =
3600 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3601
3602 return 1;
3603 }
3604
3605 /* die_reader_func for dw2_get_file_names. */
3606
3607 static void
3608 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3609 const gdb_byte *info_ptr,
3610 struct die_info *comp_unit_die,
3611 int has_children,
3612 void *data)
3613 {
3614 struct dwarf2_cu *cu = reader->cu;
3615 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3616 struct dwarf2_per_objfile *dwarf2_per_objfile
3617 = cu->per_cu->dwarf2_per_objfile;
3618 struct objfile *objfile = dwarf2_per_objfile->objfile;
3619 struct dwarf2_per_cu_data *lh_cu;
3620 struct attribute *attr;
3621 int i;
3622 void **slot;
3623 struct quick_file_names *qfn;
3624
3625 gdb_assert (! this_cu->is_debug_types);
3626
3627 /* Our callers never want to match partial units -- instead they
3628 will match the enclosing full CU. */
3629 if (comp_unit_die->tag == DW_TAG_partial_unit)
3630 {
3631 this_cu->v.quick->no_file_data = 1;
3632 return;
3633 }
3634
3635 lh_cu = this_cu;
3636 slot = NULL;
3637
3638 line_header_up lh;
3639 sect_offset line_offset {};
3640
3641 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3642 if (attr)
3643 {
3644 struct quick_file_names find_entry;
3645
3646 line_offset = (sect_offset) DW_UNSND (attr);
3647
3648 /* We may have already read in this line header (TU line header sharing).
3649 If we have we're done. */
3650 find_entry.hash.dwo_unit = cu->dwo_unit;
3651 find_entry.hash.line_sect_off = line_offset;
3652 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3653 &find_entry, INSERT);
3654 if (*slot != NULL)
3655 {
3656 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3657 return;
3658 }
3659
3660 lh = dwarf_decode_line_header (line_offset, cu);
3661 }
3662 if (lh == NULL)
3663 {
3664 lh_cu->v.quick->no_file_data = 1;
3665 return;
3666 }
3667
3668 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3669 qfn->hash.dwo_unit = cu->dwo_unit;
3670 qfn->hash.line_sect_off = line_offset;
3671 gdb_assert (slot != NULL);
3672 *slot = qfn;
3673
3674 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3675
3676 qfn->num_file_names = lh->file_names.size ();
3677 qfn->file_names =
3678 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3679 for (i = 0; i < lh->file_names.size (); ++i)
3680 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3681 qfn->real_names = NULL;
3682
3683 lh_cu->v.quick->file_names = qfn;
3684 }
3685
3686 /* A helper for the "quick" functions which attempts to read the line
3687 table for THIS_CU. */
3688
3689 static struct quick_file_names *
3690 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3691 {
3692 /* This should never be called for TUs. */
3693 gdb_assert (! this_cu->is_debug_types);
3694 /* Nor type unit groups. */
3695 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3696
3697 if (this_cu->v.quick->file_names != NULL)
3698 return this_cu->v.quick->file_names;
3699 /* If we know there is no line data, no point in looking again. */
3700 if (this_cu->v.quick->no_file_data)
3701 return NULL;
3702
3703 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3704
3705 if (this_cu->v.quick->no_file_data)
3706 return NULL;
3707 return this_cu->v.quick->file_names;
3708 }
3709
3710 /* A helper for the "quick" functions which computes and caches the
3711 real path for a given file name from the line table. */
3712
3713 static const char *
3714 dw2_get_real_path (struct objfile *objfile,
3715 struct quick_file_names *qfn, int index)
3716 {
3717 if (qfn->real_names == NULL)
3718 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3719 qfn->num_file_names, const char *);
3720
3721 if (qfn->real_names[index] == NULL)
3722 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3723
3724 return qfn->real_names[index];
3725 }
3726
3727 static struct symtab *
3728 dw2_find_last_source_symtab (struct objfile *objfile)
3729 {
3730 struct dwarf2_per_objfile *dwarf2_per_objfile
3731 = get_dwarf2_per_objfile (objfile);
3732 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3733 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3734
3735 if (cust == NULL)
3736 return NULL;
3737
3738 return compunit_primary_filetab (cust);
3739 }
3740
3741 /* Traversal function for dw2_forget_cached_source_info. */
3742
3743 static int
3744 dw2_free_cached_file_names (void **slot, void *info)
3745 {
3746 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3747
3748 if (file_data->real_names)
3749 {
3750 int i;
3751
3752 for (i = 0; i < file_data->num_file_names; ++i)
3753 {
3754 xfree ((void*) file_data->real_names[i]);
3755 file_data->real_names[i] = NULL;
3756 }
3757 }
3758
3759 return 1;
3760 }
3761
3762 static void
3763 dw2_forget_cached_source_info (struct objfile *objfile)
3764 {
3765 struct dwarf2_per_objfile *dwarf2_per_objfile
3766 = get_dwarf2_per_objfile (objfile);
3767
3768 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3769 dw2_free_cached_file_names, NULL);
3770 }
3771
3772 /* Helper function for dw2_map_symtabs_matching_filename that expands
3773 the symtabs and calls the iterator. */
3774
3775 static int
3776 dw2_map_expand_apply (struct objfile *objfile,
3777 struct dwarf2_per_cu_data *per_cu,
3778 const char *name, const char *real_path,
3779 gdb::function_view<bool (symtab *)> callback)
3780 {
3781 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3782
3783 /* Don't visit already-expanded CUs. */
3784 if (per_cu->v.quick->compunit_symtab)
3785 return 0;
3786
3787 /* This may expand more than one symtab, and we want to iterate over
3788 all of them. */
3789 dw2_instantiate_symtab (per_cu, false);
3790
3791 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3792 last_made, callback);
3793 }
3794
3795 /* Implementation of the map_symtabs_matching_filename method. */
3796
3797 static bool
3798 dw2_map_symtabs_matching_filename
3799 (struct objfile *objfile, const char *name, const char *real_path,
3800 gdb::function_view<bool (symtab *)> callback)
3801 {
3802 const char *name_basename = lbasename (name);
3803 struct dwarf2_per_objfile *dwarf2_per_objfile
3804 = get_dwarf2_per_objfile (objfile);
3805
3806 /* The rule is CUs specify all the files, including those used by
3807 any TU, so there's no need to scan TUs here. */
3808
3809 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3810 {
3811 /* We only need to look at symtabs not already expanded. */
3812 if (per_cu->v.quick->compunit_symtab)
3813 continue;
3814
3815 quick_file_names *file_data = dw2_get_file_names (per_cu);
3816 if (file_data == NULL)
3817 continue;
3818
3819 for (int j = 0; j < file_data->num_file_names; ++j)
3820 {
3821 const char *this_name = file_data->file_names[j];
3822 const char *this_real_name;
3823
3824 if (compare_filenames_for_search (this_name, name))
3825 {
3826 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3827 callback))
3828 return true;
3829 continue;
3830 }
3831
3832 /* Before we invoke realpath, which can get expensive when many
3833 files are involved, do a quick comparison of the basenames. */
3834 if (! basenames_may_differ
3835 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3836 continue;
3837
3838 this_real_name = dw2_get_real_path (objfile, file_data, j);
3839 if (compare_filenames_for_search (this_real_name, name))
3840 {
3841 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3842 callback))
3843 return true;
3844 continue;
3845 }
3846
3847 if (real_path != NULL)
3848 {
3849 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3850 gdb_assert (IS_ABSOLUTE_PATH (name));
3851 if (this_real_name != NULL
3852 && FILENAME_CMP (real_path, this_real_name) == 0)
3853 {
3854 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3855 callback))
3856 return true;
3857 continue;
3858 }
3859 }
3860 }
3861 }
3862
3863 return false;
3864 }
3865
3866 /* Struct used to manage iterating over all CUs looking for a symbol. */
3867
3868 struct dw2_symtab_iterator
3869 {
3870 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3871 struct dwarf2_per_objfile *dwarf2_per_objfile;
3872 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3873 int want_specific_block;
3874 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3875 Unused if !WANT_SPECIFIC_BLOCK. */
3876 int block_index;
3877 /* The kind of symbol we're looking for. */
3878 domain_enum domain;
3879 /* The list of CUs from the index entry of the symbol,
3880 or NULL if not found. */
3881 offset_type *vec;
3882 /* The next element in VEC to look at. */
3883 int next;
3884 /* The number of elements in VEC, or zero if there is no match. */
3885 int length;
3886 /* Have we seen a global version of the symbol?
3887 If so we can ignore all further global instances.
3888 This is to work around gold/15646, inefficient gold-generated
3889 indices. */
3890 int global_seen;
3891 };
3892
3893 /* Initialize the index symtab iterator ITER.
3894 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3895 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3896
3897 static void
3898 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3899 struct dwarf2_per_objfile *dwarf2_per_objfile,
3900 int want_specific_block,
3901 int block_index,
3902 domain_enum domain,
3903 const char *name)
3904 {
3905 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3906 iter->want_specific_block = want_specific_block;
3907 iter->block_index = block_index;
3908 iter->domain = domain;
3909 iter->next = 0;
3910 iter->global_seen = 0;
3911
3912 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3913
3914 /* index is NULL if OBJF_READNOW. */
3915 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3916 iter->length = MAYBE_SWAP (*iter->vec);
3917 else
3918 {
3919 iter->vec = NULL;
3920 iter->length = 0;
3921 }
3922 }
3923
3924 /* Return the next matching CU or NULL if there are no more. */
3925
3926 static struct dwarf2_per_cu_data *
3927 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3928 {
3929 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3930
3931 for ( ; iter->next < iter->length; ++iter->next)
3932 {
3933 offset_type cu_index_and_attrs =
3934 MAYBE_SWAP (iter->vec[iter->next + 1]);
3935 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3936 int want_static = iter->block_index != GLOBAL_BLOCK;
3937 /* This value is only valid for index versions >= 7. */
3938 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3939 gdb_index_symbol_kind symbol_kind =
3940 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3941 /* Only check the symbol attributes if they're present.
3942 Indices prior to version 7 don't record them,
3943 and indices >= 7 may elide them for certain symbols
3944 (gold does this). */
3945 int attrs_valid =
3946 (dwarf2_per_objfile->index_table->version >= 7
3947 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3948
3949 /* Don't crash on bad data. */
3950 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3951 + dwarf2_per_objfile->all_type_units.size ()))
3952 {
3953 complaint (_(".gdb_index entry has bad CU index"
3954 " [in module %s]"),
3955 objfile_name (dwarf2_per_objfile->objfile));
3956 continue;
3957 }
3958
3959 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3960
3961 /* Skip if already read in. */
3962 if (per_cu->v.quick->compunit_symtab)
3963 continue;
3964
3965 /* Check static vs global. */
3966 if (attrs_valid)
3967 {
3968 if (iter->want_specific_block
3969 && want_static != is_static)
3970 continue;
3971 /* Work around gold/15646. */
3972 if (!is_static && iter->global_seen)
3973 continue;
3974 if (!is_static)
3975 iter->global_seen = 1;
3976 }
3977
3978 /* Only check the symbol's kind if it has one. */
3979 if (attrs_valid)
3980 {
3981 switch (iter->domain)
3982 {
3983 case VAR_DOMAIN:
3984 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3985 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3986 /* Some types are also in VAR_DOMAIN. */
3987 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3988 continue;
3989 break;
3990 case STRUCT_DOMAIN:
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3992 continue;
3993 break;
3994 case LABEL_DOMAIN:
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3996 continue;
3997 break;
3998 default:
3999 break;
4000 }
4001 }
4002
4003 ++iter->next;
4004 return per_cu;
4005 }
4006
4007 return NULL;
4008 }
4009
4010 static struct compunit_symtab *
4011 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4012 const char *name, domain_enum domain)
4013 {
4014 struct compunit_symtab *stab_best = NULL;
4015 struct dwarf2_per_objfile *dwarf2_per_objfile
4016 = get_dwarf2_per_objfile (objfile);
4017
4018 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4019
4020 struct dw2_symtab_iterator iter;
4021 struct dwarf2_per_cu_data *per_cu;
4022
4023 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4024
4025 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4026 {
4027 struct symbol *sym, *with_opaque = NULL;
4028 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4029 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4030 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4031
4032 sym = block_find_symbol (block, name, domain,
4033 block_find_non_opaque_type_preferred,
4034 &with_opaque);
4035
4036 /* Some caution must be observed with overloaded functions
4037 and methods, since the index will not contain any overload
4038 information (but NAME might contain it). */
4039
4040 if (sym != NULL
4041 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4042 return stab;
4043 if (with_opaque != NULL
4044 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4045 stab_best = stab;
4046
4047 /* Keep looking through other CUs. */
4048 }
4049
4050 return stab_best;
4051 }
4052
4053 static void
4054 dw2_print_stats (struct objfile *objfile)
4055 {
4056 struct dwarf2_per_objfile *dwarf2_per_objfile
4057 = get_dwarf2_per_objfile (objfile);
4058 int total = (dwarf2_per_objfile->all_comp_units.size ()
4059 + dwarf2_per_objfile->all_type_units.size ());
4060 int count = 0;
4061
4062 for (int i = 0; i < total; ++i)
4063 {
4064 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4065
4066 if (!per_cu->v.quick->compunit_symtab)
4067 ++count;
4068 }
4069 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4070 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4071 }
4072
4073 /* This dumps minimal information about the index.
4074 It is called via "mt print objfiles".
4075 One use is to verify .gdb_index has been loaded by the
4076 gdb.dwarf2/gdb-index.exp testcase. */
4077
4078 static void
4079 dw2_dump (struct objfile *objfile)
4080 {
4081 struct dwarf2_per_objfile *dwarf2_per_objfile
4082 = get_dwarf2_per_objfile (objfile);
4083
4084 gdb_assert (dwarf2_per_objfile->using_index);
4085 printf_filtered (".gdb_index:");
4086 if (dwarf2_per_objfile->index_table != NULL)
4087 {
4088 printf_filtered (" version %d\n",
4089 dwarf2_per_objfile->index_table->version);
4090 }
4091 else
4092 printf_filtered (" faked for \"readnow\"\n");
4093 printf_filtered ("\n");
4094 }
4095
4096 static void
4097 dw2_relocate (struct objfile *objfile,
4098 const struct section_offsets *new_offsets,
4099 const struct section_offsets *delta)
4100 {
4101 /* There's nothing to relocate here. */
4102 }
4103
4104 static void
4105 dw2_expand_symtabs_for_function (struct objfile *objfile,
4106 const char *func_name)
4107 {
4108 struct dwarf2_per_objfile *dwarf2_per_objfile
4109 = get_dwarf2_per_objfile (objfile);
4110
4111 struct dw2_symtab_iterator iter;
4112 struct dwarf2_per_cu_data *per_cu;
4113
4114 /* Note: It doesn't matter what we pass for block_index here. */
4115 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4116 func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->psymtabs_addrmap)
5233 return NULL;
5234
5235 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5236 pc);
5237 if (!data)
5238 return NULL;
5239
5240 if (warn_if_readin && data->v.quick->compunit_symtab)
5241 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5242 paddress (get_objfile_arch (objfile), pc));
5243
5244 result
5245 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5246 false),
5247 pc);
5248 gdb_assert (result != NULL);
5249 return result;
5250 }
5251
5252 static void
5253 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5254 void *data, int need_fullname)
5255 {
5256 struct dwarf2_per_objfile *dwarf2_per_objfile
5257 = get_dwarf2_per_objfile (objfile);
5258
5259 if (!dwarf2_per_objfile->filenames_cache)
5260 {
5261 dwarf2_per_objfile->filenames_cache.emplace ();
5262
5263 htab_up visited (htab_create_alloc (10,
5264 htab_hash_pointer, htab_eq_pointer,
5265 NULL, xcalloc, xfree));
5266
5267 /* The rule is CUs specify all the files, including those used
5268 by any TU, so there's no need to scan TUs here. We can
5269 ignore file names coming from already-expanded CUs. */
5270
5271 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5272 {
5273 if (per_cu->v.quick->compunit_symtab)
5274 {
5275 void **slot = htab_find_slot (visited.get (),
5276 per_cu->v.quick->file_names,
5277 INSERT);
5278
5279 *slot = per_cu->v.quick->file_names;
5280 }
5281 }
5282
5283 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5284 {
5285 /* We only need to look at symtabs not already expanded. */
5286 if (per_cu->v.quick->compunit_symtab)
5287 continue;
5288
5289 quick_file_names *file_data = dw2_get_file_names (per_cu);
5290 if (file_data == NULL)
5291 continue;
5292
5293 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5294 if (*slot)
5295 {
5296 /* Already visited. */
5297 continue;
5298 }
5299 *slot = file_data;
5300
5301 for (int j = 0; j < file_data->num_file_names; ++j)
5302 {
5303 const char *filename = file_data->file_names[j];
5304 dwarf2_per_objfile->filenames_cache->seen (filename);
5305 }
5306 }
5307 }
5308
5309 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5310 {
5311 gdb::unique_xmalloc_ptr<char> this_real_name;
5312
5313 if (need_fullname)
5314 this_real_name = gdb_realpath (filename);
5315 (*fun) (filename, this_real_name.get (), data);
5316 });
5317 }
5318
5319 static int
5320 dw2_has_symbols (struct objfile *objfile)
5321 {
5322 return 1;
5323 }
5324
5325 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5326 {
5327 dw2_has_symbols,
5328 dw2_find_last_source_symtab,
5329 dw2_forget_cached_source_info,
5330 dw2_map_symtabs_matching_filename,
5331 dw2_lookup_symbol,
5332 dw2_print_stats,
5333 dw2_dump,
5334 dw2_relocate,
5335 dw2_expand_symtabs_for_function,
5336 dw2_expand_all_symtabs,
5337 dw2_expand_symtabs_with_fullname,
5338 dw2_map_matching_symbols,
5339 dw2_expand_symtabs_matching,
5340 dw2_find_pc_sect_compunit_symtab,
5341 NULL,
5342 dw2_map_symbol_filenames
5343 };
5344
5345 /* DWARF-5 debug_names reader. */
5346
5347 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5348 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5349
5350 /* A helper function that reads the .debug_names section in SECTION
5351 and fills in MAP. FILENAME is the name of the file containing the
5352 section; it is used for error reporting.
5353
5354 Returns true if all went well, false otherwise. */
5355
5356 static bool
5357 read_debug_names_from_section (struct objfile *objfile,
5358 const char *filename,
5359 struct dwarf2_section_info *section,
5360 mapped_debug_names &map)
5361 {
5362 if (dwarf2_section_empty_p (section))
5363 return false;
5364
5365 /* Older elfutils strip versions could keep the section in the main
5366 executable while splitting it for the separate debug info file. */
5367 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5368 return false;
5369
5370 dwarf2_read_section (objfile, section);
5371
5372 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5373
5374 const gdb_byte *addr = section->buffer;
5375
5376 bfd *const abfd = get_section_bfd_owner (section);
5377
5378 unsigned int bytes_read;
5379 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5380 addr += bytes_read;
5381
5382 map.dwarf5_is_dwarf64 = bytes_read != 4;
5383 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5384 if (bytes_read + length != section->size)
5385 {
5386 /* There may be multiple per-CU indices. */
5387 warning (_("Section .debug_names in %s length %s does not match "
5388 "section length %s, ignoring .debug_names."),
5389 filename, plongest (bytes_read + length),
5390 pulongest (section->size));
5391 return false;
5392 }
5393
5394 /* The version number. */
5395 uint16_t version = read_2_bytes (abfd, addr);
5396 addr += 2;
5397 if (version != 5)
5398 {
5399 warning (_("Section .debug_names in %s has unsupported version %d, "
5400 "ignoring .debug_names."),
5401 filename, version);
5402 return false;
5403 }
5404
5405 /* Padding. */
5406 uint16_t padding = read_2_bytes (abfd, addr);
5407 addr += 2;
5408 if (padding != 0)
5409 {
5410 warning (_("Section .debug_names in %s has unsupported padding %d, "
5411 "ignoring .debug_names."),
5412 filename, padding);
5413 return false;
5414 }
5415
5416 /* comp_unit_count - The number of CUs in the CU list. */
5417 map.cu_count = read_4_bytes (abfd, addr);
5418 addr += 4;
5419
5420 /* local_type_unit_count - The number of TUs in the local TU
5421 list. */
5422 map.tu_count = read_4_bytes (abfd, addr);
5423 addr += 4;
5424
5425 /* foreign_type_unit_count - The number of TUs in the foreign TU
5426 list. */
5427 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5428 addr += 4;
5429 if (foreign_tu_count != 0)
5430 {
5431 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5432 "ignoring .debug_names."),
5433 filename, static_cast<unsigned long> (foreign_tu_count));
5434 return false;
5435 }
5436
5437 /* bucket_count - The number of hash buckets in the hash lookup
5438 table. */
5439 map.bucket_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* name_count - The number of unique names in the index. */
5443 map.name_count = read_4_bytes (abfd, addr);
5444 addr += 4;
5445
5446 /* abbrev_table_size - The size in bytes of the abbreviations
5447 table. */
5448 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5449 addr += 4;
5450
5451 /* augmentation_string_size - The size in bytes of the augmentation
5452 string. This value is rounded up to a multiple of 4. */
5453 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5454 addr += 4;
5455 map.augmentation_is_gdb = ((augmentation_string_size
5456 == sizeof (dwarf5_augmentation))
5457 && memcmp (addr, dwarf5_augmentation,
5458 sizeof (dwarf5_augmentation)) == 0);
5459 augmentation_string_size += (-augmentation_string_size) & 3;
5460 addr += augmentation_string_size;
5461
5462 /* List of CUs */
5463 map.cu_table_reordered = addr;
5464 addr += map.cu_count * map.offset_size;
5465
5466 /* List of Local TUs */
5467 map.tu_table_reordered = addr;
5468 addr += map.tu_count * map.offset_size;
5469
5470 /* Hash Lookup Table */
5471 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5472 addr += map.bucket_count * 4;
5473 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5474 addr += map.name_count * 4;
5475
5476 /* Name Table */
5477 map.name_table_string_offs_reordered = addr;
5478 addr += map.name_count * map.offset_size;
5479 map.name_table_entry_offs_reordered = addr;
5480 addr += map.name_count * map.offset_size;
5481
5482 const gdb_byte *abbrev_table_start = addr;
5483 for (;;)
5484 {
5485 unsigned int bytes_read;
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %zu vs. written as %u, ignoring .debug_names."),
5526 filename, addr - abbrev_table_start, abbrev_table_size);
5527 return false;
5528 }
5529 map.entry_pool = addr;
5530
5531 return true;
5532 }
5533
5534 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5535 list. */
5536
5537 static void
5538 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5539 const mapped_debug_names &map,
5540 dwarf2_section_info &section,
5541 bool is_dwz)
5542 {
5543 sect_offset sect_off_prev;
5544 for (uint32_t i = 0; i <= map.cu_count; ++i)
5545 {
5546 sect_offset sect_off_next;
5547 if (i < map.cu_count)
5548 {
5549 sect_off_next
5550 = (sect_offset) (extract_unsigned_integer
5551 (map.cu_table_reordered + i * map.offset_size,
5552 map.offset_size,
5553 map.dwarf5_byte_order));
5554 }
5555 else
5556 sect_off_next = (sect_offset) section.size;
5557 if (i >= 1)
5558 {
5559 const ULONGEST length = sect_off_next - sect_off_prev;
5560 dwarf2_per_cu_data *per_cu
5561 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5562 sect_off_prev, length);
5563 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5564 }
5565 sect_off_prev = sect_off_next;
5566 }
5567 }
5568
5569 /* Read the CU list from the mapped index, and use it to create all
5570 the CU objects for this dwarf2_per_objfile. */
5571
5572 static void
5573 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5574 const mapped_debug_names &map,
5575 const mapped_debug_names &dwz_map)
5576 {
5577 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5578 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5579
5580 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5581 dwarf2_per_objfile->info,
5582 false /* is_dwz */);
5583
5584 if (dwz_map.cu_count == 0)
5585 return;
5586
5587 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5588 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5589 true /* is_dwz */);
5590 }
5591
5592 /* Read .debug_names. If everything went ok, initialize the "quick"
5593 elements of all the CUs and return true. Otherwise, return false. */
5594
5595 static bool
5596 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5597 {
5598 std::unique_ptr<mapped_debug_names> map
5599 (new mapped_debug_names (dwarf2_per_objfile));
5600 mapped_debug_names dwz_map (dwarf2_per_objfile);
5601 struct objfile *objfile = dwarf2_per_objfile->objfile;
5602
5603 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5604 &dwarf2_per_objfile->debug_names,
5605 *map))
5606 return false;
5607
5608 /* Don't use the index if it's empty. */
5609 if (map->name_count == 0)
5610 return false;
5611
5612 /* If there is a .dwz file, read it so we can get its CU list as
5613 well. */
5614 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5615 if (dwz != NULL)
5616 {
5617 if (!read_debug_names_from_section (objfile,
5618 bfd_get_filename (dwz->dwz_bfd),
5619 &dwz->debug_names, dwz_map))
5620 {
5621 warning (_("could not read '.debug_names' section from %s; skipping"),
5622 bfd_get_filename (dwz->dwz_bfd));
5623 return false;
5624 }
5625 }
5626
5627 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5628
5629 if (map->tu_count != 0)
5630 {
5631 /* We can only handle a single .debug_types when we have an
5632 index. */
5633 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5634 return false;
5635
5636 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5637 dwarf2_per_objfile->types, 0);
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5661 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5662 dw2_debug_names_iterator (const mapped_debug_names &map,
5663 bool want_specific_block,
5664 block_enum block_index, domain_enum domain,
5665 const char *name)
5666 : m_map (map), m_want_specific_block (want_specific_block),
5667 m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5669 {}
5670
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5673 : m_map (map),
5674 m_search (search),
5675 m_addr (find_vec_in_debug_names (map, namei))
5676 {}
5677
5678 /* Return the next matching CU or NULL if there are no more. */
5679 dwarf2_per_cu_data *next ();
5680
5681 private:
5682 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5683 const char *name);
5684 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5685 uint32_t namei);
5686
5687 /* The internalized form of .debug_names. */
5688 const mapped_debug_names &m_map;
5689
5690 /* If true, only look for symbols that match BLOCK_INDEX. */
5691 const bool m_want_specific_block = false;
5692
5693 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5694 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5695 value. */
5696 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5697
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5701
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5703 not found. */
5704 const gdb_byte *m_addr;
5705 };
5706
5707 const char *
5708 mapped_debug_names::namei_to_name (uint32_t namei) const
5709 {
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5713 offset_size,
5714 dwarf5_byte_order);
5715 return read_indirect_string_at_offset
5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5717 }
5718
5719 /* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5721 return NULL. */
5722
5723 const gdb_byte *
5724 dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5726 {
5727 int (*cmp) (const char *, const char *);
5728
5729 if (current_language->la_language == language_cplus
5730 || current_language->la_language == language_fortran
5731 || current_language->la_language == language_d)
5732 {
5733 /* NAME is already canonical. Drop any qualifiers as
5734 .debug_names does not contain any. */
5735
5736 if (strchr (name, '(') != NULL)
5737 {
5738 gdb::unique_xmalloc_ptr<char> without_params
5739 = cp_remove_params (name);
5740
5741 if (without_params != NULL)
5742 {
5743 name = without_params.get();
5744 }
5745 }
5746 }
5747
5748 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5749
5750 const uint32_t full_hash = dwarf5_djb_hash (name);
5751 uint32_t namei
5752 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5753 (map.bucket_table_reordered
5754 + (full_hash % map.bucket_count)), 4,
5755 map.dwarf5_byte_order);
5756 if (namei == 0)
5757 return NULL;
5758 --namei;
5759 if (namei >= map.name_count)
5760 {
5761 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5762 "[in module %s]"),
5763 namei, map.name_count,
5764 objfile_name (map.dwarf2_per_objfile->objfile));
5765 return NULL;
5766 }
5767
5768 for (;;)
5769 {
5770 const uint32_t namei_full_hash
5771 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5772 (map.hash_table_reordered + namei), 4,
5773 map.dwarf5_byte_order);
5774 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5775 return NULL;
5776
5777 if (full_hash == namei_full_hash)
5778 {
5779 const char *const namei_string = map.namei_to_name (namei);
5780
5781 #if 0 /* An expensive sanity check. */
5782 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5783 {
5784 complaint (_("Wrong .debug_names hash for string at index %u "
5785 "[in module %s]"),
5786 namei, objfile_name (dwarf2_per_objfile->objfile));
5787 return NULL;
5788 }
5789 #endif
5790
5791 if (cmp (namei_string, name) == 0)
5792 {
5793 const ULONGEST namei_entry_offs
5794 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5795 + namei * map.offset_size),
5796 map.offset_size, map.dwarf5_byte_order);
5797 return map.entry_pool + namei_entry_offs;
5798 }
5799 }
5800
5801 ++namei;
5802 if (namei >= map.name_count)
5803 return NULL;
5804 }
5805 }
5806
5807 const gdb_byte *
5808 dw2_debug_names_iterator::find_vec_in_debug_names
5809 (const mapped_debug_names &map, uint32_t namei)
5810 {
5811 if (namei >= map.name_count)
5812 {
5813 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5814 "[in module %s]"),
5815 namei, map.name_count,
5816 objfile_name (map.dwarf2_per_objfile->objfile));
5817 return NULL;
5818 }
5819
5820 const ULONGEST namei_entry_offs
5821 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5822 + namei * map.offset_size),
5823 map.offset_size, map.dwarf5_byte_order);
5824 return map.entry_pool + namei_entry_offs;
5825 }
5826
5827 /* See dw2_debug_names_iterator. */
5828
5829 dwarf2_per_cu_data *
5830 dw2_debug_names_iterator::next ()
5831 {
5832 if (m_addr == NULL)
5833 return NULL;
5834
5835 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5836 struct objfile *objfile = dwarf2_per_objfile->objfile;
5837 bfd *const abfd = objfile->obfd;
5838
5839 again:
5840
5841 unsigned int bytes_read;
5842 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5843 m_addr += bytes_read;
5844 if (abbrev == 0)
5845 return NULL;
5846
5847 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5848 if (indexval_it == m_map.abbrev_map.cend ())
5849 {
5850 complaint (_("Wrong .debug_names undefined abbrev code %s "
5851 "[in module %s]"),
5852 pulongest (abbrev), objfile_name (objfile));
5853 return NULL;
5854 }
5855 const mapped_debug_names::index_val &indexval = indexval_it->second;
5856 bool have_is_static = false;
5857 bool is_static;
5858 dwarf2_per_cu_data *per_cu = NULL;
5859 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5860 {
5861 ULONGEST ull;
5862 switch (attr.form)
5863 {
5864 case DW_FORM_implicit_const:
5865 ull = attr.implicit_const;
5866 break;
5867 case DW_FORM_flag_present:
5868 ull = 1;
5869 break;
5870 case DW_FORM_udata:
5871 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5872 m_addr += bytes_read;
5873 break;
5874 default:
5875 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5876 dwarf_form_name (attr.form),
5877 objfile_name (objfile));
5878 return NULL;
5879 }
5880 switch (attr.dw_idx)
5881 {
5882 case DW_IDX_compile_unit:
5883 /* Don't crash on bad data. */
5884 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5885 {
5886 complaint (_(".debug_names entry has bad CU index %s"
5887 " [in module %s]"),
5888 pulongest (ull),
5889 objfile_name (dwarf2_per_objfile->objfile));
5890 continue;
5891 }
5892 per_cu = dwarf2_per_objfile->get_cutu (ull);
5893 break;
5894 case DW_IDX_type_unit:
5895 /* Don't crash on bad data. */
5896 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5897 {
5898 complaint (_(".debug_names entry has bad TU index %s"
5899 " [in module %s]"),
5900 pulongest (ull),
5901 objfile_name (dwarf2_per_objfile->objfile));
5902 continue;
5903 }
5904 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5905 break;
5906 case DW_IDX_GNU_internal:
5907 if (!m_map.augmentation_is_gdb)
5908 break;
5909 have_is_static = true;
5910 is_static = true;
5911 break;
5912 case DW_IDX_GNU_external:
5913 if (!m_map.augmentation_is_gdb)
5914 break;
5915 have_is_static = true;
5916 is_static = false;
5917 break;
5918 }
5919 }
5920
5921 /* Skip if already read in. */
5922 if (per_cu->v.quick->compunit_symtab)
5923 goto again;
5924
5925 /* Check static vs global. */
5926 if (have_is_static)
5927 {
5928 const bool want_static = m_block_index != GLOBAL_BLOCK;
5929 if (m_want_specific_block && want_static != is_static)
5930 goto again;
5931 }
5932
5933 /* Match dw2_symtab_iter_next, symbol_kind
5934 and debug_names::psymbol_tag. */
5935 switch (m_domain)
5936 {
5937 case VAR_DOMAIN:
5938 switch (indexval.dwarf_tag)
5939 {
5940 case DW_TAG_variable:
5941 case DW_TAG_subprogram:
5942 /* Some types are also in VAR_DOMAIN. */
5943 case DW_TAG_typedef:
5944 case DW_TAG_structure_type:
5945 break;
5946 default:
5947 goto again;
5948 }
5949 break;
5950 case STRUCT_DOMAIN:
5951 switch (indexval.dwarf_tag)
5952 {
5953 case DW_TAG_typedef:
5954 case DW_TAG_structure_type:
5955 break;
5956 default:
5957 goto again;
5958 }
5959 break;
5960 case LABEL_DOMAIN:
5961 switch (indexval.dwarf_tag)
5962 {
5963 case 0:
5964 case DW_TAG_variable:
5965 break;
5966 default:
5967 goto again;
5968 }
5969 break;
5970 default:
5971 break;
5972 }
5973
5974 /* Match dw2_expand_symtabs_matching, symbol_kind and
5975 debug_names::psymbol_tag. */
5976 switch (m_search)
5977 {
5978 case VARIABLES_DOMAIN:
5979 switch (indexval.dwarf_tag)
5980 {
5981 case DW_TAG_variable:
5982 break;
5983 default:
5984 goto again;
5985 }
5986 break;
5987 case FUNCTIONS_DOMAIN:
5988 switch (indexval.dwarf_tag)
5989 {
5990 case DW_TAG_subprogram:
5991 break;
5992 default:
5993 goto again;
5994 }
5995 break;
5996 case TYPES_DOMAIN:
5997 switch (indexval.dwarf_tag)
5998 {
5999 case DW_TAG_typedef:
6000 case DW_TAG_structure_type:
6001 break;
6002 default:
6003 goto again;
6004 }
6005 break;
6006 default:
6007 break;
6008 }
6009
6010 return per_cu;
6011 }
6012
6013 static struct compunit_symtab *
6014 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6015 const char *name, domain_enum domain)
6016 {
6017 const block_enum block_index = static_cast<block_enum> (block_index_int);
6018 struct dwarf2_per_objfile *dwarf2_per_objfile
6019 = get_dwarf2_per_objfile (objfile);
6020
6021 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6022 if (!mapp)
6023 {
6024 /* index is NULL if OBJF_READNOW. */
6025 return NULL;
6026 }
6027 const auto &map = *mapp;
6028
6029 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6030 block_index, domain, name);
6031
6032 struct compunit_symtab *stab_best = NULL;
6033 struct dwarf2_per_cu_data *per_cu;
6034 while ((per_cu = iter.next ()) != NULL)
6035 {
6036 struct symbol *sym, *with_opaque = NULL;
6037 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6038 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6039 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6040
6041 sym = block_find_symbol (block, name, domain,
6042 block_find_non_opaque_type_preferred,
6043 &with_opaque);
6044
6045 /* Some caution must be observed with overloaded functions and
6046 methods, since the index will not contain any overload
6047 information (but NAME might contain it). */
6048
6049 if (sym != NULL
6050 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6051 return stab;
6052 if (with_opaque != NULL
6053 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6054 stab_best = stab;
6055
6056 /* Keep looking through other CUs. */
6057 }
6058
6059 return stab_best;
6060 }
6061
6062 /* This dumps minimal information about .debug_names. It is called
6063 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6064 uses this to verify that .debug_names has been loaded. */
6065
6066 static void
6067 dw2_debug_names_dump (struct objfile *objfile)
6068 {
6069 struct dwarf2_per_objfile *dwarf2_per_objfile
6070 = get_dwarf2_per_objfile (objfile);
6071
6072 gdb_assert (dwarf2_per_objfile->using_index);
6073 printf_filtered (".debug_names:");
6074 if (dwarf2_per_objfile->debug_names_table)
6075 printf_filtered (" exists\n");
6076 else
6077 printf_filtered (" faked for \"readnow\"\n");
6078 printf_filtered ("\n");
6079 }
6080
6081 static void
6082 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6083 const char *func_name)
6084 {
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
6088 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6089 if (dwarf2_per_objfile->debug_names_table)
6090 {
6091 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6092
6093 /* Note: It doesn't matter what we pass for block_index here. */
6094 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6095 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6096
6097 struct dwarf2_per_cu_data *per_cu;
6098 while ((per_cu = iter.next ()) != NULL)
6099 dw2_instantiate_symtab (per_cu, false);
6100 }
6101 }
6102
6103 static void
6104 dw2_debug_names_expand_symtabs_matching
6105 (struct objfile *objfile,
6106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6107 const lookup_name_info &lookup_name,
6108 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6109 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6110 enum search_domain kind)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 /* debug_names_table is NULL if OBJF_READNOW. */
6116 if (!dwarf2_per_objfile->debug_names_table)
6117 return;
6118
6119 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6120
6121 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6122
6123 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6124 symbol_matcher,
6125 kind, [&] (offset_type namei)
6126 {
6127 /* The name was matched, now expand corresponding CUs that were
6128 marked. */
6129 dw2_debug_names_iterator iter (map, kind, namei);
6130
6131 struct dwarf2_per_cu_data *per_cu;
6132 while ((per_cu = iter.next ()) != NULL)
6133 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6134 expansion_notify);
6135 });
6136 }
6137
6138 const struct quick_symbol_functions dwarf2_debug_names_functions =
6139 {
6140 dw2_has_symbols,
6141 dw2_find_last_source_symtab,
6142 dw2_forget_cached_source_info,
6143 dw2_map_symtabs_matching_filename,
6144 dw2_debug_names_lookup_symbol,
6145 dw2_print_stats,
6146 dw2_debug_names_dump,
6147 dw2_relocate,
6148 dw2_debug_names_expand_symtabs_for_function,
6149 dw2_expand_all_symtabs,
6150 dw2_expand_symtabs_with_fullname,
6151 dw2_map_matching_symbols,
6152 dw2_debug_names_expand_symtabs_matching,
6153 dw2_find_pc_sect_compunit_symtab,
6154 NULL,
6155 dw2_map_symbol_filenames
6156 };
6157
6158 /* See symfile.h. */
6159
6160 bool
6161 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6162 {
6163 struct dwarf2_per_objfile *dwarf2_per_objfile
6164 = get_dwarf2_per_objfile (objfile);
6165
6166 /* If we're about to read full symbols, don't bother with the
6167 indices. In this case we also don't care if some other debug
6168 format is making psymtabs, because they are all about to be
6169 expanded anyway. */
6170 if ((objfile->flags & OBJF_READNOW))
6171 {
6172 dwarf2_per_objfile->using_index = 1;
6173 create_all_comp_units (dwarf2_per_objfile);
6174 create_all_type_units (dwarf2_per_objfile);
6175 dwarf2_per_objfile->quick_file_names_table
6176 = create_quick_file_names_table
6177 (dwarf2_per_objfile->all_comp_units.size ());
6178
6179 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6180 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6181 {
6182 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6183
6184 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6185 struct dwarf2_per_cu_quick_data);
6186 }
6187
6188 /* Return 1 so that gdb sees the "quick" functions. However,
6189 these functions will be no-ops because we will have expanded
6190 all symtabs. */
6191 *index_kind = dw_index_kind::GDB_INDEX;
6192 return true;
6193 }
6194
6195 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6196 {
6197 *index_kind = dw_index_kind::DEBUG_NAMES;
6198 return true;
6199 }
6200
6201 if (dwarf2_read_index (dwarf2_per_objfile))
6202 {
6203 *index_kind = dw_index_kind::GDB_INDEX;
6204 return true;
6205 }
6206
6207 return false;
6208 }
6209
6210 \f
6211
6212 /* Build a partial symbol table. */
6213
6214 void
6215 dwarf2_build_psymtabs (struct objfile *objfile)
6216 {
6217 struct dwarf2_per_objfile *dwarf2_per_objfile
6218 = get_dwarf2_per_objfile (objfile);
6219
6220 if (objfile->global_psymbols.capacity () == 0
6221 && objfile->static_psymbols.capacity () == 0)
6222 init_psymbol_list (objfile, 1024);
6223
6224 TRY
6225 {
6226 /* This isn't really ideal: all the data we allocate on the
6227 objfile's obstack is still uselessly kept around. However,
6228 freeing it seems unsafe. */
6229 psymtab_discarder psymtabs (objfile);
6230 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6231 psymtabs.keep ();
6232 }
6233 CATCH (except, RETURN_MASK_ERROR)
6234 {
6235 exception_print (gdb_stderr, except);
6236 }
6237 END_CATCH
6238 }
6239
6240 /* Return the total length of the CU described by HEADER. */
6241
6242 static unsigned int
6243 get_cu_length (const struct comp_unit_head *header)
6244 {
6245 return header->initial_length_size + header->length;
6246 }
6247
6248 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6249
6250 static inline bool
6251 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6252 {
6253 sect_offset bottom = cu_header->sect_off;
6254 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6255
6256 return sect_off >= bottom && sect_off < top;
6257 }
6258
6259 /* Find the base address of the compilation unit for range lists and
6260 location lists. It will normally be specified by DW_AT_low_pc.
6261 In DWARF-3 draft 4, the base address could be overridden by
6262 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6263 compilation units with discontinuous ranges. */
6264
6265 static void
6266 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6267 {
6268 struct attribute *attr;
6269
6270 cu->base_known = 0;
6271 cu->base_address = 0;
6272
6273 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6274 if (attr)
6275 {
6276 cu->base_address = attr_value_as_address (attr);
6277 cu->base_known = 1;
6278 }
6279 else
6280 {
6281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6282 if (attr)
6283 {
6284 cu->base_address = attr_value_as_address (attr);
6285 cu->base_known = 1;
6286 }
6287 }
6288 }
6289
6290 /* Read in the comp unit header information from the debug_info at info_ptr.
6291 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6292 NOTE: This leaves members offset, first_die_offset to be filled in
6293 by the caller. */
6294
6295 static const gdb_byte *
6296 read_comp_unit_head (struct comp_unit_head *cu_header,
6297 const gdb_byte *info_ptr,
6298 struct dwarf2_section_info *section,
6299 rcuh_kind section_kind)
6300 {
6301 int signed_addr;
6302 unsigned int bytes_read;
6303 const char *filename = get_section_file_name (section);
6304 bfd *abfd = get_section_bfd_owner (section);
6305
6306 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6307 cu_header->initial_length_size = bytes_read;
6308 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6309 info_ptr += bytes_read;
6310 cu_header->version = read_2_bytes (abfd, info_ptr);
6311 info_ptr += 2;
6312 if (cu_header->version < 5)
6313 switch (section_kind)
6314 {
6315 case rcuh_kind::COMPILE:
6316 cu_header->unit_type = DW_UT_compile;
6317 break;
6318 case rcuh_kind::TYPE:
6319 cu_header->unit_type = DW_UT_type;
6320 break;
6321 default:
6322 internal_error (__FILE__, __LINE__,
6323 _("read_comp_unit_head: invalid section_kind"));
6324 }
6325 else
6326 {
6327 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6328 (read_1_byte (abfd, info_ptr));
6329 info_ptr += 1;
6330 switch (cu_header->unit_type)
6331 {
6332 case DW_UT_compile:
6333 if (section_kind != rcuh_kind::COMPILE)
6334 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6335 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6336 filename);
6337 break;
6338 case DW_UT_type:
6339 section_kind = rcuh_kind::TYPE;
6340 break;
6341 default:
6342 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6343 "(is %d, should be %d or %d) [in module %s]"),
6344 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6345 }
6346
6347 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6348 info_ptr += 1;
6349 }
6350 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6351 cu_header,
6352 &bytes_read);
6353 info_ptr += bytes_read;
6354 if (cu_header->version < 5)
6355 {
6356 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6357 info_ptr += 1;
6358 }
6359 signed_addr = bfd_get_sign_extend_vma (abfd);
6360 if (signed_addr < 0)
6361 internal_error (__FILE__, __LINE__,
6362 _("read_comp_unit_head: dwarf from non elf file"));
6363 cu_header->signed_addr_p = signed_addr;
6364
6365 if (section_kind == rcuh_kind::TYPE)
6366 {
6367 LONGEST type_offset;
6368
6369 cu_header->signature = read_8_bytes (abfd, info_ptr);
6370 info_ptr += 8;
6371
6372 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6373 info_ptr += bytes_read;
6374 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6375 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6376 error (_("Dwarf Error: Too big type_offset in compilation unit "
6377 "header (is %s) [in module %s]"), plongest (type_offset),
6378 filename);
6379 }
6380
6381 return info_ptr;
6382 }
6383
6384 /* Helper function that returns the proper abbrev section for
6385 THIS_CU. */
6386
6387 static struct dwarf2_section_info *
6388 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6389 {
6390 struct dwarf2_section_info *abbrev;
6391 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6392
6393 if (this_cu->is_dwz)
6394 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6395 else
6396 abbrev = &dwarf2_per_objfile->abbrev;
6397
6398 return abbrev;
6399 }
6400
6401 /* Subroutine of read_and_check_comp_unit_head and
6402 read_and_check_type_unit_head to simplify them.
6403 Perform various error checking on the header. */
6404
6405 static void
6406 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6407 struct comp_unit_head *header,
6408 struct dwarf2_section_info *section,
6409 struct dwarf2_section_info *abbrev_section)
6410 {
6411 const char *filename = get_section_file_name (section);
6412
6413 if (header->version < 2 || header->version > 5)
6414 error (_("Dwarf Error: wrong version in compilation unit header "
6415 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6416 filename);
6417
6418 if (to_underlying (header->abbrev_sect_off)
6419 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6420 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6421 "(offset %s + 6) [in module %s]"),
6422 sect_offset_str (header->abbrev_sect_off),
6423 sect_offset_str (header->sect_off),
6424 filename);
6425
6426 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6427 avoid potential 32-bit overflow. */
6428 if (((ULONGEST) header->sect_off + get_cu_length (header))
6429 > section->size)
6430 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6431 "(offset %s + 0) [in module %s]"),
6432 header->length, sect_offset_str (header->sect_off),
6433 filename);
6434 }
6435
6436 /* Read in a CU/TU header and perform some basic error checking.
6437 The contents of the header are stored in HEADER.
6438 The result is a pointer to the start of the first DIE. */
6439
6440 static const gdb_byte *
6441 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6442 struct comp_unit_head *header,
6443 struct dwarf2_section_info *section,
6444 struct dwarf2_section_info *abbrev_section,
6445 const gdb_byte *info_ptr,
6446 rcuh_kind section_kind)
6447 {
6448 const gdb_byte *beg_of_comp_unit = info_ptr;
6449
6450 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6451
6452 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6453
6454 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6455
6456 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6457 abbrev_section);
6458
6459 return info_ptr;
6460 }
6461
6462 /* Fetch the abbreviation table offset from a comp or type unit header. */
6463
6464 static sect_offset
6465 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6466 struct dwarf2_section_info *section,
6467 sect_offset sect_off)
6468 {
6469 bfd *abfd = get_section_bfd_owner (section);
6470 const gdb_byte *info_ptr;
6471 unsigned int initial_length_size, offset_size;
6472 uint16_t version;
6473
6474 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6475 info_ptr = section->buffer + to_underlying (sect_off);
6476 read_initial_length (abfd, info_ptr, &initial_length_size);
6477 offset_size = initial_length_size == 4 ? 4 : 8;
6478 info_ptr += initial_length_size;
6479
6480 version = read_2_bytes (abfd, info_ptr);
6481 info_ptr += 2;
6482 if (version >= 5)
6483 {
6484 /* Skip unit type and address size. */
6485 info_ptr += 2;
6486 }
6487
6488 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6489 }
6490
6491 /* Allocate a new partial symtab for file named NAME and mark this new
6492 partial symtab as being an include of PST. */
6493
6494 static void
6495 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6496 struct objfile *objfile)
6497 {
6498 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6499
6500 if (!IS_ABSOLUTE_PATH (subpst->filename))
6501 {
6502 /* It shares objfile->objfile_obstack. */
6503 subpst->dirname = pst->dirname;
6504 }
6505
6506 subpst->textlow = 0;
6507 subpst->texthigh = 0;
6508
6509 subpst->dependencies
6510 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6511 subpst->dependencies[0] = pst;
6512 subpst->number_of_dependencies = 1;
6513
6514 subpst->globals_offset = 0;
6515 subpst->n_global_syms = 0;
6516 subpst->statics_offset = 0;
6517 subpst->n_static_syms = 0;
6518 subpst->compunit_symtab = NULL;
6519 subpst->read_symtab = pst->read_symtab;
6520 subpst->readin = 0;
6521
6522 /* No private part is necessary for include psymtabs. This property
6523 can be used to differentiate between such include psymtabs and
6524 the regular ones. */
6525 subpst->read_symtab_private = NULL;
6526 }
6527
6528 /* Read the Line Number Program data and extract the list of files
6529 included by the source file represented by PST. Build an include
6530 partial symtab for each of these included files. */
6531
6532 static void
6533 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6534 struct die_info *die,
6535 struct partial_symtab *pst)
6536 {
6537 line_header_up lh;
6538 struct attribute *attr;
6539
6540 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6541 if (attr)
6542 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6543 if (lh == NULL)
6544 return; /* No linetable, so no includes. */
6545
6546 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6547 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6548 }
6549
6550 static hashval_t
6551 hash_signatured_type (const void *item)
6552 {
6553 const struct signatured_type *sig_type
6554 = (const struct signatured_type *) item;
6555
6556 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6557 return sig_type->signature;
6558 }
6559
6560 static int
6561 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6562 {
6563 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6564 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6565
6566 return lhs->signature == rhs->signature;
6567 }
6568
6569 /* Allocate a hash table for signatured types. */
6570
6571 static htab_t
6572 allocate_signatured_type_table (struct objfile *objfile)
6573 {
6574 return htab_create_alloc_ex (41,
6575 hash_signatured_type,
6576 eq_signatured_type,
6577 NULL,
6578 &objfile->objfile_obstack,
6579 hashtab_obstack_allocate,
6580 dummy_obstack_deallocate);
6581 }
6582
6583 /* A helper function to add a signatured type CU to a table. */
6584
6585 static int
6586 add_signatured_type_cu_to_table (void **slot, void *datum)
6587 {
6588 struct signatured_type *sigt = (struct signatured_type *) *slot;
6589 std::vector<signatured_type *> *all_type_units
6590 = (std::vector<signatured_type *> *) datum;
6591
6592 all_type_units->push_back (sigt);
6593
6594 return 1;
6595 }
6596
6597 /* A helper for create_debug_types_hash_table. Read types from SECTION
6598 and fill them into TYPES_HTAB. It will process only type units,
6599 therefore DW_UT_type. */
6600
6601 static void
6602 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6603 struct dwo_file *dwo_file,
6604 dwarf2_section_info *section, htab_t &types_htab,
6605 rcuh_kind section_kind)
6606 {
6607 struct objfile *objfile = dwarf2_per_objfile->objfile;
6608 struct dwarf2_section_info *abbrev_section;
6609 bfd *abfd;
6610 const gdb_byte *info_ptr, *end_ptr;
6611
6612 abbrev_section = (dwo_file != NULL
6613 ? &dwo_file->sections.abbrev
6614 : &dwarf2_per_objfile->abbrev);
6615
6616 if (dwarf_read_debug)
6617 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6618 get_section_name (section),
6619 get_section_file_name (abbrev_section));
6620
6621 dwarf2_read_section (objfile, section);
6622 info_ptr = section->buffer;
6623
6624 if (info_ptr == NULL)
6625 return;
6626
6627 /* We can't set abfd until now because the section may be empty or
6628 not present, in which case the bfd is unknown. */
6629 abfd = get_section_bfd_owner (section);
6630
6631 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6632 because we don't need to read any dies: the signature is in the
6633 header. */
6634
6635 end_ptr = info_ptr + section->size;
6636 while (info_ptr < end_ptr)
6637 {
6638 struct signatured_type *sig_type;
6639 struct dwo_unit *dwo_tu;
6640 void **slot;
6641 const gdb_byte *ptr = info_ptr;
6642 struct comp_unit_head header;
6643 unsigned int length;
6644
6645 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6646
6647 /* Initialize it due to a false compiler warning. */
6648 header.signature = -1;
6649 header.type_cu_offset_in_tu = (cu_offset) -1;
6650
6651 /* We need to read the type's signature in order to build the hash
6652 table, but we don't need anything else just yet. */
6653
6654 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6655 abbrev_section, ptr, section_kind);
6656
6657 length = get_cu_length (&header);
6658
6659 /* Skip dummy type units. */
6660 if (ptr >= info_ptr + length
6661 || peek_abbrev_code (abfd, ptr) == 0
6662 || header.unit_type != DW_UT_type)
6663 {
6664 info_ptr += length;
6665 continue;
6666 }
6667
6668 if (types_htab == NULL)
6669 {
6670 if (dwo_file)
6671 types_htab = allocate_dwo_unit_table (objfile);
6672 else
6673 types_htab = allocate_signatured_type_table (objfile);
6674 }
6675
6676 if (dwo_file)
6677 {
6678 sig_type = NULL;
6679 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6680 struct dwo_unit);
6681 dwo_tu->dwo_file = dwo_file;
6682 dwo_tu->signature = header.signature;
6683 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6684 dwo_tu->section = section;
6685 dwo_tu->sect_off = sect_off;
6686 dwo_tu->length = length;
6687 }
6688 else
6689 {
6690 /* N.B.: type_offset is not usable if this type uses a DWO file.
6691 The real type_offset is in the DWO file. */
6692 dwo_tu = NULL;
6693 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6694 struct signatured_type);
6695 sig_type->signature = header.signature;
6696 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6697 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6698 sig_type->per_cu.is_debug_types = 1;
6699 sig_type->per_cu.section = section;
6700 sig_type->per_cu.sect_off = sect_off;
6701 sig_type->per_cu.length = length;
6702 }
6703
6704 slot = htab_find_slot (types_htab,
6705 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6706 INSERT);
6707 gdb_assert (slot != NULL);
6708 if (*slot != NULL)
6709 {
6710 sect_offset dup_sect_off;
6711
6712 if (dwo_file)
6713 {
6714 const struct dwo_unit *dup_tu
6715 = (const struct dwo_unit *) *slot;
6716
6717 dup_sect_off = dup_tu->sect_off;
6718 }
6719 else
6720 {
6721 const struct signatured_type *dup_tu
6722 = (const struct signatured_type *) *slot;
6723
6724 dup_sect_off = dup_tu->per_cu.sect_off;
6725 }
6726
6727 complaint (_("debug type entry at offset %s is duplicate to"
6728 " the entry at offset %s, signature %s"),
6729 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6730 hex_string (header.signature));
6731 }
6732 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6733
6734 if (dwarf_read_debug > 1)
6735 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6736 sect_offset_str (sect_off),
6737 hex_string (header.signature));
6738
6739 info_ptr += length;
6740 }
6741 }
6742
6743 /* Create the hash table of all entries in the .debug_types
6744 (or .debug_types.dwo) section(s).
6745 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6746 otherwise it is NULL.
6747
6748 The result is a pointer to the hash table or NULL if there are no types.
6749
6750 Note: This function processes DWO files only, not DWP files. */
6751
6752 static void
6753 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6754 struct dwo_file *dwo_file,
6755 VEC (dwarf2_section_info_def) *types,
6756 htab_t &types_htab)
6757 {
6758 int ix;
6759 struct dwarf2_section_info *section;
6760
6761 if (VEC_empty (dwarf2_section_info_def, types))
6762 return;
6763
6764 for (ix = 0;
6765 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6766 ++ix)
6767 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6768 types_htab, rcuh_kind::TYPE);
6769 }
6770
6771 /* Create the hash table of all entries in the .debug_types section,
6772 and initialize all_type_units.
6773 The result is zero if there is an error (e.g. missing .debug_types section),
6774 otherwise non-zero. */
6775
6776 static int
6777 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6778 {
6779 htab_t types_htab = NULL;
6780
6781 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6782 &dwarf2_per_objfile->info, types_htab,
6783 rcuh_kind::COMPILE);
6784 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6785 dwarf2_per_objfile->types, types_htab);
6786 if (types_htab == NULL)
6787 {
6788 dwarf2_per_objfile->signatured_types = NULL;
6789 return 0;
6790 }
6791
6792 dwarf2_per_objfile->signatured_types = types_htab;
6793
6794 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6795 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6796
6797 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6798 &dwarf2_per_objfile->all_type_units);
6799
6800 return 1;
6801 }
6802
6803 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6804 If SLOT is non-NULL, it is the entry to use in the hash table.
6805 Otherwise we find one. */
6806
6807 static struct signatured_type *
6808 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6809 void **slot)
6810 {
6811 struct objfile *objfile = dwarf2_per_objfile->objfile;
6812
6813 if (dwarf2_per_objfile->all_type_units.size ()
6814 == dwarf2_per_objfile->all_type_units.capacity ())
6815 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6816
6817 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6818 struct signatured_type);
6819
6820 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6821 sig_type->signature = sig;
6822 sig_type->per_cu.is_debug_types = 1;
6823 if (dwarf2_per_objfile->using_index)
6824 {
6825 sig_type->per_cu.v.quick =
6826 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6827 struct dwarf2_per_cu_quick_data);
6828 }
6829
6830 if (slot == NULL)
6831 {
6832 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6833 sig_type, INSERT);
6834 }
6835 gdb_assert (*slot == NULL);
6836 *slot = sig_type;
6837 /* The rest of sig_type must be filled in by the caller. */
6838 return sig_type;
6839 }
6840
6841 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6842 Fill in SIG_ENTRY with DWO_ENTRY. */
6843
6844 static void
6845 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6846 struct signatured_type *sig_entry,
6847 struct dwo_unit *dwo_entry)
6848 {
6849 /* Make sure we're not clobbering something we don't expect to. */
6850 gdb_assert (! sig_entry->per_cu.queued);
6851 gdb_assert (sig_entry->per_cu.cu == NULL);
6852 if (dwarf2_per_objfile->using_index)
6853 {
6854 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6855 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6856 }
6857 else
6858 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6859 gdb_assert (sig_entry->signature == dwo_entry->signature);
6860 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6861 gdb_assert (sig_entry->type_unit_group == NULL);
6862 gdb_assert (sig_entry->dwo_unit == NULL);
6863
6864 sig_entry->per_cu.section = dwo_entry->section;
6865 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6866 sig_entry->per_cu.length = dwo_entry->length;
6867 sig_entry->per_cu.reading_dwo_directly = 1;
6868 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6869 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6870 sig_entry->dwo_unit = dwo_entry;
6871 }
6872
6873 /* Subroutine of lookup_signatured_type.
6874 If we haven't read the TU yet, create the signatured_type data structure
6875 for a TU to be read in directly from a DWO file, bypassing the stub.
6876 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6877 using .gdb_index, then when reading a CU we want to stay in the DWO file
6878 containing that CU. Otherwise we could end up reading several other DWO
6879 files (due to comdat folding) to process the transitive closure of all the
6880 mentioned TUs, and that can be slow. The current DWO file will have every
6881 type signature that it needs.
6882 We only do this for .gdb_index because in the psymtab case we already have
6883 to read all the DWOs to build the type unit groups. */
6884
6885 static struct signatured_type *
6886 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6887 {
6888 struct dwarf2_per_objfile *dwarf2_per_objfile
6889 = cu->per_cu->dwarf2_per_objfile;
6890 struct objfile *objfile = dwarf2_per_objfile->objfile;
6891 struct dwo_file *dwo_file;
6892 struct dwo_unit find_dwo_entry, *dwo_entry;
6893 struct signatured_type find_sig_entry, *sig_entry;
6894 void **slot;
6895
6896 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6897
6898 /* If TU skeletons have been removed then we may not have read in any
6899 TUs yet. */
6900 if (dwarf2_per_objfile->signatured_types == NULL)
6901 {
6902 dwarf2_per_objfile->signatured_types
6903 = allocate_signatured_type_table (objfile);
6904 }
6905
6906 /* We only ever need to read in one copy of a signatured type.
6907 Use the global signatured_types array to do our own comdat-folding
6908 of types. If this is the first time we're reading this TU, and
6909 the TU has an entry in .gdb_index, replace the recorded data from
6910 .gdb_index with this TU. */
6911
6912 find_sig_entry.signature = sig;
6913 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6914 &find_sig_entry, INSERT);
6915 sig_entry = (struct signatured_type *) *slot;
6916
6917 /* We can get here with the TU already read, *or* in the process of being
6918 read. Don't reassign the global entry to point to this DWO if that's
6919 the case. Also note that if the TU is already being read, it may not
6920 have come from a DWO, the program may be a mix of Fission-compiled
6921 code and non-Fission-compiled code. */
6922
6923 /* Have we already tried to read this TU?
6924 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6925 needn't exist in the global table yet). */
6926 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6927 return sig_entry;
6928
6929 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6930 dwo_unit of the TU itself. */
6931 dwo_file = cu->dwo_unit->dwo_file;
6932
6933 /* Ok, this is the first time we're reading this TU. */
6934 if (dwo_file->tus == NULL)
6935 return NULL;
6936 find_dwo_entry.signature = sig;
6937 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6938 if (dwo_entry == NULL)
6939 return NULL;
6940
6941 /* If the global table doesn't have an entry for this TU, add one. */
6942 if (sig_entry == NULL)
6943 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6944
6945 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6946 sig_entry->per_cu.tu_read = 1;
6947 return sig_entry;
6948 }
6949
6950 /* Subroutine of lookup_signatured_type.
6951 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6952 then try the DWP file. If the TU stub (skeleton) has been removed then
6953 it won't be in .gdb_index. */
6954
6955 static struct signatured_type *
6956 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6957 {
6958 struct dwarf2_per_objfile *dwarf2_per_objfile
6959 = cu->per_cu->dwarf2_per_objfile;
6960 struct objfile *objfile = dwarf2_per_objfile->objfile;
6961 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6962 struct dwo_unit *dwo_entry;
6963 struct signatured_type find_sig_entry, *sig_entry;
6964 void **slot;
6965
6966 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6967 gdb_assert (dwp_file != NULL);
6968
6969 /* If TU skeletons have been removed then we may not have read in any
6970 TUs yet. */
6971 if (dwarf2_per_objfile->signatured_types == NULL)
6972 {
6973 dwarf2_per_objfile->signatured_types
6974 = allocate_signatured_type_table (objfile);
6975 }
6976
6977 find_sig_entry.signature = sig;
6978 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6979 &find_sig_entry, INSERT);
6980 sig_entry = (struct signatured_type *) *slot;
6981
6982 /* Have we already tried to read this TU?
6983 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6984 needn't exist in the global table yet). */
6985 if (sig_entry != NULL)
6986 return sig_entry;
6987
6988 if (dwp_file->tus == NULL)
6989 return NULL;
6990 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6991 sig, 1 /* is_debug_types */);
6992 if (dwo_entry == NULL)
6993 return NULL;
6994
6995 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6996 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6997
6998 return sig_entry;
6999 }
7000
7001 /* Lookup a signature based type for DW_FORM_ref_sig8.
7002 Returns NULL if signature SIG is not present in the table.
7003 It is up to the caller to complain about this. */
7004
7005 static struct signatured_type *
7006 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7007 {
7008 struct dwarf2_per_objfile *dwarf2_per_objfile
7009 = cu->per_cu->dwarf2_per_objfile;
7010
7011 if (cu->dwo_unit
7012 && dwarf2_per_objfile->using_index)
7013 {
7014 /* We're in a DWO/DWP file, and we're using .gdb_index.
7015 These cases require special processing. */
7016 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7017 return lookup_dwo_signatured_type (cu, sig);
7018 else
7019 return lookup_dwp_signatured_type (cu, sig);
7020 }
7021 else
7022 {
7023 struct signatured_type find_entry, *entry;
7024
7025 if (dwarf2_per_objfile->signatured_types == NULL)
7026 return NULL;
7027 find_entry.signature = sig;
7028 entry = ((struct signatured_type *)
7029 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7030 return entry;
7031 }
7032 }
7033 \f
7034 /* Low level DIE reading support. */
7035
7036 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7037
7038 static void
7039 init_cu_die_reader (struct die_reader_specs *reader,
7040 struct dwarf2_cu *cu,
7041 struct dwarf2_section_info *section,
7042 struct dwo_file *dwo_file,
7043 struct abbrev_table *abbrev_table)
7044 {
7045 gdb_assert (section->readin && section->buffer != NULL);
7046 reader->abfd = get_section_bfd_owner (section);
7047 reader->cu = cu;
7048 reader->dwo_file = dwo_file;
7049 reader->die_section = section;
7050 reader->buffer = section->buffer;
7051 reader->buffer_end = section->buffer + section->size;
7052 reader->comp_dir = NULL;
7053 reader->abbrev_table = abbrev_table;
7054 }
7055
7056 /* Subroutine of init_cutu_and_read_dies to simplify it.
7057 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7058 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7059 already.
7060
7061 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7062 from it to the DIE in the DWO. If NULL we are skipping the stub.
7063 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7064 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7065 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7066 STUB_COMP_DIR may be non-NULL.
7067 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7068 are filled in with the info of the DIE from the DWO file.
7069 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7070 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7071 kept around for at least as long as *RESULT_READER.
7072
7073 The result is non-zero if a valid (non-dummy) DIE was found. */
7074
7075 static int
7076 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7077 struct dwo_unit *dwo_unit,
7078 struct die_info *stub_comp_unit_die,
7079 const char *stub_comp_dir,
7080 struct die_reader_specs *result_reader,
7081 const gdb_byte **result_info_ptr,
7082 struct die_info **result_comp_unit_die,
7083 int *result_has_children,
7084 abbrev_table_up *result_dwo_abbrev_table)
7085 {
7086 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7087 struct objfile *objfile = dwarf2_per_objfile->objfile;
7088 struct dwarf2_cu *cu = this_cu->cu;
7089 bfd *abfd;
7090 const gdb_byte *begin_info_ptr, *info_ptr;
7091 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7092 int i,num_extra_attrs;
7093 struct dwarf2_section_info *dwo_abbrev_section;
7094 struct attribute *attr;
7095 struct die_info *comp_unit_die;
7096
7097 /* At most one of these may be provided. */
7098 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7099
7100 /* These attributes aren't processed until later:
7101 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7102 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7103 referenced later. However, these attributes are found in the stub
7104 which we won't have later. In order to not impose this complication
7105 on the rest of the code, we read them here and copy them to the
7106 DWO CU/TU die. */
7107
7108 stmt_list = NULL;
7109 low_pc = NULL;
7110 high_pc = NULL;
7111 ranges = NULL;
7112 comp_dir = NULL;
7113
7114 if (stub_comp_unit_die != NULL)
7115 {
7116 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7117 DWO file. */
7118 if (! this_cu->is_debug_types)
7119 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7120 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7121 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7122 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7123 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7124
7125 /* There should be a DW_AT_addr_base attribute here (if needed).
7126 We need the value before we can process DW_FORM_GNU_addr_index. */
7127 cu->addr_base = 0;
7128 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7129 if (attr)
7130 cu->addr_base = DW_UNSND (attr);
7131
7132 /* There should be a DW_AT_ranges_base attribute here (if needed).
7133 We need the value before we can process DW_AT_ranges. */
7134 cu->ranges_base = 0;
7135 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7136 if (attr)
7137 cu->ranges_base = DW_UNSND (attr);
7138 }
7139 else if (stub_comp_dir != NULL)
7140 {
7141 /* Reconstruct the comp_dir attribute to simplify the code below. */
7142 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7143 comp_dir->name = DW_AT_comp_dir;
7144 comp_dir->form = DW_FORM_string;
7145 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7146 DW_STRING (comp_dir) = stub_comp_dir;
7147 }
7148
7149 /* Set up for reading the DWO CU/TU. */
7150 cu->dwo_unit = dwo_unit;
7151 dwarf2_section_info *section = dwo_unit->section;
7152 dwarf2_read_section (objfile, section);
7153 abfd = get_section_bfd_owner (section);
7154 begin_info_ptr = info_ptr = (section->buffer
7155 + to_underlying (dwo_unit->sect_off));
7156 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7157
7158 if (this_cu->is_debug_types)
7159 {
7160 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7161
7162 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7163 &cu->header, section,
7164 dwo_abbrev_section,
7165 info_ptr, rcuh_kind::TYPE);
7166 /* This is not an assert because it can be caused by bad debug info. */
7167 if (sig_type->signature != cu->header.signature)
7168 {
7169 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7170 " TU at offset %s [in module %s]"),
7171 hex_string (sig_type->signature),
7172 hex_string (cu->header.signature),
7173 sect_offset_str (dwo_unit->sect_off),
7174 bfd_get_filename (abfd));
7175 }
7176 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7177 /* For DWOs coming from DWP files, we don't know the CU length
7178 nor the type's offset in the TU until now. */
7179 dwo_unit->length = get_cu_length (&cu->header);
7180 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7181
7182 /* Establish the type offset that can be used to lookup the type.
7183 For DWO files, we don't know it until now. */
7184 sig_type->type_offset_in_section
7185 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7186 }
7187 else
7188 {
7189 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7190 &cu->header, section,
7191 dwo_abbrev_section,
7192 info_ptr, rcuh_kind::COMPILE);
7193 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7194 /* For DWOs coming from DWP files, we don't know the CU length
7195 until now. */
7196 dwo_unit->length = get_cu_length (&cu->header);
7197 }
7198
7199 *result_dwo_abbrev_table
7200 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7201 cu->header.abbrev_sect_off);
7202 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7203 result_dwo_abbrev_table->get ());
7204
7205 /* Read in the die, but leave space to copy over the attributes
7206 from the stub. This has the benefit of simplifying the rest of
7207 the code - all the work to maintain the illusion of a single
7208 DW_TAG_{compile,type}_unit DIE is done here. */
7209 num_extra_attrs = ((stmt_list != NULL)
7210 + (low_pc != NULL)
7211 + (high_pc != NULL)
7212 + (ranges != NULL)
7213 + (comp_dir != NULL));
7214 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7215 result_has_children, num_extra_attrs);
7216
7217 /* Copy over the attributes from the stub to the DIE we just read in. */
7218 comp_unit_die = *result_comp_unit_die;
7219 i = comp_unit_die->num_attrs;
7220 if (stmt_list != NULL)
7221 comp_unit_die->attrs[i++] = *stmt_list;
7222 if (low_pc != NULL)
7223 comp_unit_die->attrs[i++] = *low_pc;
7224 if (high_pc != NULL)
7225 comp_unit_die->attrs[i++] = *high_pc;
7226 if (ranges != NULL)
7227 comp_unit_die->attrs[i++] = *ranges;
7228 if (comp_dir != NULL)
7229 comp_unit_die->attrs[i++] = *comp_dir;
7230 comp_unit_die->num_attrs += num_extra_attrs;
7231
7232 if (dwarf_die_debug)
7233 {
7234 fprintf_unfiltered (gdb_stdlog,
7235 "Read die from %s@0x%x of %s:\n",
7236 get_section_name (section),
7237 (unsigned) (begin_info_ptr - section->buffer),
7238 bfd_get_filename (abfd));
7239 dump_die (comp_unit_die, dwarf_die_debug);
7240 }
7241
7242 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7243 TUs by skipping the stub and going directly to the entry in the DWO file.
7244 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7245 to get it via circuitous means. Blech. */
7246 if (comp_dir != NULL)
7247 result_reader->comp_dir = DW_STRING (comp_dir);
7248
7249 /* Skip dummy compilation units. */
7250 if (info_ptr >= begin_info_ptr + dwo_unit->length
7251 || peek_abbrev_code (abfd, info_ptr) == 0)
7252 return 0;
7253
7254 *result_info_ptr = info_ptr;
7255 return 1;
7256 }
7257
7258 /* Subroutine of init_cutu_and_read_dies to simplify it.
7259 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7260 Returns NULL if the specified DWO unit cannot be found. */
7261
7262 static struct dwo_unit *
7263 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7264 struct die_info *comp_unit_die)
7265 {
7266 struct dwarf2_cu *cu = this_cu->cu;
7267 ULONGEST signature;
7268 struct dwo_unit *dwo_unit;
7269 const char *comp_dir, *dwo_name;
7270
7271 gdb_assert (cu != NULL);
7272
7273 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7274 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7275 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7276
7277 if (this_cu->is_debug_types)
7278 {
7279 struct signatured_type *sig_type;
7280
7281 /* Since this_cu is the first member of struct signatured_type,
7282 we can go from a pointer to one to a pointer to the other. */
7283 sig_type = (struct signatured_type *) this_cu;
7284 signature = sig_type->signature;
7285 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7286 }
7287 else
7288 {
7289 struct attribute *attr;
7290
7291 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7292 if (! attr)
7293 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7294 " [in module %s]"),
7295 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7296 signature = DW_UNSND (attr);
7297 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7298 signature);
7299 }
7300
7301 return dwo_unit;
7302 }
7303
7304 /* Subroutine of init_cutu_and_read_dies to simplify it.
7305 See it for a description of the parameters.
7306 Read a TU directly from a DWO file, bypassing the stub. */
7307
7308 static void
7309 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7310 int use_existing_cu, int keep,
7311 die_reader_func_ftype *die_reader_func,
7312 void *data)
7313 {
7314 std::unique_ptr<dwarf2_cu> new_cu;
7315 struct signatured_type *sig_type;
7316 struct die_reader_specs reader;
7317 const gdb_byte *info_ptr;
7318 struct die_info *comp_unit_die;
7319 int has_children;
7320 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7321
7322 /* Verify we can do the following downcast, and that we have the
7323 data we need. */
7324 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7325 sig_type = (struct signatured_type *) this_cu;
7326 gdb_assert (sig_type->dwo_unit != NULL);
7327
7328 if (use_existing_cu && this_cu->cu != NULL)
7329 {
7330 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7331 /* There's no need to do the rereading_dwo_cu handling that
7332 init_cutu_and_read_dies does since we don't read the stub. */
7333 }
7334 else
7335 {
7336 /* If !use_existing_cu, this_cu->cu must be NULL. */
7337 gdb_assert (this_cu->cu == NULL);
7338 new_cu.reset (new dwarf2_cu (this_cu));
7339 }
7340
7341 /* A future optimization, if needed, would be to use an existing
7342 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7343 could share abbrev tables. */
7344
7345 /* The abbreviation table used by READER, this must live at least as long as
7346 READER. */
7347 abbrev_table_up dwo_abbrev_table;
7348
7349 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7350 NULL /* stub_comp_unit_die */,
7351 sig_type->dwo_unit->dwo_file->comp_dir,
7352 &reader, &info_ptr,
7353 &comp_unit_die, &has_children,
7354 &dwo_abbrev_table) == 0)
7355 {
7356 /* Dummy die. */
7357 return;
7358 }
7359
7360 /* All the "real" work is done here. */
7361 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7362
7363 /* This duplicates the code in init_cutu_and_read_dies,
7364 but the alternative is making the latter more complex.
7365 This function is only for the special case of using DWO files directly:
7366 no point in overly complicating the general case just to handle this. */
7367 if (new_cu != NULL && keep)
7368 {
7369 /* Link this CU into read_in_chain. */
7370 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7371 dwarf2_per_objfile->read_in_chain = this_cu;
7372 /* The chain owns it now. */
7373 new_cu.release ();
7374 }
7375 }
7376
7377 /* Initialize a CU (or TU) and read its DIEs.
7378 If the CU defers to a DWO file, read the DWO file as well.
7379
7380 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7381 Otherwise the table specified in the comp unit header is read in and used.
7382 This is an optimization for when we already have the abbrev table.
7383
7384 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7385 Otherwise, a new CU is allocated with xmalloc.
7386
7387 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7388 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7389
7390 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7391 linker) then DIE_READER_FUNC will not get called. */
7392
7393 static void
7394 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7395 struct abbrev_table *abbrev_table,
7396 int use_existing_cu, int keep,
7397 bool skip_partial,
7398 die_reader_func_ftype *die_reader_func,
7399 void *data)
7400 {
7401 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7402 struct objfile *objfile = dwarf2_per_objfile->objfile;
7403 struct dwarf2_section_info *section = this_cu->section;
7404 bfd *abfd = get_section_bfd_owner (section);
7405 struct dwarf2_cu *cu;
7406 const gdb_byte *begin_info_ptr, *info_ptr;
7407 struct die_reader_specs reader;
7408 struct die_info *comp_unit_die;
7409 int has_children;
7410 struct attribute *attr;
7411 struct signatured_type *sig_type = NULL;
7412 struct dwarf2_section_info *abbrev_section;
7413 /* Non-zero if CU currently points to a DWO file and we need to
7414 reread it. When this happens we need to reread the skeleton die
7415 before we can reread the DWO file (this only applies to CUs, not TUs). */
7416 int rereading_dwo_cu = 0;
7417
7418 if (dwarf_die_debug)
7419 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7420 this_cu->is_debug_types ? "type" : "comp",
7421 sect_offset_str (this_cu->sect_off));
7422
7423 if (use_existing_cu)
7424 gdb_assert (keep);
7425
7426 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7427 file (instead of going through the stub), short-circuit all of this. */
7428 if (this_cu->reading_dwo_directly)
7429 {
7430 /* Narrow down the scope of possibilities to have to understand. */
7431 gdb_assert (this_cu->is_debug_types);
7432 gdb_assert (abbrev_table == NULL);
7433 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7434 die_reader_func, data);
7435 return;
7436 }
7437
7438 /* This is cheap if the section is already read in. */
7439 dwarf2_read_section (objfile, section);
7440
7441 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7442
7443 abbrev_section = get_abbrev_section_for_cu (this_cu);
7444
7445 std::unique_ptr<dwarf2_cu> new_cu;
7446 if (use_existing_cu && this_cu->cu != NULL)
7447 {
7448 cu = this_cu->cu;
7449 /* If this CU is from a DWO file we need to start over, we need to
7450 refetch the attributes from the skeleton CU.
7451 This could be optimized by retrieving those attributes from when we
7452 were here the first time: the previous comp_unit_die was stored in
7453 comp_unit_obstack. But there's no data yet that we need this
7454 optimization. */
7455 if (cu->dwo_unit != NULL)
7456 rereading_dwo_cu = 1;
7457 }
7458 else
7459 {
7460 /* If !use_existing_cu, this_cu->cu must be NULL. */
7461 gdb_assert (this_cu->cu == NULL);
7462 new_cu.reset (new dwarf2_cu (this_cu));
7463 cu = new_cu.get ();
7464 }
7465
7466 /* Get the header. */
7467 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7468 {
7469 /* We already have the header, there's no need to read it in again. */
7470 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7471 }
7472 else
7473 {
7474 if (this_cu->is_debug_types)
7475 {
7476 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7477 &cu->header, section,
7478 abbrev_section, info_ptr,
7479 rcuh_kind::TYPE);
7480
7481 /* Since per_cu is the first member of struct signatured_type,
7482 we can go from a pointer to one to a pointer to the other. */
7483 sig_type = (struct signatured_type *) this_cu;
7484 gdb_assert (sig_type->signature == cu->header.signature);
7485 gdb_assert (sig_type->type_offset_in_tu
7486 == cu->header.type_cu_offset_in_tu);
7487 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7488
7489 /* LENGTH has not been set yet for type units if we're
7490 using .gdb_index. */
7491 this_cu->length = get_cu_length (&cu->header);
7492
7493 /* Establish the type offset that can be used to lookup the type. */
7494 sig_type->type_offset_in_section =
7495 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7496
7497 this_cu->dwarf_version = cu->header.version;
7498 }
7499 else
7500 {
7501 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7502 &cu->header, section,
7503 abbrev_section,
7504 info_ptr,
7505 rcuh_kind::COMPILE);
7506
7507 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7508 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7509 this_cu->dwarf_version = cu->header.version;
7510 }
7511 }
7512
7513 /* Skip dummy compilation units. */
7514 if (info_ptr >= begin_info_ptr + this_cu->length
7515 || peek_abbrev_code (abfd, info_ptr) == 0)
7516 return;
7517
7518 /* If we don't have them yet, read the abbrevs for this compilation unit.
7519 And if we need to read them now, make sure they're freed when we're
7520 done (own the table through ABBREV_TABLE_HOLDER). */
7521 abbrev_table_up abbrev_table_holder;
7522 if (abbrev_table != NULL)
7523 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7524 else
7525 {
7526 abbrev_table_holder
7527 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7528 cu->header.abbrev_sect_off);
7529 abbrev_table = abbrev_table_holder.get ();
7530 }
7531
7532 /* Read the top level CU/TU die. */
7533 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7534 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7535
7536 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7537 return;
7538
7539 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7540 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7541 table from the DWO file and pass the ownership over to us. It will be
7542 referenced from READER, so we must make sure to free it after we're done
7543 with READER.
7544
7545 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7546 DWO CU, that this test will fail (the attribute will not be present). */
7547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7548 abbrev_table_up dwo_abbrev_table;
7549 if (attr)
7550 {
7551 struct dwo_unit *dwo_unit;
7552 struct die_info *dwo_comp_unit_die;
7553
7554 if (has_children)
7555 {
7556 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7557 " has children (offset %s) [in module %s]"),
7558 sect_offset_str (this_cu->sect_off),
7559 bfd_get_filename (abfd));
7560 }
7561 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7562 if (dwo_unit != NULL)
7563 {
7564 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7565 comp_unit_die, NULL,
7566 &reader, &info_ptr,
7567 &dwo_comp_unit_die, &has_children,
7568 &dwo_abbrev_table) == 0)
7569 {
7570 /* Dummy die. */
7571 return;
7572 }
7573 comp_unit_die = dwo_comp_unit_die;
7574 }
7575 else
7576 {
7577 /* Yikes, we couldn't find the rest of the DIE, we only have
7578 the stub. A complaint has already been logged. There's
7579 not much more we can do except pass on the stub DIE to
7580 die_reader_func. We don't want to throw an error on bad
7581 debug info. */
7582 }
7583 }
7584
7585 /* All of the above is setup for this call. Yikes. */
7586 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7587
7588 /* Done, clean up. */
7589 if (new_cu != NULL && keep)
7590 {
7591 /* Link this CU into read_in_chain. */
7592 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7593 dwarf2_per_objfile->read_in_chain = this_cu;
7594 /* The chain owns it now. */
7595 new_cu.release ();
7596 }
7597 }
7598
7599 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7600 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7601 to have already done the lookup to find the DWO file).
7602
7603 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7604 THIS_CU->is_debug_types, but nothing else.
7605
7606 We fill in THIS_CU->length.
7607
7608 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7609 linker) then DIE_READER_FUNC will not get called.
7610
7611 THIS_CU->cu is always freed when done.
7612 This is done in order to not leave THIS_CU->cu in a state where we have
7613 to care whether it refers to the "main" CU or the DWO CU. */
7614
7615 static void
7616 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7617 struct dwo_file *dwo_file,
7618 die_reader_func_ftype *die_reader_func,
7619 void *data)
7620 {
7621 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7622 struct objfile *objfile = dwarf2_per_objfile->objfile;
7623 struct dwarf2_section_info *section = this_cu->section;
7624 bfd *abfd = get_section_bfd_owner (section);
7625 struct dwarf2_section_info *abbrev_section;
7626 const gdb_byte *begin_info_ptr, *info_ptr;
7627 struct die_reader_specs reader;
7628 struct die_info *comp_unit_die;
7629 int has_children;
7630
7631 if (dwarf_die_debug)
7632 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7633 this_cu->is_debug_types ? "type" : "comp",
7634 sect_offset_str (this_cu->sect_off));
7635
7636 gdb_assert (this_cu->cu == NULL);
7637
7638 abbrev_section = (dwo_file != NULL
7639 ? &dwo_file->sections.abbrev
7640 : get_abbrev_section_for_cu (this_cu));
7641
7642 /* This is cheap if the section is already read in. */
7643 dwarf2_read_section (objfile, section);
7644
7645 struct dwarf2_cu cu (this_cu);
7646
7647 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7648 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7649 &cu.header, section,
7650 abbrev_section, info_ptr,
7651 (this_cu->is_debug_types
7652 ? rcuh_kind::TYPE
7653 : rcuh_kind::COMPILE));
7654
7655 this_cu->length = get_cu_length (&cu.header);
7656
7657 /* Skip dummy compilation units. */
7658 if (info_ptr >= begin_info_ptr + this_cu->length
7659 || peek_abbrev_code (abfd, info_ptr) == 0)
7660 return;
7661
7662 abbrev_table_up abbrev_table
7663 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7664 cu.header.abbrev_sect_off);
7665
7666 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7667 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7668
7669 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7670 }
7671
7672 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7673 does not lookup the specified DWO file.
7674 This cannot be used to read DWO files.
7675
7676 THIS_CU->cu is always freed when done.
7677 This is done in order to not leave THIS_CU->cu in a state where we have
7678 to care whether it refers to the "main" CU or the DWO CU.
7679 We can revisit this if the data shows there's a performance issue. */
7680
7681 static void
7682 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7683 die_reader_func_ftype *die_reader_func,
7684 void *data)
7685 {
7686 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7687 }
7688 \f
7689 /* Type Unit Groups.
7690
7691 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7692 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7693 so that all types coming from the same compilation (.o file) are grouped
7694 together. A future step could be to put the types in the same symtab as
7695 the CU the types ultimately came from. */
7696
7697 static hashval_t
7698 hash_type_unit_group (const void *item)
7699 {
7700 const struct type_unit_group *tu_group
7701 = (const struct type_unit_group *) item;
7702
7703 return hash_stmt_list_entry (&tu_group->hash);
7704 }
7705
7706 static int
7707 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7708 {
7709 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7710 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7711
7712 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7713 }
7714
7715 /* Allocate a hash table for type unit groups. */
7716
7717 static htab_t
7718 allocate_type_unit_groups_table (struct objfile *objfile)
7719 {
7720 return htab_create_alloc_ex (3,
7721 hash_type_unit_group,
7722 eq_type_unit_group,
7723 NULL,
7724 &objfile->objfile_obstack,
7725 hashtab_obstack_allocate,
7726 dummy_obstack_deallocate);
7727 }
7728
7729 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7730 partial symtabs. We combine several TUs per psymtab to not let the size
7731 of any one psymtab grow too big. */
7732 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7733 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7734
7735 /* Helper routine for get_type_unit_group.
7736 Create the type_unit_group object used to hold one or more TUs. */
7737
7738 static struct type_unit_group *
7739 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7740 {
7741 struct dwarf2_per_objfile *dwarf2_per_objfile
7742 = cu->per_cu->dwarf2_per_objfile;
7743 struct objfile *objfile = dwarf2_per_objfile->objfile;
7744 struct dwarf2_per_cu_data *per_cu;
7745 struct type_unit_group *tu_group;
7746
7747 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7748 struct type_unit_group);
7749 per_cu = &tu_group->per_cu;
7750 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7751
7752 if (dwarf2_per_objfile->using_index)
7753 {
7754 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7755 struct dwarf2_per_cu_quick_data);
7756 }
7757 else
7758 {
7759 unsigned int line_offset = to_underlying (line_offset_struct);
7760 struct partial_symtab *pst;
7761 char *name;
7762
7763 /* Give the symtab a useful name for debug purposes. */
7764 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7765 name = xstrprintf ("<type_units_%d>",
7766 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7767 else
7768 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7769
7770 pst = create_partial_symtab (per_cu, name);
7771 pst->anonymous = 1;
7772
7773 xfree (name);
7774 }
7775
7776 tu_group->hash.dwo_unit = cu->dwo_unit;
7777 tu_group->hash.line_sect_off = line_offset_struct;
7778
7779 return tu_group;
7780 }
7781
7782 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7783 STMT_LIST is a DW_AT_stmt_list attribute. */
7784
7785 static struct type_unit_group *
7786 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7787 {
7788 struct dwarf2_per_objfile *dwarf2_per_objfile
7789 = cu->per_cu->dwarf2_per_objfile;
7790 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7791 struct type_unit_group *tu_group;
7792 void **slot;
7793 unsigned int line_offset;
7794 struct type_unit_group type_unit_group_for_lookup;
7795
7796 if (dwarf2_per_objfile->type_unit_groups == NULL)
7797 {
7798 dwarf2_per_objfile->type_unit_groups =
7799 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7800 }
7801
7802 /* Do we need to create a new group, or can we use an existing one? */
7803
7804 if (stmt_list)
7805 {
7806 line_offset = DW_UNSND (stmt_list);
7807 ++tu_stats->nr_symtab_sharers;
7808 }
7809 else
7810 {
7811 /* Ugh, no stmt_list. Rare, but we have to handle it.
7812 We can do various things here like create one group per TU or
7813 spread them over multiple groups to split up the expansion work.
7814 To avoid worst case scenarios (too many groups or too large groups)
7815 we, umm, group them in bunches. */
7816 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7817 | (tu_stats->nr_stmt_less_type_units
7818 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7819 ++tu_stats->nr_stmt_less_type_units;
7820 }
7821
7822 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7823 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7824 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7825 &type_unit_group_for_lookup, INSERT);
7826 if (*slot != NULL)
7827 {
7828 tu_group = (struct type_unit_group *) *slot;
7829 gdb_assert (tu_group != NULL);
7830 }
7831 else
7832 {
7833 sect_offset line_offset_struct = (sect_offset) line_offset;
7834 tu_group = create_type_unit_group (cu, line_offset_struct);
7835 *slot = tu_group;
7836 ++tu_stats->nr_symtabs;
7837 }
7838
7839 return tu_group;
7840 }
7841 \f
7842 /* Partial symbol tables. */
7843
7844 /* Create a psymtab named NAME and assign it to PER_CU.
7845
7846 The caller must fill in the following details:
7847 dirname, textlow, texthigh. */
7848
7849 static struct partial_symtab *
7850 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7851 {
7852 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7853 struct partial_symtab *pst;
7854
7855 pst = start_psymtab_common (objfile, name, 0,
7856 objfile->global_psymbols,
7857 objfile->static_psymbols);
7858
7859 pst->psymtabs_addrmap_supported = 1;
7860
7861 /* This is the glue that links PST into GDB's symbol API. */
7862 pst->read_symtab_private = per_cu;
7863 pst->read_symtab = dwarf2_read_symtab;
7864 per_cu->v.psymtab = pst;
7865
7866 return pst;
7867 }
7868
7869 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7870 type. */
7871
7872 struct process_psymtab_comp_unit_data
7873 {
7874 /* True if we are reading a DW_TAG_partial_unit. */
7875
7876 int want_partial_unit;
7877
7878 /* The "pretend" language that is used if the CU doesn't declare a
7879 language. */
7880
7881 enum language pretend_language;
7882 };
7883
7884 /* die_reader_func for process_psymtab_comp_unit. */
7885
7886 static void
7887 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7888 const gdb_byte *info_ptr,
7889 struct die_info *comp_unit_die,
7890 int has_children,
7891 void *data)
7892 {
7893 struct dwarf2_cu *cu = reader->cu;
7894 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7895 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7896 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7897 CORE_ADDR baseaddr;
7898 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7899 struct partial_symtab *pst;
7900 enum pc_bounds_kind cu_bounds_kind;
7901 const char *filename;
7902 struct process_psymtab_comp_unit_data *info
7903 = (struct process_psymtab_comp_unit_data *) data;
7904
7905 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7906 return;
7907
7908 gdb_assert (! per_cu->is_debug_types);
7909
7910 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7911
7912 cu->list_in_scope = &file_symbols;
7913
7914 /* Allocate a new partial symbol table structure. */
7915 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7916 if (filename == NULL)
7917 filename = "";
7918
7919 pst = create_partial_symtab (per_cu, filename);
7920
7921 /* This must be done before calling dwarf2_build_include_psymtabs. */
7922 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7923
7924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7925
7926 dwarf2_find_base_address (comp_unit_die, cu);
7927
7928 /* Possibly set the default values of LOWPC and HIGHPC from
7929 `DW_AT_ranges'. */
7930 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7931 &best_highpc, cu, pst);
7932 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7933 /* Store the contiguous range if it is not empty; it can be empty for
7934 CUs with no code. */
7935 addrmap_set_empty (objfile->psymtabs_addrmap,
7936 gdbarch_adjust_dwarf2_addr (gdbarch,
7937 best_lowpc + baseaddr),
7938 gdbarch_adjust_dwarf2_addr (gdbarch,
7939 best_highpc + baseaddr) - 1,
7940 pst);
7941
7942 /* Check if comp unit has_children.
7943 If so, read the rest of the partial symbols from this comp unit.
7944 If not, there's no more debug_info for this comp unit. */
7945 if (has_children)
7946 {
7947 struct partial_die_info *first_die;
7948 CORE_ADDR lowpc, highpc;
7949
7950 lowpc = ((CORE_ADDR) -1);
7951 highpc = ((CORE_ADDR) 0);
7952
7953 first_die = load_partial_dies (reader, info_ptr, 1);
7954
7955 scan_partial_symbols (first_die, &lowpc, &highpc,
7956 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7957
7958 /* If we didn't find a lowpc, set it to highpc to avoid
7959 complaints from `maint check'. */
7960 if (lowpc == ((CORE_ADDR) -1))
7961 lowpc = highpc;
7962
7963 /* If the compilation unit didn't have an explicit address range,
7964 then use the information extracted from its child dies. */
7965 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7966 {
7967 best_lowpc = lowpc;
7968 best_highpc = highpc;
7969 }
7970 }
7971 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7972 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7973
7974 end_psymtab_common (objfile, pst);
7975
7976 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7977 {
7978 int i;
7979 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7980 struct dwarf2_per_cu_data *iter;
7981
7982 /* Fill in 'dependencies' here; we fill in 'users' in a
7983 post-pass. */
7984 pst->number_of_dependencies = len;
7985 pst->dependencies =
7986 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7987 for (i = 0;
7988 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7989 i, iter);
7990 ++i)
7991 pst->dependencies[i] = iter->v.psymtab;
7992
7993 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7994 }
7995
7996 /* Get the list of files included in the current compilation unit,
7997 and build a psymtab for each of them. */
7998 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7999
8000 if (dwarf_read_debug)
8001 {
8002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8003
8004 fprintf_unfiltered (gdb_stdlog,
8005 "Psymtab for %s unit @%s: %s - %s"
8006 ", %d global, %d static syms\n",
8007 per_cu->is_debug_types ? "type" : "comp",
8008 sect_offset_str (per_cu->sect_off),
8009 paddress (gdbarch, pst->textlow),
8010 paddress (gdbarch, pst->texthigh),
8011 pst->n_global_syms, pst->n_static_syms);
8012 }
8013 }
8014
8015 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8016 Process compilation unit THIS_CU for a psymtab. */
8017
8018 static void
8019 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8020 int want_partial_unit,
8021 enum language pretend_language)
8022 {
8023 /* If this compilation unit was already read in, free the
8024 cached copy in order to read it in again. This is
8025 necessary because we skipped some symbols when we first
8026 read in the compilation unit (see load_partial_dies).
8027 This problem could be avoided, but the benefit is unclear. */
8028 if (this_cu->cu != NULL)
8029 free_one_cached_comp_unit (this_cu);
8030
8031 if (this_cu->is_debug_types)
8032 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8033 build_type_psymtabs_reader, NULL);
8034 else
8035 {
8036 process_psymtab_comp_unit_data info;
8037 info.want_partial_unit = want_partial_unit;
8038 info.pretend_language = pretend_language;
8039 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8040 process_psymtab_comp_unit_reader, &info);
8041 }
8042
8043 /* Age out any secondary CUs. */
8044 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8045 }
8046
8047 /* Reader function for build_type_psymtabs. */
8048
8049 static void
8050 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8051 const gdb_byte *info_ptr,
8052 struct die_info *type_unit_die,
8053 int has_children,
8054 void *data)
8055 {
8056 struct dwarf2_per_objfile *dwarf2_per_objfile
8057 = reader->cu->per_cu->dwarf2_per_objfile;
8058 struct objfile *objfile = dwarf2_per_objfile->objfile;
8059 struct dwarf2_cu *cu = reader->cu;
8060 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8061 struct signatured_type *sig_type;
8062 struct type_unit_group *tu_group;
8063 struct attribute *attr;
8064 struct partial_die_info *first_die;
8065 CORE_ADDR lowpc, highpc;
8066 struct partial_symtab *pst;
8067
8068 gdb_assert (data == NULL);
8069 gdb_assert (per_cu->is_debug_types);
8070 sig_type = (struct signatured_type *) per_cu;
8071
8072 if (! has_children)
8073 return;
8074
8075 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8076 tu_group = get_type_unit_group (cu, attr);
8077
8078 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8079
8080 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8081 cu->list_in_scope = &file_symbols;
8082 pst = create_partial_symtab (per_cu, "");
8083 pst->anonymous = 1;
8084
8085 first_die = load_partial_dies (reader, info_ptr, 1);
8086
8087 lowpc = (CORE_ADDR) -1;
8088 highpc = (CORE_ADDR) 0;
8089 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8090
8091 end_psymtab_common (objfile, pst);
8092 }
8093
8094 /* Struct used to sort TUs by their abbreviation table offset. */
8095
8096 struct tu_abbrev_offset
8097 {
8098 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8099 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8100 {}
8101
8102 signatured_type *sig_type;
8103 sect_offset abbrev_offset;
8104 };
8105
8106 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8107
8108 static bool
8109 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8110 const struct tu_abbrev_offset &b)
8111 {
8112 return a.abbrev_offset < b.abbrev_offset;
8113 }
8114
8115 /* Efficiently read all the type units.
8116 This does the bulk of the work for build_type_psymtabs.
8117
8118 The efficiency is because we sort TUs by the abbrev table they use and
8119 only read each abbrev table once. In one program there are 200K TUs
8120 sharing 8K abbrev tables.
8121
8122 The main purpose of this function is to support building the
8123 dwarf2_per_objfile->type_unit_groups table.
8124 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8125 can collapse the search space by grouping them by stmt_list.
8126 The savings can be significant, in the same program from above the 200K TUs
8127 share 8K stmt_list tables.
8128
8129 FUNC is expected to call get_type_unit_group, which will create the
8130 struct type_unit_group if necessary and add it to
8131 dwarf2_per_objfile->type_unit_groups. */
8132
8133 static void
8134 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8135 {
8136 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8137 abbrev_table_up abbrev_table;
8138 sect_offset abbrev_offset;
8139
8140 /* It's up to the caller to not call us multiple times. */
8141 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8142
8143 if (dwarf2_per_objfile->all_type_units.empty ())
8144 return;
8145
8146 /* TUs typically share abbrev tables, and there can be way more TUs than
8147 abbrev tables. Sort by abbrev table to reduce the number of times we
8148 read each abbrev table in.
8149 Alternatives are to punt or to maintain a cache of abbrev tables.
8150 This is simpler and efficient enough for now.
8151
8152 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8153 symtab to use). Typically TUs with the same abbrev offset have the same
8154 stmt_list value too so in practice this should work well.
8155
8156 The basic algorithm here is:
8157
8158 sort TUs by abbrev table
8159 for each TU with same abbrev table:
8160 read abbrev table if first user
8161 read TU top level DIE
8162 [IWBN if DWO skeletons had DW_AT_stmt_list]
8163 call FUNC */
8164
8165 if (dwarf_read_debug)
8166 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8167
8168 /* Sort in a separate table to maintain the order of all_type_units
8169 for .gdb_index: TU indices directly index all_type_units. */
8170 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8171 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8172
8173 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8174 sorted_by_abbrev.emplace_back
8175 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8176 sig_type->per_cu.section,
8177 sig_type->per_cu.sect_off));
8178
8179 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8180 sort_tu_by_abbrev_offset);
8181
8182 abbrev_offset = (sect_offset) ~(unsigned) 0;
8183
8184 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8185 {
8186 /* Switch to the next abbrev table if necessary. */
8187 if (abbrev_table == NULL
8188 || tu.abbrev_offset != abbrev_offset)
8189 {
8190 abbrev_offset = tu.abbrev_offset;
8191 abbrev_table =
8192 abbrev_table_read_table (dwarf2_per_objfile,
8193 &dwarf2_per_objfile->abbrev,
8194 abbrev_offset);
8195 ++tu_stats->nr_uniq_abbrev_tables;
8196 }
8197
8198 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8199 0, 0, false, build_type_psymtabs_reader, NULL);
8200 }
8201 }
8202
8203 /* Print collected type unit statistics. */
8204
8205 static void
8206 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8207 {
8208 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8209
8210 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8211 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8212 dwarf2_per_objfile->all_type_units.size ());
8213 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8214 tu_stats->nr_uniq_abbrev_tables);
8215 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8216 tu_stats->nr_symtabs);
8217 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8218 tu_stats->nr_symtab_sharers);
8219 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8220 tu_stats->nr_stmt_less_type_units);
8221 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8222 tu_stats->nr_all_type_units_reallocs);
8223 }
8224
8225 /* Traversal function for build_type_psymtabs. */
8226
8227 static int
8228 build_type_psymtab_dependencies (void **slot, void *info)
8229 {
8230 struct dwarf2_per_objfile *dwarf2_per_objfile
8231 = (struct dwarf2_per_objfile *) info;
8232 struct objfile *objfile = dwarf2_per_objfile->objfile;
8233 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8234 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8235 struct partial_symtab *pst = per_cu->v.psymtab;
8236 int len = VEC_length (sig_type_ptr, tu_group->tus);
8237 struct signatured_type *iter;
8238 int i;
8239
8240 gdb_assert (len > 0);
8241 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8242
8243 pst->number_of_dependencies = len;
8244 pst->dependencies =
8245 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8246 for (i = 0;
8247 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8248 ++i)
8249 {
8250 gdb_assert (iter->per_cu.is_debug_types);
8251 pst->dependencies[i] = iter->per_cu.v.psymtab;
8252 iter->type_unit_group = tu_group;
8253 }
8254
8255 VEC_free (sig_type_ptr, tu_group->tus);
8256
8257 return 1;
8258 }
8259
8260 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8261 Build partial symbol tables for the .debug_types comp-units. */
8262
8263 static void
8264 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8265 {
8266 if (! create_all_type_units (dwarf2_per_objfile))
8267 return;
8268
8269 build_type_psymtabs_1 (dwarf2_per_objfile);
8270 }
8271
8272 /* Traversal function for process_skeletonless_type_unit.
8273 Read a TU in a DWO file and build partial symbols for it. */
8274
8275 static int
8276 process_skeletonless_type_unit (void **slot, void *info)
8277 {
8278 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8279 struct dwarf2_per_objfile *dwarf2_per_objfile
8280 = (struct dwarf2_per_objfile *) info;
8281 struct signatured_type find_entry, *entry;
8282
8283 /* If this TU doesn't exist in the global table, add it and read it in. */
8284
8285 if (dwarf2_per_objfile->signatured_types == NULL)
8286 {
8287 dwarf2_per_objfile->signatured_types
8288 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8289 }
8290
8291 find_entry.signature = dwo_unit->signature;
8292 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8293 INSERT);
8294 /* If we've already seen this type there's nothing to do. What's happening
8295 is we're doing our own version of comdat-folding here. */
8296 if (*slot != NULL)
8297 return 1;
8298
8299 /* This does the job that create_all_type_units would have done for
8300 this TU. */
8301 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8302 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8303 *slot = entry;
8304
8305 /* This does the job that build_type_psymtabs_1 would have done. */
8306 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8307 build_type_psymtabs_reader, NULL);
8308
8309 return 1;
8310 }
8311
8312 /* Traversal function for process_skeletonless_type_units. */
8313
8314 static int
8315 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8316 {
8317 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8318
8319 if (dwo_file->tus != NULL)
8320 {
8321 htab_traverse_noresize (dwo_file->tus,
8322 process_skeletonless_type_unit, info);
8323 }
8324
8325 return 1;
8326 }
8327
8328 /* Scan all TUs of DWO files, verifying we've processed them.
8329 This is needed in case a TU was emitted without its skeleton.
8330 Note: This can't be done until we know what all the DWO files are. */
8331
8332 static void
8333 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8334 {
8335 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8336 if (get_dwp_file (dwarf2_per_objfile) == NULL
8337 && dwarf2_per_objfile->dwo_files != NULL)
8338 {
8339 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8340 process_dwo_file_for_skeletonless_type_units,
8341 dwarf2_per_objfile);
8342 }
8343 }
8344
8345 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8346
8347 static void
8348 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8349 {
8350 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8351 {
8352 struct partial_symtab *pst = per_cu->v.psymtab;
8353
8354 if (pst == NULL)
8355 continue;
8356
8357 for (int j = 0; j < pst->number_of_dependencies; ++j)
8358 {
8359 /* Set the 'user' field only if it is not already set. */
8360 if (pst->dependencies[j]->user == NULL)
8361 pst->dependencies[j]->user = pst;
8362 }
8363 }
8364 }
8365
8366 /* Build the partial symbol table by doing a quick pass through the
8367 .debug_info and .debug_abbrev sections. */
8368
8369 static void
8370 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8371 {
8372 struct objfile *objfile = dwarf2_per_objfile->objfile;
8373
8374 if (dwarf_read_debug)
8375 {
8376 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8377 objfile_name (objfile));
8378 }
8379
8380 dwarf2_per_objfile->reading_partial_symbols = 1;
8381
8382 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8383
8384 /* Any cached compilation units will be linked by the per-objfile
8385 read_in_chain. Make sure to free them when we're done. */
8386 free_cached_comp_units freer (dwarf2_per_objfile);
8387
8388 build_type_psymtabs (dwarf2_per_objfile);
8389
8390 create_all_comp_units (dwarf2_per_objfile);
8391
8392 /* Create a temporary address map on a temporary obstack. We later
8393 copy this to the final obstack. */
8394 auto_obstack temp_obstack;
8395
8396 scoped_restore save_psymtabs_addrmap
8397 = make_scoped_restore (&objfile->psymtabs_addrmap,
8398 addrmap_create_mutable (&temp_obstack));
8399
8400 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8401 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8402
8403 /* This has to wait until we read the CUs, we need the list of DWOs. */
8404 process_skeletonless_type_units (dwarf2_per_objfile);
8405
8406 /* Now that all TUs have been processed we can fill in the dependencies. */
8407 if (dwarf2_per_objfile->type_unit_groups != NULL)
8408 {
8409 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8410 build_type_psymtab_dependencies, dwarf2_per_objfile);
8411 }
8412
8413 if (dwarf_read_debug)
8414 print_tu_stats (dwarf2_per_objfile);
8415
8416 set_partial_user (dwarf2_per_objfile);
8417
8418 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8419 &objfile->objfile_obstack);
8420 /* At this point we want to keep the address map. */
8421 save_psymtabs_addrmap.release ();
8422
8423 if (dwarf_read_debug)
8424 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8425 objfile_name (objfile));
8426 }
8427
8428 /* die_reader_func for load_partial_comp_unit. */
8429
8430 static void
8431 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8432 const gdb_byte *info_ptr,
8433 struct die_info *comp_unit_die,
8434 int has_children,
8435 void *data)
8436 {
8437 struct dwarf2_cu *cu = reader->cu;
8438
8439 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8440
8441 /* Check if comp unit has_children.
8442 If so, read the rest of the partial symbols from this comp unit.
8443 If not, there's no more debug_info for this comp unit. */
8444 if (has_children)
8445 load_partial_dies (reader, info_ptr, 0);
8446 }
8447
8448 /* Load the partial DIEs for a secondary CU into memory.
8449 This is also used when rereading a primary CU with load_all_dies. */
8450
8451 static void
8452 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8453 {
8454 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8455 load_partial_comp_unit_reader, NULL);
8456 }
8457
8458 static void
8459 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8460 struct dwarf2_section_info *section,
8461 struct dwarf2_section_info *abbrev_section,
8462 unsigned int is_dwz)
8463 {
8464 const gdb_byte *info_ptr;
8465 struct objfile *objfile = dwarf2_per_objfile->objfile;
8466
8467 if (dwarf_read_debug)
8468 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8469 get_section_name (section),
8470 get_section_file_name (section));
8471
8472 dwarf2_read_section (objfile, section);
8473
8474 info_ptr = section->buffer;
8475
8476 while (info_ptr < section->buffer + section->size)
8477 {
8478 struct dwarf2_per_cu_data *this_cu;
8479
8480 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8481
8482 comp_unit_head cu_header;
8483 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8484 abbrev_section, info_ptr,
8485 rcuh_kind::COMPILE);
8486
8487 /* Save the compilation unit for later lookup. */
8488 if (cu_header.unit_type != DW_UT_type)
8489 {
8490 this_cu = XOBNEW (&objfile->objfile_obstack,
8491 struct dwarf2_per_cu_data);
8492 memset (this_cu, 0, sizeof (*this_cu));
8493 }
8494 else
8495 {
8496 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8497 struct signatured_type);
8498 memset (sig_type, 0, sizeof (*sig_type));
8499 sig_type->signature = cu_header.signature;
8500 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8501 this_cu = &sig_type->per_cu;
8502 }
8503 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8504 this_cu->sect_off = sect_off;
8505 this_cu->length = cu_header.length + cu_header.initial_length_size;
8506 this_cu->is_dwz = is_dwz;
8507 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8508 this_cu->section = section;
8509
8510 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8511
8512 info_ptr = info_ptr + this_cu->length;
8513 }
8514 }
8515
8516 /* Create a list of all compilation units in OBJFILE.
8517 This is only done for -readnow and building partial symtabs. */
8518
8519 static void
8520 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8521 {
8522 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8523 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8524 &dwarf2_per_objfile->abbrev, 0);
8525
8526 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8527 if (dwz != NULL)
8528 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8529 1);
8530 }
8531
8532 /* Process all loaded DIEs for compilation unit CU, starting at
8533 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8534 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8535 DW_AT_ranges). See the comments of add_partial_subprogram on how
8536 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8537
8538 static void
8539 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8540 CORE_ADDR *highpc, int set_addrmap,
8541 struct dwarf2_cu *cu)
8542 {
8543 struct partial_die_info *pdi;
8544
8545 /* Now, march along the PDI's, descending into ones which have
8546 interesting children but skipping the children of the other ones,
8547 until we reach the end of the compilation unit. */
8548
8549 pdi = first_die;
8550
8551 while (pdi != NULL)
8552 {
8553 pdi->fixup (cu);
8554
8555 /* Anonymous namespaces or modules have no name but have interesting
8556 children, so we need to look at them. Ditto for anonymous
8557 enums. */
8558
8559 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8560 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8561 || pdi->tag == DW_TAG_imported_unit
8562 || pdi->tag == DW_TAG_inlined_subroutine)
8563 {
8564 switch (pdi->tag)
8565 {
8566 case DW_TAG_subprogram:
8567 case DW_TAG_inlined_subroutine:
8568 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8569 break;
8570 case DW_TAG_constant:
8571 case DW_TAG_variable:
8572 case DW_TAG_typedef:
8573 case DW_TAG_union_type:
8574 if (!pdi->is_declaration)
8575 {
8576 add_partial_symbol (pdi, cu);
8577 }
8578 break;
8579 case DW_TAG_class_type:
8580 case DW_TAG_interface_type:
8581 case DW_TAG_structure_type:
8582 if (!pdi->is_declaration)
8583 {
8584 add_partial_symbol (pdi, cu);
8585 }
8586 if ((cu->language == language_rust
8587 || cu->language == language_cplus) && pdi->has_children)
8588 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8589 set_addrmap, cu);
8590 break;
8591 case DW_TAG_enumeration_type:
8592 if (!pdi->is_declaration)
8593 add_partial_enumeration (pdi, cu);
8594 break;
8595 case DW_TAG_base_type:
8596 case DW_TAG_subrange_type:
8597 /* File scope base type definitions are added to the partial
8598 symbol table. */
8599 add_partial_symbol (pdi, cu);
8600 break;
8601 case DW_TAG_namespace:
8602 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8603 break;
8604 case DW_TAG_module:
8605 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8606 break;
8607 case DW_TAG_imported_unit:
8608 {
8609 struct dwarf2_per_cu_data *per_cu;
8610
8611 /* For now we don't handle imported units in type units. */
8612 if (cu->per_cu->is_debug_types)
8613 {
8614 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8615 " supported in type units [in module %s]"),
8616 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8617 }
8618
8619 per_cu = dwarf2_find_containing_comp_unit
8620 (pdi->d.sect_off, pdi->is_dwz,
8621 cu->per_cu->dwarf2_per_objfile);
8622
8623 /* Go read the partial unit, if needed. */
8624 if (per_cu->v.psymtab == NULL)
8625 process_psymtab_comp_unit (per_cu, 1, cu->language);
8626
8627 VEC_safe_push (dwarf2_per_cu_ptr,
8628 cu->per_cu->imported_symtabs, per_cu);
8629 }
8630 break;
8631 case DW_TAG_imported_declaration:
8632 add_partial_symbol (pdi, cu);
8633 break;
8634 default:
8635 break;
8636 }
8637 }
8638
8639 /* If the die has a sibling, skip to the sibling. */
8640
8641 pdi = pdi->die_sibling;
8642 }
8643 }
8644
8645 /* Functions used to compute the fully scoped name of a partial DIE.
8646
8647 Normally, this is simple. For C++, the parent DIE's fully scoped
8648 name is concatenated with "::" and the partial DIE's name.
8649 Enumerators are an exception; they use the scope of their parent
8650 enumeration type, i.e. the name of the enumeration type is not
8651 prepended to the enumerator.
8652
8653 There are two complexities. One is DW_AT_specification; in this
8654 case "parent" means the parent of the target of the specification,
8655 instead of the direct parent of the DIE. The other is compilers
8656 which do not emit DW_TAG_namespace; in this case we try to guess
8657 the fully qualified name of structure types from their members'
8658 linkage names. This must be done using the DIE's children rather
8659 than the children of any DW_AT_specification target. We only need
8660 to do this for structures at the top level, i.e. if the target of
8661 any DW_AT_specification (if any; otherwise the DIE itself) does not
8662 have a parent. */
8663
8664 /* Compute the scope prefix associated with PDI's parent, in
8665 compilation unit CU. The result will be allocated on CU's
8666 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8667 field. NULL is returned if no prefix is necessary. */
8668 static const char *
8669 partial_die_parent_scope (struct partial_die_info *pdi,
8670 struct dwarf2_cu *cu)
8671 {
8672 const char *grandparent_scope;
8673 struct partial_die_info *parent, *real_pdi;
8674
8675 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8676 then this means the parent of the specification DIE. */
8677
8678 real_pdi = pdi;
8679 while (real_pdi->has_specification)
8680 real_pdi = find_partial_die (real_pdi->spec_offset,
8681 real_pdi->spec_is_dwz, cu);
8682
8683 parent = real_pdi->die_parent;
8684 if (parent == NULL)
8685 return NULL;
8686
8687 if (parent->scope_set)
8688 return parent->scope;
8689
8690 parent->fixup (cu);
8691
8692 grandparent_scope = partial_die_parent_scope (parent, cu);
8693
8694 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8695 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8696 Work around this problem here. */
8697 if (cu->language == language_cplus
8698 && parent->tag == DW_TAG_namespace
8699 && strcmp (parent->name, "::") == 0
8700 && grandparent_scope == NULL)
8701 {
8702 parent->scope = NULL;
8703 parent->scope_set = 1;
8704 return NULL;
8705 }
8706
8707 if (pdi->tag == DW_TAG_enumerator)
8708 /* Enumerators should not get the name of the enumeration as a prefix. */
8709 parent->scope = grandparent_scope;
8710 else if (parent->tag == DW_TAG_namespace
8711 || parent->tag == DW_TAG_module
8712 || parent->tag == DW_TAG_structure_type
8713 || parent->tag == DW_TAG_class_type
8714 || parent->tag == DW_TAG_interface_type
8715 || parent->tag == DW_TAG_union_type
8716 || parent->tag == DW_TAG_enumeration_type)
8717 {
8718 if (grandparent_scope == NULL)
8719 parent->scope = parent->name;
8720 else
8721 parent->scope = typename_concat (&cu->comp_unit_obstack,
8722 grandparent_scope,
8723 parent->name, 0, cu);
8724 }
8725 else
8726 {
8727 /* FIXME drow/2004-04-01: What should we be doing with
8728 function-local names? For partial symbols, we should probably be
8729 ignoring them. */
8730 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8731 parent->tag, sect_offset_str (pdi->sect_off));
8732 parent->scope = grandparent_scope;
8733 }
8734
8735 parent->scope_set = 1;
8736 return parent->scope;
8737 }
8738
8739 /* Return the fully scoped name associated with PDI, from compilation unit
8740 CU. The result will be allocated with malloc. */
8741
8742 static char *
8743 partial_die_full_name (struct partial_die_info *pdi,
8744 struct dwarf2_cu *cu)
8745 {
8746 const char *parent_scope;
8747
8748 /* If this is a template instantiation, we can not work out the
8749 template arguments from partial DIEs. So, unfortunately, we have
8750 to go through the full DIEs. At least any work we do building
8751 types here will be reused if full symbols are loaded later. */
8752 if (pdi->has_template_arguments)
8753 {
8754 pdi->fixup (cu);
8755
8756 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8757 {
8758 struct die_info *die;
8759 struct attribute attr;
8760 struct dwarf2_cu *ref_cu = cu;
8761
8762 /* DW_FORM_ref_addr is using section offset. */
8763 attr.name = (enum dwarf_attribute) 0;
8764 attr.form = DW_FORM_ref_addr;
8765 attr.u.unsnd = to_underlying (pdi->sect_off);
8766 die = follow_die_ref (NULL, &attr, &ref_cu);
8767
8768 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8769 }
8770 }
8771
8772 parent_scope = partial_die_parent_scope (pdi, cu);
8773 if (parent_scope == NULL)
8774 return NULL;
8775 else
8776 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8777 }
8778
8779 static void
8780 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8781 {
8782 struct dwarf2_per_objfile *dwarf2_per_objfile
8783 = cu->per_cu->dwarf2_per_objfile;
8784 struct objfile *objfile = dwarf2_per_objfile->objfile;
8785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8786 CORE_ADDR addr = 0;
8787 const char *actual_name = NULL;
8788 CORE_ADDR baseaddr;
8789 char *built_actual_name;
8790
8791 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8792
8793 built_actual_name = partial_die_full_name (pdi, cu);
8794 if (built_actual_name != NULL)
8795 actual_name = built_actual_name;
8796
8797 if (actual_name == NULL)
8798 actual_name = pdi->name;
8799
8800 switch (pdi->tag)
8801 {
8802 case DW_TAG_inlined_subroutine:
8803 case DW_TAG_subprogram:
8804 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8805 if (pdi->is_external || cu->language == language_ada)
8806 {
8807 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8808 of the global scope. But in Ada, we want to be able to access
8809 nested procedures globally. So all Ada subprograms are stored
8810 in the global scope. */
8811 add_psymbol_to_list (actual_name, strlen (actual_name),
8812 built_actual_name != NULL,
8813 VAR_DOMAIN, LOC_BLOCK,
8814 &objfile->global_psymbols,
8815 addr, cu->language, objfile);
8816 }
8817 else
8818 {
8819 add_psymbol_to_list (actual_name, strlen (actual_name),
8820 built_actual_name != NULL,
8821 VAR_DOMAIN, LOC_BLOCK,
8822 &objfile->static_psymbols,
8823 addr, cu->language, objfile);
8824 }
8825
8826 if (pdi->main_subprogram && actual_name != NULL)
8827 set_objfile_main_name (objfile, actual_name, cu->language);
8828 break;
8829 case DW_TAG_constant:
8830 {
8831 std::vector<partial_symbol *> *list;
8832
8833 if (pdi->is_external)
8834 list = &objfile->global_psymbols;
8835 else
8836 list = &objfile->static_psymbols;
8837 add_psymbol_to_list (actual_name, strlen (actual_name),
8838 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8839 list, 0, cu->language, objfile);
8840 }
8841 break;
8842 case DW_TAG_variable:
8843 if (pdi->d.locdesc)
8844 addr = decode_locdesc (pdi->d.locdesc, cu);
8845
8846 if (pdi->d.locdesc
8847 && addr == 0
8848 && !dwarf2_per_objfile->has_section_at_zero)
8849 {
8850 /* A global or static variable may also have been stripped
8851 out by the linker if unused, in which case its address
8852 will be nullified; do not add such variables into partial
8853 symbol table then. */
8854 }
8855 else if (pdi->is_external)
8856 {
8857 /* Global Variable.
8858 Don't enter into the minimal symbol tables as there is
8859 a minimal symbol table entry from the ELF symbols already.
8860 Enter into partial symbol table if it has a location
8861 descriptor or a type.
8862 If the location descriptor is missing, new_symbol will create
8863 a LOC_UNRESOLVED symbol, the address of the variable will then
8864 be determined from the minimal symbol table whenever the variable
8865 is referenced.
8866 The address for the partial symbol table entry is not
8867 used by GDB, but it comes in handy for debugging partial symbol
8868 table building. */
8869
8870 if (pdi->d.locdesc || pdi->has_type)
8871 add_psymbol_to_list (actual_name, strlen (actual_name),
8872 built_actual_name != NULL,
8873 VAR_DOMAIN, LOC_STATIC,
8874 &objfile->global_psymbols,
8875 addr + baseaddr,
8876 cu->language, objfile);
8877 }
8878 else
8879 {
8880 int has_loc = pdi->d.locdesc != NULL;
8881
8882 /* Static Variable. Skip symbols whose value we cannot know (those
8883 without location descriptors or constant values). */
8884 if (!has_loc && !pdi->has_const_value)
8885 {
8886 xfree (built_actual_name);
8887 return;
8888 }
8889
8890 add_psymbol_to_list (actual_name, strlen (actual_name),
8891 built_actual_name != NULL,
8892 VAR_DOMAIN, LOC_STATIC,
8893 &objfile->static_psymbols,
8894 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8895 cu->language, objfile);
8896 }
8897 break;
8898 case DW_TAG_typedef:
8899 case DW_TAG_base_type:
8900 case DW_TAG_subrange_type:
8901 add_psymbol_to_list (actual_name, strlen (actual_name),
8902 built_actual_name != NULL,
8903 VAR_DOMAIN, LOC_TYPEDEF,
8904 &objfile->static_psymbols,
8905 0, cu->language, objfile);
8906 break;
8907 case DW_TAG_imported_declaration:
8908 case DW_TAG_namespace:
8909 add_psymbol_to_list (actual_name, strlen (actual_name),
8910 built_actual_name != NULL,
8911 VAR_DOMAIN, LOC_TYPEDEF,
8912 &objfile->global_psymbols,
8913 0, cu->language, objfile);
8914 break;
8915 case DW_TAG_module:
8916 add_psymbol_to_list (actual_name, strlen (actual_name),
8917 built_actual_name != NULL,
8918 MODULE_DOMAIN, LOC_TYPEDEF,
8919 &objfile->global_psymbols,
8920 0, cu->language, objfile);
8921 break;
8922 case DW_TAG_class_type:
8923 case DW_TAG_interface_type:
8924 case DW_TAG_structure_type:
8925 case DW_TAG_union_type:
8926 case DW_TAG_enumeration_type:
8927 /* Skip external references. The DWARF standard says in the section
8928 about "Structure, Union, and Class Type Entries": "An incomplete
8929 structure, union or class type is represented by a structure,
8930 union or class entry that does not have a byte size attribute
8931 and that has a DW_AT_declaration attribute." */
8932 if (!pdi->has_byte_size && pdi->is_declaration)
8933 {
8934 xfree (built_actual_name);
8935 return;
8936 }
8937
8938 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8939 static vs. global. */
8940 add_psymbol_to_list (actual_name, strlen (actual_name),
8941 built_actual_name != NULL,
8942 STRUCT_DOMAIN, LOC_TYPEDEF,
8943 cu->language == language_cplus
8944 ? &objfile->global_psymbols
8945 : &objfile->static_psymbols,
8946 0, cu->language, objfile);
8947
8948 break;
8949 case DW_TAG_enumerator:
8950 add_psymbol_to_list (actual_name, strlen (actual_name),
8951 built_actual_name != NULL,
8952 VAR_DOMAIN, LOC_CONST,
8953 cu->language == language_cplus
8954 ? &objfile->global_psymbols
8955 : &objfile->static_psymbols,
8956 0, cu->language, objfile);
8957 break;
8958 default:
8959 break;
8960 }
8961
8962 xfree (built_actual_name);
8963 }
8964
8965 /* Read a partial die corresponding to a namespace; also, add a symbol
8966 corresponding to that namespace to the symbol table. NAMESPACE is
8967 the name of the enclosing namespace. */
8968
8969 static void
8970 add_partial_namespace (struct partial_die_info *pdi,
8971 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8972 int set_addrmap, struct dwarf2_cu *cu)
8973 {
8974 /* Add a symbol for the namespace. */
8975
8976 add_partial_symbol (pdi, cu);
8977
8978 /* Now scan partial symbols in that namespace. */
8979
8980 if (pdi->has_children)
8981 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8982 }
8983
8984 /* Read a partial die corresponding to a Fortran module. */
8985
8986 static void
8987 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8988 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8989 {
8990 /* Add a symbol for the namespace. */
8991
8992 add_partial_symbol (pdi, cu);
8993
8994 /* Now scan partial symbols in that module. */
8995
8996 if (pdi->has_children)
8997 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8998 }
8999
9000 /* Read a partial die corresponding to a subprogram or an inlined
9001 subprogram and create a partial symbol for that subprogram.
9002 When the CU language allows it, this routine also defines a partial
9003 symbol for each nested subprogram that this subprogram contains.
9004 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9005 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9006
9007 PDI may also be a lexical block, in which case we simply search
9008 recursively for subprograms defined inside that lexical block.
9009 Again, this is only performed when the CU language allows this
9010 type of definitions. */
9011
9012 static void
9013 add_partial_subprogram (struct partial_die_info *pdi,
9014 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9015 int set_addrmap, struct dwarf2_cu *cu)
9016 {
9017 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9018 {
9019 if (pdi->has_pc_info)
9020 {
9021 if (pdi->lowpc < *lowpc)
9022 *lowpc = pdi->lowpc;
9023 if (pdi->highpc > *highpc)
9024 *highpc = pdi->highpc;
9025 if (set_addrmap)
9026 {
9027 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9028 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9029 CORE_ADDR baseaddr;
9030 CORE_ADDR highpc;
9031 CORE_ADDR lowpc;
9032
9033 baseaddr = ANOFFSET (objfile->section_offsets,
9034 SECT_OFF_TEXT (objfile));
9035 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9036 pdi->lowpc + baseaddr);
9037 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9038 pdi->highpc + baseaddr);
9039 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9040 cu->per_cu->v.psymtab);
9041 }
9042 }
9043
9044 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9045 {
9046 if (!pdi->is_declaration)
9047 /* Ignore subprogram DIEs that do not have a name, they are
9048 illegal. Do not emit a complaint at this point, we will
9049 do so when we convert this psymtab into a symtab. */
9050 if (pdi->name)
9051 add_partial_symbol (pdi, cu);
9052 }
9053 }
9054
9055 if (! pdi->has_children)
9056 return;
9057
9058 if (cu->language == language_ada)
9059 {
9060 pdi = pdi->die_child;
9061 while (pdi != NULL)
9062 {
9063 pdi->fixup (cu);
9064 if (pdi->tag == DW_TAG_subprogram
9065 || pdi->tag == DW_TAG_inlined_subroutine
9066 || pdi->tag == DW_TAG_lexical_block)
9067 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9068 pdi = pdi->die_sibling;
9069 }
9070 }
9071 }
9072
9073 /* Read a partial die corresponding to an enumeration type. */
9074
9075 static void
9076 add_partial_enumeration (struct partial_die_info *enum_pdi,
9077 struct dwarf2_cu *cu)
9078 {
9079 struct partial_die_info *pdi;
9080
9081 if (enum_pdi->name != NULL)
9082 add_partial_symbol (enum_pdi, cu);
9083
9084 pdi = enum_pdi->die_child;
9085 while (pdi)
9086 {
9087 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9088 complaint (_("malformed enumerator DIE ignored"));
9089 else
9090 add_partial_symbol (pdi, cu);
9091 pdi = pdi->die_sibling;
9092 }
9093 }
9094
9095 /* Return the initial uleb128 in the die at INFO_PTR. */
9096
9097 static unsigned int
9098 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9099 {
9100 unsigned int bytes_read;
9101
9102 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9103 }
9104
9105 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9106 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9107
9108 Return the corresponding abbrev, or NULL if the number is zero (indicating
9109 an empty DIE). In either case *BYTES_READ will be set to the length of
9110 the initial number. */
9111
9112 static struct abbrev_info *
9113 peek_die_abbrev (const die_reader_specs &reader,
9114 const gdb_byte *info_ptr, unsigned int *bytes_read)
9115 {
9116 dwarf2_cu *cu = reader.cu;
9117 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9118 unsigned int abbrev_number
9119 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9120
9121 if (abbrev_number == 0)
9122 return NULL;
9123
9124 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9125 if (!abbrev)
9126 {
9127 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9128 " at offset %s [in module %s]"),
9129 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9130 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9131 }
9132
9133 return abbrev;
9134 }
9135
9136 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9137 Returns a pointer to the end of a series of DIEs, terminated by an empty
9138 DIE. Any children of the skipped DIEs will also be skipped. */
9139
9140 static const gdb_byte *
9141 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9142 {
9143 while (1)
9144 {
9145 unsigned int bytes_read;
9146 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9147
9148 if (abbrev == NULL)
9149 return info_ptr + bytes_read;
9150 else
9151 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9152 }
9153 }
9154
9155 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9156 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9157 abbrev corresponding to that skipped uleb128 should be passed in
9158 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9159 children. */
9160
9161 static const gdb_byte *
9162 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9163 struct abbrev_info *abbrev)
9164 {
9165 unsigned int bytes_read;
9166 struct attribute attr;
9167 bfd *abfd = reader->abfd;
9168 struct dwarf2_cu *cu = reader->cu;
9169 const gdb_byte *buffer = reader->buffer;
9170 const gdb_byte *buffer_end = reader->buffer_end;
9171 unsigned int form, i;
9172
9173 for (i = 0; i < abbrev->num_attrs; i++)
9174 {
9175 /* The only abbrev we care about is DW_AT_sibling. */
9176 if (abbrev->attrs[i].name == DW_AT_sibling)
9177 {
9178 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9179 if (attr.form == DW_FORM_ref_addr)
9180 complaint (_("ignoring absolute DW_AT_sibling"));
9181 else
9182 {
9183 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9184 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9185
9186 if (sibling_ptr < info_ptr)
9187 complaint (_("DW_AT_sibling points backwards"));
9188 else if (sibling_ptr > reader->buffer_end)
9189 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9190 else
9191 return sibling_ptr;
9192 }
9193 }
9194
9195 /* If it isn't DW_AT_sibling, skip this attribute. */
9196 form = abbrev->attrs[i].form;
9197 skip_attribute:
9198 switch (form)
9199 {
9200 case DW_FORM_ref_addr:
9201 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9202 and later it is offset sized. */
9203 if (cu->header.version == 2)
9204 info_ptr += cu->header.addr_size;
9205 else
9206 info_ptr += cu->header.offset_size;
9207 break;
9208 case DW_FORM_GNU_ref_alt:
9209 info_ptr += cu->header.offset_size;
9210 break;
9211 case DW_FORM_addr:
9212 info_ptr += cu->header.addr_size;
9213 break;
9214 case DW_FORM_data1:
9215 case DW_FORM_ref1:
9216 case DW_FORM_flag:
9217 info_ptr += 1;
9218 break;
9219 case DW_FORM_flag_present:
9220 case DW_FORM_implicit_const:
9221 break;
9222 case DW_FORM_data2:
9223 case DW_FORM_ref2:
9224 info_ptr += 2;
9225 break;
9226 case DW_FORM_data4:
9227 case DW_FORM_ref4:
9228 info_ptr += 4;
9229 break;
9230 case DW_FORM_data8:
9231 case DW_FORM_ref8:
9232 case DW_FORM_ref_sig8:
9233 info_ptr += 8;
9234 break;
9235 case DW_FORM_data16:
9236 info_ptr += 16;
9237 break;
9238 case DW_FORM_string:
9239 read_direct_string (abfd, info_ptr, &bytes_read);
9240 info_ptr += bytes_read;
9241 break;
9242 case DW_FORM_sec_offset:
9243 case DW_FORM_strp:
9244 case DW_FORM_GNU_strp_alt:
9245 info_ptr += cu->header.offset_size;
9246 break;
9247 case DW_FORM_exprloc:
9248 case DW_FORM_block:
9249 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9250 info_ptr += bytes_read;
9251 break;
9252 case DW_FORM_block1:
9253 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9254 break;
9255 case DW_FORM_block2:
9256 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9257 break;
9258 case DW_FORM_block4:
9259 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9260 break;
9261 case DW_FORM_sdata:
9262 case DW_FORM_udata:
9263 case DW_FORM_ref_udata:
9264 case DW_FORM_GNU_addr_index:
9265 case DW_FORM_GNU_str_index:
9266 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9267 break;
9268 case DW_FORM_indirect:
9269 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9270 info_ptr += bytes_read;
9271 /* We need to continue parsing from here, so just go back to
9272 the top. */
9273 goto skip_attribute;
9274
9275 default:
9276 error (_("Dwarf Error: Cannot handle %s "
9277 "in DWARF reader [in module %s]"),
9278 dwarf_form_name (form),
9279 bfd_get_filename (abfd));
9280 }
9281 }
9282
9283 if (abbrev->has_children)
9284 return skip_children (reader, info_ptr);
9285 else
9286 return info_ptr;
9287 }
9288
9289 /* Locate ORIG_PDI's sibling.
9290 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9291
9292 static const gdb_byte *
9293 locate_pdi_sibling (const struct die_reader_specs *reader,
9294 struct partial_die_info *orig_pdi,
9295 const gdb_byte *info_ptr)
9296 {
9297 /* Do we know the sibling already? */
9298
9299 if (orig_pdi->sibling)
9300 return orig_pdi->sibling;
9301
9302 /* Are there any children to deal with? */
9303
9304 if (!orig_pdi->has_children)
9305 return info_ptr;
9306
9307 /* Skip the children the long way. */
9308
9309 return skip_children (reader, info_ptr);
9310 }
9311
9312 /* Expand this partial symbol table into a full symbol table. SELF is
9313 not NULL. */
9314
9315 static void
9316 dwarf2_read_symtab (struct partial_symtab *self,
9317 struct objfile *objfile)
9318 {
9319 struct dwarf2_per_objfile *dwarf2_per_objfile
9320 = get_dwarf2_per_objfile (objfile);
9321
9322 if (self->readin)
9323 {
9324 warning (_("bug: psymtab for %s is already read in."),
9325 self->filename);
9326 }
9327 else
9328 {
9329 if (info_verbose)
9330 {
9331 printf_filtered (_("Reading in symbols for %s..."),
9332 self->filename);
9333 gdb_flush (gdb_stdout);
9334 }
9335
9336 /* If this psymtab is constructed from a debug-only objfile, the
9337 has_section_at_zero flag will not necessarily be correct. We
9338 can get the correct value for this flag by looking at the data
9339 associated with the (presumably stripped) associated objfile. */
9340 if (objfile->separate_debug_objfile_backlink)
9341 {
9342 struct dwarf2_per_objfile *dpo_backlink
9343 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9344
9345 dwarf2_per_objfile->has_section_at_zero
9346 = dpo_backlink->has_section_at_zero;
9347 }
9348
9349 dwarf2_per_objfile->reading_partial_symbols = 0;
9350
9351 psymtab_to_symtab_1 (self);
9352
9353 /* Finish up the debug error message. */
9354 if (info_verbose)
9355 printf_filtered (_("done.\n"));
9356 }
9357
9358 process_cu_includes (dwarf2_per_objfile);
9359 }
9360 \f
9361 /* Reading in full CUs. */
9362
9363 /* Add PER_CU to the queue. */
9364
9365 static void
9366 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9367 enum language pretend_language)
9368 {
9369 struct dwarf2_queue_item *item;
9370
9371 per_cu->queued = 1;
9372 item = XNEW (struct dwarf2_queue_item);
9373 item->per_cu = per_cu;
9374 item->pretend_language = pretend_language;
9375 item->next = NULL;
9376
9377 if (dwarf2_queue == NULL)
9378 dwarf2_queue = item;
9379 else
9380 dwarf2_queue_tail->next = item;
9381
9382 dwarf2_queue_tail = item;
9383 }
9384
9385 /* If PER_CU is not yet queued, add it to the queue.
9386 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9387 dependency.
9388 The result is non-zero if PER_CU was queued, otherwise the result is zero
9389 meaning either PER_CU is already queued or it is already loaded.
9390
9391 N.B. There is an invariant here that if a CU is queued then it is loaded.
9392 The caller is required to load PER_CU if we return non-zero. */
9393
9394 static int
9395 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9396 struct dwarf2_per_cu_data *per_cu,
9397 enum language pretend_language)
9398 {
9399 /* We may arrive here during partial symbol reading, if we need full
9400 DIEs to process an unusual case (e.g. template arguments). Do
9401 not queue PER_CU, just tell our caller to load its DIEs. */
9402 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9403 {
9404 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9405 return 1;
9406 return 0;
9407 }
9408
9409 /* Mark the dependence relation so that we don't flush PER_CU
9410 too early. */
9411 if (dependent_cu != NULL)
9412 dwarf2_add_dependence (dependent_cu, per_cu);
9413
9414 /* If it's already on the queue, we have nothing to do. */
9415 if (per_cu->queued)
9416 return 0;
9417
9418 /* If the compilation unit is already loaded, just mark it as
9419 used. */
9420 if (per_cu->cu != NULL)
9421 {
9422 per_cu->cu->last_used = 0;
9423 return 0;
9424 }
9425
9426 /* Add it to the queue. */
9427 queue_comp_unit (per_cu, pretend_language);
9428
9429 return 1;
9430 }
9431
9432 /* Process the queue. */
9433
9434 static void
9435 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9436 {
9437 struct dwarf2_queue_item *item, *next_item;
9438
9439 if (dwarf_read_debug)
9440 {
9441 fprintf_unfiltered (gdb_stdlog,
9442 "Expanding one or more symtabs of objfile %s ...\n",
9443 objfile_name (dwarf2_per_objfile->objfile));
9444 }
9445
9446 /* The queue starts out with one item, but following a DIE reference
9447 may load a new CU, adding it to the end of the queue. */
9448 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9449 {
9450 if ((dwarf2_per_objfile->using_index
9451 ? !item->per_cu->v.quick->compunit_symtab
9452 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9453 /* Skip dummy CUs. */
9454 && item->per_cu->cu != NULL)
9455 {
9456 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9457 unsigned int debug_print_threshold;
9458 char buf[100];
9459
9460 if (per_cu->is_debug_types)
9461 {
9462 struct signatured_type *sig_type =
9463 (struct signatured_type *) per_cu;
9464
9465 sprintf (buf, "TU %s at offset %s",
9466 hex_string (sig_type->signature),
9467 sect_offset_str (per_cu->sect_off));
9468 /* There can be 100s of TUs.
9469 Only print them in verbose mode. */
9470 debug_print_threshold = 2;
9471 }
9472 else
9473 {
9474 sprintf (buf, "CU at offset %s",
9475 sect_offset_str (per_cu->sect_off));
9476 debug_print_threshold = 1;
9477 }
9478
9479 if (dwarf_read_debug >= debug_print_threshold)
9480 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9481
9482 if (per_cu->is_debug_types)
9483 process_full_type_unit (per_cu, item->pretend_language);
9484 else
9485 process_full_comp_unit (per_cu, item->pretend_language);
9486
9487 if (dwarf_read_debug >= debug_print_threshold)
9488 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9489 }
9490
9491 item->per_cu->queued = 0;
9492 next_item = item->next;
9493 xfree (item);
9494 }
9495
9496 dwarf2_queue_tail = NULL;
9497
9498 if (dwarf_read_debug)
9499 {
9500 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9501 objfile_name (dwarf2_per_objfile->objfile));
9502 }
9503 }
9504
9505 /* Read in full symbols for PST, and anything it depends on. */
9506
9507 static void
9508 psymtab_to_symtab_1 (struct partial_symtab *pst)
9509 {
9510 struct dwarf2_per_cu_data *per_cu;
9511 int i;
9512
9513 if (pst->readin)
9514 return;
9515
9516 for (i = 0; i < pst->number_of_dependencies; i++)
9517 if (!pst->dependencies[i]->readin
9518 && pst->dependencies[i]->user == NULL)
9519 {
9520 /* Inform about additional files that need to be read in. */
9521 if (info_verbose)
9522 {
9523 /* FIXME: i18n: Need to make this a single string. */
9524 fputs_filtered (" ", gdb_stdout);
9525 wrap_here ("");
9526 fputs_filtered ("and ", gdb_stdout);
9527 wrap_here ("");
9528 printf_filtered ("%s...", pst->dependencies[i]->filename);
9529 wrap_here (""); /* Flush output. */
9530 gdb_flush (gdb_stdout);
9531 }
9532 psymtab_to_symtab_1 (pst->dependencies[i]);
9533 }
9534
9535 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9536
9537 if (per_cu == NULL)
9538 {
9539 /* It's an include file, no symbols to read for it.
9540 Everything is in the parent symtab. */
9541 pst->readin = 1;
9542 return;
9543 }
9544
9545 dw2_do_instantiate_symtab (per_cu, false);
9546 }
9547
9548 /* Trivial hash function for die_info: the hash value of a DIE
9549 is its offset in .debug_info for this objfile. */
9550
9551 static hashval_t
9552 die_hash (const void *item)
9553 {
9554 const struct die_info *die = (const struct die_info *) item;
9555
9556 return to_underlying (die->sect_off);
9557 }
9558
9559 /* Trivial comparison function for die_info structures: two DIEs
9560 are equal if they have the same offset. */
9561
9562 static int
9563 die_eq (const void *item_lhs, const void *item_rhs)
9564 {
9565 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9566 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9567
9568 return die_lhs->sect_off == die_rhs->sect_off;
9569 }
9570
9571 /* die_reader_func for load_full_comp_unit.
9572 This is identical to read_signatured_type_reader,
9573 but is kept separate for now. */
9574
9575 static void
9576 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9577 const gdb_byte *info_ptr,
9578 struct die_info *comp_unit_die,
9579 int has_children,
9580 void *data)
9581 {
9582 struct dwarf2_cu *cu = reader->cu;
9583 enum language *language_ptr = (enum language *) data;
9584
9585 gdb_assert (cu->die_hash == NULL);
9586 cu->die_hash =
9587 htab_create_alloc_ex (cu->header.length / 12,
9588 die_hash,
9589 die_eq,
9590 NULL,
9591 &cu->comp_unit_obstack,
9592 hashtab_obstack_allocate,
9593 dummy_obstack_deallocate);
9594
9595 if (has_children)
9596 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9597 &info_ptr, comp_unit_die);
9598 cu->dies = comp_unit_die;
9599 /* comp_unit_die is not stored in die_hash, no need. */
9600
9601 /* We try not to read any attributes in this function, because not
9602 all CUs needed for references have been loaded yet, and symbol
9603 table processing isn't initialized. But we have to set the CU language,
9604 or we won't be able to build types correctly.
9605 Similarly, if we do not read the producer, we can not apply
9606 producer-specific interpretation. */
9607 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9608 }
9609
9610 /* Load the DIEs associated with PER_CU into memory. */
9611
9612 static void
9613 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9614 bool skip_partial,
9615 enum language pretend_language)
9616 {
9617 gdb_assert (! this_cu->is_debug_types);
9618
9619 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9620 load_full_comp_unit_reader, &pretend_language);
9621 }
9622
9623 /* Add a DIE to the delayed physname list. */
9624
9625 static void
9626 add_to_method_list (struct type *type, int fnfield_index, int index,
9627 const char *name, struct die_info *die,
9628 struct dwarf2_cu *cu)
9629 {
9630 struct delayed_method_info mi;
9631 mi.type = type;
9632 mi.fnfield_index = fnfield_index;
9633 mi.index = index;
9634 mi.name = name;
9635 mi.die = die;
9636 cu->method_list.push_back (mi);
9637 }
9638
9639 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9640 "const" / "volatile". If so, decrements LEN by the length of the
9641 modifier and return true. Otherwise return false. */
9642
9643 template<size_t N>
9644 static bool
9645 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9646 {
9647 size_t mod_len = sizeof (mod) - 1;
9648 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9649 {
9650 len -= mod_len;
9651 return true;
9652 }
9653 return false;
9654 }
9655
9656 /* Compute the physnames of any methods on the CU's method list.
9657
9658 The computation of method physnames is delayed in order to avoid the
9659 (bad) condition that one of the method's formal parameters is of an as yet
9660 incomplete type. */
9661
9662 static void
9663 compute_delayed_physnames (struct dwarf2_cu *cu)
9664 {
9665 /* Only C++ delays computing physnames. */
9666 if (cu->method_list.empty ())
9667 return;
9668 gdb_assert (cu->language == language_cplus);
9669
9670 for (const delayed_method_info &mi : cu->method_list)
9671 {
9672 const char *physname;
9673 struct fn_fieldlist *fn_flp
9674 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9675 physname = dwarf2_physname (mi.name, mi.die, cu);
9676 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9677 = physname ? physname : "";
9678
9679 /* Since there's no tag to indicate whether a method is a
9680 const/volatile overload, extract that information out of the
9681 demangled name. */
9682 if (physname != NULL)
9683 {
9684 size_t len = strlen (physname);
9685
9686 while (1)
9687 {
9688 if (physname[len] == ')') /* shortcut */
9689 break;
9690 else if (check_modifier (physname, len, " const"))
9691 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9692 else if (check_modifier (physname, len, " volatile"))
9693 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9694 else
9695 break;
9696 }
9697 }
9698 }
9699
9700 /* The list is no longer needed. */
9701 cu->method_list.clear ();
9702 }
9703
9704 /* Go objects should be embedded in a DW_TAG_module DIE,
9705 and it's not clear if/how imported objects will appear.
9706 To keep Go support simple until that's worked out,
9707 go back through what we've read and create something usable.
9708 We could do this while processing each DIE, and feels kinda cleaner,
9709 but that way is more invasive.
9710 This is to, for example, allow the user to type "p var" or "b main"
9711 without having to specify the package name, and allow lookups
9712 of module.object to work in contexts that use the expression
9713 parser. */
9714
9715 static void
9716 fixup_go_packaging (struct dwarf2_cu *cu)
9717 {
9718 char *package_name = NULL;
9719 struct pending *list;
9720 int i;
9721
9722 for (list = global_symbols; list != NULL; list = list->next)
9723 {
9724 for (i = 0; i < list->nsyms; ++i)
9725 {
9726 struct symbol *sym = list->symbol[i];
9727
9728 if (SYMBOL_LANGUAGE (sym) == language_go
9729 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9730 {
9731 char *this_package_name = go_symbol_package_name (sym);
9732
9733 if (this_package_name == NULL)
9734 continue;
9735 if (package_name == NULL)
9736 package_name = this_package_name;
9737 else
9738 {
9739 struct objfile *objfile
9740 = cu->per_cu->dwarf2_per_objfile->objfile;
9741 if (strcmp (package_name, this_package_name) != 0)
9742 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9743 (symbol_symtab (sym) != NULL
9744 ? symtab_to_filename_for_display
9745 (symbol_symtab (sym))
9746 : objfile_name (objfile)),
9747 this_package_name, package_name);
9748 xfree (this_package_name);
9749 }
9750 }
9751 }
9752 }
9753
9754 if (package_name != NULL)
9755 {
9756 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9757 const char *saved_package_name
9758 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9759 package_name,
9760 strlen (package_name));
9761 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9762 saved_package_name);
9763 struct symbol *sym;
9764
9765 sym = allocate_symbol (objfile);
9766 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9767 SYMBOL_SET_NAMES (sym, saved_package_name,
9768 strlen (saved_package_name), 0, objfile);
9769 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9770 e.g., "main" finds the "main" module and not C's main(). */
9771 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9772 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9773 SYMBOL_TYPE (sym) = type;
9774
9775 add_symbol_to_list (sym, &global_symbols);
9776
9777 xfree (package_name);
9778 }
9779 }
9780
9781 /* Allocate a fully-qualified name consisting of the two parts on the
9782 obstack. */
9783
9784 static const char *
9785 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9786 {
9787 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9788 }
9789
9790 /* A helper that allocates a struct discriminant_info to attach to a
9791 union type. */
9792
9793 static struct discriminant_info *
9794 alloc_discriminant_info (struct type *type, int discriminant_index,
9795 int default_index)
9796 {
9797 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9798 gdb_assert (discriminant_index == -1
9799 || (discriminant_index >= 0
9800 && discriminant_index < TYPE_NFIELDS (type)));
9801 gdb_assert (default_index == -1
9802 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9803
9804 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9805
9806 struct discriminant_info *disc
9807 = ((struct discriminant_info *)
9808 TYPE_ZALLOC (type,
9809 offsetof (struct discriminant_info, discriminants)
9810 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9811 disc->default_index = default_index;
9812 disc->discriminant_index = discriminant_index;
9813
9814 struct dynamic_prop prop;
9815 prop.kind = PROP_UNDEFINED;
9816 prop.data.baton = disc;
9817
9818 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9819
9820 return disc;
9821 }
9822
9823 /* Some versions of rustc emitted enums in an unusual way.
9824
9825 Ordinary enums were emitted as unions. The first element of each
9826 structure in the union was named "RUST$ENUM$DISR". This element
9827 held the discriminant.
9828
9829 These versions of Rust also implemented the "non-zero"
9830 optimization. When the enum had two values, and one is empty and
9831 the other holds a pointer that cannot be zero, the pointer is used
9832 as the discriminant, with a zero value meaning the empty variant.
9833 Here, the union's first member is of the form
9834 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9835 where the fieldnos are the indices of the fields that should be
9836 traversed in order to find the field (which may be several fields deep)
9837 and the variantname is the name of the variant of the case when the
9838 field is zero.
9839
9840 This function recognizes whether TYPE is of one of these forms,
9841 and, if so, smashes it to be a variant type. */
9842
9843 static void
9844 quirk_rust_enum (struct type *type, struct objfile *objfile)
9845 {
9846 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9847
9848 /* We don't need to deal with empty enums. */
9849 if (TYPE_NFIELDS (type) == 0)
9850 return;
9851
9852 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9853 if (TYPE_NFIELDS (type) == 1
9854 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9855 {
9856 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9857
9858 /* Decode the field name to find the offset of the
9859 discriminant. */
9860 ULONGEST bit_offset = 0;
9861 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9862 while (name[0] >= '0' && name[0] <= '9')
9863 {
9864 char *tail;
9865 unsigned long index = strtoul (name, &tail, 10);
9866 name = tail;
9867 if (*name != '$'
9868 || index >= TYPE_NFIELDS (field_type)
9869 || (TYPE_FIELD_LOC_KIND (field_type, index)
9870 != FIELD_LOC_KIND_BITPOS))
9871 {
9872 complaint (_("Could not parse Rust enum encoding string \"%s\""
9873 "[in module %s]"),
9874 TYPE_FIELD_NAME (type, 0),
9875 objfile_name (objfile));
9876 return;
9877 }
9878 ++name;
9879
9880 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9881 field_type = TYPE_FIELD_TYPE (field_type, index);
9882 }
9883
9884 /* Make a union to hold the variants. */
9885 struct type *union_type = alloc_type (objfile);
9886 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9887 TYPE_NFIELDS (union_type) = 3;
9888 TYPE_FIELDS (union_type)
9889 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9890 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9891 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9892
9893 /* Put the discriminant must at index 0. */
9894 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9895 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9896 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9897 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9898
9899 /* The order of fields doesn't really matter, so put the real
9900 field at index 1 and the data-less field at index 2. */
9901 struct discriminant_info *disc
9902 = alloc_discriminant_info (union_type, 0, 1);
9903 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9904 TYPE_FIELD_NAME (union_type, 1)
9905 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9906 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9907 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9908 TYPE_FIELD_NAME (union_type, 1));
9909
9910 const char *dataless_name
9911 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9912 name);
9913 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9914 dataless_name);
9915 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9916 /* NAME points into the original discriminant name, which
9917 already has the correct lifetime. */
9918 TYPE_FIELD_NAME (union_type, 2) = name;
9919 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9920 disc->discriminants[2] = 0;
9921
9922 /* Smash this type to be a structure type. We have to do this
9923 because the type has already been recorded. */
9924 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9925 TYPE_NFIELDS (type) = 1;
9926 TYPE_FIELDS (type)
9927 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9928
9929 /* Install the variant part. */
9930 TYPE_FIELD_TYPE (type, 0) = union_type;
9931 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9932 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9933 }
9934 else if (TYPE_NFIELDS (type) == 1)
9935 {
9936 /* We assume that a union with a single field is a univariant
9937 enum. */
9938 /* Smash this type to be a structure type. We have to do this
9939 because the type has already been recorded. */
9940 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9941
9942 /* Make a union to hold the variants. */
9943 struct type *union_type = alloc_type (objfile);
9944 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9945 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9946 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9947 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9948 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9949
9950 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9951 const char *variant_name
9952 = rust_last_path_segment (TYPE_NAME (field_type));
9953 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9954 TYPE_NAME (field_type)
9955 = rust_fully_qualify (&objfile->objfile_obstack,
9956 TYPE_NAME (type), variant_name);
9957
9958 /* Install the union in the outer struct type. */
9959 TYPE_NFIELDS (type) = 1;
9960 TYPE_FIELDS (type)
9961 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9962 TYPE_FIELD_TYPE (type, 0) = union_type;
9963 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9964 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9965
9966 alloc_discriminant_info (union_type, -1, 0);
9967 }
9968 else
9969 {
9970 struct type *disr_type = nullptr;
9971 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9972 {
9973 disr_type = TYPE_FIELD_TYPE (type, i);
9974
9975 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9976 {
9977 /* All fields of a true enum will be structs. */
9978 return;
9979 }
9980 else if (TYPE_NFIELDS (disr_type) == 0)
9981 {
9982 /* Could be data-less variant, so keep going. */
9983 disr_type = nullptr;
9984 }
9985 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9986 "RUST$ENUM$DISR") != 0)
9987 {
9988 /* Not a Rust enum. */
9989 return;
9990 }
9991 else
9992 {
9993 /* Found one. */
9994 break;
9995 }
9996 }
9997
9998 /* If we got here without a discriminant, then it's probably
9999 just a union. */
10000 if (disr_type == nullptr)
10001 return;
10002
10003 /* Smash this type to be a structure type. We have to do this
10004 because the type has already been recorded. */
10005 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10006
10007 /* Make a union to hold the variants. */
10008 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10009 struct type *union_type = alloc_type (objfile);
10010 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10011 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10012 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10013 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10014 TYPE_FIELDS (union_type)
10015 = (struct field *) TYPE_ZALLOC (union_type,
10016 (TYPE_NFIELDS (union_type)
10017 * sizeof (struct field)));
10018
10019 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10020 TYPE_NFIELDS (type) * sizeof (struct field));
10021
10022 /* Install the discriminant at index 0 in the union. */
10023 TYPE_FIELD (union_type, 0) = *disr_field;
10024 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10025 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10026
10027 /* Install the union in the outer struct type. */
10028 TYPE_FIELD_TYPE (type, 0) = union_type;
10029 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10030 TYPE_NFIELDS (type) = 1;
10031
10032 /* Set the size and offset of the union type. */
10033 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10034
10035 /* We need a way to find the correct discriminant given a
10036 variant name. For convenience we build a map here. */
10037 struct type *enum_type = FIELD_TYPE (*disr_field);
10038 std::unordered_map<std::string, ULONGEST> discriminant_map;
10039 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10040 {
10041 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10042 {
10043 const char *name
10044 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10045 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10046 }
10047 }
10048
10049 int n_fields = TYPE_NFIELDS (union_type);
10050 struct discriminant_info *disc
10051 = alloc_discriminant_info (union_type, 0, -1);
10052 /* Skip the discriminant here. */
10053 for (int i = 1; i < n_fields; ++i)
10054 {
10055 /* Find the final word in the name of this variant's type.
10056 That name can be used to look up the correct
10057 discriminant. */
10058 const char *variant_name
10059 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10060 i)));
10061
10062 auto iter = discriminant_map.find (variant_name);
10063 if (iter != discriminant_map.end ())
10064 disc->discriminants[i] = iter->second;
10065
10066 /* Remove the discriminant field, if it exists. */
10067 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10068 if (TYPE_NFIELDS (sub_type) > 0)
10069 {
10070 --TYPE_NFIELDS (sub_type);
10071 ++TYPE_FIELDS (sub_type);
10072 }
10073 TYPE_FIELD_NAME (union_type, i) = variant_name;
10074 TYPE_NAME (sub_type)
10075 = rust_fully_qualify (&objfile->objfile_obstack,
10076 TYPE_NAME (type), variant_name);
10077 }
10078 }
10079 }
10080
10081 /* Rewrite some Rust unions to be structures with variants parts. */
10082
10083 static void
10084 rust_union_quirks (struct dwarf2_cu *cu)
10085 {
10086 gdb_assert (cu->language == language_rust);
10087 for (type *type_ : cu->rust_unions)
10088 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10089 /* We don't need this any more. */
10090 cu->rust_unions.clear ();
10091 }
10092
10093 /* Return the symtab for PER_CU. This works properly regardless of
10094 whether we're using the index or psymtabs. */
10095
10096 static struct compunit_symtab *
10097 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10098 {
10099 return (per_cu->dwarf2_per_objfile->using_index
10100 ? per_cu->v.quick->compunit_symtab
10101 : per_cu->v.psymtab->compunit_symtab);
10102 }
10103
10104 /* A helper function for computing the list of all symbol tables
10105 included by PER_CU. */
10106
10107 static void
10108 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10109 htab_t all_children, htab_t all_type_symtabs,
10110 struct dwarf2_per_cu_data *per_cu,
10111 struct compunit_symtab *immediate_parent)
10112 {
10113 void **slot;
10114 int ix;
10115 struct compunit_symtab *cust;
10116 struct dwarf2_per_cu_data *iter;
10117
10118 slot = htab_find_slot (all_children, per_cu, INSERT);
10119 if (*slot != NULL)
10120 {
10121 /* This inclusion and its children have been processed. */
10122 return;
10123 }
10124
10125 *slot = per_cu;
10126 /* Only add a CU if it has a symbol table. */
10127 cust = get_compunit_symtab (per_cu);
10128 if (cust != NULL)
10129 {
10130 /* If this is a type unit only add its symbol table if we haven't
10131 seen it yet (type unit per_cu's can share symtabs). */
10132 if (per_cu->is_debug_types)
10133 {
10134 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10135 if (*slot == NULL)
10136 {
10137 *slot = cust;
10138 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10139 if (cust->user == NULL)
10140 cust->user = immediate_parent;
10141 }
10142 }
10143 else
10144 {
10145 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10146 if (cust->user == NULL)
10147 cust->user = immediate_parent;
10148 }
10149 }
10150
10151 for (ix = 0;
10152 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10153 ++ix)
10154 {
10155 recursively_compute_inclusions (result, all_children,
10156 all_type_symtabs, iter, cust);
10157 }
10158 }
10159
10160 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10161 PER_CU. */
10162
10163 static void
10164 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10165 {
10166 gdb_assert (! per_cu->is_debug_types);
10167
10168 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10169 {
10170 int ix, len;
10171 struct dwarf2_per_cu_data *per_cu_iter;
10172 struct compunit_symtab *compunit_symtab_iter;
10173 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10174 htab_t all_children, all_type_symtabs;
10175 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10176
10177 /* If we don't have a symtab, we can just skip this case. */
10178 if (cust == NULL)
10179 return;
10180
10181 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10182 NULL, xcalloc, xfree);
10183 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10184 NULL, xcalloc, xfree);
10185
10186 for (ix = 0;
10187 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10188 ix, per_cu_iter);
10189 ++ix)
10190 {
10191 recursively_compute_inclusions (&result_symtabs, all_children,
10192 all_type_symtabs, per_cu_iter,
10193 cust);
10194 }
10195
10196 /* Now we have a transitive closure of all the included symtabs. */
10197 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10198 cust->includes
10199 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10200 struct compunit_symtab *, len + 1);
10201 for (ix = 0;
10202 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10203 compunit_symtab_iter);
10204 ++ix)
10205 cust->includes[ix] = compunit_symtab_iter;
10206 cust->includes[len] = NULL;
10207
10208 VEC_free (compunit_symtab_ptr, result_symtabs);
10209 htab_delete (all_children);
10210 htab_delete (all_type_symtabs);
10211 }
10212 }
10213
10214 /* Compute the 'includes' field for the symtabs of all the CUs we just
10215 read. */
10216
10217 static void
10218 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10219 {
10220 int ix;
10221 struct dwarf2_per_cu_data *iter;
10222
10223 for (ix = 0;
10224 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10225 ix, iter);
10226 ++ix)
10227 {
10228 if (! iter->is_debug_types)
10229 compute_compunit_symtab_includes (iter);
10230 }
10231
10232 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10233 }
10234
10235 /* Generate full symbol information for PER_CU, whose DIEs have
10236 already been loaded into memory. */
10237
10238 static void
10239 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10240 enum language pretend_language)
10241 {
10242 struct dwarf2_cu *cu = per_cu->cu;
10243 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10244 struct objfile *objfile = dwarf2_per_objfile->objfile;
10245 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10246 CORE_ADDR lowpc, highpc;
10247 struct compunit_symtab *cust;
10248 CORE_ADDR baseaddr;
10249 struct block *static_block;
10250 CORE_ADDR addr;
10251
10252 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10253
10254 buildsym_init ();
10255 scoped_free_pendings free_pending;
10256
10257 /* Clear the list here in case something was left over. */
10258 cu->method_list.clear ();
10259
10260 cu->list_in_scope = &file_symbols;
10261
10262 cu->language = pretend_language;
10263 cu->language_defn = language_def (cu->language);
10264
10265 /* Do line number decoding in read_file_scope () */
10266 process_die (cu->dies, cu);
10267
10268 /* For now fudge the Go package. */
10269 if (cu->language == language_go)
10270 fixup_go_packaging (cu);
10271
10272 /* Now that we have processed all the DIEs in the CU, all the types
10273 should be complete, and it should now be safe to compute all of the
10274 physnames. */
10275 compute_delayed_physnames (cu);
10276
10277 if (cu->language == language_rust)
10278 rust_union_quirks (cu);
10279
10280 /* Some compilers don't define a DW_AT_high_pc attribute for the
10281 compilation unit. If the DW_AT_high_pc is missing, synthesize
10282 it, by scanning the DIE's below the compilation unit. */
10283 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10284
10285 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10286 static_block = end_symtab_get_static_block (addr, 0, 1);
10287
10288 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10289 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10290 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10291 addrmap to help ensure it has an accurate map of pc values belonging to
10292 this comp unit. */
10293 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10294
10295 cust = end_symtab_from_static_block (static_block,
10296 SECT_OFF_TEXT (objfile), 0);
10297
10298 if (cust != NULL)
10299 {
10300 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10301
10302 /* Set symtab language to language from DW_AT_language. If the
10303 compilation is from a C file generated by language preprocessors, do
10304 not set the language if it was already deduced by start_subfile. */
10305 if (!(cu->language == language_c
10306 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10307 COMPUNIT_FILETABS (cust)->language = cu->language;
10308
10309 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10310 produce DW_AT_location with location lists but it can be possibly
10311 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10312 there were bugs in prologue debug info, fixed later in GCC-4.5
10313 by "unwind info for epilogues" patch (which is not directly related).
10314
10315 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10316 needed, it would be wrong due to missing DW_AT_producer there.
10317
10318 Still one can confuse GDB by using non-standard GCC compilation
10319 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10320 */
10321 if (cu->has_loclist && gcc_4_minor >= 5)
10322 cust->locations_valid = 1;
10323
10324 if (gcc_4_minor >= 5)
10325 cust->epilogue_unwind_valid = 1;
10326
10327 cust->call_site_htab = cu->call_site_htab;
10328 }
10329
10330 if (dwarf2_per_objfile->using_index)
10331 per_cu->v.quick->compunit_symtab = cust;
10332 else
10333 {
10334 struct partial_symtab *pst = per_cu->v.psymtab;
10335 pst->compunit_symtab = cust;
10336 pst->readin = 1;
10337 }
10338
10339 /* Push it for inclusion processing later. */
10340 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10341 }
10342
10343 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10344 already been loaded into memory. */
10345
10346 static void
10347 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10348 enum language pretend_language)
10349 {
10350 struct dwarf2_cu *cu = per_cu->cu;
10351 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10352 struct objfile *objfile = dwarf2_per_objfile->objfile;
10353 struct compunit_symtab *cust;
10354 struct signatured_type *sig_type;
10355
10356 gdb_assert (per_cu->is_debug_types);
10357 sig_type = (struct signatured_type *) per_cu;
10358
10359 buildsym_init ();
10360 scoped_free_pendings free_pending;
10361
10362 /* Clear the list here in case something was left over. */
10363 cu->method_list.clear ();
10364
10365 cu->list_in_scope = &file_symbols;
10366
10367 cu->language = pretend_language;
10368 cu->language_defn = language_def (cu->language);
10369
10370 /* The symbol tables are set up in read_type_unit_scope. */
10371 process_die (cu->dies, cu);
10372
10373 /* For now fudge the Go package. */
10374 if (cu->language == language_go)
10375 fixup_go_packaging (cu);
10376
10377 /* Now that we have processed all the DIEs in the CU, all the types
10378 should be complete, and it should now be safe to compute all of the
10379 physnames. */
10380 compute_delayed_physnames (cu);
10381
10382 if (cu->language == language_rust)
10383 rust_union_quirks (cu);
10384
10385 /* TUs share symbol tables.
10386 If this is the first TU to use this symtab, complete the construction
10387 of it with end_expandable_symtab. Otherwise, complete the addition of
10388 this TU's symbols to the existing symtab. */
10389 if (sig_type->type_unit_group->compunit_symtab == NULL)
10390 {
10391 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10392 sig_type->type_unit_group->compunit_symtab = cust;
10393
10394 if (cust != NULL)
10395 {
10396 /* Set symtab language to language from DW_AT_language. If the
10397 compilation is from a C file generated by language preprocessors,
10398 do not set the language if it was already deduced by
10399 start_subfile. */
10400 if (!(cu->language == language_c
10401 && COMPUNIT_FILETABS (cust)->language != language_c))
10402 COMPUNIT_FILETABS (cust)->language = cu->language;
10403 }
10404 }
10405 else
10406 {
10407 augment_type_symtab ();
10408 cust = sig_type->type_unit_group->compunit_symtab;
10409 }
10410
10411 if (dwarf2_per_objfile->using_index)
10412 per_cu->v.quick->compunit_symtab = cust;
10413 else
10414 {
10415 struct partial_symtab *pst = per_cu->v.psymtab;
10416 pst->compunit_symtab = cust;
10417 pst->readin = 1;
10418 }
10419 }
10420
10421 /* Process an imported unit DIE. */
10422
10423 static void
10424 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10425 {
10426 struct attribute *attr;
10427
10428 /* For now we don't handle imported units in type units. */
10429 if (cu->per_cu->is_debug_types)
10430 {
10431 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10432 " supported in type units [in module %s]"),
10433 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10434 }
10435
10436 attr = dwarf2_attr (die, DW_AT_import, cu);
10437 if (attr != NULL)
10438 {
10439 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10440 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10441 dwarf2_per_cu_data *per_cu
10442 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10443 cu->per_cu->dwarf2_per_objfile);
10444
10445 /* If necessary, add it to the queue and load its DIEs. */
10446 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10447 load_full_comp_unit (per_cu, false, cu->language);
10448
10449 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10450 per_cu);
10451 }
10452 }
10453
10454 /* RAII object that represents a process_die scope: i.e.,
10455 starts/finishes processing a DIE. */
10456 class process_die_scope
10457 {
10458 public:
10459 process_die_scope (die_info *die, dwarf2_cu *cu)
10460 : m_die (die), m_cu (cu)
10461 {
10462 /* We should only be processing DIEs not already in process. */
10463 gdb_assert (!m_die->in_process);
10464 m_die->in_process = true;
10465 }
10466
10467 ~process_die_scope ()
10468 {
10469 m_die->in_process = false;
10470
10471 /* If we're done processing the DIE for the CU that owns the line
10472 header, we don't need the line header anymore. */
10473 if (m_cu->line_header_die_owner == m_die)
10474 {
10475 delete m_cu->line_header;
10476 m_cu->line_header = NULL;
10477 m_cu->line_header_die_owner = NULL;
10478 }
10479 }
10480
10481 private:
10482 die_info *m_die;
10483 dwarf2_cu *m_cu;
10484 };
10485
10486 /* Process a die and its children. */
10487
10488 static void
10489 process_die (struct die_info *die, struct dwarf2_cu *cu)
10490 {
10491 process_die_scope scope (die, cu);
10492
10493 switch (die->tag)
10494 {
10495 case DW_TAG_padding:
10496 break;
10497 case DW_TAG_compile_unit:
10498 case DW_TAG_partial_unit:
10499 read_file_scope (die, cu);
10500 break;
10501 case DW_TAG_type_unit:
10502 read_type_unit_scope (die, cu);
10503 break;
10504 case DW_TAG_subprogram:
10505 case DW_TAG_inlined_subroutine:
10506 read_func_scope (die, cu);
10507 break;
10508 case DW_TAG_lexical_block:
10509 case DW_TAG_try_block:
10510 case DW_TAG_catch_block:
10511 read_lexical_block_scope (die, cu);
10512 break;
10513 case DW_TAG_call_site:
10514 case DW_TAG_GNU_call_site:
10515 read_call_site_scope (die, cu);
10516 break;
10517 case DW_TAG_class_type:
10518 case DW_TAG_interface_type:
10519 case DW_TAG_structure_type:
10520 case DW_TAG_union_type:
10521 process_structure_scope (die, cu);
10522 break;
10523 case DW_TAG_enumeration_type:
10524 process_enumeration_scope (die, cu);
10525 break;
10526
10527 /* These dies have a type, but processing them does not create
10528 a symbol or recurse to process the children. Therefore we can
10529 read them on-demand through read_type_die. */
10530 case DW_TAG_subroutine_type:
10531 case DW_TAG_set_type:
10532 case DW_TAG_array_type:
10533 case DW_TAG_pointer_type:
10534 case DW_TAG_ptr_to_member_type:
10535 case DW_TAG_reference_type:
10536 case DW_TAG_rvalue_reference_type:
10537 case DW_TAG_string_type:
10538 break;
10539
10540 case DW_TAG_base_type:
10541 case DW_TAG_subrange_type:
10542 case DW_TAG_typedef:
10543 /* Add a typedef symbol for the type definition, if it has a
10544 DW_AT_name. */
10545 new_symbol (die, read_type_die (die, cu), cu);
10546 break;
10547 case DW_TAG_common_block:
10548 read_common_block (die, cu);
10549 break;
10550 case DW_TAG_common_inclusion:
10551 break;
10552 case DW_TAG_namespace:
10553 cu->processing_has_namespace_info = 1;
10554 read_namespace (die, cu);
10555 break;
10556 case DW_TAG_module:
10557 cu->processing_has_namespace_info = 1;
10558 read_module (die, cu);
10559 break;
10560 case DW_TAG_imported_declaration:
10561 cu->processing_has_namespace_info = 1;
10562 if (read_namespace_alias (die, cu))
10563 break;
10564 /* The declaration is not a global namespace alias. */
10565 /* Fall through. */
10566 case DW_TAG_imported_module:
10567 cu->processing_has_namespace_info = 1;
10568 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10569 || cu->language != language_fortran))
10570 complaint (_("Tag '%s' has unexpected children"),
10571 dwarf_tag_name (die->tag));
10572 read_import_statement (die, cu);
10573 break;
10574
10575 case DW_TAG_imported_unit:
10576 process_imported_unit_die (die, cu);
10577 break;
10578
10579 case DW_TAG_variable:
10580 read_variable (die, cu);
10581 break;
10582
10583 default:
10584 new_symbol (die, NULL, cu);
10585 break;
10586 }
10587 }
10588 \f
10589 /* DWARF name computation. */
10590
10591 /* A helper function for dwarf2_compute_name which determines whether DIE
10592 needs to have the name of the scope prepended to the name listed in the
10593 die. */
10594
10595 static int
10596 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10597 {
10598 struct attribute *attr;
10599
10600 switch (die->tag)
10601 {
10602 case DW_TAG_namespace:
10603 case DW_TAG_typedef:
10604 case DW_TAG_class_type:
10605 case DW_TAG_interface_type:
10606 case DW_TAG_structure_type:
10607 case DW_TAG_union_type:
10608 case DW_TAG_enumeration_type:
10609 case DW_TAG_enumerator:
10610 case DW_TAG_subprogram:
10611 case DW_TAG_inlined_subroutine:
10612 case DW_TAG_member:
10613 case DW_TAG_imported_declaration:
10614 return 1;
10615
10616 case DW_TAG_variable:
10617 case DW_TAG_constant:
10618 /* We only need to prefix "globally" visible variables. These include
10619 any variable marked with DW_AT_external or any variable that
10620 lives in a namespace. [Variables in anonymous namespaces
10621 require prefixing, but they are not DW_AT_external.] */
10622
10623 if (dwarf2_attr (die, DW_AT_specification, cu))
10624 {
10625 struct dwarf2_cu *spec_cu = cu;
10626
10627 return die_needs_namespace (die_specification (die, &spec_cu),
10628 spec_cu);
10629 }
10630
10631 attr = dwarf2_attr (die, DW_AT_external, cu);
10632 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10633 && die->parent->tag != DW_TAG_module)
10634 return 0;
10635 /* A variable in a lexical block of some kind does not need a
10636 namespace, even though in C++ such variables may be external
10637 and have a mangled name. */
10638 if (die->parent->tag == DW_TAG_lexical_block
10639 || die->parent->tag == DW_TAG_try_block
10640 || die->parent->tag == DW_TAG_catch_block
10641 || die->parent->tag == DW_TAG_subprogram)
10642 return 0;
10643 return 1;
10644
10645 default:
10646 return 0;
10647 }
10648 }
10649
10650 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10651 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10652 defined for the given DIE. */
10653
10654 static struct attribute *
10655 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10656 {
10657 struct attribute *attr;
10658
10659 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10660 if (attr == NULL)
10661 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10662
10663 return attr;
10664 }
10665
10666 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10667 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10668 defined for the given DIE. */
10669
10670 static const char *
10671 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10672 {
10673 const char *linkage_name;
10674
10675 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10676 if (linkage_name == NULL)
10677 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10678
10679 return linkage_name;
10680 }
10681
10682 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10683 compute the physname for the object, which include a method's:
10684 - formal parameters (C++),
10685 - receiver type (Go),
10686
10687 The term "physname" is a bit confusing.
10688 For C++, for example, it is the demangled name.
10689 For Go, for example, it's the mangled name.
10690
10691 For Ada, return the DIE's linkage name rather than the fully qualified
10692 name. PHYSNAME is ignored..
10693
10694 The result is allocated on the objfile_obstack and canonicalized. */
10695
10696 static const char *
10697 dwarf2_compute_name (const char *name,
10698 struct die_info *die, struct dwarf2_cu *cu,
10699 int physname)
10700 {
10701 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10702
10703 if (name == NULL)
10704 name = dwarf2_name (die, cu);
10705
10706 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10707 but otherwise compute it by typename_concat inside GDB.
10708 FIXME: Actually this is not really true, or at least not always true.
10709 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10710 Fortran names because there is no mangling standard. So new_symbol
10711 will set the demangled name to the result of dwarf2_full_name, and it is
10712 the demangled name that GDB uses if it exists. */
10713 if (cu->language == language_ada
10714 || (cu->language == language_fortran && physname))
10715 {
10716 /* For Ada unit, we prefer the linkage name over the name, as
10717 the former contains the exported name, which the user expects
10718 to be able to reference. Ideally, we want the user to be able
10719 to reference this entity using either natural or linkage name,
10720 but we haven't started looking at this enhancement yet. */
10721 const char *linkage_name = dw2_linkage_name (die, cu);
10722
10723 if (linkage_name != NULL)
10724 return linkage_name;
10725 }
10726
10727 /* These are the only languages we know how to qualify names in. */
10728 if (name != NULL
10729 && (cu->language == language_cplus
10730 || cu->language == language_fortran || cu->language == language_d
10731 || cu->language == language_rust))
10732 {
10733 if (die_needs_namespace (die, cu))
10734 {
10735 const char *prefix;
10736 const char *canonical_name = NULL;
10737
10738 string_file buf;
10739
10740 prefix = determine_prefix (die, cu);
10741 if (*prefix != '\0')
10742 {
10743 char *prefixed_name = typename_concat (NULL, prefix, name,
10744 physname, cu);
10745
10746 buf.puts (prefixed_name);
10747 xfree (prefixed_name);
10748 }
10749 else
10750 buf.puts (name);
10751
10752 /* Template parameters may be specified in the DIE's DW_AT_name, or
10753 as children with DW_TAG_template_type_param or
10754 DW_TAG_value_type_param. If the latter, add them to the name
10755 here. If the name already has template parameters, then
10756 skip this step; some versions of GCC emit both, and
10757 it is more efficient to use the pre-computed name.
10758
10759 Something to keep in mind about this process: it is very
10760 unlikely, or in some cases downright impossible, to produce
10761 something that will match the mangled name of a function.
10762 If the definition of the function has the same debug info,
10763 we should be able to match up with it anyway. But fallbacks
10764 using the minimal symbol, for instance to find a method
10765 implemented in a stripped copy of libstdc++, will not work.
10766 If we do not have debug info for the definition, we will have to
10767 match them up some other way.
10768
10769 When we do name matching there is a related problem with function
10770 templates; two instantiated function templates are allowed to
10771 differ only by their return types, which we do not add here. */
10772
10773 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10774 {
10775 struct attribute *attr;
10776 struct die_info *child;
10777 int first = 1;
10778
10779 die->building_fullname = 1;
10780
10781 for (child = die->child; child != NULL; child = child->sibling)
10782 {
10783 struct type *type;
10784 LONGEST value;
10785 const gdb_byte *bytes;
10786 struct dwarf2_locexpr_baton *baton;
10787 struct value *v;
10788
10789 if (child->tag != DW_TAG_template_type_param
10790 && child->tag != DW_TAG_template_value_param)
10791 continue;
10792
10793 if (first)
10794 {
10795 buf.puts ("<");
10796 first = 0;
10797 }
10798 else
10799 buf.puts (", ");
10800
10801 attr = dwarf2_attr (child, DW_AT_type, cu);
10802 if (attr == NULL)
10803 {
10804 complaint (_("template parameter missing DW_AT_type"));
10805 buf.puts ("UNKNOWN_TYPE");
10806 continue;
10807 }
10808 type = die_type (child, cu);
10809
10810 if (child->tag == DW_TAG_template_type_param)
10811 {
10812 c_print_type (type, "", &buf, -1, 0, cu->language,
10813 &type_print_raw_options);
10814 continue;
10815 }
10816
10817 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10818 if (attr == NULL)
10819 {
10820 complaint (_("template parameter missing "
10821 "DW_AT_const_value"));
10822 buf.puts ("UNKNOWN_VALUE");
10823 continue;
10824 }
10825
10826 dwarf2_const_value_attr (attr, type, name,
10827 &cu->comp_unit_obstack, cu,
10828 &value, &bytes, &baton);
10829
10830 if (TYPE_NOSIGN (type))
10831 /* GDB prints characters as NUMBER 'CHAR'. If that's
10832 changed, this can use value_print instead. */
10833 c_printchar (value, type, &buf);
10834 else
10835 {
10836 struct value_print_options opts;
10837
10838 if (baton != NULL)
10839 v = dwarf2_evaluate_loc_desc (type, NULL,
10840 baton->data,
10841 baton->size,
10842 baton->per_cu);
10843 else if (bytes != NULL)
10844 {
10845 v = allocate_value (type);
10846 memcpy (value_contents_writeable (v), bytes,
10847 TYPE_LENGTH (type));
10848 }
10849 else
10850 v = value_from_longest (type, value);
10851
10852 /* Specify decimal so that we do not depend on
10853 the radix. */
10854 get_formatted_print_options (&opts, 'd');
10855 opts.raw = 1;
10856 value_print (v, &buf, &opts);
10857 release_value (v);
10858 }
10859 }
10860
10861 die->building_fullname = 0;
10862
10863 if (!first)
10864 {
10865 /* Close the argument list, with a space if necessary
10866 (nested templates). */
10867 if (!buf.empty () && buf.string ().back () == '>')
10868 buf.puts (" >");
10869 else
10870 buf.puts (">");
10871 }
10872 }
10873
10874 /* For C++ methods, append formal parameter type
10875 information, if PHYSNAME. */
10876
10877 if (physname && die->tag == DW_TAG_subprogram
10878 && cu->language == language_cplus)
10879 {
10880 struct type *type = read_type_die (die, cu);
10881
10882 c_type_print_args (type, &buf, 1, cu->language,
10883 &type_print_raw_options);
10884
10885 if (cu->language == language_cplus)
10886 {
10887 /* Assume that an artificial first parameter is
10888 "this", but do not crash if it is not. RealView
10889 marks unnamed (and thus unused) parameters as
10890 artificial; there is no way to differentiate
10891 the two cases. */
10892 if (TYPE_NFIELDS (type) > 0
10893 && TYPE_FIELD_ARTIFICIAL (type, 0)
10894 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10895 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10896 0))))
10897 buf.puts (" const");
10898 }
10899 }
10900
10901 const std::string &intermediate_name = buf.string ();
10902
10903 if (cu->language == language_cplus)
10904 canonical_name
10905 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10906 &objfile->per_bfd->storage_obstack);
10907
10908 /* If we only computed INTERMEDIATE_NAME, or if
10909 INTERMEDIATE_NAME is already canonical, then we need to
10910 copy it to the appropriate obstack. */
10911 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10912 name = ((const char *)
10913 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10914 intermediate_name.c_str (),
10915 intermediate_name.length ()));
10916 else
10917 name = canonical_name;
10918 }
10919 }
10920
10921 return name;
10922 }
10923
10924 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10925 If scope qualifiers are appropriate they will be added. The result
10926 will be allocated on the storage_obstack, or NULL if the DIE does
10927 not have a name. NAME may either be from a previous call to
10928 dwarf2_name or NULL.
10929
10930 The output string will be canonicalized (if C++). */
10931
10932 static const char *
10933 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10934 {
10935 return dwarf2_compute_name (name, die, cu, 0);
10936 }
10937
10938 /* Construct a physname for the given DIE in CU. NAME may either be
10939 from a previous call to dwarf2_name or NULL. The result will be
10940 allocated on the objfile_objstack or NULL if the DIE does not have a
10941 name.
10942
10943 The output string will be canonicalized (if C++). */
10944
10945 static const char *
10946 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10947 {
10948 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10949 const char *retval, *mangled = NULL, *canon = NULL;
10950 int need_copy = 1;
10951
10952 /* In this case dwarf2_compute_name is just a shortcut not building anything
10953 on its own. */
10954 if (!die_needs_namespace (die, cu))
10955 return dwarf2_compute_name (name, die, cu, 1);
10956
10957 mangled = dw2_linkage_name (die, cu);
10958
10959 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10960 See https://github.com/rust-lang/rust/issues/32925. */
10961 if (cu->language == language_rust && mangled != NULL
10962 && strchr (mangled, '{') != NULL)
10963 mangled = NULL;
10964
10965 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10966 has computed. */
10967 gdb::unique_xmalloc_ptr<char> demangled;
10968 if (mangled != NULL)
10969 {
10970
10971 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10972 {
10973 /* Do nothing (do not demangle the symbol name). */
10974 }
10975 else if (cu->language == language_go)
10976 {
10977 /* This is a lie, but we already lie to the caller new_symbol.
10978 new_symbol assumes we return the mangled name.
10979 This just undoes that lie until things are cleaned up. */
10980 }
10981 else
10982 {
10983 /* Use DMGL_RET_DROP for C++ template functions to suppress
10984 their return type. It is easier for GDB users to search
10985 for such functions as `name(params)' than `long name(params)'.
10986 In such case the minimal symbol names do not match the full
10987 symbol names but for template functions there is never a need
10988 to look up their definition from their declaration so
10989 the only disadvantage remains the minimal symbol variant
10990 `long name(params)' does not have the proper inferior type. */
10991 demangled.reset (gdb_demangle (mangled,
10992 (DMGL_PARAMS | DMGL_ANSI
10993 | DMGL_RET_DROP)));
10994 }
10995 if (demangled)
10996 canon = demangled.get ();
10997 else
10998 {
10999 canon = mangled;
11000 need_copy = 0;
11001 }
11002 }
11003
11004 if (canon == NULL || check_physname)
11005 {
11006 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11007
11008 if (canon != NULL && strcmp (physname, canon) != 0)
11009 {
11010 /* It may not mean a bug in GDB. The compiler could also
11011 compute DW_AT_linkage_name incorrectly. But in such case
11012 GDB would need to be bug-to-bug compatible. */
11013
11014 complaint (_("Computed physname <%s> does not match demangled <%s> "
11015 "(from linkage <%s>) - DIE at %s [in module %s]"),
11016 physname, canon, mangled, sect_offset_str (die->sect_off),
11017 objfile_name (objfile));
11018
11019 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11020 is available here - over computed PHYSNAME. It is safer
11021 against both buggy GDB and buggy compilers. */
11022
11023 retval = canon;
11024 }
11025 else
11026 {
11027 retval = physname;
11028 need_copy = 0;
11029 }
11030 }
11031 else
11032 retval = canon;
11033
11034 if (need_copy)
11035 retval = ((const char *)
11036 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11037 retval, strlen (retval)));
11038
11039 return retval;
11040 }
11041
11042 /* Inspect DIE in CU for a namespace alias. If one exists, record
11043 a new symbol for it.
11044
11045 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11046
11047 static int
11048 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11049 {
11050 struct attribute *attr;
11051
11052 /* If the die does not have a name, this is not a namespace
11053 alias. */
11054 attr = dwarf2_attr (die, DW_AT_name, cu);
11055 if (attr != NULL)
11056 {
11057 int num;
11058 struct die_info *d = die;
11059 struct dwarf2_cu *imported_cu = cu;
11060
11061 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11062 keep inspecting DIEs until we hit the underlying import. */
11063 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11064 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11065 {
11066 attr = dwarf2_attr (d, DW_AT_import, cu);
11067 if (attr == NULL)
11068 break;
11069
11070 d = follow_die_ref (d, attr, &imported_cu);
11071 if (d->tag != DW_TAG_imported_declaration)
11072 break;
11073 }
11074
11075 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11076 {
11077 complaint (_("DIE at %s has too many recursively imported "
11078 "declarations"), sect_offset_str (d->sect_off));
11079 return 0;
11080 }
11081
11082 if (attr != NULL)
11083 {
11084 struct type *type;
11085 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11086
11087 type = get_die_type_at_offset (sect_off, cu->per_cu);
11088 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11089 {
11090 /* This declaration is a global namespace alias. Add
11091 a symbol for it whose type is the aliased namespace. */
11092 new_symbol (die, type, cu);
11093 return 1;
11094 }
11095 }
11096 }
11097
11098 return 0;
11099 }
11100
11101 /* Return the using directives repository (global or local?) to use in the
11102 current context for LANGUAGE.
11103
11104 For Ada, imported declarations can materialize renamings, which *may* be
11105 global. However it is impossible (for now?) in DWARF to distinguish
11106 "external" imported declarations and "static" ones. As all imported
11107 declarations seem to be static in all other languages, make them all CU-wide
11108 global only in Ada. */
11109
11110 static struct using_direct **
11111 using_directives (enum language language)
11112 {
11113 if (language == language_ada && context_stack_depth == 0)
11114 return &global_using_directives;
11115 else
11116 return &local_using_directives;
11117 }
11118
11119 /* Read the import statement specified by the given die and record it. */
11120
11121 static void
11122 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11123 {
11124 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11125 struct attribute *import_attr;
11126 struct die_info *imported_die, *child_die;
11127 struct dwarf2_cu *imported_cu;
11128 const char *imported_name;
11129 const char *imported_name_prefix;
11130 const char *canonical_name;
11131 const char *import_alias;
11132 const char *imported_declaration = NULL;
11133 const char *import_prefix;
11134 std::vector<const char *> excludes;
11135
11136 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11137 if (import_attr == NULL)
11138 {
11139 complaint (_("Tag '%s' has no DW_AT_import"),
11140 dwarf_tag_name (die->tag));
11141 return;
11142 }
11143
11144 imported_cu = cu;
11145 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11146 imported_name = dwarf2_name (imported_die, imported_cu);
11147 if (imported_name == NULL)
11148 {
11149 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11150
11151 The import in the following code:
11152 namespace A
11153 {
11154 typedef int B;
11155 }
11156
11157 int main ()
11158 {
11159 using A::B;
11160 B b;
11161 return b;
11162 }
11163
11164 ...
11165 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11166 <52> DW_AT_decl_file : 1
11167 <53> DW_AT_decl_line : 6
11168 <54> DW_AT_import : <0x75>
11169 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11170 <59> DW_AT_name : B
11171 <5b> DW_AT_decl_file : 1
11172 <5c> DW_AT_decl_line : 2
11173 <5d> DW_AT_type : <0x6e>
11174 ...
11175 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11176 <76> DW_AT_byte_size : 4
11177 <77> DW_AT_encoding : 5 (signed)
11178
11179 imports the wrong die ( 0x75 instead of 0x58 ).
11180 This case will be ignored until the gcc bug is fixed. */
11181 return;
11182 }
11183
11184 /* Figure out the local name after import. */
11185 import_alias = dwarf2_name (die, cu);
11186
11187 /* Figure out where the statement is being imported to. */
11188 import_prefix = determine_prefix (die, cu);
11189
11190 /* Figure out what the scope of the imported die is and prepend it
11191 to the name of the imported die. */
11192 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11193
11194 if (imported_die->tag != DW_TAG_namespace
11195 && imported_die->tag != DW_TAG_module)
11196 {
11197 imported_declaration = imported_name;
11198 canonical_name = imported_name_prefix;
11199 }
11200 else if (strlen (imported_name_prefix) > 0)
11201 canonical_name = obconcat (&objfile->objfile_obstack,
11202 imported_name_prefix,
11203 (cu->language == language_d ? "." : "::"),
11204 imported_name, (char *) NULL);
11205 else
11206 canonical_name = imported_name;
11207
11208 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11209 for (child_die = die->child; child_die && child_die->tag;
11210 child_die = sibling_die (child_die))
11211 {
11212 /* DWARF-4: A Fortran use statement with a “rename list” may be
11213 represented by an imported module entry with an import attribute
11214 referring to the module and owned entries corresponding to those
11215 entities that are renamed as part of being imported. */
11216
11217 if (child_die->tag != DW_TAG_imported_declaration)
11218 {
11219 complaint (_("child DW_TAG_imported_declaration expected "
11220 "- DIE at %s [in module %s]"),
11221 sect_offset_str (child_die->sect_off),
11222 objfile_name (objfile));
11223 continue;
11224 }
11225
11226 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11227 if (import_attr == NULL)
11228 {
11229 complaint (_("Tag '%s' has no DW_AT_import"),
11230 dwarf_tag_name (child_die->tag));
11231 continue;
11232 }
11233
11234 imported_cu = cu;
11235 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11236 &imported_cu);
11237 imported_name = dwarf2_name (imported_die, imported_cu);
11238 if (imported_name == NULL)
11239 {
11240 complaint (_("child DW_TAG_imported_declaration has unknown "
11241 "imported name - DIE at %s [in module %s]"),
11242 sect_offset_str (child_die->sect_off),
11243 objfile_name (objfile));
11244 continue;
11245 }
11246
11247 excludes.push_back (imported_name);
11248
11249 process_die (child_die, cu);
11250 }
11251
11252 add_using_directive (using_directives (cu->language),
11253 import_prefix,
11254 canonical_name,
11255 import_alias,
11256 imported_declaration,
11257 excludes,
11258 0,
11259 &objfile->objfile_obstack);
11260 }
11261
11262 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11263 types, but gives them a size of zero. Starting with version 14,
11264 ICC is compatible with GCC. */
11265
11266 static int
11267 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11268 {
11269 if (!cu->checked_producer)
11270 check_producer (cu);
11271
11272 return cu->producer_is_icc_lt_14;
11273 }
11274
11275 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11276 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11277 this, it was first present in GCC release 4.3.0. */
11278
11279 static int
11280 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11281 {
11282 if (!cu->checked_producer)
11283 check_producer (cu);
11284
11285 return cu->producer_is_gcc_lt_4_3;
11286 }
11287
11288 static file_and_directory
11289 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11290 {
11291 file_and_directory res;
11292
11293 /* Find the filename. Do not use dwarf2_name here, since the filename
11294 is not a source language identifier. */
11295 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11296 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11297
11298 if (res.comp_dir == NULL
11299 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11300 && IS_ABSOLUTE_PATH (res.name))
11301 {
11302 res.comp_dir_storage = ldirname (res.name);
11303 if (!res.comp_dir_storage.empty ())
11304 res.comp_dir = res.comp_dir_storage.c_str ();
11305 }
11306 if (res.comp_dir != NULL)
11307 {
11308 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11309 directory, get rid of it. */
11310 const char *cp = strchr (res.comp_dir, ':');
11311
11312 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11313 res.comp_dir = cp + 1;
11314 }
11315
11316 if (res.name == NULL)
11317 res.name = "<unknown>";
11318
11319 return res;
11320 }
11321
11322 /* Handle DW_AT_stmt_list for a compilation unit.
11323 DIE is the DW_TAG_compile_unit die for CU.
11324 COMP_DIR is the compilation directory. LOWPC is passed to
11325 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11326
11327 static void
11328 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11329 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11330 {
11331 struct dwarf2_per_objfile *dwarf2_per_objfile
11332 = cu->per_cu->dwarf2_per_objfile;
11333 struct objfile *objfile = dwarf2_per_objfile->objfile;
11334 struct attribute *attr;
11335 struct line_header line_header_local;
11336 hashval_t line_header_local_hash;
11337 void **slot;
11338 int decode_mapping;
11339
11340 gdb_assert (! cu->per_cu->is_debug_types);
11341
11342 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11343 if (attr == NULL)
11344 return;
11345
11346 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11347
11348 /* The line header hash table is only created if needed (it exists to
11349 prevent redundant reading of the line table for partial_units).
11350 If we're given a partial_unit, we'll need it. If we're given a
11351 compile_unit, then use the line header hash table if it's already
11352 created, but don't create one just yet. */
11353
11354 if (dwarf2_per_objfile->line_header_hash == NULL
11355 && die->tag == DW_TAG_partial_unit)
11356 {
11357 dwarf2_per_objfile->line_header_hash
11358 = htab_create_alloc_ex (127, line_header_hash_voidp,
11359 line_header_eq_voidp,
11360 free_line_header_voidp,
11361 &objfile->objfile_obstack,
11362 hashtab_obstack_allocate,
11363 dummy_obstack_deallocate);
11364 }
11365
11366 line_header_local.sect_off = line_offset;
11367 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11368 line_header_local_hash = line_header_hash (&line_header_local);
11369 if (dwarf2_per_objfile->line_header_hash != NULL)
11370 {
11371 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11372 &line_header_local,
11373 line_header_local_hash, NO_INSERT);
11374
11375 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11376 is not present in *SLOT (since if there is something in *SLOT then
11377 it will be for a partial_unit). */
11378 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11379 {
11380 gdb_assert (*slot != NULL);
11381 cu->line_header = (struct line_header *) *slot;
11382 return;
11383 }
11384 }
11385
11386 /* dwarf_decode_line_header does not yet provide sufficient information.
11387 We always have to call also dwarf_decode_lines for it. */
11388 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11389 if (lh == NULL)
11390 return;
11391
11392 cu->line_header = lh.release ();
11393 cu->line_header_die_owner = die;
11394
11395 if (dwarf2_per_objfile->line_header_hash == NULL)
11396 slot = NULL;
11397 else
11398 {
11399 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11400 &line_header_local,
11401 line_header_local_hash, INSERT);
11402 gdb_assert (slot != NULL);
11403 }
11404 if (slot != NULL && *slot == NULL)
11405 {
11406 /* This newly decoded line number information unit will be owned
11407 by line_header_hash hash table. */
11408 *slot = cu->line_header;
11409 cu->line_header_die_owner = NULL;
11410 }
11411 else
11412 {
11413 /* We cannot free any current entry in (*slot) as that struct line_header
11414 may be already used by multiple CUs. Create only temporary decoded
11415 line_header for this CU - it may happen at most once for each line
11416 number information unit. And if we're not using line_header_hash
11417 then this is what we want as well. */
11418 gdb_assert (die->tag != DW_TAG_partial_unit);
11419 }
11420 decode_mapping = (die->tag != DW_TAG_partial_unit);
11421 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11422 decode_mapping);
11423
11424 }
11425
11426 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11427
11428 static void
11429 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11430 {
11431 struct dwarf2_per_objfile *dwarf2_per_objfile
11432 = cu->per_cu->dwarf2_per_objfile;
11433 struct objfile *objfile = dwarf2_per_objfile->objfile;
11434 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11435 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11436 CORE_ADDR highpc = ((CORE_ADDR) 0);
11437 struct attribute *attr;
11438 struct die_info *child_die;
11439 CORE_ADDR baseaddr;
11440
11441 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11442
11443 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11444
11445 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11446 from finish_block. */
11447 if (lowpc == ((CORE_ADDR) -1))
11448 lowpc = highpc;
11449 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11450
11451 file_and_directory fnd = find_file_and_directory (die, cu);
11452
11453 prepare_one_comp_unit (cu, die, cu->language);
11454
11455 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11456 standardised yet. As a workaround for the language detection we fall
11457 back to the DW_AT_producer string. */
11458 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11459 cu->language = language_opencl;
11460
11461 /* Similar hack for Go. */
11462 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11463 set_cu_language (DW_LANG_Go, cu);
11464
11465 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11466
11467 /* Decode line number information if present. We do this before
11468 processing child DIEs, so that the line header table is available
11469 for DW_AT_decl_file. */
11470 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11471
11472 /* Process all dies in compilation unit. */
11473 if (die->child != NULL)
11474 {
11475 child_die = die->child;
11476 while (child_die && child_die->tag)
11477 {
11478 process_die (child_die, cu);
11479 child_die = sibling_die (child_die);
11480 }
11481 }
11482
11483 /* Decode macro information, if present. Dwarf 2 macro information
11484 refers to information in the line number info statement program
11485 header, so we can only read it if we've read the header
11486 successfully. */
11487 attr = dwarf2_attr (die, DW_AT_macros, cu);
11488 if (attr == NULL)
11489 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11490 if (attr && cu->line_header)
11491 {
11492 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11493 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11494
11495 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11496 }
11497 else
11498 {
11499 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11500 if (attr && cu->line_header)
11501 {
11502 unsigned int macro_offset = DW_UNSND (attr);
11503
11504 dwarf_decode_macros (cu, macro_offset, 0);
11505 }
11506 }
11507 }
11508
11509 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11510 Create the set of symtabs used by this TU, or if this TU is sharing
11511 symtabs with another TU and the symtabs have already been created
11512 then restore those symtabs in the line header.
11513 We don't need the pc/line-number mapping for type units. */
11514
11515 static void
11516 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11517 {
11518 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11519 struct type_unit_group *tu_group;
11520 int first_time;
11521 struct attribute *attr;
11522 unsigned int i;
11523 struct signatured_type *sig_type;
11524
11525 gdb_assert (per_cu->is_debug_types);
11526 sig_type = (struct signatured_type *) per_cu;
11527
11528 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11529
11530 /* If we're using .gdb_index (includes -readnow) then
11531 per_cu->type_unit_group may not have been set up yet. */
11532 if (sig_type->type_unit_group == NULL)
11533 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11534 tu_group = sig_type->type_unit_group;
11535
11536 /* If we've already processed this stmt_list there's no real need to
11537 do it again, we could fake it and just recreate the part we need
11538 (file name,index -> symtab mapping). If data shows this optimization
11539 is useful we can do it then. */
11540 first_time = tu_group->compunit_symtab == NULL;
11541
11542 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11543 debug info. */
11544 line_header_up lh;
11545 if (attr != NULL)
11546 {
11547 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11548 lh = dwarf_decode_line_header (line_offset, cu);
11549 }
11550 if (lh == NULL)
11551 {
11552 if (first_time)
11553 dwarf2_start_symtab (cu, "", NULL, 0);
11554 else
11555 {
11556 gdb_assert (tu_group->symtabs == NULL);
11557 restart_symtab (tu_group->compunit_symtab, "", 0);
11558 }
11559 return;
11560 }
11561
11562 cu->line_header = lh.release ();
11563 cu->line_header_die_owner = die;
11564
11565 if (first_time)
11566 {
11567 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11568
11569 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11570 still initializing it, and our caller (a few levels up)
11571 process_full_type_unit still needs to know if this is the first
11572 time. */
11573
11574 tu_group->num_symtabs = cu->line_header->file_names.size ();
11575 tu_group->symtabs = XNEWVEC (struct symtab *,
11576 cu->line_header->file_names.size ());
11577
11578 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11579 {
11580 file_entry &fe = cu->line_header->file_names[i];
11581
11582 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11583
11584 if (current_subfile->symtab == NULL)
11585 {
11586 /* NOTE: start_subfile will recognize when it's been
11587 passed a file it has already seen. So we can't
11588 assume there's a simple mapping from
11589 cu->line_header->file_names to subfiles, plus
11590 cu->line_header->file_names may contain dups. */
11591 current_subfile->symtab
11592 = allocate_symtab (cust, current_subfile->name);
11593 }
11594
11595 fe.symtab = current_subfile->symtab;
11596 tu_group->symtabs[i] = fe.symtab;
11597 }
11598 }
11599 else
11600 {
11601 restart_symtab (tu_group->compunit_symtab, "", 0);
11602
11603 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11604 {
11605 file_entry &fe = cu->line_header->file_names[i];
11606
11607 fe.symtab = tu_group->symtabs[i];
11608 }
11609 }
11610
11611 /* The main symtab is allocated last. Type units don't have DW_AT_name
11612 so they don't have a "real" (so to speak) symtab anyway.
11613 There is later code that will assign the main symtab to all symbols
11614 that don't have one. We need to handle the case of a symbol with a
11615 missing symtab (DW_AT_decl_file) anyway. */
11616 }
11617
11618 /* Process DW_TAG_type_unit.
11619 For TUs we want to skip the first top level sibling if it's not the
11620 actual type being defined by this TU. In this case the first top
11621 level sibling is there to provide context only. */
11622
11623 static void
11624 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11625 {
11626 struct die_info *child_die;
11627
11628 prepare_one_comp_unit (cu, die, language_minimal);
11629
11630 /* Initialize (or reinitialize) the machinery for building symtabs.
11631 We do this before processing child DIEs, so that the line header table
11632 is available for DW_AT_decl_file. */
11633 setup_type_unit_groups (die, cu);
11634
11635 if (die->child != NULL)
11636 {
11637 child_die = die->child;
11638 while (child_die && child_die->tag)
11639 {
11640 process_die (child_die, cu);
11641 child_die = sibling_die (child_die);
11642 }
11643 }
11644 }
11645 \f
11646 /* DWO/DWP files.
11647
11648 http://gcc.gnu.org/wiki/DebugFission
11649 http://gcc.gnu.org/wiki/DebugFissionDWP
11650
11651 To simplify handling of both DWO files ("object" files with the DWARF info)
11652 and DWP files (a file with the DWOs packaged up into one file), we treat
11653 DWP files as having a collection of virtual DWO files. */
11654
11655 static hashval_t
11656 hash_dwo_file (const void *item)
11657 {
11658 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11659 hashval_t hash;
11660
11661 hash = htab_hash_string (dwo_file->dwo_name);
11662 if (dwo_file->comp_dir != NULL)
11663 hash += htab_hash_string (dwo_file->comp_dir);
11664 return hash;
11665 }
11666
11667 static int
11668 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11669 {
11670 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11671 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11672
11673 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11674 return 0;
11675 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11676 return lhs->comp_dir == rhs->comp_dir;
11677 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11678 }
11679
11680 /* Allocate a hash table for DWO files. */
11681
11682 static htab_t
11683 allocate_dwo_file_hash_table (struct objfile *objfile)
11684 {
11685 return htab_create_alloc_ex (41,
11686 hash_dwo_file,
11687 eq_dwo_file,
11688 NULL,
11689 &objfile->objfile_obstack,
11690 hashtab_obstack_allocate,
11691 dummy_obstack_deallocate);
11692 }
11693
11694 /* Lookup DWO file DWO_NAME. */
11695
11696 static void **
11697 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11698 const char *dwo_name,
11699 const char *comp_dir)
11700 {
11701 struct dwo_file find_entry;
11702 void **slot;
11703
11704 if (dwarf2_per_objfile->dwo_files == NULL)
11705 dwarf2_per_objfile->dwo_files
11706 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11707
11708 memset (&find_entry, 0, sizeof (find_entry));
11709 find_entry.dwo_name = dwo_name;
11710 find_entry.comp_dir = comp_dir;
11711 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11712
11713 return slot;
11714 }
11715
11716 static hashval_t
11717 hash_dwo_unit (const void *item)
11718 {
11719 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11720
11721 /* This drops the top 32 bits of the id, but is ok for a hash. */
11722 return dwo_unit->signature;
11723 }
11724
11725 static int
11726 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11727 {
11728 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11729 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11730
11731 /* The signature is assumed to be unique within the DWO file.
11732 So while object file CU dwo_id's always have the value zero,
11733 that's OK, assuming each object file DWO file has only one CU,
11734 and that's the rule for now. */
11735 return lhs->signature == rhs->signature;
11736 }
11737
11738 /* Allocate a hash table for DWO CUs,TUs.
11739 There is one of these tables for each of CUs,TUs for each DWO file. */
11740
11741 static htab_t
11742 allocate_dwo_unit_table (struct objfile *objfile)
11743 {
11744 /* Start out with a pretty small number.
11745 Generally DWO files contain only one CU and maybe some TUs. */
11746 return htab_create_alloc_ex (3,
11747 hash_dwo_unit,
11748 eq_dwo_unit,
11749 NULL,
11750 &objfile->objfile_obstack,
11751 hashtab_obstack_allocate,
11752 dummy_obstack_deallocate);
11753 }
11754
11755 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11756
11757 struct create_dwo_cu_data
11758 {
11759 struct dwo_file *dwo_file;
11760 struct dwo_unit dwo_unit;
11761 };
11762
11763 /* die_reader_func for create_dwo_cu. */
11764
11765 static void
11766 create_dwo_cu_reader (const struct die_reader_specs *reader,
11767 const gdb_byte *info_ptr,
11768 struct die_info *comp_unit_die,
11769 int has_children,
11770 void *datap)
11771 {
11772 struct dwarf2_cu *cu = reader->cu;
11773 sect_offset sect_off = cu->per_cu->sect_off;
11774 struct dwarf2_section_info *section = cu->per_cu->section;
11775 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11776 struct dwo_file *dwo_file = data->dwo_file;
11777 struct dwo_unit *dwo_unit = &data->dwo_unit;
11778 struct attribute *attr;
11779
11780 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11781 if (attr == NULL)
11782 {
11783 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11784 " its dwo_id [in module %s]"),
11785 sect_offset_str (sect_off), dwo_file->dwo_name);
11786 return;
11787 }
11788
11789 dwo_unit->dwo_file = dwo_file;
11790 dwo_unit->signature = DW_UNSND (attr);
11791 dwo_unit->section = section;
11792 dwo_unit->sect_off = sect_off;
11793 dwo_unit->length = cu->per_cu->length;
11794
11795 if (dwarf_read_debug)
11796 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11797 sect_offset_str (sect_off),
11798 hex_string (dwo_unit->signature));
11799 }
11800
11801 /* Create the dwo_units for the CUs in a DWO_FILE.
11802 Note: This function processes DWO files only, not DWP files. */
11803
11804 static void
11805 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11806 struct dwo_file &dwo_file, dwarf2_section_info &section,
11807 htab_t &cus_htab)
11808 {
11809 struct objfile *objfile = dwarf2_per_objfile->objfile;
11810 const gdb_byte *info_ptr, *end_ptr;
11811
11812 dwarf2_read_section (objfile, &section);
11813 info_ptr = section.buffer;
11814
11815 if (info_ptr == NULL)
11816 return;
11817
11818 if (dwarf_read_debug)
11819 {
11820 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11821 get_section_name (&section),
11822 get_section_file_name (&section));
11823 }
11824
11825 end_ptr = info_ptr + section.size;
11826 while (info_ptr < end_ptr)
11827 {
11828 struct dwarf2_per_cu_data per_cu;
11829 struct create_dwo_cu_data create_dwo_cu_data;
11830 struct dwo_unit *dwo_unit;
11831 void **slot;
11832 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11833
11834 memset (&create_dwo_cu_data.dwo_unit, 0,
11835 sizeof (create_dwo_cu_data.dwo_unit));
11836 memset (&per_cu, 0, sizeof (per_cu));
11837 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11838 per_cu.is_debug_types = 0;
11839 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11840 per_cu.section = &section;
11841 create_dwo_cu_data.dwo_file = &dwo_file;
11842
11843 init_cutu_and_read_dies_no_follow (
11844 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11845 info_ptr += per_cu.length;
11846
11847 // If the unit could not be parsed, skip it.
11848 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11849 continue;
11850
11851 if (cus_htab == NULL)
11852 cus_htab = allocate_dwo_unit_table (objfile);
11853
11854 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11855 *dwo_unit = create_dwo_cu_data.dwo_unit;
11856 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11857 gdb_assert (slot != NULL);
11858 if (*slot != NULL)
11859 {
11860 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11861 sect_offset dup_sect_off = dup_cu->sect_off;
11862
11863 complaint (_("debug cu entry at offset %s is duplicate to"
11864 " the entry at offset %s, signature %s"),
11865 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11866 hex_string (dwo_unit->signature));
11867 }
11868 *slot = (void *)dwo_unit;
11869 }
11870 }
11871
11872 /* DWP file .debug_{cu,tu}_index section format:
11873 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11874
11875 DWP Version 1:
11876
11877 Both index sections have the same format, and serve to map a 64-bit
11878 signature to a set of section numbers. Each section begins with a header,
11879 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11880 indexes, and a pool of 32-bit section numbers. The index sections will be
11881 aligned at 8-byte boundaries in the file.
11882
11883 The index section header consists of:
11884
11885 V, 32 bit version number
11886 -, 32 bits unused
11887 N, 32 bit number of compilation units or type units in the index
11888 M, 32 bit number of slots in the hash table
11889
11890 Numbers are recorded using the byte order of the application binary.
11891
11892 The hash table begins at offset 16 in the section, and consists of an array
11893 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11894 order of the application binary). Unused slots in the hash table are 0.
11895 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11896
11897 The parallel table begins immediately after the hash table
11898 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11899 array of 32-bit indexes (using the byte order of the application binary),
11900 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11901 table contains a 32-bit index into the pool of section numbers. For unused
11902 hash table slots, the corresponding entry in the parallel table will be 0.
11903
11904 The pool of section numbers begins immediately following the hash table
11905 (at offset 16 + 12 * M from the beginning of the section). The pool of
11906 section numbers consists of an array of 32-bit words (using the byte order
11907 of the application binary). Each item in the array is indexed starting
11908 from 0. The hash table entry provides the index of the first section
11909 number in the set. Additional section numbers in the set follow, and the
11910 set is terminated by a 0 entry (section number 0 is not used in ELF).
11911
11912 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11913 section must be the first entry in the set, and the .debug_abbrev.dwo must
11914 be the second entry. Other members of the set may follow in any order.
11915
11916 ---
11917
11918 DWP Version 2:
11919
11920 DWP Version 2 combines all the .debug_info, etc. sections into one,
11921 and the entries in the index tables are now offsets into these sections.
11922 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11923 section.
11924
11925 Index Section Contents:
11926 Header
11927 Hash Table of Signatures dwp_hash_table.hash_table
11928 Parallel Table of Indices dwp_hash_table.unit_table
11929 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11930 Table of Section Sizes dwp_hash_table.v2.sizes
11931
11932 The index section header consists of:
11933
11934 V, 32 bit version number
11935 L, 32 bit number of columns in the table of section offsets
11936 N, 32 bit number of compilation units or type units in the index
11937 M, 32 bit number of slots in the hash table
11938
11939 Numbers are recorded using the byte order of the application binary.
11940
11941 The hash table has the same format as version 1.
11942 The parallel table of indices has the same format as version 1,
11943 except that the entries are origin-1 indices into the table of sections
11944 offsets and the table of section sizes.
11945
11946 The table of offsets begins immediately following the parallel table
11947 (at offset 16 + 12 * M from the beginning of the section). The table is
11948 a two-dimensional array of 32-bit words (using the byte order of the
11949 application binary), with L columns and N+1 rows, in row-major order.
11950 Each row in the array is indexed starting from 0. The first row provides
11951 a key to the remaining rows: each column in this row provides an identifier
11952 for a debug section, and the offsets in the same column of subsequent rows
11953 refer to that section. The section identifiers are:
11954
11955 DW_SECT_INFO 1 .debug_info.dwo
11956 DW_SECT_TYPES 2 .debug_types.dwo
11957 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11958 DW_SECT_LINE 4 .debug_line.dwo
11959 DW_SECT_LOC 5 .debug_loc.dwo
11960 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11961 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11962 DW_SECT_MACRO 8 .debug_macro.dwo
11963
11964 The offsets provided by the CU and TU index sections are the base offsets
11965 for the contributions made by each CU or TU to the corresponding section
11966 in the package file. Each CU and TU header contains an abbrev_offset
11967 field, used to find the abbreviations table for that CU or TU within the
11968 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11969 be interpreted as relative to the base offset given in the index section.
11970 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11971 should be interpreted as relative to the base offset for .debug_line.dwo,
11972 and offsets into other debug sections obtained from DWARF attributes should
11973 also be interpreted as relative to the corresponding base offset.
11974
11975 The table of sizes begins immediately following the table of offsets.
11976 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11977 with L columns and N rows, in row-major order. Each row in the array is
11978 indexed starting from 1 (row 0 is shared by the two tables).
11979
11980 ---
11981
11982 Hash table lookup is handled the same in version 1 and 2:
11983
11984 We assume that N and M will not exceed 2^32 - 1.
11985 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11986
11987 Given a 64-bit compilation unit signature or a type signature S, an entry
11988 in the hash table is located as follows:
11989
11990 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11991 the low-order k bits all set to 1.
11992
11993 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11994
11995 3) If the hash table entry at index H matches the signature, use that
11996 entry. If the hash table entry at index H is unused (all zeroes),
11997 terminate the search: the signature is not present in the table.
11998
11999 4) Let H = (H + H') modulo M. Repeat at Step 3.
12000
12001 Because M > N and H' and M are relatively prime, the search is guaranteed
12002 to stop at an unused slot or find the match. */
12003
12004 /* Create a hash table to map DWO IDs to their CU/TU entry in
12005 .debug_{info,types}.dwo in DWP_FILE.
12006 Returns NULL if there isn't one.
12007 Note: This function processes DWP files only, not DWO files. */
12008
12009 static struct dwp_hash_table *
12010 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12011 struct dwp_file *dwp_file, int is_debug_types)
12012 {
12013 struct objfile *objfile = dwarf2_per_objfile->objfile;
12014 bfd *dbfd = dwp_file->dbfd.get ();
12015 const gdb_byte *index_ptr, *index_end;
12016 struct dwarf2_section_info *index;
12017 uint32_t version, nr_columns, nr_units, nr_slots;
12018 struct dwp_hash_table *htab;
12019
12020 if (is_debug_types)
12021 index = &dwp_file->sections.tu_index;
12022 else
12023 index = &dwp_file->sections.cu_index;
12024
12025 if (dwarf2_section_empty_p (index))
12026 return NULL;
12027 dwarf2_read_section (objfile, index);
12028
12029 index_ptr = index->buffer;
12030 index_end = index_ptr + index->size;
12031
12032 version = read_4_bytes (dbfd, index_ptr);
12033 index_ptr += 4;
12034 if (version == 2)
12035 nr_columns = read_4_bytes (dbfd, index_ptr);
12036 else
12037 nr_columns = 0;
12038 index_ptr += 4;
12039 nr_units = read_4_bytes (dbfd, index_ptr);
12040 index_ptr += 4;
12041 nr_slots = read_4_bytes (dbfd, index_ptr);
12042 index_ptr += 4;
12043
12044 if (version != 1 && version != 2)
12045 {
12046 error (_("Dwarf Error: unsupported DWP file version (%s)"
12047 " [in module %s]"),
12048 pulongest (version), dwp_file->name);
12049 }
12050 if (nr_slots != (nr_slots & -nr_slots))
12051 {
12052 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12053 " is not power of 2 [in module %s]"),
12054 pulongest (nr_slots), dwp_file->name);
12055 }
12056
12057 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12058 htab->version = version;
12059 htab->nr_columns = nr_columns;
12060 htab->nr_units = nr_units;
12061 htab->nr_slots = nr_slots;
12062 htab->hash_table = index_ptr;
12063 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12064
12065 /* Exit early if the table is empty. */
12066 if (nr_slots == 0 || nr_units == 0
12067 || (version == 2 && nr_columns == 0))
12068 {
12069 /* All must be zero. */
12070 if (nr_slots != 0 || nr_units != 0
12071 || (version == 2 && nr_columns != 0))
12072 {
12073 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12074 " all zero [in modules %s]"),
12075 dwp_file->name);
12076 }
12077 return htab;
12078 }
12079
12080 if (version == 1)
12081 {
12082 htab->section_pool.v1.indices =
12083 htab->unit_table + sizeof (uint32_t) * nr_slots;
12084 /* It's harder to decide whether the section is too small in v1.
12085 V1 is deprecated anyway so we punt. */
12086 }
12087 else
12088 {
12089 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12090 int *ids = htab->section_pool.v2.section_ids;
12091 /* Reverse map for error checking. */
12092 int ids_seen[DW_SECT_MAX + 1];
12093 int i;
12094
12095 if (nr_columns < 2)
12096 {
12097 error (_("Dwarf Error: bad DWP hash table, too few columns"
12098 " in section table [in module %s]"),
12099 dwp_file->name);
12100 }
12101 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12102 {
12103 error (_("Dwarf Error: bad DWP hash table, too many columns"
12104 " in section table [in module %s]"),
12105 dwp_file->name);
12106 }
12107 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12108 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12109 for (i = 0; i < nr_columns; ++i)
12110 {
12111 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12112
12113 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12114 {
12115 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12116 " in section table [in module %s]"),
12117 id, dwp_file->name);
12118 }
12119 if (ids_seen[id] != -1)
12120 {
12121 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12122 " id %d in section table [in module %s]"),
12123 id, dwp_file->name);
12124 }
12125 ids_seen[id] = i;
12126 ids[i] = id;
12127 }
12128 /* Must have exactly one info or types section. */
12129 if (((ids_seen[DW_SECT_INFO] != -1)
12130 + (ids_seen[DW_SECT_TYPES] != -1))
12131 != 1)
12132 {
12133 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12134 " DWO info/types section [in module %s]"),
12135 dwp_file->name);
12136 }
12137 /* Must have an abbrev section. */
12138 if (ids_seen[DW_SECT_ABBREV] == -1)
12139 {
12140 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12141 " section [in module %s]"),
12142 dwp_file->name);
12143 }
12144 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12145 htab->section_pool.v2.sizes =
12146 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12147 * nr_units * nr_columns);
12148 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12149 * nr_units * nr_columns))
12150 > index_end)
12151 {
12152 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12153 " [in module %s]"),
12154 dwp_file->name);
12155 }
12156 }
12157
12158 return htab;
12159 }
12160
12161 /* Update SECTIONS with the data from SECTP.
12162
12163 This function is like the other "locate" section routines that are
12164 passed to bfd_map_over_sections, but in this context the sections to
12165 read comes from the DWP V1 hash table, not the full ELF section table.
12166
12167 The result is non-zero for success, or zero if an error was found. */
12168
12169 static int
12170 locate_v1_virtual_dwo_sections (asection *sectp,
12171 struct virtual_v1_dwo_sections *sections)
12172 {
12173 const struct dwop_section_names *names = &dwop_section_names;
12174
12175 if (section_is_p (sectp->name, &names->abbrev_dwo))
12176 {
12177 /* There can be only one. */
12178 if (sections->abbrev.s.section != NULL)
12179 return 0;
12180 sections->abbrev.s.section = sectp;
12181 sections->abbrev.size = bfd_get_section_size (sectp);
12182 }
12183 else if (section_is_p (sectp->name, &names->info_dwo)
12184 || section_is_p (sectp->name, &names->types_dwo))
12185 {
12186 /* There can be only one. */
12187 if (sections->info_or_types.s.section != NULL)
12188 return 0;
12189 sections->info_or_types.s.section = sectp;
12190 sections->info_or_types.size = bfd_get_section_size (sectp);
12191 }
12192 else if (section_is_p (sectp->name, &names->line_dwo))
12193 {
12194 /* There can be only one. */
12195 if (sections->line.s.section != NULL)
12196 return 0;
12197 sections->line.s.section = sectp;
12198 sections->line.size = bfd_get_section_size (sectp);
12199 }
12200 else if (section_is_p (sectp->name, &names->loc_dwo))
12201 {
12202 /* There can be only one. */
12203 if (sections->loc.s.section != NULL)
12204 return 0;
12205 sections->loc.s.section = sectp;
12206 sections->loc.size = bfd_get_section_size (sectp);
12207 }
12208 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12209 {
12210 /* There can be only one. */
12211 if (sections->macinfo.s.section != NULL)
12212 return 0;
12213 sections->macinfo.s.section = sectp;
12214 sections->macinfo.size = bfd_get_section_size (sectp);
12215 }
12216 else if (section_is_p (sectp->name, &names->macro_dwo))
12217 {
12218 /* There can be only one. */
12219 if (sections->macro.s.section != NULL)
12220 return 0;
12221 sections->macro.s.section = sectp;
12222 sections->macro.size = bfd_get_section_size (sectp);
12223 }
12224 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12225 {
12226 /* There can be only one. */
12227 if (sections->str_offsets.s.section != NULL)
12228 return 0;
12229 sections->str_offsets.s.section = sectp;
12230 sections->str_offsets.size = bfd_get_section_size (sectp);
12231 }
12232 else
12233 {
12234 /* No other kind of section is valid. */
12235 return 0;
12236 }
12237
12238 return 1;
12239 }
12240
12241 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12242 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12243 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12244 This is for DWP version 1 files. */
12245
12246 static struct dwo_unit *
12247 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12248 struct dwp_file *dwp_file,
12249 uint32_t unit_index,
12250 const char *comp_dir,
12251 ULONGEST signature, int is_debug_types)
12252 {
12253 struct objfile *objfile = dwarf2_per_objfile->objfile;
12254 const struct dwp_hash_table *dwp_htab =
12255 is_debug_types ? dwp_file->tus : dwp_file->cus;
12256 bfd *dbfd = dwp_file->dbfd.get ();
12257 const char *kind = is_debug_types ? "TU" : "CU";
12258 struct dwo_file *dwo_file;
12259 struct dwo_unit *dwo_unit;
12260 struct virtual_v1_dwo_sections sections;
12261 void **dwo_file_slot;
12262 int i;
12263
12264 gdb_assert (dwp_file->version == 1);
12265
12266 if (dwarf_read_debug)
12267 {
12268 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12269 kind,
12270 pulongest (unit_index), hex_string (signature),
12271 dwp_file->name);
12272 }
12273
12274 /* Fetch the sections of this DWO unit.
12275 Put a limit on the number of sections we look for so that bad data
12276 doesn't cause us to loop forever. */
12277
12278 #define MAX_NR_V1_DWO_SECTIONS \
12279 (1 /* .debug_info or .debug_types */ \
12280 + 1 /* .debug_abbrev */ \
12281 + 1 /* .debug_line */ \
12282 + 1 /* .debug_loc */ \
12283 + 1 /* .debug_str_offsets */ \
12284 + 1 /* .debug_macro or .debug_macinfo */ \
12285 + 1 /* trailing zero */)
12286
12287 memset (&sections, 0, sizeof (sections));
12288
12289 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12290 {
12291 asection *sectp;
12292 uint32_t section_nr =
12293 read_4_bytes (dbfd,
12294 dwp_htab->section_pool.v1.indices
12295 + (unit_index + i) * sizeof (uint32_t));
12296
12297 if (section_nr == 0)
12298 break;
12299 if (section_nr >= dwp_file->num_sections)
12300 {
12301 error (_("Dwarf Error: bad DWP hash table, section number too large"
12302 " [in module %s]"),
12303 dwp_file->name);
12304 }
12305
12306 sectp = dwp_file->elf_sections[section_nr];
12307 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12308 {
12309 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12310 " [in module %s]"),
12311 dwp_file->name);
12312 }
12313 }
12314
12315 if (i < 2
12316 || dwarf2_section_empty_p (&sections.info_or_types)
12317 || dwarf2_section_empty_p (&sections.abbrev))
12318 {
12319 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12320 " [in module %s]"),
12321 dwp_file->name);
12322 }
12323 if (i == MAX_NR_V1_DWO_SECTIONS)
12324 {
12325 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12326 " [in module %s]"),
12327 dwp_file->name);
12328 }
12329
12330 /* It's easier for the rest of the code if we fake a struct dwo_file and
12331 have dwo_unit "live" in that. At least for now.
12332
12333 The DWP file can be made up of a random collection of CUs and TUs.
12334 However, for each CU + set of TUs that came from the same original DWO
12335 file, we can combine them back into a virtual DWO file to save space
12336 (fewer struct dwo_file objects to allocate). Remember that for really
12337 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12338
12339 std::string virtual_dwo_name =
12340 string_printf ("virtual-dwo/%d-%d-%d-%d",
12341 get_section_id (&sections.abbrev),
12342 get_section_id (&sections.line),
12343 get_section_id (&sections.loc),
12344 get_section_id (&sections.str_offsets));
12345 /* Can we use an existing virtual DWO file? */
12346 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12347 virtual_dwo_name.c_str (),
12348 comp_dir);
12349 /* Create one if necessary. */
12350 if (*dwo_file_slot == NULL)
12351 {
12352 if (dwarf_read_debug)
12353 {
12354 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12355 virtual_dwo_name.c_str ());
12356 }
12357 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12358 dwo_file->dwo_name
12359 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12360 virtual_dwo_name.c_str (),
12361 virtual_dwo_name.size ());
12362 dwo_file->comp_dir = comp_dir;
12363 dwo_file->sections.abbrev = sections.abbrev;
12364 dwo_file->sections.line = sections.line;
12365 dwo_file->sections.loc = sections.loc;
12366 dwo_file->sections.macinfo = sections.macinfo;
12367 dwo_file->sections.macro = sections.macro;
12368 dwo_file->sections.str_offsets = sections.str_offsets;
12369 /* The "str" section is global to the entire DWP file. */
12370 dwo_file->sections.str = dwp_file->sections.str;
12371 /* The info or types section is assigned below to dwo_unit,
12372 there's no need to record it in dwo_file.
12373 Also, we can't simply record type sections in dwo_file because
12374 we record a pointer into the vector in dwo_unit. As we collect more
12375 types we'll grow the vector and eventually have to reallocate space
12376 for it, invalidating all copies of pointers into the previous
12377 contents. */
12378 *dwo_file_slot = dwo_file;
12379 }
12380 else
12381 {
12382 if (dwarf_read_debug)
12383 {
12384 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12385 virtual_dwo_name.c_str ());
12386 }
12387 dwo_file = (struct dwo_file *) *dwo_file_slot;
12388 }
12389
12390 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12391 dwo_unit->dwo_file = dwo_file;
12392 dwo_unit->signature = signature;
12393 dwo_unit->section =
12394 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12395 *dwo_unit->section = sections.info_or_types;
12396 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12397
12398 return dwo_unit;
12399 }
12400
12401 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12402 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12403 piece within that section used by a TU/CU, return a virtual section
12404 of just that piece. */
12405
12406 static struct dwarf2_section_info
12407 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12408 struct dwarf2_section_info *section,
12409 bfd_size_type offset, bfd_size_type size)
12410 {
12411 struct dwarf2_section_info result;
12412 asection *sectp;
12413
12414 gdb_assert (section != NULL);
12415 gdb_assert (!section->is_virtual);
12416
12417 memset (&result, 0, sizeof (result));
12418 result.s.containing_section = section;
12419 result.is_virtual = 1;
12420
12421 if (size == 0)
12422 return result;
12423
12424 sectp = get_section_bfd_section (section);
12425
12426 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12427 bounds of the real section. This is a pretty-rare event, so just
12428 flag an error (easier) instead of a warning and trying to cope. */
12429 if (sectp == NULL
12430 || offset + size > bfd_get_section_size (sectp))
12431 {
12432 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12433 " in section %s [in module %s]"),
12434 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12435 objfile_name (dwarf2_per_objfile->objfile));
12436 }
12437
12438 result.virtual_offset = offset;
12439 result.size = size;
12440 return result;
12441 }
12442
12443 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12444 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12445 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12446 This is for DWP version 2 files. */
12447
12448 static struct dwo_unit *
12449 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12450 struct dwp_file *dwp_file,
12451 uint32_t unit_index,
12452 const char *comp_dir,
12453 ULONGEST signature, int is_debug_types)
12454 {
12455 struct objfile *objfile = dwarf2_per_objfile->objfile;
12456 const struct dwp_hash_table *dwp_htab =
12457 is_debug_types ? dwp_file->tus : dwp_file->cus;
12458 bfd *dbfd = dwp_file->dbfd.get ();
12459 const char *kind = is_debug_types ? "TU" : "CU";
12460 struct dwo_file *dwo_file;
12461 struct dwo_unit *dwo_unit;
12462 struct virtual_v2_dwo_sections sections;
12463 void **dwo_file_slot;
12464 int i;
12465
12466 gdb_assert (dwp_file->version == 2);
12467
12468 if (dwarf_read_debug)
12469 {
12470 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12471 kind,
12472 pulongest (unit_index), hex_string (signature),
12473 dwp_file->name);
12474 }
12475
12476 /* Fetch the section offsets of this DWO unit. */
12477
12478 memset (&sections, 0, sizeof (sections));
12479
12480 for (i = 0; i < dwp_htab->nr_columns; ++i)
12481 {
12482 uint32_t offset = read_4_bytes (dbfd,
12483 dwp_htab->section_pool.v2.offsets
12484 + (((unit_index - 1) * dwp_htab->nr_columns
12485 + i)
12486 * sizeof (uint32_t)));
12487 uint32_t size = read_4_bytes (dbfd,
12488 dwp_htab->section_pool.v2.sizes
12489 + (((unit_index - 1) * dwp_htab->nr_columns
12490 + i)
12491 * sizeof (uint32_t)));
12492
12493 switch (dwp_htab->section_pool.v2.section_ids[i])
12494 {
12495 case DW_SECT_INFO:
12496 case DW_SECT_TYPES:
12497 sections.info_or_types_offset = offset;
12498 sections.info_or_types_size = size;
12499 break;
12500 case DW_SECT_ABBREV:
12501 sections.abbrev_offset = offset;
12502 sections.abbrev_size = size;
12503 break;
12504 case DW_SECT_LINE:
12505 sections.line_offset = offset;
12506 sections.line_size = size;
12507 break;
12508 case DW_SECT_LOC:
12509 sections.loc_offset = offset;
12510 sections.loc_size = size;
12511 break;
12512 case DW_SECT_STR_OFFSETS:
12513 sections.str_offsets_offset = offset;
12514 sections.str_offsets_size = size;
12515 break;
12516 case DW_SECT_MACINFO:
12517 sections.macinfo_offset = offset;
12518 sections.macinfo_size = size;
12519 break;
12520 case DW_SECT_MACRO:
12521 sections.macro_offset = offset;
12522 sections.macro_size = size;
12523 break;
12524 }
12525 }
12526
12527 /* It's easier for the rest of the code if we fake a struct dwo_file and
12528 have dwo_unit "live" in that. At least for now.
12529
12530 The DWP file can be made up of a random collection of CUs and TUs.
12531 However, for each CU + set of TUs that came from the same original DWO
12532 file, we can combine them back into a virtual DWO file to save space
12533 (fewer struct dwo_file objects to allocate). Remember that for really
12534 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12535
12536 std::string virtual_dwo_name =
12537 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12538 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12539 (long) (sections.line_size ? sections.line_offset : 0),
12540 (long) (sections.loc_size ? sections.loc_offset : 0),
12541 (long) (sections.str_offsets_size
12542 ? sections.str_offsets_offset : 0));
12543 /* Can we use an existing virtual DWO file? */
12544 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12545 virtual_dwo_name.c_str (),
12546 comp_dir);
12547 /* Create one if necessary. */
12548 if (*dwo_file_slot == NULL)
12549 {
12550 if (dwarf_read_debug)
12551 {
12552 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12553 virtual_dwo_name.c_str ());
12554 }
12555 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12556 dwo_file->dwo_name
12557 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12558 virtual_dwo_name.c_str (),
12559 virtual_dwo_name.size ());
12560 dwo_file->comp_dir = comp_dir;
12561 dwo_file->sections.abbrev =
12562 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12563 sections.abbrev_offset, sections.abbrev_size);
12564 dwo_file->sections.line =
12565 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12566 sections.line_offset, sections.line_size);
12567 dwo_file->sections.loc =
12568 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12569 sections.loc_offset, sections.loc_size);
12570 dwo_file->sections.macinfo =
12571 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12572 sections.macinfo_offset, sections.macinfo_size);
12573 dwo_file->sections.macro =
12574 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12575 sections.macro_offset, sections.macro_size);
12576 dwo_file->sections.str_offsets =
12577 create_dwp_v2_section (dwarf2_per_objfile,
12578 &dwp_file->sections.str_offsets,
12579 sections.str_offsets_offset,
12580 sections.str_offsets_size);
12581 /* The "str" section is global to the entire DWP file. */
12582 dwo_file->sections.str = dwp_file->sections.str;
12583 /* The info or types section is assigned below to dwo_unit,
12584 there's no need to record it in dwo_file.
12585 Also, we can't simply record type sections in dwo_file because
12586 we record a pointer into the vector in dwo_unit. As we collect more
12587 types we'll grow the vector and eventually have to reallocate space
12588 for it, invalidating all copies of pointers into the previous
12589 contents. */
12590 *dwo_file_slot = dwo_file;
12591 }
12592 else
12593 {
12594 if (dwarf_read_debug)
12595 {
12596 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12597 virtual_dwo_name.c_str ());
12598 }
12599 dwo_file = (struct dwo_file *) *dwo_file_slot;
12600 }
12601
12602 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12603 dwo_unit->dwo_file = dwo_file;
12604 dwo_unit->signature = signature;
12605 dwo_unit->section =
12606 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12607 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12608 is_debug_types
12609 ? &dwp_file->sections.types
12610 : &dwp_file->sections.info,
12611 sections.info_or_types_offset,
12612 sections.info_or_types_size);
12613 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12614
12615 return dwo_unit;
12616 }
12617
12618 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12619 Returns NULL if the signature isn't found. */
12620
12621 static struct dwo_unit *
12622 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12623 struct dwp_file *dwp_file, const char *comp_dir,
12624 ULONGEST signature, int is_debug_types)
12625 {
12626 const struct dwp_hash_table *dwp_htab =
12627 is_debug_types ? dwp_file->tus : dwp_file->cus;
12628 bfd *dbfd = dwp_file->dbfd.get ();
12629 uint32_t mask = dwp_htab->nr_slots - 1;
12630 uint32_t hash = signature & mask;
12631 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12632 unsigned int i;
12633 void **slot;
12634 struct dwo_unit find_dwo_cu;
12635
12636 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12637 find_dwo_cu.signature = signature;
12638 slot = htab_find_slot (is_debug_types
12639 ? dwp_file->loaded_tus
12640 : dwp_file->loaded_cus,
12641 &find_dwo_cu, INSERT);
12642
12643 if (*slot != NULL)
12644 return (struct dwo_unit *) *slot;
12645
12646 /* Use a for loop so that we don't loop forever on bad debug info. */
12647 for (i = 0; i < dwp_htab->nr_slots; ++i)
12648 {
12649 ULONGEST signature_in_table;
12650
12651 signature_in_table =
12652 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12653 if (signature_in_table == signature)
12654 {
12655 uint32_t unit_index =
12656 read_4_bytes (dbfd,
12657 dwp_htab->unit_table + hash * sizeof (uint32_t));
12658
12659 if (dwp_file->version == 1)
12660 {
12661 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12662 dwp_file, unit_index,
12663 comp_dir, signature,
12664 is_debug_types);
12665 }
12666 else
12667 {
12668 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12669 dwp_file, unit_index,
12670 comp_dir, signature,
12671 is_debug_types);
12672 }
12673 return (struct dwo_unit *) *slot;
12674 }
12675 if (signature_in_table == 0)
12676 return NULL;
12677 hash = (hash + hash2) & mask;
12678 }
12679
12680 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12681 " [in module %s]"),
12682 dwp_file->name);
12683 }
12684
12685 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12686 Open the file specified by FILE_NAME and hand it off to BFD for
12687 preliminary analysis. Return a newly initialized bfd *, which
12688 includes a canonicalized copy of FILE_NAME.
12689 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12690 SEARCH_CWD is true if the current directory is to be searched.
12691 It will be searched before debug-file-directory.
12692 If successful, the file is added to the bfd include table of the
12693 objfile's bfd (see gdb_bfd_record_inclusion).
12694 If unable to find/open the file, return NULL.
12695 NOTE: This function is derived from symfile_bfd_open. */
12696
12697 static gdb_bfd_ref_ptr
12698 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12699 const char *file_name, int is_dwp, int search_cwd)
12700 {
12701 int desc;
12702 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12703 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12704 to debug_file_directory. */
12705 const char *search_path;
12706 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12707
12708 gdb::unique_xmalloc_ptr<char> search_path_holder;
12709 if (search_cwd)
12710 {
12711 if (*debug_file_directory != '\0')
12712 {
12713 search_path_holder.reset (concat (".", dirname_separator_string,
12714 debug_file_directory,
12715 (char *) NULL));
12716 search_path = search_path_holder.get ();
12717 }
12718 else
12719 search_path = ".";
12720 }
12721 else
12722 search_path = debug_file_directory;
12723
12724 openp_flags flags = OPF_RETURN_REALPATH;
12725 if (is_dwp)
12726 flags |= OPF_SEARCH_IN_PATH;
12727
12728 gdb::unique_xmalloc_ptr<char> absolute_name;
12729 desc = openp (search_path, flags, file_name,
12730 O_RDONLY | O_BINARY, &absolute_name);
12731 if (desc < 0)
12732 return NULL;
12733
12734 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12735 gnutarget, desc));
12736 if (sym_bfd == NULL)
12737 return NULL;
12738 bfd_set_cacheable (sym_bfd.get (), 1);
12739
12740 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12741 return NULL;
12742
12743 /* Success. Record the bfd as having been included by the objfile's bfd.
12744 This is important because things like demangled_names_hash lives in the
12745 objfile's per_bfd space and may have references to things like symbol
12746 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12747 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12748
12749 return sym_bfd;
12750 }
12751
12752 /* Try to open DWO file FILE_NAME.
12753 COMP_DIR is the DW_AT_comp_dir attribute.
12754 The result is the bfd handle of the file.
12755 If there is a problem finding or opening the file, return NULL.
12756 Upon success, the canonicalized path of the file is stored in the bfd,
12757 same as symfile_bfd_open. */
12758
12759 static gdb_bfd_ref_ptr
12760 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12761 const char *file_name, const char *comp_dir)
12762 {
12763 if (IS_ABSOLUTE_PATH (file_name))
12764 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12765 0 /*is_dwp*/, 0 /*search_cwd*/);
12766
12767 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12768
12769 if (comp_dir != NULL)
12770 {
12771 char *path_to_try = concat (comp_dir, SLASH_STRING,
12772 file_name, (char *) NULL);
12773
12774 /* NOTE: If comp_dir is a relative path, this will also try the
12775 search path, which seems useful. */
12776 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12777 path_to_try,
12778 0 /*is_dwp*/,
12779 1 /*search_cwd*/));
12780 xfree (path_to_try);
12781 if (abfd != NULL)
12782 return abfd;
12783 }
12784
12785 /* That didn't work, try debug-file-directory, which, despite its name,
12786 is a list of paths. */
12787
12788 if (*debug_file_directory == '\0')
12789 return NULL;
12790
12791 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12792 0 /*is_dwp*/, 1 /*search_cwd*/);
12793 }
12794
12795 /* This function is mapped across the sections and remembers the offset and
12796 size of each of the DWO debugging sections we are interested in. */
12797
12798 static void
12799 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12800 {
12801 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12802 const struct dwop_section_names *names = &dwop_section_names;
12803
12804 if (section_is_p (sectp->name, &names->abbrev_dwo))
12805 {
12806 dwo_sections->abbrev.s.section = sectp;
12807 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12808 }
12809 else if (section_is_p (sectp->name, &names->info_dwo))
12810 {
12811 dwo_sections->info.s.section = sectp;
12812 dwo_sections->info.size = bfd_get_section_size (sectp);
12813 }
12814 else if (section_is_p (sectp->name, &names->line_dwo))
12815 {
12816 dwo_sections->line.s.section = sectp;
12817 dwo_sections->line.size = bfd_get_section_size (sectp);
12818 }
12819 else if (section_is_p (sectp->name, &names->loc_dwo))
12820 {
12821 dwo_sections->loc.s.section = sectp;
12822 dwo_sections->loc.size = bfd_get_section_size (sectp);
12823 }
12824 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12825 {
12826 dwo_sections->macinfo.s.section = sectp;
12827 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12828 }
12829 else if (section_is_p (sectp->name, &names->macro_dwo))
12830 {
12831 dwo_sections->macro.s.section = sectp;
12832 dwo_sections->macro.size = bfd_get_section_size (sectp);
12833 }
12834 else if (section_is_p (sectp->name, &names->str_dwo))
12835 {
12836 dwo_sections->str.s.section = sectp;
12837 dwo_sections->str.size = bfd_get_section_size (sectp);
12838 }
12839 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12840 {
12841 dwo_sections->str_offsets.s.section = sectp;
12842 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12843 }
12844 else if (section_is_p (sectp->name, &names->types_dwo))
12845 {
12846 struct dwarf2_section_info type_section;
12847
12848 memset (&type_section, 0, sizeof (type_section));
12849 type_section.s.section = sectp;
12850 type_section.size = bfd_get_section_size (sectp);
12851 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12852 &type_section);
12853 }
12854 }
12855
12856 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12857 by PER_CU. This is for the non-DWP case.
12858 The result is NULL if DWO_NAME can't be found. */
12859
12860 static struct dwo_file *
12861 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12862 const char *dwo_name, const char *comp_dir)
12863 {
12864 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12865 struct objfile *objfile = dwarf2_per_objfile->objfile;
12866
12867 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12868 if (dbfd == NULL)
12869 {
12870 if (dwarf_read_debug)
12871 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12872 return NULL;
12873 }
12874
12875 /* We use a unique pointer here, despite the obstack allocation,
12876 because a dwo_file needs some cleanup if it is abandoned. */
12877 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12878 struct dwo_file));
12879 dwo_file->dwo_name = dwo_name;
12880 dwo_file->comp_dir = comp_dir;
12881 dwo_file->dbfd = dbfd.release ();
12882
12883 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12884 &dwo_file->sections);
12885
12886 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12887 dwo_file->cus);
12888
12889 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12890 dwo_file->sections.types, dwo_file->tus);
12891
12892 if (dwarf_read_debug)
12893 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12894
12895 return dwo_file.release ();
12896 }
12897
12898 /* This function is mapped across the sections and remembers the offset and
12899 size of each of the DWP debugging sections common to version 1 and 2 that
12900 we are interested in. */
12901
12902 static void
12903 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12904 void *dwp_file_ptr)
12905 {
12906 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12907 const struct dwop_section_names *names = &dwop_section_names;
12908 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12909
12910 /* Record the ELF section number for later lookup: this is what the
12911 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12912 gdb_assert (elf_section_nr < dwp_file->num_sections);
12913 dwp_file->elf_sections[elf_section_nr] = sectp;
12914
12915 /* Look for specific sections that we need. */
12916 if (section_is_p (sectp->name, &names->str_dwo))
12917 {
12918 dwp_file->sections.str.s.section = sectp;
12919 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12920 }
12921 else if (section_is_p (sectp->name, &names->cu_index))
12922 {
12923 dwp_file->sections.cu_index.s.section = sectp;
12924 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12925 }
12926 else if (section_is_p (sectp->name, &names->tu_index))
12927 {
12928 dwp_file->sections.tu_index.s.section = sectp;
12929 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12930 }
12931 }
12932
12933 /* This function is mapped across the sections and remembers the offset and
12934 size of each of the DWP version 2 debugging sections that we are interested
12935 in. This is split into a separate function because we don't know if we
12936 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12937
12938 static void
12939 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12940 {
12941 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12942 const struct dwop_section_names *names = &dwop_section_names;
12943 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12944
12945 /* Record the ELF section number for later lookup: this is what the
12946 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12947 gdb_assert (elf_section_nr < dwp_file->num_sections);
12948 dwp_file->elf_sections[elf_section_nr] = sectp;
12949
12950 /* Look for specific sections that we need. */
12951 if (section_is_p (sectp->name, &names->abbrev_dwo))
12952 {
12953 dwp_file->sections.abbrev.s.section = sectp;
12954 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12955 }
12956 else if (section_is_p (sectp->name, &names->info_dwo))
12957 {
12958 dwp_file->sections.info.s.section = sectp;
12959 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12960 }
12961 else if (section_is_p (sectp->name, &names->line_dwo))
12962 {
12963 dwp_file->sections.line.s.section = sectp;
12964 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12965 }
12966 else if (section_is_p (sectp->name, &names->loc_dwo))
12967 {
12968 dwp_file->sections.loc.s.section = sectp;
12969 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12970 }
12971 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12972 {
12973 dwp_file->sections.macinfo.s.section = sectp;
12974 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12975 }
12976 else if (section_is_p (sectp->name, &names->macro_dwo))
12977 {
12978 dwp_file->sections.macro.s.section = sectp;
12979 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
12980 }
12981 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12982 {
12983 dwp_file->sections.str_offsets.s.section = sectp;
12984 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
12985 }
12986 else if (section_is_p (sectp->name, &names->types_dwo))
12987 {
12988 dwp_file->sections.types.s.section = sectp;
12989 dwp_file->sections.types.size = bfd_get_section_size (sectp);
12990 }
12991 }
12992
12993 /* Hash function for dwp_file loaded CUs/TUs. */
12994
12995 static hashval_t
12996 hash_dwp_loaded_cutus (const void *item)
12997 {
12998 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12999
13000 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13001 return dwo_unit->signature;
13002 }
13003
13004 /* Equality function for dwp_file loaded CUs/TUs. */
13005
13006 static int
13007 eq_dwp_loaded_cutus (const void *a, const void *b)
13008 {
13009 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13010 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13011
13012 return dua->signature == dub->signature;
13013 }
13014
13015 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13016
13017 static htab_t
13018 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13019 {
13020 return htab_create_alloc_ex (3,
13021 hash_dwp_loaded_cutus,
13022 eq_dwp_loaded_cutus,
13023 NULL,
13024 &objfile->objfile_obstack,
13025 hashtab_obstack_allocate,
13026 dummy_obstack_deallocate);
13027 }
13028
13029 /* Try to open DWP file FILE_NAME.
13030 The result is the bfd handle of the file.
13031 If there is a problem finding or opening the file, return NULL.
13032 Upon success, the canonicalized path of the file is stored in the bfd,
13033 same as symfile_bfd_open. */
13034
13035 static gdb_bfd_ref_ptr
13036 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13037 const char *file_name)
13038 {
13039 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13040 1 /*is_dwp*/,
13041 1 /*search_cwd*/));
13042 if (abfd != NULL)
13043 return abfd;
13044
13045 /* Work around upstream bug 15652.
13046 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13047 [Whether that's a "bug" is debatable, but it is getting in our way.]
13048 We have no real idea where the dwp file is, because gdb's realpath-ing
13049 of the executable's path may have discarded the needed info.
13050 [IWBN if the dwp file name was recorded in the executable, akin to
13051 .gnu_debuglink, but that doesn't exist yet.]
13052 Strip the directory from FILE_NAME and search again. */
13053 if (*debug_file_directory != '\0')
13054 {
13055 /* Don't implicitly search the current directory here.
13056 If the user wants to search "." to handle this case,
13057 it must be added to debug-file-directory. */
13058 return try_open_dwop_file (dwarf2_per_objfile,
13059 lbasename (file_name), 1 /*is_dwp*/,
13060 0 /*search_cwd*/);
13061 }
13062
13063 return NULL;
13064 }
13065
13066 /* Initialize the use of the DWP file for the current objfile.
13067 By convention the name of the DWP file is ${objfile}.dwp.
13068 The result is NULL if it can't be found. */
13069
13070 static std::unique_ptr<struct dwp_file>
13071 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13072 {
13073 struct objfile *objfile = dwarf2_per_objfile->objfile;
13074
13075 /* Try to find first .dwp for the binary file before any symbolic links
13076 resolving. */
13077
13078 /* If the objfile is a debug file, find the name of the real binary
13079 file and get the name of dwp file from there. */
13080 std::string dwp_name;
13081 if (objfile->separate_debug_objfile_backlink != NULL)
13082 {
13083 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13084 const char *backlink_basename = lbasename (backlink->original_name);
13085
13086 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13087 }
13088 else
13089 dwp_name = objfile->original_name;
13090
13091 dwp_name += ".dwp";
13092
13093 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13094 if (dbfd == NULL
13095 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13096 {
13097 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13098 dwp_name = objfile_name (objfile);
13099 dwp_name += ".dwp";
13100 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13101 }
13102
13103 if (dbfd == NULL)
13104 {
13105 if (dwarf_read_debug)
13106 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13107 return std::unique_ptr<dwp_file> ();
13108 }
13109
13110 const char *name = bfd_get_filename (dbfd.get ());
13111 std::unique_ptr<struct dwp_file> dwp_file
13112 (new struct dwp_file (name, std::move (dbfd)));
13113
13114 /* +1: section 0 is unused */
13115 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13116 dwp_file->elf_sections =
13117 OBSTACK_CALLOC (&objfile->objfile_obstack,
13118 dwp_file->num_sections, asection *);
13119
13120 bfd_map_over_sections (dwp_file->dbfd.get (),
13121 dwarf2_locate_common_dwp_sections,
13122 dwp_file.get ());
13123
13124 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13125 0);
13126
13127 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13128 1);
13129
13130 /* The DWP file version is stored in the hash table. Oh well. */
13131 if (dwp_file->cus && dwp_file->tus
13132 && dwp_file->cus->version != dwp_file->tus->version)
13133 {
13134 /* Technically speaking, we should try to limp along, but this is
13135 pretty bizarre. We use pulongest here because that's the established
13136 portability solution (e.g, we cannot use %u for uint32_t). */
13137 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13138 " TU version %s [in DWP file %s]"),
13139 pulongest (dwp_file->cus->version),
13140 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13141 }
13142
13143 if (dwp_file->cus)
13144 dwp_file->version = dwp_file->cus->version;
13145 else if (dwp_file->tus)
13146 dwp_file->version = dwp_file->tus->version;
13147 else
13148 dwp_file->version = 2;
13149
13150 if (dwp_file->version == 2)
13151 bfd_map_over_sections (dwp_file->dbfd.get (),
13152 dwarf2_locate_v2_dwp_sections,
13153 dwp_file.get ());
13154
13155 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13156 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13157
13158 if (dwarf_read_debug)
13159 {
13160 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13161 fprintf_unfiltered (gdb_stdlog,
13162 " %s CUs, %s TUs\n",
13163 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13164 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13165 }
13166
13167 return dwp_file;
13168 }
13169
13170 /* Wrapper around open_and_init_dwp_file, only open it once. */
13171
13172 static struct dwp_file *
13173 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13174 {
13175 if (! dwarf2_per_objfile->dwp_checked)
13176 {
13177 dwarf2_per_objfile->dwp_file
13178 = open_and_init_dwp_file (dwarf2_per_objfile);
13179 dwarf2_per_objfile->dwp_checked = 1;
13180 }
13181 return dwarf2_per_objfile->dwp_file.get ();
13182 }
13183
13184 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13185 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13186 or in the DWP file for the objfile, referenced by THIS_UNIT.
13187 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13188 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13189
13190 This is called, for example, when wanting to read a variable with a
13191 complex location. Therefore we don't want to do file i/o for every call.
13192 Therefore we don't want to look for a DWO file on every call.
13193 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13194 then we check if we've already seen DWO_NAME, and only THEN do we check
13195 for a DWO file.
13196
13197 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13198 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13199
13200 static struct dwo_unit *
13201 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13202 const char *dwo_name, const char *comp_dir,
13203 ULONGEST signature, int is_debug_types)
13204 {
13205 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13206 struct objfile *objfile = dwarf2_per_objfile->objfile;
13207 const char *kind = is_debug_types ? "TU" : "CU";
13208 void **dwo_file_slot;
13209 struct dwo_file *dwo_file;
13210 struct dwp_file *dwp_file;
13211
13212 /* First see if there's a DWP file.
13213 If we have a DWP file but didn't find the DWO inside it, don't
13214 look for the original DWO file. It makes gdb behave differently
13215 depending on whether one is debugging in the build tree. */
13216
13217 dwp_file = get_dwp_file (dwarf2_per_objfile);
13218 if (dwp_file != NULL)
13219 {
13220 const struct dwp_hash_table *dwp_htab =
13221 is_debug_types ? dwp_file->tus : dwp_file->cus;
13222
13223 if (dwp_htab != NULL)
13224 {
13225 struct dwo_unit *dwo_cutu =
13226 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13227 signature, is_debug_types);
13228
13229 if (dwo_cutu != NULL)
13230 {
13231 if (dwarf_read_debug)
13232 {
13233 fprintf_unfiltered (gdb_stdlog,
13234 "Virtual DWO %s %s found: @%s\n",
13235 kind, hex_string (signature),
13236 host_address_to_string (dwo_cutu));
13237 }
13238 return dwo_cutu;
13239 }
13240 }
13241 }
13242 else
13243 {
13244 /* No DWP file, look for the DWO file. */
13245
13246 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13247 dwo_name, comp_dir);
13248 if (*dwo_file_slot == NULL)
13249 {
13250 /* Read in the file and build a table of the CUs/TUs it contains. */
13251 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13252 }
13253 /* NOTE: This will be NULL if unable to open the file. */
13254 dwo_file = (struct dwo_file *) *dwo_file_slot;
13255
13256 if (dwo_file != NULL)
13257 {
13258 struct dwo_unit *dwo_cutu = NULL;
13259
13260 if (is_debug_types && dwo_file->tus)
13261 {
13262 struct dwo_unit find_dwo_cutu;
13263
13264 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13265 find_dwo_cutu.signature = signature;
13266 dwo_cutu
13267 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13268 }
13269 else if (!is_debug_types && dwo_file->cus)
13270 {
13271 struct dwo_unit find_dwo_cutu;
13272
13273 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13274 find_dwo_cutu.signature = signature;
13275 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13276 &find_dwo_cutu);
13277 }
13278
13279 if (dwo_cutu != NULL)
13280 {
13281 if (dwarf_read_debug)
13282 {
13283 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13284 kind, dwo_name, hex_string (signature),
13285 host_address_to_string (dwo_cutu));
13286 }
13287 return dwo_cutu;
13288 }
13289 }
13290 }
13291
13292 /* We didn't find it. This could mean a dwo_id mismatch, or
13293 someone deleted the DWO/DWP file, or the search path isn't set up
13294 correctly to find the file. */
13295
13296 if (dwarf_read_debug)
13297 {
13298 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13299 kind, dwo_name, hex_string (signature));
13300 }
13301
13302 /* This is a warning and not a complaint because it can be caused by
13303 pilot error (e.g., user accidentally deleting the DWO). */
13304 {
13305 /* Print the name of the DWP file if we looked there, helps the user
13306 better diagnose the problem. */
13307 std::string dwp_text;
13308
13309 if (dwp_file != NULL)
13310 dwp_text = string_printf (" [in DWP file %s]",
13311 lbasename (dwp_file->name));
13312
13313 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13314 " [in module %s]"),
13315 kind, dwo_name, hex_string (signature),
13316 dwp_text.c_str (),
13317 this_unit->is_debug_types ? "TU" : "CU",
13318 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13319 }
13320 return NULL;
13321 }
13322
13323 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13324 See lookup_dwo_cutu_unit for details. */
13325
13326 static struct dwo_unit *
13327 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13328 const char *dwo_name, const char *comp_dir,
13329 ULONGEST signature)
13330 {
13331 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13332 }
13333
13334 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13335 See lookup_dwo_cutu_unit for details. */
13336
13337 static struct dwo_unit *
13338 lookup_dwo_type_unit (struct signatured_type *this_tu,
13339 const char *dwo_name, const char *comp_dir)
13340 {
13341 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13342 }
13343
13344 /* Traversal function for queue_and_load_all_dwo_tus. */
13345
13346 static int
13347 queue_and_load_dwo_tu (void **slot, void *info)
13348 {
13349 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13350 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13351 ULONGEST signature = dwo_unit->signature;
13352 struct signatured_type *sig_type =
13353 lookup_dwo_signatured_type (per_cu->cu, signature);
13354
13355 if (sig_type != NULL)
13356 {
13357 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13358
13359 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13360 a real dependency of PER_CU on SIG_TYPE. That is detected later
13361 while processing PER_CU. */
13362 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13363 load_full_type_unit (sig_cu);
13364 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13365 }
13366
13367 return 1;
13368 }
13369
13370 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13371 The DWO may have the only definition of the type, though it may not be
13372 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13373 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13374
13375 static void
13376 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13377 {
13378 struct dwo_unit *dwo_unit;
13379 struct dwo_file *dwo_file;
13380
13381 gdb_assert (!per_cu->is_debug_types);
13382 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13383 gdb_assert (per_cu->cu != NULL);
13384
13385 dwo_unit = per_cu->cu->dwo_unit;
13386 gdb_assert (dwo_unit != NULL);
13387
13388 dwo_file = dwo_unit->dwo_file;
13389 if (dwo_file->tus != NULL)
13390 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13391 }
13392
13393 /* Free all resources associated with DWO_FILE.
13394 Close the DWO file and munmap the sections. */
13395
13396 static void
13397 free_dwo_file (struct dwo_file *dwo_file)
13398 {
13399 /* Note: dbfd is NULL for virtual DWO files. */
13400 gdb_bfd_unref (dwo_file->dbfd);
13401
13402 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13403 }
13404
13405 /* Traversal function for free_dwo_files. */
13406
13407 static int
13408 free_dwo_file_from_slot (void **slot, void *info)
13409 {
13410 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13411
13412 free_dwo_file (dwo_file);
13413
13414 return 1;
13415 }
13416
13417 /* Free all resources associated with DWO_FILES. */
13418
13419 static void
13420 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13421 {
13422 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13423 }
13424 \f
13425 /* Read in various DIEs. */
13426
13427 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13428 Inherit only the children of the DW_AT_abstract_origin DIE not being
13429 already referenced by DW_AT_abstract_origin from the children of the
13430 current DIE. */
13431
13432 static void
13433 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13434 {
13435 struct die_info *child_die;
13436 sect_offset *offsetp;
13437 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13438 struct die_info *origin_die;
13439 /* Iterator of the ORIGIN_DIE children. */
13440 struct die_info *origin_child_die;
13441 struct attribute *attr;
13442 struct dwarf2_cu *origin_cu;
13443 struct pending **origin_previous_list_in_scope;
13444
13445 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13446 if (!attr)
13447 return;
13448
13449 /* Note that following die references may follow to a die in a
13450 different cu. */
13451
13452 origin_cu = cu;
13453 origin_die = follow_die_ref (die, attr, &origin_cu);
13454
13455 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13456 symbols in. */
13457 origin_previous_list_in_scope = origin_cu->list_in_scope;
13458 origin_cu->list_in_scope = cu->list_in_scope;
13459
13460 if (die->tag != origin_die->tag
13461 && !(die->tag == DW_TAG_inlined_subroutine
13462 && origin_die->tag == DW_TAG_subprogram))
13463 complaint (_("DIE %s and its abstract origin %s have different tags"),
13464 sect_offset_str (die->sect_off),
13465 sect_offset_str (origin_die->sect_off));
13466
13467 std::vector<sect_offset> offsets;
13468
13469 for (child_die = die->child;
13470 child_die && child_die->tag;
13471 child_die = sibling_die (child_die))
13472 {
13473 struct die_info *child_origin_die;
13474 struct dwarf2_cu *child_origin_cu;
13475
13476 /* We are trying to process concrete instance entries:
13477 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13478 it's not relevant to our analysis here. i.e. detecting DIEs that are
13479 present in the abstract instance but not referenced in the concrete
13480 one. */
13481 if (child_die->tag == DW_TAG_call_site
13482 || child_die->tag == DW_TAG_GNU_call_site)
13483 continue;
13484
13485 /* For each CHILD_DIE, find the corresponding child of
13486 ORIGIN_DIE. If there is more than one layer of
13487 DW_AT_abstract_origin, follow them all; there shouldn't be,
13488 but GCC versions at least through 4.4 generate this (GCC PR
13489 40573). */
13490 child_origin_die = child_die;
13491 child_origin_cu = cu;
13492 while (1)
13493 {
13494 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13495 child_origin_cu);
13496 if (attr == NULL)
13497 break;
13498 child_origin_die = follow_die_ref (child_origin_die, attr,
13499 &child_origin_cu);
13500 }
13501
13502 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13503 counterpart may exist. */
13504 if (child_origin_die != child_die)
13505 {
13506 if (child_die->tag != child_origin_die->tag
13507 && !(child_die->tag == DW_TAG_inlined_subroutine
13508 && child_origin_die->tag == DW_TAG_subprogram))
13509 complaint (_("Child DIE %s and its abstract origin %s have "
13510 "different tags"),
13511 sect_offset_str (child_die->sect_off),
13512 sect_offset_str (child_origin_die->sect_off));
13513 if (child_origin_die->parent != origin_die)
13514 complaint (_("Child DIE %s and its abstract origin %s have "
13515 "different parents"),
13516 sect_offset_str (child_die->sect_off),
13517 sect_offset_str (child_origin_die->sect_off));
13518 else
13519 offsets.push_back (child_origin_die->sect_off);
13520 }
13521 }
13522 std::sort (offsets.begin (), offsets.end ());
13523 sect_offset *offsets_end = offsets.data () + offsets.size ();
13524 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13525 if (offsetp[-1] == *offsetp)
13526 complaint (_("Multiple children of DIE %s refer "
13527 "to DIE %s as their abstract origin"),
13528 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13529
13530 offsetp = offsets.data ();
13531 origin_child_die = origin_die->child;
13532 while (origin_child_die && origin_child_die->tag)
13533 {
13534 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13535 while (offsetp < offsets_end
13536 && *offsetp < origin_child_die->sect_off)
13537 offsetp++;
13538 if (offsetp >= offsets_end
13539 || *offsetp > origin_child_die->sect_off)
13540 {
13541 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13542 Check whether we're already processing ORIGIN_CHILD_DIE.
13543 This can happen with mutually referenced abstract_origins.
13544 PR 16581. */
13545 if (!origin_child_die->in_process)
13546 process_die (origin_child_die, origin_cu);
13547 }
13548 origin_child_die = sibling_die (origin_child_die);
13549 }
13550 origin_cu->list_in_scope = origin_previous_list_in_scope;
13551 }
13552
13553 static void
13554 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13555 {
13556 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13557 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13558 struct context_stack *newobj;
13559 CORE_ADDR lowpc;
13560 CORE_ADDR highpc;
13561 struct die_info *child_die;
13562 struct attribute *attr, *call_line, *call_file;
13563 const char *name;
13564 CORE_ADDR baseaddr;
13565 struct block *block;
13566 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13567 std::vector<struct symbol *> template_args;
13568 struct template_symbol *templ_func = NULL;
13569
13570 if (inlined_func)
13571 {
13572 /* If we do not have call site information, we can't show the
13573 caller of this inlined function. That's too confusing, so
13574 only use the scope for local variables. */
13575 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13576 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13577 if (call_line == NULL || call_file == NULL)
13578 {
13579 read_lexical_block_scope (die, cu);
13580 return;
13581 }
13582 }
13583
13584 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13585
13586 name = dwarf2_name (die, cu);
13587
13588 /* Ignore functions with missing or empty names. These are actually
13589 illegal according to the DWARF standard. */
13590 if (name == NULL)
13591 {
13592 complaint (_("missing name for subprogram DIE at %s"),
13593 sect_offset_str (die->sect_off));
13594 return;
13595 }
13596
13597 /* Ignore functions with missing or invalid low and high pc attributes. */
13598 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13599 <= PC_BOUNDS_INVALID)
13600 {
13601 attr = dwarf2_attr (die, DW_AT_external, cu);
13602 if (!attr || !DW_UNSND (attr))
13603 complaint (_("cannot get low and high bounds "
13604 "for subprogram DIE at %s"),
13605 sect_offset_str (die->sect_off));
13606 return;
13607 }
13608
13609 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13610 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13611
13612 /* If we have any template arguments, then we must allocate a
13613 different sort of symbol. */
13614 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13615 {
13616 if (child_die->tag == DW_TAG_template_type_param
13617 || child_die->tag == DW_TAG_template_value_param)
13618 {
13619 templ_func = allocate_template_symbol (objfile);
13620 templ_func->subclass = SYMBOL_TEMPLATE;
13621 break;
13622 }
13623 }
13624
13625 newobj = push_context (0, lowpc);
13626 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13627 (struct symbol *) templ_func);
13628
13629 /* If there is a location expression for DW_AT_frame_base, record
13630 it. */
13631 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13632 if (attr)
13633 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13634
13635 /* If there is a location for the static link, record it. */
13636 newobj->static_link = NULL;
13637 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13638 if (attr)
13639 {
13640 newobj->static_link
13641 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13642 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13643 }
13644
13645 cu->list_in_scope = &local_symbols;
13646
13647 if (die->child != NULL)
13648 {
13649 child_die = die->child;
13650 while (child_die && child_die->tag)
13651 {
13652 if (child_die->tag == DW_TAG_template_type_param
13653 || child_die->tag == DW_TAG_template_value_param)
13654 {
13655 struct symbol *arg = new_symbol (child_die, NULL, cu);
13656
13657 if (arg != NULL)
13658 template_args.push_back (arg);
13659 }
13660 else
13661 process_die (child_die, cu);
13662 child_die = sibling_die (child_die);
13663 }
13664 }
13665
13666 inherit_abstract_dies (die, cu);
13667
13668 /* If we have a DW_AT_specification, we might need to import using
13669 directives from the context of the specification DIE. See the
13670 comment in determine_prefix. */
13671 if (cu->language == language_cplus
13672 && dwarf2_attr (die, DW_AT_specification, cu))
13673 {
13674 struct dwarf2_cu *spec_cu = cu;
13675 struct die_info *spec_die = die_specification (die, &spec_cu);
13676
13677 while (spec_die)
13678 {
13679 child_die = spec_die->child;
13680 while (child_die && child_die->tag)
13681 {
13682 if (child_die->tag == DW_TAG_imported_module)
13683 process_die (child_die, spec_cu);
13684 child_die = sibling_die (child_die);
13685 }
13686
13687 /* In some cases, GCC generates specification DIEs that
13688 themselves contain DW_AT_specification attributes. */
13689 spec_die = die_specification (spec_die, &spec_cu);
13690 }
13691 }
13692
13693 newobj = pop_context ();
13694 /* Make a block for the local symbols within. */
13695 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13696 newobj->static_link, lowpc, highpc);
13697
13698 /* For C++, set the block's scope. */
13699 if ((cu->language == language_cplus
13700 || cu->language == language_fortran
13701 || cu->language == language_d
13702 || cu->language == language_rust)
13703 && cu->processing_has_namespace_info)
13704 block_set_scope (block, determine_prefix (die, cu),
13705 &objfile->objfile_obstack);
13706
13707 /* If we have address ranges, record them. */
13708 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13709
13710 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13711
13712 /* Attach template arguments to function. */
13713 if (!template_args.empty ())
13714 {
13715 gdb_assert (templ_func != NULL);
13716
13717 templ_func->n_template_arguments = template_args.size ();
13718 templ_func->template_arguments
13719 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13720 templ_func->n_template_arguments);
13721 memcpy (templ_func->template_arguments,
13722 template_args.data (),
13723 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13724 }
13725
13726 /* In C++, we can have functions nested inside functions (e.g., when
13727 a function declares a class that has methods). This means that
13728 when we finish processing a function scope, we may need to go
13729 back to building a containing block's symbol lists. */
13730 local_symbols = newobj->locals;
13731 local_using_directives = newobj->local_using_directives;
13732
13733 /* If we've finished processing a top-level function, subsequent
13734 symbols go in the file symbol list. */
13735 if (outermost_context_p ())
13736 cu->list_in_scope = &file_symbols;
13737 }
13738
13739 /* Process all the DIES contained within a lexical block scope. Start
13740 a new scope, process the dies, and then close the scope. */
13741
13742 static void
13743 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13744 {
13745 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13746 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13747 struct context_stack *newobj;
13748 CORE_ADDR lowpc, highpc;
13749 struct die_info *child_die;
13750 CORE_ADDR baseaddr;
13751
13752 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13753
13754 /* Ignore blocks with missing or invalid low and high pc attributes. */
13755 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13756 as multiple lexical blocks? Handling children in a sane way would
13757 be nasty. Might be easier to properly extend generic blocks to
13758 describe ranges. */
13759 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13760 {
13761 case PC_BOUNDS_NOT_PRESENT:
13762 /* DW_TAG_lexical_block has no attributes, process its children as if
13763 there was no wrapping by that DW_TAG_lexical_block.
13764 GCC does no longer produces such DWARF since GCC r224161. */
13765 for (child_die = die->child;
13766 child_die != NULL && child_die->tag;
13767 child_die = sibling_die (child_die))
13768 process_die (child_die, cu);
13769 return;
13770 case PC_BOUNDS_INVALID:
13771 return;
13772 }
13773 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13774 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13775
13776 push_context (0, lowpc);
13777 if (die->child != NULL)
13778 {
13779 child_die = die->child;
13780 while (child_die && child_die->tag)
13781 {
13782 process_die (child_die, cu);
13783 child_die = sibling_die (child_die);
13784 }
13785 }
13786 inherit_abstract_dies (die, cu);
13787 newobj = pop_context ();
13788
13789 if (local_symbols != NULL || local_using_directives != NULL)
13790 {
13791 struct block *block
13792 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13793 newobj->start_addr, highpc);
13794
13795 /* Note that recording ranges after traversing children, as we
13796 do here, means that recording a parent's ranges entails
13797 walking across all its children's ranges as they appear in
13798 the address map, which is quadratic behavior.
13799
13800 It would be nicer to record the parent's ranges before
13801 traversing its children, simply overriding whatever you find
13802 there. But since we don't even decide whether to create a
13803 block until after we've traversed its children, that's hard
13804 to do. */
13805 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13806 }
13807 local_symbols = newobj->locals;
13808 local_using_directives = newobj->local_using_directives;
13809 }
13810
13811 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13812
13813 static void
13814 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13815 {
13816 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13817 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13818 CORE_ADDR pc, baseaddr;
13819 struct attribute *attr;
13820 struct call_site *call_site, call_site_local;
13821 void **slot;
13822 int nparams;
13823 struct die_info *child_die;
13824
13825 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13826
13827 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13828 if (attr == NULL)
13829 {
13830 /* This was a pre-DWARF-5 GNU extension alias
13831 for DW_AT_call_return_pc. */
13832 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13833 }
13834 if (!attr)
13835 {
13836 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13837 "DIE %s [in module %s]"),
13838 sect_offset_str (die->sect_off), objfile_name (objfile));
13839 return;
13840 }
13841 pc = attr_value_as_address (attr) + baseaddr;
13842 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13843
13844 if (cu->call_site_htab == NULL)
13845 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13846 NULL, &objfile->objfile_obstack,
13847 hashtab_obstack_allocate, NULL);
13848 call_site_local.pc = pc;
13849 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13850 if (*slot != NULL)
13851 {
13852 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13853 "DIE %s [in module %s]"),
13854 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13855 objfile_name (objfile));
13856 return;
13857 }
13858
13859 /* Count parameters at the caller. */
13860
13861 nparams = 0;
13862 for (child_die = die->child; child_die && child_die->tag;
13863 child_die = sibling_die (child_die))
13864 {
13865 if (child_die->tag != DW_TAG_call_site_parameter
13866 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13867 {
13868 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13869 "DW_TAG_call_site child DIE %s [in module %s]"),
13870 child_die->tag, sect_offset_str (child_die->sect_off),
13871 objfile_name (objfile));
13872 continue;
13873 }
13874
13875 nparams++;
13876 }
13877
13878 call_site
13879 = ((struct call_site *)
13880 obstack_alloc (&objfile->objfile_obstack,
13881 sizeof (*call_site)
13882 + (sizeof (*call_site->parameter) * (nparams - 1))));
13883 *slot = call_site;
13884 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13885 call_site->pc = pc;
13886
13887 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13888 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13889 {
13890 struct die_info *func_die;
13891
13892 /* Skip also over DW_TAG_inlined_subroutine. */
13893 for (func_die = die->parent;
13894 func_die && func_die->tag != DW_TAG_subprogram
13895 && func_die->tag != DW_TAG_subroutine_type;
13896 func_die = func_die->parent);
13897
13898 /* DW_AT_call_all_calls is a superset
13899 of DW_AT_call_all_tail_calls. */
13900 if (func_die
13901 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13902 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13903 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13904 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13905 {
13906 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13907 not complete. But keep CALL_SITE for look ups via call_site_htab,
13908 both the initial caller containing the real return address PC and
13909 the final callee containing the current PC of a chain of tail
13910 calls do not need to have the tail call list complete. But any
13911 function candidate for a virtual tail call frame searched via
13912 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13913 determined unambiguously. */
13914 }
13915 else
13916 {
13917 struct type *func_type = NULL;
13918
13919 if (func_die)
13920 func_type = get_die_type (func_die, cu);
13921 if (func_type != NULL)
13922 {
13923 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13924
13925 /* Enlist this call site to the function. */
13926 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13927 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13928 }
13929 else
13930 complaint (_("Cannot find function owning DW_TAG_call_site "
13931 "DIE %s [in module %s]"),
13932 sect_offset_str (die->sect_off), objfile_name (objfile));
13933 }
13934 }
13935
13936 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13937 if (attr == NULL)
13938 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13939 if (attr == NULL)
13940 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13941 if (attr == NULL)
13942 {
13943 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13944 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13945 }
13946 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13947 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13948 /* Keep NULL DWARF_BLOCK. */;
13949 else if (attr_form_is_block (attr))
13950 {
13951 struct dwarf2_locexpr_baton *dlbaton;
13952
13953 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13954 dlbaton->data = DW_BLOCK (attr)->data;
13955 dlbaton->size = DW_BLOCK (attr)->size;
13956 dlbaton->per_cu = cu->per_cu;
13957
13958 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13959 }
13960 else if (attr_form_is_ref (attr))
13961 {
13962 struct dwarf2_cu *target_cu = cu;
13963 struct die_info *target_die;
13964
13965 target_die = follow_die_ref (die, attr, &target_cu);
13966 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13967 if (die_is_declaration (target_die, target_cu))
13968 {
13969 const char *target_physname;
13970
13971 /* Prefer the mangled name; otherwise compute the demangled one. */
13972 target_physname = dw2_linkage_name (target_die, target_cu);
13973 if (target_physname == NULL)
13974 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13975 if (target_physname == NULL)
13976 complaint (_("DW_AT_call_target target DIE has invalid "
13977 "physname, for referencing DIE %s [in module %s]"),
13978 sect_offset_str (die->sect_off), objfile_name (objfile));
13979 else
13980 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13981 }
13982 else
13983 {
13984 CORE_ADDR lowpc;
13985
13986 /* DW_AT_entry_pc should be preferred. */
13987 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13988 <= PC_BOUNDS_INVALID)
13989 complaint (_("DW_AT_call_target target DIE has invalid "
13990 "low pc, for referencing DIE %s [in module %s]"),
13991 sect_offset_str (die->sect_off), objfile_name (objfile));
13992 else
13993 {
13994 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13995 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13996 }
13997 }
13998 }
13999 else
14000 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14001 "block nor reference, for DIE %s [in module %s]"),
14002 sect_offset_str (die->sect_off), objfile_name (objfile));
14003
14004 call_site->per_cu = cu->per_cu;
14005
14006 for (child_die = die->child;
14007 child_die && child_die->tag;
14008 child_die = sibling_die (child_die))
14009 {
14010 struct call_site_parameter *parameter;
14011 struct attribute *loc, *origin;
14012
14013 if (child_die->tag != DW_TAG_call_site_parameter
14014 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14015 {
14016 /* Already printed the complaint above. */
14017 continue;
14018 }
14019
14020 gdb_assert (call_site->parameter_count < nparams);
14021 parameter = &call_site->parameter[call_site->parameter_count];
14022
14023 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14024 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14025 register is contained in DW_AT_call_value. */
14026
14027 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14028 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14029 if (origin == NULL)
14030 {
14031 /* This was a pre-DWARF-5 GNU extension alias
14032 for DW_AT_call_parameter. */
14033 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14034 }
14035 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14036 {
14037 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14038
14039 sect_offset sect_off
14040 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14041 if (!offset_in_cu_p (&cu->header, sect_off))
14042 {
14043 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14044 binding can be done only inside one CU. Such referenced DIE
14045 therefore cannot be even moved to DW_TAG_partial_unit. */
14046 complaint (_("DW_AT_call_parameter offset is not in CU for "
14047 "DW_TAG_call_site child DIE %s [in module %s]"),
14048 sect_offset_str (child_die->sect_off),
14049 objfile_name (objfile));
14050 continue;
14051 }
14052 parameter->u.param_cu_off
14053 = (cu_offset) (sect_off - cu->header.sect_off);
14054 }
14055 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14056 {
14057 complaint (_("No DW_FORM_block* DW_AT_location for "
14058 "DW_TAG_call_site child DIE %s [in module %s]"),
14059 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14060 continue;
14061 }
14062 else
14063 {
14064 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14065 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14066 if (parameter->u.dwarf_reg != -1)
14067 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14068 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14069 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14070 &parameter->u.fb_offset))
14071 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14072 else
14073 {
14074 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14075 "for DW_FORM_block* DW_AT_location is supported for "
14076 "DW_TAG_call_site child DIE %s "
14077 "[in module %s]"),
14078 sect_offset_str (child_die->sect_off),
14079 objfile_name (objfile));
14080 continue;
14081 }
14082 }
14083
14084 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14085 if (attr == NULL)
14086 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14087 if (!attr_form_is_block (attr))
14088 {
14089 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14090 "DW_TAG_call_site child DIE %s [in module %s]"),
14091 sect_offset_str (child_die->sect_off),
14092 objfile_name (objfile));
14093 continue;
14094 }
14095 parameter->value = DW_BLOCK (attr)->data;
14096 parameter->value_size = DW_BLOCK (attr)->size;
14097
14098 /* Parameters are not pre-cleared by memset above. */
14099 parameter->data_value = NULL;
14100 parameter->data_value_size = 0;
14101 call_site->parameter_count++;
14102
14103 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14104 if (attr == NULL)
14105 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14106 if (attr)
14107 {
14108 if (!attr_form_is_block (attr))
14109 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14110 "DW_TAG_call_site child DIE %s [in module %s]"),
14111 sect_offset_str (child_die->sect_off),
14112 objfile_name (objfile));
14113 else
14114 {
14115 parameter->data_value = DW_BLOCK (attr)->data;
14116 parameter->data_value_size = DW_BLOCK (attr)->size;
14117 }
14118 }
14119 }
14120 }
14121
14122 /* Helper function for read_variable. If DIE represents a virtual
14123 table, then return the type of the concrete object that is
14124 associated with the virtual table. Otherwise, return NULL. */
14125
14126 static struct type *
14127 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14128 {
14129 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14130 if (attr == NULL)
14131 return NULL;
14132
14133 /* Find the type DIE. */
14134 struct die_info *type_die = NULL;
14135 struct dwarf2_cu *type_cu = cu;
14136
14137 if (attr_form_is_ref (attr))
14138 type_die = follow_die_ref (die, attr, &type_cu);
14139 if (type_die == NULL)
14140 return NULL;
14141
14142 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14143 return NULL;
14144 return die_containing_type (type_die, type_cu);
14145 }
14146
14147 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14148
14149 static void
14150 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14151 {
14152 struct rust_vtable_symbol *storage = NULL;
14153
14154 if (cu->language == language_rust)
14155 {
14156 struct type *containing_type = rust_containing_type (die, cu);
14157
14158 if (containing_type != NULL)
14159 {
14160 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14161
14162 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14163 struct rust_vtable_symbol);
14164 initialize_objfile_symbol (storage);
14165 storage->concrete_type = containing_type;
14166 storage->subclass = SYMBOL_RUST_VTABLE;
14167 }
14168 }
14169
14170 new_symbol (die, NULL, cu, storage);
14171 }
14172
14173 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14174 reading .debug_rnglists.
14175 Callback's type should be:
14176 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14177 Return true if the attributes are present and valid, otherwise,
14178 return false. */
14179
14180 template <typename Callback>
14181 static bool
14182 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14183 Callback &&callback)
14184 {
14185 struct dwarf2_per_objfile *dwarf2_per_objfile
14186 = cu->per_cu->dwarf2_per_objfile;
14187 struct objfile *objfile = dwarf2_per_objfile->objfile;
14188 bfd *obfd = objfile->obfd;
14189 /* Base address selection entry. */
14190 CORE_ADDR base;
14191 int found_base;
14192 const gdb_byte *buffer;
14193 CORE_ADDR baseaddr;
14194 bool overflow = false;
14195
14196 found_base = cu->base_known;
14197 base = cu->base_address;
14198
14199 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14200 if (offset >= dwarf2_per_objfile->rnglists.size)
14201 {
14202 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14203 offset);
14204 return false;
14205 }
14206 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14207
14208 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14209
14210 while (1)
14211 {
14212 /* Initialize it due to a false compiler warning. */
14213 CORE_ADDR range_beginning = 0, range_end = 0;
14214 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14215 + dwarf2_per_objfile->rnglists.size);
14216 unsigned int bytes_read;
14217
14218 if (buffer == buf_end)
14219 {
14220 overflow = true;
14221 break;
14222 }
14223 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14224 switch (rlet)
14225 {
14226 case DW_RLE_end_of_list:
14227 break;
14228 case DW_RLE_base_address:
14229 if (buffer + cu->header.addr_size > buf_end)
14230 {
14231 overflow = true;
14232 break;
14233 }
14234 base = read_address (obfd, buffer, cu, &bytes_read);
14235 found_base = 1;
14236 buffer += bytes_read;
14237 break;
14238 case DW_RLE_start_length:
14239 if (buffer + cu->header.addr_size > buf_end)
14240 {
14241 overflow = true;
14242 break;
14243 }
14244 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14245 buffer += bytes_read;
14246 range_end = (range_beginning
14247 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14248 buffer += bytes_read;
14249 if (buffer > buf_end)
14250 {
14251 overflow = true;
14252 break;
14253 }
14254 break;
14255 case DW_RLE_offset_pair:
14256 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14257 buffer += bytes_read;
14258 if (buffer > buf_end)
14259 {
14260 overflow = true;
14261 break;
14262 }
14263 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14264 buffer += bytes_read;
14265 if (buffer > buf_end)
14266 {
14267 overflow = true;
14268 break;
14269 }
14270 break;
14271 case DW_RLE_start_end:
14272 if (buffer + 2 * cu->header.addr_size > buf_end)
14273 {
14274 overflow = true;
14275 break;
14276 }
14277 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14278 buffer += bytes_read;
14279 range_end = read_address (obfd, buffer, cu, &bytes_read);
14280 buffer += bytes_read;
14281 break;
14282 default:
14283 complaint (_("Invalid .debug_rnglists data (no base address)"));
14284 return false;
14285 }
14286 if (rlet == DW_RLE_end_of_list || overflow)
14287 break;
14288 if (rlet == DW_RLE_base_address)
14289 continue;
14290
14291 if (!found_base)
14292 {
14293 /* We have no valid base address for the ranges
14294 data. */
14295 complaint (_("Invalid .debug_rnglists data (no base address)"));
14296 return false;
14297 }
14298
14299 if (range_beginning > range_end)
14300 {
14301 /* Inverted range entries are invalid. */
14302 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14303 return false;
14304 }
14305
14306 /* Empty range entries have no effect. */
14307 if (range_beginning == range_end)
14308 continue;
14309
14310 range_beginning += base;
14311 range_end += base;
14312
14313 /* A not-uncommon case of bad debug info.
14314 Don't pollute the addrmap with bad data. */
14315 if (range_beginning + baseaddr == 0
14316 && !dwarf2_per_objfile->has_section_at_zero)
14317 {
14318 complaint (_(".debug_rnglists entry has start address of zero"
14319 " [in module %s]"), objfile_name (objfile));
14320 continue;
14321 }
14322
14323 callback (range_beginning, range_end);
14324 }
14325
14326 if (overflow)
14327 {
14328 complaint (_("Offset %d is not terminated "
14329 "for DW_AT_ranges attribute"),
14330 offset);
14331 return false;
14332 }
14333
14334 return true;
14335 }
14336
14337 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14338 Callback's type should be:
14339 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14340 Return 1 if the attributes are present and valid, otherwise, return 0. */
14341
14342 template <typename Callback>
14343 static int
14344 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14345 Callback &&callback)
14346 {
14347 struct dwarf2_per_objfile *dwarf2_per_objfile
14348 = cu->per_cu->dwarf2_per_objfile;
14349 struct objfile *objfile = dwarf2_per_objfile->objfile;
14350 struct comp_unit_head *cu_header = &cu->header;
14351 bfd *obfd = objfile->obfd;
14352 unsigned int addr_size = cu_header->addr_size;
14353 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14354 /* Base address selection entry. */
14355 CORE_ADDR base;
14356 int found_base;
14357 unsigned int dummy;
14358 const gdb_byte *buffer;
14359 CORE_ADDR baseaddr;
14360
14361 if (cu_header->version >= 5)
14362 return dwarf2_rnglists_process (offset, cu, callback);
14363
14364 found_base = cu->base_known;
14365 base = cu->base_address;
14366
14367 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14368 if (offset >= dwarf2_per_objfile->ranges.size)
14369 {
14370 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14371 offset);
14372 return 0;
14373 }
14374 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14375
14376 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14377
14378 while (1)
14379 {
14380 CORE_ADDR range_beginning, range_end;
14381
14382 range_beginning = read_address (obfd, buffer, cu, &dummy);
14383 buffer += addr_size;
14384 range_end = read_address (obfd, buffer, cu, &dummy);
14385 buffer += addr_size;
14386 offset += 2 * addr_size;
14387
14388 /* An end of list marker is a pair of zero addresses. */
14389 if (range_beginning == 0 && range_end == 0)
14390 /* Found the end of list entry. */
14391 break;
14392
14393 /* Each base address selection entry is a pair of 2 values.
14394 The first is the largest possible address, the second is
14395 the base address. Check for a base address here. */
14396 if ((range_beginning & mask) == mask)
14397 {
14398 /* If we found the largest possible address, then we already
14399 have the base address in range_end. */
14400 base = range_end;
14401 found_base = 1;
14402 continue;
14403 }
14404
14405 if (!found_base)
14406 {
14407 /* We have no valid base address for the ranges
14408 data. */
14409 complaint (_("Invalid .debug_ranges data (no base address)"));
14410 return 0;
14411 }
14412
14413 if (range_beginning > range_end)
14414 {
14415 /* Inverted range entries are invalid. */
14416 complaint (_("Invalid .debug_ranges data (inverted range)"));
14417 return 0;
14418 }
14419
14420 /* Empty range entries have no effect. */
14421 if (range_beginning == range_end)
14422 continue;
14423
14424 range_beginning += base;
14425 range_end += base;
14426
14427 /* A not-uncommon case of bad debug info.
14428 Don't pollute the addrmap with bad data. */
14429 if (range_beginning + baseaddr == 0
14430 && !dwarf2_per_objfile->has_section_at_zero)
14431 {
14432 complaint (_(".debug_ranges entry has start address of zero"
14433 " [in module %s]"), objfile_name (objfile));
14434 continue;
14435 }
14436
14437 callback (range_beginning, range_end);
14438 }
14439
14440 return 1;
14441 }
14442
14443 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14444 Return 1 if the attributes are present and valid, otherwise, return 0.
14445 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14446
14447 static int
14448 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14449 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14450 struct partial_symtab *ranges_pst)
14451 {
14452 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14453 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14454 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14455 SECT_OFF_TEXT (objfile));
14456 int low_set = 0;
14457 CORE_ADDR low = 0;
14458 CORE_ADDR high = 0;
14459 int retval;
14460
14461 retval = dwarf2_ranges_process (offset, cu,
14462 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14463 {
14464 if (ranges_pst != NULL)
14465 {
14466 CORE_ADDR lowpc;
14467 CORE_ADDR highpc;
14468
14469 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14470 range_beginning + baseaddr);
14471 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14472 range_end + baseaddr);
14473 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14474 ranges_pst);
14475 }
14476
14477 /* FIXME: This is recording everything as a low-high
14478 segment of consecutive addresses. We should have a
14479 data structure for discontiguous block ranges
14480 instead. */
14481 if (! low_set)
14482 {
14483 low = range_beginning;
14484 high = range_end;
14485 low_set = 1;
14486 }
14487 else
14488 {
14489 if (range_beginning < low)
14490 low = range_beginning;
14491 if (range_end > high)
14492 high = range_end;
14493 }
14494 });
14495 if (!retval)
14496 return 0;
14497
14498 if (! low_set)
14499 /* If the first entry is an end-of-list marker, the range
14500 describes an empty scope, i.e. no instructions. */
14501 return 0;
14502
14503 if (low_return)
14504 *low_return = low;
14505 if (high_return)
14506 *high_return = high;
14507 return 1;
14508 }
14509
14510 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14511 definition for the return value. *LOWPC and *HIGHPC are set iff
14512 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14513
14514 static enum pc_bounds_kind
14515 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14516 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14517 struct partial_symtab *pst)
14518 {
14519 struct dwarf2_per_objfile *dwarf2_per_objfile
14520 = cu->per_cu->dwarf2_per_objfile;
14521 struct attribute *attr;
14522 struct attribute *attr_high;
14523 CORE_ADDR low = 0;
14524 CORE_ADDR high = 0;
14525 enum pc_bounds_kind ret;
14526
14527 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14528 if (attr_high)
14529 {
14530 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14531 if (attr)
14532 {
14533 low = attr_value_as_address (attr);
14534 high = attr_value_as_address (attr_high);
14535 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14536 high += low;
14537 }
14538 else
14539 /* Found high w/o low attribute. */
14540 return PC_BOUNDS_INVALID;
14541
14542 /* Found consecutive range of addresses. */
14543 ret = PC_BOUNDS_HIGH_LOW;
14544 }
14545 else
14546 {
14547 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14548 if (attr != NULL)
14549 {
14550 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14551 We take advantage of the fact that DW_AT_ranges does not appear
14552 in DW_TAG_compile_unit of DWO files. */
14553 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14554 unsigned int ranges_offset = (DW_UNSND (attr)
14555 + (need_ranges_base
14556 ? cu->ranges_base
14557 : 0));
14558
14559 /* Value of the DW_AT_ranges attribute is the offset in the
14560 .debug_ranges section. */
14561 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14562 return PC_BOUNDS_INVALID;
14563 /* Found discontinuous range of addresses. */
14564 ret = PC_BOUNDS_RANGES;
14565 }
14566 else
14567 return PC_BOUNDS_NOT_PRESENT;
14568 }
14569
14570 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14571 if (high <= low)
14572 return PC_BOUNDS_INVALID;
14573
14574 /* When using the GNU linker, .gnu.linkonce. sections are used to
14575 eliminate duplicate copies of functions and vtables and such.
14576 The linker will arbitrarily choose one and discard the others.
14577 The AT_*_pc values for such functions refer to local labels in
14578 these sections. If the section from that file was discarded, the
14579 labels are not in the output, so the relocs get a value of 0.
14580 If this is a discarded function, mark the pc bounds as invalid,
14581 so that GDB will ignore it. */
14582 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14583 return PC_BOUNDS_INVALID;
14584
14585 *lowpc = low;
14586 if (highpc)
14587 *highpc = high;
14588 return ret;
14589 }
14590
14591 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14592 its low and high PC addresses. Do nothing if these addresses could not
14593 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14594 and HIGHPC to the high address if greater than HIGHPC. */
14595
14596 static void
14597 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14598 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14599 struct dwarf2_cu *cu)
14600 {
14601 CORE_ADDR low, high;
14602 struct die_info *child = die->child;
14603
14604 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14605 {
14606 *lowpc = std::min (*lowpc, low);
14607 *highpc = std::max (*highpc, high);
14608 }
14609
14610 /* If the language does not allow nested subprograms (either inside
14611 subprograms or lexical blocks), we're done. */
14612 if (cu->language != language_ada)
14613 return;
14614
14615 /* Check all the children of the given DIE. If it contains nested
14616 subprograms, then check their pc bounds. Likewise, we need to
14617 check lexical blocks as well, as they may also contain subprogram
14618 definitions. */
14619 while (child && child->tag)
14620 {
14621 if (child->tag == DW_TAG_subprogram
14622 || child->tag == DW_TAG_lexical_block)
14623 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14624 child = sibling_die (child);
14625 }
14626 }
14627
14628 /* Get the low and high pc's represented by the scope DIE, and store
14629 them in *LOWPC and *HIGHPC. If the correct values can't be
14630 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14631
14632 static void
14633 get_scope_pc_bounds (struct die_info *die,
14634 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14635 struct dwarf2_cu *cu)
14636 {
14637 CORE_ADDR best_low = (CORE_ADDR) -1;
14638 CORE_ADDR best_high = (CORE_ADDR) 0;
14639 CORE_ADDR current_low, current_high;
14640
14641 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14642 >= PC_BOUNDS_RANGES)
14643 {
14644 best_low = current_low;
14645 best_high = current_high;
14646 }
14647 else
14648 {
14649 struct die_info *child = die->child;
14650
14651 while (child && child->tag)
14652 {
14653 switch (child->tag) {
14654 case DW_TAG_subprogram:
14655 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14656 break;
14657 case DW_TAG_namespace:
14658 case DW_TAG_module:
14659 /* FIXME: carlton/2004-01-16: Should we do this for
14660 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14661 that current GCC's always emit the DIEs corresponding
14662 to definitions of methods of classes as children of a
14663 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14664 the DIEs giving the declarations, which could be
14665 anywhere). But I don't see any reason why the
14666 standards says that they have to be there. */
14667 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14668
14669 if (current_low != ((CORE_ADDR) -1))
14670 {
14671 best_low = std::min (best_low, current_low);
14672 best_high = std::max (best_high, current_high);
14673 }
14674 break;
14675 default:
14676 /* Ignore. */
14677 break;
14678 }
14679
14680 child = sibling_die (child);
14681 }
14682 }
14683
14684 *lowpc = best_low;
14685 *highpc = best_high;
14686 }
14687
14688 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14689 in DIE. */
14690
14691 static void
14692 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14693 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14694 {
14695 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14696 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14697 struct attribute *attr;
14698 struct attribute *attr_high;
14699
14700 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14701 if (attr_high)
14702 {
14703 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14704 if (attr)
14705 {
14706 CORE_ADDR low = attr_value_as_address (attr);
14707 CORE_ADDR high = attr_value_as_address (attr_high);
14708
14709 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14710 high += low;
14711
14712 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14713 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14714 record_block_range (block, low, high - 1);
14715 }
14716 }
14717
14718 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14719 if (attr)
14720 {
14721 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14722 We take advantage of the fact that DW_AT_ranges does not appear
14723 in DW_TAG_compile_unit of DWO files. */
14724 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14725
14726 /* The value of the DW_AT_ranges attribute is the offset of the
14727 address range list in the .debug_ranges section. */
14728 unsigned long offset = (DW_UNSND (attr)
14729 + (need_ranges_base ? cu->ranges_base : 0));
14730
14731 dwarf2_ranges_process (offset, cu,
14732 [&] (CORE_ADDR start, CORE_ADDR end)
14733 {
14734 start += baseaddr;
14735 end += baseaddr;
14736 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14737 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14738 record_block_range (block, start, end - 1);
14739 });
14740 }
14741 }
14742
14743 /* Check whether the producer field indicates either of GCC < 4.6, or the
14744 Intel C/C++ compiler, and cache the result in CU. */
14745
14746 static void
14747 check_producer (struct dwarf2_cu *cu)
14748 {
14749 int major, minor;
14750
14751 if (cu->producer == NULL)
14752 {
14753 /* For unknown compilers expect their behavior is DWARF version
14754 compliant.
14755
14756 GCC started to support .debug_types sections by -gdwarf-4 since
14757 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14758 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14759 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14760 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14761 }
14762 else if (producer_is_gcc (cu->producer, &major, &minor))
14763 {
14764 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14765 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14766 }
14767 else if (producer_is_icc (cu->producer, &major, &minor))
14768 cu->producer_is_icc_lt_14 = major < 14;
14769 else
14770 {
14771 /* For other non-GCC compilers, expect their behavior is DWARF version
14772 compliant. */
14773 }
14774
14775 cu->checked_producer = 1;
14776 }
14777
14778 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14779 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14780 during 4.6.0 experimental. */
14781
14782 static int
14783 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14784 {
14785 if (!cu->checked_producer)
14786 check_producer (cu);
14787
14788 return cu->producer_is_gxx_lt_4_6;
14789 }
14790
14791 /* Return the default accessibility type if it is not overriden by
14792 DW_AT_accessibility. */
14793
14794 static enum dwarf_access_attribute
14795 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14796 {
14797 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14798 {
14799 /* The default DWARF 2 accessibility for members is public, the default
14800 accessibility for inheritance is private. */
14801
14802 if (die->tag != DW_TAG_inheritance)
14803 return DW_ACCESS_public;
14804 else
14805 return DW_ACCESS_private;
14806 }
14807 else
14808 {
14809 /* DWARF 3+ defines the default accessibility a different way. The same
14810 rules apply now for DW_TAG_inheritance as for the members and it only
14811 depends on the container kind. */
14812
14813 if (die->parent->tag == DW_TAG_class_type)
14814 return DW_ACCESS_private;
14815 else
14816 return DW_ACCESS_public;
14817 }
14818 }
14819
14820 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14821 offset. If the attribute was not found return 0, otherwise return
14822 1. If it was found but could not properly be handled, set *OFFSET
14823 to 0. */
14824
14825 static int
14826 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14827 LONGEST *offset)
14828 {
14829 struct attribute *attr;
14830
14831 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14832 if (attr != NULL)
14833 {
14834 *offset = 0;
14835
14836 /* Note that we do not check for a section offset first here.
14837 This is because DW_AT_data_member_location is new in DWARF 4,
14838 so if we see it, we can assume that a constant form is really
14839 a constant and not a section offset. */
14840 if (attr_form_is_constant (attr))
14841 *offset = dwarf2_get_attr_constant_value (attr, 0);
14842 else if (attr_form_is_section_offset (attr))
14843 dwarf2_complex_location_expr_complaint ();
14844 else if (attr_form_is_block (attr))
14845 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14846 else
14847 dwarf2_complex_location_expr_complaint ();
14848
14849 return 1;
14850 }
14851
14852 return 0;
14853 }
14854
14855 /* Add an aggregate field to the field list. */
14856
14857 static void
14858 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14859 struct dwarf2_cu *cu)
14860 {
14861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14863 struct nextfield *new_field;
14864 struct attribute *attr;
14865 struct field *fp;
14866 const char *fieldname = "";
14867
14868 if (die->tag == DW_TAG_inheritance)
14869 {
14870 fip->baseclasses.emplace_back ();
14871 new_field = &fip->baseclasses.back ();
14872 }
14873 else
14874 {
14875 fip->fields.emplace_back ();
14876 new_field = &fip->fields.back ();
14877 }
14878
14879 fip->nfields++;
14880
14881 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14882 if (attr)
14883 new_field->accessibility = DW_UNSND (attr);
14884 else
14885 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14886 if (new_field->accessibility != DW_ACCESS_public)
14887 fip->non_public_fields = 1;
14888
14889 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14890 if (attr)
14891 new_field->virtuality = DW_UNSND (attr);
14892 else
14893 new_field->virtuality = DW_VIRTUALITY_none;
14894
14895 fp = &new_field->field;
14896
14897 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14898 {
14899 LONGEST offset;
14900
14901 /* Data member other than a C++ static data member. */
14902
14903 /* Get type of field. */
14904 fp->type = die_type (die, cu);
14905
14906 SET_FIELD_BITPOS (*fp, 0);
14907
14908 /* Get bit size of field (zero if none). */
14909 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14910 if (attr)
14911 {
14912 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14913 }
14914 else
14915 {
14916 FIELD_BITSIZE (*fp) = 0;
14917 }
14918
14919 /* Get bit offset of field. */
14920 if (handle_data_member_location (die, cu, &offset))
14921 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14922 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14923 if (attr)
14924 {
14925 if (gdbarch_bits_big_endian (gdbarch))
14926 {
14927 /* For big endian bits, the DW_AT_bit_offset gives the
14928 additional bit offset from the MSB of the containing
14929 anonymous object to the MSB of the field. We don't
14930 have to do anything special since we don't need to
14931 know the size of the anonymous object. */
14932 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14933 }
14934 else
14935 {
14936 /* For little endian bits, compute the bit offset to the
14937 MSB of the anonymous object, subtract off the number of
14938 bits from the MSB of the field to the MSB of the
14939 object, and then subtract off the number of bits of
14940 the field itself. The result is the bit offset of
14941 the LSB of the field. */
14942 int anonymous_size;
14943 int bit_offset = DW_UNSND (attr);
14944
14945 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14946 if (attr)
14947 {
14948 /* The size of the anonymous object containing
14949 the bit field is explicit, so use the
14950 indicated size (in bytes). */
14951 anonymous_size = DW_UNSND (attr);
14952 }
14953 else
14954 {
14955 /* The size of the anonymous object containing
14956 the bit field must be inferred from the type
14957 attribute of the data member containing the
14958 bit field. */
14959 anonymous_size = TYPE_LENGTH (fp->type);
14960 }
14961 SET_FIELD_BITPOS (*fp,
14962 (FIELD_BITPOS (*fp)
14963 + anonymous_size * bits_per_byte
14964 - bit_offset - FIELD_BITSIZE (*fp)));
14965 }
14966 }
14967 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14968 if (attr != NULL)
14969 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14970 + dwarf2_get_attr_constant_value (attr, 0)));
14971
14972 /* Get name of field. */
14973 fieldname = dwarf2_name (die, cu);
14974 if (fieldname == NULL)
14975 fieldname = "";
14976
14977 /* The name is already allocated along with this objfile, so we don't
14978 need to duplicate it for the type. */
14979 fp->name = fieldname;
14980
14981 /* Change accessibility for artificial fields (e.g. virtual table
14982 pointer or virtual base class pointer) to private. */
14983 if (dwarf2_attr (die, DW_AT_artificial, cu))
14984 {
14985 FIELD_ARTIFICIAL (*fp) = 1;
14986 new_field->accessibility = DW_ACCESS_private;
14987 fip->non_public_fields = 1;
14988 }
14989 }
14990 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14991 {
14992 /* C++ static member. */
14993
14994 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14995 is a declaration, but all versions of G++ as of this writing
14996 (so through at least 3.2.1) incorrectly generate
14997 DW_TAG_variable tags. */
14998
14999 const char *physname;
15000
15001 /* Get name of field. */
15002 fieldname = dwarf2_name (die, cu);
15003 if (fieldname == NULL)
15004 return;
15005
15006 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15007 if (attr
15008 /* Only create a symbol if this is an external value.
15009 new_symbol checks this and puts the value in the global symbol
15010 table, which we want. If it is not external, new_symbol
15011 will try to put the value in cu->list_in_scope which is wrong. */
15012 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15013 {
15014 /* A static const member, not much different than an enum as far as
15015 we're concerned, except that we can support more types. */
15016 new_symbol (die, NULL, cu);
15017 }
15018
15019 /* Get physical name. */
15020 physname = dwarf2_physname (fieldname, die, cu);
15021
15022 /* The name is already allocated along with this objfile, so we don't
15023 need to duplicate it for the type. */
15024 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15025 FIELD_TYPE (*fp) = die_type (die, cu);
15026 FIELD_NAME (*fp) = fieldname;
15027 }
15028 else if (die->tag == DW_TAG_inheritance)
15029 {
15030 LONGEST offset;
15031
15032 /* C++ base class field. */
15033 if (handle_data_member_location (die, cu, &offset))
15034 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15035 FIELD_BITSIZE (*fp) = 0;
15036 FIELD_TYPE (*fp) = die_type (die, cu);
15037 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15038 }
15039 else if (die->tag == DW_TAG_variant_part)
15040 {
15041 /* process_structure_scope will treat this DIE as a union. */
15042 process_structure_scope (die, cu);
15043
15044 /* The variant part is relative to the start of the enclosing
15045 structure. */
15046 SET_FIELD_BITPOS (*fp, 0);
15047 fp->type = get_die_type (die, cu);
15048 fp->artificial = 1;
15049 fp->name = "<<variant>>";
15050 }
15051 else
15052 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15053 }
15054
15055 /* Can the type given by DIE define another type? */
15056
15057 static bool
15058 type_can_define_types (const struct die_info *die)
15059 {
15060 switch (die->tag)
15061 {
15062 case DW_TAG_typedef:
15063 case DW_TAG_class_type:
15064 case DW_TAG_structure_type:
15065 case DW_TAG_union_type:
15066 case DW_TAG_enumeration_type:
15067 return true;
15068
15069 default:
15070 return false;
15071 }
15072 }
15073
15074 /* Add a type definition defined in the scope of the FIP's class. */
15075
15076 static void
15077 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15078 struct dwarf2_cu *cu)
15079 {
15080 struct decl_field fp;
15081 memset (&fp, 0, sizeof (fp));
15082
15083 gdb_assert (type_can_define_types (die));
15084
15085 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15086 fp.name = dwarf2_name (die, cu);
15087 fp.type = read_type_die (die, cu);
15088
15089 /* Save accessibility. */
15090 enum dwarf_access_attribute accessibility;
15091 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15092 if (attr != NULL)
15093 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15094 else
15095 accessibility = dwarf2_default_access_attribute (die, cu);
15096 switch (accessibility)
15097 {
15098 case DW_ACCESS_public:
15099 /* The assumed value if neither private nor protected. */
15100 break;
15101 case DW_ACCESS_private:
15102 fp.is_private = 1;
15103 break;
15104 case DW_ACCESS_protected:
15105 fp.is_protected = 1;
15106 break;
15107 default:
15108 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15109 }
15110
15111 if (die->tag == DW_TAG_typedef)
15112 fip->typedef_field_list.push_back (fp);
15113 else
15114 fip->nested_types_list.push_back (fp);
15115 }
15116
15117 /* Create the vector of fields, and attach it to the type. */
15118
15119 static void
15120 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15121 struct dwarf2_cu *cu)
15122 {
15123 int nfields = fip->nfields;
15124
15125 /* Record the field count, allocate space for the array of fields,
15126 and create blank accessibility bitfields if necessary. */
15127 TYPE_NFIELDS (type) = nfields;
15128 TYPE_FIELDS (type) = (struct field *)
15129 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15130
15131 if (fip->non_public_fields && cu->language != language_ada)
15132 {
15133 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15134
15135 TYPE_FIELD_PRIVATE_BITS (type) =
15136 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15137 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15138
15139 TYPE_FIELD_PROTECTED_BITS (type) =
15140 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15141 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15142
15143 TYPE_FIELD_IGNORE_BITS (type) =
15144 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15145 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15146 }
15147
15148 /* If the type has baseclasses, allocate and clear a bit vector for
15149 TYPE_FIELD_VIRTUAL_BITS. */
15150 if (!fip->baseclasses.empty () && cu->language != language_ada)
15151 {
15152 int num_bytes = B_BYTES (fip->baseclasses.size ());
15153 unsigned char *pointer;
15154
15155 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15156 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15157 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15158 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15159 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15160 }
15161
15162 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15163 {
15164 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15165
15166 for (int index = 0; index < nfields; ++index)
15167 {
15168 struct nextfield &field = fip->fields[index];
15169
15170 if (field.variant.is_discriminant)
15171 di->discriminant_index = index;
15172 else if (field.variant.default_branch)
15173 di->default_index = index;
15174 else
15175 di->discriminants[index] = field.variant.discriminant_value;
15176 }
15177 }
15178
15179 /* Copy the saved-up fields into the field vector. */
15180 for (int i = 0; i < nfields; ++i)
15181 {
15182 struct nextfield &field
15183 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15184 : fip->fields[i - fip->baseclasses.size ()]);
15185
15186 TYPE_FIELD (type, i) = field.field;
15187 switch (field.accessibility)
15188 {
15189 case DW_ACCESS_private:
15190 if (cu->language != language_ada)
15191 SET_TYPE_FIELD_PRIVATE (type, i);
15192 break;
15193
15194 case DW_ACCESS_protected:
15195 if (cu->language != language_ada)
15196 SET_TYPE_FIELD_PROTECTED (type, i);
15197 break;
15198
15199 case DW_ACCESS_public:
15200 break;
15201
15202 default:
15203 /* Unknown accessibility. Complain and treat it as public. */
15204 {
15205 complaint (_("unsupported accessibility %d"),
15206 field.accessibility);
15207 }
15208 break;
15209 }
15210 if (i < fip->baseclasses.size ())
15211 {
15212 switch (field.virtuality)
15213 {
15214 case DW_VIRTUALITY_virtual:
15215 case DW_VIRTUALITY_pure_virtual:
15216 if (cu->language == language_ada)
15217 error (_("unexpected virtuality in component of Ada type"));
15218 SET_TYPE_FIELD_VIRTUAL (type, i);
15219 break;
15220 }
15221 }
15222 }
15223 }
15224
15225 /* Return true if this member function is a constructor, false
15226 otherwise. */
15227
15228 static int
15229 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15230 {
15231 const char *fieldname;
15232 const char *type_name;
15233 int len;
15234
15235 if (die->parent == NULL)
15236 return 0;
15237
15238 if (die->parent->tag != DW_TAG_structure_type
15239 && die->parent->tag != DW_TAG_union_type
15240 && die->parent->tag != DW_TAG_class_type)
15241 return 0;
15242
15243 fieldname = dwarf2_name (die, cu);
15244 type_name = dwarf2_name (die->parent, cu);
15245 if (fieldname == NULL || type_name == NULL)
15246 return 0;
15247
15248 len = strlen (fieldname);
15249 return (strncmp (fieldname, type_name, len) == 0
15250 && (type_name[len] == '\0' || type_name[len] == '<'));
15251 }
15252
15253 /* Add a member function to the proper fieldlist. */
15254
15255 static void
15256 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15257 struct type *type, struct dwarf2_cu *cu)
15258 {
15259 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15260 struct attribute *attr;
15261 int i;
15262 struct fnfieldlist *flp = nullptr;
15263 struct fn_field *fnp;
15264 const char *fieldname;
15265 struct type *this_type;
15266 enum dwarf_access_attribute accessibility;
15267
15268 if (cu->language == language_ada)
15269 error (_("unexpected member function in Ada type"));
15270
15271 /* Get name of member function. */
15272 fieldname = dwarf2_name (die, cu);
15273 if (fieldname == NULL)
15274 return;
15275
15276 /* Look up member function name in fieldlist. */
15277 for (i = 0; i < fip->fnfieldlists.size (); i++)
15278 {
15279 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15280 {
15281 flp = &fip->fnfieldlists[i];
15282 break;
15283 }
15284 }
15285
15286 /* Create a new fnfieldlist if necessary. */
15287 if (flp == nullptr)
15288 {
15289 fip->fnfieldlists.emplace_back ();
15290 flp = &fip->fnfieldlists.back ();
15291 flp->name = fieldname;
15292 i = fip->fnfieldlists.size () - 1;
15293 }
15294
15295 /* Create a new member function field and add it to the vector of
15296 fnfieldlists. */
15297 flp->fnfields.emplace_back ();
15298 fnp = &flp->fnfields.back ();
15299
15300 /* Delay processing of the physname until later. */
15301 if (cu->language == language_cplus)
15302 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15303 die, cu);
15304 else
15305 {
15306 const char *physname = dwarf2_physname (fieldname, die, cu);
15307 fnp->physname = physname ? physname : "";
15308 }
15309
15310 fnp->type = alloc_type (objfile);
15311 this_type = read_type_die (die, cu);
15312 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15313 {
15314 int nparams = TYPE_NFIELDS (this_type);
15315
15316 /* TYPE is the domain of this method, and THIS_TYPE is the type
15317 of the method itself (TYPE_CODE_METHOD). */
15318 smash_to_method_type (fnp->type, type,
15319 TYPE_TARGET_TYPE (this_type),
15320 TYPE_FIELDS (this_type),
15321 TYPE_NFIELDS (this_type),
15322 TYPE_VARARGS (this_type));
15323
15324 /* Handle static member functions.
15325 Dwarf2 has no clean way to discern C++ static and non-static
15326 member functions. G++ helps GDB by marking the first
15327 parameter for non-static member functions (which is the this
15328 pointer) as artificial. We obtain this information from
15329 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15330 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15331 fnp->voffset = VOFFSET_STATIC;
15332 }
15333 else
15334 complaint (_("member function type missing for '%s'"),
15335 dwarf2_full_name (fieldname, die, cu));
15336
15337 /* Get fcontext from DW_AT_containing_type if present. */
15338 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15339 fnp->fcontext = die_containing_type (die, cu);
15340
15341 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15342 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15343
15344 /* Get accessibility. */
15345 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15346 if (attr)
15347 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15348 else
15349 accessibility = dwarf2_default_access_attribute (die, cu);
15350 switch (accessibility)
15351 {
15352 case DW_ACCESS_private:
15353 fnp->is_private = 1;
15354 break;
15355 case DW_ACCESS_protected:
15356 fnp->is_protected = 1;
15357 break;
15358 }
15359
15360 /* Check for artificial methods. */
15361 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15362 if (attr && DW_UNSND (attr) != 0)
15363 fnp->is_artificial = 1;
15364
15365 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15366
15367 /* Get index in virtual function table if it is a virtual member
15368 function. For older versions of GCC, this is an offset in the
15369 appropriate virtual table, as specified by DW_AT_containing_type.
15370 For everyone else, it is an expression to be evaluated relative
15371 to the object address. */
15372
15373 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15374 if (attr)
15375 {
15376 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15377 {
15378 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15379 {
15380 /* Old-style GCC. */
15381 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15382 }
15383 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15384 || (DW_BLOCK (attr)->size > 1
15385 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15386 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15387 {
15388 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15389 if ((fnp->voffset % cu->header.addr_size) != 0)
15390 dwarf2_complex_location_expr_complaint ();
15391 else
15392 fnp->voffset /= cu->header.addr_size;
15393 fnp->voffset += 2;
15394 }
15395 else
15396 dwarf2_complex_location_expr_complaint ();
15397
15398 if (!fnp->fcontext)
15399 {
15400 /* If there is no `this' field and no DW_AT_containing_type,
15401 we cannot actually find a base class context for the
15402 vtable! */
15403 if (TYPE_NFIELDS (this_type) == 0
15404 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15405 {
15406 complaint (_("cannot determine context for virtual member "
15407 "function \"%s\" (offset %s)"),
15408 fieldname, sect_offset_str (die->sect_off));
15409 }
15410 else
15411 {
15412 fnp->fcontext
15413 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15414 }
15415 }
15416 }
15417 else if (attr_form_is_section_offset (attr))
15418 {
15419 dwarf2_complex_location_expr_complaint ();
15420 }
15421 else
15422 {
15423 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15424 fieldname);
15425 }
15426 }
15427 else
15428 {
15429 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15430 if (attr && DW_UNSND (attr))
15431 {
15432 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15433 complaint (_("Member function \"%s\" (offset %s) is virtual "
15434 "but the vtable offset is not specified"),
15435 fieldname, sect_offset_str (die->sect_off));
15436 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15437 TYPE_CPLUS_DYNAMIC (type) = 1;
15438 }
15439 }
15440 }
15441
15442 /* Create the vector of member function fields, and attach it to the type. */
15443
15444 static void
15445 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15446 struct dwarf2_cu *cu)
15447 {
15448 if (cu->language == language_ada)
15449 error (_("unexpected member functions in Ada type"));
15450
15451 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15452 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15453 TYPE_ALLOC (type,
15454 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15455
15456 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15457 {
15458 struct fnfieldlist &nf = fip->fnfieldlists[i];
15459 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15460
15461 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15462 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15463 fn_flp->fn_fields = (struct fn_field *)
15464 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15465
15466 for (int k = 0; k < nf.fnfields.size (); ++k)
15467 fn_flp->fn_fields[k] = nf.fnfields[k];
15468 }
15469
15470 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15471 }
15472
15473 /* Returns non-zero if NAME is the name of a vtable member in CU's
15474 language, zero otherwise. */
15475 static int
15476 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15477 {
15478 static const char vptr[] = "_vptr";
15479
15480 /* Look for the C++ form of the vtable. */
15481 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15482 return 1;
15483
15484 return 0;
15485 }
15486
15487 /* GCC outputs unnamed structures that are really pointers to member
15488 functions, with the ABI-specified layout. If TYPE describes
15489 such a structure, smash it into a member function type.
15490
15491 GCC shouldn't do this; it should just output pointer to member DIEs.
15492 This is GCC PR debug/28767. */
15493
15494 static void
15495 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15496 {
15497 struct type *pfn_type, *self_type, *new_type;
15498
15499 /* Check for a structure with no name and two children. */
15500 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15501 return;
15502
15503 /* Check for __pfn and __delta members. */
15504 if (TYPE_FIELD_NAME (type, 0) == NULL
15505 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15506 || TYPE_FIELD_NAME (type, 1) == NULL
15507 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15508 return;
15509
15510 /* Find the type of the method. */
15511 pfn_type = TYPE_FIELD_TYPE (type, 0);
15512 if (pfn_type == NULL
15513 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15514 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15515 return;
15516
15517 /* Look for the "this" argument. */
15518 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15519 if (TYPE_NFIELDS (pfn_type) == 0
15520 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15521 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15522 return;
15523
15524 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15525 new_type = alloc_type (objfile);
15526 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15527 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15528 TYPE_VARARGS (pfn_type));
15529 smash_to_methodptr_type (type, new_type);
15530 }
15531
15532 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15533 appropriate error checking and issuing complaints if there is a
15534 problem. */
15535
15536 static ULONGEST
15537 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15538 {
15539 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15540
15541 if (attr == nullptr)
15542 return 0;
15543
15544 if (!attr_form_is_constant (attr))
15545 {
15546 complaint (_("DW_AT_alignment must have constant form"
15547 " - DIE at %s [in module %s]"),
15548 sect_offset_str (die->sect_off),
15549 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15550 return 0;
15551 }
15552
15553 ULONGEST align;
15554 if (attr->form == DW_FORM_sdata)
15555 {
15556 LONGEST val = DW_SND (attr);
15557 if (val < 0)
15558 {
15559 complaint (_("DW_AT_alignment value must not be negative"
15560 " - DIE at %s [in module %s]"),
15561 sect_offset_str (die->sect_off),
15562 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15563 return 0;
15564 }
15565 align = val;
15566 }
15567 else
15568 align = DW_UNSND (attr);
15569
15570 if (align == 0)
15571 {
15572 complaint (_("DW_AT_alignment value must not be zero"
15573 " - DIE at %s [in module %s]"),
15574 sect_offset_str (die->sect_off),
15575 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15576 return 0;
15577 }
15578 if ((align & (align - 1)) != 0)
15579 {
15580 complaint (_("DW_AT_alignment value must be a power of 2"
15581 " - DIE at %s [in module %s]"),
15582 sect_offset_str (die->sect_off),
15583 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15584 return 0;
15585 }
15586
15587 return align;
15588 }
15589
15590 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15591 the alignment for TYPE. */
15592
15593 static void
15594 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15595 struct type *type)
15596 {
15597 if (!set_type_align (type, get_alignment (cu, die)))
15598 complaint (_("DW_AT_alignment value too large"
15599 " - DIE at %s [in module %s]"),
15600 sect_offset_str (die->sect_off),
15601 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15602 }
15603
15604 /* Called when we find the DIE that starts a structure or union scope
15605 (definition) to create a type for the structure or union. Fill in
15606 the type's name and general properties; the members will not be
15607 processed until process_structure_scope. A symbol table entry for
15608 the type will also not be done until process_structure_scope (assuming
15609 the type has a name).
15610
15611 NOTE: we need to call these functions regardless of whether or not the
15612 DIE has a DW_AT_name attribute, since it might be an anonymous
15613 structure or union. This gets the type entered into our set of
15614 user defined types. */
15615
15616 static struct type *
15617 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15618 {
15619 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15620 struct type *type;
15621 struct attribute *attr;
15622 const char *name;
15623
15624 /* If the definition of this type lives in .debug_types, read that type.
15625 Don't follow DW_AT_specification though, that will take us back up
15626 the chain and we want to go down. */
15627 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15628 if (attr)
15629 {
15630 type = get_DW_AT_signature_type (die, attr, cu);
15631
15632 /* The type's CU may not be the same as CU.
15633 Ensure TYPE is recorded with CU in die_type_hash. */
15634 return set_die_type (die, type, cu);
15635 }
15636
15637 type = alloc_type (objfile);
15638 INIT_CPLUS_SPECIFIC (type);
15639
15640 name = dwarf2_name (die, cu);
15641 if (name != NULL)
15642 {
15643 if (cu->language == language_cplus
15644 || cu->language == language_d
15645 || cu->language == language_rust)
15646 {
15647 const char *full_name = dwarf2_full_name (name, die, cu);
15648
15649 /* dwarf2_full_name might have already finished building the DIE's
15650 type. If so, there is no need to continue. */
15651 if (get_die_type (die, cu) != NULL)
15652 return get_die_type (die, cu);
15653
15654 TYPE_NAME (type) = full_name;
15655 }
15656 else
15657 {
15658 /* The name is already allocated along with this objfile, so
15659 we don't need to duplicate it for the type. */
15660 TYPE_NAME (type) = name;
15661 }
15662 }
15663
15664 if (die->tag == DW_TAG_structure_type)
15665 {
15666 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15667 }
15668 else if (die->tag == DW_TAG_union_type)
15669 {
15670 TYPE_CODE (type) = TYPE_CODE_UNION;
15671 }
15672 else if (die->tag == DW_TAG_variant_part)
15673 {
15674 TYPE_CODE (type) = TYPE_CODE_UNION;
15675 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15676 }
15677 else
15678 {
15679 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15680 }
15681
15682 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15683 TYPE_DECLARED_CLASS (type) = 1;
15684
15685 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15686 if (attr)
15687 {
15688 if (attr_form_is_constant (attr))
15689 TYPE_LENGTH (type) = DW_UNSND (attr);
15690 else
15691 {
15692 /* For the moment, dynamic type sizes are not supported
15693 by GDB's struct type. The actual size is determined
15694 on-demand when resolving the type of a given object,
15695 so set the type's length to zero for now. Otherwise,
15696 we record an expression as the length, and that expression
15697 could lead to a very large value, which could eventually
15698 lead to us trying to allocate that much memory when creating
15699 a value of that type. */
15700 TYPE_LENGTH (type) = 0;
15701 }
15702 }
15703 else
15704 {
15705 TYPE_LENGTH (type) = 0;
15706 }
15707
15708 maybe_set_alignment (cu, die, type);
15709
15710 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15711 {
15712 /* ICC<14 does not output the required DW_AT_declaration on
15713 incomplete types, but gives them a size of zero. */
15714 TYPE_STUB (type) = 1;
15715 }
15716 else
15717 TYPE_STUB_SUPPORTED (type) = 1;
15718
15719 if (die_is_declaration (die, cu))
15720 TYPE_STUB (type) = 1;
15721 else if (attr == NULL && die->child == NULL
15722 && producer_is_realview (cu->producer))
15723 /* RealView does not output the required DW_AT_declaration
15724 on incomplete types. */
15725 TYPE_STUB (type) = 1;
15726
15727 /* We need to add the type field to the die immediately so we don't
15728 infinitely recurse when dealing with pointers to the structure
15729 type within the structure itself. */
15730 set_die_type (die, type, cu);
15731
15732 /* set_die_type should be already done. */
15733 set_descriptive_type (type, die, cu);
15734
15735 return type;
15736 }
15737
15738 /* A helper for process_structure_scope that handles a single member
15739 DIE. */
15740
15741 static void
15742 handle_struct_member_die (struct die_info *child_die, struct type *type,
15743 struct field_info *fi,
15744 std::vector<struct symbol *> *template_args,
15745 struct dwarf2_cu *cu)
15746 {
15747 if (child_die->tag == DW_TAG_member
15748 || child_die->tag == DW_TAG_variable
15749 || child_die->tag == DW_TAG_variant_part)
15750 {
15751 /* NOTE: carlton/2002-11-05: A C++ static data member
15752 should be a DW_TAG_member that is a declaration, but
15753 all versions of G++ as of this writing (so through at
15754 least 3.2.1) incorrectly generate DW_TAG_variable
15755 tags for them instead. */
15756 dwarf2_add_field (fi, child_die, cu);
15757 }
15758 else if (child_die->tag == DW_TAG_subprogram)
15759 {
15760 /* Rust doesn't have member functions in the C++ sense.
15761 However, it does emit ordinary functions as children
15762 of a struct DIE. */
15763 if (cu->language == language_rust)
15764 read_func_scope (child_die, cu);
15765 else
15766 {
15767 /* C++ member function. */
15768 dwarf2_add_member_fn (fi, child_die, type, cu);
15769 }
15770 }
15771 else if (child_die->tag == DW_TAG_inheritance)
15772 {
15773 /* C++ base class field. */
15774 dwarf2_add_field (fi, child_die, cu);
15775 }
15776 else if (type_can_define_types (child_die))
15777 dwarf2_add_type_defn (fi, child_die, cu);
15778 else if (child_die->tag == DW_TAG_template_type_param
15779 || child_die->tag == DW_TAG_template_value_param)
15780 {
15781 struct symbol *arg = new_symbol (child_die, NULL, cu);
15782
15783 if (arg != NULL)
15784 template_args->push_back (arg);
15785 }
15786 else if (child_die->tag == DW_TAG_variant)
15787 {
15788 /* In a variant we want to get the discriminant and also add a
15789 field for our sole member child. */
15790 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15791
15792 for (struct die_info *variant_child = child_die->child;
15793 variant_child != NULL;
15794 variant_child = sibling_die (variant_child))
15795 {
15796 if (variant_child->tag == DW_TAG_member)
15797 {
15798 handle_struct_member_die (variant_child, type, fi,
15799 template_args, cu);
15800 /* Only handle the one. */
15801 break;
15802 }
15803 }
15804
15805 /* We don't handle this but we might as well report it if we see
15806 it. */
15807 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15808 complaint (_("DW_AT_discr_list is not supported yet"
15809 " - DIE at %s [in module %s]"),
15810 sect_offset_str (child_die->sect_off),
15811 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15812
15813 /* The first field was just added, so we can stash the
15814 discriminant there. */
15815 gdb_assert (!fi->fields.empty ());
15816 if (discr == NULL)
15817 fi->fields.back ().variant.default_branch = true;
15818 else
15819 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15820 }
15821 }
15822
15823 /* Finish creating a structure or union type, including filling in
15824 its members and creating a symbol for it. */
15825
15826 static void
15827 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15828 {
15829 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15830 struct die_info *child_die;
15831 struct type *type;
15832
15833 type = get_die_type (die, cu);
15834 if (type == NULL)
15835 type = read_structure_type (die, cu);
15836
15837 /* When reading a DW_TAG_variant_part, we need to notice when we
15838 read the discriminant member, so we can record it later in the
15839 discriminant_info. */
15840 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15841 sect_offset discr_offset;
15842
15843 if (is_variant_part)
15844 {
15845 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15846 if (discr == NULL)
15847 {
15848 /* Maybe it's a univariant form, an extension we support.
15849 In this case arrange not to check the offset. */
15850 is_variant_part = false;
15851 }
15852 else if (attr_form_is_ref (discr))
15853 {
15854 struct dwarf2_cu *target_cu = cu;
15855 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15856
15857 discr_offset = target_die->sect_off;
15858 }
15859 else
15860 {
15861 complaint (_("DW_AT_discr does not have DIE reference form"
15862 " - DIE at %s [in module %s]"),
15863 sect_offset_str (die->sect_off),
15864 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15865 is_variant_part = false;
15866 }
15867 }
15868
15869 if (die->child != NULL && ! die_is_declaration (die, cu))
15870 {
15871 struct field_info fi;
15872 std::vector<struct symbol *> template_args;
15873
15874 child_die = die->child;
15875
15876 while (child_die && child_die->tag)
15877 {
15878 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15879
15880 if (is_variant_part && discr_offset == child_die->sect_off)
15881 fi.fields.back ().variant.is_discriminant = true;
15882
15883 child_die = sibling_die (child_die);
15884 }
15885
15886 /* Attach template arguments to type. */
15887 if (!template_args.empty ())
15888 {
15889 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15890 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15891 TYPE_TEMPLATE_ARGUMENTS (type)
15892 = XOBNEWVEC (&objfile->objfile_obstack,
15893 struct symbol *,
15894 TYPE_N_TEMPLATE_ARGUMENTS (type));
15895 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15896 template_args.data (),
15897 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15898 * sizeof (struct symbol *)));
15899 }
15900
15901 /* Attach fields and member functions to the type. */
15902 if (fi.nfields)
15903 dwarf2_attach_fields_to_type (&fi, type, cu);
15904 if (!fi.fnfieldlists.empty ())
15905 {
15906 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15907
15908 /* Get the type which refers to the base class (possibly this
15909 class itself) which contains the vtable pointer for the current
15910 class from the DW_AT_containing_type attribute. This use of
15911 DW_AT_containing_type is a GNU extension. */
15912
15913 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15914 {
15915 struct type *t = die_containing_type (die, cu);
15916
15917 set_type_vptr_basetype (type, t);
15918 if (type == t)
15919 {
15920 int i;
15921
15922 /* Our own class provides vtbl ptr. */
15923 for (i = TYPE_NFIELDS (t) - 1;
15924 i >= TYPE_N_BASECLASSES (t);
15925 --i)
15926 {
15927 const char *fieldname = TYPE_FIELD_NAME (t, i);
15928
15929 if (is_vtable_name (fieldname, cu))
15930 {
15931 set_type_vptr_fieldno (type, i);
15932 break;
15933 }
15934 }
15935
15936 /* Complain if virtual function table field not found. */
15937 if (i < TYPE_N_BASECLASSES (t))
15938 complaint (_("virtual function table pointer "
15939 "not found when defining class '%s'"),
15940 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15941 }
15942 else
15943 {
15944 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15945 }
15946 }
15947 else if (cu->producer
15948 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15949 {
15950 /* The IBM XLC compiler does not provide direct indication
15951 of the containing type, but the vtable pointer is
15952 always named __vfp. */
15953
15954 int i;
15955
15956 for (i = TYPE_NFIELDS (type) - 1;
15957 i >= TYPE_N_BASECLASSES (type);
15958 --i)
15959 {
15960 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15961 {
15962 set_type_vptr_fieldno (type, i);
15963 set_type_vptr_basetype (type, type);
15964 break;
15965 }
15966 }
15967 }
15968 }
15969
15970 /* Copy fi.typedef_field_list linked list elements content into the
15971 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15972 if (!fi.typedef_field_list.empty ())
15973 {
15974 int count = fi.typedef_field_list.size ();
15975
15976 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15977 TYPE_TYPEDEF_FIELD_ARRAY (type)
15978 = ((struct decl_field *)
15979 TYPE_ALLOC (type,
15980 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15981 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15982
15983 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15984 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15985 }
15986
15987 /* Copy fi.nested_types_list linked list elements content into the
15988 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15989 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15990 {
15991 int count = fi.nested_types_list.size ();
15992
15993 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15994 TYPE_NESTED_TYPES_ARRAY (type)
15995 = ((struct decl_field *)
15996 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15997 TYPE_NESTED_TYPES_COUNT (type) = count;
15998
15999 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16000 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16001 }
16002 }
16003
16004 quirk_gcc_member_function_pointer (type, objfile);
16005 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16006 cu->rust_unions.push_back (type);
16007
16008 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16009 snapshots) has been known to create a die giving a declaration
16010 for a class that has, as a child, a die giving a definition for a
16011 nested class. So we have to process our children even if the
16012 current die is a declaration. Normally, of course, a declaration
16013 won't have any children at all. */
16014
16015 child_die = die->child;
16016
16017 while (child_die != NULL && child_die->tag)
16018 {
16019 if (child_die->tag == DW_TAG_member
16020 || child_die->tag == DW_TAG_variable
16021 || child_die->tag == DW_TAG_inheritance
16022 || child_die->tag == DW_TAG_template_value_param
16023 || child_die->tag == DW_TAG_template_type_param)
16024 {
16025 /* Do nothing. */
16026 }
16027 else
16028 process_die (child_die, cu);
16029
16030 child_die = sibling_die (child_die);
16031 }
16032
16033 /* Do not consider external references. According to the DWARF standard,
16034 these DIEs are identified by the fact that they have no byte_size
16035 attribute, and a declaration attribute. */
16036 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16037 || !die_is_declaration (die, cu))
16038 new_symbol (die, type, cu);
16039 }
16040
16041 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16042 update TYPE using some information only available in DIE's children. */
16043
16044 static void
16045 update_enumeration_type_from_children (struct die_info *die,
16046 struct type *type,
16047 struct dwarf2_cu *cu)
16048 {
16049 struct die_info *child_die;
16050 int unsigned_enum = 1;
16051 int flag_enum = 1;
16052 ULONGEST mask = 0;
16053
16054 auto_obstack obstack;
16055
16056 for (child_die = die->child;
16057 child_die != NULL && child_die->tag;
16058 child_die = sibling_die (child_die))
16059 {
16060 struct attribute *attr;
16061 LONGEST value;
16062 const gdb_byte *bytes;
16063 struct dwarf2_locexpr_baton *baton;
16064 const char *name;
16065
16066 if (child_die->tag != DW_TAG_enumerator)
16067 continue;
16068
16069 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16070 if (attr == NULL)
16071 continue;
16072
16073 name = dwarf2_name (child_die, cu);
16074 if (name == NULL)
16075 name = "<anonymous enumerator>";
16076
16077 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16078 &value, &bytes, &baton);
16079 if (value < 0)
16080 {
16081 unsigned_enum = 0;
16082 flag_enum = 0;
16083 }
16084 else if ((mask & value) != 0)
16085 flag_enum = 0;
16086 else
16087 mask |= value;
16088
16089 /* If we already know that the enum type is neither unsigned, nor
16090 a flag type, no need to look at the rest of the enumerates. */
16091 if (!unsigned_enum && !flag_enum)
16092 break;
16093 }
16094
16095 if (unsigned_enum)
16096 TYPE_UNSIGNED (type) = 1;
16097 if (flag_enum)
16098 TYPE_FLAG_ENUM (type) = 1;
16099 }
16100
16101 /* Given a DW_AT_enumeration_type die, set its type. We do not
16102 complete the type's fields yet, or create any symbols. */
16103
16104 static struct type *
16105 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16106 {
16107 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16108 struct type *type;
16109 struct attribute *attr;
16110 const char *name;
16111
16112 /* If the definition of this type lives in .debug_types, read that type.
16113 Don't follow DW_AT_specification though, that will take us back up
16114 the chain and we want to go down. */
16115 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16116 if (attr)
16117 {
16118 type = get_DW_AT_signature_type (die, attr, cu);
16119
16120 /* The type's CU may not be the same as CU.
16121 Ensure TYPE is recorded with CU in die_type_hash. */
16122 return set_die_type (die, type, cu);
16123 }
16124
16125 type = alloc_type (objfile);
16126
16127 TYPE_CODE (type) = TYPE_CODE_ENUM;
16128 name = dwarf2_full_name (NULL, die, cu);
16129 if (name != NULL)
16130 TYPE_NAME (type) = name;
16131
16132 attr = dwarf2_attr (die, DW_AT_type, cu);
16133 if (attr != NULL)
16134 {
16135 struct type *underlying_type = die_type (die, cu);
16136
16137 TYPE_TARGET_TYPE (type) = underlying_type;
16138 }
16139
16140 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16141 if (attr)
16142 {
16143 TYPE_LENGTH (type) = DW_UNSND (attr);
16144 }
16145 else
16146 {
16147 TYPE_LENGTH (type) = 0;
16148 }
16149
16150 maybe_set_alignment (cu, die, type);
16151
16152 /* The enumeration DIE can be incomplete. In Ada, any type can be
16153 declared as private in the package spec, and then defined only
16154 inside the package body. Such types are known as Taft Amendment
16155 Types. When another package uses such a type, an incomplete DIE
16156 may be generated by the compiler. */
16157 if (die_is_declaration (die, cu))
16158 TYPE_STUB (type) = 1;
16159
16160 /* Finish the creation of this type by using the enum's children.
16161 We must call this even when the underlying type has been provided
16162 so that we can determine if we're looking at a "flag" enum. */
16163 update_enumeration_type_from_children (die, type, cu);
16164
16165 /* If this type has an underlying type that is not a stub, then we
16166 may use its attributes. We always use the "unsigned" attribute
16167 in this situation, because ordinarily we guess whether the type
16168 is unsigned -- but the guess can be wrong and the underlying type
16169 can tell us the reality. However, we defer to a local size
16170 attribute if one exists, because this lets the compiler override
16171 the underlying type if needed. */
16172 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16173 {
16174 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16175 if (TYPE_LENGTH (type) == 0)
16176 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16177 if (TYPE_RAW_ALIGN (type) == 0
16178 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16179 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16180 }
16181
16182 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16183
16184 return set_die_type (die, type, cu);
16185 }
16186
16187 /* Given a pointer to a die which begins an enumeration, process all
16188 the dies that define the members of the enumeration, and create the
16189 symbol for the enumeration type.
16190
16191 NOTE: We reverse the order of the element list. */
16192
16193 static void
16194 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16195 {
16196 struct type *this_type;
16197
16198 this_type = get_die_type (die, cu);
16199 if (this_type == NULL)
16200 this_type = read_enumeration_type (die, cu);
16201
16202 if (die->child != NULL)
16203 {
16204 struct die_info *child_die;
16205 struct symbol *sym;
16206 struct field *fields = NULL;
16207 int num_fields = 0;
16208 const char *name;
16209
16210 child_die = die->child;
16211 while (child_die && child_die->tag)
16212 {
16213 if (child_die->tag != DW_TAG_enumerator)
16214 {
16215 process_die (child_die, cu);
16216 }
16217 else
16218 {
16219 name = dwarf2_name (child_die, cu);
16220 if (name)
16221 {
16222 sym = new_symbol (child_die, this_type, cu);
16223
16224 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16225 {
16226 fields = (struct field *)
16227 xrealloc (fields,
16228 (num_fields + DW_FIELD_ALLOC_CHUNK)
16229 * sizeof (struct field));
16230 }
16231
16232 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16233 FIELD_TYPE (fields[num_fields]) = NULL;
16234 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16235 FIELD_BITSIZE (fields[num_fields]) = 0;
16236
16237 num_fields++;
16238 }
16239 }
16240
16241 child_die = sibling_die (child_die);
16242 }
16243
16244 if (num_fields)
16245 {
16246 TYPE_NFIELDS (this_type) = num_fields;
16247 TYPE_FIELDS (this_type) = (struct field *)
16248 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16249 memcpy (TYPE_FIELDS (this_type), fields,
16250 sizeof (struct field) * num_fields);
16251 xfree (fields);
16252 }
16253 }
16254
16255 /* If we are reading an enum from a .debug_types unit, and the enum
16256 is a declaration, and the enum is not the signatured type in the
16257 unit, then we do not want to add a symbol for it. Adding a
16258 symbol would in some cases obscure the true definition of the
16259 enum, giving users an incomplete type when the definition is
16260 actually available. Note that we do not want to do this for all
16261 enums which are just declarations, because C++0x allows forward
16262 enum declarations. */
16263 if (cu->per_cu->is_debug_types
16264 && die_is_declaration (die, cu))
16265 {
16266 struct signatured_type *sig_type;
16267
16268 sig_type = (struct signatured_type *) cu->per_cu;
16269 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16270 if (sig_type->type_offset_in_section != die->sect_off)
16271 return;
16272 }
16273
16274 new_symbol (die, this_type, cu);
16275 }
16276
16277 /* Extract all information from a DW_TAG_array_type DIE and put it in
16278 the DIE's type field. For now, this only handles one dimensional
16279 arrays. */
16280
16281 static struct type *
16282 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16283 {
16284 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16285 struct die_info *child_die;
16286 struct type *type;
16287 struct type *element_type, *range_type, *index_type;
16288 struct attribute *attr;
16289 const char *name;
16290 struct dynamic_prop *byte_stride_prop = NULL;
16291 unsigned int bit_stride = 0;
16292
16293 element_type = die_type (die, cu);
16294
16295 /* The die_type call above may have already set the type for this DIE. */
16296 type = get_die_type (die, cu);
16297 if (type)
16298 return type;
16299
16300 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16301 if (attr != NULL)
16302 {
16303 int stride_ok;
16304
16305 byte_stride_prop
16306 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16307 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16308 if (!stride_ok)
16309 {
16310 complaint (_("unable to read array DW_AT_byte_stride "
16311 " - DIE at %s [in module %s]"),
16312 sect_offset_str (die->sect_off),
16313 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16314 /* Ignore this attribute. We will likely not be able to print
16315 arrays of this type correctly, but there is little we can do
16316 to help if we cannot read the attribute's value. */
16317 byte_stride_prop = NULL;
16318 }
16319 }
16320
16321 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16322 if (attr != NULL)
16323 bit_stride = DW_UNSND (attr);
16324
16325 /* Irix 6.2 native cc creates array types without children for
16326 arrays with unspecified length. */
16327 if (die->child == NULL)
16328 {
16329 index_type = objfile_type (objfile)->builtin_int;
16330 range_type = create_static_range_type (NULL, index_type, 0, -1);
16331 type = create_array_type_with_stride (NULL, element_type, range_type,
16332 byte_stride_prop, bit_stride);
16333 return set_die_type (die, type, cu);
16334 }
16335
16336 std::vector<struct type *> range_types;
16337 child_die = die->child;
16338 while (child_die && child_die->tag)
16339 {
16340 if (child_die->tag == DW_TAG_subrange_type)
16341 {
16342 struct type *child_type = read_type_die (child_die, cu);
16343
16344 if (child_type != NULL)
16345 {
16346 /* The range type was succesfully read. Save it for the
16347 array type creation. */
16348 range_types.push_back (child_type);
16349 }
16350 }
16351 child_die = sibling_die (child_die);
16352 }
16353
16354 /* Dwarf2 dimensions are output from left to right, create the
16355 necessary array types in backwards order. */
16356
16357 type = element_type;
16358
16359 if (read_array_order (die, cu) == DW_ORD_col_major)
16360 {
16361 int i = 0;
16362
16363 while (i < range_types.size ())
16364 type = create_array_type_with_stride (NULL, type, range_types[i++],
16365 byte_stride_prop, bit_stride);
16366 }
16367 else
16368 {
16369 size_t ndim = range_types.size ();
16370 while (ndim-- > 0)
16371 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16372 byte_stride_prop, bit_stride);
16373 }
16374
16375 /* Understand Dwarf2 support for vector types (like they occur on
16376 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16377 array type. This is not part of the Dwarf2/3 standard yet, but a
16378 custom vendor extension. The main difference between a regular
16379 array and the vector variant is that vectors are passed by value
16380 to functions. */
16381 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16382 if (attr)
16383 make_vector_type (type);
16384
16385 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16386 implementation may choose to implement triple vectors using this
16387 attribute. */
16388 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16389 if (attr)
16390 {
16391 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16392 TYPE_LENGTH (type) = DW_UNSND (attr);
16393 else
16394 complaint (_("DW_AT_byte_size for array type smaller "
16395 "than the total size of elements"));
16396 }
16397
16398 name = dwarf2_name (die, cu);
16399 if (name)
16400 TYPE_NAME (type) = name;
16401
16402 maybe_set_alignment (cu, die, type);
16403
16404 /* Install the type in the die. */
16405 set_die_type (die, type, cu);
16406
16407 /* set_die_type should be already done. */
16408 set_descriptive_type (type, die, cu);
16409
16410 return type;
16411 }
16412
16413 static enum dwarf_array_dim_ordering
16414 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16415 {
16416 struct attribute *attr;
16417
16418 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16419
16420 if (attr)
16421 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16422
16423 /* GNU F77 is a special case, as at 08/2004 array type info is the
16424 opposite order to the dwarf2 specification, but data is still
16425 laid out as per normal fortran.
16426
16427 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16428 version checking. */
16429
16430 if (cu->language == language_fortran
16431 && cu->producer && strstr (cu->producer, "GNU F77"))
16432 {
16433 return DW_ORD_row_major;
16434 }
16435
16436 switch (cu->language_defn->la_array_ordering)
16437 {
16438 case array_column_major:
16439 return DW_ORD_col_major;
16440 case array_row_major:
16441 default:
16442 return DW_ORD_row_major;
16443 };
16444 }
16445
16446 /* Extract all information from a DW_TAG_set_type DIE and put it in
16447 the DIE's type field. */
16448
16449 static struct type *
16450 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16451 {
16452 struct type *domain_type, *set_type;
16453 struct attribute *attr;
16454
16455 domain_type = die_type (die, cu);
16456
16457 /* The die_type call above may have already set the type for this DIE. */
16458 set_type = get_die_type (die, cu);
16459 if (set_type)
16460 return set_type;
16461
16462 set_type = create_set_type (NULL, domain_type);
16463
16464 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16465 if (attr)
16466 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16467
16468 maybe_set_alignment (cu, die, set_type);
16469
16470 return set_die_type (die, set_type, cu);
16471 }
16472
16473 /* A helper for read_common_block that creates a locexpr baton.
16474 SYM is the symbol which we are marking as computed.
16475 COMMON_DIE is the DIE for the common block.
16476 COMMON_LOC is the location expression attribute for the common
16477 block itself.
16478 MEMBER_LOC is the location expression attribute for the particular
16479 member of the common block that we are processing.
16480 CU is the CU from which the above come. */
16481
16482 static void
16483 mark_common_block_symbol_computed (struct symbol *sym,
16484 struct die_info *common_die,
16485 struct attribute *common_loc,
16486 struct attribute *member_loc,
16487 struct dwarf2_cu *cu)
16488 {
16489 struct dwarf2_per_objfile *dwarf2_per_objfile
16490 = cu->per_cu->dwarf2_per_objfile;
16491 struct objfile *objfile = dwarf2_per_objfile->objfile;
16492 struct dwarf2_locexpr_baton *baton;
16493 gdb_byte *ptr;
16494 unsigned int cu_off;
16495 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16496 LONGEST offset = 0;
16497
16498 gdb_assert (common_loc && member_loc);
16499 gdb_assert (attr_form_is_block (common_loc));
16500 gdb_assert (attr_form_is_block (member_loc)
16501 || attr_form_is_constant (member_loc));
16502
16503 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16504 baton->per_cu = cu->per_cu;
16505 gdb_assert (baton->per_cu);
16506
16507 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16508
16509 if (attr_form_is_constant (member_loc))
16510 {
16511 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16512 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16513 }
16514 else
16515 baton->size += DW_BLOCK (member_loc)->size;
16516
16517 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16518 baton->data = ptr;
16519
16520 *ptr++ = DW_OP_call4;
16521 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16522 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16523 ptr += 4;
16524
16525 if (attr_form_is_constant (member_loc))
16526 {
16527 *ptr++ = DW_OP_addr;
16528 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16529 ptr += cu->header.addr_size;
16530 }
16531 else
16532 {
16533 /* We have to copy the data here, because DW_OP_call4 will only
16534 use a DW_AT_location attribute. */
16535 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16536 ptr += DW_BLOCK (member_loc)->size;
16537 }
16538
16539 *ptr++ = DW_OP_plus;
16540 gdb_assert (ptr - baton->data == baton->size);
16541
16542 SYMBOL_LOCATION_BATON (sym) = baton;
16543 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16544 }
16545
16546 /* Create appropriate locally-scoped variables for all the
16547 DW_TAG_common_block entries. Also create a struct common_block
16548 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16549 is used to sepate the common blocks name namespace from regular
16550 variable names. */
16551
16552 static void
16553 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16554 {
16555 struct attribute *attr;
16556
16557 attr = dwarf2_attr (die, DW_AT_location, cu);
16558 if (attr)
16559 {
16560 /* Support the .debug_loc offsets. */
16561 if (attr_form_is_block (attr))
16562 {
16563 /* Ok. */
16564 }
16565 else if (attr_form_is_section_offset (attr))
16566 {
16567 dwarf2_complex_location_expr_complaint ();
16568 attr = NULL;
16569 }
16570 else
16571 {
16572 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16573 "common block member");
16574 attr = NULL;
16575 }
16576 }
16577
16578 if (die->child != NULL)
16579 {
16580 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16581 struct die_info *child_die;
16582 size_t n_entries = 0, size;
16583 struct common_block *common_block;
16584 struct symbol *sym;
16585
16586 for (child_die = die->child;
16587 child_die && child_die->tag;
16588 child_die = sibling_die (child_die))
16589 ++n_entries;
16590
16591 size = (sizeof (struct common_block)
16592 + (n_entries - 1) * sizeof (struct symbol *));
16593 common_block
16594 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16595 size);
16596 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16597 common_block->n_entries = 0;
16598
16599 for (child_die = die->child;
16600 child_die && child_die->tag;
16601 child_die = sibling_die (child_die))
16602 {
16603 /* Create the symbol in the DW_TAG_common_block block in the current
16604 symbol scope. */
16605 sym = new_symbol (child_die, NULL, cu);
16606 if (sym != NULL)
16607 {
16608 struct attribute *member_loc;
16609
16610 common_block->contents[common_block->n_entries++] = sym;
16611
16612 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16613 cu);
16614 if (member_loc)
16615 {
16616 /* GDB has handled this for a long time, but it is
16617 not specified by DWARF. It seems to have been
16618 emitted by gfortran at least as recently as:
16619 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16620 complaint (_("Variable in common block has "
16621 "DW_AT_data_member_location "
16622 "- DIE at %s [in module %s]"),
16623 sect_offset_str (child_die->sect_off),
16624 objfile_name (objfile));
16625
16626 if (attr_form_is_section_offset (member_loc))
16627 dwarf2_complex_location_expr_complaint ();
16628 else if (attr_form_is_constant (member_loc)
16629 || attr_form_is_block (member_loc))
16630 {
16631 if (attr)
16632 mark_common_block_symbol_computed (sym, die, attr,
16633 member_loc, cu);
16634 }
16635 else
16636 dwarf2_complex_location_expr_complaint ();
16637 }
16638 }
16639 }
16640
16641 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16642 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16643 }
16644 }
16645
16646 /* Create a type for a C++ namespace. */
16647
16648 static struct type *
16649 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16650 {
16651 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16652 const char *previous_prefix, *name;
16653 int is_anonymous;
16654 struct type *type;
16655
16656 /* For extensions, reuse the type of the original namespace. */
16657 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16658 {
16659 struct die_info *ext_die;
16660 struct dwarf2_cu *ext_cu = cu;
16661
16662 ext_die = dwarf2_extension (die, &ext_cu);
16663 type = read_type_die (ext_die, ext_cu);
16664
16665 /* EXT_CU may not be the same as CU.
16666 Ensure TYPE is recorded with CU in die_type_hash. */
16667 return set_die_type (die, type, cu);
16668 }
16669
16670 name = namespace_name (die, &is_anonymous, cu);
16671
16672 /* Now build the name of the current namespace. */
16673
16674 previous_prefix = determine_prefix (die, cu);
16675 if (previous_prefix[0] != '\0')
16676 name = typename_concat (&objfile->objfile_obstack,
16677 previous_prefix, name, 0, cu);
16678
16679 /* Create the type. */
16680 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16681
16682 return set_die_type (die, type, cu);
16683 }
16684
16685 /* Read a namespace scope. */
16686
16687 static void
16688 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16689 {
16690 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16691 int is_anonymous;
16692
16693 /* Add a symbol associated to this if we haven't seen the namespace
16694 before. Also, add a using directive if it's an anonymous
16695 namespace. */
16696
16697 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16698 {
16699 struct type *type;
16700
16701 type = read_type_die (die, cu);
16702 new_symbol (die, type, cu);
16703
16704 namespace_name (die, &is_anonymous, cu);
16705 if (is_anonymous)
16706 {
16707 const char *previous_prefix = determine_prefix (die, cu);
16708
16709 std::vector<const char *> excludes;
16710 add_using_directive (using_directives (cu->language),
16711 previous_prefix, TYPE_NAME (type), NULL,
16712 NULL, excludes, 0, &objfile->objfile_obstack);
16713 }
16714 }
16715
16716 if (die->child != NULL)
16717 {
16718 struct die_info *child_die = die->child;
16719
16720 while (child_die && child_die->tag)
16721 {
16722 process_die (child_die, cu);
16723 child_die = sibling_die (child_die);
16724 }
16725 }
16726 }
16727
16728 /* Read a Fortran module as type. This DIE can be only a declaration used for
16729 imported module. Still we need that type as local Fortran "use ... only"
16730 declaration imports depend on the created type in determine_prefix. */
16731
16732 static struct type *
16733 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16734 {
16735 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16736 const char *module_name;
16737 struct type *type;
16738
16739 module_name = dwarf2_name (die, cu);
16740 if (!module_name)
16741 complaint (_("DW_TAG_module has no name, offset %s"),
16742 sect_offset_str (die->sect_off));
16743 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16744
16745 return set_die_type (die, type, cu);
16746 }
16747
16748 /* Read a Fortran module. */
16749
16750 static void
16751 read_module (struct die_info *die, struct dwarf2_cu *cu)
16752 {
16753 struct die_info *child_die = die->child;
16754 struct type *type;
16755
16756 type = read_type_die (die, cu);
16757 new_symbol (die, type, cu);
16758
16759 while (child_die && child_die->tag)
16760 {
16761 process_die (child_die, cu);
16762 child_die = sibling_die (child_die);
16763 }
16764 }
16765
16766 /* Return the name of the namespace represented by DIE. Set
16767 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16768 namespace. */
16769
16770 static const char *
16771 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16772 {
16773 struct die_info *current_die;
16774 const char *name = NULL;
16775
16776 /* Loop through the extensions until we find a name. */
16777
16778 for (current_die = die;
16779 current_die != NULL;
16780 current_die = dwarf2_extension (die, &cu))
16781 {
16782 /* We don't use dwarf2_name here so that we can detect the absence
16783 of a name -> anonymous namespace. */
16784 name = dwarf2_string_attr (die, DW_AT_name, cu);
16785
16786 if (name != NULL)
16787 break;
16788 }
16789
16790 /* Is it an anonymous namespace? */
16791
16792 *is_anonymous = (name == NULL);
16793 if (*is_anonymous)
16794 name = CP_ANONYMOUS_NAMESPACE_STR;
16795
16796 return name;
16797 }
16798
16799 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16800 the user defined type vector. */
16801
16802 static struct type *
16803 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16804 {
16805 struct gdbarch *gdbarch
16806 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16807 struct comp_unit_head *cu_header = &cu->header;
16808 struct type *type;
16809 struct attribute *attr_byte_size;
16810 struct attribute *attr_address_class;
16811 int byte_size, addr_class;
16812 struct type *target_type;
16813
16814 target_type = die_type (die, cu);
16815
16816 /* The die_type call above may have already set the type for this DIE. */
16817 type = get_die_type (die, cu);
16818 if (type)
16819 return type;
16820
16821 type = lookup_pointer_type (target_type);
16822
16823 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16824 if (attr_byte_size)
16825 byte_size = DW_UNSND (attr_byte_size);
16826 else
16827 byte_size = cu_header->addr_size;
16828
16829 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16830 if (attr_address_class)
16831 addr_class = DW_UNSND (attr_address_class);
16832 else
16833 addr_class = DW_ADDR_none;
16834
16835 ULONGEST alignment = get_alignment (cu, die);
16836
16837 /* If the pointer size, alignment, or address class is different
16838 than the default, create a type variant marked as such and set
16839 the length accordingly. */
16840 if (TYPE_LENGTH (type) != byte_size
16841 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16842 && alignment != TYPE_RAW_ALIGN (type))
16843 || addr_class != DW_ADDR_none)
16844 {
16845 if (gdbarch_address_class_type_flags_p (gdbarch))
16846 {
16847 int type_flags;
16848
16849 type_flags = gdbarch_address_class_type_flags
16850 (gdbarch, byte_size, addr_class);
16851 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16852 == 0);
16853 type = make_type_with_address_space (type, type_flags);
16854 }
16855 else if (TYPE_LENGTH (type) != byte_size)
16856 {
16857 complaint (_("invalid pointer size %d"), byte_size);
16858 }
16859 else if (TYPE_RAW_ALIGN (type) != alignment)
16860 {
16861 complaint (_("Invalid DW_AT_alignment"
16862 " - DIE at %s [in module %s]"),
16863 sect_offset_str (die->sect_off),
16864 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16865 }
16866 else
16867 {
16868 /* Should we also complain about unhandled address classes? */
16869 }
16870 }
16871
16872 TYPE_LENGTH (type) = byte_size;
16873 set_type_align (type, alignment);
16874 return set_die_type (die, type, cu);
16875 }
16876
16877 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16878 the user defined type vector. */
16879
16880 static struct type *
16881 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16882 {
16883 struct type *type;
16884 struct type *to_type;
16885 struct type *domain;
16886
16887 to_type = die_type (die, cu);
16888 domain = die_containing_type (die, cu);
16889
16890 /* The calls above may have already set the type for this DIE. */
16891 type = get_die_type (die, cu);
16892 if (type)
16893 return type;
16894
16895 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16896 type = lookup_methodptr_type (to_type);
16897 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16898 {
16899 struct type *new_type
16900 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16901
16902 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16903 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16904 TYPE_VARARGS (to_type));
16905 type = lookup_methodptr_type (new_type);
16906 }
16907 else
16908 type = lookup_memberptr_type (to_type, domain);
16909
16910 return set_die_type (die, type, cu);
16911 }
16912
16913 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16914 the user defined type vector. */
16915
16916 static struct type *
16917 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16918 enum type_code refcode)
16919 {
16920 struct comp_unit_head *cu_header = &cu->header;
16921 struct type *type, *target_type;
16922 struct attribute *attr;
16923
16924 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16925
16926 target_type = die_type (die, cu);
16927
16928 /* The die_type call above may have already set the type for this DIE. */
16929 type = get_die_type (die, cu);
16930 if (type)
16931 return type;
16932
16933 type = lookup_reference_type (target_type, refcode);
16934 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16935 if (attr)
16936 {
16937 TYPE_LENGTH (type) = DW_UNSND (attr);
16938 }
16939 else
16940 {
16941 TYPE_LENGTH (type) = cu_header->addr_size;
16942 }
16943 maybe_set_alignment (cu, die, type);
16944 return set_die_type (die, type, cu);
16945 }
16946
16947 /* Add the given cv-qualifiers to the element type of the array. GCC
16948 outputs DWARF type qualifiers that apply to an array, not the
16949 element type. But GDB relies on the array element type to carry
16950 the cv-qualifiers. This mimics section 6.7.3 of the C99
16951 specification. */
16952
16953 static struct type *
16954 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16955 struct type *base_type, int cnst, int voltl)
16956 {
16957 struct type *el_type, *inner_array;
16958
16959 base_type = copy_type (base_type);
16960 inner_array = base_type;
16961
16962 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16963 {
16964 TYPE_TARGET_TYPE (inner_array) =
16965 copy_type (TYPE_TARGET_TYPE (inner_array));
16966 inner_array = TYPE_TARGET_TYPE (inner_array);
16967 }
16968
16969 el_type = TYPE_TARGET_TYPE (inner_array);
16970 cnst |= TYPE_CONST (el_type);
16971 voltl |= TYPE_VOLATILE (el_type);
16972 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16973
16974 return set_die_type (die, base_type, cu);
16975 }
16976
16977 static struct type *
16978 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16979 {
16980 struct type *base_type, *cv_type;
16981
16982 base_type = die_type (die, cu);
16983
16984 /* The die_type call above may have already set the type for this DIE. */
16985 cv_type = get_die_type (die, cu);
16986 if (cv_type)
16987 return cv_type;
16988
16989 /* In case the const qualifier is applied to an array type, the element type
16990 is so qualified, not the array type (section 6.7.3 of C99). */
16991 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16992 return add_array_cv_type (die, cu, base_type, 1, 0);
16993
16994 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16995 return set_die_type (die, cv_type, cu);
16996 }
16997
16998 static struct type *
16999 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17000 {
17001 struct type *base_type, *cv_type;
17002
17003 base_type = die_type (die, cu);
17004
17005 /* The die_type call above may have already set the type for this DIE. */
17006 cv_type = get_die_type (die, cu);
17007 if (cv_type)
17008 return cv_type;
17009
17010 /* In case the volatile qualifier is applied to an array type, the
17011 element type is so qualified, not the array type (section 6.7.3
17012 of C99). */
17013 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17014 return add_array_cv_type (die, cu, base_type, 0, 1);
17015
17016 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17017 return set_die_type (die, cv_type, cu);
17018 }
17019
17020 /* Handle DW_TAG_restrict_type. */
17021
17022 static struct type *
17023 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17024 {
17025 struct type *base_type, *cv_type;
17026
17027 base_type = die_type (die, cu);
17028
17029 /* The die_type call above may have already set the type for this DIE. */
17030 cv_type = get_die_type (die, cu);
17031 if (cv_type)
17032 return cv_type;
17033
17034 cv_type = make_restrict_type (base_type);
17035 return set_die_type (die, cv_type, cu);
17036 }
17037
17038 /* Handle DW_TAG_atomic_type. */
17039
17040 static struct type *
17041 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17042 {
17043 struct type *base_type, *cv_type;
17044
17045 base_type = die_type (die, cu);
17046
17047 /* The die_type call above may have already set the type for this DIE. */
17048 cv_type = get_die_type (die, cu);
17049 if (cv_type)
17050 return cv_type;
17051
17052 cv_type = make_atomic_type (base_type);
17053 return set_die_type (die, cv_type, cu);
17054 }
17055
17056 /* Extract all information from a DW_TAG_string_type DIE and add to
17057 the user defined type vector. It isn't really a user defined type,
17058 but it behaves like one, with other DIE's using an AT_user_def_type
17059 attribute to reference it. */
17060
17061 static struct type *
17062 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17063 {
17064 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17065 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17066 struct type *type, *range_type, *index_type, *char_type;
17067 struct attribute *attr;
17068 unsigned int length;
17069
17070 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17071 if (attr)
17072 {
17073 length = DW_UNSND (attr);
17074 }
17075 else
17076 {
17077 /* Check for the DW_AT_byte_size attribute. */
17078 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17079 if (attr)
17080 {
17081 length = DW_UNSND (attr);
17082 }
17083 else
17084 {
17085 length = 1;
17086 }
17087 }
17088
17089 index_type = objfile_type (objfile)->builtin_int;
17090 range_type = create_static_range_type (NULL, index_type, 1, length);
17091 char_type = language_string_char_type (cu->language_defn, gdbarch);
17092 type = create_string_type (NULL, char_type, range_type);
17093
17094 return set_die_type (die, type, cu);
17095 }
17096
17097 /* Assuming that DIE corresponds to a function, returns nonzero
17098 if the function is prototyped. */
17099
17100 static int
17101 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17102 {
17103 struct attribute *attr;
17104
17105 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17106 if (attr && (DW_UNSND (attr) != 0))
17107 return 1;
17108
17109 /* The DWARF standard implies that the DW_AT_prototyped attribute
17110 is only meaninful for C, but the concept also extends to other
17111 languages that allow unprototyped functions (Eg: Objective C).
17112 For all other languages, assume that functions are always
17113 prototyped. */
17114 if (cu->language != language_c
17115 && cu->language != language_objc
17116 && cu->language != language_opencl)
17117 return 1;
17118
17119 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17120 prototyped and unprototyped functions; default to prototyped,
17121 since that is more common in modern code (and RealView warns
17122 about unprototyped functions). */
17123 if (producer_is_realview (cu->producer))
17124 return 1;
17125
17126 return 0;
17127 }
17128
17129 /* Handle DIES due to C code like:
17130
17131 struct foo
17132 {
17133 int (*funcp)(int a, long l);
17134 int b;
17135 };
17136
17137 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17138
17139 static struct type *
17140 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17141 {
17142 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17143 struct type *type; /* Type that this function returns. */
17144 struct type *ftype; /* Function that returns above type. */
17145 struct attribute *attr;
17146
17147 type = die_type (die, cu);
17148
17149 /* The die_type call above may have already set the type for this DIE. */
17150 ftype = get_die_type (die, cu);
17151 if (ftype)
17152 return ftype;
17153
17154 ftype = lookup_function_type (type);
17155
17156 if (prototyped_function_p (die, cu))
17157 TYPE_PROTOTYPED (ftype) = 1;
17158
17159 /* Store the calling convention in the type if it's available in
17160 the subroutine die. Otherwise set the calling convention to
17161 the default value DW_CC_normal. */
17162 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17163 if (attr)
17164 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17165 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17166 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17167 else
17168 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17169
17170 /* Record whether the function returns normally to its caller or not
17171 if the DWARF producer set that information. */
17172 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17173 if (attr && (DW_UNSND (attr) != 0))
17174 TYPE_NO_RETURN (ftype) = 1;
17175
17176 /* We need to add the subroutine type to the die immediately so
17177 we don't infinitely recurse when dealing with parameters
17178 declared as the same subroutine type. */
17179 set_die_type (die, ftype, cu);
17180
17181 if (die->child != NULL)
17182 {
17183 struct type *void_type = objfile_type (objfile)->builtin_void;
17184 struct die_info *child_die;
17185 int nparams, iparams;
17186
17187 /* Count the number of parameters.
17188 FIXME: GDB currently ignores vararg functions, but knows about
17189 vararg member functions. */
17190 nparams = 0;
17191 child_die = die->child;
17192 while (child_die && child_die->tag)
17193 {
17194 if (child_die->tag == DW_TAG_formal_parameter)
17195 nparams++;
17196 else if (child_die->tag == DW_TAG_unspecified_parameters)
17197 TYPE_VARARGS (ftype) = 1;
17198 child_die = sibling_die (child_die);
17199 }
17200
17201 /* Allocate storage for parameters and fill them in. */
17202 TYPE_NFIELDS (ftype) = nparams;
17203 TYPE_FIELDS (ftype) = (struct field *)
17204 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17205
17206 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17207 even if we error out during the parameters reading below. */
17208 for (iparams = 0; iparams < nparams; iparams++)
17209 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17210
17211 iparams = 0;
17212 child_die = die->child;
17213 while (child_die && child_die->tag)
17214 {
17215 if (child_die->tag == DW_TAG_formal_parameter)
17216 {
17217 struct type *arg_type;
17218
17219 /* DWARF version 2 has no clean way to discern C++
17220 static and non-static member functions. G++ helps
17221 GDB by marking the first parameter for non-static
17222 member functions (which is the this pointer) as
17223 artificial. We pass this information to
17224 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17225
17226 DWARF version 3 added DW_AT_object_pointer, which GCC
17227 4.5 does not yet generate. */
17228 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17229 if (attr)
17230 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17231 else
17232 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17233 arg_type = die_type (child_die, cu);
17234
17235 /* RealView does not mark THIS as const, which the testsuite
17236 expects. GCC marks THIS as const in method definitions,
17237 but not in the class specifications (GCC PR 43053). */
17238 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17239 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17240 {
17241 int is_this = 0;
17242 struct dwarf2_cu *arg_cu = cu;
17243 const char *name = dwarf2_name (child_die, cu);
17244
17245 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17246 if (attr)
17247 {
17248 /* If the compiler emits this, use it. */
17249 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17250 is_this = 1;
17251 }
17252 else if (name && strcmp (name, "this") == 0)
17253 /* Function definitions will have the argument names. */
17254 is_this = 1;
17255 else if (name == NULL && iparams == 0)
17256 /* Declarations may not have the names, so like
17257 elsewhere in GDB, assume an artificial first
17258 argument is "this". */
17259 is_this = 1;
17260
17261 if (is_this)
17262 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17263 arg_type, 0);
17264 }
17265
17266 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17267 iparams++;
17268 }
17269 child_die = sibling_die (child_die);
17270 }
17271 }
17272
17273 return ftype;
17274 }
17275
17276 static struct type *
17277 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17278 {
17279 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17280 const char *name = NULL;
17281 struct type *this_type, *target_type;
17282
17283 name = dwarf2_full_name (NULL, die, cu);
17284 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17285 TYPE_TARGET_STUB (this_type) = 1;
17286 set_die_type (die, this_type, cu);
17287 target_type = die_type (die, cu);
17288 if (target_type != this_type)
17289 TYPE_TARGET_TYPE (this_type) = target_type;
17290 else
17291 {
17292 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17293 spec and cause infinite loops in GDB. */
17294 complaint (_("Self-referential DW_TAG_typedef "
17295 "- DIE at %s [in module %s]"),
17296 sect_offset_str (die->sect_off), objfile_name (objfile));
17297 TYPE_TARGET_TYPE (this_type) = NULL;
17298 }
17299 return this_type;
17300 }
17301
17302 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17303 (which may be different from NAME) to the architecture back-end to allow
17304 it to guess the correct format if necessary. */
17305
17306 static struct type *
17307 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17308 const char *name_hint)
17309 {
17310 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17311 const struct floatformat **format;
17312 struct type *type;
17313
17314 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17315 if (format)
17316 type = init_float_type (objfile, bits, name, format);
17317 else
17318 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17319
17320 return type;
17321 }
17322
17323 /* Find a representation of a given base type and install
17324 it in the TYPE field of the die. */
17325
17326 static struct type *
17327 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17328 {
17329 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17330 struct type *type;
17331 struct attribute *attr;
17332 int encoding = 0, bits = 0;
17333 const char *name;
17334
17335 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17336 if (attr)
17337 {
17338 encoding = DW_UNSND (attr);
17339 }
17340 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17341 if (attr)
17342 {
17343 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17344 }
17345 name = dwarf2_name (die, cu);
17346 if (!name)
17347 {
17348 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17349 }
17350
17351 switch (encoding)
17352 {
17353 case DW_ATE_address:
17354 /* Turn DW_ATE_address into a void * pointer. */
17355 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17356 type = init_pointer_type (objfile, bits, name, type);
17357 break;
17358 case DW_ATE_boolean:
17359 type = init_boolean_type (objfile, bits, 1, name);
17360 break;
17361 case DW_ATE_complex_float:
17362 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17363 type = init_complex_type (objfile, name, type);
17364 break;
17365 case DW_ATE_decimal_float:
17366 type = init_decfloat_type (objfile, bits, name);
17367 break;
17368 case DW_ATE_float:
17369 type = dwarf2_init_float_type (objfile, bits, name, name);
17370 break;
17371 case DW_ATE_signed:
17372 type = init_integer_type (objfile, bits, 0, name);
17373 break;
17374 case DW_ATE_unsigned:
17375 if (cu->language == language_fortran
17376 && name
17377 && startswith (name, "character("))
17378 type = init_character_type (objfile, bits, 1, name);
17379 else
17380 type = init_integer_type (objfile, bits, 1, name);
17381 break;
17382 case DW_ATE_signed_char:
17383 if (cu->language == language_ada || cu->language == language_m2
17384 || cu->language == language_pascal
17385 || cu->language == language_fortran)
17386 type = init_character_type (objfile, bits, 0, name);
17387 else
17388 type = init_integer_type (objfile, bits, 0, name);
17389 break;
17390 case DW_ATE_unsigned_char:
17391 if (cu->language == language_ada || cu->language == language_m2
17392 || cu->language == language_pascal
17393 || cu->language == language_fortran
17394 || cu->language == language_rust)
17395 type = init_character_type (objfile, bits, 1, name);
17396 else
17397 type = init_integer_type (objfile, bits, 1, name);
17398 break;
17399 case DW_ATE_UTF:
17400 {
17401 gdbarch *arch = get_objfile_arch (objfile);
17402
17403 if (bits == 16)
17404 type = builtin_type (arch)->builtin_char16;
17405 else if (bits == 32)
17406 type = builtin_type (arch)->builtin_char32;
17407 else
17408 {
17409 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17410 bits);
17411 type = init_integer_type (objfile, bits, 1, name);
17412 }
17413 return set_die_type (die, type, cu);
17414 }
17415 break;
17416
17417 default:
17418 complaint (_("unsupported DW_AT_encoding: '%s'"),
17419 dwarf_type_encoding_name (encoding));
17420 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17421 break;
17422 }
17423
17424 if (name && strcmp (name, "char") == 0)
17425 TYPE_NOSIGN (type) = 1;
17426
17427 maybe_set_alignment (cu, die, type);
17428
17429 return set_die_type (die, type, cu);
17430 }
17431
17432 /* Parse dwarf attribute if it's a block, reference or constant and put the
17433 resulting value of the attribute into struct bound_prop.
17434 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17435
17436 static int
17437 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17438 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17439 {
17440 struct dwarf2_property_baton *baton;
17441 struct obstack *obstack
17442 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17443
17444 if (attr == NULL || prop == NULL)
17445 return 0;
17446
17447 if (attr_form_is_block (attr))
17448 {
17449 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17450 baton->referenced_type = NULL;
17451 baton->locexpr.per_cu = cu->per_cu;
17452 baton->locexpr.size = DW_BLOCK (attr)->size;
17453 baton->locexpr.data = DW_BLOCK (attr)->data;
17454 prop->data.baton = baton;
17455 prop->kind = PROP_LOCEXPR;
17456 gdb_assert (prop->data.baton != NULL);
17457 }
17458 else if (attr_form_is_ref (attr))
17459 {
17460 struct dwarf2_cu *target_cu = cu;
17461 struct die_info *target_die;
17462 struct attribute *target_attr;
17463
17464 target_die = follow_die_ref (die, attr, &target_cu);
17465 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17466 if (target_attr == NULL)
17467 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17468 target_cu);
17469 if (target_attr == NULL)
17470 return 0;
17471
17472 switch (target_attr->name)
17473 {
17474 case DW_AT_location:
17475 if (attr_form_is_section_offset (target_attr))
17476 {
17477 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17478 baton->referenced_type = die_type (target_die, target_cu);
17479 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17480 prop->data.baton = baton;
17481 prop->kind = PROP_LOCLIST;
17482 gdb_assert (prop->data.baton != NULL);
17483 }
17484 else if (attr_form_is_block (target_attr))
17485 {
17486 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17487 baton->referenced_type = die_type (target_die, target_cu);
17488 baton->locexpr.per_cu = cu->per_cu;
17489 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17490 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17491 prop->data.baton = baton;
17492 prop->kind = PROP_LOCEXPR;
17493 gdb_assert (prop->data.baton != NULL);
17494 }
17495 else
17496 {
17497 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17498 "dynamic property");
17499 return 0;
17500 }
17501 break;
17502 case DW_AT_data_member_location:
17503 {
17504 LONGEST offset;
17505
17506 if (!handle_data_member_location (target_die, target_cu,
17507 &offset))
17508 return 0;
17509
17510 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17511 baton->referenced_type = read_type_die (target_die->parent,
17512 target_cu);
17513 baton->offset_info.offset = offset;
17514 baton->offset_info.type = die_type (target_die, target_cu);
17515 prop->data.baton = baton;
17516 prop->kind = PROP_ADDR_OFFSET;
17517 break;
17518 }
17519 }
17520 }
17521 else if (attr_form_is_constant (attr))
17522 {
17523 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17524 prop->kind = PROP_CONST;
17525 }
17526 else
17527 {
17528 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17529 dwarf2_name (die, cu));
17530 return 0;
17531 }
17532
17533 return 1;
17534 }
17535
17536 /* Read the given DW_AT_subrange DIE. */
17537
17538 static struct type *
17539 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17540 {
17541 struct type *base_type, *orig_base_type;
17542 struct type *range_type;
17543 struct attribute *attr;
17544 struct dynamic_prop low, high;
17545 int low_default_is_valid;
17546 int high_bound_is_count = 0;
17547 const char *name;
17548 LONGEST negative_mask;
17549
17550 orig_base_type = die_type (die, cu);
17551 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17552 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17553 creating the range type, but we use the result of check_typedef
17554 when examining properties of the type. */
17555 base_type = check_typedef (orig_base_type);
17556
17557 /* The die_type call above may have already set the type for this DIE. */
17558 range_type = get_die_type (die, cu);
17559 if (range_type)
17560 return range_type;
17561
17562 low.kind = PROP_CONST;
17563 high.kind = PROP_CONST;
17564 high.data.const_val = 0;
17565
17566 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17567 omitting DW_AT_lower_bound. */
17568 switch (cu->language)
17569 {
17570 case language_c:
17571 case language_cplus:
17572 low.data.const_val = 0;
17573 low_default_is_valid = 1;
17574 break;
17575 case language_fortran:
17576 low.data.const_val = 1;
17577 low_default_is_valid = 1;
17578 break;
17579 case language_d:
17580 case language_objc:
17581 case language_rust:
17582 low.data.const_val = 0;
17583 low_default_is_valid = (cu->header.version >= 4);
17584 break;
17585 case language_ada:
17586 case language_m2:
17587 case language_pascal:
17588 low.data.const_val = 1;
17589 low_default_is_valid = (cu->header.version >= 4);
17590 break;
17591 default:
17592 low.data.const_val = 0;
17593 low_default_is_valid = 0;
17594 break;
17595 }
17596
17597 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17598 if (attr)
17599 attr_to_dynamic_prop (attr, die, cu, &low);
17600 else if (!low_default_is_valid)
17601 complaint (_("Missing DW_AT_lower_bound "
17602 "- DIE at %s [in module %s]"),
17603 sect_offset_str (die->sect_off),
17604 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17605
17606 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17607 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17608 {
17609 attr = dwarf2_attr (die, DW_AT_count, cu);
17610 if (attr_to_dynamic_prop (attr, die, cu, &high))
17611 {
17612 /* If bounds are constant do the final calculation here. */
17613 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17614 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17615 else
17616 high_bound_is_count = 1;
17617 }
17618 }
17619
17620 /* Dwarf-2 specifications explicitly allows to create subrange types
17621 without specifying a base type.
17622 In that case, the base type must be set to the type of
17623 the lower bound, upper bound or count, in that order, if any of these
17624 three attributes references an object that has a type.
17625 If no base type is found, the Dwarf-2 specifications say that
17626 a signed integer type of size equal to the size of an address should
17627 be used.
17628 For the following C code: `extern char gdb_int [];'
17629 GCC produces an empty range DIE.
17630 FIXME: muller/2010-05-28: Possible references to object for low bound,
17631 high bound or count are not yet handled by this code. */
17632 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17633 {
17634 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17635 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17636 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17637 struct type *int_type = objfile_type (objfile)->builtin_int;
17638
17639 /* Test "int", "long int", and "long long int" objfile types,
17640 and select the first one having a size above or equal to the
17641 architecture address size. */
17642 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17643 base_type = int_type;
17644 else
17645 {
17646 int_type = objfile_type (objfile)->builtin_long;
17647 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17648 base_type = int_type;
17649 else
17650 {
17651 int_type = objfile_type (objfile)->builtin_long_long;
17652 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17653 base_type = int_type;
17654 }
17655 }
17656 }
17657
17658 /* Normally, the DWARF producers are expected to use a signed
17659 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17660 But this is unfortunately not always the case, as witnessed
17661 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17662 is used instead. To work around that ambiguity, we treat
17663 the bounds as signed, and thus sign-extend their values, when
17664 the base type is signed. */
17665 negative_mask =
17666 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17667 if (low.kind == PROP_CONST
17668 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17669 low.data.const_val |= negative_mask;
17670 if (high.kind == PROP_CONST
17671 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17672 high.data.const_val |= negative_mask;
17673
17674 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17675
17676 if (high_bound_is_count)
17677 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17678
17679 /* Ada expects an empty array on no boundary attributes. */
17680 if (attr == NULL && cu->language != language_ada)
17681 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17682
17683 name = dwarf2_name (die, cu);
17684 if (name)
17685 TYPE_NAME (range_type) = name;
17686
17687 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17688 if (attr)
17689 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17690
17691 maybe_set_alignment (cu, die, range_type);
17692
17693 set_die_type (die, range_type, cu);
17694
17695 /* set_die_type should be already done. */
17696 set_descriptive_type (range_type, die, cu);
17697
17698 return range_type;
17699 }
17700
17701 static struct type *
17702 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17703 {
17704 struct type *type;
17705
17706 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17707 NULL);
17708 TYPE_NAME (type) = dwarf2_name (die, cu);
17709
17710 /* In Ada, an unspecified type is typically used when the description
17711 of the type is defered to a different unit. When encountering
17712 such a type, we treat it as a stub, and try to resolve it later on,
17713 when needed. */
17714 if (cu->language == language_ada)
17715 TYPE_STUB (type) = 1;
17716
17717 return set_die_type (die, type, cu);
17718 }
17719
17720 /* Read a single die and all its descendents. Set the die's sibling
17721 field to NULL; set other fields in the die correctly, and set all
17722 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17723 location of the info_ptr after reading all of those dies. PARENT
17724 is the parent of the die in question. */
17725
17726 static struct die_info *
17727 read_die_and_children (const struct die_reader_specs *reader,
17728 const gdb_byte *info_ptr,
17729 const gdb_byte **new_info_ptr,
17730 struct die_info *parent)
17731 {
17732 struct die_info *die;
17733 const gdb_byte *cur_ptr;
17734 int has_children;
17735
17736 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17737 if (die == NULL)
17738 {
17739 *new_info_ptr = cur_ptr;
17740 return NULL;
17741 }
17742 store_in_ref_table (die, reader->cu);
17743
17744 if (has_children)
17745 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17746 else
17747 {
17748 die->child = NULL;
17749 *new_info_ptr = cur_ptr;
17750 }
17751
17752 die->sibling = NULL;
17753 die->parent = parent;
17754 return die;
17755 }
17756
17757 /* Read a die, all of its descendents, and all of its siblings; set
17758 all of the fields of all of the dies correctly. Arguments are as
17759 in read_die_and_children. */
17760
17761 static struct die_info *
17762 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17763 const gdb_byte *info_ptr,
17764 const gdb_byte **new_info_ptr,
17765 struct die_info *parent)
17766 {
17767 struct die_info *first_die, *last_sibling;
17768 const gdb_byte *cur_ptr;
17769
17770 cur_ptr = info_ptr;
17771 first_die = last_sibling = NULL;
17772
17773 while (1)
17774 {
17775 struct die_info *die
17776 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17777
17778 if (die == NULL)
17779 {
17780 *new_info_ptr = cur_ptr;
17781 return first_die;
17782 }
17783
17784 if (!first_die)
17785 first_die = die;
17786 else
17787 last_sibling->sibling = die;
17788
17789 last_sibling = die;
17790 }
17791 }
17792
17793 /* Read a die, all of its descendents, and all of its siblings; set
17794 all of the fields of all of the dies correctly. Arguments are as
17795 in read_die_and_children.
17796 This the main entry point for reading a DIE and all its children. */
17797
17798 static struct die_info *
17799 read_die_and_siblings (const struct die_reader_specs *reader,
17800 const gdb_byte *info_ptr,
17801 const gdb_byte **new_info_ptr,
17802 struct die_info *parent)
17803 {
17804 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17805 new_info_ptr, parent);
17806
17807 if (dwarf_die_debug)
17808 {
17809 fprintf_unfiltered (gdb_stdlog,
17810 "Read die from %s@0x%x of %s:\n",
17811 get_section_name (reader->die_section),
17812 (unsigned) (info_ptr - reader->die_section->buffer),
17813 bfd_get_filename (reader->abfd));
17814 dump_die (die, dwarf_die_debug);
17815 }
17816
17817 return die;
17818 }
17819
17820 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17821 attributes.
17822 The caller is responsible for filling in the extra attributes
17823 and updating (*DIEP)->num_attrs.
17824 Set DIEP to point to a newly allocated die with its information,
17825 except for its child, sibling, and parent fields.
17826 Set HAS_CHILDREN to tell whether the die has children or not. */
17827
17828 static const gdb_byte *
17829 read_full_die_1 (const struct die_reader_specs *reader,
17830 struct die_info **diep, const gdb_byte *info_ptr,
17831 int *has_children, int num_extra_attrs)
17832 {
17833 unsigned int abbrev_number, bytes_read, i;
17834 struct abbrev_info *abbrev;
17835 struct die_info *die;
17836 struct dwarf2_cu *cu = reader->cu;
17837 bfd *abfd = reader->abfd;
17838
17839 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17840 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17841 info_ptr += bytes_read;
17842 if (!abbrev_number)
17843 {
17844 *diep = NULL;
17845 *has_children = 0;
17846 return info_ptr;
17847 }
17848
17849 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17850 if (!abbrev)
17851 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17852 abbrev_number,
17853 bfd_get_filename (abfd));
17854
17855 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17856 die->sect_off = sect_off;
17857 die->tag = abbrev->tag;
17858 die->abbrev = abbrev_number;
17859
17860 /* Make the result usable.
17861 The caller needs to update num_attrs after adding the extra
17862 attributes. */
17863 die->num_attrs = abbrev->num_attrs;
17864
17865 for (i = 0; i < abbrev->num_attrs; ++i)
17866 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17867 info_ptr);
17868
17869 *diep = die;
17870 *has_children = abbrev->has_children;
17871 return info_ptr;
17872 }
17873
17874 /* Read a die and all its attributes.
17875 Set DIEP to point to a newly allocated die with its information,
17876 except for its child, sibling, and parent fields.
17877 Set HAS_CHILDREN to tell whether the die has children or not. */
17878
17879 static const gdb_byte *
17880 read_full_die (const struct die_reader_specs *reader,
17881 struct die_info **diep, const gdb_byte *info_ptr,
17882 int *has_children)
17883 {
17884 const gdb_byte *result;
17885
17886 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17887
17888 if (dwarf_die_debug)
17889 {
17890 fprintf_unfiltered (gdb_stdlog,
17891 "Read die from %s@0x%x of %s:\n",
17892 get_section_name (reader->die_section),
17893 (unsigned) (info_ptr - reader->die_section->buffer),
17894 bfd_get_filename (reader->abfd));
17895 dump_die (*diep, dwarf_die_debug);
17896 }
17897
17898 return result;
17899 }
17900 \f
17901 /* Abbreviation tables.
17902
17903 In DWARF version 2, the description of the debugging information is
17904 stored in a separate .debug_abbrev section. Before we read any
17905 dies from a section we read in all abbreviations and install them
17906 in a hash table. */
17907
17908 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17909
17910 struct abbrev_info *
17911 abbrev_table::alloc_abbrev ()
17912 {
17913 struct abbrev_info *abbrev;
17914
17915 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17916 memset (abbrev, 0, sizeof (struct abbrev_info));
17917
17918 return abbrev;
17919 }
17920
17921 /* Add an abbreviation to the table. */
17922
17923 void
17924 abbrev_table::add_abbrev (unsigned int abbrev_number,
17925 struct abbrev_info *abbrev)
17926 {
17927 unsigned int hash_number;
17928
17929 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17930 abbrev->next = m_abbrevs[hash_number];
17931 m_abbrevs[hash_number] = abbrev;
17932 }
17933
17934 /* Look up an abbrev in the table.
17935 Returns NULL if the abbrev is not found. */
17936
17937 struct abbrev_info *
17938 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17939 {
17940 unsigned int hash_number;
17941 struct abbrev_info *abbrev;
17942
17943 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17944 abbrev = m_abbrevs[hash_number];
17945
17946 while (abbrev)
17947 {
17948 if (abbrev->number == abbrev_number)
17949 return abbrev;
17950 abbrev = abbrev->next;
17951 }
17952 return NULL;
17953 }
17954
17955 /* Read in an abbrev table. */
17956
17957 static abbrev_table_up
17958 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17959 struct dwarf2_section_info *section,
17960 sect_offset sect_off)
17961 {
17962 struct objfile *objfile = dwarf2_per_objfile->objfile;
17963 bfd *abfd = get_section_bfd_owner (section);
17964 const gdb_byte *abbrev_ptr;
17965 struct abbrev_info *cur_abbrev;
17966 unsigned int abbrev_number, bytes_read, abbrev_name;
17967 unsigned int abbrev_form;
17968 struct attr_abbrev *cur_attrs;
17969 unsigned int allocated_attrs;
17970
17971 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
17972
17973 dwarf2_read_section (objfile, section);
17974 abbrev_ptr = section->buffer + to_underlying (sect_off);
17975 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17976 abbrev_ptr += bytes_read;
17977
17978 allocated_attrs = ATTR_ALLOC_CHUNK;
17979 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17980
17981 /* Loop until we reach an abbrev number of 0. */
17982 while (abbrev_number)
17983 {
17984 cur_abbrev = abbrev_table->alloc_abbrev ();
17985
17986 /* read in abbrev header */
17987 cur_abbrev->number = abbrev_number;
17988 cur_abbrev->tag
17989 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17990 abbrev_ptr += bytes_read;
17991 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
17992 abbrev_ptr += 1;
17993
17994 /* now read in declarations */
17995 for (;;)
17996 {
17997 LONGEST implicit_const;
17998
17999 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18000 abbrev_ptr += bytes_read;
18001 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18002 abbrev_ptr += bytes_read;
18003 if (abbrev_form == DW_FORM_implicit_const)
18004 {
18005 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18006 &bytes_read);
18007 abbrev_ptr += bytes_read;
18008 }
18009 else
18010 {
18011 /* Initialize it due to a false compiler warning. */
18012 implicit_const = -1;
18013 }
18014
18015 if (abbrev_name == 0)
18016 break;
18017
18018 if (cur_abbrev->num_attrs == allocated_attrs)
18019 {
18020 allocated_attrs += ATTR_ALLOC_CHUNK;
18021 cur_attrs
18022 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18023 }
18024
18025 cur_attrs[cur_abbrev->num_attrs].name
18026 = (enum dwarf_attribute) abbrev_name;
18027 cur_attrs[cur_abbrev->num_attrs].form
18028 = (enum dwarf_form) abbrev_form;
18029 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18030 ++cur_abbrev->num_attrs;
18031 }
18032
18033 cur_abbrev->attrs =
18034 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18035 cur_abbrev->num_attrs);
18036 memcpy (cur_abbrev->attrs, cur_attrs,
18037 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18038
18039 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18040
18041 /* Get next abbreviation.
18042 Under Irix6 the abbreviations for a compilation unit are not
18043 always properly terminated with an abbrev number of 0.
18044 Exit loop if we encounter an abbreviation which we have
18045 already read (which means we are about to read the abbreviations
18046 for the next compile unit) or if the end of the abbreviation
18047 table is reached. */
18048 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18049 break;
18050 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18051 abbrev_ptr += bytes_read;
18052 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18053 break;
18054 }
18055
18056 xfree (cur_attrs);
18057 return abbrev_table;
18058 }
18059
18060 /* Returns nonzero if TAG represents a type that we might generate a partial
18061 symbol for. */
18062
18063 static int
18064 is_type_tag_for_partial (int tag)
18065 {
18066 switch (tag)
18067 {
18068 #if 0
18069 /* Some types that would be reasonable to generate partial symbols for,
18070 that we don't at present. */
18071 case DW_TAG_array_type:
18072 case DW_TAG_file_type:
18073 case DW_TAG_ptr_to_member_type:
18074 case DW_TAG_set_type:
18075 case DW_TAG_string_type:
18076 case DW_TAG_subroutine_type:
18077 #endif
18078 case DW_TAG_base_type:
18079 case DW_TAG_class_type:
18080 case DW_TAG_interface_type:
18081 case DW_TAG_enumeration_type:
18082 case DW_TAG_structure_type:
18083 case DW_TAG_subrange_type:
18084 case DW_TAG_typedef:
18085 case DW_TAG_union_type:
18086 return 1;
18087 default:
18088 return 0;
18089 }
18090 }
18091
18092 /* Load all DIEs that are interesting for partial symbols into memory. */
18093
18094 static struct partial_die_info *
18095 load_partial_dies (const struct die_reader_specs *reader,
18096 const gdb_byte *info_ptr, int building_psymtab)
18097 {
18098 struct dwarf2_cu *cu = reader->cu;
18099 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18100 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18101 unsigned int bytes_read;
18102 unsigned int load_all = 0;
18103 int nesting_level = 1;
18104
18105 parent_die = NULL;
18106 last_die = NULL;
18107
18108 gdb_assert (cu->per_cu != NULL);
18109 if (cu->per_cu->load_all_dies)
18110 load_all = 1;
18111
18112 cu->partial_dies
18113 = htab_create_alloc_ex (cu->header.length / 12,
18114 partial_die_hash,
18115 partial_die_eq,
18116 NULL,
18117 &cu->comp_unit_obstack,
18118 hashtab_obstack_allocate,
18119 dummy_obstack_deallocate);
18120
18121 while (1)
18122 {
18123 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18124
18125 /* A NULL abbrev means the end of a series of children. */
18126 if (abbrev == NULL)
18127 {
18128 if (--nesting_level == 0)
18129 return first_die;
18130
18131 info_ptr += bytes_read;
18132 last_die = parent_die;
18133 parent_die = parent_die->die_parent;
18134 continue;
18135 }
18136
18137 /* Check for template arguments. We never save these; if
18138 they're seen, we just mark the parent, and go on our way. */
18139 if (parent_die != NULL
18140 && cu->language == language_cplus
18141 && (abbrev->tag == DW_TAG_template_type_param
18142 || abbrev->tag == DW_TAG_template_value_param))
18143 {
18144 parent_die->has_template_arguments = 1;
18145
18146 if (!load_all)
18147 {
18148 /* We don't need a partial DIE for the template argument. */
18149 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18150 continue;
18151 }
18152 }
18153
18154 /* We only recurse into c++ subprograms looking for template arguments.
18155 Skip their other children. */
18156 if (!load_all
18157 && cu->language == language_cplus
18158 && parent_die != NULL
18159 && parent_die->tag == DW_TAG_subprogram)
18160 {
18161 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18162 continue;
18163 }
18164
18165 /* Check whether this DIE is interesting enough to save. Normally
18166 we would not be interested in members here, but there may be
18167 later variables referencing them via DW_AT_specification (for
18168 static members). */
18169 if (!load_all
18170 && !is_type_tag_for_partial (abbrev->tag)
18171 && abbrev->tag != DW_TAG_constant
18172 && abbrev->tag != DW_TAG_enumerator
18173 && abbrev->tag != DW_TAG_subprogram
18174 && abbrev->tag != DW_TAG_inlined_subroutine
18175 && abbrev->tag != DW_TAG_lexical_block
18176 && abbrev->tag != DW_TAG_variable
18177 && abbrev->tag != DW_TAG_namespace
18178 && abbrev->tag != DW_TAG_module
18179 && abbrev->tag != DW_TAG_member
18180 && abbrev->tag != DW_TAG_imported_unit
18181 && abbrev->tag != DW_TAG_imported_declaration)
18182 {
18183 /* Otherwise we skip to the next sibling, if any. */
18184 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18185 continue;
18186 }
18187
18188 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18189 abbrev);
18190
18191 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18192
18193 /* This two-pass algorithm for processing partial symbols has a
18194 high cost in cache pressure. Thus, handle some simple cases
18195 here which cover the majority of C partial symbols. DIEs
18196 which neither have specification tags in them, nor could have
18197 specification tags elsewhere pointing at them, can simply be
18198 processed and discarded.
18199
18200 This segment is also optional; scan_partial_symbols and
18201 add_partial_symbol will handle these DIEs if we chain
18202 them in normally. When compilers which do not emit large
18203 quantities of duplicate debug information are more common,
18204 this code can probably be removed. */
18205
18206 /* Any complete simple types at the top level (pretty much all
18207 of them, for a language without namespaces), can be processed
18208 directly. */
18209 if (parent_die == NULL
18210 && pdi.has_specification == 0
18211 && pdi.is_declaration == 0
18212 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18213 || pdi.tag == DW_TAG_base_type
18214 || pdi.tag == DW_TAG_subrange_type))
18215 {
18216 if (building_psymtab && pdi.name != NULL)
18217 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18218 VAR_DOMAIN, LOC_TYPEDEF,
18219 &objfile->static_psymbols,
18220 0, cu->language, objfile);
18221 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18222 continue;
18223 }
18224
18225 /* The exception for DW_TAG_typedef with has_children above is
18226 a workaround of GCC PR debug/47510. In the case of this complaint
18227 type_name_no_tag_or_error will error on such types later.
18228
18229 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18230 it could not find the child DIEs referenced later, this is checked
18231 above. In correct DWARF DW_TAG_typedef should have no children. */
18232
18233 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18234 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18235 "- DIE at %s [in module %s]"),
18236 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18237
18238 /* If we're at the second level, and we're an enumerator, and
18239 our parent has no specification (meaning possibly lives in a
18240 namespace elsewhere), then we can add the partial symbol now
18241 instead of queueing it. */
18242 if (pdi.tag == DW_TAG_enumerator
18243 && parent_die != NULL
18244 && parent_die->die_parent == NULL
18245 && parent_die->tag == DW_TAG_enumeration_type
18246 && parent_die->has_specification == 0)
18247 {
18248 if (pdi.name == NULL)
18249 complaint (_("malformed enumerator DIE ignored"));
18250 else if (building_psymtab)
18251 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18252 VAR_DOMAIN, LOC_CONST,
18253 cu->language == language_cplus
18254 ? &objfile->global_psymbols
18255 : &objfile->static_psymbols,
18256 0, cu->language, objfile);
18257
18258 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18259 continue;
18260 }
18261
18262 struct partial_die_info *part_die
18263 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18264
18265 /* We'll save this DIE so link it in. */
18266 part_die->die_parent = parent_die;
18267 part_die->die_sibling = NULL;
18268 part_die->die_child = NULL;
18269
18270 if (last_die && last_die == parent_die)
18271 last_die->die_child = part_die;
18272 else if (last_die)
18273 last_die->die_sibling = part_die;
18274
18275 last_die = part_die;
18276
18277 if (first_die == NULL)
18278 first_die = part_die;
18279
18280 /* Maybe add the DIE to the hash table. Not all DIEs that we
18281 find interesting need to be in the hash table, because we
18282 also have the parent/sibling/child chains; only those that we
18283 might refer to by offset later during partial symbol reading.
18284
18285 For now this means things that might have be the target of a
18286 DW_AT_specification, DW_AT_abstract_origin, or
18287 DW_AT_extension. DW_AT_extension will refer only to
18288 namespaces; DW_AT_abstract_origin refers to functions (and
18289 many things under the function DIE, but we do not recurse
18290 into function DIEs during partial symbol reading) and
18291 possibly variables as well; DW_AT_specification refers to
18292 declarations. Declarations ought to have the DW_AT_declaration
18293 flag. It happens that GCC forgets to put it in sometimes, but
18294 only for functions, not for types.
18295
18296 Adding more things than necessary to the hash table is harmless
18297 except for the performance cost. Adding too few will result in
18298 wasted time in find_partial_die, when we reread the compilation
18299 unit with load_all_dies set. */
18300
18301 if (load_all
18302 || abbrev->tag == DW_TAG_constant
18303 || abbrev->tag == DW_TAG_subprogram
18304 || abbrev->tag == DW_TAG_variable
18305 || abbrev->tag == DW_TAG_namespace
18306 || part_die->is_declaration)
18307 {
18308 void **slot;
18309
18310 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18311 to_underlying (part_die->sect_off),
18312 INSERT);
18313 *slot = part_die;
18314 }
18315
18316 /* For some DIEs we want to follow their children (if any). For C
18317 we have no reason to follow the children of structures; for other
18318 languages we have to, so that we can get at method physnames
18319 to infer fully qualified class names, for DW_AT_specification,
18320 and for C++ template arguments. For C++, we also look one level
18321 inside functions to find template arguments (if the name of the
18322 function does not already contain the template arguments).
18323
18324 For Ada, we need to scan the children of subprograms and lexical
18325 blocks as well because Ada allows the definition of nested
18326 entities that could be interesting for the debugger, such as
18327 nested subprograms for instance. */
18328 if (last_die->has_children
18329 && (load_all
18330 || last_die->tag == DW_TAG_namespace
18331 || last_die->tag == DW_TAG_module
18332 || last_die->tag == DW_TAG_enumeration_type
18333 || (cu->language == language_cplus
18334 && last_die->tag == DW_TAG_subprogram
18335 && (last_die->name == NULL
18336 || strchr (last_die->name, '<') == NULL))
18337 || (cu->language != language_c
18338 && (last_die->tag == DW_TAG_class_type
18339 || last_die->tag == DW_TAG_interface_type
18340 || last_die->tag == DW_TAG_structure_type
18341 || last_die->tag == DW_TAG_union_type))
18342 || (cu->language == language_ada
18343 && (last_die->tag == DW_TAG_subprogram
18344 || last_die->tag == DW_TAG_lexical_block))))
18345 {
18346 nesting_level++;
18347 parent_die = last_die;
18348 continue;
18349 }
18350
18351 /* Otherwise we skip to the next sibling, if any. */
18352 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18353
18354 /* Back to the top, do it again. */
18355 }
18356 }
18357
18358 partial_die_info::partial_die_info (sect_offset sect_off_,
18359 struct abbrev_info *abbrev)
18360 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18361 {
18362 }
18363
18364 /* Read a minimal amount of information into the minimal die structure.
18365 INFO_PTR should point just after the initial uleb128 of a DIE. */
18366
18367 const gdb_byte *
18368 partial_die_info::read (const struct die_reader_specs *reader,
18369 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18370 {
18371 struct dwarf2_cu *cu = reader->cu;
18372 struct dwarf2_per_objfile *dwarf2_per_objfile
18373 = cu->per_cu->dwarf2_per_objfile;
18374 unsigned int i;
18375 int has_low_pc_attr = 0;
18376 int has_high_pc_attr = 0;
18377 int high_pc_relative = 0;
18378
18379 for (i = 0; i < abbrev.num_attrs; ++i)
18380 {
18381 struct attribute attr;
18382
18383 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18384
18385 /* Store the data if it is of an attribute we want to keep in a
18386 partial symbol table. */
18387 switch (attr.name)
18388 {
18389 case DW_AT_name:
18390 switch (tag)
18391 {
18392 case DW_TAG_compile_unit:
18393 case DW_TAG_partial_unit:
18394 case DW_TAG_type_unit:
18395 /* Compilation units have a DW_AT_name that is a filename, not
18396 a source language identifier. */
18397 case DW_TAG_enumeration_type:
18398 case DW_TAG_enumerator:
18399 /* These tags always have simple identifiers already; no need
18400 to canonicalize them. */
18401 name = DW_STRING (&attr);
18402 break;
18403 default:
18404 {
18405 struct objfile *objfile = dwarf2_per_objfile->objfile;
18406
18407 name
18408 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18409 &objfile->per_bfd->storage_obstack);
18410 }
18411 break;
18412 }
18413 break;
18414 case DW_AT_linkage_name:
18415 case DW_AT_MIPS_linkage_name:
18416 /* Note that both forms of linkage name might appear. We
18417 assume they will be the same, and we only store the last
18418 one we see. */
18419 if (cu->language == language_ada)
18420 name = DW_STRING (&attr);
18421 linkage_name = DW_STRING (&attr);
18422 break;
18423 case DW_AT_low_pc:
18424 has_low_pc_attr = 1;
18425 lowpc = attr_value_as_address (&attr);
18426 break;
18427 case DW_AT_high_pc:
18428 has_high_pc_attr = 1;
18429 highpc = attr_value_as_address (&attr);
18430 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18431 high_pc_relative = 1;
18432 break;
18433 case DW_AT_location:
18434 /* Support the .debug_loc offsets. */
18435 if (attr_form_is_block (&attr))
18436 {
18437 d.locdesc = DW_BLOCK (&attr);
18438 }
18439 else if (attr_form_is_section_offset (&attr))
18440 {
18441 dwarf2_complex_location_expr_complaint ();
18442 }
18443 else
18444 {
18445 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18446 "partial symbol information");
18447 }
18448 break;
18449 case DW_AT_external:
18450 is_external = DW_UNSND (&attr);
18451 break;
18452 case DW_AT_declaration:
18453 is_declaration = DW_UNSND (&attr);
18454 break;
18455 case DW_AT_type:
18456 has_type = 1;
18457 break;
18458 case DW_AT_abstract_origin:
18459 case DW_AT_specification:
18460 case DW_AT_extension:
18461 has_specification = 1;
18462 spec_offset = dwarf2_get_ref_die_offset (&attr);
18463 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18464 || cu->per_cu->is_dwz);
18465 break;
18466 case DW_AT_sibling:
18467 /* Ignore absolute siblings, they might point outside of
18468 the current compile unit. */
18469 if (attr.form == DW_FORM_ref_addr)
18470 complaint (_("ignoring absolute DW_AT_sibling"));
18471 else
18472 {
18473 const gdb_byte *buffer = reader->buffer;
18474 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18475 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18476
18477 if (sibling_ptr < info_ptr)
18478 complaint (_("DW_AT_sibling points backwards"));
18479 else if (sibling_ptr > reader->buffer_end)
18480 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18481 else
18482 sibling = sibling_ptr;
18483 }
18484 break;
18485 case DW_AT_byte_size:
18486 has_byte_size = 1;
18487 break;
18488 case DW_AT_const_value:
18489 has_const_value = 1;
18490 break;
18491 case DW_AT_calling_convention:
18492 /* DWARF doesn't provide a way to identify a program's source-level
18493 entry point. DW_AT_calling_convention attributes are only meant
18494 to describe functions' calling conventions.
18495
18496 However, because it's a necessary piece of information in
18497 Fortran, and before DWARF 4 DW_CC_program was the only
18498 piece of debugging information whose definition refers to
18499 a 'main program' at all, several compilers marked Fortran
18500 main programs with DW_CC_program --- even when those
18501 functions use the standard calling conventions.
18502
18503 Although DWARF now specifies a way to provide this
18504 information, we support this practice for backward
18505 compatibility. */
18506 if (DW_UNSND (&attr) == DW_CC_program
18507 && cu->language == language_fortran)
18508 main_subprogram = 1;
18509 break;
18510 case DW_AT_inline:
18511 if (DW_UNSND (&attr) == DW_INL_inlined
18512 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18513 may_be_inlined = 1;
18514 break;
18515
18516 case DW_AT_import:
18517 if (tag == DW_TAG_imported_unit)
18518 {
18519 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18520 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18521 || cu->per_cu->is_dwz);
18522 }
18523 break;
18524
18525 case DW_AT_main_subprogram:
18526 main_subprogram = DW_UNSND (&attr);
18527 break;
18528
18529 default:
18530 break;
18531 }
18532 }
18533
18534 if (high_pc_relative)
18535 highpc += lowpc;
18536
18537 if (has_low_pc_attr && has_high_pc_attr)
18538 {
18539 /* When using the GNU linker, .gnu.linkonce. sections are used to
18540 eliminate duplicate copies of functions and vtables and such.
18541 The linker will arbitrarily choose one and discard the others.
18542 The AT_*_pc values for such functions refer to local labels in
18543 these sections. If the section from that file was discarded, the
18544 labels are not in the output, so the relocs get a value of 0.
18545 If this is a discarded function, mark the pc bounds as invalid,
18546 so that GDB will ignore it. */
18547 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18548 {
18549 struct objfile *objfile = dwarf2_per_objfile->objfile;
18550 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18551
18552 complaint (_("DW_AT_low_pc %s is zero "
18553 "for DIE at %s [in module %s]"),
18554 paddress (gdbarch, lowpc),
18555 sect_offset_str (sect_off),
18556 objfile_name (objfile));
18557 }
18558 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18559 else if (lowpc >= highpc)
18560 {
18561 struct objfile *objfile = dwarf2_per_objfile->objfile;
18562 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18563
18564 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18565 "for DIE at %s [in module %s]"),
18566 paddress (gdbarch, lowpc),
18567 paddress (gdbarch, highpc),
18568 sect_offset_str (sect_off),
18569 objfile_name (objfile));
18570 }
18571 else
18572 has_pc_info = 1;
18573 }
18574
18575 return info_ptr;
18576 }
18577
18578 /* Find a cached partial DIE at OFFSET in CU. */
18579
18580 struct partial_die_info *
18581 dwarf2_cu::find_partial_die (sect_offset sect_off)
18582 {
18583 struct partial_die_info *lookup_die = NULL;
18584 struct partial_die_info part_die (sect_off);
18585
18586 lookup_die = ((struct partial_die_info *)
18587 htab_find_with_hash (partial_dies, &part_die,
18588 to_underlying (sect_off)));
18589
18590 return lookup_die;
18591 }
18592
18593 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18594 except in the case of .debug_types DIEs which do not reference
18595 outside their CU (they do however referencing other types via
18596 DW_FORM_ref_sig8). */
18597
18598 static struct partial_die_info *
18599 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18600 {
18601 struct dwarf2_per_objfile *dwarf2_per_objfile
18602 = cu->per_cu->dwarf2_per_objfile;
18603 struct objfile *objfile = dwarf2_per_objfile->objfile;
18604 struct dwarf2_per_cu_data *per_cu = NULL;
18605 struct partial_die_info *pd = NULL;
18606
18607 if (offset_in_dwz == cu->per_cu->is_dwz
18608 && offset_in_cu_p (&cu->header, sect_off))
18609 {
18610 pd = cu->find_partial_die (sect_off);
18611 if (pd != NULL)
18612 return pd;
18613 /* We missed recording what we needed.
18614 Load all dies and try again. */
18615 per_cu = cu->per_cu;
18616 }
18617 else
18618 {
18619 /* TUs don't reference other CUs/TUs (except via type signatures). */
18620 if (cu->per_cu->is_debug_types)
18621 {
18622 error (_("Dwarf Error: Type Unit at offset %s contains"
18623 " external reference to offset %s [in module %s].\n"),
18624 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18625 bfd_get_filename (objfile->obfd));
18626 }
18627 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18628 dwarf2_per_objfile);
18629
18630 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18631 load_partial_comp_unit (per_cu);
18632
18633 per_cu->cu->last_used = 0;
18634 pd = per_cu->cu->find_partial_die (sect_off);
18635 }
18636
18637 /* If we didn't find it, and not all dies have been loaded,
18638 load them all and try again. */
18639
18640 if (pd == NULL && per_cu->load_all_dies == 0)
18641 {
18642 per_cu->load_all_dies = 1;
18643
18644 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18645 THIS_CU->cu may already be in use. So we can't just free it and
18646 replace its DIEs with the ones we read in. Instead, we leave those
18647 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18648 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18649 set. */
18650 load_partial_comp_unit (per_cu);
18651
18652 pd = per_cu->cu->find_partial_die (sect_off);
18653 }
18654
18655 if (pd == NULL)
18656 internal_error (__FILE__, __LINE__,
18657 _("could not find partial DIE %s "
18658 "in cache [from module %s]\n"),
18659 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18660 return pd;
18661 }
18662
18663 /* See if we can figure out if the class lives in a namespace. We do
18664 this by looking for a member function; its demangled name will
18665 contain namespace info, if there is any. */
18666
18667 static void
18668 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18669 struct dwarf2_cu *cu)
18670 {
18671 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18672 what template types look like, because the demangler
18673 frequently doesn't give the same name as the debug info. We
18674 could fix this by only using the demangled name to get the
18675 prefix (but see comment in read_structure_type). */
18676
18677 struct partial_die_info *real_pdi;
18678 struct partial_die_info *child_pdi;
18679
18680 /* If this DIE (this DIE's specification, if any) has a parent, then
18681 we should not do this. We'll prepend the parent's fully qualified
18682 name when we create the partial symbol. */
18683
18684 real_pdi = struct_pdi;
18685 while (real_pdi->has_specification)
18686 real_pdi = find_partial_die (real_pdi->spec_offset,
18687 real_pdi->spec_is_dwz, cu);
18688
18689 if (real_pdi->die_parent != NULL)
18690 return;
18691
18692 for (child_pdi = struct_pdi->die_child;
18693 child_pdi != NULL;
18694 child_pdi = child_pdi->die_sibling)
18695 {
18696 if (child_pdi->tag == DW_TAG_subprogram
18697 && child_pdi->linkage_name != NULL)
18698 {
18699 char *actual_class_name
18700 = language_class_name_from_physname (cu->language_defn,
18701 child_pdi->linkage_name);
18702 if (actual_class_name != NULL)
18703 {
18704 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18705 struct_pdi->name
18706 = ((const char *)
18707 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18708 actual_class_name,
18709 strlen (actual_class_name)));
18710 xfree (actual_class_name);
18711 }
18712 break;
18713 }
18714 }
18715 }
18716
18717 void
18718 partial_die_info::fixup (struct dwarf2_cu *cu)
18719 {
18720 /* Once we've fixed up a die, there's no point in doing so again.
18721 This also avoids a memory leak if we were to call
18722 guess_partial_die_structure_name multiple times. */
18723 if (fixup_called)
18724 return;
18725
18726 /* If we found a reference attribute and the DIE has no name, try
18727 to find a name in the referred to DIE. */
18728
18729 if (name == NULL && has_specification)
18730 {
18731 struct partial_die_info *spec_die;
18732
18733 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18734
18735 spec_die->fixup (cu);
18736
18737 if (spec_die->name)
18738 {
18739 name = spec_die->name;
18740
18741 /* Copy DW_AT_external attribute if it is set. */
18742 if (spec_die->is_external)
18743 is_external = spec_die->is_external;
18744 }
18745 }
18746
18747 /* Set default names for some unnamed DIEs. */
18748
18749 if (name == NULL && tag == DW_TAG_namespace)
18750 name = CP_ANONYMOUS_NAMESPACE_STR;
18751
18752 /* If there is no parent die to provide a namespace, and there are
18753 children, see if we can determine the namespace from their linkage
18754 name. */
18755 if (cu->language == language_cplus
18756 && !VEC_empty (dwarf2_section_info_def,
18757 cu->per_cu->dwarf2_per_objfile->types)
18758 && die_parent == NULL
18759 && has_children
18760 && (tag == DW_TAG_class_type
18761 || tag == DW_TAG_structure_type
18762 || tag == DW_TAG_union_type))
18763 guess_partial_die_structure_name (this, cu);
18764
18765 /* GCC might emit a nameless struct or union that has a linkage
18766 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18767 if (name == NULL
18768 && (tag == DW_TAG_class_type
18769 || tag == DW_TAG_interface_type
18770 || tag == DW_TAG_structure_type
18771 || tag == DW_TAG_union_type)
18772 && linkage_name != NULL)
18773 {
18774 char *demangled;
18775
18776 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18777 if (demangled)
18778 {
18779 const char *base;
18780
18781 /* Strip any leading namespaces/classes, keep only the base name.
18782 DW_AT_name for named DIEs does not contain the prefixes. */
18783 base = strrchr (demangled, ':');
18784 if (base && base > demangled && base[-1] == ':')
18785 base++;
18786 else
18787 base = demangled;
18788
18789 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18790 name
18791 = ((const char *)
18792 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18793 base, strlen (base)));
18794 xfree (demangled);
18795 }
18796 }
18797
18798 fixup_called = 1;
18799 }
18800
18801 /* Read an attribute value described by an attribute form. */
18802
18803 static const gdb_byte *
18804 read_attribute_value (const struct die_reader_specs *reader,
18805 struct attribute *attr, unsigned form,
18806 LONGEST implicit_const, const gdb_byte *info_ptr)
18807 {
18808 struct dwarf2_cu *cu = reader->cu;
18809 struct dwarf2_per_objfile *dwarf2_per_objfile
18810 = cu->per_cu->dwarf2_per_objfile;
18811 struct objfile *objfile = dwarf2_per_objfile->objfile;
18812 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18813 bfd *abfd = reader->abfd;
18814 struct comp_unit_head *cu_header = &cu->header;
18815 unsigned int bytes_read;
18816 struct dwarf_block *blk;
18817
18818 attr->form = (enum dwarf_form) form;
18819 switch (form)
18820 {
18821 case DW_FORM_ref_addr:
18822 if (cu->header.version == 2)
18823 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18824 else
18825 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18826 &cu->header, &bytes_read);
18827 info_ptr += bytes_read;
18828 break;
18829 case DW_FORM_GNU_ref_alt:
18830 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18831 info_ptr += bytes_read;
18832 break;
18833 case DW_FORM_addr:
18834 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18835 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18836 info_ptr += bytes_read;
18837 break;
18838 case DW_FORM_block2:
18839 blk = dwarf_alloc_block (cu);
18840 blk->size = read_2_bytes (abfd, info_ptr);
18841 info_ptr += 2;
18842 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18843 info_ptr += blk->size;
18844 DW_BLOCK (attr) = blk;
18845 break;
18846 case DW_FORM_block4:
18847 blk = dwarf_alloc_block (cu);
18848 blk->size = read_4_bytes (abfd, info_ptr);
18849 info_ptr += 4;
18850 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18851 info_ptr += blk->size;
18852 DW_BLOCK (attr) = blk;
18853 break;
18854 case DW_FORM_data2:
18855 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18856 info_ptr += 2;
18857 break;
18858 case DW_FORM_data4:
18859 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18860 info_ptr += 4;
18861 break;
18862 case DW_FORM_data8:
18863 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18864 info_ptr += 8;
18865 break;
18866 case DW_FORM_data16:
18867 blk = dwarf_alloc_block (cu);
18868 blk->size = 16;
18869 blk->data = read_n_bytes (abfd, info_ptr, 16);
18870 info_ptr += 16;
18871 DW_BLOCK (attr) = blk;
18872 break;
18873 case DW_FORM_sec_offset:
18874 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18875 info_ptr += bytes_read;
18876 break;
18877 case DW_FORM_string:
18878 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18879 DW_STRING_IS_CANONICAL (attr) = 0;
18880 info_ptr += bytes_read;
18881 break;
18882 case DW_FORM_strp:
18883 if (!cu->per_cu->is_dwz)
18884 {
18885 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18886 abfd, info_ptr, cu_header,
18887 &bytes_read);
18888 DW_STRING_IS_CANONICAL (attr) = 0;
18889 info_ptr += bytes_read;
18890 break;
18891 }
18892 /* FALLTHROUGH */
18893 case DW_FORM_line_strp:
18894 if (!cu->per_cu->is_dwz)
18895 {
18896 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18897 abfd, info_ptr,
18898 cu_header, &bytes_read);
18899 DW_STRING_IS_CANONICAL (attr) = 0;
18900 info_ptr += bytes_read;
18901 break;
18902 }
18903 /* FALLTHROUGH */
18904 case DW_FORM_GNU_strp_alt:
18905 {
18906 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18907 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18908 &bytes_read);
18909
18910 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18911 dwz, str_offset);
18912 DW_STRING_IS_CANONICAL (attr) = 0;
18913 info_ptr += bytes_read;
18914 }
18915 break;
18916 case DW_FORM_exprloc:
18917 case DW_FORM_block:
18918 blk = dwarf_alloc_block (cu);
18919 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18920 info_ptr += bytes_read;
18921 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18922 info_ptr += blk->size;
18923 DW_BLOCK (attr) = blk;
18924 break;
18925 case DW_FORM_block1:
18926 blk = dwarf_alloc_block (cu);
18927 blk->size = read_1_byte (abfd, info_ptr);
18928 info_ptr += 1;
18929 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18930 info_ptr += blk->size;
18931 DW_BLOCK (attr) = blk;
18932 break;
18933 case DW_FORM_data1:
18934 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18935 info_ptr += 1;
18936 break;
18937 case DW_FORM_flag:
18938 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18939 info_ptr += 1;
18940 break;
18941 case DW_FORM_flag_present:
18942 DW_UNSND (attr) = 1;
18943 break;
18944 case DW_FORM_sdata:
18945 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18946 info_ptr += bytes_read;
18947 break;
18948 case DW_FORM_udata:
18949 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18950 info_ptr += bytes_read;
18951 break;
18952 case DW_FORM_ref1:
18953 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18954 + read_1_byte (abfd, info_ptr));
18955 info_ptr += 1;
18956 break;
18957 case DW_FORM_ref2:
18958 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18959 + read_2_bytes (abfd, info_ptr));
18960 info_ptr += 2;
18961 break;
18962 case DW_FORM_ref4:
18963 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18964 + read_4_bytes (abfd, info_ptr));
18965 info_ptr += 4;
18966 break;
18967 case DW_FORM_ref8:
18968 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18969 + read_8_bytes (abfd, info_ptr));
18970 info_ptr += 8;
18971 break;
18972 case DW_FORM_ref_sig8:
18973 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18974 info_ptr += 8;
18975 break;
18976 case DW_FORM_ref_udata:
18977 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18978 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18979 info_ptr += bytes_read;
18980 break;
18981 case DW_FORM_indirect:
18982 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18983 info_ptr += bytes_read;
18984 if (form == DW_FORM_implicit_const)
18985 {
18986 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18987 info_ptr += bytes_read;
18988 }
18989 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18990 info_ptr);
18991 break;
18992 case DW_FORM_implicit_const:
18993 DW_SND (attr) = implicit_const;
18994 break;
18995 case DW_FORM_GNU_addr_index:
18996 if (reader->dwo_file == NULL)
18997 {
18998 /* For now flag a hard error.
18999 Later we can turn this into a complaint. */
19000 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19001 dwarf_form_name (form),
19002 bfd_get_filename (abfd));
19003 }
19004 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19005 info_ptr += bytes_read;
19006 break;
19007 case DW_FORM_GNU_str_index:
19008 if (reader->dwo_file == NULL)
19009 {
19010 /* For now flag a hard error.
19011 Later we can turn this into a complaint if warranted. */
19012 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19013 dwarf_form_name (form),
19014 bfd_get_filename (abfd));
19015 }
19016 {
19017 ULONGEST str_index =
19018 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19019
19020 DW_STRING (attr) = read_str_index (reader, str_index);
19021 DW_STRING_IS_CANONICAL (attr) = 0;
19022 info_ptr += bytes_read;
19023 }
19024 break;
19025 default:
19026 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19027 dwarf_form_name (form),
19028 bfd_get_filename (abfd));
19029 }
19030
19031 /* Super hack. */
19032 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19033 attr->form = DW_FORM_GNU_ref_alt;
19034
19035 /* We have seen instances where the compiler tried to emit a byte
19036 size attribute of -1 which ended up being encoded as an unsigned
19037 0xffffffff. Although 0xffffffff is technically a valid size value,
19038 an object of this size seems pretty unlikely so we can relatively
19039 safely treat these cases as if the size attribute was invalid and
19040 treat them as zero by default. */
19041 if (attr->name == DW_AT_byte_size
19042 && form == DW_FORM_data4
19043 && DW_UNSND (attr) >= 0xffffffff)
19044 {
19045 complaint
19046 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19047 hex_string (DW_UNSND (attr)));
19048 DW_UNSND (attr) = 0;
19049 }
19050
19051 return info_ptr;
19052 }
19053
19054 /* Read an attribute described by an abbreviated attribute. */
19055
19056 static const gdb_byte *
19057 read_attribute (const struct die_reader_specs *reader,
19058 struct attribute *attr, struct attr_abbrev *abbrev,
19059 const gdb_byte *info_ptr)
19060 {
19061 attr->name = abbrev->name;
19062 return read_attribute_value (reader, attr, abbrev->form,
19063 abbrev->implicit_const, info_ptr);
19064 }
19065
19066 /* Read dwarf information from a buffer. */
19067
19068 static unsigned int
19069 read_1_byte (bfd *abfd, const gdb_byte *buf)
19070 {
19071 return bfd_get_8 (abfd, buf);
19072 }
19073
19074 static int
19075 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19076 {
19077 return bfd_get_signed_8 (abfd, buf);
19078 }
19079
19080 static unsigned int
19081 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19082 {
19083 return bfd_get_16 (abfd, buf);
19084 }
19085
19086 static int
19087 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19088 {
19089 return bfd_get_signed_16 (abfd, buf);
19090 }
19091
19092 static unsigned int
19093 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19094 {
19095 return bfd_get_32 (abfd, buf);
19096 }
19097
19098 static int
19099 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19100 {
19101 return bfd_get_signed_32 (abfd, buf);
19102 }
19103
19104 static ULONGEST
19105 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19106 {
19107 return bfd_get_64 (abfd, buf);
19108 }
19109
19110 static CORE_ADDR
19111 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19112 unsigned int *bytes_read)
19113 {
19114 struct comp_unit_head *cu_header = &cu->header;
19115 CORE_ADDR retval = 0;
19116
19117 if (cu_header->signed_addr_p)
19118 {
19119 switch (cu_header->addr_size)
19120 {
19121 case 2:
19122 retval = bfd_get_signed_16 (abfd, buf);
19123 break;
19124 case 4:
19125 retval = bfd_get_signed_32 (abfd, buf);
19126 break;
19127 case 8:
19128 retval = bfd_get_signed_64 (abfd, buf);
19129 break;
19130 default:
19131 internal_error (__FILE__, __LINE__,
19132 _("read_address: bad switch, signed [in module %s]"),
19133 bfd_get_filename (abfd));
19134 }
19135 }
19136 else
19137 {
19138 switch (cu_header->addr_size)
19139 {
19140 case 2:
19141 retval = bfd_get_16 (abfd, buf);
19142 break;
19143 case 4:
19144 retval = bfd_get_32 (abfd, buf);
19145 break;
19146 case 8:
19147 retval = bfd_get_64 (abfd, buf);
19148 break;
19149 default:
19150 internal_error (__FILE__, __LINE__,
19151 _("read_address: bad switch, "
19152 "unsigned [in module %s]"),
19153 bfd_get_filename (abfd));
19154 }
19155 }
19156
19157 *bytes_read = cu_header->addr_size;
19158 return retval;
19159 }
19160
19161 /* Read the initial length from a section. The (draft) DWARF 3
19162 specification allows the initial length to take up either 4 bytes
19163 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19164 bytes describe the length and all offsets will be 8 bytes in length
19165 instead of 4.
19166
19167 An older, non-standard 64-bit format is also handled by this
19168 function. The older format in question stores the initial length
19169 as an 8-byte quantity without an escape value. Lengths greater
19170 than 2^32 aren't very common which means that the initial 4 bytes
19171 is almost always zero. Since a length value of zero doesn't make
19172 sense for the 32-bit format, this initial zero can be considered to
19173 be an escape value which indicates the presence of the older 64-bit
19174 format. As written, the code can't detect (old format) lengths
19175 greater than 4GB. If it becomes necessary to handle lengths
19176 somewhat larger than 4GB, we could allow other small values (such
19177 as the non-sensical values of 1, 2, and 3) to also be used as
19178 escape values indicating the presence of the old format.
19179
19180 The value returned via bytes_read should be used to increment the
19181 relevant pointer after calling read_initial_length().
19182
19183 [ Note: read_initial_length() and read_offset() are based on the
19184 document entitled "DWARF Debugging Information Format", revision
19185 3, draft 8, dated November 19, 2001. This document was obtained
19186 from:
19187
19188 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19189
19190 This document is only a draft and is subject to change. (So beware.)
19191
19192 Details regarding the older, non-standard 64-bit format were
19193 determined empirically by examining 64-bit ELF files produced by
19194 the SGI toolchain on an IRIX 6.5 machine.
19195
19196 - Kevin, July 16, 2002
19197 ] */
19198
19199 static LONGEST
19200 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19201 {
19202 LONGEST length = bfd_get_32 (abfd, buf);
19203
19204 if (length == 0xffffffff)
19205 {
19206 length = bfd_get_64 (abfd, buf + 4);
19207 *bytes_read = 12;
19208 }
19209 else if (length == 0)
19210 {
19211 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19212 length = bfd_get_64 (abfd, buf);
19213 *bytes_read = 8;
19214 }
19215 else
19216 {
19217 *bytes_read = 4;
19218 }
19219
19220 return length;
19221 }
19222
19223 /* Cover function for read_initial_length.
19224 Returns the length of the object at BUF, and stores the size of the
19225 initial length in *BYTES_READ and stores the size that offsets will be in
19226 *OFFSET_SIZE.
19227 If the initial length size is not equivalent to that specified in
19228 CU_HEADER then issue a complaint.
19229 This is useful when reading non-comp-unit headers. */
19230
19231 static LONGEST
19232 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19233 const struct comp_unit_head *cu_header,
19234 unsigned int *bytes_read,
19235 unsigned int *offset_size)
19236 {
19237 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19238
19239 gdb_assert (cu_header->initial_length_size == 4
19240 || cu_header->initial_length_size == 8
19241 || cu_header->initial_length_size == 12);
19242
19243 if (cu_header->initial_length_size != *bytes_read)
19244 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19245
19246 *offset_size = (*bytes_read == 4) ? 4 : 8;
19247 return length;
19248 }
19249
19250 /* Read an offset from the data stream. The size of the offset is
19251 given by cu_header->offset_size. */
19252
19253 static LONGEST
19254 read_offset (bfd *abfd, const gdb_byte *buf,
19255 const struct comp_unit_head *cu_header,
19256 unsigned int *bytes_read)
19257 {
19258 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19259
19260 *bytes_read = cu_header->offset_size;
19261 return offset;
19262 }
19263
19264 /* Read an offset from the data stream. */
19265
19266 static LONGEST
19267 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19268 {
19269 LONGEST retval = 0;
19270
19271 switch (offset_size)
19272 {
19273 case 4:
19274 retval = bfd_get_32 (abfd, buf);
19275 break;
19276 case 8:
19277 retval = bfd_get_64 (abfd, buf);
19278 break;
19279 default:
19280 internal_error (__FILE__, __LINE__,
19281 _("read_offset_1: bad switch [in module %s]"),
19282 bfd_get_filename (abfd));
19283 }
19284
19285 return retval;
19286 }
19287
19288 static const gdb_byte *
19289 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19290 {
19291 /* If the size of a host char is 8 bits, we can return a pointer
19292 to the buffer, otherwise we have to copy the data to a buffer
19293 allocated on the temporary obstack. */
19294 gdb_assert (HOST_CHAR_BIT == 8);
19295 return buf;
19296 }
19297
19298 static const char *
19299 read_direct_string (bfd *abfd, const gdb_byte *buf,
19300 unsigned int *bytes_read_ptr)
19301 {
19302 /* If the size of a host char is 8 bits, we can return a pointer
19303 to the string, otherwise we have to copy the string to a buffer
19304 allocated on the temporary obstack. */
19305 gdb_assert (HOST_CHAR_BIT == 8);
19306 if (*buf == '\0')
19307 {
19308 *bytes_read_ptr = 1;
19309 return NULL;
19310 }
19311 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19312 return (const char *) buf;
19313 }
19314
19315 /* Return pointer to string at section SECT offset STR_OFFSET with error
19316 reporting strings FORM_NAME and SECT_NAME. */
19317
19318 static const char *
19319 read_indirect_string_at_offset_from (struct objfile *objfile,
19320 bfd *abfd, LONGEST str_offset,
19321 struct dwarf2_section_info *sect,
19322 const char *form_name,
19323 const char *sect_name)
19324 {
19325 dwarf2_read_section (objfile, sect);
19326 if (sect->buffer == NULL)
19327 error (_("%s used without %s section [in module %s]"),
19328 form_name, sect_name, bfd_get_filename (abfd));
19329 if (str_offset >= sect->size)
19330 error (_("%s pointing outside of %s section [in module %s]"),
19331 form_name, sect_name, bfd_get_filename (abfd));
19332 gdb_assert (HOST_CHAR_BIT == 8);
19333 if (sect->buffer[str_offset] == '\0')
19334 return NULL;
19335 return (const char *) (sect->buffer + str_offset);
19336 }
19337
19338 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19339
19340 static const char *
19341 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19342 bfd *abfd, LONGEST str_offset)
19343 {
19344 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19345 abfd, str_offset,
19346 &dwarf2_per_objfile->str,
19347 "DW_FORM_strp", ".debug_str");
19348 }
19349
19350 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19351
19352 static const char *
19353 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19354 bfd *abfd, LONGEST str_offset)
19355 {
19356 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19357 abfd, str_offset,
19358 &dwarf2_per_objfile->line_str,
19359 "DW_FORM_line_strp",
19360 ".debug_line_str");
19361 }
19362
19363 /* Read a string at offset STR_OFFSET in the .debug_str section from
19364 the .dwz file DWZ. Throw an error if the offset is too large. If
19365 the string consists of a single NUL byte, return NULL; otherwise
19366 return a pointer to the string. */
19367
19368 static const char *
19369 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19370 LONGEST str_offset)
19371 {
19372 dwarf2_read_section (objfile, &dwz->str);
19373
19374 if (dwz->str.buffer == NULL)
19375 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19376 "section [in module %s]"),
19377 bfd_get_filename (dwz->dwz_bfd));
19378 if (str_offset >= dwz->str.size)
19379 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19380 ".debug_str section [in module %s]"),
19381 bfd_get_filename (dwz->dwz_bfd));
19382 gdb_assert (HOST_CHAR_BIT == 8);
19383 if (dwz->str.buffer[str_offset] == '\0')
19384 return NULL;
19385 return (const char *) (dwz->str.buffer + str_offset);
19386 }
19387
19388 /* Return pointer to string at .debug_str offset as read from BUF.
19389 BUF is assumed to be in a compilation unit described by CU_HEADER.
19390 Return *BYTES_READ_PTR count of bytes read from BUF. */
19391
19392 static const char *
19393 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19394 const gdb_byte *buf,
19395 const struct comp_unit_head *cu_header,
19396 unsigned int *bytes_read_ptr)
19397 {
19398 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19399
19400 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19401 }
19402
19403 /* Return pointer to string at .debug_line_str offset as read from BUF.
19404 BUF is assumed to be in a compilation unit described by CU_HEADER.
19405 Return *BYTES_READ_PTR count of bytes read from BUF. */
19406
19407 static const char *
19408 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19409 bfd *abfd, const gdb_byte *buf,
19410 const struct comp_unit_head *cu_header,
19411 unsigned int *bytes_read_ptr)
19412 {
19413 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19414
19415 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19416 str_offset);
19417 }
19418
19419 ULONGEST
19420 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19421 unsigned int *bytes_read_ptr)
19422 {
19423 ULONGEST result;
19424 unsigned int num_read;
19425 int shift;
19426 unsigned char byte;
19427
19428 result = 0;
19429 shift = 0;
19430 num_read = 0;
19431 while (1)
19432 {
19433 byte = bfd_get_8 (abfd, buf);
19434 buf++;
19435 num_read++;
19436 result |= ((ULONGEST) (byte & 127) << shift);
19437 if ((byte & 128) == 0)
19438 {
19439 break;
19440 }
19441 shift += 7;
19442 }
19443 *bytes_read_ptr = num_read;
19444 return result;
19445 }
19446
19447 static LONGEST
19448 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19449 unsigned int *bytes_read_ptr)
19450 {
19451 LONGEST result;
19452 int shift, num_read;
19453 unsigned char byte;
19454
19455 result = 0;
19456 shift = 0;
19457 num_read = 0;
19458 while (1)
19459 {
19460 byte = bfd_get_8 (abfd, buf);
19461 buf++;
19462 num_read++;
19463 result |= ((LONGEST) (byte & 127) << shift);
19464 shift += 7;
19465 if ((byte & 128) == 0)
19466 {
19467 break;
19468 }
19469 }
19470 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19471 result |= -(((LONGEST) 1) << shift);
19472 *bytes_read_ptr = num_read;
19473 return result;
19474 }
19475
19476 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19477 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19478 ADDR_SIZE is the size of addresses from the CU header. */
19479
19480 static CORE_ADDR
19481 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19482 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19483 {
19484 struct objfile *objfile = dwarf2_per_objfile->objfile;
19485 bfd *abfd = objfile->obfd;
19486 const gdb_byte *info_ptr;
19487
19488 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19489 if (dwarf2_per_objfile->addr.buffer == NULL)
19490 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19491 objfile_name (objfile));
19492 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19493 error (_("DW_FORM_addr_index pointing outside of "
19494 ".debug_addr section [in module %s]"),
19495 objfile_name (objfile));
19496 info_ptr = (dwarf2_per_objfile->addr.buffer
19497 + addr_base + addr_index * addr_size);
19498 if (addr_size == 4)
19499 return bfd_get_32 (abfd, info_ptr);
19500 else
19501 return bfd_get_64 (abfd, info_ptr);
19502 }
19503
19504 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19505
19506 static CORE_ADDR
19507 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19508 {
19509 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19510 cu->addr_base, cu->header.addr_size);
19511 }
19512
19513 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19514
19515 static CORE_ADDR
19516 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19517 unsigned int *bytes_read)
19518 {
19519 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19520 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19521
19522 return read_addr_index (cu, addr_index);
19523 }
19524
19525 /* Data structure to pass results from dwarf2_read_addr_index_reader
19526 back to dwarf2_read_addr_index. */
19527
19528 struct dwarf2_read_addr_index_data
19529 {
19530 ULONGEST addr_base;
19531 int addr_size;
19532 };
19533
19534 /* die_reader_func for dwarf2_read_addr_index. */
19535
19536 static void
19537 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19538 const gdb_byte *info_ptr,
19539 struct die_info *comp_unit_die,
19540 int has_children,
19541 void *data)
19542 {
19543 struct dwarf2_cu *cu = reader->cu;
19544 struct dwarf2_read_addr_index_data *aidata =
19545 (struct dwarf2_read_addr_index_data *) data;
19546
19547 aidata->addr_base = cu->addr_base;
19548 aidata->addr_size = cu->header.addr_size;
19549 }
19550
19551 /* Given an index in .debug_addr, fetch the value.
19552 NOTE: This can be called during dwarf expression evaluation,
19553 long after the debug information has been read, and thus per_cu->cu
19554 may no longer exist. */
19555
19556 CORE_ADDR
19557 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19558 unsigned int addr_index)
19559 {
19560 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19561 struct dwarf2_cu *cu = per_cu->cu;
19562 ULONGEST addr_base;
19563 int addr_size;
19564
19565 /* We need addr_base and addr_size.
19566 If we don't have PER_CU->cu, we have to get it.
19567 Nasty, but the alternative is storing the needed info in PER_CU,
19568 which at this point doesn't seem justified: it's not clear how frequently
19569 it would get used and it would increase the size of every PER_CU.
19570 Entry points like dwarf2_per_cu_addr_size do a similar thing
19571 so we're not in uncharted territory here.
19572 Alas we need to be a bit more complicated as addr_base is contained
19573 in the DIE.
19574
19575 We don't need to read the entire CU(/TU).
19576 We just need the header and top level die.
19577
19578 IWBN to use the aging mechanism to let us lazily later discard the CU.
19579 For now we skip this optimization. */
19580
19581 if (cu != NULL)
19582 {
19583 addr_base = cu->addr_base;
19584 addr_size = cu->header.addr_size;
19585 }
19586 else
19587 {
19588 struct dwarf2_read_addr_index_data aidata;
19589
19590 /* Note: We can't use init_cutu_and_read_dies_simple here,
19591 we need addr_base. */
19592 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19593 dwarf2_read_addr_index_reader, &aidata);
19594 addr_base = aidata.addr_base;
19595 addr_size = aidata.addr_size;
19596 }
19597
19598 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19599 addr_size);
19600 }
19601
19602 /* Given a DW_FORM_GNU_str_index, fetch the string.
19603 This is only used by the Fission support. */
19604
19605 static const char *
19606 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19607 {
19608 struct dwarf2_cu *cu = reader->cu;
19609 struct dwarf2_per_objfile *dwarf2_per_objfile
19610 = cu->per_cu->dwarf2_per_objfile;
19611 struct objfile *objfile = dwarf2_per_objfile->objfile;
19612 const char *objf_name = objfile_name (objfile);
19613 bfd *abfd = objfile->obfd;
19614 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19615 struct dwarf2_section_info *str_offsets_section =
19616 &reader->dwo_file->sections.str_offsets;
19617 const gdb_byte *info_ptr;
19618 ULONGEST str_offset;
19619 static const char form_name[] = "DW_FORM_GNU_str_index";
19620
19621 dwarf2_read_section (objfile, str_section);
19622 dwarf2_read_section (objfile, str_offsets_section);
19623 if (str_section->buffer == NULL)
19624 error (_("%s used without .debug_str.dwo section"
19625 " in CU at offset %s [in module %s]"),
19626 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19627 if (str_offsets_section->buffer == NULL)
19628 error (_("%s used without .debug_str_offsets.dwo section"
19629 " in CU at offset %s [in module %s]"),
19630 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19631 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19632 error (_("%s pointing outside of .debug_str_offsets.dwo"
19633 " section in CU at offset %s [in module %s]"),
19634 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19635 info_ptr = (str_offsets_section->buffer
19636 + str_index * cu->header.offset_size);
19637 if (cu->header.offset_size == 4)
19638 str_offset = bfd_get_32 (abfd, info_ptr);
19639 else
19640 str_offset = bfd_get_64 (abfd, info_ptr);
19641 if (str_offset >= str_section->size)
19642 error (_("Offset from %s pointing outside of"
19643 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19644 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19645 return (const char *) (str_section->buffer + str_offset);
19646 }
19647
19648 /* Return the length of an LEB128 number in BUF. */
19649
19650 static int
19651 leb128_size (const gdb_byte *buf)
19652 {
19653 const gdb_byte *begin = buf;
19654 gdb_byte byte;
19655
19656 while (1)
19657 {
19658 byte = *buf++;
19659 if ((byte & 128) == 0)
19660 return buf - begin;
19661 }
19662 }
19663
19664 static void
19665 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19666 {
19667 switch (lang)
19668 {
19669 case DW_LANG_C89:
19670 case DW_LANG_C99:
19671 case DW_LANG_C11:
19672 case DW_LANG_C:
19673 case DW_LANG_UPC:
19674 cu->language = language_c;
19675 break;
19676 case DW_LANG_Java:
19677 case DW_LANG_C_plus_plus:
19678 case DW_LANG_C_plus_plus_11:
19679 case DW_LANG_C_plus_plus_14:
19680 cu->language = language_cplus;
19681 break;
19682 case DW_LANG_D:
19683 cu->language = language_d;
19684 break;
19685 case DW_LANG_Fortran77:
19686 case DW_LANG_Fortran90:
19687 case DW_LANG_Fortran95:
19688 case DW_LANG_Fortran03:
19689 case DW_LANG_Fortran08:
19690 cu->language = language_fortran;
19691 break;
19692 case DW_LANG_Go:
19693 cu->language = language_go;
19694 break;
19695 case DW_LANG_Mips_Assembler:
19696 cu->language = language_asm;
19697 break;
19698 case DW_LANG_Ada83:
19699 case DW_LANG_Ada95:
19700 cu->language = language_ada;
19701 break;
19702 case DW_LANG_Modula2:
19703 cu->language = language_m2;
19704 break;
19705 case DW_LANG_Pascal83:
19706 cu->language = language_pascal;
19707 break;
19708 case DW_LANG_ObjC:
19709 cu->language = language_objc;
19710 break;
19711 case DW_LANG_Rust:
19712 case DW_LANG_Rust_old:
19713 cu->language = language_rust;
19714 break;
19715 case DW_LANG_Cobol74:
19716 case DW_LANG_Cobol85:
19717 default:
19718 cu->language = language_minimal;
19719 break;
19720 }
19721 cu->language_defn = language_def (cu->language);
19722 }
19723
19724 /* Return the named attribute or NULL if not there. */
19725
19726 static struct attribute *
19727 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19728 {
19729 for (;;)
19730 {
19731 unsigned int i;
19732 struct attribute *spec = NULL;
19733
19734 for (i = 0; i < die->num_attrs; ++i)
19735 {
19736 if (die->attrs[i].name == name)
19737 return &die->attrs[i];
19738 if (die->attrs[i].name == DW_AT_specification
19739 || die->attrs[i].name == DW_AT_abstract_origin)
19740 spec = &die->attrs[i];
19741 }
19742
19743 if (!spec)
19744 break;
19745
19746 die = follow_die_ref (die, spec, &cu);
19747 }
19748
19749 return NULL;
19750 }
19751
19752 /* Return the named attribute or NULL if not there,
19753 but do not follow DW_AT_specification, etc.
19754 This is for use in contexts where we're reading .debug_types dies.
19755 Following DW_AT_specification, DW_AT_abstract_origin will take us
19756 back up the chain, and we want to go down. */
19757
19758 static struct attribute *
19759 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19760 {
19761 unsigned int i;
19762
19763 for (i = 0; i < die->num_attrs; ++i)
19764 if (die->attrs[i].name == name)
19765 return &die->attrs[i];
19766
19767 return NULL;
19768 }
19769
19770 /* Return the string associated with a string-typed attribute, or NULL if it
19771 is either not found or is of an incorrect type. */
19772
19773 static const char *
19774 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19775 {
19776 struct attribute *attr;
19777 const char *str = NULL;
19778
19779 attr = dwarf2_attr (die, name, cu);
19780
19781 if (attr != NULL)
19782 {
19783 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19784 || attr->form == DW_FORM_string
19785 || attr->form == DW_FORM_GNU_str_index
19786 || attr->form == DW_FORM_GNU_strp_alt)
19787 str = DW_STRING (attr);
19788 else
19789 complaint (_("string type expected for attribute %s for "
19790 "DIE at %s in module %s"),
19791 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19792 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19793 }
19794
19795 return str;
19796 }
19797
19798 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19799 and holds a non-zero value. This function should only be used for
19800 DW_FORM_flag or DW_FORM_flag_present attributes. */
19801
19802 static int
19803 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19804 {
19805 struct attribute *attr = dwarf2_attr (die, name, cu);
19806
19807 return (attr && DW_UNSND (attr));
19808 }
19809
19810 static int
19811 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19812 {
19813 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19814 which value is non-zero. However, we have to be careful with
19815 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19816 (via dwarf2_flag_true_p) follows this attribute. So we may
19817 end up accidently finding a declaration attribute that belongs
19818 to a different DIE referenced by the specification attribute,
19819 even though the given DIE does not have a declaration attribute. */
19820 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19821 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19822 }
19823
19824 /* Return the die giving the specification for DIE, if there is
19825 one. *SPEC_CU is the CU containing DIE on input, and the CU
19826 containing the return value on output. If there is no
19827 specification, but there is an abstract origin, that is
19828 returned. */
19829
19830 static struct die_info *
19831 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19832 {
19833 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19834 *spec_cu);
19835
19836 if (spec_attr == NULL)
19837 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19838
19839 if (spec_attr == NULL)
19840 return NULL;
19841 else
19842 return follow_die_ref (die, spec_attr, spec_cu);
19843 }
19844
19845 /* Stub for free_line_header to match void * callback types. */
19846
19847 static void
19848 free_line_header_voidp (void *arg)
19849 {
19850 struct line_header *lh = (struct line_header *) arg;
19851
19852 delete lh;
19853 }
19854
19855 void
19856 line_header::add_include_dir (const char *include_dir)
19857 {
19858 if (dwarf_line_debug >= 2)
19859 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19860 include_dirs.size () + 1, include_dir);
19861
19862 include_dirs.push_back (include_dir);
19863 }
19864
19865 void
19866 line_header::add_file_name (const char *name,
19867 dir_index d_index,
19868 unsigned int mod_time,
19869 unsigned int length)
19870 {
19871 if (dwarf_line_debug >= 2)
19872 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19873 (unsigned) file_names.size () + 1, name);
19874
19875 file_names.emplace_back (name, d_index, mod_time, length);
19876 }
19877
19878 /* A convenience function to find the proper .debug_line section for a CU. */
19879
19880 static struct dwarf2_section_info *
19881 get_debug_line_section (struct dwarf2_cu *cu)
19882 {
19883 struct dwarf2_section_info *section;
19884 struct dwarf2_per_objfile *dwarf2_per_objfile
19885 = cu->per_cu->dwarf2_per_objfile;
19886
19887 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19888 DWO file. */
19889 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19890 section = &cu->dwo_unit->dwo_file->sections.line;
19891 else if (cu->per_cu->is_dwz)
19892 {
19893 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19894
19895 section = &dwz->line;
19896 }
19897 else
19898 section = &dwarf2_per_objfile->line;
19899
19900 return section;
19901 }
19902
19903 /* Read directory or file name entry format, starting with byte of
19904 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19905 entries count and the entries themselves in the described entry
19906 format. */
19907
19908 static void
19909 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19910 bfd *abfd, const gdb_byte **bufp,
19911 struct line_header *lh,
19912 const struct comp_unit_head *cu_header,
19913 void (*callback) (struct line_header *lh,
19914 const char *name,
19915 dir_index d_index,
19916 unsigned int mod_time,
19917 unsigned int length))
19918 {
19919 gdb_byte format_count, formati;
19920 ULONGEST data_count, datai;
19921 const gdb_byte *buf = *bufp;
19922 const gdb_byte *format_header_data;
19923 unsigned int bytes_read;
19924
19925 format_count = read_1_byte (abfd, buf);
19926 buf += 1;
19927 format_header_data = buf;
19928 for (formati = 0; formati < format_count; formati++)
19929 {
19930 read_unsigned_leb128 (abfd, buf, &bytes_read);
19931 buf += bytes_read;
19932 read_unsigned_leb128 (abfd, buf, &bytes_read);
19933 buf += bytes_read;
19934 }
19935
19936 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19937 buf += bytes_read;
19938 for (datai = 0; datai < data_count; datai++)
19939 {
19940 const gdb_byte *format = format_header_data;
19941 struct file_entry fe;
19942
19943 for (formati = 0; formati < format_count; formati++)
19944 {
19945 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19946 format += bytes_read;
19947
19948 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19949 format += bytes_read;
19950
19951 gdb::optional<const char *> string;
19952 gdb::optional<unsigned int> uint;
19953
19954 switch (form)
19955 {
19956 case DW_FORM_string:
19957 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19958 buf += bytes_read;
19959 break;
19960
19961 case DW_FORM_line_strp:
19962 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19963 abfd, buf,
19964 cu_header,
19965 &bytes_read));
19966 buf += bytes_read;
19967 break;
19968
19969 case DW_FORM_data1:
19970 uint.emplace (read_1_byte (abfd, buf));
19971 buf += 1;
19972 break;
19973
19974 case DW_FORM_data2:
19975 uint.emplace (read_2_bytes (abfd, buf));
19976 buf += 2;
19977 break;
19978
19979 case DW_FORM_data4:
19980 uint.emplace (read_4_bytes (abfd, buf));
19981 buf += 4;
19982 break;
19983
19984 case DW_FORM_data8:
19985 uint.emplace (read_8_bytes (abfd, buf));
19986 buf += 8;
19987 break;
19988
19989 case DW_FORM_udata:
19990 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19991 buf += bytes_read;
19992 break;
19993
19994 case DW_FORM_block:
19995 /* It is valid only for DW_LNCT_timestamp which is ignored by
19996 current GDB. */
19997 break;
19998 }
19999
20000 switch (content_type)
20001 {
20002 case DW_LNCT_path:
20003 if (string.has_value ())
20004 fe.name = *string;
20005 break;
20006 case DW_LNCT_directory_index:
20007 if (uint.has_value ())
20008 fe.d_index = (dir_index) *uint;
20009 break;
20010 case DW_LNCT_timestamp:
20011 if (uint.has_value ())
20012 fe.mod_time = *uint;
20013 break;
20014 case DW_LNCT_size:
20015 if (uint.has_value ())
20016 fe.length = *uint;
20017 break;
20018 case DW_LNCT_MD5:
20019 break;
20020 default:
20021 complaint (_("Unknown format content type %s"),
20022 pulongest (content_type));
20023 }
20024 }
20025
20026 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20027 }
20028
20029 *bufp = buf;
20030 }
20031
20032 /* Read the statement program header starting at OFFSET in
20033 .debug_line, or .debug_line.dwo. Return a pointer
20034 to a struct line_header, allocated using xmalloc.
20035 Returns NULL if there is a problem reading the header, e.g., if it
20036 has a version we don't understand.
20037
20038 NOTE: the strings in the include directory and file name tables of
20039 the returned object point into the dwarf line section buffer,
20040 and must not be freed. */
20041
20042 static line_header_up
20043 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20044 {
20045 const gdb_byte *line_ptr;
20046 unsigned int bytes_read, offset_size;
20047 int i;
20048 const char *cur_dir, *cur_file;
20049 struct dwarf2_section_info *section;
20050 bfd *abfd;
20051 struct dwarf2_per_objfile *dwarf2_per_objfile
20052 = cu->per_cu->dwarf2_per_objfile;
20053
20054 section = get_debug_line_section (cu);
20055 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20056 if (section->buffer == NULL)
20057 {
20058 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20059 complaint (_("missing .debug_line.dwo section"));
20060 else
20061 complaint (_("missing .debug_line section"));
20062 return 0;
20063 }
20064
20065 /* We can't do this until we know the section is non-empty.
20066 Only then do we know we have such a section. */
20067 abfd = get_section_bfd_owner (section);
20068
20069 /* Make sure that at least there's room for the total_length field.
20070 That could be 12 bytes long, but we're just going to fudge that. */
20071 if (to_underlying (sect_off) + 4 >= section->size)
20072 {
20073 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20074 return 0;
20075 }
20076
20077 line_header_up lh (new line_header ());
20078
20079 lh->sect_off = sect_off;
20080 lh->offset_in_dwz = cu->per_cu->is_dwz;
20081
20082 line_ptr = section->buffer + to_underlying (sect_off);
20083
20084 /* Read in the header. */
20085 lh->total_length =
20086 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20087 &bytes_read, &offset_size);
20088 line_ptr += bytes_read;
20089 if (line_ptr + lh->total_length > (section->buffer + section->size))
20090 {
20091 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20092 return 0;
20093 }
20094 lh->statement_program_end = line_ptr + lh->total_length;
20095 lh->version = read_2_bytes (abfd, line_ptr);
20096 line_ptr += 2;
20097 if (lh->version > 5)
20098 {
20099 /* This is a version we don't understand. The format could have
20100 changed in ways we don't handle properly so just punt. */
20101 complaint (_("unsupported version in .debug_line section"));
20102 return NULL;
20103 }
20104 if (lh->version >= 5)
20105 {
20106 gdb_byte segment_selector_size;
20107
20108 /* Skip address size. */
20109 read_1_byte (abfd, line_ptr);
20110 line_ptr += 1;
20111
20112 segment_selector_size = read_1_byte (abfd, line_ptr);
20113 line_ptr += 1;
20114 if (segment_selector_size != 0)
20115 {
20116 complaint (_("unsupported segment selector size %u "
20117 "in .debug_line section"),
20118 segment_selector_size);
20119 return NULL;
20120 }
20121 }
20122 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20123 line_ptr += offset_size;
20124 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20125 line_ptr += 1;
20126 if (lh->version >= 4)
20127 {
20128 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20129 line_ptr += 1;
20130 }
20131 else
20132 lh->maximum_ops_per_instruction = 1;
20133
20134 if (lh->maximum_ops_per_instruction == 0)
20135 {
20136 lh->maximum_ops_per_instruction = 1;
20137 complaint (_("invalid maximum_ops_per_instruction "
20138 "in `.debug_line' section"));
20139 }
20140
20141 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20142 line_ptr += 1;
20143 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20144 line_ptr += 1;
20145 lh->line_range = read_1_byte (abfd, line_ptr);
20146 line_ptr += 1;
20147 lh->opcode_base = read_1_byte (abfd, line_ptr);
20148 line_ptr += 1;
20149 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20150
20151 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20152 for (i = 1; i < lh->opcode_base; ++i)
20153 {
20154 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20155 line_ptr += 1;
20156 }
20157
20158 if (lh->version >= 5)
20159 {
20160 /* Read directory table. */
20161 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20162 &cu->header,
20163 [] (struct line_header *lh, const char *name,
20164 dir_index d_index, unsigned int mod_time,
20165 unsigned int length)
20166 {
20167 lh->add_include_dir (name);
20168 });
20169
20170 /* Read file name table. */
20171 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20172 &cu->header,
20173 [] (struct line_header *lh, const char *name,
20174 dir_index d_index, unsigned int mod_time,
20175 unsigned int length)
20176 {
20177 lh->add_file_name (name, d_index, mod_time, length);
20178 });
20179 }
20180 else
20181 {
20182 /* Read directory table. */
20183 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20184 {
20185 line_ptr += bytes_read;
20186 lh->add_include_dir (cur_dir);
20187 }
20188 line_ptr += bytes_read;
20189
20190 /* Read file name table. */
20191 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20192 {
20193 unsigned int mod_time, length;
20194 dir_index d_index;
20195
20196 line_ptr += bytes_read;
20197 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20198 line_ptr += bytes_read;
20199 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20200 line_ptr += bytes_read;
20201 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20202 line_ptr += bytes_read;
20203
20204 lh->add_file_name (cur_file, d_index, mod_time, length);
20205 }
20206 line_ptr += bytes_read;
20207 }
20208 lh->statement_program_start = line_ptr;
20209
20210 if (line_ptr > (section->buffer + section->size))
20211 complaint (_("line number info header doesn't "
20212 "fit in `.debug_line' section"));
20213
20214 return lh;
20215 }
20216
20217 /* Subroutine of dwarf_decode_lines to simplify it.
20218 Return the file name of the psymtab for included file FILE_INDEX
20219 in line header LH of PST.
20220 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20221 If space for the result is malloc'd, *NAME_HOLDER will be set.
20222 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20223
20224 static const char *
20225 psymtab_include_file_name (const struct line_header *lh, int file_index,
20226 const struct partial_symtab *pst,
20227 const char *comp_dir,
20228 gdb::unique_xmalloc_ptr<char> *name_holder)
20229 {
20230 const file_entry &fe = lh->file_names[file_index];
20231 const char *include_name = fe.name;
20232 const char *include_name_to_compare = include_name;
20233 const char *pst_filename;
20234 int file_is_pst;
20235
20236 const char *dir_name = fe.include_dir (lh);
20237
20238 gdb::unique_xmalloc_ptr<char> hold_compare;
20239 if (!IS_ABSOLUTE_PATH (include_name)
20240 && (dir_name != NULL || comp_dir != NULL))
20241 {
20242 /* Avoid creating a duplicate psymtab for PST.
20243 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20244 Before we do the comparison, however, we need to account
20245 for DIR_NAME and COMP_DIR.
20246 First prepend dir_name (if non-NULL). If we still don't
20247 have an absolute path prepend comp_dir (if non-NULL).
20248 However, the directory we record in the include-file's
20249 psymtab does not contain COMP_DIR (to match the
20250 corresponding symtab(s)).
20251
20252 Example:
20253
20254 bash$ cd /tmp
20255 bash$ gcc -g ./hello.c
20256 include_name = "hello.c"
20257 dir_name = "."
20258 DW_AT_comp_dir = comp_dir = "/tmp"
20259 DW_AT_name = "./hello.c"
20260
20261 */
20262
20263 if (dir_name != NULL)
20264 {
20265 name_holder->reset (concat (dir_name, SLASH_STRING,
20266 include_name, (char *) NULL));
20267 include_name = name_holder->get ();
20268 include_name_to_compare = include_name;
20269 }
20270 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20271 {
20272 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20273 include_name, (char *) NULL));
20274 include_name_to_compare = hold_compare.get ();
20275 }
20276 }
20277
20278 pst_filename = pst->filename;
20279 gdb::unique_xmalloc_ptr<char> copied_name;
20280 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20281 {
20282 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20283 pst_filename, (char *) NULL));
20284 pst_filename = copied_name.get ();
20285 }
20286
20287 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20288
20289 if (file_is_pst)
20290 return NULL;
20291 return include_name;
20292 }
20293
20294 /* State machine to track the state of the line number program. */
20295
20296 class lnp_state_machine
20297 {
20298 public:
20299 /* Initialize a machine state for the start of a line number
20300 program. */
20301 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20302
20303 file_entry *current_file ()
20304 {
20305 /* lh->file_names is 0-based, but the file name numbers in the
20306 statement program are 1-based. */
20307 return m_line_header->file_name_at (m_file);
20308 }
20309
20310 /* Record the line in the state machine. END_SEQUENCE is true if
20311 we're processing the end of a sequence. */
20312 void record_line (bool end_sequence);
20313
20314 /* Check address and if invalid nop-out the rest of the lines in this
20315 sequence. */
20316 void check_line_address (struct dwarf2_cu *cu,
20317 const gdb_byte *line_ptr,
20318 CORE_ADDR lowpc, CORE_ADDR address);
20319
20320 void handle_set_discriminator (unsigned int discriminator)
20321 {
20322 m_discriminator = discriminator;
20323 m_line_has_non_zero_discriminator |= discriminator != 0;
20324 }
20325
20326 /* Handle DW_LNE_set_address. */
20327 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20328 {
20329 m_op_index = 0;
20330 address += baseaddr;
20331 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20332 }
20333
20334 /* Handle DW_LNS_advance_pc. */
20335 void handle_advance_pc (CORE_ADDR adjust);
20336
20337 /* Handle a special opcode. */
20338 void handle_special_opcode (unsigned char op_code);
20339
20340 /* Handle DW_LNS_advance_line. */
20341 void handle_advance_line (int line_delta)
20342 {
20343 advance_line (line_delta);
20344 }
20345
20346 /* Handle DW_LNS_set_file. */
20347 void handle_set_file (file_name_index file);
20348
20349 /* Handle DW_LNS_negate_stmt. */
20350 void handle_negate_stmt ()
20351 {
20352 m_is_stmt = !m_is_stmt;
20353 }
20354
20355 /* Handle DW_LNS_const_add_pc. */
20356 void handle_const_add_pc ();
20357
20358 /* Handle DW_LNS_fixed_advance_pc. */
20359 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20360 {
20361 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20362 m_op_index = 0;
20363 }
20364
20365 /* Handle DW_LNS_copy. */
20366 void handle_copy ()
20367 {
20368 record_line (false);
20369 m_discriminator = 0;
20370 }
20371
20372 /* Handle DW_LNE_end_sequence. */
20373 void handle_end_sequence ()
20374 {
20375 m_record_line_callback = ::record_line;
20376 }
20377
20378 private:
20379 /* Advance the line by LINE_DELTA. */
20380 void advance_line (int line_delta)
20381 {
20382 m_line += line_delta;
20383
20384 if (line_delta != 0)
20385 m_line_has_non_zero_discriminator = m_discriminator != 0;
20386 }
20387
20388 gdbarch *m_gdbarch;
20389
20390 /* True if we're recording lines.
20391 Otherwise we're building partial symtabs and are just interested in
20392 finding include files mentioned by the line number program. */
20393 bool m_record_lines_p;
20394
20395 /* The line number header. */
20396 line_header *m_line_header;
20397
20398 /* These are part of the standard DWARF line number state machine,
20399 and initialized according to the DWARF spec. */
20400
20401 unsigned char m_op_index = 0;
20402 /* The line table index (1-based) of the current file. */
20403 file_name_index m_file = (file_name_index) 1;
20404 unsigned int m_line = 1;
20405
20406 /* These are initialized in the constructor. */
20407
20408 CORE_ADDR m_address;
20409 bool m_is_stmt;
20410 unsigned int m_discriminator;
20411
20412 /* Additional bits of state we need to track. */
20413
20414 /* The last file that we called dwarf2_start_subfile for.
20415 This is only used for TLLs. */
20416 unsigned int m_last_file = 0;
20417 /* The last file a line number was recorded for. */
20418 struct subfile *m_last_subfile = NULL;
20419
20420 /* The function to call to record a line. */
20421 record_line_ftype *m_record_line_callback = NULL;
20422
20423 /* The last line number that was recorded, used to coalesce
20424 consecutive entries for the same line. This can happen, for
20425 example, when discriminators are present. PR 17276. */
20426 unsigned int m_last_line = 0;
20427 bool m_line_has_non_zero_discriminator = false;
20428 };
20429
20430 void
20431 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20432 {
20433 CORE_ADDR addr_adj = (((m_op_index + adjust)
20434 / m_line_header->maximum_ops_per_instruction)
20435 * m_line_header->minimum_instruction_length);
20436 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20437 m_op_index = ((m_op_index + adjust)
20438 % m_line_header->maximum_ops_per_instruction);
20439 }
20440
20441 void
20442 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20443 {
20444 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20445 CORE_ADDR addr_adj = (((m_op_index
20446 + (adj_opcode / m_line_header->line_range))
20447 / m_line_header->maximum_ops_per_instruction)
20448 * m_line_header->minimum_instruction_length);
20449 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20450 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20451 % m_line_header->maximum_ops_per_instruction);
20452
20453 int line_delta = (m_line_header->line_base
20454 + (adj_opcode % m_line_header->line_range));
20455 advance_line (line_delta);
20456 record_line (false);
20457 m_discriminator = 0;
20458 }
20459
20460 void
20461 lnp_state_machine::handle_set_file (file_name_index file)
20462 {
20463 m_file = file;
20464
20465 const file_entry *fe = current_file ();
20466 if (fe == NULL)
20467 dwarf2_debug_line_missing_file_complaint ();
20468 else if (m_record_lines_p)
20469 {
20470 const char *dir = fe->include_dir (m_line_header);
20471
20472 m_last_subfile = current_subfile;
20473 m_line_has_non_zero_discriminator = m_discriminator != 0;
20474 dwarf2_start_subfile (fe->name, dir);
20475 }
20476 }
20477
20478 void
20479 lnp_state_machine::handle_const_add_pc ()
20480 {
20481 CORE_ADDR adjust
20482 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20483
20484 CORE_ADDR addr_adj
20485 = (((m_op_index + adjust)
20486 / m_line_header->maximum_ops_per_instruction)
20487 * m_line_header->minimum_instruction_length);
20488
20489 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20490 m_op_index = ((m_op_index + adjust)
20491 % m_line_header->maximum_ops_per_instruction);
20492 }
20493
20494 /* Ignore this record_line request. */
20495
20496 static void
20497 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20498 {
20499 return;
20500 }
20501
20502 /* Return non-zero if we should add LINE to the line number table.
20503 LINE is the line to add, LAST_LINE is the last line that was added,
20504 LAST_SUBFILE is the subfile for LAST_LINE.
20505 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20506 had a non-zero discriminator.
20507
20508 We have to be careful in the presence of discriminators.
20509 E.g., for this line:
20510
20511 for (i = 0; i < 100000; i++);
20512
20513 clang can emit four line number entries for that one line,
20514 each with a different discriminator.
20515 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20516
20517 However, we want gdb to coalesce all four entries into one.
20518 Otherwise the user could stepi into the middle of the line and
20519 gdb would get confused about whether the pc really was in the
20520 middle of the line.
20521
20522 Things are further complicated by the fact that two consecutive
20523 line number entries for the same line is a heuristic used by gcc
20524 to denote the end of the prologue. So we can't just discard duplicate
20525 entries, we have to be selective about it. The heuristic we use is
20526 that we only collapse consecutive entries for the same line if at least
20527 one of those entries has a non-zero discriminator. PR 17276.
20528
20529 Note: Addresses in the line number state machine can never go backwards
20530 within one sequence, thus this coalescing is ok. */
20531
20532 static int
20533 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20534 int line_has_non_zero_discriminator,
20535 struct subfile *last_subfile)
20536 {
20537 if (current_subfile != last_subfile)
20538 return 1;
20539 if (line != last_line)
20540 return 1;
20541 /* Same line for the same file that we've seen already.
20542 As a last check, for pr 17276, only record the line if the line
20543 has never had a non-zero discriminator. */
20544 if (!line_has_non_zero_discriminator)
20545 return 1;
20546 return 0;
20547 }
20548
20549 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20550 in the line table of subfile SUBFILE. */
20551
20552 static void
20553 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20554 unsigned int line, CORE_ADDR address,
20555 record_line_ftype p_record_line)
20556 {
20557 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20558
20559 if (dwarf_line_debug)
20560 {
20561 fprintf_unfiltered (gdb_stdlog,
20562 "Recording line %u, file %s, address %s\n",
20563 line, lbasename (subfile->name),
20564 paddress (gdbarch, address));
20565 }
20566
20567 (*p_record_line) (subfile, line, addr);
20568 }
20569
20570 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20571 Mark the end of a set of line number records.
20572 The arguments are the same as for dwarf_record_line_1.
20573 If SUBFILE is NULL the request is ignored. */
20574
20575 static void
20576 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20577 CORE_ADDR address, record_line_ftype p_record_line)
20578 {
20579 if (subfile == NULL)
20580 return;
20581
20582 if (dwarf_line_debug)
20583 {
20584 fprintf_unfiltered (gdb_stdlog,
20585 "Finishing current line, file %s, address %s\n",
20586 lbasename (subfile->name),
20587 paddress (gdbarch, address));
20588 }
20589
20590 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20591 }
20592
20593 void
20594 lnp_state_machine::record_line (bool end_sequence)
20595 {
20596 if (dwarf_line_debug)
20597 {
20598 fprintf_unfiltered (gdb_stdlog,
20599 "Processing actual line %u: file %u,"
20600 " address %s, is_stmt %u, discrim %u\n",
20601 m_line, to_underlying (m_file),
20602 paddress (m_gdbarch, m_address),
20603 m_is_stmt, m_discriminator);
20604 }
20605
20606 file_entry *fe = current_file ();
20607
20608 if (fe == NULL)
20609 dwarf2_debug_line_missing_file_complaint ();
20610 /* For now we ignore lines not starting on an instruction boundary.
20611 But not when processing end_sequence for compatibility with the
20612 previous version of the code. */
20613 else if (m_op_index == 0 || end_sequence)
20614 {
20615 fe->included_p = 1;
20616 if (m_record_lines_p && m_is_stmt)
20617 {
20618 if (m_last_subfile != current_subfile || end_sequence)
20619 {
20620 dwarf_finish_line (m_gdbarch, m_last_subfile,
20621 m_address, m_record_line_callback);
20622 }
20623
20624 if (!end_sequence)
20625 {
20626 if (dwarf_record_line_p (m_line, m_last_line,
20627 m_line_has_non_zero_discriminator,
20628 m_last_subfile))
20629 {
20630 dwarf_record_line_1 (m_gdbarch, current_subfile,
20631 m_line, m_address,
20632 m_record_line_callback);
20633 }
20634 m_last_subfile = current_subfile;
20635 m_last_line = m_line;
20636 }
20637 }
20638 }
20639 }
20640
20641 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20642 bool record_lines_p)
20643 {
20644 m_gdbarch = arch;
20645 m_record_lines_p = record_lines_p;
20646 m_line_header = lh;
20647
20648 m_record_line_callback = ::record_line;
20649
20650 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20651 was a line entry for it so that the backend has a chance to adjust it
20652 and also record it in case it needs it. This is currently used by MIPS
20653 code, cf. `mips_adjust_dwarf2_line'. */
20654 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20655 m_is_stmt = lh->default_is_stmt;
20656 m_discriminator = 0;
20657 }
20658
20659 void
20660 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20661 const gdb_byte *line_ptr,
20662 CORE_ADDR lowpc, CORE_ADDR address)
20663 {
20664 /* If address < lowpc then it's not a usable value, it's outside the
20665 pc range of the CU. However, we restrict the test to only address
20666 values of zero to preserve GDB's previous behaviour which is to
20667 handle the specific case of a function being GC'd by the linker. */
20668
20669 if (address == 0 && address < lowpc)
20670 {
20671 /* This line table is for a function which has been
20672 GCd by the linker. Ignore it. PR gdb/12528 */
20673
20674 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20675 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20676
20677 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20678 line_offset, objfile_name (objfile));
20679 m_record_line_callback = noop_record_line;
20680 /* Note: record_line_callback is left as noop_record_line until
20681 we see DW_LNE_end_sequence. */
20682 }
20683 }
20684
20685 /* Subroutine of dwarf_decode_lines to simplify it.
20686 Process the line number information in LH.
20687 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20688 program in order to set included_p for every referenced header. */
20689
20690 static void
20691 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20692 const int decode_for_pst_p, CORE_ADDR lowpc)
20693 {
20694 const gdb_byte *line_ptr, *extended_end;
20695 const gdb_byte *line_end;
20696 unsigned int bytes_read, extended_len;
20697 unsigned char op_code, extended_op;
20698 CORE_ADDR baseaddr;
20699 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20700 bfd *abfd = objfile->obfd;
20701 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20702 /* True if we're recording line info (as opposed to building partial
20703 symtabs and just interested in finding include files mentioned by
20704 the line number program). */
20705 bool record_lines_p = !decode_for_pst_p;
20706
20707 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20708
20709 line_ptr = lh->statement_program_start;
20710 line_end = lh->statement_program_end;
20711
20712 /* Read the statement sequences until there's nothing left. */
20713 while (line_ptr < line_end)
20714 {
20715 /* The DWARF line number program state machine. Reset the state
20716 machine at the start of each sequence. */
20717 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20718 bool end_sequence = false;
20719
20720 if (record_lines_p)
20721 {
20722 /* Start a subfile for the current file of the state
20723 machine. */
20724 const file_entry *fe = state_machine.current_file ();
20725
20726 if (fe != NULL)
20727 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20728 }
20729
20730 /* Decode the table. */
20731 while (line_ptr < line_end && !end_sequence)
20732 {
20733 op_code = read_1_byte (abfd, line_ptr);
20734 line_ptr += 1;
20735
20736 if (op_code >= lh->opcode_base)
20737 {
20738 /* Special opcode. */
20739 state_machine.handle_special_opcode (op_code);
20740 }
20741 else switch (op_code)
20742 {
20743 case DW_LNS_extended_op:
20744 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20745 &bytes_read);
20746 line_ptr += bytes_read;
20747 extended_end = line_ptr + extended_len;
20748 extended_op = read_1_byte (abfd, line_ptr);
20749 line_ptr += 1;
20750 switch (extended_op)
20751 {
20752 case DW_LNE_end_sequence:
20753 state_machine.handle_end_sequence ();
20754 end_sequence = true;
20755 break;
20756 case DW_LNE_set_address:
20757 {
20758 CORE_ADDR address
20759 = read_address (abfd, line_ptr, cu, &bytes_read);
20760 line_ptr += bytes_read;
20761
20762 state_machine.check_line_address (cu, line_ptr,
20763 lowpc, address);
20764 state_machine.handle_set_address (baseaddr, address);
20765 }
20766 break;
20767 case DW_LNE_define_file:
20768 {
20769 const char *cur_file;
20770 unsigned int mod_time, length;
20771 dir_index dindex;
20772
20773 cur_file = read_direct_string (abfd, line_ptr,
20774 &bytes_read);
20775 line_ptr += bytes_read;
20776 dindex = (dir_index)
20777 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20778 line_ptr += bytes_read;
20779 mod_time =
20780 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20781 line_ptr += bytes_read;
20782 length =
20783 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20784 line_ptr += bytes_read;
20785 lh->add_file_name (cur_file, dindex, mod_time, length);
20786 }
20787 break;
20788 case DW_LNE_set_discriminator:
20789 {
20790 /* The discriminator is not interesting to the
20791 debugger; just ignore it. We still need to
20792 check its value though:
20793 if there are consecutive entries for the same
20794 (non-prologue) line we want to coalesce them.
20795 PR 17276. */
20796 unsigned int discr
20797 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20798 line_ptr += bytes_read;
20799
20800 state_machine.handle_set_discriminator (discr);
20801 }
20802 break;
20803 default:
20804 complaint (_("mangled .debug_line section"));
20805 return;
20806 }
20807 /* Make sure that we parsed the extended op correctly. If e.g.
20808 we expected a different address size than the producer used,
20809 we may have read the wrong number of bytes. */
20810 if (line_ptr != extended_end)
20811 {
20812 complaint (_("mangled .debug_line section"));
20813 return;
20814 }
20815 break;
20816 case DW_LNS_copy:
20817 state_machine.handle_copy ();
20818 break;
20819 case DW_LNS_advance_pc:
20820 {
20821 CORE_ADDR adjust
20822 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20823 line_ptr += bytes_read;
20824
20825 state_machine.handle_advance_pc (adjust);
20826 }
20827 break;
20828 case DW_LNS_advance_line:
20829 {
20830 int line_delta
20831 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20832 line_ptr += bytes_read;
20833
20834 state_machine.handle_advance_line (line_delta);
20835 }
20836 break;
20837 case DW_LNS_set_file:
20838 {
20839 file_name_index file
20840 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20841 &bytes_read);
20842 line_ptr += bytes_read;
20843
20844 state_machine.handle_set_file (file);
20845 }
20846 break;
20847 case DW_LNS_set_column:
20848 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20849 line_ptr += bytes_read;
20850 break;
20851 case DW_LNS_negate_stmt:
20852 state_machine.handle_negate_stmt ();
20853 break;
20854 case DW_LNS_set_basic_block:
20855 break;
20856 /* Add to the address register of the state machine the
20857 address increment value corresponding to special opcode
20858 255. I.e., this value is scaled by the minimum
20859 instruction length since special opcode 255 would have
20860 scaled the increment. */
20861 case DW_LNS_const_add_pc:
20862 state_machine.handle_const_add_pc ();
20863 break;
20864 case DW_LNS_fixed_advance_pc:
20865 {
20866 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20867 line_ptr += 2;
20868
20869 state_machine.handle_fixed_advance_pc (addr_adj);
20870 }
20871 break;
20872 default:
20873 {
20874 /* Unknown standard opcode, ignore it. */
20875 int i;
20876
20877 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20878 {
20879 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20880 line_ptr += bytes_read;
20881 }
20882 }
20883 }
20884 }
20885
20886 if (!end_sequence)
20887 dwarf2_debug_line_missing_end_sequence_complaint ();
20888
20889 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20890 in which case we still finish recording the last line). */
20891 state_machine.record_line (true);
20892 }
20893 }
20894
20895 /* Decode the Line Number Program (LNP) for the given line_header
20896 structure and CU. The actual information extracted and the type
20897 of structures created from the LNP depends on the value of PST.
20898
20899 1. If PST is NULL, then this procedure uses the data from the program
20900 to create all necessary symbol tables, and their linetables.
20901
20902 2. If PST is not NULL, this procedure reads the program to determine
20903 the list of files included by the unit represented by PST, and
20904 builds all the associated partial symbol tables.
20905
20906 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20907 It is used for relative paths in the line table.
20908 NOTE: When processing partial symtabs (pst != NULL),
20909 comp_dir == pst->dirname.
20910
20911 NOTE: It is important that psymtabs have the same file name (via strcmp)
20912 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20913 symtab we don't use it in the name of the psymtabs we create.
20914 E.g. expand_line_sal requires this when finding psymtabs to expand.
20915 A good testcase for this is mb-inline.exp.
20916
20917 LOWPC is the lowest address in CU (or 0 if not known).
20918
20919 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20920 for its PC<->lines mapping information. Otherwise only the filename
20921 table is read in. */
20922
20923 static void
20924 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20925 struct dwarf2_cu *cu, struct partial_symtab *pst,
20926 CORE_ADDR lowpc, int decode_mapping)
20927 {
20928 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20929 const int decode_for_pst_p = (pst != NULL);
20930
20931 if (decode_mapping)
20932 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20933
20934 if (decode_for_pst_p)
20935 {
20936 int file_index;
20937
20938 /* Now that we're done scanning the Line Header Program, we can
20939 create the psymtab of each included file. */
20940 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20941 if (lh->file_names[file_index].included_p == 1)
20942 {
20943 gdb::unique_xmalloc_ptr<char> name_holder;
20944 const char *include_name =
20945 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20946 &name_holder);
20947 if (include_name != NULL)
20948 dwarf2_create_include_psymtab (include_name, pst, objfile);
20949 }
20950 }
20951 else
20952 {
20953 /* Make sure a symtab is created for every file, even files
20954 which contain only variables (i.e. no code with associated
20955 line numbers). */
20956 struct compunit_symtab *cust = buildsym_compunit_symtab ();
20957 int i;
20958
20959 for (i = 0; i < lh->file_names.size (); i++)
20960 {
20961 file_entry &fe = lh->file_names[i];
20962
20963 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
20964
20965 if (current_subfile->symtab == NULL)
20966 {
20967 current_subfile->symtab
20968 = allocate_symtab (cust, current_subfile->name);
20969 }
20970 fe.symtab = current_subfile->symtab;
20971 }
20972 }
20973 }
20974
20975 /* Start a subfile for DWARF. FILENAME is the name of the file and
20976 DIRNAME the name of the source directory which contains FILENAME
20977 or NULL if not known.
20978 This routine tries to keep line numbers from identical absolute and
20979 relative file names in a common subfile.
20980
20981 Using the `list' example from the GDB testsuite, which resides in
20982 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20983 of /srcdir/list0.c yields the following debugging information for list0.c:
20984
20985 DW_AT_name: /srcdir/list0.c
20986 DW_AT_comp_dir: /compdir
20987 files.files[0].name: list0.h
20988 files.files[0].dir: /srcdir
20989 files.files[1].name: list0.c
20990 files.files[1].dir: /srcdir
20991
20992 The line number information for list0.c has to end up in a single
20993 subfile, so that `break /srcdir/list0.c:1' works as expected.
20994 start_subfile will ensure that this happens provided that we pass the
20995 concatenation of files.files[1].dir and files.files[1].name as the
20996 subfile's name. */
20997
20998 static void
20999 dwarf2_start_subfile (const char *filename, const char *dirname)
21000 {
21001 char *copy = NULL;
21002
21003 /* In order not to lose the line information directory,
21004 we concatenate it to the filename when it makes sense.
21005 Note that the Dwarf3 standard says (speaking of filenames in line
21006 information): ``The directory index is ignored for file names
21007 that represent full path names''. Thus ignoring dirname in the
21008 `else' branch below isn't an issue. */
21009
21010 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21011 {
21012 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21013 filename = copy;
21014 }
21015
21016 start_subfile (filename);
21017
21018 if (copy != NULL)
21019 xfree (copy);
21020 }
21021
21022 /* Start a symtab for DWARF.
21023 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21024
21025 static struct compunit_symtab *
21026 dwarf2_start_symtab (struct dwarf2_cu *cu,
21027 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21028 {
21029 struct compunit_symtab *cust
21030 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21031 low_pc, cu->language);
21032
21033 record_debugformat ("DWARF 2");
21034 record_producer (cu->producer);
21035
21036 /* We assume that we're processing GCC output. */
21037 processing_gcc_compilation = 2;
21038
21039 cu->processing_has_namespace_info = 0;
21040
21041 return cust;
21042 }
21043
21044 static void
21045 var_decode_location (struct attribute *attr, struct symbol *sym,
21046 struct dwarf2_cu *cu)
21047 {
21048 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21049 struct comp_unit_head *cu_header = &cu->header;
21050
21051 /* NOTE drow/2003-01-30: There used to be a comment and some special
21052 code here to turn a symbol with DW_AT_external and a
21053 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21054 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21055 with some versions of binutils) where shared libraries could have
21056 relocations against symbols in their debug information - the
21057 minimal symbol would have the right address, but the debug info
21058 would not. It's no longer necessary, because we will explicitly
21059 apply relocations when we read in the debug information now. */
21060
21061 /* A DW_AT_location attribute with no contents indicates that a
21062 variable has been optimized away. */
21063 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21064 {
21065 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21066 return;
21067 }
21068
21069 /* Handle one degenerate form of location expression specially, to
21070 preserve GDB's previous behavior when section offsets are
21071 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21072 then mark this symbol as LOC_STATIC. */
21073
21074 if (attr_form_is_block (attr)
21075 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21076 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21077 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21078 && (DW_BLOCK (attr)->size
21079 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21080 {
21081 unsigned int dummy;
21082
21083 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21084 SYMBOL_VALUE_ADDRESS (sym) =
21085 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21086 else
21087 SYMBOL_VALUE_ADDRESS (sym) =
21088 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21089 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21090 fixup_symbol_section (sym, objfile);
21091 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21092 SYMBOL_SECTION (sym));
21093 return;
21094 }
21095
21096 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21097 expression evaluator, and use LOC_COMPUTED only when necessary
21098 (i.e. when the value of a register or memory location is
21099 referenced, or a thread-local block, etc.). Then again, it might
21100 not be worthwhile. I'm assuming that it isn't unless performance
21101 or memory numbers show me otherwise. */
21102
21103 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21104
21105 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21106 cu->has_loclist = 1;
21107 }
21108
21109 /* Given a pointer to a DWARF information entry, figure out if we need
21110 to make a symbol table entry for it, and if so, create a new entry
21111 and return a pointer to it.
21112 If TYPE is NULL, determine symbol type from the die, otherwise
21113 used the passed type.
21114 If SPACE is not NULL, use it to hold the new symbol. If it is
21115 NULL, allocate a new symbol on the objfile's obstack. */
21116
21117 static struct symbol *
21118 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21119 struct symbol *space)
21120 {
21121 struct dwarf2_per_objfile *dwarf2_per_objfile
21122 = cu->per_cu->dwarf2_per_objfile;
21123 struct objfile *objfile = dwarf2_per_objfile->objfile;
21124 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21125 struct symbol *sym = NULL;
21126 const char *name;
21127 struct attribute *attr = NULL;
21128 struct attribute *attr2 = NULL;
21129 CORE_ADDR baseaddr;
21130 struct pending **list_to_add = NULL;
21131
21132 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21133
21134 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21135
21136 name = dwarf2_name (die, cu);
21137 if (name)
21138 {
21139 const char *linkagename;
21140 int suppress_add = 0;
21141
21142 if (space)
21143 sym = space;
21144 else
21145 sym = allocate_symbol (objfile);
21146 OBJSTAT (objfile, n_syms++);
21147
21148 /* Cache this symbol's name and the name's demangled form (if any). */
21149 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21150 linkagename = dwarf2_physname (name, die, cu);
21151 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21152
21153 /* Fortran does not have mangling standard and the mangling does differ
21154 between gfortran, iFort etc. */
21155 if (cu->language == language_fortran
21156 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21157 symbol_set_demangled_name (&(sym->ginfo),
21158 dwarf2_full_name (name, die, cu),
21159 NULL);
21160
21161 /* Default assumptions.
21162 Use the passed type or decode it from the die. */
21163 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21164 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21165 if (type != NULL)
21166 SYMBOL_TYPE (sym) = type;
21167 else
21168 SYMBOL_TYPE (sym) = die_type (die, cu);
21169 attr = dwarf2_attr (die,
21170 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21171 cu);
21172 if (attr)
21173 {
21174 SYMBOL_LINE (sym) = DW_UNSND (attr);
21175 }
21176
21177 attr = dwarf2_attr (die,
21178 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21179 cu);
21180 if (attr)
21181 {
21182 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21183 struct file_entry *fe;
21184
21185 if (cu->line_header != NULL)
21186 fe = cu->line_header->file_name_at (file_index);
21187 else
21188 fe = NULL;
21189
21190 if (fe == NULL)
21191 complaint (_("file index out of range"));
21192 else
21193 symbol_set_symtab (sym, fe->symtab);
21194 }
21195
21196 switch (die->tag)
21197 {
21198 case DW_TAG_label:
21199 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21200 if (attr)
21201 {
21202 CORE_ADDR addr;
21203
21204 addr = attr_value_as_address (attr);
21205 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21206 SYMBOL_VALUE_ADDRESS (sym) = addr;
21207 }
21208 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21209 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21210 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21211 add_symbol_to_list (sym, cu->list_in_scope);
21212 break;
21213 case DW_TAG_subprogram:
21214 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21215 finish_block. */
21216 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21217 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21218 if ((attr2 && (DW_UNSND (attr2) != 0))
21219 || cu->language == language_ada)
21220 {
21221 /* Subprograms marked external are stored as a global symbol.
21222 Ada subprograms, whether marked external or not, are always
21223 stored as a global symbol, because we want to be able to
21224 access them globally. For instance, we want to be able
21225 to break on a nested subprogram without having to
21226 specify the context. */
21227 list_to_add = &global_symbols;
21228 }
21229 else
21230 {
21231 list_to_add = cu->list_in_scope;
21232 }
21233 break;
21234 case DW_TAG_inlined_subroutine:
21235 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21236 finish_block. */
21237 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21238 SYMBOL_INLINED (sym) = 1;
21239 list_to_add = cu->list_in_scope;
21240 break;
21241 case DW_TAG_template_value_param:
21242 suppress_add = 1;
21243 /* Fall through. */
21244 case DW_TAG_constant:
21245 case DW_TAG_variable:
21246 case DW_TAG_member:
21247 /* Compilation with minimal debug info may result in
21248 variables with missing type entries. Change the
21249 misleading `void' type to something sensible. */
21250 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21251 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21252
21253 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21254 /* In the case of DW_TAG_member, we should only be called for
21255 static const members. */
21256 if (die->tag == DW_TAG_member)
21257 {
21258 /* dwarf2_add_field uses die_is_declaration,
21259 so we do the same. */
21260 gdb_assert (die_is_declaration (die, cu));
21261 gdb_assert (attr);
21262 }
21263 if (attr)
21264 {
21265 dwarf2_const_value (attr, sym, cu);
21266 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21267 if (!suppress_add)
21268 {
21269 if (attr2 && (DW_UNSND (attr2) != 0))
21270 list_to_add = &global_symbols;
21271 else
21272 list_to_add = cu->list_in_scope;
21273 }
21274 break;
21275 }
21276 attr = dwarf2_attr (die, DW_AT_location, cu);
21277 if (attr)
21278 {
21279 var_decode_location (attr, sym, cu);
21280 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21281
21282 /* Fortran explicitly imports any global symbols to the local
21283 scope by DW_TAG_common_block. */
21284 if (cu->language == language_fortran && die->parent
21285 && die->parent->tag == DW_TAG_common_block)
21286 attr2 = NULL;
21287
21288 if (SYMBOL_CLASS (sym) == LOC_STATIC
21289 && SYMBOL_VALUE_ADDRESS (sym) == 0
21290 && !dwarf2_per_objfile->has_section_at_zero)
21291 {
21292 /* When a static variable is eliminated by the linker,
21293 the corresponding debug information is not stripped
21294 out, but the variable address is set to null;
21295 do not add such variables into symbol table. */
21296 }
21297 else if (attr2 && (DW_UNSND (attr2) != 0))
21298 {
21299 /* Workaround gfortran PR debug/40040 - it uses
21300 DW_AT_location for variables in -fPIC libraries which may
21301 get overriden by other libraries/executable and get
21302 a different address. Resolve it by the minimal symbol
21303 which may come from inferior's executable using copy
21304 relocation. Make this workaround only for gfortran as for
21305 other compilers GDB cannot guess the minimal symbol
21306 Fortran mangling kind. */
21307 if (cu->language == language_fortran && die->parent
21308 && die->parent->tag == DW_TAG_module
21309 && cu->producer
21310 && startswith (cu->producer, "GNU Fortran"))
21311 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21312
21313 /* A variable with DW_AT_external is never static,
21314 but it may be block-scoped. */
21315 list_to_add = (cu->list_in_scope == &file_symbols
21316 ? &global_symbols : cu->list_in_scope);
21317 }
21318 else
21319 list_to_add = cu->list_in_scope;
21320 }
21321 else
21322 {
21323 /* We do not know the address of this symbol.
21324 If it is an external symbol and we have type information
21325 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21326 The address of the variable will then be determined from
21327 the minimal symbol table whenever the variable is
21328 referenced. */
21329 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21330
21331 /* Fortran explicitly imports any global symbols to the local
21332 scope by DW_TAG_common_block. */
21333 if (cu->language == language_fortran && die->parent
21334 && die->parent->tag == DW_TAG_common_block)
21335 {
21336 /* SYMBOL_CLASS doesn't matter here because
21337 read_common_block is going to reset it. */
21338 if (!suppress_add)
21339 list_to_add = cu->list_in_scope;
21340 }
21341 else if (attr2 && (DW_UNSND (attr2) != 0)
21342 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21343 {
21344 /* A variable with DW_AT_external is never static, but it
21345 may be block-scoped. */
21346 list_to_add = (cu->list_in_scope == &file_symbols
21347 ? &global_symbols : cu->list_in_scope);
21348
21349 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21350 }
21351 else if (!die_is_declaration (die, cu))
21352 {
21353 /* Use the default LOC_OPTIMIZED_OUT class. */
21354 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21355 if (!suppress_add)
21356 list_to_add = cu->list_in_scope;
21357 }
21358 }
21359 break;
21360 case DW_TAG_formal_parameter:
21361 /* If we are inside a function, mark this as an argument. If
21362 not, we might be looking at an argument to an inlined function
21363 when we do not have enough information to show inlined frames;
21364 pretend it's a local variable in that case so that the user can
21365 still see it. */
21366 if (context_stack_depth > 0
21367 && context_stack[context_stack_depth - 1].name != NULL)
21368 SYMBOL_IS_ARGUMENT (sym) = 1;
21369 attr = dwarf2_attr (die, DW_AT_location, cu);
21370 if (attr)
21371 {
21372 var_decode_location (attr, sym, cu);
21373 }
21374 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21375 if (attr)
21376 {
21377 dwarf2_const_value (attr, sym, cu);
21378 }
21379
21380 list_to_add = cu->list_in_scope;
21381 break;
21382 case DW_TAG_unspecified_parameters:
21383 /* From varargs functions; gdb doesn't seem to have any
21384 interest in this information, so just ignore it for now.
21385 (FIXME?) */
21386 break;
21387 case DW_TAG_template_type_param:
21388 suppress_add = 1;
21389 /* Fall through. */
21390 case DW_TAG_class_type:
21391 case DW_TAG_interface_type:
21392 case DW_TAG_structure_type:
21393 case DW_TAG_union_type:
21394 case DW_TAG_set_type:
21395 case DW_TAG_enumeration_type:
21396 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21397 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21398
21399 {
21400 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21401 really ever be static objects: otherwise, if you try
21402 to, say, break of a class's method and you're in a file
21403 which doesn't mention that class, it won't work unless
21404 the check for all static symbols in lookup_symbol_aux
21405 saves you. See the OtherFileClass tests in
21406 gdb.c++/namespace.exp. */
21407
21408 if (!suppress_add)
21409 {
21410 list_to_add = (cu->list_in_scope == &file_symbols
21411 && cu->language == language_cplus
21412 ? &global_symbols : cu->list_in_scope);
21413
21414 /* The semantics of C++ state that "struct foo {
21415 ... }" also defines a typedef for "foo". */
21416 if (cu->language == language_cplus
21417 || cu->language == language_ada
21418 || cu->language == language_d
21419 || cu->language == language_rust)
21420 {
21421 /* The symbol's name is already allocated along
21422 with this objfile, so we don't need to
21423 duplicate it for the type. */
21424 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21425 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21426 }
21427 }
21428 }
21429 break;
21430 case DW_TAG_typedef:
21431 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21432 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21433 list_to_add = cu->list_in_scope;
21434 break;
21435 case DW_TAG_base_type:
21436 case DW_TAG_subrange_type:
21437 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21438 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21439 list_to_add = cu->list_in_scope;
21440 break;
21441 case DW_TAG_enumerator:
21442 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21443 if (attr)
21444 {
21445 dwarf2_const_value (attr, sym, cu);
21446 }
21447 {
21448 /* NOTE: carlton/2003-11-10: See comment above in the
21449 DW_TAG_class_type, etc. block. */
21450
21451 list_to_add = (cu->list_in_scope == &file_symbols
21452 && cu->language == language_cplus
21453 ? &global_symbols : cu->list_in_scope);
21454 }
21455 break;
21456 case DW_TAG_imported_declaration:
21457 case DW_TAG_namespace:
21458 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21459 list_to_add = &global_symbols;
21460 break;
21461 case DW_TAG_module:
21462 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21463 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21464 list_to_add = &global_symbols;
21465 break;
21466 case DW_TAG_common_block:
21467 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21468 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21469 add_symbol_to_list (sym, cu->list_in_scope);
21470 break;
21471 default:
21472 /* Not a tag we recognize. Hopefully we aren't processing
21473 trash data, but since we must specifically ignore things
21474 we don't recognize, there is nothing else we should do at
21475 this point. */
21476 complaint (_("unsupported tag: '%s'"),
21477 dwarf_tag_name (die->tag));
21478 break;
21479 }
21480
21481 if (suppress_add)
21482 {
21483 sym->hash_next = objfile->template_symbols;
21484 objfile->template_symbols = sym;
21485 list_to_add = NULL;
21486 }
21487
21488 if (list_to_add != NULL)
21489 add_symbol_to_list (sym, list_to_add);
21490
21491 /* For the benefit of old versions of GCC, check for anonymous
21492 namespaces based on the demangled name. */
21493 if (!cu->processing_has_namespace_info
21494 && cu->language == language_cplus)
21495 cp_scan_for_anonymous_namespaces (sym, objfile);
21496 }
21497 return (sym);
21498 }
21499
21500 /* Given an attr with a DW_FORM_dataN value in host byte order,
21501 zero-extend it as appropriate for the symbol's type. The DWARF
21502 standard (v4) is not entirely clear about the meaning of using
21503 DW_FORM_dataN for a constant with a signed type, where the type is
21504 wider than the data. The conclusion of a discussion on the DWARF
21505 list was that this is unspecified. We choose to always zero-extend
21506 because that is the interpretation long in use by GCC. */
21507
21508 static gdb_byte *
21509 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21510 struct dwarf2_cu *cu, LONGEST *value, int bits)
21511 {
21512 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21513 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21514 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21515 LONGEST l = DW_UNSND (attr);
21516
21517 if (bits < sizeof (*value) * 8)
21518 {
21519 l &= ((LONGEST) 1 << bits) - 1;
21520 *value = l;
21521 }
21522 else if (bits == sizeof (*value) * 8)
21523 *value = l;
21524 else
21525 {
21526 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21527 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21528 return bytes;
21529 }
21530
21531 return NULL;
21532 }
21533
21534 /* Read a constant value from an attribute. Either set *VALUE, or if
21535 the value does not fit in *VALUE, set *BYTES - either already
21536 allocated on the objfile obstack, or newly allocated on OBSTACK,
21537 or, set *BATON, if we translated the constant to a location
21538 expression. */
21539
21540 static void
21541 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21542 const char *name, struct obstack *obstack,
21543 struct dwarf2_cu *cu,
21544 LONGEST *value, const gdb_byte **bytes,
21545 struct dwarf2_locexpr_baton **baton)
21546 {
21547 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21548 struct comp_unit_head *cu_header = &cu->header;
21549 struct dwarf_block *blk;
21550 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21551 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21552
21553 *value = 0;
21554 *bytes = NULL;
21555 *baton = NULL;
21556
21557 switch (attr->form)
21558 {
21559 case DW_FORM_addr:
21560 case DW_FORM_GNU_addr_index:
21561 {
21562 gdb_byte *data;
21563
21564 if (TYPE_LENGTH (type) != cu_header->addr_size)
21565 dwarf2_const_value_length_mismatch_complaint (name,
21566 cu_header->addr_size,
21567 TYPE_LENGTH (type));
21568 /* Symbols of this form are reasonably rare, so we just
21569 piggyback on the existing location code rather than writing
21570 a new implementation of symbol_computed_ops. */
21571 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21572 (*baton)->per_cu = cu->per_cu;
21573 gdb_assert ((*baton)->per_cu);
21574
21575 (*baton)->size = 2 + cu_header->addr_size;
21576 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21577 (*baton)->data = data;
21578
21579 data[0] = DW_OP_addr;
21580 store_unsigned_integer (&data[1], cu_header->addr_size,
21581 byte_order, DW_ADDR (attr));
21582 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21583 }
21584 break;
21585 case DW_FORM_string:
21586 case DW_FORM_strp:
21587 case DW_FORM_GNU_str_index:
21588 case DW_FORM_GNU_strp_alt:
21589 /* DW_STRING is already allocated on the objfile obstack, point
21590 directly to it. */
21591 *bytes = (const gdb_byte *) DW_STRING (attr);
21592 break;
21593 case DW_FORM_block1:
21594 case DW_FORM_block2:
21595 case DW_FORM_block4:
21596 case DW_FORM_block:
21597 case DW_FORM_exprloc:
21598 case DW_FORM_data16:
21599 blk = DW_BLOCK (attr);
21600 if (TYPE_LENGTH (type) != blk->size)
21601 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21602 TYPE_LENGTH (type));
21603 *bytes = blk->data;
21604 break;
21605
21606 /* The DW_AT_const_value attributes are supposed to carry the
21607 symbol's value "represented as it would be on the target
21608 architecture." By the time we get here, it's already been
21609 converted to host endianness, so we just need to sign- or
21610 zero-extend it as appropriate. */
21611 case DW_FORM_data1:
21612 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21613 break;
21614 case DW_FORM_data2:
21615 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21616 break;
21617 case DW_FORM_data4:
21618 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21619 break;
21620 case DW_FORM_data8:
21621 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21622 break;
21623
21624 case DW_FORM_sdata:
21625 case DW_FORM_implicit_const:
21626 *value = DW_SND (attr);
21627 break;
21628
21629 case DW_FORM_udata:
21630 *value = DW_UNSND (attr);
21631 break;
21632
21633 default:
21634 complaint (_("unsupported const value attribute form: '%s'"),
21635 dwarf_form_name (attr->form));
21636 *value = 0;
21637 break;
21638 }
21639 }
21640
21641
21642 /* Copy constant value from an attribute to a symbol. */
21643
21644 static void
21645 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21646 struct dwarf2_cu *cu)
21647 {
21648 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21649 LONGEST value;
21650 const gdb_byte *bytes;
21651 struct dwarf2_locexpr_baton *baton;
21652
21653 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21654 SYMBOL_PRINT_NAME (sym),
21655 &objfile->objfile_obstack, cu,
21656 &value, &bytes, &baton);
21657
21658 if (baton != NULL)
21659 {
21660 SYMBOL_LOCATION_BATON (sym) = baton;
21661 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21662 }
21663 else if (bytes != NULL)
21664 {
21665 SYMBOL_VALUE_BYTES (sym) = bytes;
21666 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21667 }
21668 else
21669 {
21670 SYMBOL_VALUE (sym) = value;
21671 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21672 }
21673 }
21674
21675 /* Return the type of the die in question using its DW_AT_type attribute. */
21676
21677 static struct type *
21678 die_type (struct die_info *die, struct dwarf2_cu *cu)
21679 {
21680 struct attribute *type_attr;
21681
21682 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21683 if (!type_attr)
21684 {
21685 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21686 /* A missing DW_AT_type represents a void type. */
21687 return objfile_type (objfile)->builtin_void;
21688 }
21689
21690 return lookup_die_type (die, type_attr, cu);
21691 }
21692
21693 /* True iff CU's producer generates GNAT Ada auxiliary information
21694 that allows to find parallel types through that information instead
21695 of having to do expensive parallel lookups by type name. */
21696
21697 static int
21698 need_gnat_info (struct dwarf2_cu *cu)
21699 {
21700 /* Assume that the Ada compiler was GNAT, which always produces
21701 the auxiliary information. */
21702 return (cu->language == language_ada);
21703 }
21704
21705 /* Return the auxiliary type of the die in question using its
21706 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21707 attribute is not present. */
21708
21709 static struct type *
21710 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21711 {
21712 struct attribute *type_attr;
21713
21714 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21715 if (!type_attr)
21716 return NULL;
21717
21718 return lookup_die_type (die, type_attr, cu);
21719 }
21720
21721 /* If DIE has a descriptive_type attribute, then set the TYPE's
21722 descriptive type accordingly. */
21723
21724 static void
21725 set_descriptive_type (struct type *type, struct die_info *die,
21726 struct dwarf2_cu *cu)
21727 {
21728 struct type *descriptive_type = die_descriptive_type (die, cu);
21729
21730 if (descriptive_type)
21731 {
21732 ALLOCATE_GNAT_AUX_TYPE (type);
21733 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21734 }
21735 }
21736
21737 /* Return the containing type of the die in question using its
21738 DW_AT_containing_type attribute. */
21739
21740 static struct type *
21741 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21742 {
21743 struct attribute *type_attr;
21744 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21745
21746 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21747 if (!type_attr)
21748 error (_("Dwarf Error: Problem turning containing type into gdb type "
21749 "[in module %s]"), objfile_name (objfile));
21750
21751 return lookup_die_type (die, type_attr, cu);
21752 }
21753
21754 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21755
21756 static struct type *
21757 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21758 {
21759 struct dwarf2_per_objfile *dwarf2_per_objfile
21760 = cu->per_cu->dwarf2_per_objfile;
21761 struct objfile *objfile = dwarf2_per_objfile->objfile;
21762 char *message, *saved;
21763
21764 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21765 objfile_name (objfile),
21766 sect_offset_str (cu->header.sect_off),
21767 sect_offset_str (die->sect_off));
21768 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21769 message, strlen (message));
21770 xfree (message);
21771
21772 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21773 }
21774
21775 /* Look up the type of DIE in CU using its type attribute ATTR.
21776 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21777 DW_AT_containing_type.
21778 If there is no type substitute an error marker. */
21779
21780 static struct type *
21781 lookup_die_type (struct die_info *die, const struct attribute *attr,
21782 struct dwarf2_cu *cu)
21783 {
21784 struct dwarf2_per_objfile *dwarf2_per_objfile
21785 = cu->per_cu->dwarf2_per_objfile;
21786 struct objfile *objfile = dwarf2_per_objfile->objfile;
21787 struct type *this_type;
21788
21789 gdb_assert (attr->name == DW_AT_type
21790 || attr->name == DW_AT_GNAT_descriptive_type
21791 || attr->name == DW_AT_containing_type);
21792
21793 /* First see if we have it cached. */
21794
21795 if (attr->form == DW_FORM_GNU_ref_alt)
21796 {
21797 struct dwarf2_per_cu_data *per_cu;
21798 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21799
21800 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21801 dwarf2_per_objfile);
21802 this_type = get_die_type_at_offset (sect_off, per_cu);
21803 }
21804 else if (attr_form_is_ref (attr))
21805 {
21806 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21807
21808 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21809 }
21810 else if (attr->form == DW_FORM_ref_sig8)
21811 {
21812 ULONGEST signature = DW_SIGNATURE (attr);
21813
21814 return get_signatured_type (die, signature, cu);
21815 }
21816 else
21817 {
21818 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21819 " at %s [in module %s]"),
21820 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21821 objfile_name (objfile));
21822 return build_error_marker_type (cu, die);
21823 }
21824
21825 /* If not cached we need to read it in. */
21826
21827 if (this_type == NULL)
21828 {
21829 struct die_info *type_die = NULL;
21830 struct dwarf2_cu *type_cu = cu;
21831
21832 if (attr_form_is_ref (attr))
21833 type_die = follow_die_ref (die, attr, &type_cu);
21834 if (type_die == NULL)
21835 return build_error_marker_type (cu, die);
21836 /* If we find the type now, it's probably because the type came
21837 from an inter-CU reference and the type's CU got expanded before
21838 ours. */
21839 this_type = read_type_die (type_die, type_cu);
21840 }
21841
21842 /* If we still don't have a type use an error marker. */
21843
21844 if (this_type == NULL)
21845 return build_error_marker_type (cu, die);
21846
21847 return this_type;
21848 }
21849
21850 /* Return the type in DIE, CU.
21851 Returns NULL for invalid types.
21852
21853 This first does a lookup in die_type_hash,
21854 and only reads the die in if necessary.
21855
21856 NOTE: This can be called when reading in partial or full symbols. */
21857
21858 static struct type *
21859 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21860 {
21861 struct type *this_type;
21862
21863 this_type = get_die_type (die, cu);
21864 if (this_type)
21865 return this_type;
21866
21867 return read_type_die_1 (die, cu);
21868 }
21869
21870 /* Read the type in DIE, CU.
21871 Returns NULL for invalid types. */
21872
21873 static struct type *
21874 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21875 {
21876 struct type *this_type = NULL;
21877
21878 switch (die->tag)
21879 {
21880 case DW_TAG_class_type:
21881 case DW_TAG_interface_type:
21882 case DW_TAG_structure_type:
21883 case DW_TAG_union_type:
21884 this_type = read_structure_type (die, cu);
21885 break;
21886 case DW_TAG_enumeration_type:
21887 this_type = read_enumeration_type (die, cu);
21888 break;
21889 case DW_TAG_subprogram:
21890 case DW_TAG_subroutine_type:
21891 case DW_TAG_inlined_subroutine:
21892 this_type = read_subroutine_type (die, cu);
21893 break;
21894 case DW_TAG_array_type:
21895 this_type = read_array_type (die, cu);
21896 break;
21897 case DW_TAG_set_type:
21898 this_type = read_set_type (die, cu);
21899 break;
21900 case DW_TAG_pointer_type:
21901 this_type = read_tag_pointer_type (die, cu);
21902 break;
21903 case DW_TAG_ptr_to_member_type:
21904 this_type = read_tag_ptr_to_member_type (die, cu);
21905 break;
21906 case DW_TAG_reference_type:
21907 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21908 break;
21909 case DW_TAG_rvalue_reference_type:
21910 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21911 break;
21912 case DW_TAG_const_type:
21913 this_type = read_tag_const_type (die, cu);
21914 break;
21915 case DW_TAG_volatile_type:
21916 this_type = read_tag_volatile_type (die, cu);
21917 break;
21918 case DW_TAG_restrict_type:
21919 this_type = read_tag_restrict_type (die, cu);
21920 break;
21921 case DW_TAG_string_type:
21922 this_type = read_tag_string_type (die, cu);
21923 break;
21924 case DW_TAG_typedef:
21925 this_type = read_typedef (die, cu);
21926 break;
21927 case DW_TAG_subrange_type:
21928 this_type = read_subrange_type (die, cu);
21929 break;
21930 case DW_TAG_base_type:
21931 this_type = read_base_type (die, cu);
21932 break;
21933 case DW_TAG_unspecified_type:
21934 this_type = read_unspecified_type (die, cu);
21935 break;
21936 case DW_TAG_namespace:
21937 this_type = read_namespace_type (die, cu);
21938 break;
21939 case DW_TAG_module:
21940 this_type = read_module_type (die, cu);
21941 break;
21942 case DW_TAG_atomic_type:
21943 this_type = read_tag_atomic_type (die, cu);
21944 break;
21945 default:
21946 complaint (_("unexpected tag in read_type_die: '%s'"),
21947 dwarf_tag_name (die->tag));
21948 break;
21949 }
21950
21951 return this_type;
21952 }
21953
21954 /* See if we can figure out if the class lives in a namespace. We do
21955 this by looking for a member function; its demangled name will
21956 contain namespace info, if there is any.
21957 Return the computed name or NULL.
21958 Space for the result is allocated on the objfile's obstack.
21959 This is the full-die version of guess_partial_die_structure_name.
21960 In this case we know DIE has no useful parent. */
21961
21962 static char *
21963 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21964 {
21965 struct die_info *spec_die;
21966 struct dwarf2_cu *spec_cu;
21967 struct die_info *child;
21968 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21969
21970 spec_cu = cu;
21971 spec_die = die_specification (die, &spec_cu);
21972 if (spec_die != NULL)
21973 {
21974 die = spec_die;
21975 cu = spec_cu;
21976 }
21977
21978 for (child = die->child;
21979 child != NULL;
21980 child = child->sibling)
21981 {
21982 if (child->tag == DW_TAG_subprogram)
21983 {
21984 const char *linkage_name = dw2_linkage_name (child, cu);
21985
21986 if (linkage_name != NULL)
21987 {
21988 char *actual_name
21989 = language_class_name_from_physname (cu->language_defn,
21990 linkage_name);
21991 char *name = NULL;
21992
21993 if (actual_name != NULL)
21994 {
21995 const char *die_name = dwarf2_name (die, cu);
21996
21997 if (die_name != NULL
21998 && strcmp (die_name, actual_name) != 0)
21999 {
22000 /* Strip off the class name from the full name.
22001 We want the prefix. */
22002 int die_name_len = strlen (die_name);
22003 int actual_name_len = strlen (actual_name);
22004
22005 /* Test for '::' as a sanity check. */
22006 if (actual_name_len > die_name_len + 2
22007 && actual_name[actual_name_len
22008 - die_name_len - 1] == ':')
22009 name = (char *) obstack_copy0 (
22010 &objfile->per_bfd->storage_obstack,
22011 actual_name, actual_name_len - die_name_len - 2);
22012 }
22013 }
22014 xfree (actual_name);
22015 return name;
22016 }
22017 }
22018 }
22019
22020 return NULL;
22021 }
22022
22023 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22024 prefix part in such case. See
22025 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22026
22027 static const char *
22028 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22029 {
22030 struct attribute *attr;
22031 const char *base;
22032
22033 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22034 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22035 return NULL;
22036
22037 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22038 return NULL;
22039
22040 attr = dw2_linkage_name_attr (die, cu);
22041 if (attr == NULL || DW_STRING (attr) == NULL)
22042 return NULL;
22043
22044 /* dwarf2_name had to be already called. */
22045 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22046
22047 /* Strip the base name, keep any leading namespaces/classes. */
22048 base = strrchr (DW_STRING (attr), ':');
22049 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22050 return "";
22051
22052 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22053 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22054 DW_STRING (attr),
22055 &base[-1] - DW_STRING (attr));
22056 }
22057
22058 /* Return the name of the namespace/class that DIE is defined within,
22059 or "" if we can't tell. The caller should not xfree the result.
22060
22061 For example, if we're within the method foo() in the following
22062 code:
22063
22064 namespace N {
22065 class C {
22066 void foo () {
22067 }
22068 };
22069 }
22070
22071 then determine_prefix on foo's die will return "N::C". */
22072
22073 static const char *
22074 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22075 {
22076 struct dwarf2_per_objfile *dwarf2_per_objfile
22077 = cu->per_cu->dwarf2_per_objfile;
22078 struct die_info *parent, *spec_die;
22079 struct dwarf2_cu *spec_cu;
22080 struct type *parent_type;
22081 const char *retval;
22082
22083 if (cu->language != language_cplus
22084 && cu->language != language_fortran && cu->language != language_d
22085 && cu->language != language_rust)
22086 return "";
22087
22088 retval = anonymous_struct_prefix (die, cu);
22089 if (retval)
22090 return retval;
22091
22092 /* We have to be careful in the presence of DW_AT_specification.
22093 For example, with GCC 3.4, given the code
22094
22095 namespace N {
22096 void foo() {
22097 // Definition of N::foo.
22098 }
22099 }
22100
22101 then we'll have a tree of DIEs like this:
22102
22103 1: DW_TAG_compile_unit
22104 2: DW_TAG_namespace // N
22105 3: DW_TAG_subprogram // declaration of N::foo
22106 4: DW_TAG_subprogram // definition of N::foo
22107 DW_AT_specification // refers to die #3
22108
22109 Thus, when processing die #4, we have to pretend that we're in
22110 the context of its DW_AT_specification, namely the contex of die
22111 #3. */
22112 spec_cu = cu;
22113 spec_die = die_specification (die, &spec_cu);
22114 if (spec_die == NULL)
22115 parent = die->parent;
22116 else
22117 {
22118 parent = spec_die->parent;
22119 cu = spec_cu;
22120 }
22121
22122 if (parent == NULL)
22123 return "";
22124 else if (parent->building_fullname)
22125 {
22126 const char *name;
22127 const char *parent_name;
22128
22129 /* It has been seen on RealView 2.2 built binaries,
22130 DW_TAG_template_type_param types actually _defined_ as
22131 children of the parent class:
22132
22133 enum E {};
22134 template class <class Enum> Class{};
22135 Class<enum E> class_e;
22136
22137 1: DW_TAG_class_type (Class)
22138 2: DW_TAG_enumeration_type (E)
22139 3: DW_TAG_enumerator (enum1:0)
22140 3: DW_TAG_enumerator (enum2:1)
22141 ...
22142 2: DW_TAG_template_type_param
22143 DW_AT_type DW_FORM_ref_udata (E)
22144
22145 Besides being broken debug info, it can put GDB into an
22146 infinite loop. Consider:
22147
22148 When we're building the full name for Class<E>, we'll start
22149 at Class, and go look over its template type parameters,
22150 finding E. We'll then try to build the full name of E, and
22151 reach here. We're now trying to build the full name of E,
22152 and look over the parent DIE for containing scope. In the
22153 broken case, if we followed the parent DIE of E, we'd again
22154 find Class, and once again go look at its template type
22155 arguments, etc., etc. Simply don't consider such parent die
22156 as source-level parent of this die (it can't be, the language
22157 doesn't allow it), and break the loop here. */
22158 name = dwarf2_name (die, cu);
22159 parent_name = dwarf2_name (parent, cu);
22160 complaint (_("template param type '%s' defined within parent '%s'"),
22161 name ? name : "<unknown>",
22162 parent_name ? parent_name : "<unknown>");
22163 return "";
22164 }
22165 else
22166 switch (parent->tag)
22167 {
22168 case DW_TAG_namespace:
22169 parent_type = read_type_die (parent, cu);
22170 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22171 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22172 Work around this problem here. */
22173 if (cu->language == language_cplus
22174 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22175 return "";
22176 /* We give a name to even anonymous namespaces. */
22177 return TYPE_NAME (parent_type);
22178 case DW_TAG_class_type:
22179 case DW_TAG_interface_type:
22180 case DW_TAG_structure_type:
22181 case DW_TAG_union_type:
22182 case DW_TAG_module:
22183 parent_type = read_type_die (parent, cu);
22184 if (TYPE_NAME (parent_type) != NULL)
22185 return TYPE_NAME (parent_type);
22186 else
22187 /* An anonymous structure is only allowed non-static data
22188 members; no typedefs, no member functions, et cetera.
22189 So it does not need a prefix. */
22190 return "";
22191 case DW_TAG_compile_unit:
22192 case DW_TAG_partial_unit:
22193 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22194 if (cu->language == language_cplus
22195 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22196 && die->child != NULL
22197 && (die->tag == DW_TAG_class_type
22198 || die->tag == DW_TAG_structure_type
22199 || die->tag == DW_TAG_union_type))
22200 {
22201 char *name = guess_full_die_structure_name (die, cu);
22202 if (name != NULL)
22203 return name;
22204 }
22205 return "";
22206 case DW_TAG_enumeration_type:
22207 parent_type = read_type_die (parent, cu);
22208 if (TYPE_DECLARED_CLASS (parent_type))
22209 {
22210 if (TYPE_NAME (parent_type) != NULL)
22211 return TYPE_NAME (parent_type);
22212 return "";
22213 }
22214 /* Fall through. */
22215 default:
22216 return determine_prefix (parent, cu);
22217 }
22218 }
22219
22220 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22221 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22222 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22223 an obconcat, otherwise allocate storage for the result. The CU argument is
22224 used to determine the language and hence, the appropriate separator. */
22225
22226 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22227
22228 static char *
22229 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22230 int physname, struct dwarf2_cu *cu)
22231 {
22232 const char *lead = "";
22233 const char *sep;
22234
22235 if (suffix == NULL || suffix[0] == '\0'
22236 || prefix == NULL || prefix[0] == '\0')
22237 sep = "";
22238 else if (cu->language == language_d)
22239 {
22240 /* For D, the 'main' function could be defined in any module, but it
22241 should never be prefixed. */
22242 if (strcmp (suffix, "D main") == 0)
22243 {
22244 prefix = "";
22245 sep = "";
22246 }
22247 else
22248 sep = ".";
22249 }
22250 else if (cu->language == language_fortran && physname)
22251 {
22252 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22253 DW_AT_MIPS_linkage_name is preferred and used instead. */
22254
22255 lead = "__";
22256 sep = "_MOD_";
22257 }
22258 else
22259 sep = "::";
22260
22261 if (prefix == NULL)
22262 prefix = "";
22263 if (suffix == NULL)
22264 suffix = "";
22265
22266 if (obs == NULL)
22267 {
22268 char *retval
22269 = ((char *)
22270 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22271
22272 strcpy (retval, lead);
22273 strcat (retval, prefix);
22274 strcat (retval, sep);
22275 strcat (retval, suffix);
22276 return retval;
22277 }
22278 else
22279 {
22280 /* We have an obstack. */
22281 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22282 }
22283 }
22284
22285 /* Return sibling of die, NULL if no sibling. */
22286
22287 static struct die_info *
22288 sibling_die (struct die_info *die)
22289 {
22290 return die->sibling;
22291 }
22292
22293 /* Get name of a die, return NULL if not found. */
22294
22295 static const char *
22296 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22297 struct obstack *obstack)
22298 {
22299 if (name && cu->language == language_cplus)
22300 {
22301 std::string canon_name = cp_canonicalize_string (name);
22302
22303 if (!canon_name.empty ())
22304 {
22305 if (canon_name != name)
22306 name = (const char *) obstack_copy0 (obstack,
22307 canon_name.c_str (),
22308 canon_name.length ());
22309 }
22310 }
22311
22312 return name;
22313 }
22314
22315 /* Get name of a die, return NULL if not found.
22316 Anonymous namespaces are converted to their magic string. */
22317
22318 static const char *
22319 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22320 {
22321 struct attribute *attr;
22322 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22323
22324 attr = dwarf2_attr (die, DW_AT_name, cu);
22325 if ((!attr || !DW_STRING (attr))
22326 && die->tag != DW_TAG_namespace
22327 && die->tag != DW_TAG_class_type
22328 && die->tag != DW_TAG_interface_type
22329 && die->tag != DW_TAG_structure_type
22330 && die->tag != DW_TAG_union_type)
22331 return NULL;
22332
22333 switch (die->tag)
22334 {
22335 case DW_TAG_compile_unit:
22336 case DW_TAG_partial_unit:
22337 /* Compilation units have a DW_AT_name that is a filename, not
22338 a source language identifier. */
22339 case DW_TAG_enumeration_type:
22340 case DW_TAG_enumerator:
22341 /* These tags always have simple identifiers already; no need
22342 to canonicalize them. */
22343 return DW_STRING (attr);
22344
22345 case DW_TAG_namespace:
22346 if (attr != NULL && DW_STRING (attr) != NULL)
22347 return DW_STRING (attr);
22348 return CP_ANONYMOUS_NAMESPACE_STR;
22349
22350 case DW_TAG_class_type:
22351 case DW_TAG_interface_type:
22352 case DW_TAG_structure_type:
22353 case DW_TAG_union_type:
22354 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22355 structures or unions. These were of the form "._%d" in GCC 4.1,
22356 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22357 and GCC 4.4. We work around this problem by ignoring these. */
22358 if (attr && DW_STRING (attr)
22359 && (startswith (DW_STRING (attr), "._")
22360 || startswith (DW_STRING (attr), "<anonymous")))
22361 return NULL;
22362
22363 /* GCC might emit a nameless typedef that has a linkage name. See
22364 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22365 if (!attr || DW_STRING (attr) == NULL)
22366 {
22367 char *demangled = NULL;
22368
22369 attr = dw2_linkage_name_attr (die, cu);
22370 if (attr == NULL || DW_STRING (attr) == NULL)
22371 return NULL;
22372
22373 /* Avoid demangling DW_STRING (attr) the second time on a second
22374 call for the same DIE. */
22375 if (!DW_STRING_IS_CANONICAL (attr))
22376 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22377
22378 if (demangled)
22379 {
22380 const char *base;
22381
22382 /* FIXME: we already did this for the partial symbol... */
22383 DW_STRING (attr)
22384 = ((const char *)
22385 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22386 demangled, strlen (demangled)));
22387 DW_STRING_IS_CANONICAL (attr) = 1;
22388 xfree (demangled);
22389
22390 /* Strip any leading namespaces/classes, keep only the base name.
22391 DW_AT_name for named DIEs does not contain the prefixes. */
22392 base = strrchr (DW_STRING (attr), ':');
22393 if (base && base > DW_STRING (attr) && base[-1] == ':')
22394 return &base[1];
22395 else
22396 return DW_STRING (attr);
22397 }
22398 }
22399 break;
22400
22401 default:
22402 break;
22403 }
22404
22405 if (!DW_STRING_IS_CANONICAL (attr))
22406 {
22407 DW_STRING (attr)
22408 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22409 &objfile->per_bfd->storage_obstack);
22410 DW_STRING_IS_CANONICAL (attr) = 1;
22411 }
22412 return DW_STRING (attr);
22413 }
22414
22415 /* Return the die that this die in an extension of, or NULL if there
22416 is none. *EXT_CU is the CU containing DIE on input, and the CU
22417 containing the return value on output. */
22418
22419 static struct die_info *
22420 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22421 {
22422 struct attribute *attr;
22423
22424 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22425 if (attr == NULL)
22426 return NULL;
22427
22428 return follow_die_ref (die, attr, ext_cu);
22429 }
22430
22431 /* Convert a DIE tag into its string name. */
22432
22433 static const char *
22434 dwarf_tag_name (unsigned tag)
22435 {
22436 const char *name = get_DW_TAG_name (tag);
22437
22438 if (name == NULL)
22439 return "DW_TAG_<unknown>";
22440
22441 return name;
22442 }
22443
22444 /* Convert a DWARF attribute code into its string name. */
22445
22446 static const char *
22447 dwarf_attr_name (unsigned attr)
22448 {
22449 const char *name;
22450
22451 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22452 if (attr == DW_AT_MIPS_fde)
22453 return "DW_AT_MIPS_fde";
22454 #else
22455 if (attr == DW_AT_HP_block_index)
22456 return "DW_AT_HP_block_index";
22457 #endif
22458
22459 name = get_DW_AT_name (attr);
22460
22461 if (name == NULL)
22462 return "DW_AT_<unknown>";
22463
22464 return name;
22465 }
22466
22467 /* Convert a DWARF value form code into its string name. */
22468
22469 static const char *
22470 dwarf_form_name (unsigned form)
22471 {
22472 const char *name = get_DW_FORM_name (form);
22473
22474 if (name == NULL)
22475 return "DW_FORM_<unknown>";
22476
22477 return name;
22478 }
22479
22480 static const char *
22481 dwarf_bool_name (unsigned mybool)
22482 {
22483 if (mybool)
22484 return "TRUE";
22485 else
22486 return "FALSE";
22487 }
22488
22489 /* Convert a DWARF type code into its string name. */
22490
22491 static const char *
22492 dwarf_type_encoding_name (unsigned enc)
22493 {
22494 const char *name = get_DW_ATE_name (enc);
22495
22496 if (name == NULL)
22497 return "DW_ATE_<unknown>";
22498
22499 return name;
22500 }
22501
22502 static void
22503 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22504 {
22505 unsigned int i;
22506
22507 print_spaces (indent, f);
22508 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22509 dwarf_tag_name (die->tag), die->abbrev,
22510 sect_offset_str (die->sect_off));
22511
22512 if (die->parent != NULL)
22513 {
22514 print_spaces (indent, f);
22515 fprintf_unfiltered (f, " parent at offset: %s\n",
22516 sect_offset_str (die->parent->sect_off));
22517 }
22518
22519 print_spaces (indent, f);
22520 fprintf_unfiltered (f, " has children: %s\n",
22521 dwarf_bool_name (die->child != NULL));
22522
22523 print_spaces (indent, f);
22524 fprintf_unfiltered (f, " attributes:\n");
22525
22526 for (i = 0; i < die->num_attrs; ++i)
22527 {
22528 print_spaces (indent, f);
22529 fprintf_unfiltered (f, " %s (%s) ",
22530 dwarf_attr_name (die->attrs[i].name),
22531 dwarf_form_name (die->attrs[i].form));
22532
22533 switch (die->attrs[i].form)
22534 {
22535 case DW_FORM_addr:
22536 case DW_FORM_GNU_addr_index:
22537 fprintf_unfiltered (f, "address: ");
22538 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22539 break;
22540 case DW_FORM_block2:
22541 case DW_FORM_block4:
22542 case DW_FORM_block:
22543 case DW_FORM_block1:
22544 fprintf_unfiltered (f, "block: size %s",
22545 pulongest (DW_BLOCK (&die->attrs[i])->size));
22546 break;
22547 case DW_FORM_exprloc:
22548 fprintf_unfiltered (f, "expression: size %s",
22549 pulongest (DW_BLOCK (&die->attrs[i])->size));
22550 break;
22551 case DW_FORM_data16:
22552 fprintf_unfiltered (f, "constant of 16 bytes");
22553 break;
22554 case DW_FORM_ref_addr:
22555 fprintf_unfiltered (f, "ref address: ");
22556 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22557 break;
22558 case DW_FORM_GNU_ref_alt:
22559 fprintf_unfiltered (f, "alt ref address: ");
22560 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22561 break;
22562 case DW_FORM_ref1:
22563 case DW_FORM_ref2:
22564 case DW_FORM_ref4:
22565 case DW_FORM_ref8:
22566 case DW_FORM_ref_udata:
22567 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22568 (long) (DW_UNSND (&die->attrs[i])));
22569 break;
22570 case DW_FORM_data1:
22571 case DW_FORM_data2:
22572 case DW_FORM_data4:
22573 case DW_FORM_data8:
22574 case DW_FORM_udata:
22575 case DW_FORM_sdata:
22576 fprintf_unfiltered (f, "constant: %s",
22577 pulongest (DW_UNSND (&die->attrs[i])));
22578 break;
22579 case DW_FORM_sec_offset:
22580 fprintf_unfiltered (f, "section offset: %s",
22581 pulongest (DW_UNSND (&die->attrs[i])));
22582 break;
22583 case DW_FORM_ref_sig8:
22584 fprintf_unfiltered (f, "signature: %s",
22585 hex_string (DW_SIGNATURE (&die->attrs[i])));
22586 break;
22587 case DW_FORM_string:
22588 case DW_FORM_strp:
22589 case DW_FORM_line_strp:
22590 case DW_FORM_GNU_str_index:
22591 case DW_FORM_GNU_strp_alt:
22592 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22593 DW_STRING (&die->attrs[i])
22594 ? DW_STRING (&die->attrs[i]) : "",
22595 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22596 break;
22597 case DW_FORM_flag:
22598 if (DW_UNSND (&die->attrs[i]))
22599 fprintf_unfiltered (f, "flag: TRUE");
22600 else
22601 fprintf_unfiltered (f, "flag: FALSE");
22602 break;
22603 case DW_FORM_flag_present:
22604 fprintf_unfiltered (f, "flag: TRUE");
22605 break;
22606 case DW_FORM_indirect:
22607 /* The reader will have reduced the indirect form to
22608 the "base form" so this form should not occur. */
22609 fprintf_unfiltered (f,
22610 "unexpected attribute form: DW_FORM_indirect");
22611 break;
22612 case DW_FORM_implicit_const:
22613 fprintf_unfiltered (f, "constant: %s",
22614 plongest (DW_SND (&die->attrs[i])));
22615 break;
22616 default:
22617 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22618 die->attrs[i].form);
22619 break;
22620 }
22621 fprintf_unfiltered (f, "\n");
22622 }
22623 }
22624
22625 static void
22626 dump_die_for_error (struct die_info *die)
22627 {
22628 dump_die_shallow (gdb_stderr, 0, die);
22629 }
22630
22631 static void
22632 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22633 {
22634 int indent = level * 4;
22635
22636 gdb_assert (die != NULL);
22637
22638 if (level >= max_level)
22639 return;
22640
22641 dump_die_shallow (f, indent, die);
22642
22643 if (die->child != NULL)
22644 {
22645 print_spaces (indent, f);
22646 fprintf_unfiltered (f, " Children:");
22647 if (level + 1 < max_level)
22648 {
22649 fprintf_unfiltered (f, "\n");
22650 dump_die_1 (f, level + 1, max_level, die->child);
22651 }
22652 else
22653 {
22654 fprintf_unfiltered (f,
22655 " [not printed, max nesting level reached]\n");
22656 }
22657 }
22658
22659 if (die->sibling != NULL && level > 0)
22660 {
22661 dump_die_1 (f, level, max_level, die->sibling);
22662 }
22663 }
22664
22665 /* This is called from the pdie macro in gdbinit.in.
22666 It's not static so gcc will keep a copy callable from gdb. */
22667
22668 void
22669 dump_die (struct die_info *die, int max_level)
22670 {
22671 dump_die_1 (gdb_stdlog, 0, max_level, die);
22672 }
22673
22674 static void
22675 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22676 {
22677 void **slot;
22678
22679 slot = htab_find_slot_with_hash (cu->die_hash, die,
22680 to_underlying (die->sect_off),
22681 INSERT);
22682
22683 *slot = die;
22684 }
22685
22686 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22687 required kind. */
22688
22689 static sect_offset
22690 dwarf2_get_ref_die_offset (const struct attribute *attr)
22691 {
22692 if (attr_form_is_ref (attr))
22693 return (sect_offset) DW_UNSND (attr);
22694
22695 complaint (_("unsupported die ref attribute form: '%s'"),
22696 dwarf_form_name (attr->form));
22697 return {};
22698 }
22699
22700 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22701 * the value held by the attribute is not constant. */
22702
22703 static LONGEST
22704 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22705 {
22706 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22707 return DW_SND (attr);
22708 else if (attr->form == DW_FORM_udata
22709 || attr->form == DW_FORM_data1
22710 || attr->form == DW_FORM_data2
22711 || attr->form == DW_FORM_data4
22712 || attr->form == DW_FORM_data8)
22713 return DW_UNSND (attr);
22714 else
22715 {
22716 /* For DW_FORM_data16 see attr_form_is_constant. */
22717 complaint (_("Attribute value is not a constant (%s)"),
22718 dwarf_form_name (attr->form));
22719 return default_value;
22720 }
22721 }
22722
22723 /* Follow reference or signature attribute ATTR of SRC_DIE.
22724 On entry *REF_CU is the CU of SRC_DIE.
22725 On exit *REF_CU is the CU of the result. */
22726
22727 static struct die_info *
22728 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22729 struct dwarf2_cu **ref_cu)
22730 {
22731 struct die_info *die;
22732
22733 if (attr_form_is_ref (attr))
22734 die = follow_die_ref (src_die, attr, ref_cu);
22735 else if (attr->form == DW_FORM_ref_sig8)
22736 die = follow_die_sig (src_die, attr, ref_cu);
22737 else
22738 {
22739 dump_die_for_error (src_die);
22740 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22741 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22742 }
22743
22744 return die;
22745 }
22746
22747 /* Follow reference OFFSET.
22748 On entry *REF_CU is the CU of the source die referencing OFFSET.
22749 On exit *REF_CU is the CU of the result.
22750 Returns NULL if OFFSET is invalid. */
22751
22752 static struct die_info *
22753 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22754 struct dwarf2_cu **ref_cu)
22755 {
22756 struct die_info temp_die;
22757 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22758 struct dwarf2_per_objfile *dwarf2_per_objfile
22759 = cu->per_cu->dwarf2_per_objfile;
22760
22761 gdb_assert (cu->per_cu != NULL);
22762
22763 target_cu = cu;
22764
22765 if (cu->per_cu->is_debug_types)
22766 {
22767 /* .debug_types CUs cannot reference anything outside their CU.
22768 If they need to, they have to reference a signatured type via
22769 DW_FORM_ref_sig8. */
22770 if (!offset_in_cu_p (&cu->header, sect_off))
22771 return NULL;
22772 }
22773 else if (offset_in_dwz != cu->per_cu->is_dwz
22774 || !offset_in_cu_p (&cu->header, sect_off))
22775 {
22776 struct dwarf2_per_cu_data *per_cu;
22777
22778 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22779 dwarf2_per_objfile);
22780
22781 /* If necessary, add it to the queue and load its DIEs. */
22782 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22783 load_full_comp_unit (per_cu, false, cu->language);
22784
22785 target_cu = per_cu->cu;
22786 }
22787 else if (cu->dies == NULL)
22788 {
22789 /* We're loading full DIEs during partial symbol reading. */
22790 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22791 load_full_comp_unit (cu->per_cu, false, language_minimal);
22792 }
22793
22794 *ref_cu = target_cu;
22795 temp_die.sect_off = sect_off;
22796 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22797 &temp_die,
22798 to_underlying (sect_off));
22799 }
22800
22801 /* Follow reference attribute ATTR of SRC_DIE.
22802 On entry *REF_CU is the CU of SRC_DIE.
22803 On exit *REF_CU is the CU of the result. */
22804
22805 static struct die_info *
22806 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22807 struct dwarf2_cu **ref_cu)
22808 {
22809 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22810 struct dwarf2_cu *cu = *ref_cu;
22811 struct die_info *die;
22812
22813 die = follow_die_offset (sect_off,
22814 (attr->form == DW_FORM_GNU_ref_alt
22815 || cu->per_cu->is_dwz),
22816 ref_cu);
22817 if (!die)
22818 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22819 "at %s [in module %s]"),
22820 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22821 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22822
22823 return die;
22824 }
22825
22826 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22827 Returned value is intended for DW_OP_call*. Returned
22828 dwarf2_locexpr_baton->data has lifetime of
22829 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22830
22831 struct dwarf2_locexpr_baton
22832 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22833 struct dwarf2_per_cu_data *per_cu,
22834 CORE_ADDR (*get_frame_pc) (void *baton),
22835 void *baton)
22836 {
22837 struct dwarf2_cu *cu;
22838 struct die_info *die;
22839 struct attribute *attr;
22840 struct dwarf2_locexpr_baton retval;
22841 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22842 struct objfile *objfile = dwarf2_per_objfile->objfile;
22843
22844 if (per_cu->cu == NULL)
22845 load_cu (per_cu, false);
22846 cu = per_cu->cu;
22847 if (cu == NULL)
22848 {
22849 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22850 Instead just throw an error, not much else we can do. */
22851 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22852 sect_offset_str (sect_off), objfile_name (objfile));
22853 }
22854
22855 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22856 if (!die)
22857 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22858 sect_offset_str (sect_off), objfile_name (objfile));
22859
22860 attr = dwarf2_attr (die, DW_AT_location, cu);
22861 if (!attr)
22862 {
22863 /* DWARF: "If there is no such attribute, then there is no effect.".
22864 DATA is ignored if SIZE is 0. */
22865
22866 retval.data = NULL;
22867 retval.size = 0;
22868 }
22869 else if (attr_form_is_section_offset (attr))
22870 {
22871 struct dwarf2_loclist_baton loclist_baton;
22872 CORE_ADDR pc = (*get_frame_pc) (baton);
22873 size_t size;
22874
22875 fill_in_loclist_baton (cu, &loclist_baton, attr);
22876
22877 retval.data = dwarf2_find_location_expression (&loclist_baton,
22878 &size, pc);
22879 retval.size = size;
22880 }
22881 else
22882 {
22883 if (!attr_form_is_block (attr))
22884 error (_("Dwarf Error: DIE at %s referenced in module %s "
22885 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22886 sect_offset_str (sect_off), objfile_name (objfile));
22887
22888 retval.data = DW_BLOCK (attr)->data;
22889 retval.size = DW_BLOCK (attr)->size;
22890 }
22891 retval.per_cu = cu->per_cu;
22892
22893 age_cached_comp_units (dwarf2_per_objfile);
22894
22895 return retval;
22896 }
22897
22898 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22899 offset. */
22900
22901 struct dwarf2_locexpr_baton
22902 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22903 struct dwarf2_per_cu_data *per_cu,
22904 CORE_ADDR (*get_frame_pc) (void *baton),
22905 void *baton)
22906 {
22907 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22908
22909 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22910 }
22911
22912 /* Write a constant of a given type as target-ordered bytes into
22913 OBSTACK. */
22914
22915 static const gdb_byte *
22916 write_constant_as_bytes (struct obstack *obstack,
22917 enum bfd_endian byte_order,
22918 struct type *type,
22919 ULONGEST value,
22920 LONGEST *len)
22921 {
22922 gdb_byte *result;
22923
22924 *len = TYPE_LENGTH (type);
22925 result = (gdb_byte *) obstack_alloc (obstack, *len);
22926 store_unsigned_integer (result, *len, byte_order, value);
22927
22928 return result;
22929 }
22930
22931 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22932 pointer to the constant bytes and set LEN to the length of the
22933 data. If memory is needed, allocate it on OBSTACK. If the DIE
22934 does not have a DW_AT_const_value, return NULL. */
22935
22936 const gdb_byte *
22937 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22938 struct dwarf2_per_cu_data *per_cu,
22939 struct obstack *obstack,
22940 LONGEST *len)
22941 {
22942 struct dwarf2_cu *cu;
22943 struct die_info *die;
22944 struct attribute *attr;
22945 const gdb_byte *result = NULL;
22946 struct type *type;
22947 LONGEST value;
22948 enum bfd_endian byte_order;
22949 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22950
22951 if (per_cu->cu == NULL)
22952 load_cu (per_cu, false);
22953 cu = per_cu->cu;
22954 if (cu == NULL)
22955 {
22956 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22957 Instead just throw an error, not much else we can do. */
22958 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22959 sect_offset_str (sect_off), objfile_name (objfile));
22960 }
22961
22962 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22963 if (!die)
22964 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22965 sect_offset_str (sect_off), objfile_name (objfile));
22966
22967 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22968 if (attr == NULL)
22969 return NULL;
22970
22971 byte_order = (bfd_big_endian (objfile->obfd)
22972 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22973
22974 switch (attr->form)
22975 {
22976 case DW_FORM_addr:
22977 case DW_FORM_GNU_addr_index:
22978 {
22979 gdb_byte *tem;
22980
22981 *len = cu->header.addr_size;
22982 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22983 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22984 result = tem;
22985 }
22986 break;
22987 case DW_FORM_string:
22988 case DW_FORM_strp:
22989 case DW_FORM_GNU_str_index:
22990 case DW_FORM_GNU_strp_alt:
22991 /* DW_STRING is already allocated on the objfile obstack, point
22992 directly to it. */
22993 result = (const gdb_byte *) DW_STRING (attr);
22994 *len = strlen (DW_STRING (attr));
22995 break;
22996 case DW_FORM_block1:
22997 case DW_FORM_block2:
22998 case DW_FORM_block4:
22999 case DW_FORM_block:
23000 case DW_FORM_exprloc:
23001 case DW_FORM_data16:
23002 result = DW_BLOCK (attr)->data;
23003 *len = DW_BLOCK (attr)->size;
23004 break;
23005
23006 /* The DW_AT_const_value attributes are supposed to carry the
23007 symbol's value "represented as it would be on the target
23008 architecture." By the time we get here, it's already been
23009 converted to host endianness, so we just need to sign- or
23010 zero-extend it as appropriate. */
23011 case DW_FORM_data1:
23012 type = die_type (die, cu);
23013 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23014 if (result == NULL)
23015 result = write_constant_as_bytes (obstack, byte_order,
23016 type, value, len);
23017 break;
23018 case DW_FORM_data2:
23019 type = die_type (die, cu);
23020 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23021 if (result == NULL)
23022 result = write_constant_as_bytes (obstack, byte_order,
23023 type, value, len);
23024 break;
23025 case DW_FORM_data4:
23026 type = die_type (die, cu);
23027 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23028 if (result == NULL)
23029 result = write_constant_as_bytes (obstack, byte_order,
23030 type, value, len);
23031 break;
23032 case DW_FORM_data8:
23033 type = die_type (die, cu);
23034 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23035 if (result == NULL)
23036 result = write_constant_as_bytes (obstack, byte_order,
23037 type, value, len);
23038 break;
23039
23040 case DW_FORM_sdata:
23041 case DW_FORM_implicit_const:
23042 type = die_type (die, cu);
23043 result = write_constant_as_bytes (obstack, byte_order,
23044 type, DW_SND (attr), len);
23045 break;
23046
23047 case DW_FORM_udata:
23048 type = die_type (die, cu);
23049 result = write_constant_as_bytes (obstack, byte_order,
23050 type, DW_UNSND (attr), len);
23051 break;
23052
23053 default:
23054 complaint (_("unsupported const value attribute form: '%s'"),
23055 dwarf_form_name (attr->form));
23056 break;
23057 }
23058
23059 return result;
23060 }
23061
23062 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23063 valid type for this die is found. */
23064
23065 struct type *
23066 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23067 struct dwarf2_per_cu_data *per_cu)
23068 {
23069 struct dwarf2_cu *cu;
23070 struct die_info *die;
23071
23072 if (per_cu->cu == NULL)
23073 load_cu (per_cu, false);
23074 cu = per_cu->cu;
23075 if (!cu)
23076 return NULL;
23077
23078 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23079 if (!die)
23080 return NULL;
23081
23082 return die_type (die, cu);
23083 }
23084
23085 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23086 PER_CU. */
23087
23088 struct type *
23089 dwarf2_get_die_type (cu_offset die_offset,
23090 struct dwarf2_per_cu_data *per_cu)
23091 {
23092 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23093 return get_die_type_at_offset (die_offset_sect, per_cu);
23094 }
23095
23096 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23097 On entry *REF_CU is the CU of SRC_DIE.
23098 On exit *REF_CU is the CU of the result.
23099 Returns NULL if the referenced DIE isn't found. */
23100
23101 static struct die_info *
23102 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23103 struct dwarf2_cu **ref_cu)
23104 {
23105 struct die_info temp_die;
23106 struct dwarf2_cu *sig_cu;
23107 struct die_info *die;
23108
23109 /* While it might be nice to assert sig_type->type == NULL here,
23110 we can get here for DW_AT_imported_declaration where we need
23111 the DIE not the type. */
23112
23113 /* If necessary, add it to the queue and load its DIEs. */
23114
23115 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23116 read_signatured_type (sig_type);
23117
23118 sig_cu = sig_type->per_cu.cu;
23119 gdb_assert (sig_cu != NULL);
23120 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23121 temp_die.sect_off = sig_type->type_offset_in_section;
23122 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23123 to_underlying (temp_die.sect_off));
23124 if (die)
23125 {
23126 struct dwarf2_per_objfile *dwarf2_per_objfile
23127 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23128
23129 /* For .gdb_index version 7 keep track of included TUs.
23130 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23131 if (dwarf2_per_objfile->index_table != NULL
23132 && dwarf2_per_objfile->index_table->version <= 7)
23133 {
23134 VEC_safe_push (dwarf2_per_cu_ptr,
23135 (*ref_cu)->per_cu->imported_symtabs,
23136 sig_cu->per_cu);
23137 }
23138
23139 *ref_cu = sig_cu;
23140 return die;
23141 }
23142
23143 return NULL;
23144 }
23145
23146 /* Follow signatured type referenced by ATTR in SRC_DIE.
23147 On entry *REF_CU is the CU of SRC_DIE.
23148 On exit *REF_CU is the CU of the result.
23149 The result is the DIE of the type.
23150 If the referenced type cannot be found an error is thrown. */
23151
23152 static struct die_info *
23153 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23154 struct dwarf2_cu **ref_cu)
23155 {
23156 ULONGEST signature = DW_SIGNATURE (attr);
23157 struct signatured_type *sig_type;
23158 struct die_info *die;
23159
23160 gdb_assert (attr->form == DW_FORM_ref_sig8);
23161
23162 sig_type = lookup_signatured_type (*ref_cu, signature);
23163 /* sig_type will be NULL if the signatured type is missing from
23164 the debug info. */
23165 if (sig_type == NULL)
23166 {
23167 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23168 " from DIE at %s [in module %s]"),
23169 hex_string (signature), sect_offset_str (src_die->sect_off),
23170 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23171 }
23172
23173 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23174 if (die == NULL)
23175 {
23176 dump_die_for_error (src_die);
23177 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23178 " from DIE at %s [in module %s]"),
23179 hex_string (signature), sect_offset_str (src_die->sect_off),
23180 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23181 }
23182
23183 return die;
23184 }
23185
23186 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23187 reading in and processing the type unit if necessary. */
23188
23189 static struct type *
23190 get_signatured_type (struct die_info *die, ULONGEST signature,
23191 struct dwarf2_cu *cu)
23192 {
23193 struct dwarf2_per_objfile *dwarf2_per_objfile
23194 = cu->per_cu->dwarf2_per_objfile;
23195 struct signatured_type *sig_type;
23196 struct dwarf2_cu *type_cu;
23197 struct die_info *type_die;
23198 struct type *type;
23199
23200 sig_type = lookup_signatured_type (cu, signature);
23201 /* sig_type will be NULL if the signatured type is missing from
23202 the debug info. */
23203 if (sig_type == NULL)
23204 {
23205 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23206 " from DIE at %s [in module %s]"),
23207 hex_string (signature), sect_offset_str (die->sect_off),
23208 objfile_name (dwarf2_per_objfile->objfile));
23209 return build_error_marker_type (cu, die);
23210 }
23211
23212 /* If we already know the type we're done. */
23213 if (sig_type->type != NULL)
23214 return sig_type->type;
23215
23216 type_cu = cu;
23217 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23218 if (type_die != NULL)
23219 {
23220 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23221 is created. This is important, for example, because for c++ classes
23222 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23223 type = read_type_die (type_die, type_cu);
23224 if (type == NULL)
23225 {
23226 complaint (_("Dwarf Error: Cannot build signatured type %s"
23227 " referenced from DIE at %s [in module %s]"),
23228 hex_string (signature), sect_offset_str (die->sect_off),
23229 objfile_name (dwarf2_per_objfile->objfile));
23230 type = build_error_marker_type (cu, die);
23231 }
23232 }
23233 else
23234 {
23235 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23236 " from DIE at %s [in module %s]"),
23237 hex_string (signature), sect_offset_str (die->sect_off),
23238 objfile_name (dwarf2_per_objfile->objfile));
23239 type = build_error_marker_type (cu, die);
23240 }
23241 sig_type->type = type;
23242
23243 return type;
23244 }
23245
23246 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23247 reading in and processing the type unit if necessary. */
23248
23249 static struct type *
23250 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23251 struct dwarf2_cu *cu) /* ARI: editCase function */
23252 {
23253 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23254 if (attr_form_is_ref (attr))
23255 {
23256 struct dwarf2_cu *type_cu = cu;
23257 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23258
23259 return read_type_die (type_die, type_cu);
23260 }
23261 else if (attr->form == DW_FORM_ref_sig8)
23262 {
23263 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23264 }
23265 else
23266 {
23267 struct dwarf2_per_objfile *dwarf2_per_objfile
23268 = cu->per_cu->dwarf2_per_objfile;
23269
23270 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23271 " at %s [in module %s]"),
23272 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23273 objfile_name (dwarf2_per_objfile->objfile));
23274 return build_error_marker_type (cu, die);
23275 }
23276 }
23277
23278 /* Load the DIEs associated with type unit PER_CU into memory. */
23279
23280 static void
23281 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23282 {
23283 struct signatured_type *sig_type;
23284
23285 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23286 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23287
23288 /* We have the per_cu, but we need the signatured_type.
23289 Fortunately this is an easy translation. */
23290 gdb_assert (per_cu->is_debug_types);
23291 sig_type = (struct signatured_type *) per_cu;
23292
23293 gdb_assert (per_cu->cu == NULL);
23294
23295 read_signatured_type (sig_type);
23296
23297 gdb_assert (per_cu->cu != NULL);
23298 }
23299
23300 /* die_reader_func for read_signatured_type.
23301 This is identical to load_full_comp_unit_reader,
23302 but is kept separate for now. */
23303
23304 static void
23305 read_signatured_type_reader (const struct die_reader_specs *reader,
23306 const gdb_byte *info_ptr,
23307 struct die_info *comp_unit_die,
23308 int has_children,
23309 void *data)
23310 {
23311 struct dwarf2_cu *cu = reader->cu;
23312
23313 gdb_assert (cu->die_hash == NULL);
23314 cu->die_hash =
23315 htab_create_alloc_ex (cu->header.length / 12,
23316 die_hash,
23317 die_eq,
23318 NULL,
23319 &cu->comp_unit_obstack,
23320 hashtab_obstack_allocate,
23321 dummy_obstack_deallocate);
23322
23323 if (has_children)
23324 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23325 &info_ptr, comp_unit_die);
23326 cu->dies = comp_unit_die;
23327 /* comp_unit_die is not stored in die_hash, no need. */
23328
23329 /* We try not to read any attributes in this function, because not
23330 all CUs needed for references have been loaded yet, and symbol
23331 table processing isn't initialized. But we have to set the CU language,
23332 or we won't be able to build types correctly.
23333 Similarly, if we do not read the producer, we can not apply
23334 producer-specific interpretation. */
23335 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23336 }
23337
23338 /* Read in a signatured type and build its CU and DIEs.
23339 If the type is a stub for the real type in a DWO file,
23340 read in the real type from the DWO file as well. */
23341
23342 static void
23343 read_signatured_type (struct signatured_type *sig_type)
23344 {
23345 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23346
23347 gdb_assert (per_cu->is_debug_types);
23348 gdb_assert (per_cu->cu == NULL);
23349
23350 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23351 read_signatured_type_reader, NULL);
23352 sig_type->per_cu.tu_read = 1;
23353 }
23354
23355 /* Decode simple location descriptions.
23356 Given a pointer to a dwarf block that defines a location, compute
23357 the location and return the value.
23358
23359 NOTE drow/2003-11-18: This function is called in two situations
23360 now: for the address of static or global variables (partial symbols
23361 only) and for offsets into structures which are expected to be
23362 (more or less) constant. The partial symbol case should go away,
23363 and only the constant case should remain. That will let this
23364 function complain more accurately. A few special modes are allowed
23365 without complaint for global variables (for instance, global
23366 register values and thread-local values).
23367
23368 A location description containing no operations indicates that the
23369 object is optimized out. The return value is 0 for that case.
23370 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23371 callers will only want a very basic result and this can become a
23372 complaint.
23373
23374 Note that stack[0] is unused except as a default error return. */
23375
23376 static CORE_ADDR
23377 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23378 {
23379 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23380 size_t i;
23381 size_t size = blk->size;
23382 const gdb_byte *data = blk->data;
23383 CORE_ADDR stack[64];
23384 int stacki;
23385 unsigned int bytes_read, unsnd;
23386 gdb_byte op;
23387
23388 i = 0;
23389 stacki = 0;
23390 stack[stacki] = 0;
23391 stack[++stacki] = 0;
23392
23393 while (i < size)
23394 {
23395 op = data[i++];
23396 switch (op)
23397 {
23398 case DW_OP_lit0:
23399 case DW_OP_lit1:
23400 case DW_OP_lit2:
23401 case DW_OP_lit3:
23402 case DW_OP_lit4:
23403 case DW_OP_lit5:
23404 case DW_OP_lit6:
23405 case DW_OP_lit7:
23406 case DW_OP_lit8:
23407 case DW_OP_lit9:
23408 case DW_OP_lit10:
23409 case DW_OP_lit11:
23410 case DW_OP_lit12:
23411 case DW_OP_lit13:
23412 case DW_OP_lit14:
23413 case DW_OP_lit15:
23414 case DW_OP_lit16:
23415 case DW_OP_lit17:
23416 case DW_OP_lit18:
23417 case DW_OP_lit19:
23418 case DW_OP_lit20:
23419 case DW_OP_lit21:
23420 case DW_OP_lit22:
23421 case DW_OP_lit23:
23422 case DW_OP_lit24:
23423 case DW_OP_lit25:
23424 case DW_OP_lit26:
23425 case DW_OP_lit27:
23426 case DW_OP_lit28:
23427 case DW_OP_lit29:
23428 case DW_OP_lit30:
23429 case DW_OP_lit31:
23430 stack[++stacki] = op - DW_OP_lit0;
23431 break;
23432
23433 case DW_OP_reg0:
23434 case DW_OP_reg1:
23435 case DW_OP_reg2:
23436 case DW_OP_reg3:
23437 case DW_OP_reg4:
23438 case DW_OP_reg5:
23439 case DW_OP_reg6:
23440 case DW_OP_reg7:
23441 case DW_OP_reg8:
23442 case DW_OP_reg9:
23443 case DW_OP_reg10:
23444 case DW_OP_reg11:
23445 case DW_OP_reg12:
23446 case DW_OP_reg13:
23447 case DW_OP_reg14:
23448 case DW_OP_reg15:
23449 case DW_OP_reg16:
23450 case DW_OP_reg17:
23451 case DW_OP_reg18:
23452 case DW_OP_reg19:
23453 case DW_OP_reg20:
23454 case DW_OP_reg21:
23455 case DW_OP_reg22:
23456 case DW_OP_reg23:
23457 case DW_OP_reg24:
23458 case DW_OP_reg25:
23459 case DW_OP_reg26:
23460 case DW_OP_reg27:
23461 case DW_OP_reg28:
23462 case DW_OP_reg29:
23463 case DW_OP_reg30:
23464 case DW_OP_reg31:
23465 stack[++stacki] = op - DW_OP_reg0;
23466 if (i < size)
23467 dwarf2_complex_location_expr_complaint ();
23468 break;
23469
23470 case DW_OP_regx:
23471 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23472 i += bytes_read;
23473 stack[++stacki] = unsnd;
23474 if (i < size)
23475 dwarf2_complex_location_expr_complaint ();
23476 break;
23477
23478 case DW_OP_addr:
23479 stack[++stacki] = read_address (objfile->obfd, &data[i],
23480 cu, &bytes_read);
23481 i += bytes_read;
23482 break;
23483
23484 case DW_OP_const1u:
23485 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23486 i += 1;
23487 break;
23488
23489 case DW_OP_const1s:
23490 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23491 i += 1;
23492 break;
23493
23494 case DW_OP_const2u:
23495 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23496 i += 2;
23497 break;
23498
23499 case DW_OP_const2s:
23500 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23501 i += 2;
23502 break;
23503
23504 case DW_OP_const4u:
23505 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23506 i += 4;
23507 break;
23508
23509 case DW_OP_const4s:
23510 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23511 i += 4;
23512 break;
23513
23514 case DW_OP_const8u:
23515 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23516 i += 8;
23517 break;
23518
23519 case DW_OP_constu:
23520 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23521 &bytes_read);
23522 i += bytes_read;
23523 break;
23524
23525 case DW_OP_consts:
23526 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23527 i += bytes_read;
23528 break;
23529
23530 case DW_OP_dup:
23531 stack[stacki + 1] = stack[stacki];
23532 stacki++;
23533 break;
23534
23535 case DW_OP_plus:
23536 stack[stacki - 1] += stack[stacki];
23537 stacki--;
23538 break;
23539
23540 case DW_OP_plus_uconst:
23541 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23542 &bytes_read);
23543 i += bytes_read;
23544 break;
23545
23546 case DW_OP_minus:
23547 stack[stacki - 1] -= stack[stacki];
23548 stacki--;
23549 break;
23550
23551 case DW_OP_deref:
23552 /* If we're not the last op, then we definitely can't encode
23553 this using GDB's address_class enum. This is valid for partial
23554 global symbols, although the variable's address will be bogus
23555 in the psymtab. */
23556 if (i < size)
23557 dwarf2_complex_location_expr_complaint ();
23558 break;
23559
23560 case DW_OP_GNU_push_tls_address:
23561 case DW_OP_form_tls_address:
23562 /* The top of the stack has the offset from the beginning
23563 of the thread control block at which the variable is located. */
23564 /* Nothing should follow this operator, so the top of stack would
23565 be returned. */
23566 /* This is valid for partial global symbols, but the variable's
23567 address will be bogus in the psymtab. Make it always at least
23568 non-zero to not look as a variable garbage collected by linker
23569 which have DW_OP_addr 0. */
23570 if (i < size)
23571 dwarf2_complex_location_expr_complaint ();
23572 stack[stacki]++;
23573 break;
23574
23575 case DW_OP_GNU_uninit:
23576 break;
23577
23578 case DW_OP_GNU_addr_index:
23579 case DW_OP_GNU_const_index:
23580 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23581 &bytes_read);
23582 i += bytes_read;
23583 break;
23584
23585 default:
23586 {
23587 const char *name = get_DW_OP_name (op);
23588
23589 if (name)
23590 complaint (_("unsupported stack op: '%s'"),
23591 name);
23592 else
23593 complaint (_("unsupported stack op: '%02x'"),
23594 op);
23595 }
23596
23597 return (stack[stacki]);
23598 }
23599
23600 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23601 outside of the allocated space. Also enforce minimum>0. */
23602 if (stacki >= ARRAY_SIZE (stack) - 1)
23603 {
23604 complaint (_("location description stack overflow"));
23605 return 0;
23606 }
23607
23608 if (stacki <= 0)
23609 {
23610 complaint (_("location description stack underflow"));
23611 return 0;
23612 }
23613 }
23614 return (stack[stacki]);
23615 }
23616
23617 /* memory allocation interface */
23618
23619 static struct dwarf_block *
23620 dwarf_alloc_block (struct dwarf2_cu *cu)
23621 {
23622 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23623 }
23624
23625 static struct die_info *
23626 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23627 {
23628 struct die_info *die;
23629 size_t size = sizeof (struct die_info);
23630
23631 if (num_attrs > 1)
23632 size += (num_attrs - 1) * sizeof (struct attribute);
23633
23634 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23635 memset (die, 0, sizeof (struct die_info));
23636 return (die);
23637 }
23638
23639 \f
23640 /* Macro support. */
23641
23642 /* Return file name relative to the compilation directory of file number I in
23643 *LH's file name table. The result is allocated using xmalloc; the caller is
23644 responsible for freeing it. */
23645
23646 static char *
23647 file_file_name (int file, struct line_header *lh)
23648 {
23649 /* Is the file number a valid index into the line header's file name
23650 table? Remember that file numbers start with one, not zero. */
23651 if (1 <= file && file <= lh->file_names.size ())
23652 {
23653 const file_entry &fe = lh->file_names[file - 1];
23654
23655 if (!IS_ABSOLUTE_PATH (fe.name))
23656 {
23657 const char *dir = fe.include_dir (lh);
23658 if (dir != NULL)
23659 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23660 }
23661 return xstrdup (fe.name);
23662 }
23663 else
23664 {
23665 /* The compiler produced a bogus file number. We can at least
23666 record the macro definitions made in the file, even if we
23667 won't be able to find the file by name. */
23668 char fake_name[80];
23669
23670 xsnprintf (fake_name, sizeof (fake_name),
23671 "<bad macro file number %d>", file);
23672
23673 complaint (_("bad file number in macro information (%d)"),
23674 file);
23675
23676 return xstrdup (fake_name);
23677 }
23678 }
23679
23680 /* Return the full name of file number I in *LH's file name table.
23681 Use COMP_DIR as the name of the current directory of the
23682 compilation. The result is allocated using xmalloc; the caller is
23683 responsible for freeing it. */
23684 static char *
23685 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23686 {
23687 /* Is the file number a valid index into the line header's file name
23688 table? Remember that file numbers start with one, not zero. */
23689 if (1 <= file && file <= lh->file_names.size ())
23690 {
23691 char *relative = file_file_name (file, lh);
23692
23693 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23694 return relative;
23695 return reconcat (relative, comp_dir, SLASH_STRING,
23696 relative, (char *) NULL);
23697 }
23698 else
23699 return file_file_name (file, lh);
23700 }
23701
23702
23703 static struct macro_source_file *
23704 macro_start_file (int file, int line,
23705 struct macro_source_file *current_file,
23706 struct line_header *lh)
23707 {
23708 /* File name relative to the compilation directory of this source file. */
23709 char *file_name = file_file_name (file, lh);
23710
23711 if (! current_file)
23712 {
23713 /* Note: We don't create a macro table for this compilation unit
23714 at all until we actually get a filename. */
23715 struct macro_table *macro_table = get_macro_table ();
23716
23717 /* If we have no current file, then this must be the start_file
23718 directive for the compilation unit's main source file. */
23719 current_file = macro_set_main (macro_table, file_name);
23720 macro_define_special (macro_table);
23721 }
23722 else
23723 current_file = macro_include (current_file, line, file_name);
23724
23725 xfree (file_name);
23726
23727 return current_file;
23728 }
23729
23730 static const char *
23731 consume_improper_spaces (const char *p, const char *body)
23732 {
23733 if (*p == ' ')
23734 {
23735 complaint (_("macro definition contains spaces "
23736 "in formal argument list:\n`%s'"),
23737 body);
23738
23739 while (*p == ' ')
23740 p++;
23741 }
23742
23743 return p;
23744 }
23745
23746
23747 static void
23748 parse_macro_definition (struct macro_source_file *file, int line,
23749 const char *body)
23750 {
23751 const char *p;
23752
23753 /* The body string takes one of two forms. For object-like macro
23754 definitions, it should be:
23755
23756 <macro name> " " <definition>
23757
23758 For function-like macro definitions, it should be:
23759
23760 <macro name> "() " <definition>
23761 or
23762 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23763
23764 Spaces may appear only where explicitly indicated, and in the
23765 <definition>.
23766
23767 The Dwarf 2 spec says that an object-like macro's name is always
23768 followed by a space, but versions of GCC around March 2002 omit
23769 the space when the macro's definition is the empty string.
23770
23771 The Dwarf 2 spec says that there should be no spaces between the
23772 formal arguments in a function-like macro's formal argument list,
23773 but versions of GCC around March 2002 include spaces after the
23774 commas. */
23775
23776
23777 /* Find the extent of the macro name. The macro name is terminated
23778 by either a space or null character (for an object-like macro) or
23779 an opening paren (for a function-like macro). */
23780 for (p = body; *p; p++)
23781 if (*p == ' ' || *p == '(')
23782 break;
23783
23784 if (*p == ' ' || *p == '\0')
23785 {
23786 /* It's an object-like macro. */
23787 int name_len = p - body;
23788 char *name = savestring (body, name_len);
23789 const char *replacement;
23790
23791 if (*p == ' ')
23792 replacement = body + name_len + 1;
23793 else
23794 {
23795 dwarf2_macro_malformed_definition_complaint (body);
23796 replacement = body + name_len;
23797 }
23798
23799 macro_define_object (file, line, name, replacement);
23800
23801 xfree (name);
23802 }
23803 else if (*p == '(')
23804 {
23805 /* It's a function-like macro. */
23806 char *name = savestring (body, p - body);
23807 int argc = 0;
23808 int argv_size = 1;
23809 char **argv = XNEWVEC (char *, argv_size);
23810
23811 p++;
23812
23813 p = consume_improper_spaces (p, body);
23814
23815 /* Parse the formal argument list. */
23816 while (*p && *p != ')')
23817 {
23818 /* Find the extent of the current argument name. */
23819 const char *arg_start = p;
23820
23821 while (*p && *p != ',' && *p != ')' && *p != ' ')
23822 p++;
23823
23824 if (! *p || p == arg_start)
23825 dwarf2_macro_malformed_definition_complaint (body);
23826 else
23827 {
23828 /* Make sure argv has room for the new argument. */
23829 if (argc >= argv_size)
23830 {
23831 argv_size *= 2;
23832 argv = XRESIZEVEC (char *, argv, argv_size);
23833 }
23834
23835 argv[argc++] = savestring (arg_start, p - arg_start);
23836 }
23837
23838 p = consume_improper_spaces (p, body);
23839
23840 /* Consume the comma, if present. */
23841 if (*p == ',')
23842 {
23843 p++;
23844
23845 p = consume_improper_spaces (p, body);
23846 }
23847 }
23848
23849 if (*p == ')')
23850 {
23851 p++;
23852
23853 if (*p == ' ')
23854 /* Perfectly formed definition, no complaints. */
23855 macro_define_function (file, line, name,
23856 argc, (const char **) argv,
23857 p + 1);
23858 else if (*p == '\0')
23859 {
23860 /* Complain, but do define it. */
23861 dwarf2_macro_malformed_definition_complaint (body);
23862 macro_define_function (file, line, name,
23863 argc, (const char **) argv,
23864 p);
23865 }
23866 else
23867 /* Just complain. */
23868 dwarf2_macro_malformed_definition_complaint (body);
23869 }
23870 else
23871 /* Just complain. */
23872 dwarf2_macro_malformed_definition_complaint (body);
23873
23874 xfree (name);
23875 {
23876 int i;
23877
23878 for (i = 0; i < argc; i++)
23879 xfree (argv[i]);
23880 }
23881 xfree (argv);
23882 }
23883 else
23884 dwarf2_macro_malformed_definition_complaint (body);
23885 }
23886
23887 /* Skip some bytes from BYTES according to the form given in FORM.
23888 Returns the new pointer. */
23889
23890 static const gdb_byte *
23891 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23892 enum dwarf_form form,
23893 unsigned int offset_size,
23894 struct dwarf2_section_info *section)
23895 {
23896 unsigned int bytes_read;
23897
23898 switch (form)
23899 {
23900 case DW_FORM_data1:
23901 case DW_FORM_flag:
23902 ++bytes;
23903 break;
23904
23905 case DW_FORM_data2:
23906 bytes += 2;
23907 break;
23908
23909 case DW_FORM_data4:
23910 bytes += 4;
23911 break;
23912
23913 case DW_FORM_data8:
23914 bytes += 8;
23915 break;
23916
23917 case DW_FORM_data16:
23918 bytes += 16;
23919 break;
23920
23921 case DW_FORM_string:
23922 read_direct_string (abfd, bytes, &bytes_read);
23923 bytes += bytes_read;
23924 break;
23925
23926 case DW_FORM_sec_offset:
23927 case DW_FORM_strp:
23928 case DW_FORM_GNU_strp_alt:
23929 bytes += offset_size;
23930 break;
23931
23932 case DW_FORM_block:
23933 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23934 bytes += bytes_read;
23935 break;
23936
23937 case DW_FORM_block1:
23938 bytes += 1 + read_1_byte (abfd, bytes);
23939 break;
23940 case DW_FORM_block2:
23941 bytes += 2 + read_2_bytes (abfd, bytes);
23942 break;
23943 case DW_FORM_block4:
23944 bytes += 4 + read_4_bytes (abfd, bytes);
23945 break;
23946
23947 case DW_FORM_sdata:
23948 case DW_FORM_udata:
23949 case DW_FORM_GNU_addr_index:
23950 case DW_FORM_GNU_str_index:
23951 bytes = gdb_skip_leb128 (bytes, buffer_end);
23952 if (bytes == NULL)
23953 {
23954 dwarf2_section_buffer_overflow_complaint (section);
23955 return NULL;
23956 }
23957 break;
23958
23959 case DW_FORM_implicit_const:
23960 break;
23961
23962 default:
23963 {
23964 complaint (_("invalid form 0x%x in `%s'"),
23965 form, get_section_name (section));
23966 return NULL;
23967 }
23968 }
23969
23970 return bytes;
23971 }
23972
23973 /* A helper for dwarf_decode_macros that handles skipping an unknown
23974 opcode. Returns an updated pointer to the macro data buffer; or,
23975 on error, issues a complaint and returns NULL. */
23976
23977 static const gdb_byte *
23978 skip_unknown_opcode (unsigned int opcode,
23979 const gdb_byte **opcode_definitions,
23980 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23981 bfd *abfd,
23982 unsigned int offset_size,
23983 struct dwarf2_section_info *section)
23984 {
23985 unsigned int bytes_read, i;
23986 unsigned long arg;
23987 const gdb_byte *defn;
23988
23989 if (opcode_definitions[opcode] == NULL)
23990 {
23991 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
23992 opcode);
23993 return NULL;
23994 }
23995
23996 defn = opcode_definitions[opcode];
23997 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23998 defn += bytes_read;
23999
24000 for (i = 0; i < arg; ++i)
24001 {
24002 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24003 (enum dwarf_form) defn[i], offset_size,
24004 section);
24005 if (mac_ptr == NULL)
24006 {
24007 /* skip_form_bytes already issued the complaint. */
24008 return NULL;
24009 }
24010 }
24011
24012 return mac_ptr;
24013 }
24014
24015 /* A helper function which parses the header of a macro section.
24016 If the macro section is the extended (for now called "GNU") type,
24017 then this updates *OFFSET_SIZE. Returns a pointer to just after
24018 the header, or issues a complaint and returns NULL on error. */
24019
24020 static const gdb_byte *
24021 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24022 bfd *abfd,
24023 const gdb_byte *mac_ptr,
24024 unsigned int *offset_size,
24025 int section_is_gnu)
24026 {
24027 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24028
24029 if (section_is_gnu)
24030 {
24031 unsigned int version, flags;
24032
24033 version = read_2_bytes (abfd, mac_ptr);
24034 if (version != 4 && version != 5)
24035 {
24036 complaint (_("unrecognized version `%d' in .debug_macro section"),
24037 version);
24038 return NULL;
24039 }
24040 mac_ptr += 2;
24041
24042 flags = read_1_byte (abfd, mac_ptr);
24043 ++mac_ptr;
24044 *offset_size = (flags & 1) ? 8 : 4;
24045
24046 if ((flags & 2) != 0)
24047 /* We don't need the line table offset. */
24048 mac_ptr += *offset_size;
24049
24050 /* Vendor opcode descriptions. */
24051 if ((flags & 4) != 0)
24052 {
24053 unsigned int i, count;
24054
24055 count = read_1_byte (abfd, mac_ptr);
24056 ++mac_ptr;
24057 for (i = 0; i < count; ++i)
24058 {
24059 unsigned int opcode, bytes_read;
24060 unsigned long arg;
24061
24062 opcode = read_1_byte (abfd, mac_ptr);
24063 ++mac_ptr;
24064 opcode_definitions[opcode] = mac_ptr;
24065 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24066 mac_ptr += bytes_read;
24067 mac_ptr += arg;
24068 }
24069 }
24070 }
24071
24072 return mac_ptr;
24073 }
24074
24075 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24076 including DW_MACRO_import. */
24077
24078 static void
24079 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24080 bfd *abfd,
24081 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24082 struct macro_source_file *current_file,
24083 struct line_header *lh,
24084 struct dwarf2_section_info *section,
24085 int section_is_gnu, int section_is_dwz,
24086 unsigned int offset_size,
24087 htab_t include_hash)
24088 {
24089 struct objfile *objfile = dwarf2_per_objfile->objfile;
24090 enum dwarf_macro_record_type macinfo_type;
24091 int at_commandline;
24092 const gdb_byte *opcode_definitions[256];
24093
24094 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24095 &offset_size, section_is_gnu);
24096 if (mac_ptr == NULL)
24097 {
24098 /* We already issued a complaint. */
24099 return;
24100 }
24101
24102 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24103 GDB is still reading the definitions from command line. First
24104 DW_MACINFO_start_file will need to be ignored as it was already executed
24105 to create CURRENT_FILE for the main source holding also the command line
24106 definitions. On first met DW_MACINFO_start_file this flag is reset to
24107 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24108
24109 at_commandline = 1;
24110
24111 do
24112 {
24113 /* Do we at least have room for a macinfo type byte? */
24114 if (mac_ptr >= mac_end)
24115 {
24116 dwarf2_section_buffer_overflow_complaint (section);
24117 break;
24118 }
24119
24120 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24121 mac_ptr++;
24122
24123 /* Note that we rely on the fact that the corresponding GNU and
24124 DWARF constants are the same. */
24125 DIAGNOSTIC_PUSH
24126 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24127 switch (macinfo_type)
24128 {
24129 /* A zero macinfo type indicates the end of the macro
24130 information. */
24131 case 0:
24132 break;
24133
24134 case DW_MACRO_define:
24135 case DW_MACRO_undef:
24136 case DW_MACRO_define_strp:
24137 case DW_MACRO_undef_strp:
24138 case DW_MACRO_define_sup:
24139 case DW_MACRO_undef_sup:
24140 {
24141 unsigned int bytes_read;
24142 int line;
24143 const char *body;
24144 int is_define;
24145
24146 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24147 mac_ptr += bytes_read;
24148
24149 if (macinfo_type == DW_MACRO_define
24150 || macinfo_type == DW_MACRO_undef)
24151 {
24152 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24153 mac_ptr += bytes_read;
24154 }
24155 else
24156 {
24157 LONGEST str_offset;
24158
24159 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24160 mac_ptr += offset_size;
24161
24162 if (macinfo_type == DW_MACRO_define_sup
24163 || macinfo_type == DW_MACRO_undef_sup
24164 || section_is_dwz)
24165 {
24166 struct dwz_file *dwz
24167 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24168
24169 body = read_indirect_string_from_dwz (objfile,
24170 dwz, str_offset);
24171 }
24172 else
24173 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24174 abfd, str_offset);
24175 }
24176
24177 is_define = (macinfo_type == DW_MACRO_define
24178 || macinfo_type == DW_MACRO_define_strp
24179 || macinfo_type == DW_MACRO_define_sup);
24180 if (! current_file)
24181 {
24182 /* DWARF violation as no main source is present. */
24183 complaint (_("debug info with no main source gives macro %s "
24184 "on line %d: %s"),
24185 is_define ? _("definition") : _("undefinition"),
24186 line, body);
24187 break;
24188 }
24189 if ((line == 0 && !at_commandline)
24190 || (line != 0 && at_commandline))
24191 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24192 at_commandline ? _("command-line") : _("in-file"),
24193 is_define ? _("definition") : _("undefinition"),
24194 line == 0 ? _("zero") : _("non-zero"), line, body);
24195
24196 if (is_define)
24197 parse_macro_definition (current_file, line, body);
24198 else
24199 {
24200 gdb_assert (macinfo_type == DW_MACRO_undef
24201 || macinfo_type == DW_MACRO_undef_strp
24202 || macinfo_type == DW_MACRO_undef_sup);
24203 macro_undef (current_file, line, body);
24204 }
24205 }
24206 break;
24207
24208 case DW_MACRO_start_file:
24209 {
24210 unsigned int bytes_read;
24211 int line, file;
24212
24213 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24214 mac_ptr += bytes_read;
24215 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24216 mac_ptr += bytes_read;
24217
24218 if ((line == 0 && !at_commandline)
24219 || (line != 0 && at_commandline))
24220 complaint (_("debug info gives source %d included "
24221 "from %s at %s line %d"),
24222 file, at_commandline ? _("command-line") : _("file"),
24223 line == 0 ? _("zero") : _("non-zero"), line);
24224
24225 if (at_commandline)
24226 {
24227 /* This DW_MACRO_start_file was executed in the
24228 pass one. */
24229 at_commandline = 0;
24230 }
24231 else
24232 current_file = macro_start_file (file, line, current_file, lh);
24233 }
24234 break;
24235
24236 case DW_MACRO_end_file:
24237 if (! current_file)
24238 complaint (_("macro debug info has an unmatched "
24239 "`close_file' directive"));
24240 else
24241 {
24242 current_file = current_file->included_by;
24243 if (! current_file)
24244 {
24245 enum dwarf_macro_record_type next_type;
24246
24247 /* GCC circa March 2002 doesn't produce the zero
24248 type byte marking the end of the compilation
24249 unit. Complain if it's not there, but exit no
24250 matter what. */
24251
24252 /* Do we at least have room for a macinfo type byte? */
24253 if (mac_ptr >= mac_end)
24254 {
24255 dwarf2_section_buffer_overflow_complaint (section);
24256 return;
24257 }
24258
24259 /* We don't increment mac_ptr here, so this is just
24260 a look-ahead. */
24261 next_type
24262 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24263 mac_ptr);
24264 if (next_type != 0)
24265 complaint (_("no terminating 0-type entry for "
24266 "macros in `.debug_macinfo' section"));
24267
24268 return;
24269 }
24270 }
24271 break;
24272
24273 case DW_MACRO_import:
24274 case DW_MACRO_import_sup:
24275 {
24276 LONGEST offset;
24277 void **slot;
24278 bfd *include_bfd = abfd;
24279 struct dwarf2_section_info *include_section = section;
24280 const gdb_byte *include_mac_end = mac_end;
24281 int is_dwz = section_is_dwz;
24282 const gdb_byte *new_mac_ptr;
24283
24284 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24285 mac_ptr += offset_size;
24286
24287 if (macinfo_type == DW_MACRO_import_sup)
24288 {
24289 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24290
24291 dwarf2_read_section (objfile, &dwz->macro);
24292
24293 include_section = &dwz->macro;
24294 include_bfd = get_section_bfd_owner (include_section);
24295 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24296 is_dwz = 1;
24297 }
24298
24299 new_mac_ptr = include_section->buffer + offset;
24300 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24301
24302 if (*slot != NULL)
24303 {
24304 /* This has actually happened; see
24305 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24306 complaint (_("recursive DW_MACRO_import in "
24307 ".debug_macro section"));
24308 }
24309 else
24310 {
24311 *slot = (void *) new_mac_ptr;
24312
24313 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24314 include_bfd, new_mac_ptr,
24315 include_mac_end, current_file, lh,
24316 section, section_is_gnu, is_dwz,
24317 offset_size, include_hash);
24318
24319 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24320 }
24321 }
24322 break;
24323
24324 case DW_MACINFO_vendor_ext:
24325 if (!section_is_gnu)
24326 {
24327 unsigned int bytes_read;
24328
24329 /* This reads the constant, but since we don't recognize
24330 any vendor extensions, we ignore it. */
24331 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24332 mac_ptr += bytes_read;
24333 read_direct_string (abfd, mac_ptr, &bytes_read);
24334 mac_ptr += bytes_read;
24335
24336 /* We don't recognize any vendor extensions. */
24337 break;
24338 }
24339 /* FALLTHROUGH */
24340
24341 default:
24342 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24343 mac_ptr, mac_end, abfd, offset_size,
24344 section);
24345 if (mac_ptr == NULL)
24346 return;
24347 break;
24348 }
24349 DIAGNOSTIC_POP
24350 } while (macinfo_type != 0);
24351 }
24352
24353 static void
24354 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24355 int section_is_gnu)
24356 {
24357 struct dwarf2_per_objfile *dwarf2_per_objfile
24358 = cu->per_cu->dwarf2_per_objfile;
24359 struct objfile *objfile = dwarf2_per_objfile->objfile;
24360 struct line_header *lh = cu->line_header;
24361 bfd *abfd;
24362 const gdb_byte *mac_ptr, *mac_end;
24363 struct macro_source_file *current_file = 0;
24364 enum dwarf_macro_record_type macinfo_type;
24365 unsigned int offset_size = cu->header.offset_size;
24366 const gdb_byte *opcode_definitions[256];
24367 void **slot;
24368 struct dwarf2_section_info *section;
24369 const char *section_name;
24370
24371 if (cu->dwo_unit != NULL)
24372 {
24373 if (section_is_gnu)
24374 {
24375 section = &cu->dwo_unit->dwo_file->sections.macro;
24376 section_name = ".debug_macro.dwo";
24377 }
24378 else
24379 {
24380 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24381 section_name = ".debug_macinfo.dwo";
24382 }
24383 }
24384 else
24385 {
24386 if (section_is_gnu)
24387 {
24388 section = &dwarf2_per_objfile->macro;
24389 section_name = ".debug_macro";
24390 }
24391 else
24392 {
24393 section = &dwarf2_per_objfile->macinfo;
24394 section_name = ".debug_macinfo";
24395 }
24396 }
24397
24398 dwarf2_read_section (objfile, section);
24399 if (section->buffer == NULL)
24400 {
24401 complaint (_("missing %s section"), section_name);
24402 return;
24403 }
24404 abfd = get_section_bfd_owner (section);
24405
24406 /* First pass: Find the name of the base filename.
24407 This filename is needed in order to process all macros whose definition
24408 (or undefinition) comes from the command line. These macros are defined
24409 before the first DW_MACINFO_start_file entry, and yet still need to be
24410 associated to the base file.
24411
24412 To determine the base file name, we scan the macro definitions until we
24413 reach the first DW_MACINFO_start_file entry. We then initialize
24414 CURRENT_FILE accordingly so that any macro definition found before the
24415 first DW_MACINFO_start_file can still be associated to the base file. */
24416
24417 mac_ptr = section->buffer + offset;
24418 mac_end = section->buffer + section->size;
24419
24420 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24421 &offset_size, section_is_gnu);
24422 if (mac_ptr == NULL)
24423 {
24424 /* We already issued a complaint. */
24425 return;
24426 }
24427
24428 do
24429 {
24430 /* Do we at least have room for a macinfo type byte? */
24431 if (mac_ptr >= mac_end)
24432 {
24433 /* Complaint is printed during the second pass as GDB will probably
24434 stop the first pass earlier upon finding
24435 DW_MACINFO_start_file. */
24436 break;
24437 }
24438
24439 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24440 mac_ptr++;
24441
24442 /* Note that we rely on the fact that the corresponding GNU and
24443 DWARF constants are the same. */
24444 DIAGNOSTIC_PUSH
24445 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24446 switch (macinfo_type)
24447 {
24448 /* A zero macinfo type indicates the end of the macro
24449 information. */
24450 case 0:
24451 break;
24452
24453 case DW_MACRO_define:
24454 case DW_MACRO_undef:
24455 /* Only skip the data by MAC_PTR. */
24456 {
24457 unsigned int bytes_read;
24458
24459 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24460 mac_ptr += bytes_read;
24461 read_direct_string (abfd, mac_ptr, &bytes_read);
24462 mac_ptr += bytes_read;
24463 }
24464 break;
24465
24466 case DW_MACRO_start_file:
24467 {
24468 unsigned int bytes_read;
24469 int line, file;
24470
24471 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24472 mac_ptr += bytes_read;
24473 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24474 mac_ptr += bytes_read;
24475
24476 current_file = macro_start_file (file, line, current_file, lh);
24477 }
24478 break;
24479
24480 case DW_MACRO_end_file:
24481 /* No data to skip by MAC_PTR. */
24482 break;
24483
24484 case DW_MACRO_define_strp:
24485 case DW_MACRO_undef_strp:
24486 case DW_MACRO_define_sup:
24487 case DW_MACRO_undef_sup:
24488 {
24489 unsigned int bytes_read;
24490
24491 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24492 mac_ptr += bytes_read;
24493 mac_ptr += offset_size;
24494 }
24495 break;
24496
24497 case DW_MACRO_import:
24498 case DW_MACRO_import_sup:
24499 /* Note that, according to the spec, a transparent include
24500 chain cannot call DW_MACRO_start_file. So, we can just
24501 skip this opcode. */
24502 mac_ptr += offset_size;
24503 break;
24504
24505 case DW_MACINFO_vendor_ext:
24506 /* Only skip the data by MAC_PTR. */
24507 if (!section_is_gnu)
24508 {
24509 unsigned int bytes_read;
24510
24511 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24512 mac_ptr += bytes_read;
24513 read_direct_string (abfd, mac_ptr, &bytes_read);
24514 mac_ptr += bytes_read;
24515 }
24516 /* FALLTHROUGH */
24517
24518 default:
24519 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24520 mac_ptr, mac_end, abfd, offset_size,
24521 section);
24522 if (mac_ptr == NULL)
24523 return;
24524 break;
24525 }
24526 DIAGNOSTIC_POP
24527 } while (macinfo_type != 0 && current_file == NULL);
24528
24529 /* Second pass: Process all entries.
24530
24531 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24532 command-line macro definitions/undefinitions. This flag is unset when we
24533 reach the first DW_MACINFO_start_file entry. */
24534
24535 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24536 htab_eq_pointer,
24537 NULL, xcalloc, xfree));
24538 mac_ptr = section->buffer + offset;
24539 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24540 *slot = (void *) mac_ptr;
24541 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24542 abfd, mac_ptr, mac_end,
24543 current_file, lh, section,
24544 section_is_gnu, 0, offset_size,
24545 include_hash.get ());
24546 }
24547
24548 /* Check if the attribute's form is a DW_FORM_block*
24549 if so return true else false. */
24550
24551 static int
24552 attr_form_is_block (const struct attribute *attr)
24553 {
24554 return (attr == NULL ? 0 :
24555 attr->form == DW_FORM_block1
24556 || attr->form == DW_FORM_block2
24557 || attr->form == DW_FORM_block4
24558 || attr->form == DW_FORM_block
24559 || attr->form == DW_FORM_exprloc);
24560 }
24561
24562 /* Return non-zero if ATTR's value is a section offset --- classes
24563 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24564 You may use DW_UNSND (attr) to retrieve such offsets.
24565
24566 Section 7.5.4, "Attribute Encodings", explains that no attribute
24567 may have a value that belongs to more than one of these classes; it
24568 would be ambiguous if we did, because we use the same forms for all
24569 of them. */
24570
24571 static int
24572 attr_form_is_section_offset (const struct attribute *attr)
24573 {
24574 return (attr->form == DW_FORM_data4
24575 || attr->form == DW_FORM_data8
24576 || attr->form == DW_FORM_sec_offset);
24577 }
24578
24579 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24580 zero otherwise. When this function returns true, you can apply
24581 dwarf2_get_attr_constant_value to it.
24582
24583 However, note that for some attributes you must check
24584 attr_form_is_section_offset before using this test. DW_FORM_data4
24585 and DW_FORM_data8 are members of both the constant class, and of
24586 the classes that contain offsets into other debug sections
24587 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24588 that, if an attribute's can be either a constant or one of the
24589 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24590 taken as section offsets, not constants.
24591
24592 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24593 cannot handle that. */
24594
24595 static int
24596 attr_form_is_constant (const struct attribute *attr)
24597 {
24598 switch (attr->form)
24599 {
24600 case DW_FORM_sdata:
24601 case DW_FORM_udata:
24602 case DW_FORM_data1:
24603 case DW_FORM_data2:
24604 case DW_FORM_data4:
24605 case DW_FORM_data8:
24606 case DW_FORM_implicit_const:
24607 return 1;
24608 default:
24609 return 0;
24610 }
24611 }
24612
24613
24614 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24615 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24616
24617 static int
24618 attr_form_is_ref (const struct attribute *attr)
24619 {
24620 switch (attr->form)
24621 {
24622 case DW_FORM_ref_addr:
24623 case DW_FORM_ref1:
24624 case DW_FORM_ref2:
24625 case DW_FORM_ref4:
24626 case DW_FORM_ref8:
24627 case DW_FORM_ref_udata:
24628 case DW_FORM_GNU_ref_alt:
24629 return 1;
24630 default:
24631 return 0;
24632 }
24633 }
24634
24635 /* Return the .debug_loc section to use for CU.
24636 For DWO files use .debug_loc.dwo. */
24637
24638 static struct dwarf2_section_info *
24639 cu_debug_loc_section (struct dwarf2_cu *cu)
24640 {
24641 struct dwarf2_per_objfile *dwarf2_per_objfile
24642 = cu->per_cu->dwarf2_per_objfile;
24643
24644 if (cu->dwo_unit)
24645 {
24646 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24647
24648 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24649 }
24650 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24651 : &dwarf2_per_objfile->loc);
24652 }
24653
24654 /* A helper function that fills in a dwarf2_loclist_baton. */
24655
24656 static void
24657 fill_in_loclist_baton (struct dwarf2_cu *cu,
24658 struct dwarf2_loclist_baton *baton,
24659 const struct attribute *attr)
24660 {
24661 struct dwarf2_per_objfile *dwarf2_per_objfile
24662 = cu->per_cu->dwarf2_per_objfile;
24663 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24664
24665 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24666
24667 baton->per_cu = cu->per_cu;
24668 gdb_assert (baton->per_cu);
24669 /* We don't know how long the location list is, but make sure we
24670 don't run off the edge of the section. */
24671 baton->size = section->size - DW_UNSND (attr);
24672 baton->data = section->buffer + DW_UNSND (attr);
24673 baton->base_address = cu->base_address;
24674 baton->from_dwo = cu->dwo_unit != NULL;
24675 }
24676
24677 static void
24678 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24679 struct dwarf2_cu *cu, int is_block)
24680 {
24681 struct dwarf2_per_objfile *dwarf2_per_objfile
24682 = cu->per_cu->dwarf2_per_objfile;
24683 struct objfile *objfile = dwarf2_per_objfile->objfile;
24684 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24685
24686 if (attr_form_is_section_offset (attr)
24687 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24688 the section. If so, fall through to the complaint in the
24689 other branch. */
24690 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24691 {
24692 struct dwarf2_loclist_baton *baton;
24693
24694 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24695
24696 fill_in_loclist_baton (cu, baton, attr);
24697
24698 if (cu->base_known == 0)
24699 complaint (_("Location list used without "
24700 "specifying the CU base address."));
24701
24702 SYMBOL_ACLASS_INDEX (sym) = (is_block
24703 ? dwarf2_loclist_block_index
24704 : dwarf2_loclist_index);
24705 SYMBOL_LOCATION_BATON (sym) = baton;
24706 }
24707 else
24708 {
24709 struct dwarf2_locexpr_baton *baton;
24710
24711 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24712 baton->per_cu = cu->per_cu;
24713 gdb_assert (baton->per_cu);
24714
24715 if (attr_form_is_block (attr))
24716 {
24717 /* Note that we're just copying the block's data pointer
24718 here, not the actual data. We're still pointing into the
24719 info_buffer for SYM's objfile; right now we never release
24720 that buffer, but when we do clean up properly this may
24721 need to change. */
24722 baton->size = DW_BLOCK (attr)->size;
24723 baton->data = DW_BLOCK (attr)->data;
24724 }
24725 else
24726 {
24727 dwarf2_invalid_attrib_class_complaint ("location description",
24728 SYMBOL_NATURAL_NAME (sym));
24729 baton->size = 0;
24730 }
24731
24732 SYMBOL_ACLASS_INDEX (sym) = (is_block
24733 ? dwarf2_locexpr_block_index
24734 : dwarf2_locexpr_index);
24735 SYMBOL_LOCATION_BATON (sym) = baton;
24736 }
24737 }
24738
24739 /* Return the OBJFILE associated with the compilation unit CU. If CU
24740 came from a separate debuginfo file, then the master objfile is
24741 returned. */
24742
24743 struct objfile *
24744 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24745 {
24746 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24747
24748 /* Return the master objfile, so that we can report and look up the
24749 correct file containing this variable. */
24750 if (objfile->separate_debug_objfile_backlink)
24751 objfile = objfile->separate_debug_objfile_backlink;
24752
24753 return objfile;
24754 }
24755
24756 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24757 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24758 CU_HEADERP first. */
24759
24760 static const struct comp_unit_head *
24761 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24762 struct dwarf2_per_cu_data *per_cu)
24763 {
24764 const gdb_byte *info_ptr;
24765
24766 if (per_cu->cu)
24767 return &per_cu->cu->header;
24768
24769 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24770
24771 memset (cu_headerp, 0, sizeof (*cu_headerp));
24772 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24773 rcuh_kind::COMPILE);
24774
24775 return cu_headerp;
24776 }
24777
24778 /* Return the address size given in the compilation unit header for CU. */
24779
24780 int
24781 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24782 {
24783 struct comp_unit_head cu_header_local;
24784 const struct comp_unit_head *cu_headerp;
24785
24786 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24787
24788 return cu_headerp->addr_size;
24789 }
24790
24791 /* Return the offset size given in the compilation unit header for CU. */
24792
24793 int
24794 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24795 {
24796 struct comp_unit_head cu_header_local;
24797 const struct comp_unit_head *cu_headerp;
24798
24799 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24800
24801 return cu_headerp->offset_size;
24802 }
24803
24804 /* See its dwarf2loc.h declaration. */
24805
24806 int
24807 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24808 {
24809 struct comp_unit_head cu_header_local;
24810 const struct comp_unit_head *cu_headerp;
24811
24812 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24813
24814 if (cu_headerp->version == 2)
24815 return cu_headerp->addr_size;
24816 else
24817 return cu_headerp->offset_size;
24818 }
24819
24820 /* Return the text offset of the CU. The returned offset comes from
24821 this CU's objfile. If this objfile came from a separate debuginfo
24822 file, then the offset may be different from the corresponding
24823 offset in the parent objfile. */
24824
24825 CORE_ADDR
24826 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24827 {
24828 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24829
24830 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24831 }
24832
24833 /* Return DWARF version number of PER_CU. */
24834
24835 short
24836 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24837 {
24838 return per_cu->dwarf_version;
24839 }
24840
24841 /* Locate the .debug_info compilation unit from CU's objfile which contains
24842 the DIE at OFFSET. Raises an error on failure. */
24843
24844 static struct dwarf2_per_cu_data *
24845 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24846 unsigned int offset_in_dwz,
24847 struct dwarf2_per_objfile *dwarf2_per_objfile)
24848 {
24849 struct dwarf2_per_cu_data *this_cu;
24850 int low, high;
24851 const sect_offset *cu_off;
24852
24853 low = 0;
24854 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24855 while (high > low)
24856 {
24857 struct dwarf2_per_cu_data *mid_cu;
24858 int mid = low + (high - low) / 2;
24859
24860 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24861 cu_off = &mid_cu->sect_off;
24862 if (mid_cu->is_dwz > offset_in_dwz
24863 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24864 high = mid;
24865 else
24866 low = mid + 1;
24867 }
24868 gdb_assert (low == high);
24869 this_cu = dwarf2_per_objfile->all_comp_units[low];
24870 cu_off = &this_cu->sect_off;
24871 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24872 {
24873 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24874 error (_("Dwarf Error: could not find partial DIE containing "
24875 "offset %s [in module %s]"),
24876 sect_offset_str (sect_off),
24877 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24878
24879 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24880 <= sect_off);
24881 return dwarf2_per_objfile->all_comp_units[low-1];
24882 }
24883 else
24884 {
24885 this_cu = dwarf2_per_objfile->all_comp_units[low];
24886 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24887 && sect_off >= this_cu->sect_off + this_cu->length)
24888 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24889 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24890 return this_cu;
24891 }
24892 }
24893
24894 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24895
24896 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24897 : per_cu (per_cu_),
24898 mark (0),
24899 has_loclist (0),
24900 checked_producer (0),
24901 producer_is_gxx_lt_4_6 (0),
24902 producer_is_gcc_lt_4_3 (0),
24903 producer_is_icc_lt_14 (0),
24904 processing_has_namespace_info (0)
24905 {
24906 per_cu->cu = this;
24907 }
24908
24909 /* Destroy a dwarf2_cu. */
24910
24911 dwarf2_cu::~dwarf2_cu ()
24912 {
24913 per_cu->cu = NULL;
24914 }
24915
24916 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24917
24918 static void
24919 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24920 enum language pretend_language)
24921 {
24922 struct attribute *attr;
24923
24924 /* Set the language we're debugging. */
24925 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24926 if (attr)
24927 set_cu_language (DW_UNSND (attr), cu);
24928 else
24929 {
24930 cu->language = pretend_language;
24931 cu->language_defn = language_def (cu->language);
24932 }
24933
24934 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24935 }
24936
24937 /* Increase the age counter on each cached compilation unit, and free
24938 any that are too old. */
24939
24940 static void
24941 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24942 {
24943 struct dwarf2_per_cu_data *per_cu, **last_chain;
24944
24945 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24946 per_cu = dwarf2_per_objfile->read_in_chain;
24947 while (per_cu != NULL)
24948 {
24949 per_cu->cu->last_used ++;
24950 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24951 dwarf2_mark (per_cu->cu);
24952 per_cu = per_cu->cu->read_in_chain;
24953 }
24954
24955 per_cu = dwarf2_per_objfile->read_in_chain;
24956 last_chain = &dwarf2_per_objfile->read_in_chain;
24957 while (per_cu != NULL)
24958 {
24959 struct dwarf2_per_cu_data *next_cu;
24960
24961 next_cu = per_cu->cu->read_in_chain;
24962
24963 if (!per_cu->cu->mark)
24964 {
24965 delete per_cu->cu;
24966 *last_chain = next_cu;
24967 }
24968 else
24969 last_chain = &per_cu->cu->read_in_chain;
24970
24971 per_cu = next_cu;
24972 }
24973 }
24974
24975 /* Remove a single compilation unit from the cache. */
24976
24977 static void
24978 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24979 {
24980 struct dwarf2_per_cu_data *per_cu, **last_chain;
24981 struct dwarf2_per_objfile *dwarf2_per_objfile
24982 = target_per_cu->dwarf2_per_objfile;
24983
24984 per_cu = dwarf2_per_objfile->read_in_chain;
24985 last_chain = &dwarf2_per_objfile->read_in_chain;
24986 while (per_cu != NULL)
24987 {
24988 struct dwarf2_per_cu_data *next_cu;
24989
24990 next_cu = per_cu->cu->read_in_chain;
24991
24992 if (per_cu == target_per_cu)
24993 {
24994 delete per_cu->cu;
24995 per_cu->cu = NULL;
24996 *last_chain = next_cu;
24997 break;
24998 }
24999 else
25000 last_chain = &per_cu->cu->read_in_chain;
25001
25002 per_cu = next_cu;
25003 }
25004 }
25005
25006 /* Release all extra memory associated with OBJFILE. */
25007
25008 void
25009 dwarf2_free_objfile (struct objfile *objfile)
25010 {
25011 struct dwarf2_per_objfile *dwarf2_per_objfile
25012 = get_dwarf2_per_objfile (objfile);
25013
25014 delete dwarf2_per_objfile;
25015 }
25016
25017 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25018 We store these in a hash table separate from the DIEs, and preserve them
25019 when the DIEs are flushed out of cache.
25020
25021 The CU "per_cu" pointer is needed because offset alone is not enough to
25022 uniquely identify the type. A file may have multiple .debug_types sections,
25023 or the type may come from a DWO file. Furthermore, while it's more logical
25024 to use per_cu->section+offset, with Fission the section with the data is in
25025 the DWO file but we don't know that section at the point we need it.
25026 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25027 because we can enter the lookup routine, get_die_type_at_offset, from
25028 outside this file, and thus won't necessarily have PER_CU->cu.
25029 Fortunately, PER_CU is stable for the life of the objfile. */
25030
25031 struct dwarf2_per_cu_offset_and_type
25032 {
25033 const struct dwarf2_per_cu_data *per_cu;
25034 sect_offset sect_off;
25035 struct type *type;
25036 };
25037
25038 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25039
25040 static hashval_t
25041 per_cu_offset_and_type_hash (const void *item)
25042 {
25043 const struct dwarf2_per_cu_offset_and_type *ofs
25044 = (const struct dwarf2_per_cu_offset_and_type *) item;
25045
25046 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25047 }
25048
25049 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25050
25051 static int
25052 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25053 {
25054 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25055 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25056 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25057 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25058
25059 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25060 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25061 }
25062
25063 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25064 table if necessary. For convenience, return TYPE.
25065
25066 The DIEs reading must have careful ordering to:
25067 * Not cause infite loops trying to read in DIEs as a prerequisite for
25068 reading current DIE.
25069 * Not trying to dereference contents of still incompletely read in types
25070 while reading in other DIEs.
25071 * Enable referencing still incompletely read in types just by a pointer to
25072 the type without accessing its fields.
25073
25074 Therefore caller should follow these rules:
25075 * Try to fetch any prerequisite types we may need to build this DIE type
25076 before building the type and calling set_die_type.
25077 * After building type call set_die_type for current DIE as soon as
25078 possible before fetching more types to complete the current type.
25079 * Make the type as complete as possible before fetching more types. */
25080
25081 static struct type *
25082 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25083 {
25084 struct dwarf2_per_objfile *dwarf2_per_objfile
25085 = cu->per_cu->dwarf2_per_objfile;
25086 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25087 struct objfile *objfile = dwarf2_per_objfile->objfile;
25088 struct attribute *attr;
25089 struct dynamic_prop prop;
25090
25091 /* For Ada types, make sure that the gnat-specific data is always
25092 initialized (if not already set). There are a few types where
25093 we should not be doing so, because the type-specific area is
25094 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25095 where the type-specific area is used to store the floatformat).
25096 But this is not a problem, because the gnat-specific information
25097 is actually not needed for these types. */
25098 if (need_gnat_info (cu)
25099 && TYPE_CODE (type) != TYPE_CODE_FUNC
25100 && TYPE_CODE (type) != TYPE_CODE_FLT
25101 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25102 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25103 && TYPE_CODE (type) != TYPE_CODE_METHOD
25104 && !HAVE_GNAT_AUX_INFO (type))
25105 INIT_GNAT_SPECIFIC (type);
25106
25107 /* Read DW_AT_allocated and set in type. */
25108 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25109 if (attr_form_is_block (attr))
25110 {
25111 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25112 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25113 }
25114 else if (attr != NULL)
25115 {
25116 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25117 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25118 sect_offset_str (die->sect_off));
25119 }
25120
25121 /* Read DW_AT_associated and set in type. */
25122 attr = dwarf2_attr (die, DW_AT_associated, cu);
25123 if (attr_form_is_block (attr))
25124 {
25125 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25126 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25127 }
25128 else if (attr != NULL)
25129 {
25130 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25131 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25132 sect_offset_str (die->sect_off));
25133 }
25134
25135 /* Read DW_AT_data_location and set in type. */
25136 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25137 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25138 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25139
25140 if (dwarf2_per_objfile->die_type_hash == NULL)
25141 {
25142 dwarf2_per_objfile->die_type_hash =
25143 htab_create_alloc_ex (127,
25144 per_cu_offset_and_type_hash,
25145 per_cu_offset_and_type_eq,
25146 NULL,
25147 &objfile->objfile_obstack,
25148 hashtab_obstack_allocate,
25149 dummy_obstack_deallocate);
25150 }
25151
25152 ofs.per_cu = cu->per_cu;
25153 ofs.sect_off = die->sect_off;
25154 ofs.type = type;
25155 slot = (struct dwarf2_per_cu_offset_and_type **)
25156 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25157 if (*slot)
25158 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25159 sect_offset_str (die->sect_off));
25160 *slot = XOBNEW (&objfile->objfile_obstack,
25161 struct dwarf2_per_cu_offset_and_type);
25162 **slot = ofs;
25163 return type;
25164 }
25165
25166 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25167 or return NULL if the die does not have a saved type. */
25168
25169 static struct type *
25170 get_die_type_at_offset (sect_offset sect_off,
25171 struct dwarf2_per_cu_data *per_cu)
25172 {
25173 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25174 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25175
25176 if (dwarf2_per_objfile->die_type_hash == NULL)
25177 return NULL;
25178
25179 ofs.per_cu = per_cu;
25180 ofs.sect_off = sect_off;
25181 slot = ((struct dwarf2_per_cu_offset_and_type *)
25182 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25183 if (slot)
25184 return slot->type;
25185 else
25186 return NULL;
25187 }
25188
25189 /* Look up the type for DIE in CU in die_type_hash,
25190 or return NULL if DIE does not have a saved type. */
25191
25192 static struct type *
25193 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25194 {
25195 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25196 }
25197
25198 /* Add a dependence relationship from CU to REF_PER_CU. */
25199
25200 static void
25201 dwarf2_add_dependence (struct dwarf2_cu *cu,
25202 struct dwarf2_per_cu_data *ref_per_cu)
25203 {
25204 void **slot;
25205
25206 if (cu->dependencies == NULL)
25207 cu->dependencies
25208 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25209 NULL, &cu->comp_unit_obstack,
25210 hashtab_obstack_allocate,
25211 dummy_obstack_deallocate);
25212
25213 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25214 if (*slot == NULL)
25215 *slot = ref_per_cu;
25216 }
25217
25218 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25219 Set the mark field in every compilation unit in the
25220 cache that we must keep because we are keeping CU. */
25221
25222 static int
25223 dwarf2_mark_helper (void **slot, void *data)
25224 {
25225 struct dwarf2_per_cu_data *per_cu;
25226
25227 per_cu = (struct dwarf2_per_cu_data *) *slot;
25228
25229 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25230 reading of the chain. As such dependencies remain valid it is not much
25231 useful to track and undo them during QUIT cleanups. */
25232 if (per_cu->cu == NULL)
25233 return 1;
25234
25235 if (per_cu->cu->mark)
25236 return 1;
25237 per_cu->cu->mark = 1;
25238
25239 if (per_cu->cu->dependencies != NULL)
25240 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25241
25242 return 1;
25243 }
25244
25245 /* Set the mark field in CU and in every other compilation unit in the
25246 cache that we must keep because we are keeping CU. */
25247
25248 static void
25249 dwarf2_mark (struct dwarf2_cu *cu)
25250 {
25251 if (cu->mark)
25252 return;
25253 cu->mark = 1;
25254 if (cu->dependencies != NULL)
25255 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25256 }
25257
25258 static void
25259 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25260 {
25261 while (per_cu)
25262 {
25263 per_cu->cu->mark = 0;
25264 per_cu = per_cu->cu->read_in_chain;
25265 }
25266 }
25267
25268 /* Trivial hash function for partial_die_info: the hash value of a DIE
25269 is its offset in .debug_info for this objfile. */
25270
25271 static hashval_t
25272 partial_die_hash (const void *item)
25273 {
25274 const struct partial_die_info *part_die
25275 = (const struct partial_die_info *) item;
25276
25277 return to_underlying (part_die->sect_off);
25278 }
25279
25280 /* Trivial comparison function for partial_die_info structures: two DIEs
25281 are equal if they have the same offset. */
25282
25283 static int
25284 partial_die_eq (const void *item_lhs, const void *item_rhs)
25285 {
25286 const struct partial_die_info *part_die_lhs
25287 = (const struct partial_die_info *) item_lhs;
25288 const struct partial_die_info *part_die_rhs
25289 = (const struct partial_die_info *) item_rhs;
25290
25291 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25292 }
25293
25294 static struct cmd_list_element *set_dwarf_cmdlist;
25295 static struct cmd_list_element *show_dwarf_cmdlist;
25296
25297 static void
25298 set_dwarf_cmd (const char *args, int from_tty)
25299 {
25300 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25301 gdb_stdout);
25302 }
25303
25304 static void
25305 show_dwarf_cmd (const char *args, int from_tty)
25306 {
25307 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25308 }
25309
25310 int dwarf_always_disassemble;
25311
25312 static void
25313 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25314 struct cmd_list_element *c, const char *value)
25315 {
25316 fprintf_filtered (file,
25317 _("Whether to always disassemble "
25318 "DWARF expressions is %s.\n"),
25319 value);
25320 }
25321
25322 static void
25323 show_check_physname (struct ui_file *file, int from_tty,
25324 struct cmd_list_element *c, const char *value)
25325 {
25326 fprintf_filtered (file,
25327 _("Whether to check \"physname\" is %s.\n"),
25328 value);
25329 }
25330
25331 void
25332 _initialize_dwarf2_read (void)
25333 {
25334
25335 dwarf2_objfile_data_key = register_objfile_data ();
25336
25337 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25338 Set DWARF specific variables.\n\
25339 Configure DWARF variables such as the cache size"),
25340 &set_dwarf_cmdlist, "maintenance set dwarf ",
25341 0/*allow-unknown*/, &maintenance_set_cmdlist);
25342
25343 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25344 Show DWARF specific variables\n\
25345 Show DWARF variables such as the cache size"),
25346 &show_dwarf_cmdlist, "maintenance show dwarf ",
25347 0/*allow-unknown*/, &maintenance_show_cmdlist);
25348
25349 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25350 &dwarf_max_cache_age, _("\
25351 Set the upper bound on the age of cached DWARF compilation units."), _("\
25352 Show the upper bound on the age of cached DWARF compilation units."), _("\
25353 A higher limit means that cached compilation units will be stored\n\
25354 in memory longer, and more total memory will be used. Zero disables\n\
25355 caching, which can slow down startup."),
25356 NULL,
25357 show_dwarf_max_cache_age,
25358 &set_dwarf_cmdlist,
25359 &show_dwarf_cmdlist);
25360
25361 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25362 &dwarf_always_disassemble, _("\
25363 Set whether `info address' always disassembles DWARF expressions."), _("\
25364 Show whether `info address' always disassembles DWARF expressions."), _("\
25365 When enabled, DWARF expressions are always printed in an assembly-like\n\
25366 syntax. When disabled, expressions will be printed in a more\n\
25367 conversational style, when possible."),
25368 NULL,
25369 show_dwarf_always_disassemble,
25370 &set_dwarf_cmdlist,
25371 &show_dwarf_cmdlist);
25372
25373 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25374 Set debugging of the DWARF reader."), _("\
25375 Show debugging of the DWARF reader."), _("\
25376 When enabled (non-zero), debugging messages are printed during DWARF\n\
25377 reading and symtab expansion. A value of 1 (one) provides basic\n\
25378 information. A value greater than 1 provides more verbose information."),
25379 NULL,
25380 NULL,
25381 &setdebuglist, &showdebuglist);
25382
25383 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25384 Set debugging of the DWARF DIE reader."), _("\
25385 Show debugging of the DWARF DIE reader."), _("\
25386 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25387 The value is the maximum depth to print."),
25388 NULL,
25389 NULL,
25390 &setdebuglist, &showdebuglist);
25391
25392 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25393 Set debugging of the dwarf line reader."), _("\
25394 Show debugging of the dwarf line reader."), _("\
25395 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25396 A value of 1 (one) provides basic information.\n\
25397 A value greater than 1 provides more verbose information."),
25398 NULL,
25399 NULL,
25400 &setdebuglist, &showdebuglist);
25401
25402 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25403 Set cross-checking of \"physname\" code against demangler."), _("\
25404 Show cross-checking of \"physname\" code against demangler."), _("\
25405 When enabled, GDB's internal \"physname\" code is checked against\n\
25406 the demangler."),
25407 NULL, show_check_physname,
25408 &setdebuglist, &showdebuglist);
25409
25410 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25411 no_class, &use_deprecated_index_sections, _("\
25412 Set whether to use deprecated gdb_index sections."), _("\
25413 Show whether to use deprecated gdb_index sections."), _("\
25414 When enabled, deprecated .gdb_index sections are used anyway.\n\
25415 Normally they are ignored either because of a missing feature or\n\
25416 performance issue.\n\
25417 Warning: This option must be enabled before gdb reads the file."),
25418 NULL,
25419 NULL,
25420 &setlist, &showlist);
25421
25422 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25423 &dwarf2_locexpr_funcs);
25424 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25425 &dwarf2_loclist_funcs);
25426
25427 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25428 &dwarf2_block_frame_base_locexpr_funcs);
25429 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25430 &dwarf2_block_frame_base_loclist_funcs);
25431
25432 #if GDB_SELF_TEST
25433 selftests::register_test ("dw2_expand_symtabs_matching",
25434 selftests::dw2_expand_symtabs_matching::run_test);
25435 #endif
25436 }
This page took 0.521055 seconds and 5 git commands to generate.