076f17599087258ed2b259cd8fd4b1b65dfc3935
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "bfd.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
48 #include "elf/dwarf.h"
49 #include "buildsym.h"
50 #include "demangle.h"
51 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
52 #include "language.h"
53 #include "complaints.h"
54
55 #include <fcntl.h>
56 #include <string.h>
57 #include <sys/types.h>
58
59 #ifndef NO_SYS_FILE
60 #include <sys/file.h>
61 #endif
62
63 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
64 #ifndef L_SET
65 #define L_SET 0
66 #endif
67
68 /* Some macros to provide DIE info for complaints. */
69
70 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
71 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
72
73 /* Complaints that can be issued during DWARF debug info reading. */
74
75 struct complaint no_bfd_get_N =
76 {
77 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
78 };
79
80 struct complaint malformed_die =
81 {
82 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
83 };
84
85 struct complaint bad_die_ref =
86 {
87 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
88 };
89
90 struct complaint unknown_attribute_form =
91 {
92 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
93 };
94
95 struct complaint unknown_attribute_length =
96 {
97 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
98 };
99
100 struct complaint unexpected_fund_type =
101 {
102 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
103 };
104
105 struct complaint unknown_type_modifier =
106 {
107 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
108 };
109
110 struct complaint volatile_ignored =
111 {
112 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
113 };
114
115 struct complaint const_ignored =
116 {
117 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
118 };
119
120 struct complaint botched_modified_type =
121 {
122 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
123 };
124
125 struct complaint op_deref2 =
126 {
127 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
128 };
129
130 struct complaint op_deref4 =
131 {
132 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
133 };
134
135 struct complaint basereg_not_handled =
136 {
137 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
138 };
139
140 struct complaint dup_user_type_allocation =
141 {
142 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
143 };
144
145 struct complaint dup_user_type_definition =
146 {
147 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
148 };
149
150 struct complaint missing_tag =
151 {
152 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
153 };
154
155 struct complaint bad_array_element_type =
156 {
157 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
158 };
159
160 struct complaint subscript_data_items =
161 {
162 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
163 };
164
165 struct complaint unhandled_array_subscript_format =
166 {
167 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
168 };
169
170 struct complaint unknown_array_subscript_format =
171 {
172 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
173 };
174
175 struct complaint not_row_major =
176 {
177 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
178 };
179
180 typedef unsigned int DIE_REF; /* Reference to a DIE */
181
182 #ifndef GCC_PRODUCER
183 #define GCC_PRODUCER "GNU C "
184 #endif
185
186 #ifndef GPLUS_PRODUCER
187 #define GPLUS_PRODUCER "GNU C++ "
188 #endif
189
190 #ifndef LCC_PRODUCER
191 #define LCC_PRODUCER "NCR C/C++"
192 #endif
193
194 #ifndef CHILL_PRODUCER
195 #define CHILL_PRODUCER "GNU Chill "
196 #endif
197
198 /* Flags to target_to_host() that tell whether or not the data object is
199 expected to be signed. Used, for example, when fetching a signed
200 integer in the target environment which is used as a signed integer
201 in the host environment, and the two environments have different sized
202 ints. In this case, *somebody* has to sign extend the smaller sized
203 int. */
204
205 #define GET_UNSIGNED 0 /* No sign extension required */
206 #define GET_SIGNED 1 /* Sign extension required */
207
208 /* Defines for things which are specified in the document "DWARF Debugging
209 Information Format" published by UNIX International, Programming Languages
210 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
211
212 #define SIZEOF_DIE_LENGTH 4
213 #define SIZEOF_DIE_TAG 2
214 #define SIZEOF_ATTRIBUTE 2
215 #define SIZEOF_FORMAT_SPECIFIER 1
216 #define SIZEOF_FMT_FT 2
217 #define SIZEOF_LINETBL_LENGTH 4
218 #define SIZEOF_LINETBL_LINENO 4
219 #define SIZEOF_LINETBL_STMT 2
220 #define SIZEOF_LINETBL_DELTA 4
221 #define SIZEOF_LOC_ATOM_CODE 1
222
223 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
224
225 /* Macros that return the sizes of various types of data in the target
226 environment.
227
228 FIXME: Currently these are just compile time constants (as they are in
229 other parts of gdb as well). They need to be able to get the right size
230 either from the bfd or possibly from the DWARF info. It would be nice if
231 the DWARF producer inserted DIES that describe the fundamental types in
232 the target environment into the DWARF info, similar to the way dbx stabs
233 producers produce information about their fundamental types. */
234
235 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
236 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
237
238 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
239 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
240 However, the Issue 2 DWARF specification from AT&T defines it as
241 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
242 For backwards compatibility with the AT&T compiler produced executables
243 we define AT_short_element_list for this variant. */
244
245 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
246
247 /* External variables referenced. */
248
249 extern int info_verbose; /* From main.c; nonzero => verbose */
250 extern char *warning_pre_print; /* From utils.c */
251
252 /* The DWARF debugging information consists of two major pieces,
253 one is a block of DWARF Information Entries (DIE's) and the other
254 is a line number table. The "struct dieinfo" structure contains
255 the information for a single DIE, the one currently being processed.
256
257 In order to make it easier to randomly access the attribute fields
258 of the current DIE, which are specifically unordered within the DIE,
259 each DIE is scanned and an instance of the "struct dieinfo"
260 structure is initialized.
261
262 Initialization is done in two levels. The first, done by basicdieinfo(),
263 just initializes those fields that are vital to deciding whether or not
264 to use this DIE, how to skip past it, etc. The second, done by the
265 function completedieinfo(), fills in the rest of the information.
266
267 Attributes which have block forms are not interpreted at the time
268 the DIE is scanned, instead we just save pointers to the start
269 of their value fields.
270
271 Some fields have a flag <name>_p that is set when the value of the
272 field is valid (I.E. we found a matching attribute in the DIE). Since
273 we may want to test for the presence of some attributes in the DIE,
274 such as AT_low_pc, without restricting the values of the field,
275 we need someway to note that we found such an attribute.
276
277 */
278
279 typedef char BLOCK;
280
281 struct dieinfo {
282 char * die; /* Pointer to the raw DIE data */
283 unsigned long die_length; /* Length of the raw DIE data */
284 DIE_REF die_ref; /* Offset of this DIE */
285 unsigned short die_tag; /* Tag for this DIE */
286 unsigned long at_padding;
287 unsigned long at_sibling;
288 BLOCK * at_location;
289 char * at_name;
290 unsigned short at_fund_type;
291 BLOCK * at_mod_fund_type;
292 unsigned long at_user_def_type;
293 BLOCK * at_mod_u_d_type;
294 unsigned short at_ordering;
295 BLOCK * at_subscr_data;
296 unsigned long at_byte_size;
297 unsigned short at_bit_offset;
298 unsigned long at_bit_size;
299 BLOCK * at_element_list;
300 unsigned long at_stmt_list;
301 unsigned long at_low_pc;
302 unsigned long at_high_pc;
303 unsigned long at_language;
304 unsigned long at_member;
305 unsigned long at_discr;
306 BLOCK * at_discr_value;
307 BLOCK * at_string_length;
308 char * at_comp_dir;
309 char * at_producer;
310 unsigned long at_start_scope;
311 unsigned long at_stride_size;
312 unsigned long at_src_info;
313 char * at_prototyped;
314 unsigned int has_at_low_pc:1;
315 unsigned int has_at_stmt_list:1;
316 unsigned int has_at_byte_size:1;
317 unsigned int short_element_list:1;
318 };
319
320 static int diecount; /* Approximate count of dies for compilation unit */
321 static struct dieinfo *curdie; /* For warnings and such */
322
323 static char *dbbase; /* Base pointer to dwarf info */
324 static int dbsize; /* Size of dwarf info in bytes */
325 static int dbroff; /* Relative offset from start of .debug section */
326 static char *lnbase; /* Base pointer to line section */
327 static int isreg; /* Kludge to identify register variables */
328 /* Kludge to identify basereg references. Nonzero if we have an offset
329 relative to a basereg. */
330 static int offreg;
331 /* Which base register is it relative to? */
332 static int basereg;
333
334 /* This value is added to each symbol value. FIXME: Generalize to
335 the section_offsets structure used by dbxread (once this is done,
336 pass the appropriate section number to end_symtab). */
337 static CORE_ADDR baseaddr; /* Add to each symbol value */
338
339 /* The section offsets used in the current psymtab or symtab. FIXME,
340 only used to pass one value (baseaddr) at the moment. */
341 static struct section_offsets *base_section_offsets;
342
343 /* Each partial symbol table entry contains a pointer to private data for the
344 read_symtab() function to use when expanding a partial symbol table entry
345 to a full symbol table entry. For DWARF debugging info, this data is
346 contained in the following structure and macros are provided for easy
347 access to the members given a pointer to a partial symbol table entry.
348
349 dbfoff Always the absolute file offset to the start of the ".debug"
350 section for the file containing the DIE's being accessed.
351
352 dbroff Relative offset from the start of the ".debug" access to the
353 first DIE to be accessed. When building the partial symbol
354 table, this value will be zero since we are accessing the
355 entire ".debug" section. When expanding a partial symbol
356 table entry, this value will be the offset to the first
357 DIE for the compilation unit containing the symbol that
358 triggers the expansion.
359
360 dblength The size of the chunk of DIE's being examined, in bytes.
361
362 lnfoff The absolute file offset to the line table fragment. Ignored
363 when building partial symbol tables, but used when expanding
364 them, and contains the absolute file offset to the fragment
365 of the ".line" section containing the line numbers for the
366 current compilation unit.
367 */
368
369 struct dwfinfo {
370 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
371 int dbroff; /* Relative offset from start of .debug section */
372 int dblength; /* Size of the chunk of DIE's being examined */
373 file_ptr lnfoff; /* Absolute file offset to line table fragment */
374 };
375
376 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
377 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
378 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
379 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
380
381 /* The generic symbol table building routines have separate lists for
382 file scope symbols and all all other scopes (local scopes). So
383 we need to select the right one to pass to add_symbol_to_list().
384 We do it by keeping a pointer to the correct list in list_in_scope.
385
386 FIXME: The original dwarf code just treated the file scope as the first
387 local scope, and all other local scopes as nested local scopes, and worked
388 fine. Check to see if we really need to distinguish these in buildsym.c */
389
390 struct pending **list_in_scope = &file_symbols;
391
392 /* DIES which have user defined types or modified user defined types refer to
393 other DIES for the type information. Thus we need to associate the offset
394 of a DIE for a user defined type with a pointer to the type information.
395
396 Originally this was done using a simple but expensive algorithm, with an
397 array of unsorted structures, each containing an offset/type-pointer pair.
398 This array was scanned linearly each time a lookup was done. The result
399 was that gdb was spending over half it's startup time munging through this
400 array of pointers looking for a structure that had the right offset member.
401
402 The second attempt used the same array of structures, but the array was
403 sorted using qsort each time a new offset/type was recorded, and a binary
404 search was used to find the type pointer for a given DIE offset. This was
405 even slower, due to the overhead of sorting the array each time a new
406 offset/type pair was entered.
407
408 The third attempt uses a fixed size array of type pointers, indexed by a
409 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
410 we can divide any DIE offset by 4 to obtain a unique index into this fixed
411 size array. Since each element is a 4 byte pointer, it takes exactly as
412 much memory to hold this array as to hold the DWARF info for a given
413 compilation unit. But it gets freed as soon as we are done with it.
414 This has worked well in practice, as a reasonable tradeoff between memory
415 consumption and speed, without having to resort to much more complicated
416 algorithms. */
417
418 static struct type **utypes; /* Pointer to array of user type pointers */
419 static int numutypes; /* Max number of user type pointers */
420
421 /* Maintain an array of referenced fundamental types for the current
422 compilation unit being read. For DWARF version 1, we have to construct
423 the fundamental types on the fly, since no information about the
424 fundamental types is supplied. Each such fundamental type is created by
425 calling a language dependent routine to create the type, and then a
426 pointer to that type is then placed in the array at the index specified
427 by it's FT_<TYPENAME> value. The array has a fixed size set by the
428 FT_NUM_MEMBERS compile time constant, which is the number of predefined
429 fundamental types gdb knows how to construct. */
430
431 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
432
433 /* Record the language for the compilation unit which is currently being
434 processed. We know it once we have seen the TAG_compile_unit DIE,
435 and we need it while processing the DIE's for that compilation unit.
436 It is eventually saved in the symtab structure, but we don't finalize
437 the symtab struct until we have processed all the DIE's for the
438 compilation unit. We also need to get and save a pointer to the
439 language struct for this language, so we can call the language
440 dependent routines for doing things such as creating fundamental
441 types. */
442
443 static enum language cu_language;
444 static const struct language_defn *cu_language_defn;
445
446 /* Forward declarations of static functions so we don't have to worry
447 about ordering within this file. */
448
449 static int
450 attribute_size PARAMS ((unsigned int));
451
452 static unsigned long
453 target_to_host PARAMS ((char *, int, int, struct objfile *));
454
455 static void
456 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
457
458 static void
459 handle_producer PARAMS ((char *));
460
461 static void
462 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
463
464 static void
465 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
466
467 static void
468 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
469 struct objfile *));
470
471 static void
472 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
473
474 static void
475 scan_compilation_units PARAMS ((char *, char *, file_ptr,
476 file_ptr, struct objfile *));
477
478 static void
479 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
480
481 static void
482 init_psymbol_list PARAMS ((struct objfile *, int));
483
484 static void
485 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
486
487 static void
488 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
489
490 static void
491 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
492
493 static void
494 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
495
496 static void
497 read_ofile_symtab PARAMS ((struct partial_symtab *));
498
499 static void
500 process_dies PARAMS ((char *, char *, struct objfile *));
501
502 static void
503 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
504 struct objfile *));
505
506 static struct type *
507 decode_array_element_type PARAMS ((char *));
508
509 static struct type *
510 decode_subscript_data_item PARAMS ((char *, char *));
511
512 static void
513 dwarf_read_array_type PARAMS ((struct dieinfo *));
514
515 static void
516 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
517
518 static void
519 read_tag_string_type PARAMS ((struct dieinfo *dip));
520
521 static void
522 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
523
524 static void
525 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
526
527 static struct type *
528 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
529
530 static struct type *
531 enum_type PARAMS ((struct dieinfo *, struct objfile *));
532
533 static void
534 decode_line_numbers PARAMS ((char *));
535
536 static struct type *
537 decode_die_type PARAMS ((struct dieinfo *));
538
539 static struct type *
540 decode_mod_fund_type PARAMS ((char *));
541
542 static struct type *
543 decode_mod_u_d_type PARAMS ((char *));
544
545 static struct type *
546 decode_modified_type PARAMS ((char *, unsigned int, int));
547
548 static struct type *
549 decode_fund_type PARAMS ((unsigned int));
550
551 static char *
552 create_name PARAMS ((char *, struct obstack *));
553
554 static struct type *
555 lookup_utype PARAMS ((DIE_REF));
556
557 static struct type *
558 alloc_utype PARAMS ((DIE_REF, struct type *));
559
560 static struct symbol *
561 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
562
563 static void
564 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
565 struct type *));
566
567 static int
568 locval PARAMS ((char *));
569
570 static void
571 set_cu_language PARAMS ((struct dieinfo *));
572
573 static struct type *
574 dwarf_fundamental_type PARAMS ((struct objfile *, int));
575
576
577 /*
578
579 LOCAL FUNCTION
580
581 dwarf_fundamental_type -- lookup or create a fundamental type
582
583 SYNOPSIS
584
585 struct type *
586 dwarf_fundamental_type (struct objfile *objfile, int typeid)
587
588 DESCRIPTION
589
590 DWARF version 1 doesn't supply any fundamental type information,
591 so gdb has to construct such types. It has a fixed number of
592 fundamental types that it knows how to construct, which is the
593 union of all types that it knows how to construct for all languages
594 that it knows about. These are enumerated in gdbtypes.h.
595
596 As an example, assume we find a DIE that references a DWARF
597 fundamental type of FT_integer. We first look in the ftypes
598 array to see if we already have such a type, indexed by the
599 gdb internal value of FT_INTEGER. If so, we simply return a
600 pointer to that type. If not, then we ask an appropriate
601 language dependent routine to create a type FT_INTEGER, using
602 defaults reasonable for the current target machine, and install
603 that type in ftypes for future reference.
604
605 RETURNS
606
607 Pointer to a fundamental type.
608
609 */
610
611 static struct type *
612 dwarf_fundamental_type (objfile, typeid)
613 struct objfile *objfile;
614 int typeid;
615 {
616 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
617 {
618 error ("internal error - invalid fundamental type id %d", typeid);
619 }
620
621 /* Look for this particular type in the fundamental type vector. If one is
622 not found, create and install one appropriate for the current language
623 and the current target machine. */
624
625 if (ftypes[typeid] == NULL)
626 {
627 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
628 }
629
630 return (ftypes[typeid]);
631 }
632
633 /*
634
635 LOCAL FUNCTION
636
637 set_cu_language -- set local copy of language for compilation unit
638
639 SYNOPSIS
640
641 void
642 set_cu_language (struct dieinfo *dip)
643
644 DESCRIPTION
645
646 Decode the language attribute for a compilation unit DIE and
647 remember what the language was. We use this at various times
648 when processing DIE's for a given compilation unit.
649
650 RETURNS
651
652 No return value.
653
654 */
655
656 static void
657 set_cu_language (dip)
658 struct dieinfo *dip;
659 {
660 switch (dip -> at_language)
661 {
662 case LANG_C89:
663 case LANG_C:
664 cu_language = language_c;
665 break;
666 case LANG_C_PLUS_PLUS:
667 cu_language = language_cplus;
668 break;
669 case LANG_CHILL:
670 cu_language = language_chill;
671 break;
672 case LANG_MODULA2:
673 cu_language = language_m2;
674 break;
675 case LANG_ADA83:
676 case LANG_COBOL74:
677 case LANG_COBOL85:
678 case LANG_FORTRAN77:
679 case LANG_FORTRAN90:
680 case LANG_PASCAL83:
681 /* We don't know anything special about these yet. */
682 cu_language = language_unknown;
683 break;
684 default:
685 /* If no at_language, try to deduce one from the filename */
686 cu_language = deduce_language_from_filename (dip -> at_name);
687 break;
688 }
689 cu_language_defn = language_def (cu_language);
690 }
691
692 /*
693
694 GLOBAL FUNCTION
695
696 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
697
698 SYNOPSIS
699
700 void dwarf_build_psymtabs (struct objfile *objfile,
701 struct section_offsets *section_offsets,
702 int mainline, file_ptr dbfoff, unsigned int dbfsize,
703 file_ptr lnoffset, unsigned int lnsize)
704
705 DESCRIPTION
706
707 This function is called upon to build partial symtabs from files
708 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
709
710 It is passed a bfd* containing the DIES
711 and line number information, the corresponding filename for that
712 file, a base address for relocating the symbols, a flag indicating
713 whether or not this debugging information is from a "main symbol
714 table" rather than a shared library or dynamically linked file,
715 and file offset/size pairs for the DIE information and line number
716 information.
717
718 RETURNS
719
720 No return value.
721
722 */
723
724 void
725 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
726 lnoffset, lnsize)
727 struct objfile *objfile;
728 struct section_offsets *section_offsets;
729 int mainline;
730 file_ptr dbfoff;
731 unsigned int dbfsize;
732 file_ptr lnoffset;
733 unsigned int lnsize;
734 {
735 bfd *abfd = objfile->obfd;
736 struct cleanup *back_to;
737
738 current_objfile = objfile;
739 dbsize = dbfsize;
740 dbbase = xmalloc (dbsize);
741 dbroff = 0;
742 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
743 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
744 {
745 free (dbbase);
746 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
747 }
748 back_to = make_cleanup (free, dbbase);
749
750 /* If we are reinitializing, or if we have never loaded syms yet, init.
751 Since we have no idea how many DIES we are looking at, we just guess
752 some arbitrary value. */
753
754 if (mainline || objfile -> global_psymbols.size == 0 ||
755 objfile -> static_psymbols.size == 0)
756 {
757 init_psymbol_list (objfile, 1024);
758 }
759
760 /* Save the relocation factor where everybody can see it. */
761
762 base_section_offsets = section_offsets;
763 baseaddr = ANOFFSET (section_offsets, 0);
764
765 /* Follow the compilation unit sibling chain, building a partial symbol
766 table entry for each one. Save enough information about each compilation
767 unit to locate the full DWARF information later. */
768
769 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
770
771 do_cleanups (back_to);
772 current_objfile = NULL;
773 }
774
775 /*
776
777 LOCAL FUNCTION
778
779 read_lexical_block_scope -- process all dies in a lexical block
780
781 SYNOPSIS
782
783 static void read_lexical_block_scope (struct dieinfo *dip,
784 char *thisdie, char *enddie)
785
786 DESCRIPTION
787
788 Process all the DIES contained within a lexical block scope.
789 Start a new scope, process the dies, and then close the scope.
790
791 */
792
793 static void
794 read_lexical_block_scope (dip, thisdie, enddie, objfile)
795 struct dieinfo *dip;
796 char *thisdie;
797 char *enddie;
798 struct objfile *objfile;
799 {
800 register struct context_stack *new;
801
802 push_context (0, dip -> at_low_pc);
803 process_dies (thisdie + dip -> die_length, enddie, objfile);
804 new = pop_context ();
805 if (local_symbols != NULL)
806 {
807 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
808 dip -> at_high_pc, objfile);
809 }
810 local_symbols = new -> locals;
811 }
812
813 /*
814
815 LOCAL FUNCTION
816
817 lookup_utype -- look up a user defined type from die reference
818
819 SYNOPSIS
820
821 static type *lookup_utype (DIE_REF die_ref)
822
823 DESCRIPTION
824
825 Given a DIE reference, lookup the user defined type associated with
826 that DIE, if it has been registered already. If not registered, then
827 return NULL. Alloc_utype() can be called to register an empty
828 type for this reference, which will be filled in later when the
829 actual referenced DIE is processed.
830 */
831
832 static struct type *
833 lookup_utype (die_ref)
834 DIE_REF die_ref;
835 {
836 struct type *type = NULL;
837 int utypeidx;
838
839 utypeidx = (die_ref - dbroff) / 4;
840 if ((utypeidx < 0) || (utypeidx >= numutypes))
841 {
842 complain (&bad_die_ref, DIE_ID, DIE_NAME);
843 }
844 else
845 {
846 type = *(utypes + utypeidx);
847 }
848 return (type);
849 }
850
851
852 /*
853
854 LOCAL FUNCTION
855
856 alloc_utype -- add a user defined type for die reference
857
858 SYNOPSIS
859
860 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
861
862 DESCRIPTION
863
864 Given a die reference DIE_REF, and a possible pointer to a user
865 defined type UTYPEP, register that this reference has a user
866 defined type and either use the specified type in UTYPEP or
867 make a new empty type that will be filled in later.
868
869 We should only be called after calling lookup_utype() to verify that
870 there is not currently a type registered for DIE_REF.
871 */
872
873 static struct type *
874 alloc_utype (die_ref, utypep)
875 DIE_REF die_ref;
876 struct type *utypep;
877 {
878 struct type **typep;
879 int utypeidx;
880
881 utypeidx = (die_ref - dbroff) / 4;
882 typep = utypes + utypeidx;
883 if ((utypeidx < 0) || (utypeidx >= numutypes))
884 {
885 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
886 complain (&bad_die_ref, DIE_ID, DIE_NAME);
887 }
888 else if (*typep != NULL)
889 {
890 utypep = *typep;
891 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
892 }
893 else
894 {
895 if (utypep == NULL)
896 {
897 utypep = alloc_type (current_objfile);
898 }
899 *typep = utypep;
900 }
901 return (utypep);
902 }
903
904 /*
905
906 LOCAL FUNCTION
907
908 decode_die_type -- return a type for a specified die
909
910 SYNOPSIS
911
912 static struct type *decode_die_type (struct dieinfo *dip)
913
914 DESCRIPTION
915
916 Given a pointer to a die information structure DIP, decode the
917 type of the die and return a pointer to the decoded type. All
918 dies without specific types default to type int.
919 */
920
921 static struct type *
922 decode_die_type (dip)
923 struct dieinfo *dip;
924 {
925 struct type *type = NULL;
926
927 if (dip -> at_fund_type != 0)
928 {
929 type = decode_fund_type (dip -> at_fund_type);
930 }
931 else if (dip -> at_mod_fund_type != NULL)
932 {
933 type = decode_mod_fund_type (dip -> at_mod_fund_type);
934 }
935 else if (dip -> at_user_def_type)
936 {
937 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
938 {
939 type = alloc_utype (dip -> at_user_def_type, NULL);
940 }
941 }
942 else if (dip -> at_mod_u_d_type)
943 {
944 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
945 }
946 else
947 {
948 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
949 }
950 return (type);
951 }
952
953 /*
954
955 LOCAL FUNCTION
956
957 struct_type -- compute and return the type for a struct or union
958
959 SYNOPSIS
960
961 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
962 char *enddie, struct objfile *objfile)
963
964 DESCRIPTION
965
966 Given pointer to a die information structure for a die which
967 defines a union or structure (and MUST define one or the other),
968 and pointers to the raw die data that define the range of dies which
969 define the members, compute and return the user defined type for the
970 structure or union.
971 */
972
973 static struct type *
974 struct_type (dip, thisdie, enddie, objfile)
975 struct dieinfo *dip;
976 char *thisdie;
977 char *enddie;
978 struct objfile *objfile;
979 {
980 struct type *type;
981 struct nextfield {
982 struct nextfield *next;
983 struct field field;
984 };
985 struct nextfield *list = NULL;
986 struct nextfield *new;
987 int nfields = 0;
988 int n;
989 struct dieinfo mbr;
990 char *nextdie;
991 #if !BITS_BIG_ENDIAN
992 int anonymous_size;
993 #endif
994
995 if ((type = lookup_utype (dip -> die_ref)) == NULL)
996 {
997 /* No forward references created an empty type, so install one now */
998 type = alloc_utype (dip -> die_ref, NULL);
999 }
1000 INIT_CPLUS_SPECIFIC(type);
1001 switch (dip -> die_tag)
1002 {
1003 case TAG_class_type:
1004 TYPE_CODE (type) = TYPE_CODE_CLASS;
1005 break;
1006 case TAG_structure_type:
1007 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1008 break;
1009 case TAG_union_type:
1010 TYPE_CODE (type) = TYPE_CODE_UNION;
1011 break;
1012 default:
1013 /* Should never happen */
1014 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1015 complain (&missing_tag, DIE_ID, DIE_NAME);
1016 break;
1017 }
1018 /* Some compilers try to be helpful by inventing "fake" names for
1019 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1020 Thanks, but no thanks... */
1021 if (dip -> at_name != NULL
1022 && *dip -> at_name != '~'
1023 && *dip -> at_name != '.')
1024 {
1025 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1026 "", "", dip -> at_name);
1027 }
1028 /* Use whatever size is known. Zero is a valid size. We might however
1029 wish to check has_at_byte_size to make sure that some byte size was
1030 given explicitly, but DWARF doesn't specify that explicit sizes of
1031 zero have to present, so complaining about missing sizes should
1032 probably not be the default. */
1033 TYPE_LENGTH (type) = dip -> at_byte_size;
1034 thisdie += dip -> die_length;
1035 while (thisdie < enddie)
1036 {
1037 basicdieinfo (&mbr, thisdie, objfile);
1038 completedieinfo (&mbr, objfile);
1039 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1040 {
1041 break;
1042 }
1043 else if (mbr.at_sibling != 0)
1044 {
1045 nextdie = dbbase + mbr.at_sibling - dbroff;
1046 }
1047 else
1048 {
1049 nextdie = thisdie + mbr.die_length;
1050 }
1051 switch (mbr.die_tag)
1052 {
1053 case TAG_member:
1054 /* Get space to record the next field's data. */
1055 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1056 new -> next = list;
1057 list = new;
1058 /* Save the data. */
1059 list -> field.name =
1060 obsavestring (mbr.at_name, strlen (mbr.at_name),
1061 &objfile -> type_obstack);
1062 list -> field.type = decode_die_type (&mbr);
1063 list -> field.bitpos = 8 * locval (mbr.at_location);
1064 /* Handle bit fields. */
1065 list -> field.bitsize = mbr.at_bit_size;
1066 #if BITS_BIG_ENDIAN
1067 /* For big endian bits, the at_bit_offset gives the additional
1068 bit offset from the MSB of the containing anonymous object to
1069 the MSB of the field. We don't have to do anything special
1070 since we don't need to know the size of the anonymous object. */
1071 list -> field.bitpos += mbr.at_bit_offset;
1072 #else
1073 /* For little endian bits, we need to have a non-zero at_bit_size,
1074 so that we know we are in fact dealing with a bitfield. Compute
1075 the bit offset to the MSB of the anonymous object, subtract off
1076 the number of bits from the MSB of the field to the MSB of the
1077 object, and then subtract off the number of bits of the field
1078 itself. The result is the bit offset of the LSB of the field. */
1079 if (mbr.at_bit_size > 0)
1080 {
1081 if (mbr.has_at_byte_size)
1082 {
1083 /* The size of the anonymous object containing the bit field
1084 is explicit, so use the indicated size (in bytes). */
1085 anonymous_size = mbr.at_byte_size;
1086 }
1087 else
1088 {
1089 /* The size of the anonymous object containing the bit field
1090 matches the size of an object of the bit field's type.
1091 DWARF allows at_byte_size to be left out in such cases,
1092 as a debug information size optimization. */
1093 anonymous_size = TYPE_LENGTH (list -> field.type);
1094 }
1095 list -> field.bitpos +=
1096 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1097 }
1098 #endif
1099 nfields++;
1100 break;
1101 default:
1102 process_dies (thisdie, nextdie, objfile);
1103 break;
1104 }
1105 thisdie = nextdie;
1106 }
1107 /* Now create the vector of fields, and record how big it is. We may
1108 not even have any fields, if this DIE was generated due to a reference
1109 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1110 set, which clues gdb in to the fact that it needs to search elsewhere
1111 for the full structure definition. */
1112 if (nfields == 0)
1113 {
1114 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1115 }
1116 else
1117 {
1118 TYPE_NFIELDS (type) = nfields;
1119 TYPE_FIELDS (type) = (struct field *)
1120 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1121 /* Copy the saved-up fields into the field vector. */
1122 for (n = nfields; list; list = list -> next)
1123 {
1124 TYPE_FIELD (type, --n) = list -> field;
1125 }
1126 }
1127 return (type);
1128 }
1129
1130 /*
1131
1132 LOCAL FUNCTION
1133
1134 read_structure_scope -- process all dies within struct or union
1135
1136 SYNOPSIS
1137
1138 static void read_structure_scope (struct dieinfo *dip,
1139 char *thisdie, char *enddie, struct objfile *objfile)
1140
1141 DESCRIPTION
1142
1143 Called when we find the DIE that starts a structure or union
1144 scope (definition) to process all dies that define the members
1145 of the structure or union. DIP is a pointer to the die info
1146 struct for the DIE that names the structure or union.
1147
1148 NOTES
1149
1150 Note that we need to call struct_type regardless of whether or not
1151 the DIE has an at_name attribute, since it might be an anonymous
1152 structure or union. This gets the type entered into our set of
1153 user defined types.
1154
1155 However, if the structure is incomplete (an opaque struct/union)
1156 then suppress creating a symbol table entry for it since gdb only
1157 wants to find the one with the complete definition. Note that if
1158 it is complete, we just call new_symbol, which does it's own
1159 checking about whether the struct/union is anonymous or not (and
1160 suppresses creating a symbol table entry itself).
1161
1162 */
1163
1164 static void
1165 read_structure_scope (dip, thisdie, enddie, objfile)
1166 struct dieinfo *dip;
1167 char *thisdie;
1168 char *enddie;
1169 struct objfile *objfile;
1170 {
1171 struct type *type;
1172 struct symbol *sym;
1173
1174 type = struct_type (dip, thisdie, enddie, objfile);
1175 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1176 {
1177 sym = new_symbol (dip, objfile);
1178 if (sym != NULL)
1179 {
1180 SYMBOL_TYPE (sym) = type;
1181 if (cu_language == language_cplus)
1182 {
1183 synthesize_typedef (dip, objfile, type);
1184 }
1185 }
1186 }
1187 }
1188
1189 /*
1190
1191 LOCAL FUNCTION
1192
1193 decode_array_element_type -- decode type of the array elements
1194
1195 SYNOPSIS
1196
1197 static struct type *decode_array_element_type (char *scan, char *end)
1198
1199 DESCRIPTION
1200
1201 As the last step in decoding the array subscript information for an
1202 array DIE, we need to decode the type of the array elements. We are
1203 passed a pointer to this last part of the subscript information and
1204 must return the appropriate type. If the type attribute is not
1205 recognized, just warn about the problem and return type int.
1206 */
1207
1208 static struct type *
1209 decode_array_element_type (scan)
1210 char *scan;
1211 {
1212 struct type *typep;
1213 DIE_REF die_ref;
1214 unsigned short attribute;
1215 unsigned short fundtype;
1216 int nbytes;
1217
1218 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1219 current_objfile);
1220 scan += SIZEOF_ATTRIBUTE;
1221 if ((nbytes = attribute_size (attribute)) == -1)
1222 {
1223 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1224 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1225 }
1226 else
1227 {
1228 switch (attribute)
1229 {
1230 case AT_fund_type:
1231 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1232 current_objfile);
1233 typep = decode_fund_type (fundtype);
1234 break;
1235 case AT_mod_fund_type:
1236 typep = decode_mod_fund_type (scan);
1237 break;
1238 case AT_user_def_type:
1239 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1240 current_objfile);
1241 if ((typep = lookup_utype (die_ref)) == NULL)
1242 {
1243 typep = alloc_utype (die_ref, NULL);
1244 }
1245 break;
1246 case AT_mod_u_d_type:
1247 typep = decode_mod_u_d_type (scan);
1248 break;
1249 default:
1250 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1251 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1252 break;
1253 }
1254 }
1255 return (typep);
1256 }
1257
1258 /*
1259
1260 LOCAL FUNCTION
1261
1262 decode_subscript_data_item -- decode array subscript item
1263
1264 SYNOPSIS
1265
1266 static struct type *
1267 decode_subscript_data_item (char *scan, char *end)
1268
1269 DESCRIPTION
1270
1271 The array subscripts and the data type of the elements of an
1272 array are described by a list of data items, stored as a block
1273 of contiguous bytes. There is a data item describing each array
1274 dimension, and a final data item describing the element type.
1275 The data items are ordered the same as their appearance in the
1276 source (I.E. leftmost dimension first, next to leftmost second,
1277 etc).
1278
1279 The data items describing each array dimension consist of four
1280 parts: (1) a format specifier, (2) type type of the subscript
1281 index, (3) a description of the low bound of the array dimension,
1282 and (4) a description of the high bound of the array dimension.
1283
1284 The last data item is the description of the type of each of
1285 the array elements.
1286
1287 We are passed a pointer to the start of the block of bytes
1288 containing the remaining data items, and a pointer to the first
1289 byte past the data. This function recursively decodes the
1290 remaining data items and returns a type.
1291
1292 If we somehow fail to decode some data, we complain about it
1293 and return a type "array of int".
1294
1295 BUGS
1296 FIXME: This code only implements the forms currently used
1297 by the AT&T and GNU C compilers.
1298
1299 The end pointer is supplied for error checking, maybe we should
1300 use it for that...
1301 */
1302
1303 static struct type *
1304 decode_subscript_data_item (scan, end)
1305 char *scan;
1306 char *end;
1307 {
1308 struct type *typep = NULL; /* Array type we are building */
1309 struct type *nexttype; /* Type of each element (may be array) */
1310 struct type *indextype; /* Type of this index */
1311 struct type *rangetype;
1312 unsigned int format;
1313 unsigned short fundtype;
1314 unsigned long lowbound;
1315 unsigned long highbound;
1316 int nbytes;
1317
1318 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1319 current_objfile);
1320 scan += SIZEOF_FORMAT_SPECIFIER;
1321 switch (format)
1322 {
1323 case FMT_ET:
1324 typep = decode_array_element_type (scan);
1325 break;
1326 case FMT_FT_C_C:
1327 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1328 current_objfile);
1329 indextype = decode_fund_type (fundtype);
1330 scan += SIZEOF_FMT_FT;
1331 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1332 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1333 scan += nbytes;
1334 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1335 scan += nbytes;
1336 nexttype = decode_subscript_data_item (scan, end);
1337 if (nexttype == NULL)
1338 {
1339 /* Munged subscript data or other problem, fake it. */
1340 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1341 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1342 }
1343 rangetype = create_range_type ((struct type *) NULL, indextype,
1344 lowbound, highbound);
1345 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1346 break;
1347 case FMT_FT_C_X:
1348 case FMT_FT_X_C:
1349 case FMT_FT_X_X:
1350 case FMT_UT_C_C:
1351 case FMT_UT_C_X:
1352 case FMT_UT_X_C:
1353 case FMT_UT_X_X:
1354 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1355 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1356 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1357 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1358 break;
1359 default:
1360 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1361 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1362 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1363 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1364 break;
1365 }
1366 return (typep);
1367 }
1368
1369 /*
1370
1371 LOCAL FUNCTION
1372
1373 dwarf_read_array_type -- read TAG_array_type DIE
1374
1375 SYNOPSIS
1376
1377 static void dwarf_read_array_type (struct dieinfo *dip)
1378
1379 DESCRIPTION
1380
1381 Extract all information from a TAG_array_type DIE and add to
1382 the user defined type vector.
1383 */
1384
1385 static void
1386 dwarf_read_array_type (dip)
1387 struct dieinfo *dip;
1388 {
1389 struct type *type;
1390 struct type *utype;
1391 char *sub;
1392 char *subend;
1393 unsigned short blocksz;
1394 int nbytes;
1395
1396 if (dip -> at_ordering != ORD_row_major)
1397 {
1398 /* FIXME: Can gdb even handle column major arrays? */
1399 complain (&not_row_major, DIE_ID, DIE_NAME);
1400 }
1401 if ((sub = dip -> at_subscr_data) != NULL)
1402 {
1403 nbytes = attribute_size (AT_subscr_data);
1404 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1405 subend = sub + nbytes + blocksz;
1406 sub += nbytes;
1407 type = decode_subscript_data_item (sub, subend);
1408 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1409 {
1410 /* Install user defined type that has not been referenced yet. */
1411 alloc_utype (dip -> die_ref, type);
1412 }
1413 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1414 {
1415 /* Ick! A forward ref has already generated a blank type in our
1416 slot, and this type probably already has things pointing to it
1417 (which is what caused it to be created in the first place).
1418 If it's just a place holder we can plop our fully defined type
1419 on top of it. We can't recover the space allocated for our
1420 new type since it might be on an obstack, but we could reuse
1421 it if we kept a list of them, but it might not be worth it
1422 (FIXME). */
1423 *utype = *type;
1424 }
1425 else
1426 {
1427 /* Double ick! Not only is a type already in our slot, but
1428 someone has decorated it. Complain and leave it alone. */
1429 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1430 }
1431 }
1432 }
1433
1434 /*
1435
1436 LOCAL FUNCTION
1437
1438 read_tag_pointer_type -- read TAG_pointer_type DIE
1439
1440 SYNOPSIS
1441
1442 static void read_tag_pointer_type (struct dieinfo *dip)
1443
1444 DESCRIPTION
1445
1446 Extract all information from a TAG_pointer_type DIE and add to
1447 the user defined type vector.
1448 */
1449
1450 static void
1451 read_tag_pointer_type (dip)
1452 struct dieinfo *dip;
1453 {
1454 struct type *type;
1455 struct type *utype;
1456
1457 type = decode_die_type (dip);
1458 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1459 {
1460 utype = lookup_pointer_type (type);
1461 alloc_utype (dip -> die_ref, utype);
1462 }
1463 else
1464 {
1465 TYPE_TARGET_TYPE (utype) = type;
1466 TYPE_POINTER_TYPE (type) = utype;
1467
1468 /* We assume the machine has only one representation for pointers! */
1469 /* FIXME: This confuses host<->target data representations, and is a
1470 poor assumption besides. */
1471
1472 TYPE_LENGTH (utype) = sizeof (char *);
1473 TYPE_CODE (utype) = TYPE_CODE_PTR;
1474 }
1475 }
1476
1477 /*
1478
1479 LOCAL FUNCTION
1480
1481 read_tag_string_type -- read TAG_string_type DIE
1482
1483 SYNOPSIS
1484
1485 static void read_tag_string_type (struct dieinfo *dip)
1486
1487 DESCRIPTION
1488
1489 Extract all information from a TAG_string_type DIE and add to
1490 the user defined type vector. It isn't really a user defined
1491 type, but it behaves like one, with other DIE's using an
1492 AT_user_def_type attribute to reference it.
1493 */
1494
1495 static void
1496 read_tag_string_type (dip)
1497 struct dieinfo *dip;
1498 {
1499 struct type *utype;
1500 struct type *indextype;
1501 struct type *rangetype;
1502 unsigned long lowbound = 0;
1503 unsigned long highbound;
1504
1505 if (dip -> has_at_byte_size)
1506 {
1507 /* A fixed bounds string */
1508 highbound = dip -> at_byte_size - 1;
1509 }
1510 else
1511 {
1512 /* A varying length string. Stub for now. (FIXME) */
1513 highbound = 1;
1514 }
1515 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1516 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1517 highbound);
1518
1519 utype = lookup_utype (dip -> die_ref);
1520 if (utype == NULL)
1521 {
1522 /* No type defined, go ahead and create a blank one to use. */
1523 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1524 }
1525 else
1526 {
1527 /* Already a type in our slot due to a forward reference. Make sure it
1528 is a blank one. If not, complain and leave it alone. */
1529 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1530 {
1531 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1532 return;
1533 }
1534 }
1535
1536 /* Create the string type using the blank type we either found or created. */
1537 utype = create_string_type (utype, rangetype);
1538 }
1539
1540 /*
1541
1542 LOCAL FUNCTION
1543
1544 read_subroutine_type -- process TAG_subroutine_type dies
1545
1546 SYNOPSIS
1547
1548 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1549 char *enddie)
1550
1551 DESCRIPTION
1552
1553 Handle DIES due to C code like:
1554
1555 struct foo {
1556 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1557 int b;
1558 };
1559
1560 NOTES
1561
1562 The parameter DIES are currently ignored. See if gdb has a way to
1563 include this info in it's type system, and decode them if so. Is
1564 this what the type structure's "arg_types" field is for? (FIXME)
1565 */
1566
1567 static void
1568 read_subroutine_type (dip, thisdie, enddie)
1569 struct dieinfo *dip;
1570 char *thisdie;
1571 char *enddie;
1572 {
1573 struct type *type; /* Type that this function returns */
1574 struct type *ftype; /* Function that returns above type */
1575
1576 /* Decode the type that this subroutine returns */
1577
1578 type = decode_die_type (dip);
1579
1580 /* Check to see if we already have a partially constructed user
1581 defined type for this DIE, from a forward reference. */
1582
1583 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1584 {
1585 /* This is the first reference to one of these types. Make
1586 a new one and place it in the user defined types. */
1587 ftype = lookup_function_type (type);
1588 alloc_utype (dip -> die_ref, ftype);
1589 }
1590 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1591 {
1592 /* We have an existing partially constructed type, so bash it
1593 into the correct type. */
1594 TYPE_TARGET_TYPE (ftype) = type;
1595 TYPE_FUNCTION_TYPE (type) = ftype;
1596 TYPE_LENGTH (ftype) = 1;
1597 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1598 }
1599 else
1600 {
1601 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1602 }
1603 }
1604
1605 /*
1606
1607 LOCAL FUNCTION
1608
1609 read_enumeration -- process dies which define an enumeration
1610
1611 SYNOPSIS
1612
1613 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1614 char *enddie, struct objfile *objfile)
1615
1616 DESCRIPTION
1617
1618 Given a pointer to a die which begins an enumeration, process all
1619 the dies that define the members of the enumeration.
1620
1621 NOTES
1622
1623 Note that we need to call enum_type regardless of whether or not we
1624 have a symbol, since we might have an enum without a tag name (thus
1625 no symbol for the tagname).
1626 */
1627
1628 static void
1629 read_enumeration (dip, thisdie, enddie, objfile)
1630 struct dieinfo *dip;
1631 char *thisdie;
1632 char *enddie;
1633 struct objfile *objfile;
1634 {
1635 struct type *type;
1636 struct symbol *sym;
1637
1638 type = enum_type (dip, objfile);
1639 sym = new_symbol (dip, objfile);
1640 if (sym != NULL)
1641 {
1642 SYMBOL_TYPE (sym) = type;
1643 if (cu_language == language_cplus)
1644 {
1645 synthesize_typedef (dip, objfile, type);
1646 }
1647 }
1648 }
1649
1650 /*
1651
1652 LOCAL FUNCTION
1653
1654 enum_type -- decode and return a type for an enumeration
1655
1656 SYNOPSIS
1657
1658 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1659
1660 DESCRIPTION
1661
1662 Given a pointer to a die information structure for the die which
1663 starts an enumeration, process all the dies that define the members
1664 of the enumeration and return a type pointer for the enumeration.
1665
1666 At the same time, for each member of the enumeration, create a
1667 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1668 and give it the type of the enumeration itself.
1669
1670 NOTES
1671
1672 Note that the DWARF specification explicitly mandates that enum
1673 constants occur in reverse order from the source program order,
1674 for "consistency" and because this ordering is easier for many
1675 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1676 Entries). Because gdb wants to see the enum members in program
1677 source order, we have to ensure that the order gets reversed while
1678 we are processing them.
1679 */
1680
1681 static struct type *
1682 enum_type (dip, objfile)
1683 struct dieinfo *dip;
1684 struct objfile *objfile;
1685 {
1686 struct type *type;
1687 struct nextfield {
1688 struct nextfield *next;
1689 struct field field;
1690 };
1691 struct nextfield *list = NULL;
1692 struct nextfield *new;
1693 int nfields = 0;
1694 int n;
1695 char *scan;
1696 char *listend;
1697 unsigned short blocksz;
1698 struct symbol *sym;
1699 int nbytes;
1700
1701 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1702 {
1703 /* No forward references created an empty type, so install one now */
1704 type = alloc_utype (dip -> die_ref, NULL);
1705 }
1706 TYPE_CODE (type) = TYPE_CODE_ENUM;
1707 /* Some compilers try to be helpful by inventing "fake" names for
1708 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1709 Thanks, but no thanks... */
1710 if (dip -> at_name != NULL
1711 && *dip -> at_name != '~'
1712 && *dip -> at_name != '.')
1713 {
1714 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1715 "", "", dip -> at_name);
1716 }
1717 if (dip -> at_byte_size != 0)
1718 {
1719 TYPE_LENGTH (type) = dip -> at_byte_size;
1720 }
1721 if ((scan = dip -> at_element_list) != NULL)
1722 {
1723 if (dip -> short_element_list)
1724 {
1725 nbytes = attribute_size (AT_short_element_list);
1726 }
1727 else
1728 {
1729 nbytes = attribute_size (AT_element_list);
1730 }
1731 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1732 listend = scan + nbytes + blocksz;
1733 scan += nbytes;
1734 while (scan < listend)
1735 {
1736 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1737 new -> next = list;
1738 list = new;
1739 list -> field.type = NULL;
1740 list -> field.bitsize = 0;
1741 list -> field.bitpos =
1742 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1743 objfile);
1744 scan += TARGET_FT_LONG_SIZE (objfile);
1745 list -> field.name = obsavestring (scan, strlen (scan),
1746 &objfile -> type_obstack);
1747 scan += strlen (scan) + 1;
1748 nfields++;
1749 /* Handcraft a new symbol for this enum member. */
1750 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1751 sizeof (struct symbol));
1752 memset (sym, 0, sizeof (struct symbol));
1753 SYMBOL_NAME (sym) = create_name (list -> field.name,
1754 &objfile->symbol_obstack);
1755 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1756 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1757 SYMBOL_CLASS (sym) = LOC_CONST;
1758 SYMBOL_TYPE (sym) = type;
1759 SYMBOL_VALUE (sym) = list -> field.bitpos;
1760 add_symbol_to_list (sym, list_in_scope);
1761 }
1762 /* Now create the vector of fields, and record how big it is. This is
1763 where we reverse the order, by pulling the members off the list in
1764 reverse order from how they were inserted. If we have no fields
1765 (this is apparently possible in C++) then skip building a field
1766 vector. */
1767 if (nfields > 0)
1768 {
1769 TYPE_NFIELDS (type) = nfields;
1770 TYPE_FIELDS (type) = (struct field *)
1771 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1772 /* Copy the saved-up fields into the field vector. */
1773 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1774 {
1775 TYPE_FIELD (type, n++) = list -> field;
1776 }
1777 }
1778 }
1779 return (type);
1780 }
1781
1782 /*
1783
1784 LOCAL FUNCTION
1785
1786 read_func_scope -- process all dies within a function scope
1787
1788 DESCRIPTION
1789
1790 Process all dies within a given function scope. We are passed
1791 a die information structure pointer DIP for the die which
1792 starts the function scope, and pointers into the raw die data
1793 that define the dies within the function scope.
1794
1795 For now, we ignore lexical block scopes within the function.
1796 The problem is that AT&T cc does not define a DWARF lexical
1797 block scope for the function itself, while gcc defines a
1798 lexical block scope for the function. We need to think about
1799 how to handle this difference, or if it is even a problem.
1800 (FIXME)
1801 */
1802
1803 static void
1804 read_func_scope (dip, thisdie, enddie, objfile)
1805 struct dieinfo *dip;
1806 char *thisdie;
1807 char *enddie;
1808 struct objfile *objfile;
1809 {
1810 register struct context_stack *new;
1811
1812 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1813 objfile -> ei.entry_point < dip -> at_high_pc)
1814 {
1815 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1816 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1817 }
1818 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1819 {
1820 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1821 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1822 }
1823 new = push_context (0, dip -> at_low_pc);
1824 new -> name = new_symbol (dip, objfile);
1825 list_in_scope = &local_symbols;
1826 process_dies (thisdie + dip -> die_length, enddie, objfile);
1827 new = pop_context ();
1828 /* Make a block for the local symbols within. */
1829 finish_block (new -> name, &local_symbols, new -> old_blocks,
1830 new -> start_addr, dip -> at_high_pc, objfile);
1831 list_in_scope = &file_symbols;
1832 }
1833
1834
1835 /*
1836
1837 LOCAL FUNCTION
1838
1839 handle_producer -- process the AT_producer attribute
1840
1841 DESCRIPTION
1842
1843 Perform any operations that depend on finding a particular
1844 AT_producer attribute.
1845
1846 */
1847
1848 static void
1849 handle_producer (producer)
1850 char *producer;
1851 {
1852
1853 /* If this compilation unit was compiled with g++ or gcc, then set the
1854 processing_gcc_compilation flag. */
1855
1856 processing_gcc_compilation =
1857 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1858 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1859 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1860
1861 /* Select a demangling style if we can identify the producer and if
1862 the current style is auto. We leave the current style alone if it
1863 is not auto. We also leave the demangling style alone if we find a
1864 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1865
1866 if (AUTO_DEMANGLING)
1867 {
1868 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1869 {
1870 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1871 }
1872 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1873 {
1874 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1875 }
1876 }
1877 }
1878
1879
1880 /*
1881
1882 LOCAL FUNCTION
1883
1884 read_file_scope -- process all dies within a file scope
1885
1886 DESCRIPTION
1887
1888 Process all dies within a given file scope. We are passed a
1889 pointer to the die information structure for the die which
1890 starts the file scope, and pointers into the raw die data which
1891 mark the range of dies within the file scope.
1892
1893 When the partial symbol table is built, the file offset for the line
1894 number table for each compilation unit is saved in the partial symbol
1895 table entry for that compilation unit. As the symbols for each
1896 compilation unit are read, the line number table is read into memory
1897 and the variable lnbase is set to point to it. Thus all we have to
1898 do is use lnbase to access the line number table for the current
1899 compilation unit.
1900 */
1901
1902 static void
1903 read_file_scope (dip, thisdie, enddie, objfile)
1904 struct dieinfo *dip;
1905 char *thisdie;
1906 char *enddie;
1907 struct objfile *objfile;
1908 {
1909 struct cleanup *back_to;
1910 struct symtab *symtab;
1911
1912 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1913 objfile -> ei.entry_point < dip -> at_high_pc)
1914 {
1915 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1916 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1917 }
1918 set_cu_language (dip);
1919 if (dip -> at_producer != NULL)
1920 {
1921 handle_producer (dip -> at_producer);
1922 }
1923 numutypes = (enddie - thisdie) / 4;
1924 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1925 back_to = make_cleanup (free, utypes);
1926 memset (utypes, 0, numutypes * sizeof (struct type *));
1927 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1928 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1929 decode_line_numbers (lnbase);
1930 process_dies (thisdie + dip -> die_length, enddie, objfile);
1931
1932 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1933 if (symtab != NULL)
1934 {
1935 symtab -> language = cu_language;
1936 }
1937 do_cleanups (back_to);
1938 utypes = NULL;
1939 numutypes = 0;
1940 }
1941
1942 /*
1943
1944 LOCAL FUNCTION
1945
1946 process_dies -- process a range of DWARF Information Entries
1947
1948 SYNOPSIS
1949
1950 static void process_dies (char *thisdie, char *enddie,
1951 struct objfile *objfile)
1952
1953 DESCRIPTION
1954
1955 Process all DIE's in a specified range. May be (and almost
1956 certainly will be) called recursively.
1957 */
1958
1959 static void
1960 process_dies (thisdie, enddie, objfile)
1961 char *thisdie;
1962 char *enddie;
1963 struct objfile *objfile;
1964 {
1965 char *nextdie;
1966 struct dieinfo di;
1967
1968 while (thisdie < enddie)
1969 {
1970 basicdieinfo (&di, thisdie, objfile);
1971 if (di.die_length < SIZEOF_DIE_LENGTH)
1972 {
1973 break;
1974 }
1975 else if (di.die_tag == TAG_padding)
1976 {
1977 nextdie = thisdie + di.die_length;
1978 }
1979 else
1980 {
1981 completedieinfo (&di, objfile);
1982 if (di.at_sibling != 0)
1983 {
1984 nextdie = dbbase + di.at_sibling - dbroff;
1985 }
1986 else
1987 {
1988 nextdie = thisdie + di.die_length;
1989 }
1990 switch (di.die_tag)
1991 {
1992 case TAG_compile_unit:
1993 read_file_scope (&di, thisdie, nextdie, objfile);
1994 break;
1995 case TAG_global_subroutine:
1996 case TAG_subroutine:
1997 if (di.has_at_low_pc)
1998 {
1999 read_func_scope (&di, thisdie, nextdie, objfile);
2000 }
2001 break;
2002 case TAG_lexical_block:
2003 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2004 break;
2005 case TAG_class_type:
2006 case TAG_structure_type:
2007 case TAG_union_type:
2008 read_structure_scope (&di, thisdie, nextdie, objfile);
2009 break;
2010 case TAG_enumeration_type:
2011 read_enumeration (&di, thisdie, nextdie, objfile);
2012 break;
2013 case TAG_subroutine_type:
2014 read_subroutine_type (&di, thisdie, nextdie);
2015 break;
2016 case TAG_array_type:
2017 dwarf_read_array_type (&di);
2018 break;
2019 case TAG_pointer_type:
2020 read_tag_pointer_type (&di);
2021 break;
2022 case TAG_string_type:
2023 read_tag_string_type (&di);
2024 break;
2025 default:
2026 new_symbol (&di, objfile);
2027 break;
2028 }
2029 }
2030 thisdie = nextdie;
2031 }
2032 }
2033
2034 /*
2035
2036 LOCAL FUNCTION
2037
2038 decode_line_numbers -- decode a line number table fragment
2039
2040 SYNOPSIS
2041
2042 static void decode_line_numbers (char *tblscan, char *tblend,
2043 long length, long base, long line, long pc)
2044
2045 DESCRIPTION
2046
2047 Translate the DWARF line number information to gdb form.
2048
2049 The ".line" section contains one or more line number tables, one for
2050 each ".line" section from the objects that were linked.
2051
2052 The AT_stmt_list attribute for each TAG_source_file entry in the
2053 ".debug" section contains the offset into the ".line" section for the
2054 start of the table for that file.
2055
2056 The table itself has the following structure:
2057
2058 <table length><base address><source statement entry>
2059 4 bytes 4 bytes 10 bytes
2060
2061 The table length is the total size of the table, including the 4 bytes
2062 for the length information.
2063
2064 The base address is the address of the first instruction generated
2065 for the source file.
2066
2067 Each source statement entry has the following structure:
2068
2069 <line number><statement position><address delta>
2070 4 bytes 2 bytes 4 bytes
2071
2072 The line number is relative to the start of the file, starting with
2073 line 1.
2074
2075 The statement position either -1 (0xFFFF) or the number of characters
2076 from the beginning of the line to the beginning of the statement.
2077
2078 The address delta is the difference between the base address and
2079 the address of the first instruction for the statement.
2080
2081 Note that we must copy the bytes from the packed table to our local
2082 variables before attempting to use them, to avoid alignment problems
2083 on some machines, particularly RISC processors.
2084
2085 BUGS
2086
2087 Does gdb expect the line numbers to be sorted? They are now by
2088 chance/luck, but are not required to be. (FIXME)
2089
2090 The line with number 0 is unused, gdb apparently can discover the
2091 span of the last line some other way. How? (FIXME)
2092 */
2093
2094 static void
2095 decode_line_numbers (linetable)
2096 char *linetable;
2097 {
2098 char *tblscan;
2099 char *tblend;
2100 unsigned long length;
2101 unsigned long base;
2102 unsigned long line;
2103 unsigned long pc;
2104
2105 if (linetable != NULL)
2106 {
2107 tblscan = tblend = linetable;
2108 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2109 current_objfile);
2110 tblscan += SIZEOF_LINETBL_LENGTH;
2111 tblend += length;
2112 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2113 GET_UNSIGNED, current_objfile);
2114 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2115 base += baseaddr;
2116 while (tblscan < tblend)
2117 {
2118 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2119 current_objfile);
2120 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2121 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2122 current_objfile);
2123 tblscan += SIZEOF_LINETBL_DELTA;
2124 pc += base;
2125 if (line != 0)
2126 {
2127 record_line (current_subfile, line, pc);
2128 }
2129 }
2130 }
2131 }
2132
2133 /*
2134
2135 LOCAL FUNCTION
2136
2137 locval -- compute the value of a location attribute
2138
2139 SYNOPSIS
2140
2141 static int locval (char *loc)
2142
2143 DESCRIPTION
2144
2145 Given pointer to a string of bytes that define a location, compute
2146 the location and return the value.
2147
2148 When computing values involving the current value of the frame pointer,
2149 the value zero is used, which results in a value relative to the frame
2150 pointer, rather than the absolute value. This is what GDB wants
2151 anyway.
2152
2153 When the result is a register number, the global isreg flag is set,
2154 otherwise it is cleared. This is a kludge until we figure out a better
2155 way to handle the problem. Gdb's design does not mesh well with the
2156 DWARF notion of a location computing interpreter, which is a shame
2157 because the flexibility goes unused.
2158
2159 NOTES
2160
2161 Note that stack[0] is unused except as a default error return.
2162 Note that stack overflow is not yet handled.
2163 */
2164
2165 static int
2166 locval (loc)
2167 char *loc;
2168 {
2169 unsigned short nbytes;
2170 unsigned short locsize;
2171 auto long stack[64];
2172 int stacki;
2173 char *end;
2174 long regno;
2175 int loc_atom_code;
2176 int loc_value_size;
2177
2178 nbytes = attribute_size (AT_location);
2179 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2180 loc += nbytes;
2181 end = loc + locsize;
2182 stacki = 0;
2183 stack[stacki] = 0;
2184 isreg = 0;
2185 offreg = 0;
2186 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2187 while (loc < end)
2188 {
2189 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2190 current_objfile);
2191 loc += SIZEOF_LOC_ATOM_CODE;
2192 switch (loc_atom_code)
2193 {
2194 case 0:
2195 /* error */
2196 loc = end;
2197 break;
2198 case OP_REG:
2199 /* push register (number) */
2200 stack[++stacki] = target_to_host (loc, loc_value_size,
2201 GET_UNSIGNED, current_objfile);
2202 loc += loc_value_size;
2203 isreg = 1;
2204 break;
2205 case OP_BASEREG:
2206 /* push value of register (number) */
2207 /* Actually, we compute the value as if register has 0, so the
2208 value ends up being the offset from that register. */
2209 offreg = 1;
2210 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2211 current_objfile);
2212 loc += loc_value_size;
2213 stack[++stacki] = 0;
2214 break;
2215 case OP_ADDR:
2216 /* push address (relocated address) */
2217 stack[++stacki] = target_to_host (loc, loc_value_size,
2218 GET_UNSIGNED, current_objfile);
2219 loc += loc_value_size;
2220 break;
2221 case OP_CONST:
2222 /* push constant (number) FIXME: signed or unsigned! */
2223 stack[++stacki] = target_to_host (loc, loc_value_size,
2224 GET_SIGNED, current_objfile);
2225 loc += loc_value_size;
2226 break;
2227 case OP_DEREF2:
2228 /* pop, deref and push 2 bytes (as a long) */
2229 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2230 break;
2231 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2232 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2233 break;
2234 case OP_ADD: /* pop top 2 items, add, push result */
2235 stack[stacki - 1] += stack[stacki];
2236 stacki--;
2237 break;
2238 }
2239 }
2240 return (stack[stacki]);
2241 }
2242
2243 /*
2244
2245 LOCAL FUNCTION
2246
2247 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2248
2249 SYNOPSIS
2250
2251 static void read_ofile_symtab (struct partial_symtab *pst)
2252
2253 DESCRIPTION
2254
2255 When expanding a partial symbol table entry to a full symbol table
2256 entry, this is the function that gets called to read in the symbols
2257 for the compilation unit. A pointer to the newly constructed symtab,
2258 which is now the new first one on the objfile's symtab list, is
2259 stashed in the partial symbol table entry.
2260 */
2261
2262 static void
2263 read_ofile_symtab (pst)
2264 struct partial_symtab *pst;
2265 {
2266 struct cleanup *back_to;
2267 unsigned long lnsize;
2268 file_ptr foffset;
2269 bfd *abfd;
2270 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2271
2272 abfd = pst -> objfile -> obfd;
2273 current_objfile = pst -> objfile;
2274
2275 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2276 unit, seek to the location in the file, and read in all the DIE's. */
2277
2278 diecount = 0;
2279 dbsize = DBLENGTH (pst);
2280 dbbase = xmalloc (dbsize);
2281 dbroff = DBROFF(pst);
2282 foffset = DBFOFF(pst) + dbroff;
2283 base_section_offsets = pst->section_offsets;
2284 baseaddr = ANOFFSET (pst->section_offsets, 0);
2285 if (bfd_seek (abfd, foffset, L_SET) ||
2286 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2287 {
2288 free (dbbase);
2289 error ("can't read DWARF data");
2290 }
2291 back_to = make_cleanup (free, dbbase);
2292
2293 /* If there is a line number table associated with this compilation unit
2294 then read the size of this fragment in bytes, from the fragment itself.
2295 Allocate a buffer for the fragment and read it in for future
2296 processing. */
2297
2298 lnbase = NULL;
2299 if (LNFOFF (pst))
2300 {
2301 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2302 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2303 sizeof (lnsizedata)))
2304 {
2305 error ("can't read DWARF line number table size");
2306 }
2307 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2308 GET_UNSIGNED, pst -> objfile);
2309 lnbase = xmalloc (lnsize);
2310 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2311 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2312 {
2313 free (lnbase);
2314 error ("can't read DWARF line numbers");
2315 }
2316 make_cleanup (free, lnbase);
2317 }
2318
2319 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2320 do_cleanups (back_to);
2321 current_objfile = NULL;
2322 pst -> symtab = pst -> objfile -> symtabs;
2323 }
2324
2325 /*
2326
2327 LOCAL FUNCTION
2328
2329 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2330
2331 SYNOPSIS
2332
2333 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2334
2335 DESCRIPTION
2336
2337 Called once for each partial symbol table entry that needs to be
2338 expanded into a full symbol table entry.
2339
2340 */
2341
2342 static void
2343 psymtab_to_symtab_1 (pst)
2344 struct partial_symtab *pst;
2345 {
2346 int i;
2347 struct cleanup *old_chain;
2348
2349 if (pst != NULL)
2350 {
2351 if (pst->readin)
2352 {
2353 warning ("psymtab for %s already read in. Shouldn't happen.",
2354 pst -> filename);
2355 }
2356 else
2357 {
2358 /* Read in all partial symtabs on which this one is dependent */
2359 for (i = 0; i < pst -> number_of_dependencies; i++)
2360 {
2361 if (!pst -> dependencies[i] -> readin)
2362 {
2363 /* Inform about additional files that need to be read in. */
2364 if (info_verbose)
2365 {
2366 fputs_filtered (" ", stdout);
2367 wrap_here ("");
2368 fputs_filtered ("and ", stdout);
2369 wrap_here ("");
2370 printf_filtered ("%s...",
2371 pst -> dependencies[i] -> filename);
2372 wrap_here ("");
2373 fflush (stdout); /* Flush output */
2374 }
2375 psymtab_to_symtab_1 (pst -> dependencies[i]);
2376 }
2377 }
2378 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2379 {
2380 buildsym_init ();
2381 old_chain = make_cleanup (really_free_pendings, 0);
2382 read_ofile_symtab (pst);
2383 if (info_verbose)
2384 {
2385 printf_filtered ("%d DIE's, sorting...", diecount);
2386 wrap_here ("");
2387 fflush (stdout);
2388 }
2389 sort_symtab_syms (pst -> symtab);
2390 do_cleanups (old_chain);
2391 }
2392 pst -> readin = 1;
2393 }
2394 }
2395 }
2396
2397 /*
2398
2399 LOCAL FUNCTION
2400
2401 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2402
2403 SYNOPSIS
2404
2405 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2406
2407 DESCRIPTION
2408
2409 This is the DWARF support entry point for building a full symbol
2410 table entry from a partial symbol table entry. We are passed a
2411 pointer to the partial symbol table entry that needs to be expanded.
2412
2413 */
2414
2415 static void
2416 dwarf_psymtab_to_symtab (pst)
2417 struct partial_symtab *pst;
2418 {
2419
2420 if (pst != NULL)
2421 {
2422 if (pst -> readin)
2423 {
2424 warning ("psymtab for %s already read in. Shouldn't happen.",
2425 pst -> filename);
2426 }
2427 else
2428 {
2429 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2430 {
2431 /* Print the message now, before starting serious work, to avoid
2432 disconcerting pauses. */
2433 if (info_verbose)
2434 {
2435 printf_filtered ("Reading in symbols for %s...",
2436 pst -> filename);
2437 fflush (stdout);
2438 }
2439
2440 psymtab_to_symtab_1 (pst);
2441
2442 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2443 we need to do an equivalent or is this something peculiar to
2444 stabs/a.out format.
2445 Match with global symbols. This only needs to be done once,
2446 after all of the symtabs and dependencies have been read in.
2447 */
2448 scan_file_globals (pst -> objfile);
2449 #endif
2450
2451 /* Finish up the verbose info message. */
2452 if (info_verbose)
2453 {
2454 printf_filtered ("done.\n");
2455 fflush (stdout);
2456 }
2457 }
2458 }
2459 }
2460 }
2461
2462 /*
2463
2464 LOCAL FUNCTION
2465
2466 init_psymbol_list -- initialize storage for partial symbols
2467
2468 SYNOPSIS
2469
2470 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2471
2472 DESCRIPTION
2473
2474 Initializes storage for all of the partial symbols that will be
2475 created by dwarf_build_psymtabs and subsidiaries.
2476 */
2477
2478 static void
2479 init_psymbol_list (objfile, total_symbols)
2480 struct objfile *objfile;
2481 int total_symbols;
2482 {
2483 /* Free any previously allocated psymbol lists. */
2484
2485 if (objfile -> global_psymbols.list)
2486 {
2487 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2488 }
2489 if (objfile -> static_psymbols.list)
2490 {
2491 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2492 }
2493
2494 /* Current best guess is that there are approximately a twentieth
2495 of the total symbols (in a debugging file) are global or static
2496 oriented symbols */
2497
2498 objfile -> global_psymbols.size = total_symbols / 10;
2499 objfile -> static_psymbols.size = total_symbols / 10;
2500 objfile -> global_psymbols.next =
2501 objfile -> global_psymbols.list = (struct partial_symbol *)
2502 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2503 * sizeof (struct partial_symbol));
2504 objfile -> static_psymbols.next =
2505 objfile -> static_psymbols.list = (struct partial_symbol *)
2506 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2507 * sizeof (struct partial_symbol));
2508 }
2509
2510 /*
2511
2512 LOCAL FUNCTION
2513
2514 add_enum_psymbol -- add enumeration members to partial symbol table
2515
2516 DESCRIPTION
2517
2518 Given pointer to a DIE that is known to be for an enumeration,
2519 extract the symbolic names of the enumeration members and add
2520 partial symbols for them.
2521 */
2522
2523 static void
2524 add_enum_psymbol (dip, objfile)
2525 struct dieinfo *dip;
2526 struct objfile *objfile;
2527 {
2528 char *scan;
2529 char *listend;
2530 unsigned short blocksz;
2531 int nbytes;
2532
2533 if ((scan = dip -> at_element_list) != NULL)
2534 {
2535 if (dip -> short_element_list)
2536 {
2537 nbytes = attribute_size (AT_short_element_list);
2538 }
2539 else
2540 {
2541 nbytes = attribute_size (AT_element_list);
2542 }
2543 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2544 scan += nbytes;
2545 listend = scan + blocksz;
2546 while (scan < listend)
2547 {
2548 scan += TARGET_FT_LONG_SIZE (objfile);
2549 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2550 objfile -> static_psymbols, 0, cu_language,
2551 objfile);
2552 scan += strlen (scan) + 1;
2553 }
2554 }
2555 }
2556
2557 /*
2558
2559 LOCAL FUNCTION
2560
2561 add_partial_symbol -- add symbol to partial symbol table
2562
2563 DESCRIPTION
2564
2565 Given a DIE, if it is one of the types that we want to
2566 add to a partial symbol table, finish filling in the die info
2567 and then add a partial symbol table entry for it.
2568
2569 NOTES
2570
2571 The caller must ensure that the DIE has a valid name attribute.
2572 */
2573
2574 static void
2575 add_partial_symbol (dip, objfile)
2576 struct dieinfo *dip;
2577 struct objfile *objfile;
2578 {
2579 switch (dip -> die_tag)
2580 {
2581 case TAG_global_subroutine:
2582 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2583 VAR_NAMESPACE, LOC_BLOCK,
2584 objfile -> global_psymbols,
2585 dip -> at_low_pc, cu_language, objfile);
2586 break;
2587 case TAG_global_variable:
2588 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2589 VAR_NAMESPACE, LOC_STATIC,
2590 objfile -> global_psymbols,
2591 0, cu_language, objfile);
2592 break;
2593 case TAG_subroutine:
2594 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2595 VAR_NAMESPACE, LOC_BLOCK,
2596 objfile -> static_psymbols,
2597 dip -> at_low_pc, cu_language, objfile);
2598 break;
2599 case TAG_local_variable:
2600 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2601 VAR_NAMESPACE, LOC_STATIC,
2602 objfile -> static_psymbols,
2603 0, cu_language, objfile);
2604 break;
2605 case TAG_typedef:
2606 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2607 VAR_NAMESPACE, LOC_TYPEDEF,
2608 objfile -> static_psymbols,
2609 0, cu_language, objfile);
2610 break;
2611 case TAG_class_type:
2612 case TAG_structure_type:
2613 case TAG_union_type:
2614 case TAG_enumeration_type:
2615 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2616 STRUCT_NAMESPACE, LOC_TYPEDEF,
2617 objfile -> static_psymbols,
2618 0, cu_language, objfile);
2619 if (cu_language == language_cplus)
2620 {
2621 /* For C++, these implicitly act as typedefs as well. */
2622 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2623 VAR_NAMESPACE, LOC_TYPEDEF,
2624 objfile -> static_psymbols,
2625 0, cu_language, objfile);
2626 }
2627 break;
2628 }
2629 }
2630
2631 /*
2632
2633 LOCAL FUNCTION
2634
2635 scan_partial_symbols -- scan DIE's within a single compilation unit
2636
2637 DESCRIPTION
2638
2639 Process the DIE's within a single compilation unit, looking for
2640 interesting DIE's that contribute to the partial symbol table entry
2641 for this compilation unit.
2642
2643 NOTES
2644
2645 There are some DIE's that may appear both at file scope and within
2646 the scope of a function. We are only interested in the ones at file
2647 scope, and the only way to tell them apart is to keep track of the
2648 scope. For example, consider the test case:
2649
2650 static int i;
2651 main () { int j; }
2652
2653 for which the relevant DWARF segment has the structure:
2654
2655 0x51:
2656 0x23 global subrtn sibling 0x9b
2657 name main
2658 fund_type FT_integer
2659 low_pc 0x800004cc
2660 high_pc 0x800004d4
2661
2662 0x74:
2663 0x23 local var sibling 0x97
2664 name j
2665 fund_type FT_integer
2666 location OP_BASEREG 0xe
2667 OP_CONST 0xfffffffc
2668 OP_ADD
2669 0x97:
2670 0x4
2671
2672 0x9b:
2673 0x1d local var sibling 0xb8
2674 name i
2675 fund_type FT_integer
2676 location OP_ADDR 0x800025dc
2677
2678 0xb8:
2679 0x4
2680
2681 We want to include the symbol 'i' in the partial symbol table, but
2682 not the symbol 'j'. In essence, we want to skip all the dies within
2683 the scope of a TAG_global_subroutine DIE.
2684
2685 Don't attempt to add anonymous structures or unions since they have
2686 no name. Anonymous enumerations however are processed, because we
2687 want to extract their member names (the check for a tag name is
2688 done later).
2689
2690 Also, for variables and subroutines, check that this is the place
2691 where the actual definition occurs, rather than just a reference
2692 to an external.
2693 */
2694
2695 static void
2696 scan_partial_symbols (thisdie, enddie, objfile)
2697 char *thisdie;
2698 char *enddie;
2699 struct objfile *objfile;
2700 {
2701 char *nextdie;
2702 char *temp;
2703 struct dieinfo di;
2704
2705 while (thisdie < enddie)
2706 {
2707 basicdieinfo (&di, thisdie, objfile);
2708 if (di.die_length < SIZEOF_DIE_LENGTH)
2709 {
2710 break;
2711 }
2712 else
2713 {
2714 nextdie = thisdie + di.die_length;
2715 /* To avoid getting complete die information for every die, we
2716 only do it (below) for the cases we are interested in. */
2717 switch (di.die_tag)
2718 {
2719 case TAG_global_subroutine:
2720 case TAG_subroutine:
2721 completedieinfo (&di, objfile);
2722 if (di.at_name && (di.has_at_low_pc || di.at_location))
2723 {
2724 add_partial_symbol (&di, objfile);
2725 /* If there is a sibling attribute, adjust the nextdie
2726 pointer to skip the entire scope of the subroutine.
2727 Apply some sanity checking to make sure we don't
2728 overrun or underrun the range of remaining DIE's */
2729 if (di.at_sibling != 0)
2730 {
2731 temp = dbbase + di.at_sibling - dbroff;
2732 if ((temp < thisdie) || (temp >= enddie))
2733 {
2734 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2735 di.at_sibling);
2736 }
2737 else
2738 {
2739 nextdie = temp;
2740 }
2741 }
2742 }
2743 break;
2744 case TAG_global_variable:
2745 case TAG_local_variable:
2746 completedieinfo (&di, objfile);
2747 if (di.at_name && (di.has_at_low_pc || di.at_location))
2748 {
2749 add_partial_symbol (&di, objfile);
2750 }
2751 break;
2752 case TAG_typedef:
2753 case TAG_class_type:
2754 case TAG_structure_type:
2755 case TAG_union_type:
2756 completedieinfo (&di, objfile);
2757 if (di.at_name)
2758 {
2759 add_partial_symbol (&di, objfile);
2760 }
2761 break;
2762 case TAG_enumeration_type:
2763 completedieinfo (&di, objfile);
2764 if (di.at_name)
2765 {
2766 add_partial_symbol (&di, objfile);
2767 }
2768 add_enum_psymbol (&di, objfile);
2769 break;
2770 }
2771 }
2772 thisdie = nextdie;
2773 }
2774 }
2775
2776 /*
2777
2778 LOCAL FUNCTION
2779
2780 scan_compilation_units -- build a psymtab entry for each compilation
2781
2782 DESCRIPTION
2783
2784 This is the top level dwarf parsing routine for building partial
2785 symbol tables.
2786
2787 It scans from the beginning of the DWARF table looking for the first
2788 TAG_compile_unit DIE, and then follows the sibling chain to locate
2789 each additional TAG_compile_unit DIE.
2790
2791 For each TAG_compile_unit DIE it creates a partial symtab structure,
2792 calls a subordinate routine to collect all the compilation unit's
2793 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2794 new partial symtab structure into the partial symbol table. It also
2795 records the appropriate information in the partial symbol table entry
2796 to allow the chunk of DIE's and line number table for this compilation
2797 unit to be located and re-read later, to generate a complete symbol
2798 table entry for the compilation unit.
2799
2800 Thus it effectively partitions up a chunk of DIE's for multiple
2801 compilation units into smaller DIE chunks and line number tables,
2802 and associates them with a partial symbol table entry.
2803
2804 NOTES
2805
2806 If any compilation unit has no line number table associated with
2807 it for some reason (a missing at_stmt_list attribute, rather than
2808 just one with a value of zero, which is valid) then we ensure that
2809 the recorded file offset is zero so that the routine which later
2810 reads line number table fragments knows that there is no fragment
2811 to read.
2812
2813 RETURNS
2814
2815 Returns no value.
2816
2817 */
2818
2819 static void
2820 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2821 char *thisdie;
2822 char *enddie;
2823 file_ptr dbfoff;
2824 file_ptr lnoffset;
2825 struct objfile *objfile;
2826 {
2827 char *nextdie;
2828 struct dieinfo di;
2829 struct partial_symtab *pst;
2830 int culength;
2831 int curoff;
2832 file_ptr curlnoffset;
2833
2834 while (thisdie < enddie)
2835 {
2836 basicdieinfo (&di, thisdie, objfile);
2837 if (di.die_length < SIZEOF_DIE_LENGTH)
2838 {
2839 break;
2840 }
2841 else if (di.die_tag != TAG_compile_unit)
2842 {
2843 nextdie = thisdie + di.die_length;
2844 }
2845 else
2846 {
2847 completedieinfo (&di, objfile);
2848 set_cu_language (&di);
2849 if (di.at_sibling != 0)
2850 {
2851 nextdie = dbbase + di.at_sibling - dbroff;
2852 }
2853 else
2854 {
2855 nextdie = thisdie + di.die_length;
2856 }
2857 curoff = thisdie - dbbase;
2858 culength = nextdie - thisdie;
2859 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2860
2861 /* First allocate a new partial symbol table structure */
2862
2863 pst = start_psymtab_common (objfile, base_section_offsets,
2864 di.at_name, di.at_low_pc,
2865 objfile -> global_psymbols.next,
2866 objfile -> static_psymbols.next);
2867
2868 pst -> texthigh = di.at_high_pc;
2869 pst -> read_symtab_private = (char *)
2870 obstack_alloc (&objfile -> psymbol_obstack,
2871 sizeof (struct dwfinfo));
2872 DBFOFF (pst) = dbfoff;
2873 DBROFF (pst) = curoff;
2874 DBLENGTH (pst) = culength;
2875 LNFOFF (pst) = curlnoffset;
2876 pst -> read_symtab = dwarf_psymtab_to_symtab;
2877
2878 /* Now look for partial symbols */
2879
2880 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2881
2882 pst -> n_global_syms = objfile -> global_psymbols.next -
2883 (objfile -> global_psymbols.list + pst -> globals_offset);
2884 pst -> n_static_syms = objfile -> static_psymbols.next -
2885 (objfile -> static_psymbols.list + pst -> statics_offset);
2886 sort_pst_symbols (pst);
2887 /* If there is already a psymtab or symtab for a file of this name,
2888 remove it. (If there is a symtab, more drastic things also
2889 happen.) This happens in VxWorks. */
2890 free_named_symtabs (pst -> filename);
2891 }
2892 thisdie = nextdie;
2893 }
2894 }
2895
2896 /*
2897
2898 LOCAL FUNCTION
2899
2900 new_symbol -- make a symbol table entry for a new symbol
2901
2902 SYNOPSIS
2903
2904 static struct symbol *new_symbol (struct dieinfo *dip,
2905 struct objfile *objfile)
2906
2907 DESCRIPTION
2908
2909 Given a pointer to a DWARF information entry, figure out if we need
2910 to make a symbol table entry for it, and if so, create a new entry
2911 and return a pointer to it.
2912 */
2913
2914 static struct symbol *
2915 new_symbol (dip, objfile)
2916 struct dieinfo *dip;
2917 struct objfile *objfile;
2918 {
2919 struct symbol *sym = NULL;
2920
2921 if (dip -> at_name != NULL)
2922 {
2923 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2924 sizeof (struct symbol));
2925 memset (sym, 0, sizeof (struct symbol));
2926 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2927 &objfile->symbol_obstack);
2928 /* default assumptions */
2929 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2930 SYMBOL_CLASS (sym) = LOC_STATIC;
2931 SYMBOL_TYPE (sym) = decode_die_type (dip);
2932
2933 /* If this symbol is from a C++ compilation, then attempt to cache the
2934 demangled form for future reference. This is a typical time versus
2935 space tradeoff, that was decided in favor of time because it sped up
2936 C++ symbol lookups by a factor of about 20. */
2937
2938 SYMBOL_LANGUAGE (sym) = cu_language;
2939 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2940 switch (dip -> die_tag)
2941 {
2942 case TAG_label:
2943 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2944 SYMBOL_CLASS (sym) = LOC_LABEL;
2945 break;
2946 case TAG_global_subroutine:
2947 case TAG_subroutine:
2948 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2949 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2950 SYMBOL_CLASS (sym) = LOC_BLOCK;
2951 if (dip -> die_tag == TAG_global_subroutine)
2952 {
2953 add_symbol_to_list (sym, &global_symbols);
2954 }
2955 else
2956 {
2957 add_symbol_to_list (sym, list_in_scope);
2958 }
2959 break;
2960 case TAG_global_variable:
2961 if (dip -> at_location != NULL)
2962 {
2963 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2964 add_symbol_to_list (sym, &global_symbols);
2965 SYMBOL_CLASS (sym) = LOC_STATIC;
2966 SYMBOL_VALUE (sym) += baseaddr;
2967 }
2968 break;
2969 case TAG_local_variable:
2970 if (dip -> at_location != NULL)
2971 {
2972 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2973 add_symbol_to_list (sym, list_in_scope);
2974 if (isreg)
2975 {
2976 SYMBOL_CLASS (sym) = LOC_REGISTER;
2977 }
2978 else if (offreg)
2979 {
2980 SYMBOL_CLASS (sym) = LOC_BASEREG;
2981 SYMBOL_BASEREG (sym) = basereg;
2982 }
2983 else
2984 {
2985 SYMBOL_CLASS (sym) = LOC_STATIC;
2986 SYMBOL_VALUE (sym) += baseaddr;
2987 }
2988 }
2989 break;
2990 case TAG_formal_parameter:
2991 if (dip -> at_location != NULL)
2992 {
2993 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2994 }
2995 add_symbol_to_list (sym, list_in_scope);
2996 if (isreg)
2997 {
2998 SYMBOL_CLASS (sym) = LOC_REGPARM;
2999 }
3000 else if (offreg)
3001 {
3002 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3003 SYMBOL_BASEREG (sym) = basereg;
3004 }
3005 else
3006 {
3007 SYMBOL_CLASS (sym) = LOC_ARG;
3008 }
3009 break;
3010 case TAG_unspecified_parameters:
3011 /* From varargs functions; gdb doesn't seem to have any interest in
3012 this information, so just ignore it for now. (FIXME?) */
3013 break;
3014 case TAG_class_type:
3015 case TAG_structure_type:
3016 case TAG_union_type:
3017 case TAG_enumeration_type:
3018 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3019 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3020 add_symbol_to_list (sym, list_in_scope);
3021 break;
3022 case TAG_typedef:
3023 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3024 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3025 add_symbol_to_list (sym, list_in_scope);
3026 break;
3027 default:
3028 /* Not a tag we recognize. Hopefully we aren't processing trash
3029 data, but since we must specifically ignore things we don't
3030 recognize, there is nothing else we should do at this point. */
3031 break;
3032 }
3033 }
3034 return (sym);
3035 }
3036
3037 /*
3038
3039 LOCAL FUNCTION
3040
3041 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3042
3043 SYNOPSIS
3044
3045 static void synthesize_typedef (struct dieinfo *dip,
3046 struct objfile *objfile,
3047 struct type *type);
3048
3049 DESCRIPTION
3050
3051 Given a pointer to a DWARF information entry, synthesize a typedef
3052 for the name in the DIE, using the specified type.
3053
3054 This is used for C++ class, structs, unions, and enumerations to
3055 set up the tag name as a type.
3056
3057 */
3058
3059 static void
3060 synthesize_typedef (dip, objfile, type)
3061 struct dieinfo *dip;
3062 struct objfile *objfile;
3063 struct type *type;
3064 {
3065 struct symbol *sym = NULL;
3066
3067 if (dip -> at_name != NULL)
3068 {
3069 sym = (struct symbol *)
3070 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3071 memset (sym, 0, sizeof (struct symbol));
3072 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3073 &objfile->symbol_obstack);
3074 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3075 SYMBOL_TYPE (sym) = type;
3076 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3077 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3078 add_symbol_to_list (sym, list_in_scope);
3079 }
3080 }
3081
3082 /*
3083
3084 LOCAL FUNCTION
3085
3086 decode_mod_fund_type -- decode a modified fundamental type
3087
3088 SYNOPSIS
3089
3090 static struct type *decode_mod_fund_type (char *typedata)
3091
3092 DESCRIPTION
3093
3094 Decode a block of data containing a modified fundamental
3095 type specification. TYPEDATA is a pointer to the block,
3096 which starts with a length containing the size of the rest
3097 of the block. At the end of the block is a fundmental type
3098 code value that gives the fundamental type. Everything
3099 in between are type modifiers.
3100
3101 We simply compute the number of modifiers and call the general
3102 function decode_modified_type to do the actual work.
3103 */
3104
3105 static struct type *
3106 decode_mod_fund_type (typedata)
3107 char *typedata;
3108 {
3109 struct type *typep = NULL;
3110 unsigned short modcount;
3111 int nbytes;
3112
3113 /* Get the total size of the block, exclusive of the size itself */
3114
3115 nbytes = attribute_size (AT_mod_fund_type);
3116 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3117 typedata += nbytes;
3118
3119 /* Deduct the size of the fundamental type bytes at the end of the block. */
3120
3121 modcount -= attribute_size (AT_fund_type);
3122
3123 /* Now do the actual decoding */
3124
3125 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3126 return (typep);
3127 }
3128
3129 /*
3130
3131 LOCAL FUNCTION
3132
3133 decode_mod_u_d_type -- decode a modified user defined type
3134
3135 SYNOPSIS
3136
3137 static struct type *decode_mod_u_d_type (char *typedata)
3138
3139 DESCRIPTION
3140
3141 Decode a block of data containing a modified user defined
3142 type specification. TYPEDATA is a pointer to the block,
3143 which consists of a two byte length, containing the size
3144 of the rest of the block. At the end of the block is a
3145 four byte value that gives a reference to a user defined type.
3146 Everything in between are type modifiers.
3147
3148 We simply compute the number of modifiers and call the general
3149 function decode_modified_type to do the actual work.
3150 */
3151
3152 static struct type *
3153 decode_mod_u_d_type (typedata)
3154 char *typedata;
3155 {
3156 struct type *typep = NULL;
3157 unsigned short modcount;
3158 int nbytes;
3159
3160 /* Get the total size of the block, exclusive of the size itself */
3161
3162 nbytes = attribute_size (AT_mod_u_d_type);
3163 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3164 typedata += nbytes;
3165
3166 /* Deduct the size of the reference type bytes at the end of the block. */
3167
3168 modcount -= attribute_size (AT_user_def_type);
3169
3170 /* Now do the actual decoding */
3171
3172 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3173 return (typep);
3174 }
3175
3176 /*
3177
3178 LOCAL FUNCTION
3179
3180 decode_modified_type -- decode modified user or fundamental type
3181
3182 SYNOPSIS
3183
3184 static struct type *decode_modified_type (char *modifiers,
3185 unsigned short modcount, int mtype)
3186
3187 DESCRIPTION
3188
3189 Decode a modified type, either a modified fundamental type or
3190 a modified user defined type. MODIFIERS is a pointer to the
3191 block of bytes that define MODCOUNT modifiers. Immediately
3192 following the last modifier is a short containing the fundamental
3193 type or a long containing the reference to the user defined
3194 type. Which one is determined by MTYPE, which is either
3195 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3196 type we are generating.
3197
3198 We call ourself recursively to generate each modified type,`
3199 until MODCOUNT reaches zero, at which point we have consumed
3200 all the modifiers and generate either the fundamental type or
3201 user defined type. When the recursion unwinds, each modifier
3202 is applied in turn to generate the full modified type.
3203
3204 NOTES
3205
3206 If we find a modifier that we don't recognize, and it is not one
3207 of those reserved for application specific use, then we issue a
3208 warning and simply ignore the modifier.
3209
3210 BUGS
3211
3212 We currently ignore MOD_const and MOD_volatile. (FIXME)
3213
3214 */
3215
3216 static struct type *
3217 decode_modified_type (modifiers, modcount, mtype)
3218 char *modifiers;
3219 unsigned int modcount;
3220 int mtype;
3221 {
3222 struct type *typep = NULL;
3223 unsigned short fundtype;
3224 DIE_REF die_ref;
3225 char modifier;
3226 int nbytes;
3227
3228 if (modcount == 0)
3229 {
3230 switch (mtype)
3231 {
3232 case AT_mod_fund_type:
3233 nbytes = attribute_size (AT_fund_type);
3234 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3235 current_objfile);
3236 typep = decode_fund_type (fundtype);
3237 break;
3238 case AT_mod_u_d_type:
3239 nbytes = attribute_size (AT_user_def_type);
3240 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3241 current_objfile);
3242 if ((typep = lookup_utype (die_ref)) == NULL)
3243 {
3244 typep = alloc_utype (die_ref, NULL);
3245 }
3246 break;
3247 default:
3248 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3249 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3250 break;
3251 }
3252 }
3253 else
3254 {
3255 modifier = *modifiers++;
3256 typep = decode_modified_type (modifiers, --modcount, mtype);
3257 switch (modifier)
3258 {
3259 case MOD_pointer_to:
3260 typep = lookup_pointer_type (typep);
3261 break;
3262 case MOD_reference_to:
3263 typep = lookup_reference_type (typep);
3264 break;
3265 case MOD_const:
3266 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3267 break;
3268 case MOD_volatile:
3269 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3270 break;
3271 default:
3272 if (!(MOD_lo_user <= (unsigned char) modifier
3273 && (unsigned char) modifier <= MOD_hi_user))
3274 {
3275 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3276 }
3277 break;
3278 }
3279 }
3280 return (typep);
3281 }
3282
3283 /*
3284
3285 LOCAL FUNCTION
3286
3287 decode_fund_type -- translate basic DWARF type to gdb base type
3288
3289 DESCRIPTION
3290
3291 Given an integer that is one of the fundamental DWARF types,
3292 translate it to one of the basic internal gdb types and return
3293 a pointer to the appropriate gdb type (a "struct type *").
3294
3295 NOTES
3296
3297 For robustness, if we are asked to translate a fundamental
3298 type that we are unprepared to deal with, we return int so
3299 callers can always depend upon a valid type being returned,
3300 and so gdb may at least do something reasonable by default.
3301 If the type is not in the range of those types defined as
3302 application specific types, we also issue a warning.
3303 */
3304
3305 static struct type *
3306 decode_fund_type (fundtype)
3307 unsigned int fundtype;
3308 {
3309 struct type *typep = NULL;
3310
3311 switch (fundtype)
3312 {
3313
3314 case FT_void:
3315 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3316 break;
3317
3318 case FT_boolean: /* Was FT_set in AT&T version */
3319 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3320 break;
3321
3322 case FT_pointer: /* (void *) */
3323 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3324 typep = lookup_pointer_type (typep);
3325 break;
3326
3327 case FT_char:
3328 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3329 break;
3330
3331 case FT_signed_char:
3332 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3333 break;
3334
3335 case FT_unsigned_char:
3336 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3337 break;
3338
3339 case FT_short:
3340 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3341 break;
3342
3343 case FT_signed_short:
3344 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3345 break;
3346
3347 case FT_unsigned_short:
3348 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3349 break;
3350
3351 case FT_integer:
3352 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3353 break;
3354
3355 case FT_signed_integer:
3356 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3357 break;
3358
3359 case FT_unsigned_integer:
3360 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3361 break;
3362
3363 case FT_long:
3364 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3365 break;
3366
3367 case FT_signed_long:
3368 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3369 break;
3370
3371 case FT_unsigned_long:
3372 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3373 break;
3374
3375 case FT_long_long:
3376 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3377 break;
3378
3379 case FT_signed_long_long:
3380 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3381 break;
3382
3383 case FT_unsigned_long_long:
3384 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3385 break;
3386
3387 case FT_float:
3388 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3389 break;
3390
3391 case FT_dbl_prec_float:
3392 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3393 break;
3394
3395 case FT_ext_prec_float:
3396 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3397 break;
3398
3399 case FT_complex:
3400 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3401 break;
3402
3403 case FT_dbl_prec_complex:
3404 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3405 break;
3406
3407 case FT_ext_prec_complex:
3408 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3409 break;
3410
3411 }
3412
3413 if (typep == NULL)
3414 {
3415 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3416 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3417 {
3418 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3419 }
3420 }
3421
3422 return (typep);
3423 }
3424
3425 /*
3426
3427 LOCAL FUNCTION
3428
3429 create_name -- allocate a fresh copy of a string on an obstack
3430
3431 DESCRIPTION
3432
3433 Given a pointer to a string and a pointer to an obstack, allocates
3434 a fresh copy of the string on the specified obstack.
3435
3436 */
3437
3438 static char *
3439 create_name (name, obstackp)
3440 char *name;
3441 struct obstack *obstackp;
3442 {
3443 int length;
3444 char *newname;
3445
3446 length = strlen (name) + 1;
3447 newname = (char *) obstack_alloc (obstackp, length);
3448 strcpy (newname, name);
3449 return (newname);
3450 }
3451
3452 /*
3453
3454 LOCAL FUNCTION
3455
3456 basicdieinfo -- extract the minimal die info from raw die data
3457
3458 SYNOPSIS
3459
3460 void basicdieinfo (char *diep, struct dieinfo *dip,
3461 struct objfile *objfile)
3462
3463 DESCRIPTION
3464
3465 Given a pointer to raw DIE data, and a pointer to an instance of a
3466 die info structure, this function extracts the basic information
3467 from the DIE data required to continue processing this DIE, along
3468 with some bookkeeping information about the DIE.
3469
3470 The information we absolutely must have includes the DIE tag,
3471 and the DIE length. If we need the sibling reference, then we
3472 will have to call completedieinfo() to process all the remaining
3473 DIE information.
3474
3475 Note that since there is no guarantee that the data is properly
3476 aligned in memory for the type of access required (indirection
3477 through anything other than a char pointer), and there is no
3478 guarantee that it is in the same byte order as the gdb host,
3479 we call a function which deals with both alignment and byte
3480 swapping issues. Possibly inefficient, but quite portable.
3481
3482 We also take care of some other basic things at this point, such
3483 as ensuring that the instance of the die info structure starts
3484 out completely zero'd and that curdie is initialized for use
3485 in error reporting if we have a problem with the current die.
3486
3487 NOTES
3488
3489 All DIE's must have at least a valid length, thus the minimum
3490 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3491 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3492 are forced to be TAG_padding DIES.
3493
3494 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3495 that if a padding DIE is used for alignment and the amount needed is
3496 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3497 enough to align to the next alignment boundry.
3498
3499 We do some basic sanity checking here, such as verifying that the
3500 length of the die would not cause it to overrun the recorded end of
3501 the buffer holding the DIE info. If we find a DIE that is either
3502 too small or too large, we force it's length to zero which should
3503 cause the caller to take appropriate action.
3504 */
3505
3506 static void
3507 basicdieinfo (dip, diep, objfile)
3508 struct dieinfo *dip;
3509 char *diep;
3510 struct objfile *objfile;
3511 {
3512 curdie = dip;
3513 memset (dip, 0, sizeof (struct dieinfo));
3514 dip -> die = diep;
3515 dip -> die_ref = dbroff + (diep - dbbase);
3516 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3517 objfile);
3518 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3519 ((diep + dip -> die_length) > (dbbase + dbsize)))
3520 {
3521 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3522 dip -> die_length = 0;
3523 }
3524 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3525 {
3526 dip -> die_tag = TAG_padding;
3527 }
3528 else
3529 {
3530 diep += SIZEOF_DIE_LENGTH;
3531 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3532 objfile);
3533 }
3534 }
3535
3536 /*
3537
3538 LOCAL FUNCTION
3539
3540 completedieinfo -- finish reading the information for a given DIE
3541
3542 SYNOPSIS
3543
3544 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3545
3546 DESCRIPTION
3547
3548 Given a pointer to an already partially initialized die info structure,
3549 scan the raw DIE data and finish filling in the die info structure
3550 from the various attributes found.
3551
3552 Note that since there is no guarantee that the data is properly
3553 aligned in memory for the type of access required (indirection
3554 through anything other than a char pointer), and there is no
3555 guarantee that it is in the same byte order as the gdb host,
3556 we call a function which deals with both alignment and byte
3557 swapping issues. Possibly inefficient, but quite portable.
3558
3559 NOTES
3560
3561 Each time we are called, we increment the diecount variable, which
3562 keeps an approximate count of the number of dies processed for
3563 each compilation unit. This information is presented to the user
3564 if the info_verbose flag is set.
3565
3566 */
3567
3568 static void
3569 completedieinfo (dip, objfile)
3570 struct dieinfo *dip;
3571 struct objfile *objfile;
3572 {
3573 char *diep; /* Current pointer into raw DIE data */
3574 char *end; /* Terminate DIE scan here */
3575 unsigned short attr; /* Current attribute being scanned */
3576 unsigned short form; /* Form of the attribute */
3577 int nbytes; /* Size of next field to read */
3578
3579 diecount++;
3580 diep = dip -> die;
3581 end = diep + dip -> die_length;
3582 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3583 while (diep < end)
3584 {
3585 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3586 diep += SIZEOF_ATTRIBUTE;
3587 if ((nbytes = attribute_size (attr)) == -1)
3588 {
3589 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3590 diep = end;
3591 continue;
3592 }
3593 switch (attr)
3594 {
3595 case AT_fund_type:
3596 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3597 objfile);
3598 break;
3599 case AT_ordering:
3600 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3601 objfile);
3602 break;
3603 case AT_bit_offset:
3604 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3605 objfile);
3606 break;
3607 case AT_sibling:
3608 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3609 objfile);
3610 break;
3611 case AT_stmt_list:
3612 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3613 objfile);
3614 dip -> has_at_stmt_list = 1;
3615 break;
3616 case AT_low_pc:
3617 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3618 objfile);
3619 dip -> at_low_pc += baseaddr;
3620 dip -> has_at_low_pc = 1;
3621 break;
3622 case AT_high_pc:
3623 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3624 objfile);
3625 dip -> at_high_pc += baseaddr;
3626 break;
3627 case AT_language:
3628 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3629 objfile);
3630 break;
3631 case AT_user_def_type:
3632 dip -> at_user_def_type = target_to_host (diep, nbytes,
3633 GET_UNSIGNED, objfile);
3634 break;
3635 case AT_byte_size:
3636 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3637 objfile);
3638 dip -> has_at_byte_size = 1;
3639 break;
3640 case AT_bit_size:
3641 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3642 objfile);
3643 break;
3644 case AT_member:
3645 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3646 objfile);
3647 break;
3648 case AT_discr:
3649 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3650 objfile);
3651 break;
3652 case AT_location:
3653 dip -> at_location = diep;
3654 break;
3655 case AT_mod_fund_type:
3656 dip -> at_mod_fund_type = diep;
3657 break;
3658 case AT_subscr_data:
3659 dip -> at_subscr_data = diep;
3660 break;
3661 case AT_mod_u_d_type:
3662 dip -> at_mod_u_d_type = diep;
3663 break;
3664 case AT_element_list:
3665 dip -> at_element_list = diep;
3666 dip -> short_element_list = 0;
3667 break;
3668 case AT_short_element_list:
3669 dip -> at_element_list = diep;
3670 dip -> short_element_list = 1;
3671 break;
3672 case AT_discr_value:
3673 dip -> at_discr_value = diep;
3674 break;
3675 case AT_string_length:
3676 dip -> at_string_length = diep;
3677 break;
3678 case AT_name:
3679 dip -> at_name = diep;
3680 break;
3681 case AT_comp_dir:
3682 /* For now, ignore any "hostname:" portion, since gdb doesn't
3683 know how to deal with it. (FIXME). */
3684 dip -> at_comp_dir = strrchr (diep, ':');
3685 if (dip -> at_comp_dir != NULL)
3686 {
3687 dip -> at_comp_dir++;
3688 }
3689 else
3690 {
3691 dip -> at_comp_dir = diep;
3692 }
3693 break;
3694 case AT_producer:
3695 dip -> at_producer = diep;
3696 break;
3697 case AT_start_scope:
3698 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3699 objfile);
3700 break;
3701 case AT_stride_size:
3702 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3703 objfile);
3704 break;
3705 case AT_src_info:
3706 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3707 objfile);
3708 break;
3709 case AT_prototyped:
3710 dip -> at_prototyped = diep;
3711 break;
3712 default:
3713 /* Found an attribute that we are unprepared to handle. However
3714 it is specifically one of the design goals of DWARF that
3715 consumers should ignore unknown attributes. As long as the
3716 form is one that we recognize (so we know how to skip it),
3717 we can just ignore the unknown attribute. */
3718 break;
3719 }
3720 form = FORM_FROM_ATTR (attr);
3721 switch (form)
3722 {
3723 case FORM_DATA2:
3724 diep += 2;
3725 break;
3726 case FORM_DATA4:
3727 case FORM_REF:
3728 diep += 4;
3729 break;
3730 case FORM_DATA8:
3731 diep += 8;
3732 break;
3733 case FORM_ADDR:
3734 diep += TARGET_FT_POINTER_SIZE (objfile);
3735 break;
3736 case FORM_BLOCK2:
3737 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3738 break;
3739 case FORM_BLOCK4:
3740 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3741 break;
3742 case FORM_STRING:
3743 diep += strlen (diep) + 1;
3744 break;
3745 default:
3746 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3747 diep = end;
3748 break;
3749 }
3750 }
3751 }
3752
3753 /*
3754
3755 LOCAL FUNCTION
3756
3757 target_to_host -- swap in target data to host
3758
3759 SYNOPSIS
3760
3761 target_to_host (char *from, int nbytes, int signextend,
3762 struct objfile *objfile)
3763
3764 DESCRIPTION
3765
3766 Given pointer to data in target format in FROM, a byte count for
3767 the size of the data in NBYTES, a flag indicating whether or not
3768 the data is signed in SIGNEXTEND, and a pointer to the current
3769 objfile in OBJFILE, convert the data to host format and return
3770 the converted value.
3771
3772 NOTES
3773
3774 FIXME: If we read data that is known to be signed, and expect to
3775 use it as signed data, then we need to explicitly sign extend the
3776 result until the bfd library is able to do this for us.
3777
3778 */
3779
3780 static unsigned long
3781 target_to_host (from, nbytes, signextend, objfile)
3782 char *from;
3783 int nbytes;
3784 int signextend; /* FIXME: Unused */
3785 struct objfile *objfile;
3786 {
3787 unsigned long rtnval;
3788
3789 switch (nbytes)
3790 {
3791 case 8:
3792 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3793 break;
3794 case 4:
3795 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3796 break;
3797 case 2:
3798 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3799 break;
3800 case 1:
3801 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3802 break;
3803 default:
3804 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3805 rtnval = 0;
3806 break;
3807 }
3808 return (rtnval);
3809 }
3810
3811 /*
3812
3813 LOCAL FUNCTION
3814
3815 attribute_size -- compute size of data for a DWARF attribute
3816
3817 SYNOPSIS
3818
3819 static int attribute_size (unsigned int attr)
3820
3821 DESCRIPTION
3822
3823 Given a DWARF attribute in ATTR, compute the size of the first
3824 piece of data associated with this attribute and return that
3825 size.
3826
3827 Returns -1 for unrecognized attributes.
3828
3829 */
3830
3831 static int
3832 attribute_size (attr)
3833 unsigned int attr;
3834 {
3835 int nbytes; /* Size of next data for this attribute */
3836 unsigned short form; /* Form of the attribute */
3837
3838 form = FORM_FROM_ATTR (attr);
3839 switch (form)
3840 {
3841 case FORM_STRING: /* A variable length field is next */
3842 nbytes = 0;
3843 break;
3844 case FORM_DATA2: /* Next 2 byte field is the data itself */
3845 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3846 nbytes = 2;
3847 break;
3848 case FORM_DATA4: /* Next 4 byte field is the data itself */
3849 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3850 case FORM_REF: /* Next 4 byte field is a DIE offset */
3851 nbytes = 4;
3852 break;
3853 case FORM_DATA8: /* Next 8 byte field is the data itself */
3854 nbytes = 8;
3855 break;
3856 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3857 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3858 break;
3859 default:
3860 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3861 nbytes = -1;
3862 break;
3863 }
3864 return (nbytes);
3865 }
This page took 0.110488 seconds and 4 git commands to generate.