* dwarfread.c (bfd.h): Don't include.
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "symtab.h"
43 #include "gdbtypes.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "elf/dwarf.h"
47 #include "buildsym.h"
48 #include "demangle.h"
49 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
50 #include "language.h"
51 #include "complaints.h"
52
53 #include <fcntl.h>
54 #include <string.h>
55
56 #ifndef NO_SYS_FILE
57 #include <sys/file.h>
58 #endif
59
60 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
61 #ifndef L_SET
62 #define L_SET 0
63 #endif
64
65 /* Some macros to provide DIE info for complaints. */
66
67 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
68 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
69
70 /* Complaints that can be issued during DWARF debug info reading. */
71
72 struct complaint no_bfd_get_N =
73 {
74 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
75 };
76
77 struct complaint malformed_die =
78 {
79 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
80 };
81
82 struct complaint bad_die_ref =
83 {
84 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
85 };
86
87 struct complaint unknown_attribute_form =
88 {
89 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
90 };
91
92 struct complaint unknown_attribute_length =
93 {
94 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
95 };
96
97 struct complaint unexpected_fund_type =
98 {
99 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
100 };
101
102 struct complaint unknown_type_modifier =
103 {
104 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
105 };
106
107 struct complaint volatile_ignored =
108 {
109 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
110 };
111
112 struct complaint const_ignored =
113 {
114 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
115 };
116
117 struct complaint botched_modified_type =
118 {
119 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
120 };
121
122 struct complaint op_deref2 =
123 {
124 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
125 };
126
127 struct complaint op_deref4 =
128 {
129 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
130 };
131
132 struct complaint basereg_not_handled =
133 {
134 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
135 };
136
137 struct complaint dup_user_type_allocation =
138 {
139 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
140 };
141
142 struct complaint dup_user_type_definition =
143 {
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
145 };
146
147 struct complaint missing_tag =
148 {
149 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
150 };
151
152 struct complaint bad_array_element_type =
153 {
154 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
155 };
156
157 struct complaint subscript_data_items =
158 {
159 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
160 };
161
162 struct complaint unhandled_array_subscript_format =
163 {
164 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
165 };
166
167 struct complaint unknown_array_subscript_format =
168 {
169 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
170 };
171
172 struct complaint not_row_major =
173 {
174 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
175 };
176
177 typedef unsigned int DIE_REF; /* Reference to a DIE */
178
179 #ifndef GCC_PRODUCER
180 #define GCC_PRODUCER "GNU C "
181 #endif
182
183 #ifndef GPLUS_PRODUCER
184 #define GPLUS_PRODUCER "GNU C++ "
185 #endif
186
187 #ifndef LCC_PRODUCER
188 #define LCC_PRODUCER "NCR C/C++"
189 #endif
190
191 #ifndef CHILL_PRODUCER
192 #define CHILL_PRODUCER "GNU Chill "
193 #endif
194
195 /* Flags to target_to_host() that tell whether or not the data object is
196 expected to be signed. Used, for example, when fetching a signed
197 integer in the target environment which is used as a signed integer
198 in the host environment, and the two environments have different sized
199 ints. In this case, *somebody* has to sign extend the smaller sized
200 int. */
201
202 #define GET_UNSIGNED 0 /* No sign extension required */
203 #define GET_SIGNED 1 /* Sign extension required */
204
205 /* Defines for things which are specified in the document "DWARF Debugging
206 Information Format" published by UNIX International, Programming Languages
207 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
208
209 #define SIZEOF_DIE_LENGTH 4
210 #define SIZEOF_DIE_TAG 2
211 #define SIZEOF_ATTRIBUTE 2
212 #define SIZEOF_FORMAT_SPECIFIER 1
213 #define SIZEOF_FMT_FT 2
214 #define SIZEOF_LINETBL_LENGTH 4
215 #define SIZEOF_LINETBL_LINENO 4
216 #define SIZEOF_LINETBL_STMT 2
217 #define SIZEOF_LINETBL_DELTA 4
218 #define SIZEOF_LOC_ATOM_CODE 1
219
220 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
221
222 /* Macros that return the sizes of various types of data in the target
223 environment.
224
225 FIXME: Currently these are just compile time constants (as they are in
226 other parts of gdb as well). They need to be able to get the right size
227 either from the bfd or possibly from the DWARF info. It would be nice if
228 the DWARF producer inserted DIES that describe the fundamental types in
229 the target environment into the DWARF info, similar to the way dbx stabs
230 producers produce information about their fundamental types. */
231
232 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
233 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
234
235 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
236 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
237 However, the Issue 2 DWARF specification from AT&T defines it as
238 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
239 For backwards compatibility with the AT&T compiler produced executables
240 we define AT_short_element_list for this variant. */
241
242 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
243
244 /* External variables referenced. */
245
246 extern int info_verbose; /* From main.c; nonzero => verbose */
247 extern char *warning_pre_print; /* From utils.c */
248
249 /* The DWARF debugging information consists of two major pieces,
250 one is a block of DWARF Information Entries (DIE's) and the other
251 is a line number table. The "struct dieinfo" structure contains
252 the information for a single DIE, the one currently being processed.
253
254 In order to make it easier to randomly access the attribute fields
255 of the current DIE, which are specifically unordered within the DIE,
256 each DIE is scanned and an instance of the "struct dieinfo"
257 structure is initialized.
258
259 Initialization is done in two levels. The first, done by basicdieinfo(),
260 just initializes those fields that are vital to deciding whether or not
261 to use this DIE, how to skip past it, etc. The second, done by the
262 function completedieinfo(), fills in the rest of the information.
263
264 Attributes which have block forms are not interpreted at the time
265 the DIE is scanned, instead we just save pointers to the start
266 of their value fields.
267
268 Some fields have a flag <name>_p that is set when the value of the
269 field is valid (I.E. we found a matching attribute in the DIE). Since
270 we may want to test for the presence of some attributes in the DIE,
271 such as AT_low_pc, without restricting the values of the field,
272 we need someway to note that we found such an attribute.
273
274 */
275
276 typedef char BLOCK;
277
278 struct dieinfo {
279 char * die; /* Pointer to the raw DIE data */
280 unsigned long die_length; /* Length of the raw DIE data */
281 DIE_REF die_ref; /* Offset of this DIE */
282 unsigned short die_tag; /* Tag for this DIE */
283 unsigned long at_padding;
284 unsigned long at_sibling;
285 BLOCK * at_location;
286 char * at_name;
287 unsigned short at_fund_type;
288 BLOCK * at_mod_fund_type;
289 unsigned long at_user_def_type;
290 BLOCK * at_mod_u_d_type;
291 unsigned short at_ordering;
292 BLOCK * at_subscr_data;
293 unsigned long at_byte_size;
294 unsigned short at_bit_offset;
295 unsigned long at_bit_size;
296 BLOCK * at_element_list;
297 unsigned long at_stmt_list;
298 unsigned long at_low_pc;
299 unsigned long at_high_pc;
300 unsigned long at_language;
301 unsigned long at_member;
302 unsigned long at_discr;
303 BLOCK * at_discr_value;
304 BLOCK * at_string_length;
305 char * at_comp_dir;
306 char * at_producer;
307 unsigned long at_start_scope;
308 unsigned long at_stride_size;
309 unsigned long at_src_info;
310 char * at_prototyped;
311 unsigned int has_at_low_pc:1;
312 unsigned int has_at_stmt_list:1;
313 unsigned int has_at_byte_size:1;
314 unsigned int short_element_list:1;
315 };
316
317 static int diecount; /* Approximate count of dies for compilation unit */
318 static struct dieinfo *curdie; /* For warnings and such */
319
320 static char *dbbase; /* Base pointer to dwarf info */
321 static int dbsize; /* Size of dwarf info in bytes */
322 static int dbroff; /* Relative offset from start of .debug section */
323 static char *lnbase; /* Base pointer to line section */
324 static int isreg; /* Kludge to identify register variables */
325 /* Kludge to identify basereg references. Nonzero if we have an offset
326 relative to a basereg. */
327 static int offreg;
328 /* Which base register is it relative to? */
329 static int basereg;
330
331 /* This value is added to each symbol value. FIXME: Generalize to
332 the section_offsets structure used by dbxread (once this is done,
333 pass the appropriate section number to end_symtab). */
334 static CORE_ADDR baseaddr; /* Add to each symbol value */
335
336 /* The section offsets used in the current psymtab or symtab. FIXME,
337 only used to pass one value (baseaddr) at the moment. */
338 static struct section_offsets *base_section_offsets;
339
340 /* Each partial symbol table entry contains a pointer to private data for the
341 read_symtab() function to use when expanding a partial symbol table entry
342 to a full symbol table entry. For DWARF debugging info, this data is
343 contained in the following structure and macros are provided for easy
344 access to the members given a pointer to a partial symbol table entry.
345
346 dbfoff Always the absolute file offset to the start of the ".debug"
347 section for the file containing the DIE's being accessed.
348
349 dbroff Relative offset from the start of the ".debug" access to the
350 first DIE to be accessed. When building the partial symbol
351 table, this value will be zero since we are accessing the
352 entire ".debug" section. When expanding a partial symbol
353 table entry, this value will be the offset to the first
354 DIE for the compilation unit containing the symbol that
355 triggers the expansion.
356
357 dblength The size of the chunk of DIE's being examined, in bytes.
358
359 lnfoff The absolute file offset to the line table fragment. Ignored
360 when building partial symbol tables, but used when expanding
361 them, and contains the absolute file offset to the fragment
362 of the ".line" section containing the line numbers for the
363 current compilation unit.
364 */
365
366 struct dwfinfo {
367 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
368 int dbroff; /* Relative offset from start of .debug section */
369 int dblength; /* Size of the chunk of DIE's being examined */
370 file_ptr lnfoff; /* Absolute file offset to line table fragment */
371 };
372
373 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
374 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
375 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
376 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
377
378 /* The generic symbol table building routines have separate lists for
379 file scope symbols and all all other scopes (local scopes). So
380 we need to select the right one to pass to add_symbol_to_list().
381 We do it by keeping a pointer to the correct list in list_in_scope.
382
383 FIXME: The original dwarf code just treated the file scope as the first
384 local scope, and all other local scopes as nested local scopes, and worked
385 fine. Check to see if we really need to distinguish these in buildsym.c */
386
387 struct pending **list_in_scope = &file_symbols;
388
389 /* DIES which have user defined types or modified user defined types refer to
390 other DIES for the type information. Thus we need to associate the offset
391 of a DIE for a user defined type with a pointer to the type information.
392
393 Originally this was done using a simple but expensive algorithm, with an
394 array of unsorted structures, each containing an offset/type-pointer pair.
395 This array was scanned linearly each time a lookup was done. The result
396 was that gdb was spending over half it's startup time munging through this
397 array of pointers looking for a structure that had the right offset member.
398
399 The second attempt used the same array of structures, but the array was
400 sorted using qsort each time a new offset/type was recorded, and a binary
401 search was used to find the type pointer for a given DIE offset. This was
402 even slower, due to the overhead of sorting the array each time a new
403 offset/type pair was entered.
404
405 The third attempt uses a fixed size array of type pointers, indexed by a
406 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
407 we can divide any DIE offset by 4 to obtain a unique index into this fixed
408 size array. Since each element is a 4 byte pointer, it takes exactly as
409 much memory to hold this array as to hold the DWARF info for a given
410 compilation unit. But it gets freed as soon as we are done with it.
411 This has worked well in practice, as a reasonable tradeoff between memory
412 consumption and speed, without having to resort to much more complicated
413 algorithms. */
414
415 static struct type **utypes; /* Pointer to array of user type pointers */
416 static int numutypes; /* Max number of user type pointers */
417
418 /* Maintain an array of referenced fundamental types for the current
419 compilation unit being read. For DWARF version 1, we have to construct
420 the fundamental types on the fly, since no information about the
421 fundamental types is supplied. Each such fundamental type is created by
422 calling a language dependent routine to create the type, and then a
423 pointer to that type is then placed in the array at the index specified
424 by it's FT_<TYPENAME> value. The array has a fixed size set by the
425 FT_NUM_MEMBERS compile time constant, which is the number of predefined
426 fundamental types gdb knows how to construct. */
427
428 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
429
430 /* Record the language for the compilation unit which is currently being
431 processed. We know it once we have seen the TAG_compile_unit DIE,
432 and we need it while processing the DIE's for that compilation unit.
433 It is eventually saved in the symtab structure, but we don't finalize
434 the symtab struct until we have processed all the DIE's for the
435 compilation unit. We also need to get and save a pointer to the
436 language struct for this language, so we can call the language
437 dependent routines for doing things such as creating fundamental
438 types. */
439
440 static enum language cu_language;
441 static const struct language_defn *cu_language_defn;
442
443 /* Forward declarations of static functions so we don't have to worry
444 about ordering within this file. */
445
446 static int
447 attribute_size PARAMS ((unsigned int));
448
449 static unsigned long
450 target_to_host PARAMS ((char *, int, int, struct objfile *));
451
452 static void
453 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
454
455 static void
456 handle_producer PARAMS ((char *));
457
458 static void
459 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
460
461 static void
462 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
463
464 static void
465 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
466 struct objfile *));
467
468 static void
469 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
470
471 static void
472 scan_compilation_units PARAMS ((char *, char *, file_ptr,
473 file_ptr, struct objfile *));
474
475 static void
476 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
477
478 static void
479 init_psymbol_list PARAMS ((struct objfile *, int));
480
481 static void
482 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
483
484 static void
485 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
486
487 static void
488 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
489
490 static void
491 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
492
493 static void
494 read_ofile_symtab PARAMS ((struct partial_symtab *));
495
496 static void
497 process_dies PARAMS ((char *, char *, struct objfile *));
498
499 static void
500 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
501 struct objfile *));
502
503 static struct type *
504 decode_array_element_type PARAMS ((char *));
505
506 static struct type *
507 decode_subscript_data_item PARAMS ((char *, char *));
508
509 static void
510 dwarf_read_array_type PARAMS ((struct dieinfo *));
511
512 static void
513 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
514
515 static void
516 read_tag_string_type PARAMS ((struct dieinfo *dip));
517
518 static void
519 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
520
521 static void
522 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
523
524 static struct type *
525 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
526
527 static struct type *
528 enum_type PARAMS ((struct dieinfo *, struct objfile *));
529
530 static void
531 decode_line_numbers PARAMS ((char *));
532
533 static struct type *
534 decode_die_type PARAMS ((struct dieinfo *));
535
536 static struct type *
537 decode_mod_fund_type PARAMS ((char *));
538
539 static struct type *
540 decode_mod_u_d_type PARAMS ((char *));
541
542 static struct type *
543 decode_modified_type PARAMS ((char *, unsigned int, int));
544
545 static struct type *
546 decode_fund_type PARAMS ((unsigned int));
547
548 static char *
549 create_name PARAMS ((char *, struct obstack *));
550
551 static struct type *
552 lookup_utype PARAMS ((DIE_REF));
553
554 static struct type *
555 alloc_utype PARAMS ((DIE_REF, struct type *));
556
557 static struct symbol *
558 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
559
560 static void
561 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
562 struct type *));
563
564 static int
565 locval PARAMS ((char *));
566
567 static void
568 set_cu_language PARAMS ((struct dieinfo *));
569
570 static struct type *
571 dwarf_fundamental_type PARAMS ((struct objfile *, int));
572
573
574 /*
575
576 LOCAL FUNCTION
577
578 dwarf_fundamental_type -- lookup or create a fundamental type
579
580 SYNOPSIS
581
582 struct type *
583 dwarf_fundamental_type (struct objfile *objfile, int typeid)
584
585 DESCRIPTION
586
587 DWARF version 1 doesn't supply any fundamental type information,
588 so gdb has to construct such types. It has a fixed number of
589 fundamental types that it knows how to construct, which is the
590 union of all types that it knows how to construct for all languages
591 that it knows about. These are enumerated in gdbtypes.h.
592
593 As an example, assume we find a DIE that references a DWARF
594 fundamental type of FT_integer. We first look in the ftypes
595 array to see if we already have such a type, indexed by the
596 gdb internal value of FT_INTEGER. If so, we simply return a
597 pointer to that type. If not, then we ask an appropriate
598 language dependent routine to create a type FT_INTEGER, using
599 defaults reasonable for the current target machine, and install
600 that type in ftypes for future reference.
601
602 RETURNS
603
604 Pointer to a fundamental type.
605
606 */
607
608 static struct type *
609 dwarf_fundamental_type (objfile, typeid)
610 struct objfile *objfile;
611 int typeid;
612 {
613 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
614 {
615 error ("internal error - invalid fundamental type id %d", typeid);
616 }
617
618 /* Look for this particular type in the fundamental type vector. If one is
619 not found, create and install one appropriate for the current language
620 and the current target machine. */
621
622 if (ftypes[typeid] == NULL)
623 {
624 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
625 }
626
627 return (ftypes[typeid]);
628 }
629
630 /*
631
632 LOCAL FUNCTION
633
634 set_cu_language -- set local copy of language for compilation unit
635
636 SYNOPSIS
637
638 void
639 set_cu_language (struct dieinfo *dip)
640
641 DESCRIPTION
642
643 Decode the language attribute for a compilation unit DIE and
644 remember what the language was. We use this at various times
645 when processing DIE's for a given compilation unit.
646
647 RETURNS
648
649 No return value.
650
651 */
652
653 static void
654 set_cu_language (dip)
655 struct dieinfo *dip;
656 {
657 switch (dip -> at_language)
658 {
659 case LANG_C89:
660 case LANG_C:
661 cu_language = language_c;
662 break;
663 case LANG_C_PLUS_PLUS:
664 cu_language = language_cplus;
665 break;
666 case LANG_CHILL:
667 cu_language = language_chill;
668 break;
669 case LANG_MODULA2:
670 cu_language = language_m2;
671 break;
672 case LANG_ADA83:
673 case LANG_COBOL74:
674 case LANG_COBOL85:
675 case LANG_FORTRAN77:
676 case LANG_FORTRAN90:
677 case LANG_PASCAL83:
678 /* We don't know anything special about these yet. */
679 cu_language = language_unknown;
680 break;
681 default:
682 /* If no at_language, try to deduce one from the filename */
683 cu_language = deduce_language_from_filename (dip -> at_name);
684 break;
685 }
686 cu_language_defn = language_def (cu_language);
687 }
688
689 /*
690
691 GLOBAL FUNCTION
692
693 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
694
695 SYNOPSIS
696
697 void dwarf_build_psymtabs (struct objfile *objfile,
698 struct section_offsets *section_offsets,
699 int mainline, file_ptr dbfoff, unsigned int dbfsize,
700 file_ptr lnoffset, unsigned int lnsize)
701
702 DESCRIPTION
703
704 This function is called upon to build partial symtabs from files
705 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
706
707 It is passed a bfd* containing the DIES
708 and line number information, the corresponding filename for that
709 file, a base address for relocating the symbols, a flag indicating
710 whether or not this debugging information is from a "main symbol
711 table" rather than a shared library or dynamically linked file,
712 and file offset/size pairs for the DIE information and line number
713 information.
714
715 RETURNS
716
717 No return value.
718
719 */
720
721 void
722 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
723 lnoffset, lnsize)
724 struct objfile *objfile;
725 struct section_offsets *section_offsets;
726 int mainline;
727 file_ptr dbfoff;
728 unsigned int dbfsize;
729 file_ptr lnoffset;
730 unsigned int lnsize;
731 {
732 bfd *abfd = objfile->obfd;
733 struct cleanup *back_to;
734
735 current_objfile = objfile;
736 dbsize = dbfsize;
737 dbbase = xmalloc (dbsize);
738 dbroff = 0;
739 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
740 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
741 {
742 free (dbbase);
743 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
744 }
745 back_to = make_cleanup (free, dbbase);
746
747 /* If we are reinitializing, or if we have never loaded syms yet, init.
748 Since we have no idea how many DIES we are looking at, we just guess
749 some arbitrary value. */
750
751 if (mainline || objfile -> global_psymbols.size == 0 ||
752 objfile -> static_psymbols.size == 0)
753 {
754 init_psymbol_list (objfile, 1024);
755 }
756
757 /* Save the relocation factor where everybody can see it. */
758
759 base_section_offsets = section_offsets;
760 baseaddr = ANOFFSET (section_offsets, 0);
761
762 /* Follow the compilation unit sibling chain, building a partial symbol
763 table entry for each one. Save enough information about each compilation
764 unit to locate the full DWARF information later. */
765
766 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
767
768 do_cleanups (back_to);
769 current_objfile = NULL;
770 }
771
772 /*
773
774 LOCAL FUNCTION
775
776 read_lexical_block_scope -- process all dies in a lexical block
777
778 SYNOPSIS
779
780 static void read_lexical_block_scope (struct dieinfo *dip,
781 char *thisdie, char *enddie)
782
783 DESCRIPTION
784
785 Process all the DIES contained within a lexical block scope.
786 Start a new scope, process the dies, and then close the scope.
787
788 */
789
790 static void
791 read_lexical_block_scope (dip, thisdie, enddie, objfile)
792 struct dieinfo *dip;
793 char *thisdie;
794 char *enddie;
795 struct objfile *objfile;
796 {
797 register struct context_stack *new;
798
799 push_context (0, dip -> at_low_pc);
800 process_dies (thisdie + dip -> die_length, enddie, objfile);
801 new = pop_context ();
802 if (local_symbols != NULL)
803 {
804 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
805 dip -> at_high_pc, objfile);
806 }
807 local_symbols = new -> locals;
808 }
809
810 /*
811
812 LOCAL FUNCTION
813
814 lookup_utype -- look up a user defined type from die reference
815
816 SYNOPSIS
817
818 static type *lookup_utype (DIE_REF die_ref)
819
820 DESCRIPTION
821
822 Given a DIE reference, lookup the user defined type associated with
823 that DIE, if it has been registered already. If not registered, then
824 return NULL. Alloc_utype() can be called to register an empty
825 type for this reference, which will be filled in later when the
826 actual referenced DIE is processed.
827 */
828
829 static struct type *
830 lookup_utype (die_ref)
831 DIE_REF die_ref;
832 {
833 struct type *type = NULL;
834 int utypeidx;
835
836 utypeidx = (die_ref - dbroff) / 4;
837 if ((utypeidx < 0) || (utypeidx >= numutypes))
838 {
839 complain (&bad_die_ref, DIE_ID, DIE_NAME);
840 }
841 else
842 {
843 type = *(utypes + utypeidx);
844 }
845 return (type);
846 }
847
848
849 /*
850
851 LOCAL FUNCTION
852
853 alloc_utype -- add a user defined type for die reference
854
855 SYNOPSIS
856
857 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
858
859 DESCRIPTION
860
861 Given a die reference DIE_REF, and a possible pointer to a user
862 defined type UTYPEP, register that this reference has a user
863 defined type and either use the specified type in UTYPEP or
864 make a new empty type that will be filled in later.
865
866 We should only be called after calling lookup_utype() to verify that
867 there is not currently a type registered for DIE_REF.
868 */
869
870 static struct type *
871 alloc_utype (die_ref, utypep)
872 DIE_REF die_ref;
873 struct type *utypep;
874 {
875 struct type **typep;
876 int utypeidx;
877
878 utypeidx = (die_ref - dbroff) / 4;
879 typep = utypes + utypeidx;
880 if ((utypeidx < 0) || (utypeidx >= numutypes))
881 {
882 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
883 complain (&bad_die_ref, DIE_ID, DIE_NAME);
884 }
885 else if (*typep != NULL)
886 {
887 utypep = *typep;
888 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
889 }
890 else
891 {
892 if (utypep == NULL)
893 {
894 utypep = alloc_type (current_objfile);
895 }
896 *typep = utypep;
897 }
898 return (utypep);
899 }
900
901 /*
902
903 LOCAL FUNCTION
904
905 decode_die_type -- return a type for a specified die
906
907 SYNOPSIS
908
909 static struct type *decode_die_type (struct dieinfo *dip)
910
911 DESCRIPTION
912
913 Given a pointer to a die information structure DIP, decode the
914 type of the die and return a pointer to the decoded type. All
915 dies without specific types default to type int.
916 */
917
918 static struct type *
919 decode_die_type (dip)
920 struct dieinfo *dip;
921 {
922 struct type *type = NULL;
923
924 if (dip -> at_fund_type != 0)
925 {
926 type = decode_fund_type (dip -> at_fund_type);
927 }
928 else if (dip -> at_mod_fund_type != NULL)
929 {
930 type = decode_mod_fund_type (dip -> at_mod_fund_type);
931 }
932 else if (dip -> at_user_def_type)
933 {
934 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
935 {
936 type = alloc_utype (dip -> at_user_def_type, NULL);
937 }
938 }
939 else if (dip -> at_mod_u_d_type)
940 {
941 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
942 }
943 else
944 {
945 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
946 }
947 return (type);
948 }
949
950 /*
951
952 LOCAL FUNCTION
953
954 struct_type -- compute and return the type for a struct or union
955
956 SYNOPSIS
957
958 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
959 char *enddie, struct objfile *objfile)
960
961 DESCRIPTION
962
963 Given pointer to a die information structure for a die which
964 defines a union or structure (and MUST define one or the other),
965 and pointers to the raw die data that define the range of dies which
966 define the members, compute and return the user defined type for the
967 structure or union.
968 */
969
970 static struct type *
971 struct_type (dip, thisdie, enddie, objfile)
972 struct dieinfo *dip;
973 char *thisdie;
974 char *enddie;
975 struct objfile *objfile;
976 {
977 struct type *type;
978 struct nextfield {
979 struct nextfield *next;
980 struct field field;
981 };
982 struct nextfield *list = NULL;
983 struct nextfield *new;
984 int nfields = 0;
985 int n;
986 struct dieinfo mbr;
987 char *nextdie;
988 #if !BITS_BIG_ENDIAN
989 int anonymous_size;
990 #endif
991
992 if ((type = lookup_utype (dip -> die_ref)) == NULL)
993 {
994 /* No forward references created an empty type, so install one now */
995 type = alloc_utype (dip -> die_ref, NULL);
996 }
997 INIT_CPLUS_SPECIFIC(type);
998 switch (dip -> die_tag)
999 {
1000 case TAG_class_type:
1001 TYPE_CODE (type) = TYPE_CODE_CLASS;
1002 break;
1003 case TAG_structure_type:
1004 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1005 break;
1006 case TAG_union_type:
1007 TYPE_CODE (type) = TYPE_CODE_UNION;
1008 break;
1009 default:
1010 /* Should never happen */
1011 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1012 complain (&missing_tag, DIE_ID, DIE_NAME);
1013 break;
1014 }
1015 /* Some compilers try to be helpful by inventing "fake" names for
1016 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1017 Thanks, but no thanks... */
1018 if (dip -> at_name != NULL
1019 && *dip -> at_name != '~'
1020 && *dip -> at_name != '.')
1021 {
1022 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1023 "", "", dip -> at_name);
1024 }
1025 /* Use whatever size is known. Zero is a valid size. We might however
1026 wish to check has_at_byte_size to make sure that some byte size was
1027 given explicitly, but DWARF doesn't specify that explicit sizes of
1028 zero have to present, so complaining about missing sizes should
1029 probably not be the default. */
1030 TYPE_LENGTH (type) = dip -> at_byte_size;
1031 thisdie += dip -> die_length;
1032 while (thisdie < enddie)
1033 {
1034 basicdieinfo (&mbr, thisdie, objfile);
1035 completedieinfo (&mbr, objfile);
1036 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1037 {
1038 break;
1039 }
1040 else if (mbr.at_sibling != 0)
1041 {
1042 nextdie = dbbase + mbr.at_sibling - dbroff;
1043 }
1044 else
1045 {
1046 nextdie = thisdie + mbr.die_length;
1047 }
1048 switch (mbr.die_tag)
1049 {
1050 case TAG_member:
1051 /* Get space to record the next field's data. */
1052 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1053 new -> next = list;
1054 list = new;
1055 /* Save the data. */
1056 list -> field.name =
1057 obsavestring (mbr.at_name, strlen (mbr.at_name),
1058 &objfile -> type_obstack);
1059 list -> field.type = decode_die_type (&mbr);
1060 list -> field.bitpos = 8 * locval (mbr.at_location);
1061 /* Handle bit fields. */
1062 list -> field.bitsize = mbr.at_bit_size;
1063 #if BITS_BIG_ENDIAN
1064 /* For big endian bits, the at_bit_offset gives the additional
1065 bit offset from the MSB of the containing anonymous object to
1066 the MSB of the field. We don't have to do anything special
1067 since we don't need to know the size of the anonymous object. */
1068 list -> field.bitpos += mbr.at_bit_offset;
1069 #else
1070 /* For little endian bits, we need to have a non-zero at_bit_size,
1071 so that we know we are in fact dealing with a bitfield. Compute
1072 the bit offset to the MSB of the anonymous object, subtract off
1073 the number of bits from the MSB of the field to the MSB of the
1074 object, and then subtract off the number of bits of the field
1075 itself. The result is the bit offset of the LSB of the field. */
1076 if (mbr.at_bit_size > 0)
1077 {
1078 if (mbr.has_at_byte_size)
1079 {
1080 /* The size of the anonymous object containing the bit field
1081 is explicit, so use the indicated size (in bytes). */
1082 anonymous_size = mbr.at_byte_size;
1083 }
1084 else
1085 {
1086 /* The size of the anonymous object containing the bit field
1087 matches the size of an object of the bit field's type.
1088 DWARF allows at_byte_size to be left out in such cases,
1089 as a debug information size optimization. */
1090 anonymous_size = TYPE_LENGTH (list -> field.type);
1091 }
1092 list -> field.bitpos +=
1093 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1094 }
1095 #endif
1096 nfields++;
1097 break;
1098 default:
1099 process_dies (thisdie, nextdie, objfile);
1100 break;
1101 }
1102 thisdie = nextdie;
1103 }
1104 /* Now create the vector of fields, and record how big it is. We may
1105 not even have any fields, if this DIE was generated due to a reference
1106 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1107 set, which clues gdb in to the fact that it needs to search elsewhere
1108 for the full structure definition. */
1109 if (nfields == 0)
1110 {
1111 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1112 }
1113 else
1114 {
1115 TYPE_NFIELDS (type) = nfields;
1116 TYPE_FIELDS (type) = (struct field *)
1117 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1118 /* Copy the saved-up fields into the field vector. */
1119 for (n = nfields; list; list = list -> next)
1120 {
1121 TYPE_FIELD (type, --n) = list -> field;
1122 }
1123 }
1124 return (type);
1125 }
1126
1127 /*
1128
1129 LOCAL FUNCTION
1130
1131 read_structure_scope -- process all dies within struct or union
1132
1133 SYNOPSIS
1134
1135 static void read_structure_scope (struct dieinfo *dip,
1136 char *thisdie, char *enddie, struct objfile *objfile)
1137
1138 DESCRIPTION
1139
1140 Called when we find the DIE that starts a structure or union
1141 scope (definition) to process all dies that define the members
1142 of the structure or union. DIP is a pointer to the die info
1143 struct for the DIE that names the structure or union.
1144
1145 NOTES
1146
1147 Note that we need to call struct_type regardless of whether or not
1148 the DIE has an at_name attribute, since it might be an anonymous
1149 structure or union. This gets the type entered into our set of
1150 user defined types.
1151
1152 However, if the structure is incomplete (an opaque struct/union)
1153 then suppress creating a symbol table entry for it since gdb only
1154 wants to find the one with the complete definition. Note that if
1155 it is complete, we just call new_symbol, which does it's own
1156 checking about whether the struct/union is anonymous or not (and
1157 suppresses creating a symbol table entry itself).
1158
1159 */
1160
1161 static void
1162 read_structure_scope (dip, thisdie, enddie, objfile)
1163 struct dieinfo *dip;
1164 char *thisdie;
1165 char *enddie;
1166 struct objfile *objfile;
1167 {
1168 struct type *type;
1169 struct symbol *sym;
1170
1171 type = struct_type (dip, thisdie, enddie, objfile);
1172 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1173 {
1174 sym = new_symbol (dip, objfile);
1175 if (sym != NULL)
1176 {
1177 SYMBOL_TYPE (sym) = type;
1178 if (cu_language == language_cplus)
1179 {
1180 synthesize_typedef (dip, objfile, type);
1181 }
1182 }
1183 }
1184 }
1185
1186 /*
1187
1188 LOCAL FUNCTION
1189
1190 decode_array_element_type -- decode type of the array elements
1191
1192 SYNOPSIS
1193
1194 static struct type *decode_array_element_type (char *scan, char *end)
1195
1196 DESCRIPTION
1197
1198 As the last step in decoding the array subscript information for an
1199 array DIE, we need to decode the type of the array elements. We are
1200 passed a pointer to this last part of the subscript information and
1201 must return the appropriate type. If the type attribute is not
1202 recognized, just warn about the problem and return type int.
1203 */
1204
1205 static struct type *
1206 decode_array_element_type (scan)
1207 char *scan;
1208 {
1209 struct type *typep;
1210 DIE_REF die_ref;
1211 unsigned short attribute;
1212 unsigned short fundtype;
1213 int nbytes;
1214
1215 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1216 current_objfile);
1217 scan += SIZEOF_ATTRIBUTE;
1218 if ((nbytes = attribute_size (attribute)) == -1)
1219 {
1220 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1221 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1222 }
1223 else
1224 {
1225 switch (attribute)
1226 {
1227 case AT_fund_type:
1228 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1229 current_objfile);
1230 typep = decode_fund_type (fundtype);
1231 break;
1232 case AT_mod_fund_type:
1233 typep = decode_mod_fund_type (scan);
1234 break;
1235 case AT_user_def_type:
1236 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1237 current_objfile);
1238 if ((typep = lookup_utype (die_ref)) == NULL)
1239 {
1240 typep = alloc_utype (die_ref, NULL);
1241 }
1242 break;
1243 case AT_mod_u_d_type:
1244 typep = decode_mod_u_d_type (scan);
1245 break;
1246 default:
1247 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1248 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1249 break;
1250 }
1251 }
1252 return (typep);
1253 }
1254
1255 /*
1256
1257 LOCAL FUNCTION
1258
1259 decode_subscript_data_item -- decode array subscript item
1260
1261 SYNOPSIS
1262
1263 static struct type *
1264 decode_subscript_data_item (char *scan, char *end)
1265
1266 DESCRIPTION
1267
1268 The array subscripts and the data type of the elements of an
1269 array are described by a list of data items, stored as a block
1270 of contiguous bytes. There is a data item describing each array
1271 dimension, and a final data item describing the element type.
1272 The data items are ordered the same as their appearance in the
1273 source (I.E. leftmost dimension first, next to leftmost second,
1274 etc).
1275
1276 The data items describing each array dimension consist of four
1277 parts: (1) a format specifier, (2) type type of the subscript
1278 index, (3) a description of the low bound of the array dimension,
1279 and (4) a description of the high bound of the array dimension.
1280
1281 The last data item is the description of the type of each of
1282 the array elements.
1283
1284 We are passed a pointer to the start of the block of bytes
1285 containing the remaining data items, and a pointer to the first
1286 byte past the data. This function recursively decodes the
1287 remaining data items and returns a type.
1288
1289 If we somehow fail to decode some data, we complain about it
1290 and return a type "array of int".
1291
1292 BUGS
1293 FIXME: This code only implements the forms currently used
1294 by the AT&T and GNU C compilers.
1295
1296 The end pointer is supplied for error checking, maybe we should
1297 use it for that...
1298 */
1299
1300 static struct type *
1301 decode_subscript_data_item (scan, end)
1302 char *scan;
1303 char *end;
1304 {
1305 struct type *typep = NULL; /* Array type we are building */
1306 struct type *nexttype; /* Type of each element (may be array) */
1307 struct type *indextype; /* Type of this index */
1308 struct type *rangetype;
1309 unsigned int format;
1310 unsigned short fundtype;
1311 unsigned long lowbound;
1312 unsigned long highbound;
1313 int nbytes;
1314
1315 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1316 current_objfile);
1317 scan += SIZEOF_FORMAT_SPECIFIER;
1318 switch (format)
1319 {
1320 case FMT_ET:
1321 typep = decode_array_element_type (scan);
1322 break;
1323 case FMT_FT_C_C:
1324 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1325 current_objfile);
1326 indextype = decode_fund_type (fundtype);
1327 scan += SIZEOF_FMT_FT;
1328 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1329 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1330 scan += nbytes;
1331 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1332 scan += nbytes;
1333 nexttype = decode_subscript_data_item (scan, end);
1334 if (nexttype == NULL)
1335 {
1336 /* Munged subscript data or other problem, fake it. */
1337 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1338 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1339 }
1340 rangetype = create_range_type ((struct type *) NULL, indextype,
1341 lowbound, highbound);
1342 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1343 break;
1344 case FMT_FT_C_X:
1345 case FMT_FT_X_C:
1346 case FMT_FT_X_X:
1347 case FMT_UT_C_C:
1348 case FMT_UT_C_X:
1349 case FMT_UT_X_C:
1350 case FMT_UT_X_X:
1351 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1352 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1353 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1354 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1355 break;
1356 default:
1357 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1358 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1359 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1360 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1361 break;
1362 }
1363 return (typep);
1364 }
1365
1366 /*
1367
1368 LOCAL FUNCTION
1369
1370 dwarf_read_array_type -- read TAG_array_type DIE
1371
1372 SYNOPSIS
1373
1374 static void dwarf_read_array_type (struct dieinfo *dip)
1375
1376 DESCRIPTION
1377
1378 Extract all information from a TAG_array_type DIE and add to
1379 the user defined type vector.
1380 */
1381
1382 static void
1383 dwarf_read_array_type (dip)
1384 struct dieinfo *dip;
1385 {
1386 struct type *type;
1387 struct type *utype;
1388 char *sub;
1389 char *subend;
1390 unsigned short blocksz;
1391 int nbytes;
1392
1393 if (dip -> at_ordering != ORD_row_major)
1394 {
1395 /* FIXME: Can gdb even handle column major arrays? */
1396 complain (&not_row_major, DIE_ID, DIE_NAME);
1397 }
1398 if ((sub = dip -> at_subscr_data) != NULL)
1399 {
1400 nbytes = attribute_size (AT_subscr_data);
1401 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1402 subend = sub + nbytes + blocksz;
1403 sub += nbytes;
1404 type = decode_subscript_data_item (sub, subend);
1405 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1406 {
1407 /* Install user defined type that has not been referenced yet. */
1408 alloc_utype (dip -> die_ref, type);
1409 }
1410 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1411 {
1412 /* Ick! A forward ref has already generated a blank type in our
1413 slot, and this type probably already has things pointing to it
1414 (which is what caused it to be created in the first place).
1415 If it's just a place holder we can plop our fully defined type
1416 on top of it. We can't recover the space allocated for our
1417 new type since it might be on an obstack, but we could reuse
1418 it if we kept a list of them, but it might not be worth it
1419 (FIXME). */
1420 *utype = *type;
1421 }
1422 else
1423 {
1424 /* Double ick! Not only is a type already in our slot, but
1425 someone has decorated it. Complain and leave it alone. */
1426 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1427 }
1428 }
1429 }
1430
1431 /*
1432
1433 LOCAL FUNCTION
1434
1435 read_tag_pointer_type -- read TAG_pointer_type DIE
1436
1437 SYNOPSIS
1438
1439 static void read_tag_pointer_type (struct dieinfo *dip)
1440
1441 DESCRIPTION
1442
1443 Extract all information from a TAG_pointer_type DIE and add to
1444 the user defined type vector.
1445 */
1446
1447 static void
1448 read_tag_pointer_type (dip)
1449 struct dieinfo *dip;
1450 {
1451 struct type *type;
1452 struct type *utype;
1453
1454 type = decode_die_type (dip);
1455 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1456 {
1457 utype = lookup_pointer_type (type);
1458 alloc_utype (dip -> die_ref, utype);
1459 }
1460 else
1461 {
1462 TYPE_TARGET_TYPE (utype) = type;
1463 TYPE_POINTER_TYPE (type) = utype;
1464
1465 /* We assume the machine has only one representation for pointers! */
1466 /* FIXME: This confuses host<->target data representations, and is a
1467 poor assumption besides. */
1468
1469 TYPE_LENGTH (utype) = sizeof (char *);
1470 TYPE_CODE (utype) = TYPE_CODE_PTR;
1471 }
1472 }
1473
1474 /*
1475
1476 LOCAL FUNCTION
1477
1478 read_tag_string_type -- read TAG_string_type DIE
1479
1480 SYNOPSIS
1481
1482 static void read_tag_string_type (struct dieinfo *dip)
1483
1484 DESCRIPTION
1485
1486 Extract all information from a TAG_string_type DIE and add to
1487 the user defined type vector. It isn't really a user defined
1488 type, but it behaves like one, with other DIE's using an
1489 AT_user_def_type attribute to reference it.
1490 */
1491
1492 static void
1493 read_tag_string_type (dip)
1494 struct dieinfo *dip;
1495 {
1496 struct type *utype;
1497 struct type *indextype;
1498 struct type *rangetype;
1499 unsigned long lowbound = 0;
1500 unsigned long highbound;
1501
1502 if (dip -> has_at_byte_size)
1503 {
1504 /* A fixed bounds string */
1505 highbound = dip -> at_byte_size - 1;
1506 }
1507 else
1508 {
1509 /* A varying length string. Stub for now. (FIXME) */
1510 highbound = 1;
1511 }
1512 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1513 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1514 highbound);
1515
1516 utype = lookup_utype (dip -> die_ref);
1517 if (utype == NULL)
1518 {
1519 /* No type defined, go ahead and create a blank one to use. */
1520 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1521 }
1522 else
1523 {
1524 /* Already a type in our slot due to a forward reference. Make sure it
1525 is a blank one. If not, complain and leave it alone. */
1526 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1527 {
1528 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1529 return;
1530 }
1531 }
1532
1533 /* Create the string type using the blank type we either found or created. */
1534 utype = create_string_type (utype, rangetype);
1535 }
1536
1537 /*
1538
1539 LOCAL FUNCTION
1540
1541 read_subroutine_type -- process TAG_subroutine_type dies
1542
1543 SYNOPSIS
1544
1545 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1546 char *enddie)
1547
1548 DESCRIPTION
1549
1550 Handle DIES due to C code like:
1551
1552 struct foo {
1553 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1554 int b;
1555 };
1556
1557 NOTES
1558
1559 The parameter DIES are currently ignored. See if gdb has a way to
1560 include this info in it's type system, and decode them if so. Is
1561 this what the type structure's "arg_types" field is for? (FIXME)
1562 */
1563
1564 static void
1565 read_subroutine_type (dip, thisdie, enddie)
1566 struct dieinfo *dip;
1567 char *thisdie;
1568 char *enddie;
1569 {
1570 struct type *type; /* Type that this function returns */
1571 struct type *ftype; /* Function that returns above type */
1572
1573 /* Decode the type that this subroutine returns */
1574
1575 type = decode_die_type (dip);
1576
1577 /* Check to see if we already have a partially constructed user
1578 defined type for this DIE, from a forward reference. */
1579
1580 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1581 {
1582 /* This is the first reference to one of these types. Make
1583 a new one and place it in the user defined types. */
1584 ftype = lookup_function_type (type);
1585 alloc_utype (dip -> die_ref, ftype);
1586 }
1587 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1588 {
1589 /* We have an existing partially constructed type, so bash it
1590 into the correct type. */
1591 TYPE_TARGET_TYPE (ftype) = type;
1592 TYPE_FUNCTION_TYPE (type) = ftype;
1593 TYPE_LENGTH (ftype) = 1;
1594 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1595 }
1596 else
1597 {
1598 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1599 }
1600 }
1601
1602 /*
1603
1604 LOCAL FUNCTION
1605
1606 read_enumeration -- process dies which define an enumeration
1607
1608 SYNOPSIS
1609
1610 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1611 char *enddie, struct objfile *objfile)
1612
1613 DESCRIPTION
1614
1615 Given a pointer to a die which begins an enumeration, process all
1616 the dies that define the members of the enumeration.
1617
1618 NOTES
1619
1620 Note that we need to call enum_type regardless of whether or not we
1621 have a symbol, since we might have an enum without a tag name (thus
1622 no symbol for the tagname).
1623 */
1624
1625 static void
1626 read_enumeration (dip, thisdie, enddie, objfile)
1627 struct dieinfo *dip;
1628 char *thisdie;
1629 char *enddie;
1630 struct objfile *objfile;
1631 {
1632 struct type *type;
1633 struct symbol *sym;
1634
1635 type = enum_type (dip, objfile);
1636 sym = new_symbol (dip, objfile);
1637 if (sym != NULL)
1638 {
1639 SYMBOL_TYPE (sym) = type;
1640 if (cu_language == language_cplus)
1641 {
1642 synthesize_typedef (dip, objfile, type);
1643 }
1644 }
1645 }
1646
1647 /*
1648
1649 LOCAL FUNCTION
1650
1651 enum_type -- decode and return a type for an enumeration
1652
1653 SYNOPSIS
1654
1655 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1656
1657 DESCRIPTION
1658
1659 Given a pointer to a die information structure for the die which
1660 starts an enumeration, process all the dies that define the members
1661 of the enumeration and return a type pointer for the enumeration.
1662
1663 At the same time, for each member of the enumeration, create a
1664 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1665 and give it the type of the enumeration itself.
1666
1667 NOTES
1668
1669 Note that the DWARF specification explicitly mandates that enum
1670 constants occur in reverse order from the source program order,
1671 for "consistency" and because this ordering is easier for many
1672 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1673 Entries). Because gdb wants to see the enum members in program
1674 source order, we have to ensure that the order gets reversed while
1675 we are processing them.
1676 */
1677
1678 static struct type *
1679 enum_type (dip, objfile)
1680 struct dieinfo *dip;
1681 struct objfile *objfile;
1682 {
1683 struct type *type;
1684 struct nextfield {
1685 struct nextfield *next;
1686 struct field field;
1687 };
1688 struct nextfield *list = NULL;
1689 struct nextfield *new;
1690 int nfields = 0;
1691 int n;
1692 char *scan;
1693 char *listend;
1694 unsigned short blocksz;
1695 struct symbol *sym;
1696 int nbytes;
1697
1698 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1699 {
1700 /* No forward references created an empty type, so install one now */
1701 type = alloc_utype (dip -> die_ref, NULL);
1702 }
1703 TYPE_CODE (type) = TYPE_CODE_ENUM;
1704 /* Some compilers try to be helpful by inventing "fake" names for
1705 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1706 Thanks, but no thanks... */
1707 if (dip -> at_name != NULL
1708 && *dip -> at_name != '~'
1709 && *dip -> at_name != '.')
1710 {
1711 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1712 "", "", dip -> at_name);
1713 }
1714 if (dip -> at_byte_size != 0)
1715 {
1716 TYPE_LENGTH (type) = dip -> at_byte_size;
1717 }
1718 if ((scan = dip -> at_element_list) != NULL)
1719 {
1720 if (dip -> short_element_list)
1721 {
1722 nbytes = attribute_size (AT_short_element_list);
1723 }
1724 else
1725 {
1726 nbytes = attribute_size (AT_element_list);
1727 }
1728 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1729 listend = scan + nbytes + blocksz;
1730 scan += nbytes;
1731 while (scan < listend)
1732 {
1733 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1734 new -> next = list;
1735 list = new;
1736 list -> field.type = NULL;
1737 list -> field.bitsize = 0;
1738 list -> field.bitpos =
1739 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1740 objfile);
1741 scan += TARGET_FT_LONG_SIZE (objfile);
1742 list -> field.name = obsavestring (scan, strlen (scan),
1743 &objfile -> type_obstack);
1744 scan += strlen (scan) + 1;
1745 nfields++;
1746 /* Handcraft a new symbol for this enum member. */
1747 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1748 sizeof (struct symbol));
1749 memset (sym, 0, sizeof (struct symbol));
1750 SYMBOL_NAME (sym) = create_name (list -> field.name,
1751 &objfile->symbol_obstack);
1752 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1753 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1754 SYMBOL_CLASS (sym) = LOC_CONST;
1755 SYMBOL_TYPE (sym) = type;
1756 SYMBOL_VALUE (sym) = list -> field.bitpos;
1757 add_symbol_to_list (sym, list_in_scope);
1758 }
1759 /* Now create the vector of fields, and record how big it is. This is
1760 where we reverse the order, by pulling the members off the list in
1761 reverse order from how they were inserted. If we have no fields
1762 (this is apparently possible in C++) then skip building a field
1763 vector. */
1764 if (nfields > 0)
1765 {
1766 TYPE_NFIELDS (type) = nfields;
1767 TYPE_FIELDS (type) = (struct field *)
1768 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1769 /* Copy the saved-up fields into the field vector. */
1770 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1771 {
1772 TYPE_FIELD (type, n++) = list -> field;
1773 }
1774 }
1775 }
1776 return (type);
1777 }
1778
1779 /*
1780
1781 LOCAL FUNCTION
1782
1783 read_func_scope -- process all dies within a function scope
1784
1785 DESCRIPTION
1786
1787 Process all dies within a given function scope. We are passed
1788 a die information structure pointer DIP for the die which
1789 starts the function scope, and pointers into the raw die data
1790 that define the dies within the function scope.
1791
1792 For now, we ignore lexical block scopes within the function.
1793 The problem is that AT&T cc does not define a DWARF lexical
1794 block scope for the function itself, while gcc defines a
1795 lexical block scope for the function. We need to think about
1796 how to handle this difference, or if it is even a problem.
1797 (FIXME)
1798 */
1799
1800 static void
1801 read_func_scope (dip, thisdie, enddie, objfile)
1802 struct dieinfo *dip;
1803 char *thisdie;
1804 char *enddie;
1805 struct objfile *objfile;
1806 {
1807 register struct context_stack *new;
1808
1809 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1810 objfile -> ei.entry_point < dip -> at_high_pc)
1811 {
1812 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1813 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1814 }
1815 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1816 {
1817 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1818 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1819 }
1820 new = push_context (0, dip -> at_low_pc);
1821 new -> name = new_symbol (dip, objfile);
1822 list_in_scope = &local_symbols;
1823 process_dies (thisdie + dip -> die_length, enddie, objfile);
1824 new = pop_context ();
1825 /* Make a block for the local symbols within. */
1826 finish_block (new -> name, &local_symbols, new -> old_blocks,
1827 new -> start_addr, dip -> at_high_pc, objfile);
1828 list_in_scope = &file_symbols;
1829 }
1830
1831
1832 /*
1833
1834 LOCAL FUNCTION
1835
1836 handle_producer -- process the AT_producer attribute
1837
1838 DESCRIPTION
1839
1840 Perform any operations that depend on finding a particular
1841 AT_producer attribute.
1842
1843 */
1844
1845 static void
1846 handle_producer (producer)
1847 char *producer;
1848 {
1849
1850 /* If this compilation unit was compiled with g++ or gcc, then set the
1851 processing_gcc_compilation flag. */
1852
1853 processing_gcc_compilation =
1854 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1855 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1856 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1857
1858 /* Select a demangling style if we can identify the producer and if
1859 the current style is auto. We leave the current style alone if it
1860 is not auto. We also leave the demangling style alone if we find a
1861 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1862
1863 if (AUTO_DEMANGLING)
1864 {
1865 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1866 {
1867 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1868 }
1869 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1870 {
1871 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1872 }
1873 }
1874 }
1875
1876
1877 /*
1878
1879 LOCAL FUNCTION
1880
1881 read_file_scope -- process all dies within a file scope
1882
1883 DESCRIPTION
1884
1885 Process all dies within a given file scope. We are passed a
1886 pointer to the die information structure for the die which
1887 starts the file scope, and pointers into the raw die data which
1888 mark the range of dies within the file scope.
1889
1890 When the partial symbol table is built, the file offset for the line
1891 number table for each compilation unit is saved in the partial symbol
1892 table entry for that compilation unit. As the symbols for each
1893 compilation unit are read, the line number table is read into memory
1894 and the variable lnbase is set to point to it. Thus all we have to
1895 do is use lnbase to access the line number table for the current
1896 compilation unit.
1897 */
1898
1899 static void
1900 read_file_scope (dip, thisdie, enddie, objfile)
1901 struct dieinfo *dip;
1902 char *thisdie;
1903 char *enddie;
1904 struct objfile *objfile;
1905 {
1906 struct cleanup *back_to;
1907 struct symtab *symtab;
1908
1909 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1910 objfile -> ei.entry_point < dip -> at_high_pc)
1911 {
1912 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1913 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1914 }
1915 set_cu_language (dip);
1916 if (dip -> at_producer != NULL)
1917 {
1918 handle_producer (dip -> at_producer);
1919 }
1920 numutypes = (enddie - thisdie) / 4;
1921 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1922 back_to = make_cleanup (free, utypes);
1923 memset (utypes, 0, numutypes * sizeof (struct type *));
1924 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1925 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1926 decode_line_numbers (lnbase);
1927 process_dies (thisdie + dip -> die_length, enddie, objfile);
1928
1929 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1930 if (symtab != NULL)
1931 {
1932 symtab -> language = cu_language;
1933 }
1934 do_cleanups (back_to);
1935 utypes = NULL;
1936 numutypes = 0;
1937 }
1938
1939 /*
1940
1941 LOCAL FUNCTION
1942
1943 process_dies -- process a range of DWARF Information Entries
1944
1945 SYNOPSIS
1946
1947 static void process_dies (char *thisdie, char *enddie,
1948 struct objfile *objfile)
1949
1950 DESCRIPTION
1951
1952 Process all DIE's in a specified range. May be (and almost
1953 certainly will be) called recursively.
1954 */
1955
1956 static void
1957 process_dies (thisdie, enddie, objfile)
1958 char *thisdie;
1959 char *enddie;
1960 struct objfile *objfile;
1961 {
1962 char *nextdie;
1963 struct dieinfo di;
1964
1965 while (thisdie < enddie)
1966 {
1967 basicdieinfo (&di, thisdie, objfile);
1968 if (di.die_length < SIZEOF_DIE_LENGTH)
1969 {
1970 break;
1971 }
1972 else if (di.die_tag == TAG_padding)
1973 {
1974 nextdie = thisdie + di.die_length;
1975 }
1976 else
1977 {
1978 completedieinfo (&di, objfile);
1979 if (di.at_sibling != 0)
1980 {
1981 nextdie = dbbase + di.at_sibling - dbroff;
1982 }
1983 else
1984 {
1985 nextdie = thisdie + di.die_length;
1986 }
1987 #ifdef SMASH_TEXT_ADDRESS
1988 /* I think that these are always text, not data, addresses. */
1989 SMASH_TEXT_ADDRESS (di.at_low_pc);
1990 SMASH_TEXT_ADDRESS (di.at_high_pc);
1991 #endif
1992 switch (di.die_tag)
1993 {
1994 case TAG_compile_unit:
1995 /* Skip Tag_compile_unit if we are already inside a compilation
1996 unit, we are unable to handle nested compilation units
1997 properly (FIXME). */
1998 if (current_subfile == NULL)
1999 read_file_scope (&di, thisdie, nextdie, objfile);
2000 else
2001 nextdie = thisdie + di.die_length;
2002 break;
2003 case TAG_global_subroutine:
2004 case TAG_subroutine:
2005 if (di.has_at_low_pc)
2006 {
2007 read_func_scope (&di, thisdie, nextdie, objfile);
2008 }
2009 break;
2010 case TAG_lexical_block:
2011 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2012 break;
2013 case TAG_class_type:
2014 case TAG_structure_type:
2015 case TAG_union_type:
2016 read_structure_scope (&di, thisdie, nextdie, objfile);
2017 break;
2018 case TAG_enumeration_type:
2019 read_enumeration (&di, thisdie, nextdie, objfile);
2020 break;
2021 case TAG_subroutine_type:
2022 read_subroutine_type (&di, thisdie, nextdie);
2023 break;
2024 case TAG_array_type:
2025 dwarf_read_array_type (&di);
2026 break;
2027 case TAG_pointer_type:
2028 read_tag_pointer_type (&di);
2029 break;
2030 case TAG_string_type:
2031 read_tag_string_type (&di);
2032 break;
2033 default:
2034 new_symbol (&di, objfile);
2035 break;
2036 }
2037 }
2038 thisdie = nextdie;
2039 }
2040 }
2041
2042 /*
2043
2044 LOCAL FUNCTION
2045
2046 decode_line_numbers -- decode a line number table fragment
2047
2048 SYNOPSIS
2049
2050 static void decode_line_numbers (char *tblscan, char *tblend,
2051 long length, long base, long line, long pc)
2052
2053 DESCRIPTION
2054
2055 Translate the DWARF line number information to gdb form.
2056
2057 The ".line" section contains one or more line number tables, one for
2058 each ".line" section from the objects that were linked.
2059
2060 The AT_stmt_list attribute for each TAG_source_file entry in the
2061 ".debug" section contains the offset into the ".line" section for the
2062 start of the table for that file.
2063
2064 The table itself has the following structure:
2065
2066 <table length><base address><source statement entry>
2067 4 bytes 4 bytes 10 bytes
2068
2069 The table length is the total size of the table, including the 4 bytes
2070 for the length information.
2071
2072 The base address is the address of the first instruction generated
2073 for the source file.
2074
2075 Each source statement entry has the following structure:
2076
2077 <line number><statement position><address delta>
2078 4 bytes 2 bytes 4 bytes
2079
2080 The line number is relative to the start of the file, starting with
2081 line 1.
2082
2083 The statement position either -1 (0xFFFF) or the number of characters
2084 from the beginning of the line to the beginning of the statement.
2085
2086 The address delta is the difference between the base address and
2087 the address of the first instruction for the statement.
2088
2089 Note that we must copy the bytes from the packed table to our local
2090 variables before attempting to use them, to avoid alignment problems
2091 on some machines, particularly RISC processors.
2092
2093 BUGS
2094
2095 Does gdb expect the line numbers to be sorted? They are now by
2096 chance/luck, but are not required to be. (FIXME)
2097
2098 The line with number 0 is unused, gdb apparently can discover the
2099 span of the last line some other way. How? (FIXME)
2100 */
2101
2102 static void
2103 decode_line_numbers (linetable)
2104 char *linetable;
2105 {
2106 char *tblscan;
2107 char *tblend;
2108 unsigned long length;
2109 unsigned long base;
2110 unsigned long line;
2111 unsigned long pc;
2112
2113 if (linetable != NULL)
2114 {
2115 tblscan = tblend = linetable;
2116 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2117 current_objfile);
2118 tblscan += SIZEOF_LINETBL_LENGTH;
2119 tblend += length;
2120 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2121 GET_UNSIGNED, current_objfile);
2122 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2123 base += baseaddr;
2124 while (tblscan < tblend)
2125 {
2126 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2127 current_objfile);
2128 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2129 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2130 current_objfile);
2131 tblscan += SIZEOF_LINETBL_DELTA;
2132 pc += base;
2133 if (line != 0)
2134 {
2135 record_line (current_subfile, line, pc);
2136 }
2137 }
2138 }
2139 }
2140
2141 /*
2142
2143 LOCAL FUNCTION
2144
2145 locval -- compute the value of a location attribute
2146
2147 SYNOPSIS
2148
2149 static int locval (char *loc)
2150
2151 DESCRIPTION
2152
2153 Given pointer to a string of bytes that define a location, compute
2154 the location and return the value.
2155
2156 When computing values involving the current value of the frame pointer,
2157 the value zero is used, which results in a value relative to the frame
2158 pointer, rather than the absolute value. This is what GDB wants
2159 anyway.
2160
2161 When the result is a register number, the global isreg flag is set,
2162 otherwise it is cleared. This is a kludge until we figure out a better
2163 way to handle the problem. Gdb's design does not mesh well with the
2164 DWARF notion of a location computing interpreter, which is a shame
2165 because the flexibility goes unused.
2166
2167 NOTES
2168
2169 Note that stack[0] is unused except as a default error return.
2170 Note that stack overflow is not yet handled.
2171 */
2172
2173 static int
2174 locval (loc)
2175 char *loc;
2176 {
2177 unsigned short nbytes;
2178 unsigned short locsize;
2179 auto long stack[64];
2180 int stacki;
2181 char *end;
2182 int loc_atom_code;
2183 int loc_value_size;
2184
2185 nbytes = attribute_size (AT_location);
2186 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2187 loc += nbytes;
2188 end = loc + locsize;
2189 stacki = 0;
2190 stack[stacki] = 0;
2191 isreg = 0;
2192 offreg = 0;
2193 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2194 while (loc < end)
2195 {
2196 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2197 current_objfile);
2198 loc += SIZEOF_LOC_ATOM_CODE;
2199 switch (loc_atom_code)
2200 {
2201 case 0:
2202 /* error */
2203 loc = end;
2204 break;
2205 case OP_REG:
2206 /* push register (number) */
2207 stack[++stacki] = target_to_host (loc, loc_value_size,
2208 GET_UNSIGNED, current_objfile);
2209 loc += loc_value_size;
2210 isreg = 1;
2211 break;
2212 case OP_BASEREG:
2213 /* push value of register (number) */
2214 /* Actually, we compute the value as if register has 0, so the
2215 value ends up being the offset from that register. */
2216 offreg = 1;
2217 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2218 current_objfile);
2219 loc += loc_value_size;
2220 stack[++stacki] = 0;
2221 break;
2222 case OP_ADDR:
2223 /* push address (relocated address) */
2224 stack[++stacki] = target_to_host (loc, loc_value_size,
2225 GET_UNSIGNED, current_objfile);
2226 loc += loc_value_size;
2227 break;
2228 case OP_CONST:
2229 /* push constant (number) FIXME: signed or unsigned! */
2230 stack[++stacki] = target_to_host (loc, loc_value_size,
2231 GET_SIGNED, current_objfile);
2232 loc += loc_value_size;
2233 break;
2234 case OP_DEREF2:
2235 /* pop, deref and push 2 bytes (as a long) */
2236 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2237 break;
2238 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2239 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2240 break;
2241 case OP_ADD: /* pop top 2 items, add, push result */
2242 stack[stacki - 1] += stack[stacki];
2243 stacki--;
2244 break;
2245 }
2246 }
2247 return (stack[stacki]);
2248 }
2249
2250 /*
2251
2252 LOCAL FUNCTION
2253
2254 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2255
2256 SYNOPSIS
2257
2258 static void read_ofile_symtab (struct partial_symtab *pst)
2259
2260 DESCRIPTION
2261
2262 When expanding a partial symbol table entry to a full symbol table
2263 entry, this is the function that gets called to read in the symbols
2264 for the compilation unit. A pointer to the newly constructed symtab,
2265 which is now the new first one on the objfile's symtab list, is
2266 stashed in the partial symbol table entry.
2267 */
2268
2269 static void
2270 read_ofile_symtab (pst)
2271 struct partial_symtab *pst;
2272 {
2273 struct cleanup *back_to;
2274 unsigned long lnsize;
2275 file_ptr foffset;
2276 bfd *abfd;
2277 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2278
2279 abfd = pst -> objfile -> obfd;
2280 current_objfile = pst -> objfile;
2281
2282 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2283 unit, seek to the location in the file, and read in all the DIE's. */
2284
2285 diecount = 0;
2286 dbsize = DBLENGTH (pst);
2287 dbbase = xmalloc (dbsize);
2288 dbroff = DBROFF(pst);
2289 foffset = DBFOFF(pst) + dbroff;
2290 base_section_offsets = pst->section_offsets;
2291 baseaddr = ANOFFSET (pst->section_offsets, 0);
2292 if (bfd_seek (abfd, foffset, L_SET) ||
2293 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2294 {
2295 free (dbbase);
2296 error ("can't read DWARF data");
2297 }
2298 back_to = make_cleanup (free, dbbase);
2299
2300 /* If there is a line number table associated with this compilation unit
2301 then read the size of this fragment in bytes, from the fragment itself.
2302 Allocate a buffer for the fragment and read it in for future
2303 processing. */
2304
2305 lnbase = NULL;
2306 if (LNFOFF (pst))
2307 {
2308 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2309 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2310 sizeof (lnsizedata)))
2311 {
2312 error ("can't read DWARF line number table size");
2313 }
2314 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2315 GET_UNSIGNED, pst -> objfile);
2316 lnbase = xmalloc (lnsize);
2317 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2318 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2319 {
2320 free (lnbase);
2321 error ("can't read DWARF line numbers");
2322 }
2323 make_cleanup (free, lnbase);
2324 }
2325
2326 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2327 do_cleanups (back_to);
2328 current_objfile = NULL;
2329 pst -> symtab = pst -> objfile -> symtabs;
2330 }
2331
2332 /*
2333
2334 LOCAL FUNCTION
2335
2336 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2337
2338 SYNOPSIS
2339
2340 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2341
2342 DESCRIPTION
2343
2344 Called once for each partial symbol table entry that needs to be
2345 expanded into a full symbol table entry.
2346
2347 */
2348
2349 static void
2350 psymtab_to_symtab_1 (pst)
2351 struct partial_symtab *pst;
2352 {
2353 int i;
2354 struct cleanup *old_chain;
2355
2356 if (pst != NULL)
2357 {
2358 if (pst->readin)
2359 {
2360 warning ("psymtab for %s already read in. Shouldn't happen.",
2361 pst -> filename);
2362 }
2363 else
2364 {
2365 /* Read in all partial symtabs on which this one is dependent */
2366 for (i = 0; i < pst -> number_of_dependencies; i++)
2367 {
2368 if (!pst -> dependencies[i] -> readin)
2369 {
2370 /* Inform about additional files that need to be read in. */
2371 if (info_verbose)
2372 {
2373 fputs_filtered (" ", gdb_stdout);
2374 wrap_here ("");
2375 fputs_filtered ("and ", gdb_stdout);
2376 wrap_here ("");
2377 printf_filtered ("%s...",
2378 pst -> dependencies[i] -> filename);
2379 wrap_here ("");
2380 gdb_flush (gdb_stdout); /* Flush output */
2381 }
2382 psymtab_to_symtab_1 (pst -> dependencies[i]);
2383 }
2384 }
2385 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2386 {
2387 buildsym_init ();
2388 old_chain = make_cleanup (really_free_pendings, 0);
2389 read_ofile_symtab (pst);
2390 if (info_verbose)
2391 {
2392 printf_filtered ("%d DIE's, sorting...", diecount);
2393 wrap_here ("");
2394 gdb_flush (gdb_stdout);
2395 }
2396 sort_symtab_syms (pst -> symtab);
2397 do_cleanups (old_chain);
2398 }
2399 pst -> readin = 1;
2400 }
2401 }
2402 }
2403
2404 /*
2405
2406 LOCAL FUNCTION
2407
2408 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2409
2410 SYNOPSIS
2411
2412 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2413
2414 DESCRIPTION
2415
2416 This is the DWARF support entry point for building a full symbol
2417 table entry from a partial symbol table entry. We are passed a
2418 pointer to the partial symbol table entry that needs to be expanded.
2419
2420 */
2421
2422 static void
2423 dwarf_psymtab_to_symtab (pst)
2424 struct partial_symtab *pst;
2425 {
2426
2427 if (pst != NULL)
2428 {
2429 if (pst -> readin)
2430 {
2431 warning ("psymtab for %s already read in. Shouldn't happen.",
2432 pst -> filename);
2433 }
2434 else
2435 {
2436 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2437 {
2438 /* Print the message now, before starting serious work, to avoid
2439 disconcerting pauses. */
2440 if (info_verbose)
2441 {
2442 printf_filtered ("Reading in symbols for %s...",
2443 pst -> filename);
2444 gdb_flush (gdb_stdout);
2445 }
2446
2447 psymtab_to_symtab_1 (pst);
2448
2449 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2450 we need to do an equivalent or is this something peculiar to
2451 stabs/a.out format.
2452 Match with global symbols. This only needs to be done once,
2453 after all of the symtabs and dependencies have been read in.
2454 */
2455 scan_file_globals (pst -> objfile);
2456 #endif
2457
2458 /* Finish up the verbose info message. */
2459 if (info_verbose)
2460 {
2461 printf_filtered ("done.\n");
2462 gdb_flush (gdb_stdout);
2463 }
2464 }
2465 }
2466 }
2467 }
2468
2469 /*
2470
2471 LOCAL FUNCTION
2472
2473 init_psymbol_list -- initialize storage for partial symbols
2474
2475 SYNOPSIS
2476
2477 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2478
2479 DESCRIPTION
2480
2481 Initializes storage for all of the partial symbols that will be
2482 created by dwarf_build_psymtabs and subsidiaries.
2483 */
2484
2485 static void
2486 init_psymbol_list (objfile, total_symbols)
2487 struct objfile *objfile;
2488 int total_symbols;
2489 {
2490 /* Free any previously allocated psymbol lists. */
2491
2492 if (objfile -> global_psymbols.list)
2493 {
2494 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2495 }
2496 if (objfile -> static_psymbols.list)
2497 {
2498 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2499 }
2500
2501 /* Current best guess is that there are approximately a twentieth
2502 of the total symbols (in a debugging file) are global or static
2503 oriented symbols */
2504
2505 objfile -> global_psymbols.size = total_symbols / 10;
2506 objfile -> static_psymbols.size = total_symbols / 10;
2507 objfile -> global_psymbols.next =
2508 objfile -> global_psymbols.list = (struct partial_symbol *)
2509 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2510 * sizeof (struct partial_symbol));
2511 objfile -> static_psymbols.next =
2512 objfile -> static_psymbols.list = (struct partial_symbol *)
2513 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2514 * sizeof (struct partial_symbol));
2515 }
2516
2517 /*
2518
2519 LOCAL FUNCTION
2520
2521 add_enum_psymbol -- add enumeration members to partial symbol table
2522
2523 DESCRIPTION
2524
2525 Given pointer to a DIE that is known to be for an enumeration,
2526 extract the symbolic names of the enumeration members and add
2527 partial symbols for them.
2528 */
2529
2530 static void
2531 add_enum_psymbol (dip, objfile)
2532 struct dieinfo *dip;
2533 struct objfile *objfile;
2534 {
2535 char *scan;
2536 char *listend;
2537 unsigned short blocksz;
2538 int nbytes;
2539
2540 if ((scan = dip -> at_element_list) != NULL)
2541 {
2542 if (dip -> short_element_list)
2543 {
2544 nbytes = attribute_size (AT_short_element_list);
2545 }
2546 else
2547 {
2548 nbytes = attribute_size (AT_element_list);
2549 }
2550 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2551 scan += nbytes;
2552 listend = scan + blocksz;
2553 while (scan < listend)
2554 {
2555 scan += TARGET_FT_LONG_SIZE (objfile);
2556 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2557 objfile -> static_psymbols, 0, cu_language,
2558 objfile);
2559 scan += strlen (scan) + 1;
2560 }
2561 }
2562 }
2563
2564 /*
2565
2566 LOCAL FUNCTION
2567
2568 add_partial_symbol -- add symbol to partial symbol table
2569
2570 DESCRIPTION
2571
2572 Given a DIE, if it is one of the types that we want to
2573 add to a partial symbol table, finish filling in the die info
2574 and then add a partial symbol table entry for it.
2575
2576 NOTES
2577
2578 The caller must ensure that the DIE has a valid name attribute.
2579 */
2580
2581 static void
2582 add_partial_symbol (dip, objfile)
2583 struct dieinfo *dip;
2584 struct objfile *objfile;
2585 {
2586 switch (dip -> die_tag)
2587 {
2588 case TAG_global_subroutine:
2589 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2590 VAR_NAMESPACE, LOC_BLOCK,
2591 objfile -> global_psymbols,
2592 dip -> at_low_pc, cu_language, objfile);
2593 break;
2594 case TAG_global_variable:
2595 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2596 VAR_NAMESPACE, LOC_STATIC,
2597 objfile -> global_psymbols,
2598 0, cu_language, objfile);
2599 break;
2600 case TAG_subroutine:
2601 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2602 VAR_NAMESPACE, LOC_BLOCK,
2603 objfile -> static_psymbols,
2604 dip -> at_low_pc, cu_language, objfile);
2605 break;
2606 case TAG_local_variable:
2607 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2608 VAR_NAMESPACE, LOC_STATIC,
2609 objfile -> static_psymbols,
2610 0, cu_language, objfile);
2611 break;
2612 case TAG_typedef:
2613 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2614 VAR_NAMESPACE, LOC_TYPEDEF,
2615 objfile -> static_psymbols,
2616 0, cu_language, objfile);
2617 break;
2618 case TAG_class_type:
2619 case TAG_structure_type:
2620 case TAG_union_type:
2621 case TAG_enumeration_type:
2622 /* Do not add opaque aggregate definitions to the psymtab. */
2623 if (!dip -> has_at_byte_size)
2624 break;
2625 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2626 STRUCT_NAMESPACE, LOC_TYPEDEF,
2627 objfile -> static_psymbols,
2628 0, cu_language, objfile);
2629 if (cu_language == language_cplus)
2630 {
2631 /* For C++, these implicitly act as typedefs as well. */
2632 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2633 VAR_NAMESPACE, LOC_TYPEDEF,
2634 objfile -> static_psymbols,
2635 0, cu_language, objfile);
2636 }
2637 break;
2638 }
2639 }
2640
2641 /*
2642
2643 LOCAL FUNCTION
2644
2645 scan_partial_symbols -- scan DIE's within a single compilation unit
2646
2647 DESCRIPTION
2648
2649 Process the DIE's within a single compilation unit, looking for
2650 interesting DIE's that contribute to the partial symbol table entry
2651 for this compilation unit.
2652
2653 NOTES
2654
2655 There are some DIE's that may appear both at file scope and within
2656 the scope of a function. We are only interested in the ones at file
2657 scope, and the only way to tell them apart is to keep track of the
2658 scope. For example, consider the test case:
2659
2660 static int i;
2661 main () { int j; }
2662
2663 for which the relevant DWARF segment has the structure:
2664
2665 0x51:
2666 0x23 global subrtn sibling 0x9b
2667 name main
2668 fund_type FT_integer
2669 low_pc 0x800004cc
2670 high_pc 0x800004d4
2671
2672 0x74:
2673 0x23 local var sibling 0x97
2674 name j
2675 fund_type FT_integer
2676 location OP_BASEREG 0xe
2677 OP_CONST 0xfffffffc
2678 OP_ADD
2679 0x97:
2680 0x4
2681
2682 0x9b:
2683 0x1d local var sibling 0xb8
2684 name i
2685 fund_type FT_integer
2686 location OP_ADDR 0x800025dc
2687
2688 0xb8:
2689 0x4
2690
2691 We want to include the symbol 'i' in the partial symbol table, but
2692 not the symbol 'j'. In essence, we want to skip all the dies within
2693 the scope of a TAG_global_subroutine DIE.
2694
2695 Don't attempt to add anonymous structures or unions since they have
2696 no name. Anonymous enumerations however are processed, because we
2697 want to extract their member names (the check for a tag name is
2698 done later).
2699
2700 Also, for variables and subroutines, check that this is the place
2701 where the actual definition occurs, rather than just a reference
2702 to an external.
2703 */
2704
2705 static void
2706 scan_partial_symbols (thisdie, enddie, objfile)
2707 char *thisdie;
2708 char *enddie;
2709 struct objfile *objfile;
2710 {
2711 char *nextdie;
2712 char *temp;
2713 struct dieinfo di;
2714
2715 while (thisdie < enddie)
2716 {
2717 basicdieinfo (&di, thisdie, objfile);
2718 if (di.die_length < SIZEOF_DIE_LENGTH)
2719 {
2720 break;
2721 }
2722 else
2723 {
2724 nextdie = thisdie + di.die_length;
2725 /* To avoid getting complete die information for every die, we
2726 only do it (below) for the cases we are interested in. */
2727 switch (di.die_tag)
2728 {
2729 case TAG_global_subroutine:
2730 case TAG_subroutine:
2731 completedieinfo (&di, objfile);
2732 if (di.at_name && (di.has_at_low_pc || di.at_location))
2733 {
2734 add_partial_symbol (&di, objfile);
2735 /* If there is a sibling attribute, adjust the nextdie
2736 pointer to skip the entire scope of the subroutine.
2737 Apply some sanity checking to make sure we don't
2738 overrun or underrun the range of remaining DIE's */
2739 if (di.at_sibling != 0)
2740 {
2741 temp = dbbase + di.at_sibling - dbroff;
2742 if ((temp < thisdie) || (temp >= enddie))
2743 {
2744 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2745 di.at_sibling);
2746 }
2747 else
2748 {
2749 nextdie = temp;
2750 }
2751 }
2752 }
2753 break;
2754 case TAG_global_variable:
2755 case TAG_local_variable:
2756 completedieinfo (&di, objfile);
2757 if (di.at_name && (di.has_at_low_pc || di.at_location))
2758 {
2759 add_partial_symbol (&di, objfile);
2760 }
2761 break;
2762 case TAG_typedef:
2763 case TAG_class_type:
2764 case TAG_structure_type:
2765 case TAG_union_type:
2766 completedieinfo (&di, objfile);
2767 if (di.at_name)
2768 {
2769 add_partial_symbol (&di, objfile);
2770 }
2771 break;
2772 case TAG_enumeration_type:
2773 completedieinfo (&di, objfile);
2774 if (di.at_name)
2775 {
2776 add_partial_symbol (&di, objfile);
2777 }
2778 add_enum_psymbol (&di, objfile);
2779 break;
2780 }
2781 }
2782 thisdie = nextdie;
2783 }
2784 }
2785
2786 /*
2787
2788 LOCAL FUNCTION
2789
2790 scan_compilation_units -- build a psymtab entry for each compilation
2791
2792 DESCRIPTION
2793
2794 This is the top level dwarf parsing routine for building partial
2795 symbol tables.
2796
2797 It scans from the beginning of the DWARF table looking for the first
2798 TAG_compile_unit DIE, and then follows the sibling chain to locate
2799 each additional TAG_compile_unit DIE.
2800
2801 For each TAG_compile_unit DIE it creates a partial symtab structure,
2802 calls a subordinate routine to collect all the compilation unit's
2803 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2804 new partial symtab structure into the partial symbol table. It also
2805 records the appropriate information in the partial symbol table entry
2806 to allow the chunk of DIE's and line number table for this compilation
2807 unit to be located and re-read later, to generate a complete symbol
2808 table entry for the compilation unit.
2809
2810 Thus it effectively partitions up a chunk of DIE's for multiple
2811 compilation units into smaller DIE chunks and line number tables,
2812 and associates them with a partial symbol table entry.
2813
2814 NOTES
2815
2816 If any compilation unit has no line number table associated with
2817 it for some reason (a missing at_stmt_list attribute, rather than
2818 just one with a value of zero, which is valid) then we ensure that
2819 the recorded file offset is zero so that the routine which later
2820 reads line number table fragments knows that there is no fragment
2821 to read.
2822
2823 RETURNS
2824
2825 Returns no value.
2826
2827 */
2828
2829 static void
2830 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2831 char *thisdie;
2832 char *enddie;
2833 file_ptr dbfoff;
2834 file_ptr lnoffset;
2835 struct objfile *objfile;
2836 {
2837 char *nextdie;
2838 struct dieinfo di;
2839 struct partial_symtab *pst;
2840 int culength;
2841 int curoff;
2842 file_ptr curlnoffset;
2843
2844 while (thisdie < enddie)
2845 {
2846 basicdieinfo (&di, thisdie, objfile);
2847 if (di.die_length < SIZEOF_DIE_LENGTH)
2848 {
2849 break;
2850 }
2851 else if (di.die_tag != TAG_compile_unit)
2852 {
2853 nextdie = thisdie + di.die_length;
2854 }
2855 else
2856 {
2857 completedieinfo (&di, objfile);
2858 set_cu_language (&di);
2859 if (di.at_sibling != 0)
2860 {
2861 nextdie = dbbase + di.at_sibling - dbroff;
2862 }
2863 else
2864 {
2865 nextdie = thisdie + di.die_length;
2866 }
2867 curoff = thisdie - dbbase;
2868 culength = nextdie - thisdie;
2869 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2870
2871 /* First allocate a new partial symbol table structure */
2872
2873 pst = start_psymtab_common (objfile, base_section_offsets,
2874 di.at_name, di.at_low_pc,
2875 objfile -> global_psymbols.next,
2876 objfile -> static_psymbols.next);
2877
2878 pst -> texthigh = di.at_high_pc;
2879 pst -> read_symtab_private = (char *)
2880 obstack_alloc (&objfile -> psymbol_obstack,
2881 sizeof (struct dwfinfo));
2882 DBFOFF (pst) = dbfoff;
2883 DBROFF (pst) = curoff;
2884 DBLENGTH (pst) = culength;
2885 LNFOFF (pst) = curlnoffset;
2886 pst -> read_symtab = dwarf_psymtab_to_symtab;
2887
2888 /* Now look for partial symbols */
2889
2890 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2891
2892 pst -> n_global_syms = objfile -> global_psymbols.next -
2893 (objfile -> global_psymbols.list + pst -> globals_offset);
2894 pst -> n_static_syms = objfile -> static_psymbols.next -
2895 (objfile -> static_psymbols.list + pst -> statics_offset);
2896 sort_pst_symbols (pst);
2897 /* If there is already a psymtab or symtab for a file of this name,
2898 remove it. (If there is a symtab, more drastic things also
2899 happen.) This happens in VxWorks. */
2900 free_named_symtabs (pst -> filename);
2901 }
2902 thisdie = nextdie;
2903 }
2904 }
2905
2906 /*
2907
2908 LOCAL FUNCTION
2909
2910 new_symbol -- make a symbol table entry for a new symbol
2911
2912 SYNOPSIS
2913
2914 static struct symbol *new_symbol (struct dieinfo *dip,
2915 struct objfile *objfile)
2916
2917 DESCRIPTION
2918
2919 Given a pointer to a DWARF information entry, figure out if we need
2920 to make a symbol table entry for it, and if so, create a new entry
2921 and return a pointer to it.
2922 */
2923
2924 static struct symbol *
2925 new_symbol (dip, objfile)
2926 struct dieinfo *dip;
2927 struct objfile *objfile;
2928 {
2929 struct symbol *sym = NULL;
2930
2931 if (dip -> at_name != NULL)
2932 {
2933 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2934 sizeof (struct symbol));
2935 memset (sym, 0, sizeof (struct symbol));
2936 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2937 &objfile->symbol_obstack);
2938 /* default assumptions */
2939 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2940 SYMBOL_CLASS (sym) = LOC_STATIC;
2941 SYMBOL_TYPE (sym) = decode_die_type (dip);
2942
2943 /* If this symbol is from a C++ compilation, then attempt to cache the
2944 demangled form for future reference. This is a typical time versus
2945 space tradeoff, that was decided in favor of time because it sped up
2946 C++ symbol lookups by a factor of about 20. */
2947
2948 SYMBOL_LANGUAGE (sym) = cu_language;
2949 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2950 switch (dip -> die_tag)
2951 {
2952 case TAG_label:
2953 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2954 SYMBOL_CLASS (sym) = LOC_LABEL;
2955 break;
2956 case TAG_global_subroutine:
2957 case TAG_subroutine:
2958 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2959 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2960 SYMBOL_CLASS (sym) = LOC_BLOCK;
2961 if (dip -> die_tag == TAG_global_subroutine)
2962 {
2963 add_symbol_to_list (sym, &global_symbols);
2964 }
2965 else
2966 {
2967 add_symbol_to_list (sym, list_in_scope);
2968 }
2969 break;
2970 case TAG_global_variable:
2971 if (dip -> at_location != NULL)
2972 {
2973 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2974 add_symbol_to_list (sym, &global_symbols);
2975 SYMBOL_CLASS (sym) = LOC_STATIC;
2976 SYMBOL_VALUE (sym) += baseaddr;
2977 }
2978 break;
2979 case TAG_local_variable:
2980 if (dip -> at_location != NULL)
2981 {
2982 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2983 add_symbol_to_list (sym, list_in_scope);
2984 if (isreg)
2985 {
2986 SYMBOL_CLASS (sym) = LOC_REGISTER;
2987 }
2988 else if (offreg)
2989 {
2990 SYMBOL_CLASS (sym) = LOC_BASEREG;
2991 SYMBOL_BASEREG (sym) = basereg;
2992 }
2993 else
2994 {
2995 SYMBOL_CLASS (sym) = LOC_STATIC;
2996 SYMBOL_VALUE (sym) += baseaddr;
2997 }
2998 }
2999 break;
3000 case TAG_formal_parameter:
3001 if (dip -> at_location != NULL)
3002 {
3003 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3004 }
3005 add_symbol_to_list (sym, list_in_scope);
3006 if (isreg)
3007 {
3008 SYMBOL_CLASS (sym) = LOC_REGPARM;
3009 }
3010 else if (offreg)
3011 {
3012 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3013 SYMBOL_BASEREG (sym) = basereg;
3014 }
3015 else
3016 {
3017 SYMBOL_CLASS (sym) = LOC_ARG;
3018 }
3019 break;
3020 case TAG_unspecified_parameters:
3021 /* From varargs functions; gdb doesn't seem to have any interest in
3022 this information, so just ignore it for now. (FIXME?) */
3023 break;
3024 case TAG_class_type:
3025 case TAG_structure_type:
3026 case TAG_union_type:
3027 case TAG_enumeration_type:
3028 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3029 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3030 add_symbol_to_list (sym, list_in_scope);
3031 break;
3032 case TAG_typedef:
3033 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3034 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3035 add_symbol_to_list (sym, list_in_scope);
3036 break;
3037 default:
3038 /* Not a tag we recognize. Hopefully we aren't processing trash
3039 data, but since we must specifically ignore things we don't
3040 recognize, there is nothing else we should do at this point. */
3041 break;
3042 }
3043 }
3044 return (sym);
3045 }
3046
3047 /*
3048
3049 LOCAL FUNCTION
3050
3051 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3052
3053 SYNOPSIS
3054
3055 static void synthesize_typedef (struct dieinfo *dip,
3056 struct objfile *objfile,
3057 struct type *type);
3058
3059 DESCRIPTION
3060
3061 Given a pointer to a DWARF information entry, synthesize a typedef
3062 for the name in the DIE, using the specified type.
3063
3064 This is used for C++ class, structs, unions, and enumerations to
3065 set up the tag name as a type.
3066
3067 */
3068
3069 static void
3070 synthesize_typedef (dip, objfile, type)
3071 struct dieinfo *dip;
3072 struct objfile *objfile;
3073 struct type *type;
3074 {
3075 struct symbol *sym = NULL;
3076
3077 if (dip -> at_name != NULL)
3078 {
3079 sym = (struct symbol *)
3080 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3081 memset (sym, 0, sizeof (struct symbol));
3082 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3083 &objfile->symbol_obstack);
3084 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3085 SYMBOL_TYPE (sym) = type;
3086 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3087 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3088 add_symbol_to_list (sym, list_in_scope);
3089 }
3090 }
3091
3092 /*
3093
3094 LOCAL FUNCTION
3095
3096 decode_mod_fund_type -- decode a modified fundamental type
3097
3098 SYNOPSIS
3099
3100 static struct type *decode_mod_fund_type (char *typedata)
3101
3102 DESCRIPTION
3103
3104 Decode a block of data containing a modified fundamental
3105 type specification. TYPEDATA is a pointer to the block,
3106 which starts with a length containing the size of the rest
3107 of the block. At the end of the block is a fundmental type
3108 code value that gives the fundamental type. Everything
3109 in between are type modifiers.
3110
3111 We simply compute the number of modifiers and call the general
3112 function decode_modified_type to do the actual work.
3113 */
3114
3115 static struct type *
3116 decode_mod_fund_type (typedata)
3117 char *typedata;
3118 {
3119 struct type *typep = NULL;
3120 unsigned short modcount;
3121 int nbytes;
3122
3123 /* Get the total size of the block, exclusive of the size itself */
3124
3125 nbytes = attribute_size (AT_mod_fund_type);
3126 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3127 typedata += nbytes;
3128
3129 /* Deduct the size of the fundamental type bytes at the end of the block. */
3130
3131 modcount -= attribute_size (AT_fund_type);
3132
3133 /* Now do the actual decoding */
3134
3135 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3136 return (typep);
3137 }
3138
3139 /*
3140
3141 LOCAL FUNCTION
3142
3143 decode_mod_u_d_type -- decode a modified user defined type
3144
3145 SYNOPSIS
3146
3147 static struct type *decode_mod_u_d_type (char *typedata)
3148
3149 DESCRIPTION
3150
3151 Decode a block of data containing a modified user defined
3152 type specification. TYPEDATA is a pointer to the block,
3153 which consists of a two byte length, containing the size
3154 of the rest of the block. At the end of the block is a
3155 four byte value that gives a reference to a user defined type.
3156 Everything in between are type modifiers.
3157
3158 We simply compute the number of modifiers and call the general
3159 function decode_modified_type to do the actual work.
3160 */
3161
3162 static struct type *
3163 decode_mod_u_d_type (typedata)
3164 char *typedata;
3165 {
3166 struct type *typep = NULL;
3167 unsigned short modcount;
3168 int nbytes;
3169
3170 /* Get the total size of the block, exclusive of the size itself */
3171
3172 nbytes = attribute_size (AT_mod_u_d_type);
3173 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3174 typedata += nbytes;
3175
3176 /* Deduct the size of the reference type bytes at the end of the block. */
3177
3178 modcount -= attribute_size (AT_user_def_type);
3179
3180 /* Now do the actual decoding */
3181
3182 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3183 return (typep);
3184 }
3185
3186 /*
3187
3188 LOCAL FUNCTION
3189
3190 decode_modified_type -- decode modified user or fundamental type
3191
3192 SYNOPSIS
3193
3194 static struct type *decode_modified_type (char *modifiers,
3195 unsigned short modcount, int mtype)
3196
3197 DESCRIPTION
3198
3199 Decode a modified type, either a modified fundamental type or
3200 a modified user defined type. MODIFIERS is a pointer to the
3201 block of bytes that define MODCOUNT modifiers. Immediately
3202 following the last modifier is a short containing the fundamental
3203 type or a long containing the reference to the user defined
3204 type. Which one is determined by MTYPE, which is either
3205 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3206 type we are generating.
3207
3208 We call ourself recursively to generate each modified type,`
3209 until MODCOUNT reaches zero, at which point we have consumed
3210 all the modifiers and generate either the fundamental type or
3211 user defined type. When the recursion unwinds, each modifier
3212 is applied in turn to generate the full modified type.
3213
3214 NOTES
3215
3216 If we find a modifier that we don't recognize, and it is not one
3217 of those reserved for application specific use, then we issue a
3218 warning and simply ignore the modifier.
3219
3220 BUGS
3221
3222 We currently ignore MOD_const and MOD_volatile. (FIXME)
3223
3224 */
3225
3226 static struct type *
3227 decode_modified_type (modifiers, modcount, mtype)
3228 char *modifiers;
3229 unsigned int modcount;
3230 int mtype;
3231 {
3232 struct type *typep = NULL;
3233 unsigned short fundtype;
3234 DIE_REF die_ref;
3235 char modifier;
3236 int nbytes;
3237
3238 if (modcount == 0)
3239 {
3240 switch (mtype)
3241 {
3242 case AT_mod_fund_type:
3243 nbytes = attribute_size (AT_fund_type);
3244 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3245 current_objfile);
3246 typep = decode_fund_type (fundtype);
3247 break;
3248 case AT_mod_u_d_type:
3249 nbytes = attribute_size (AT_user_def_type);
3250 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3251 current_objfile);
3252 if ((typep = lookup_utype (die_ref)) == NULL)
3253 {
3254 typep = alloc_utype (die_ref, NULL);
3255 }
3256 break;
3257 default:
3258 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3259 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3260 break;
3261 }
3262 }
3263 else
3264 {
3265 modifier = *modifiers++;
3266 typep = decode_modified_type (modifiers, --modcount, mtype);
3267 switch (modifier)
3268 {
3269 case MOD_pointer_to:
3270 typep = lookup_pointer_type (typep);
3271 break;
3272 case MOD_reference_to:
3273 typep = lookup_reference_type (typep);
3274 break;
3275 case MOD_const:
3276 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3277 break;
3278 case MOD_volatile:
3279 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3280 break;
3281 default:
3282 if (!(MOD_lo_user <= (unsigned char) modifier
3283 && (unsigned char) modifier <= MOD_hi_user))
3284 {
3285 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3286 }
3287 break;
3288 }
3289 }
3290 return (typep);
3291 }
3292
3293 /*
3294
3295 LOCAL FUNCTION
3296
3297 decode_fund_type -- translate basic DWARF type to gdb base type
3298
3299 DESCRIPTION
3300
3301 Given an integer that is one of the fundamental DWARF types,
3302 translate it to one of the basic internal gdb types and return
3303 a pointer to the appropriate gdb type (a "struct type *").
3304
3305 NOTES
3306
3307 For robustness, if we are asked to translate a fundamental
3308 type that we are unprepared to deal with, we return int so
3309 callers can always depend upon a valid type being returned,
3310 and so gdb may at least do something reasonable by default.
3311 If the type is not in the range of those types defined as
3312 application specific types, we also issue a warning.
3313 */
3314
3315 static struct type *
3316 decode_fund_type (fundtype)
3317 unsigned int fundtype;
3318 {
3319 struct type *typep = NULL;
3320
3321 switch (fundtype)
3322 {
3323
3324 case FT_void:
3325 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3326 break;
3327
3328 case FT_boolean: /* Was FT_set in AT&T version */
3329 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3330 break;
3331
3332 case FT_pointer: /* (void *) */
3333 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3334 typep = lookup_pointer_type (typep);
3335 break;
3336
3337 case FT_char:
3338 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3339 break;
3340
3341 case FT_signed_char:
3342 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3343 break;
3344
3345 case FT_unsigned_char:
3346 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3347 break;
3348
3349 case FT_short:
3350 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3351 break;
3352
3353 case FT_signed_short:
3354 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3355 break;
3356
3357 case FT_unsigned_short:
3358 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3359 break;
3360
3361 case FT_integer:
3362 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3363 break;
3364
3365 case FT_signed_integer:
3366 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3367 break;
3368
3369 case FT_unsigned_integer:
3370 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3371 break;
3372
3373 case FT_long:
3374 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3375 break;
3376
3377 case FT_signed_long:
3378 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3379 break;
3380
3381 case FT_unsigned_long:
3382 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3383 break;
3384
3385 case FT_long_long:
3386 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3387 break;
3388
3389 case FT_signed_long_long:
3390 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3391 break;
3392
3393 case FT_unsigned_long_long:
3394 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3395 break;
3396
3397 case FT_float:
3398 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3399 break;
3400
3401 case FT_dbl_prec_float:
3402 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3403 break;
3404
3405 case FT_ext_prec_float:
3406 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3407 break;
3408
3409 case FT_complex:
3410 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3411 break;
3412
3413 case FT_dbl_prec_complex:
3414 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3415 break;
3416
3417 case FT_ext_prec_complex:
3418 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3419 break;
3420
3421 }
3422
3423 if (typep == NULL)
3424 {
3425 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3426 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3427 {
3428 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3429 }
3430 }
3431
3432 return (typep);
3433 }
3434
3435 /*
3436
3437 LOCAL FUNCTION
3438
3439 create_name -- allocate a fresh copy of a string on an obstack
3440
3441 DESCRIPTION
3442
3443 Given a pointer to a string and a pointer to an obstack, allocates
3444 a fresh copy of the string on the specified obstack.
3445
3446 */
3447
3448 static char *
3449 create_name (name, obstackp)
3450 char *name;
3451 struct obstack *obstackp;
3452 {
3453 int length;
3454 char *newname;
3455
3456 length = strlen (name) + 1;
3457 newname = (char *) obstack_alloc (obstackp, length);
3458 strcpy (newname, name);
3459 return (newname);
3460 }
3461
3462 /*
3463
3464 LOCAL FUNCTION
3465
3466 basicdieinfo -- extract the minimal die info from raw die data
3467
3468 SYNOPSIS
3469
3470 void basicdieinfo (char *diep, struct dieinfo *dip,
3471 struct objfile *objfile)
3472
3473 DESCRIPTION
3474
3475 Given a pointer to raw DIE data, and a pointer to an instance of a
3476 die info structure, this function extracts the basic information
3477 from the DIE data required to continue processing this DIE, along
3478 with some bookkeeping information about the DIE.
3479
3480 The information we absolutely must have includes the DIE tag,
3481 and the DIE length. If we need the sibling reference, then we
3482 will have to call completedieinfo() to process all the remaining
3483 DIE information.
3484
3485 Note that since there is no guarantee that the data is properly
3486 aligned in memory for the type of access required (indirection
3487 through anything other than a char pointer), and there is no
3488 guarantee that it is in the same byte order as the gdb host,
3489 we call a function which deals with both alignment and byte
3490 swapping issues. Possibly inefficient, but quite portable.
3491
3492 We also take care of some other basic things at this point, such
3493 as ensuring that the instance of the die info structure starts
3494 out completely zero'd and that curdie is initialized for use
3495 in error reporting if we have a problem with the current die.
3496
3497 NOTES
3498
3499 All DIE's must have at least a valid length, thus the minimum
3500 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3501 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3502 are forced to be TAG_padding DIES.
3503
3504 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3505 that if a padding DIE is used for alignment and the amount needed is
3506 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3507 enough to align to the next alignment boundry.
3508
3509 We do some basic sanity checking here, such as verifying that the
3510 length of the die would not cause it to overrun the recorded end of
3511 the buffer holding the DIE info. If we find a DIE that is either
3512 too small or too large, we force it's length to zero which should
3513 cause the caller to take appropriate action.
3514 */
3515
3516 static void
3517 basicdieinfo (dip, diep, objfile)
3518 struct dieinfo *dip;
3519 char *diep;
3520 struct objfile *objfile;
3521 {
3522 curdie = dip;
3523 memset (dip, 0, sizeof (struct dieinfo));
3524 dip -> die = diep;
3525 dip -> die_ref = dbroff + (diep - dbbase);
3526 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3527 objfile);
3528 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3529 ((diep + dip -> die_length) > (dbbase + dbsize)))
3530 {
3531 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3532 dip -> die_length = 0;
3533 }
3534 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3535 {
3536 dip -> die_tag = TAG_padding;
3537 }
3538 else
3539 {
3540 diep += SIZEOF_DIE_LENGTH;
3541 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3542 objfile);
3543 }
3544 }
3545
3546 /*
3547
3548 LOCAL FUNCTION
3549
3550 completedieinfo -- finish reading the information for a given DIE
3551
3552 SYNOPSIS
3553
3554 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3555
3556 DESCRIPTION
3557
3558 Given a pointer to an already partially initialized die info structure,
3559 scan the raw DIE data and finish filling in the die info structure
3560 from the various attributes found.
3561
3562 Note that since there is no guarantee that the data is properly
3563 aligned in memory for the type of access required (indirection
3564 through anything other than a char pointer), and there is no
3565 guarantee that it is in the same byte order as the gdb host,
3566 we call a function which deals with both alignment and byte
3567 swapping issues. Possibly inefficient, but quite portable.
3568
3569 NOTES
3570
3571 Each time we are called, we increment the diecount variable, which
3572 keeps an approximate count of the number of dies processed for
3573 each compilation unit. This information is presented to the user
3574 if the info_verbose flag is set.
3575
3576 */
3577
3578 static void
3579 completedieinfo (dip, objfile)
3580 struct dieinfo *dip;
3581 struct objfile *objfile;
3582 {
3583 char *diep; /* Current pointer into raw DIE data */
3584 char *end; /* Terminate DIE scan here */
3585 unsigned short attr; /* Current attribute being scanned */
3586 unsigned short form; /* Form of the attribute */
3587 int nbytes; /* Size of next field to read */
3588
3589 diecount++;
3590 diep = dip -> die;
3591 end = diep + dip -> die_length;
3592 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3593 while (diep < end)
3594 {
3595 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3596 diep += SIZEOF_ATTRIBUTE;
3597 if ((nbytes = attribute_size (attr)) == -1)
3598 {
3599 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3600 diep = end;
3601 continue;
3602 }
3603 switch (attr)
3604 {
3605 case AT_fund_type:
3606 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3607 objfile);
3608 break;
3609 case AT_ordering:
3610 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3611 objfile);
3612 break;
3613 case AT_bit_offset:
3614 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3615 objfile);
3616 break;
3617 case AT_sibling:
3618 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3619 objfile);
3620 break;
3621 case AT_stmt_list:
3622 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3623 objfile);
3624 dip -> has_at_stmt_list = 1;
3625 break;
3626 case AT_low_pc:
3627 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3628 objfile);
3629 dip -> at_low_pc += baseaddr;
3630 dip -> has_at_low_pc = 1;
3631 break;
3632 case AT_high_pc:
3633 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3634 objfile);
3635 dip -> at_high_pc += baseaddr;
3636 break;
3637 case AT_language:
3638 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3639 objfile);
3640 break;
3641 case AT_user_def_type:
3642 dip -> at_user_def_type = target_to_host (diep, nbytes,
3643 GET_UNSIGNED, objfile);
3644 break;
3645 case AT_byte_size:
3646 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3647 objfile);
3648 dip -> has_at_byte_size = 1;
3649 break;
3650 case AT_bit_size:
3651 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
3653 break;
3654 case AT_member:
3655 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 objfile);
3657 break;
3658 case AT_discr:
3659 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
3661 break;
3662 case AT_location:
3663 dip -> at_location = diep;
3664 break;
3665 case AT_mod_fund_type:
3666 dip -> at_mod_fund_type = diep;
3667 break;
3668 case AT_subscr_data:
3669 dip -> at_subscr_data = diep;
3670 break;
3671 case AT_mod_u_d_type:
3672 dip -> at_mod_u_d_type = diep;
3673 break;
3674 case AT_element_list:
3675 dip -> at_element_list = diep;
3676 dip -> short_element_list = 0;
3677 break;
3678 case AT_short_element_list:
3679 dip -> at_element_list = diep;
3680 dip -> short_element_list = 1;
3681 break;
3682 case AT_discr_value:
3683 dip -> at_discr_value = diep;
3684 break;
3685 case AT_string_length:
3686 dip -> at_string_length = diep;
3687 break;
3688 case AT_name:
3689 dip -> at_name = diep;
3690 break;
3691 case AT_comp_dir:
3692 /* For now, ignore any "hostname:" portion, since gdb doesn't
3693 know how to deal with it. (FIXME). */
3694 dip -> at_comp_dir = strrchr (diep, ':');
3695 if (dip -> at_comp_dir != NULL)
3696 {
3697 dip -> at_comp_dir++;
3698 }
3699 else
3700 {
3701 dip -> at_comp_dir = diep;
3702 }
3703 break;
3704 case AT_producer:
3705 dip -> at_producer = diep;
3706 break;
3707 case AT_start_scope:
3708 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3709 objfile);
3710 break;
3711 case AT_stride_size:
3712 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3713 objfile);
3714 break;
3715 case AT_src_info:
3716 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3717 objfile);
3718 break;
3719 case AT_prototyped:
3720 dip -> at_prototyped = diep;
3721 break;
3722 default:
3723 /* Found an attribute that we are unprepared to handle. However
3724 it is specifically one of the design goals of DWARF that
3725 consumers should ignore unknown attributes. As long as the
3726 form is one that we recognize (so we know how to skip it),
3727 we can just ignore the unknown attribute. */
3728 break;
3729 }
3730 form = FORM_FROM_ATTR (attr);
3731 switch (form)
3732 {
3733 case FORM_DATA2:
3734 diep += 2;
3735 break;
3736 case FORM_DATA4:
3737 case FORM_REF:
3738 diep += 4;
3739 break;
3740 case FORM_DATA8:
3741 diep += 8;
3742 break;
3743 case FORM_ADDR:
3744 diep += TARGET_FT_POINTER_SIZE (objfile);
3745 break;
3746 case FORM_BLOCK2:
3747 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3748 break;
3749 case FORM_BLOCK4:
3750 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3751 break;
3752 case FORM_STRING:
3753 diep += strlen (diep) + 1;
3754 break;
3755 default:
3756 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3757 diep = end;
3758 break;
3759 }
3760 }
3761 }
3762
3763 /*
3764
3765 LOCAL FUNCTION
3766
3767 target_to_host -- swap in target data to host
3768
3769 SYNOPSIS
3770
3771 target_to_host (char *from, int nbytes, int signextend,
3772 struct objfile *objfile)
3773
3774 DESCRIPTION
3775
3776 Given pointer to data in target format in FROM, a byte count for
3777 the size of the data in NBYTES, a flag indicating whether or not
3778 the data is signed in SIGNEXTEND, and a pointer to the current
3779 objfile in OBJFILE, convert the data to host format and return
3780 the converted value.
3781
3782 NOTES
3783
3784 FIXME: If we read data that is known to be signed, and expect to
3785 use it as signed data, then we need to explicitly sign extend the
3786 result until the bfd library is able to do this for us.
3787
3788 */
3789
3790 static unsigned long
3791 target_to_host (from, nbytes, signextend, objfile)
3792 char *from;
3793 int nbytes;
3794 int signextend; /* FIXME: Unused */
3795 struct objfile *objfile;
3796 {
3797 unsigned long rtnval;
3798
3799 switch (nbytes)
3800 {
3801 case 8:
3802 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3803 break;
3804 case 4:
3805 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3806 break;
3807 case 2:
3808 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3809 break;
3810 case 1:
3811 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3812 break;
3813 default:
3814 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3815 rtnval = 0;
3816 break;
3817 }
3818 return (rtnval);
3819 }
3820
3821 /*
3822
3823 LOCAL FUNCTION
3824
3825 attribute_size -- compute size of data for a DWARF attribute
3826
3827 SYNOPSIS
3828
3829 static int attribute_size (unsigned int attr)
3830
3831 DESCRIPTION
3832
3833 Given a DWARF attribute in ATTR, compute the size of the first
3834 piece of data associated with this attribute and return that
3835 size.
3836
3837 Returns -1 for unrecognized attributes.
3838
3839 */
3840
3841 static int
3842 attribute_size (attr)
3843 unsigned int attr;
3844 {
3845 int nbytes; /* Size of next data for this attribute */
3846 unsigned short form; /* Form of the attribute */
3847
3848 form = FORM_FROM_ATTR (attr);
3849 switch (form)
3850 {
3851 case FORM_STRING: /* A variable length field is next */
3852 nbytes = 0;
3853 break;
3854 case FORM_DATA2: /* Next 2 byte field is the data itself */
3855 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3856 nbytes = 2;
3857 break;
3858 case FORM_DATA4: /* Next 4 byte field is the data itself */
3859 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3860 case FORM_REF: /* Next 4 byte field is a DIE offset */
3861 nbytes = 4;
3862 break;
3863 case FORM_DATA8: /* Next 8 byte field is the data itself */
3864 nbytes = 8;
3865 break;
3866 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3867 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3868 break;
3869 default:
3870 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3871 nbytes = -1;
3872 break;
3873 }
3874 return (nbytes);
3875 }
This page took 0.250627 seconds and 4 git commands to generate.