1e7a6d0a37db4a449bae5a77871c9588ffccc3d5
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Figure out how to get the frame pointer register number in the
25 execution environment of the target. Remove R_FP kludge
26
27 FIXME: Do we need to generate dependencies in partial symtabs?
28 (Perhaps we don't need to).
29
30 FIXME: Resolve minor differences between what information we put in the
31 partial symbol table and what dbxread puts in. For example, we don't yet
32 put enum constants there. And dbxread seems to invent a lot of typedefs
33 we never see. Use the new printpsym command to see the partial symbol table
34 contents.
35
36 FIXME: Figure out a better way to tell gdb about the name of the function
37 contain the user's entry point (I.E. main())
38
39 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
40 other things to work on, if you get bored. :-)
41
42 */
43
44 #include "defs.h"
45 #include "bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "symfile.h"
49 #include "objfiles.h"
50 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
51 #include "elf/dwarf.h"
52 #include "buildsym.h"
53 #include "demangle.h"
54 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
55 #include "language.h"
56 #include "complaints.h"
57
58 #include <fcntl.h>
59 #include <string.h>
60 #include <sys/types.h>
61
62 #ifndef NO_SYS_FILE
63 #include <sys/file.h>
64 #endif
65
66 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
67 #ifndef L_SET
68 #define L_SET 0
69 #endif
70
71 /* Some macros to provide DIE info for complaints. */
72
73 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
74 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
75
76 /* Complaints that can be issued during DWARF debug info reading. */
77
78 struct complaint no_bfd_get_N =
79 {
80 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
81 };
82
83 struct complaint malformed_die =
84 {
85 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
86 };
87
88 struct complaint bad_die_ref =
89 {
90 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
91 };
92
93 struct complaint unknown_attribute_form =
94 {
95 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
96 };
97
98 struct complaint unknown_attribute_length =
99 {
100 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
101 };
102
103 struct complaint unexpected_fund_type =
104 {
105 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
106 };
107
108 struct complaint unknown_type_modifier =
109 {
110 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
111 };
112
113 struct complaint volatile_ignored =
114 {
115 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
116 };
117
118 struct complaint const_ignored =
119 {
120 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
121 };
122
123 struct complaint botched_modified_type =
124 {
125 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
126 };
127
128 struct complaint op_deref2 =
129 {
130 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
131 };
132
133 struct complaint op_deref4 =
134 {
135 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
136 };
137
138 struct complaint basereg_not_handled =
139 {
140 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
141 };
142
143 struct complaint dup_user_type_allocation =
144 {
145 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
146 };
147
148 struct complaint dup_user_type_definition =
149 {
150 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
151 };
152
153 struct complaint missing_tag =
154 {
155 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
156 };
157
158 struct complaint bad_array_element_type =
159 {
160 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
161 };
162
163 struct complaint subscript_data_items =
164 {
165 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
166 };
167
168 struct complaint unhandled_array_subscript_format =
169 {
170 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
171 };
172
173 struct complaint unknown_array_subscript_format =
174 {
175 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
176 };
177
178 struct complaint not_row_major =
179 {
180 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
181 };
182
183 #ifndef R_FP /* FIXME */
184 #define R_FP 14 /* Kludge to get frame pointer register number */
185 #endif
186
187 typedef unsigned int DIE_REF; /* Reference to a DIE */
188
189 #ifndef GCC_PRODUCER
190 #define GCC_PRODUCER "GNU C "
191 #endif
192
193 #ifndef GPLUS_PRODUCER
194 #define GPLUS_PRODUCER "GNU C++ "
195 #endif
196
197 #ifndef LCC_PRODUCER
198 #define LCC_PRODUCER "NCR C/C++"
199 #endif
200
201 #ifndef CHILL_PRODUCER
202 #define CHILL_PRODUCER "GNU Chill "
203 #endif
204
205 /* Flags to target_to_host() that tell whether or not the data object is
206 expected to be signed. Used, for example, when fetching a signed
207 integer in the target environment which is used as a signed integer
208 in the host environment, and the two environments have different sized
209 ints. In this case, *somebody* has to sign extend the smaller sized
210 int. */
211
212 #define GET_UNSIGNED 0 /* No sign extension required */
213 #define GET_SIGNED 1 /* Sign extension required */
214
215 /* Defines for things which are specified in the document "DWARF Debugging
216 Information Format" published by UNIX International, Programming Languages
217 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
218
219 #define SIZEOF_DIE_LENGTH 4
220 #define SIZEOF_DIE_TAG 2
221 #define SIZEOF_ATTRIBUTE 2
222 #define SIZEOF_FORMAT_SPECIFIER 1
223 #define SIZEOF_FMT_FT 2
224 #define SIZEOF_LINETBL_LENGTH 4
225 #define SIZEOF_LINETBL_LINENO 4
226 #define SIZEOF_LINETBL_STMT 2
227 #define SIZEOF_LINETBL_DELTA 4
228 #define SIZEOF_LOC_ATOM_CODE 1
229
230 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
231
232 /* Macros that return the sizes of various types of data in the target
233 environment.
234
235 FIXME: Currently these are just compile time constants (as they are in
236 other parts of gdb as well). They need to be able to get the right size
237 either from the bfd or possibly from the DWARF info. It would be nice if
238 the DWARF producer inserted DIES that describe the fundamental types in
239 the target environment into the DWARF info, similar to the way dbx stabs
240 producers produce information about their fundamental types. */
241
242 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
243 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
244
245 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
246 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
247 However, the Issue 2 DWARF specification from AT&T defines it as
248 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
249 For backwards compatibility with the AT&T compiler produced executables
250 we define AT_short_element_list for this variant. */
251
252 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
253
254 /* External variables referenced. */
255
256 extern int info_verbose; /* From main.c; nonzero => verbose */
257 extern char *warning_pre_print; /* From utils.c */
258
259 /* The DWARF debugging information consists of two major pieces,
260 one is a block of DWARF Information Entries (DIE's) and the other
261 is a line number table. The "struct dieinfo" structure contains
262 the information for a single DIE, the one currently being processed.
263
264 In order to make it easier to randomly access the attribute fields
265 of the current DIE, which are specifically unordered within the DIE,
266 each DIE is scanned and an instance of the "struct dieinfo"
267 structure is initialized.
268
269 Initialization is done in two levels. The first, done by basicdieinfo(),
270 just initializes those fields that are vital to deciding whether or not
271 to use this DIE, how to skip past it, etc. The second, done by the
272 function completedieinfo(), fills in the rest of the information.
273
274 Attributes which have block forms are not interpreted at the time
275 the DIE is scanned, instead we just save pointers to the start
276 of their value fields.
277
278 Some fields have a flag <name>_p that is set when the value of the
279 field is valid (I.E. we found a matching attribute in the DIE). Since
280 we may want to test for the presence of some attributes in the DIE,
281 such as AT_low_pc, without restricting the values of the field,
282 we need someway to note that we found such an attribute.
283
284 */
285
286 typedef char BLOCK;
287
288 struct dieinfo {
289 char * die; /* Pointer to the raw DIE data */
290 unsigned long die_length; /* Length of the raw DIE data */
291 DIE_REF die_ref; /* Offset of this DIE */
292 unsigned short die_tag; /* Tag for this DIE */
293 unsigned long at_padding;
294 unsigned long at_sibling;
295 BLOCK * at_location;
296 char * at_name;
297 unsigned short at_fund_type;
298 BLOCK * at_mod_fund_type;
299 unsigned long at_user_def_type;
300 BLOCK * at_mod_u_d_type;
301 unsigned short at_ordering;
302 BLOCK * at_subscr_data;
303 unsigned long at_byte_size;
304 unsigned short at_bit_offset;
305 unsigned long at_bit_size;
306 BLOCK * at_element_list;
307 unsigned long at_stmt_list;
308 unsigned long at_low_pc;
309 unsigned long at_high_pc;
310 unsigned long at_language;
311 unsigned long at_member;
312 unsigned long at_discr;
313 BLOCK * at_discr_value;
314 BLOCK * at_string_length;
315 char * at_comp_dir;
316 char * at_producer;
317 unsigned long at_start_scope;
318 unsigned long at_stride_size;
319 unsigned long at_src_info;
320 char * at_prototyped;
321 unsigned int has_at_low_pc:1;
322 unsigned int has_at_stmt_list:1;
323 unsigned int has_at_byte_size:1;
324 unsigned int short_element_list:1;
325 };
326
327 static int diecount; /* Approximate count of dies for compilation unit */
328 static struct dieinfo *curdie; /* For warnings and such */
329
330 static char *dbbase; /* Base pointer to dwarf info */
331 static int dbsize; /* Size of dwarf info in bytes */
332 static int dbroff; /* Relative offset from start of .debug section */
333 static char *lnbase; /* Base pointer to line section */
334 static int isreg; /* Kludge to identify register variables */
335 static int offreg; /* Kludge to identify basereg references */
336
337 /* This value is added to each symbol value. FIXME: Generalize to
338 the section_offsets structure used by dbxread (once this is done,
339 pass the appropriate section number to end_symtab). */
340 static CORE_ADDR baseaddr; /* Add to each symbol value */
341
342 /* The section offsets used in the current psymtab or symtab. FIXME,
343 only used to pass one value (baseaddr) at the moment. */
344 static struct section_offsets *base_section_offsets;
345
346 /* Each partial symbol table entry contains a pointer to private data for the
347 read_symtab() function to use when expanding a partial symbol table entry
348 to a full symbol table entry. For DWARF debugging info, this data is
349 contained in the following structure and macros are provided for easy
350 access to the members given a pointer to a partial symbol table entry.
351
352 dbfoff Always the absolute file offset to the start of the ".debug"
353 section for the file containing the DIE's being accessed.
354
355 dbroff Relative offset from the start of the ".debug" access to the
356 first DIE to be accessed. When building the partial symbol
357 table, this value will be zero since we are accessing the
358 entire ".debug" section. When expanding a partial symbol
359 table entry, this value will be the offset to the first
360 DIE for the compilation unit containing the symbol that
361 triggers the expansion.
362
363 dblength The size of the chunk of DIE's being examined, in bytes.
364
365 lnfoff The absolute file offset to the line table fragment. Ignored
366 when building partial symbol tables, but used when expanding
367 them, and contains the absolute file offset to the fragment
368 of the ".line" section containing the line numbers for the
369 current compilation unit.
370 */
371
372 struct dwfinfo {
373 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
374 int dbroff; /* Relative offset from start of .debug section */
375 int dblength; /* Size of the chunk of DIE's being examined */
376 file_ptr lnfoff; /* Absolute file offset to line table fragment */
377 };
378
379 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
380 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
381 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
382 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
383
384 /* The generic symbol table building routines have separate lists for
385 file scope symbols and all all other scopes (local scopes). So
386 we need to select the right one to pass to add_symbol_to_list().
387 We do it by keeping a pointer to the correct list in list_in_scope.
388
389 FIXME: The original dwarf code just treated the file scope as the first
390 local scope, and all other local scopes as nested local scopes, and worked
391 fine. Check to see if we really need to distinguish these in buildsym.c */
392
393 struct pending **list_in_scope = &file_symbols;
394
395 /* DIES which have user defined types or modified user defined types refer to
396 other DIES for the type information. Thus we need to associate the offset
397 of a DIE for a user defined type with a pointer to the type information.
398
399 Originally this was done using a simple but expensive algorithm, with an
400 array of unsorted structures, each containing an offset/type-pointer pair.
401 This array was scanned linearly each time a lookup was done. The result
402 was that gdb was spending over half it's startup time munging through this
403 array of pointers looking for a structure that had the right offset member.
404
405 The second attempt used the same array of structures, but the array was
406 sorted using qsort each time a new offset/type was recorded, and a binary
407 search was used to find the type pointer for a given DIE offset. This was
408 even slower, due to the overhead of sorting the array each time a new
409 offset/type pair was entered.
410
411 The third attempt uses a fixed size array of type pointers, indexed by a
412 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
413 we can divide any DIE offset by 4 to obtain a unique index into this fixed
414 size array. Since each element is a 4 byte pointer, it takes exactly as
415 much memory to hold this array as to hold the DWARF info for a given
416 compilation unit. But it gets freed as soon as we are done with it.
417 This has worked well in practice, as a reasonable tradeoff between memory
418 consumption and speed, without having to resort to much more complicated
419 algorithms. */
420
421 static struct type **utypes; /* Pointer to array of user type pointers */
422 static int numutypes; /* Max number of user type pointers */
423
424 /* Maintain an array of referenced fundamental types for the current
425 compilation unit being read. For DWARF version 1, we have to construct
426 the fundamental types on the fly, since no information about the
427 fundamental types is supplied. Each such fundamental type is created by
428 calling a language dependent routine to create the type, and then a
429 pointer to that type is then placed in the array at the index specified
430 by it's FT_<TYPENAME> value. The array has a fixed size set by the
431 FT_NUM_MEMBERS compile time constant, which is the number of predefined
432 fundamental types gdb knows how to construct. */
433
434 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
435
436 /* Record the language for the compilation unit which is currently being
437 processed. We know it once we have seen the TAG_compile_unit DIE,
438 and we need it while processing the DIE's for that compilation unit.
439 It is eventually saved in the symtab structure, but we don't finalize
440 the symtab struct until we have processed all the DIE's for the
441 compilation unit. We also need to get and save a pointer to the
442 language struct for this language, so we can call the language
443 dependent routines for doing things such as creating fundamental
444 types. */
445
446 static enum language cu_language;
447 static const struct language_defn *cu_language_defn;
448
449 /* Forward declarations of static functions so we don't have to worry
450 about ordering within this file. */
451
452 static int
453 attribute_size PARAMS ((unsigned int));
454
455 static unsigned long
456 target_to_host PARAMS ((char *, int, int, struct objfile *));
457
458 static void
459 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
460
461 static void
462 handle_producer PARAMS ((char *));
463
464 static void
465 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
466
467 static void
468 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
469
470 static void
471 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
472 struct objfile *));
473
474 static void
475 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
476
477 static void
478 scan_compilation_units PARAMS ((char *, char *, file_ptr,
479 file_ptr, struct objfile *));
480
481 static void
482 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
483
484 static void
485 init_psymbol_list PARAMS ((struct objfile *, int));
486
487 static void
488 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
489
490 static void
491 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
492
493 static void
494 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
495
496 static void
497 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
498
499 static void
500 read_ofile_symtab PARAMS ((struct partial_symtab *));
501
502 static void
503 process_dies PARAMS ((char *, char *, struct objfile *));
504
505 static void
506 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
507 struct objfile *));
508
509 static struct type *
510 decode_array_element_type PARAMS ((char *));
511
512 static struct type *
513 decode_subscript_data_item PARAMS ((char *, char *));
514
515 static void
516 dwarf_read_array_type PARAMS ((struct dieinfo *));
517
518 static void
519 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
520
521 static void
522 read_tag_string_type PARAMS ((struct dieinfo *dip));
523
524 static void
525 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
526
527 static void
528 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
529
530 static struct type *
531 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
532
533 static struct type *
534 enum_type PARAMS ((struct dieinfo *, struct objfile *));
535
536 static void
537 decode_line_numbers PARAMS ((char *));
538
539 static struct type *
540 decode_die_type PARAMS ((struct dieinfo *));
541
542 static struct type *
543 decode_mod_fund_type PARAMS ((char *));
544
545 static struct type *
546 decode_mod_u_d_type PARAMS ((char *));
547
548 static struct type *
549 decode_modified_type PARAMS ((char *, unsigned int, int));
550
551 static struct type *
552 decode_fund_type PARAMS ((unsigned int));
553
554 static char *
555 create_name PARAMS ((char *, struct obstack *));
556
557 static struct type *
558 lookup_utype PARAMS ((DIE_REF));
559
560 static struct type *
561 alloc_utype PARAMS ((DIE_REF, struct type *));
562
563 static struct symbol *
564 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
565
566 static void
567 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
568 struct type *));
569
570 static int
571 locval PARAMS ((char *));
572
573 static void
574 record_minimal_symbol PARAMS ((char *, CORE_ADDR, enum minimal_symbol_type,
575 struct objfile *));
576
577 static void
578 set_cu_language PARAMS ((struct dieinfo *));
579
580 static struct type *
581 dwarf_fundamental_type PARAMS ((struct objfile *, int));
582
583
584 /*
585
586 LOCAL FUNCTION
587
588 dwarf_fundamental_type -- lookup or create a fundamental type
589
590 SYNOPSIS
591
592 struct type *
593 dwarf_fundamental_type (struct objfile *objfile, int typeid)
594
595 DESCRIPTION
596
597 DWARF version 1 doesn't supply any fundamental type information,
598 so gdb has to construct such types. It has a fixed number of
599 fundamental types that it knows how to construct, which is the
600 union of all types that it knows how to construct for all languages
601 that it knows about. These are enumerated in gdbtypes.h.
602
603 As an example, assume we find a DIE that references a DWARF
604 fundamental type of FT_integer. We first look in the ftypes
605 array to see if we already have such a type, indexed by the
606 gdb internal value of FT_INTEGER. If so, we simply return a
607 pointer to that type. If not, then we ask an appropriate
608 language dependent routine to create a type FT_INTEGER, using
609 defaults reasonable for the current target machine, and install
610 that type in ftypes for future reference.
611
612 RETURNS
613
614 Pointer to a fundamental type.
615
616 */
617
618 static struct type *
619 dwarf_fundamental_type (objfile, typeid)
620 struct objfile *objfile;
621 int typeid;
622 {
623 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
624 {
625 error ("internal error - invalid fundamental type id %d", typeid);
626 }
627
628 /* Look for this particular type in the fundamental type vector. If one is
629 not found, create and install one appropriate for the current language
630 and the current target machine. */
631
632 if (ftypes[typeid] == NULL)
633 {
634 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
635 }
636
637 return (ftypes[typeid]);
638 }
639
640 /*
641
642 LOCAL FUNCTION
643
644 set_cu_language -- set local copy of language for compilation unit
645
646 SYNOPSIS
647
648 void
649 set_cu_language (struct dieinfo *dip)
650
651 DESCRIPTION
652
653 Decode the language attribute for a compilation unit DIE and
654 remember what the language was. We use this at various times
655 when processing DIE's for a given compilation unit.
656
657 RETURNS
658
659 No return value.
660
661 */
662
663 static void
664 set_cu_language (dip)
665 struct dieinfo *dip;
666 {
667 switch (dip -> at_language)
668 {
669 case LANG_C89:
670 case LANG_C:
671 cu_language = language_c;
672 break;
673 case LANG_C_PLUS_PLUS:
674 cu_language = language_cplus;
675 break;
676 case LANG_CHILL:
677 cu_language = language_chill;
678 break;
679 case LANG_MODULA2:
680 cu_language = language_m2;
681 break;
682 case LANG_ADA83:
683 case LANG_COBOL74:
684 case LANG_COBOL85:
685 case LANG_FORTRAN77:
686 case LANG_FORTRAN90:
687 case LANG_PASCAL83:
688 /* We don't know anything special about these yet. */
689 cu_language = language_unknown;
690 break;
691 default:
692 /* If no at_language, try to deduce one from the filename */
693 cu_language = deduce_language_from_filename (dip -> at_name);
694 break;
695 }
696 cu_language_defn = language_def (cu_language);
697 }
698
699 /*
700
701 GLOBAL FUNCTION
702
703 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
704
705 SYNOPSIS
706
707 void dwarf_build_psymtabs (struct objfile *objfile,
708 struct section_offsets *section_offsets,
709 int mainline, file_ptr dbfoff, unsigned int dbfsize,
710 file_ptr lnoffset, unsigned int lnsize)
711
712 DESCRIPTION
713
714 This function is called upon to build partial symtabs from files
715 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
716
717 It is passed a bfd* containing the DIES
718 and line number information, the corresponding filename for that
719 file, a base address for relocating the symbols, a flag indicating
720 whether or not this debugging information is from a "main symbol
721 table" rather than a shared library or dynamically linked file,
722 and file offset/size pairs for the DIE information and line number
723 information.
724
725 RETURNS
726
727 No return value.
728
729 */
730
731 void
732 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
733 lnoffset, lnsize)
734 struct objfile *objfile;
735 struct section_offsets *section_offsets;
736 int mainline;
737 file_ptr dbfoff;
738 unsigned int dbfsize;
739 file_ptr lnoffset;
740 unsigned int lnsize;
741 {
742 bfd *abfd = objfile->obfd;
743 struct cleanup *back_to;
744
745 current_objfile = objfile;
746 dbsize = dbfsize;
747 dbbase = xmalloc (dbsize);
748 dbroff = 0;
749 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
750 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
751 {
752 free (dbbase);
753 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
754 }
755 back_to = make_cleanup (free, dbbase);
756
757 /* If we are reinitializing, or if we have never loaded syms yet, init.
758 Since we have no idea how many DIES we are looking at, we just guess
759 some arbitrary value. */
760
761 if (mainline || objfile -> global_psymbols.size == 0 ||
762 objfile -> static_psymbols.size == 0)
763 {
764 init_psymbol_list (objfile, 1024);
765 }
766
767 /* Save the relocation factor where everybody can see it. */
768
769 base_section_offsets = section_offsets;
770 baseaddr = ANOFFSET (section_offsets, 0);
771
772 /* Follow the compilation unit sibling chain, building a partial symbol
773 table entry for each one. Save enough information about each compilation
774 unit to locate the full DWARF information later. */
775
776 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
777
778 do_cleanups (back_to);
779 current_objfile = NULL;
780 }
781
782
783 /*
784
785 LOCAL FUNCTION
786
787 record_minimal_symbol -- add entry to gdb's minimal symbol table
788
789 SYNOPSIS
790
791 static void record_minimal_symbol (char *name, CORE_ADDR address,
792 enum minimal_symbol_type ms_type,
793 struct objfile *objfile)
794
795 DESCRIPTION
796
797 Given a pointer to the name of a symbol that should be added to the
798 minimal symbol table, and the address associated with that
799 symbol, records this information for later use in building the
800 minimal symbol table.
801
802 */
803
804 static void
805 record_minimal_symbol (name, address, ms_type, objfile)
806 char *name;
807 CORE_ADDR address;
808 enum minimal_symbol_type ms_type;
809 struct objfile *objfile;
810 {
811 name = obsavestring (name, strlen (name), &objfile -> symbol_obstack);
812 prim_record_minimal_symbol (name, address, ms_type);
813 }
814
815 /*
816
817 LOCAL FUNCTION
818
819 read_lexical_block_scope -- process all dies in a lexical block
820
821 SYNOPSIS
822
823 static void read_lexical_block_scope (struct dieinfo *dip,
824 char *thisdie, char *enddie)
825
826 DESCRIPTION
827
828 Process all the DIES contained within a lexical block scope.
829 Start a new scope, process the dies, and then close the scope.
830
831 */
832
833 static void
834 read_lexical_block_scope (dip, thisdie, enddie, objfile)
835 struct dieinfo *dip;
836 char *thisdie;
837 char *enddie;
838 struct objfile *objfile;
839 {
840 register struct context_stack *new;
841
842 push_context (0, dip -> at_low_pc);
843 process_dies (thisdie + dip -> die_length, enddie, objfile);
844 new = pop_context ();
845 if (local_symbols != NULL)
846 {
847 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
848 dip -> at_high_pc, objfile);
849 }
850 local_symbols = new -> locals;
851 }
852
853 /*
854
855 LOCAL FUNCTION
856
857 lookup_utype -- look up a user defined type from die reference
858
859 SYNOPSIS
860
861 static type *lookup_utype (DIE_REF die_ref)
862
863 DESCRIPTION
864
865 Given a DIE reference, lookup the user defined type associated with
866 that DIE, if it has been registered already. If not registered, then
867 return NULL. Alloc_utype() can be called to register an empty
868 type for this reference, which will be filled in later when the
869 actual referenced DIE is processed.
870 */
871
872 static struct type *
873 lookup_utype (die_ref)
874 DIE_REF die_ref;
875 {
876 struct type *type = NULL;
877 int utypeidx;
878
879 utypeidx = (die_ref - dbroff) / 4;
880 if ((utypeidx < 0) || (utypeidx >= numutypes))
881 {
882 complain (&bad_die_ref, DIE_ID, DIE_NAME);
883 }
884 else
885 {
886 type = *(utypes + utypeidx);
887 }
888 return (type);
889 }
890
891
892 /*
893
894 LOCAL FUNCTION
895
896 alloc_utype -- add a user defined type for die reference
897
898 SYNOPSIS
899
900 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
901
902 DESCRIPTION
903
904 Given a die reference DIE_REF, and a possible pointer to a user
905 defined type UTYPEP, register that this reference has a user
906 defined type and either use the specified type in UTYPEP or
907 make a new empty type that will be filled in later.
908
909 We should only be called after calling lookup_utype() to verify that
910 there is not currently a type registered for DIE_REF.
911 */
912
913 static struct type *
914 alloc_utype (die_ref, utypep)
915 DIE_REF die_ref;
916 struct type *utypep;
917 {
918 struct type **typep;
919 int utypeidx;
920
921 utypeidx = (die_ref - dbroff) / 4;
922 typep = utypes + utypeidx;
923 if ((utypeidx < 0) || (utypeidx >= numutypes))
924 {
925 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
926 complain (&bad_die_ref, DIE_ID, DIE_NAME);
927 }
928 else if (*typep != NULL)
929 {
930 utypep = *typep;
931 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
932 }
933 else
934 {
935 if (utypep == NULL)
936 {
937 utypep = alloc_type (current_objfile);
938 }
939 *typep = utypep;
940 }
941 return (utypep);
942 }
943
944 /*
945
946 LOCAL FUNCTION
947
948 decode_die_type -- return a type for a specified die
949
950 SYNOPSIS
951
952 static struct type *decode_die_type (struct dieinfo *dip)
953
954 DESCRIPTION
955
956 Given a pointer to a die information structure DIP, decode the
957 type of the die and return a pointer to the decoded type. All
958 dies without specific types default to type int.
959 */
960
961 static struct type *
962 decode_die_type (dip)
963 struct dieinfo *dip;
964 {
965 struct type *type = NULL;
966
967 if (dip -> at_fund_type != 0)
968 {
969 type = decode_fund_type (dip -> at_fund_type);
970 }
971 else if (dip -> at_mod_fund_type != NULL)
972 {
973 type = decode_mod_fund_type (dip -> at_mod_fund_type);
974 }
975 else if (dip -> at_user_def_type)
976 {
977 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
978 {
979 type = alloc_utype (dip -> at_user_def_type, NULL);
980 }
981 }
982 else if (dip -> at_mod_u_d_type)
983 {
984 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
985 }
986 else
987 {
988 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
989 }
990 return (type);
991 }
992
993 /*
994
995 LOCAL FUNCTION
996
997 struct_type -- compute and return the type for a struct or union
998
999 SYNOPSIS
1000
1001 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
1002 char *enddie, struct objfile *objfile)
1003
1004 DESCRIPTION
1005
1006 Given pointer to a die information structure for a die which
1007 defines a union or structure (and MUST define one or the other),
1008 and pointers to the raw die data that define the range of dies which
1009 define the members, compute and return the user defined type for the
1010 structure or union.
1011 */
1012
1013 static struct type *
1014 struct_type (dip, thisdie, enddie, objfile)
1015 struct dieinfo *dip;
1016 char *thisdie;
1017 char *enddie;
1018 struct objfile *objfile;
1019 {
1020 struct type *type;
1021 struct nextfield {
1022 struct nextfield *next;
1023 struct field field;
1024 };
1025 struct nextfield *list = NULL;
1026 struct nextfield *new;
1027 int nfields = 0;
1028 int n;
1029 char *tpart1;
1030 struct dieinfo mbr;
1031 char *nextdie;
1032 #if !BITS_BIG_ENDIAN
1033 int anonymous_size;
1034 #endif
1035
1036 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1037 {
1038 /* No forward references created an empty type, so install one now */
1039 type = alloc_utype (dip -> die_ref, NULL);
1040 }
1041 INIT_CPLUS_SPECIFIC(type);
1042 switch (dip -> die_tag)
1043 {
1044 case TAG_class_type:
1045 TYPE_CODE (type) = TYPE_CODE_CLASS;
1046 tpart1 = "class";
1047 break;
1048 case TAG_structure_type:
1049 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1050 tpart1 = "struct";
1051 break;
1052 case TAG_union_type:
1053 TYPE_CODE (type) = TYPE_CODE_UNION;
1054 tpart1 = "union";
1055 break;
1056 default:
1057 /* Should never happen */
1058 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1059 tpart1 = "???";
1060 complain (&missing_tag, DIE_ID, DIE_NAME);
1061 break;
1062 }
1063 /* Some compilers try to be helpful by inventing "fake" names for
1064 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1065 Thanks, but no thanks... */
1066 if (dip -> at_name != NULL
1067 && *dip -> at_name != '~'
1068 && *dip -> at_name != '.')
1069 {
1070 TYPE_NAME (type) = obconcat (&objfile -> type_obstack,
1071 tpart1, " ", dip -> at_name);
1072 }
1073 /* Use whatever size is known. Zero is a valid size. We might however
1074 wish to check has_at_byte_size to make sure that some byte size was
1075 given explicitly, but DWARF doesn't specify that explicit sizes of
1076 zero have to present, so complaining about missing sizes should
1077 probably not be the default. */
1078 TYPE_LENGTH (type) = dip -> at_byte_size;
1079 thisdie += dip -> die_length;
1080 while (thisdie < enddie)
1081 {
1082 basicdieinfo (&mbr, thisdie, objfile);
1083 completedieinfo (&mbr, objfile);
1084 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1085 {
1086 break;
1087 }
1088 else if (mbr.at_sibling != 0)
1089 {
1090 nextdie = dbbase + mbr.at_sibling - dbroff;
1091 }
1092 else
1093 {
1094 nextdie = thisdie + mbr.die_length;
1095 }
1096 switch (mbr.die_tag)
1097 {
1098 case TAG_member:
1099 /* Get space to record the next field's data. */
1100 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1101 new -> next = list;
1102 list = new;
1103 /* Save the data. */
1104 list -> field.name =
1105 obsavestring (mbr.at_name, strlen (mbr.at_name),
1106 &objfile -> type_obstack);
1107 list -> field.type = decode_die_type (&mbr);
1108 list -> field.bitpos = 8 * locval (mbr.at_location);
1109 /* Handle bit fields. */
1110 list -> field.bitsize = mbr.at_bit_size;
1111 #if BITS_BIG_ENDIAN
1112 /* For big endian bits, the at_bit_offset gives the additional
1113 bit offset from the MSB of the containing anonymous object to
1114 the MSB of the field. We don't have to do anything special
1115 since we don't need to know the size of the anonymous object. */
1116 list -> field.bitpos += mbr.at_bit_offset;
1117 #else
1118 /* For little endian bits, we need to have a non-zero at_bit_size,
1119 so that we know we are in fact dealing with a bitfield. Compute
1120 the bit offset to the MSB of the anonymous object, subtract off
1121 the number of bits from the MSB of the field to the MSB of the
1122 object, and then subtract off the number of bits of the field
1123 itself. The result is the bit offset of the LSB of the field. */
1124 if (mbr.at_bit_size > 0)
1125 {
1126 if (mbr.has_at_byte_size)
1127 {
1128 /* The size of the anonymous object containing the bit field
1129 is explicit, so use the indicated size (in bytes). */
1130 anonymous_size = mbr.at_byte_size;
1131 }
1132 else
1133 {
1134 /* The size of the anonymous object containing the bit field
1135 matches the size of an object of the bit field's type.
1136 DWARF allows at_byte_size to be left out in such cases,
1137 as a debug information size optimization. */
1138 anonymous_size = TYPE_LENGTH (list -> field.type);
1139 }
1140 list -> field.bitpos +=
1141 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1142 }
1143 #endif
1144 nfields++;
1145 break;
1146 default:
1147 process_dies (thisdie, nextdie, objfile);
1148 break;
1149 }
1150 thisdie = nextdie;
1151 }
1152 /* Now create the vector of fields, and record how big it is. We may
1153 not even have any fields, if this DIE was generated due to a reference
1154 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1155 set, which clues gdb in to the fact that it needs to search elsewhere
1156 for the full structure definition. */
1157 if (nfields == 0)
1158 {
1159 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1160 }
1161 else
1162 {
1163 TYPE_NFIELDS (type) = nfields;
1164 TYPE_FIELDS (type) = (struct field *)
1165 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1166 /* Copy the saved-up fields into the field vector. */
1167 for (n = nfields; list; list = list -> next)
1168 {
1169 TYPE_FIELD (type, --n) = list -> field;
1170 }
1171 }
1172 return (type);
1173 }
1174
1175 /*
1176
1177 LOCAL FUNCTION
1178
1179 read_structure_scope -- process all dies within struct or union
1180
1181 SYNOPSIS
1182
1183 static void read_structure_scope (struct dieinfo *dip,
1184 char *thisdie, char *enddie, struct objfile *objfile)
1185
1186 DESCRIPTION
1187
1188 Called when we find the DIE that starts a structure or union
1189 scope (definition) to process all dies that define the members
1190 of the structure or union. DIP is a pointer to the die info
1191 struct for the DIE that names the structure or union.
1192
1193 NOTES
1194
1195 Note that we need to call struct_type regardless of whether or not
1196 the DIE has an at_name attribute, since it might be an anonymous
1197 structure or union. This gets the type entered into our set of
1198 user defined types.
1199
1200 However, if the structure is incomplete (an opaque struct/union)
1201 then suppress creating a symbol table entry for it since gdb only
1202 wants to find the one with the complete definition. Note that if
1203 it is complete, we just call new_symbol, which does it's own
1204 checking about whether the struct/union is anonymous or not (and
1205 suppresses creating a symbol table entry itself).
1206
1207 */
1208
1209 static void
1210 read_structure_scope (dip, thisdie, enddie, objfile)
1211 struct dieinfo *dip;
1212 char *thisdie;
1213 char *enddie;
1214 struct objfile *objfile;
1215 {
1216 struct type *type;
1217 struct symbol *sym;
1218
1219 type = struct_type (dip, thisdie, enddie, objfile);
1220 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1221 {
1222 sym = new_symbol (dip, objfile);
1223 if (sym != NULL)
1224 {
1225 SYMBOL_TYPE (sym) = type;
1226 if (cu_language == language_cplus)
1227 {
1228 synthesize_typedef (dip, objfile, type);
1229 }
1230 }
1231 }
1232 }
1233
1234 /*
1235
1236 LOCAL FUNCTION
1237
1238 decode_array_element_type -- decode type of the array elements
1239
1240 SYNOPSIS
1241
1242 static struct type *decode_array_element_type (char *scan, char *end)
1243
1244 DESCRIPTION
1245
1246 As the last step in decoding the array subscript information for an
1247 array DIE, we need to decode the type of the array elements. We are
1248 passed a pointer to this last part of the subscript information and
1249 must return the appropriate type. If the type attribute is not
1250 recognized, just warn about the problem and return type int.
1251 */
1252
1253 static struct type *
1254 decode_array_element_type (scan)
1255 char *scan;
1256 {
1257 struct type *typep;
1258 DIE_REF die_ref;
1259 unsigned short attribute;
1260 unsigned short fundtype;
1261 int nbytes;
1262
1263 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1264 current_objfile);
1265 scan += SIZEOF_ATTRIBUTE;
1266 if ((nbytes = attribute_size (attribute)) == -1)
1267 {
1268 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1269 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1270 }
1271 else
1272 {
1273 switch (attribute)
1274 {
1275 case AT_fund_type:
1276 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1277 current_objfile);
1278 typep = decode_fund_type (fundtype);
1279 break;
1280 case AT_mod_fund_type:
1281 typep = decode_mod_fund_type (scan);
1282 break;
1283 case AT_user_def_type:
1284 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1285 current_objfile);
1286 if ((typep = lookup_utype (die_ref)) == NULL)
1287 {
1288 typep = alloc_utype (die_ref, NULL);
1289 }
1290 break;
1291 case AT_mod_u_d_type:
1292 typep = decode_mod_u_d_type (scan);
1293 break;
1294 default:
1295 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1296 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1297 break;
1298 }
1299 }
1300 return (typep);
1301 }
1302
1303 /*
1304
1305 LOCAL FUNCTION
1306
1307 decode_subscript_data_item -- decode array subscript item
1308
1309 SYNOPSIS
1310
1311 static struct type *
1312 decode_subscript_data_item (char *scan, char *end)
1313
1314 DESCRIPTION
1315
1316 The array subscripts and the data type of the elements of an
1317 array are described by a list of data items, stored as a block
1318 of contiguous bytes. There is a data item describing each array
1319 dimension, and a final data item describing the element type.
1320 The data items are ordered the same as their appearance in the
1321 source (I.E. leftmost dimension first, next to leftmost second,
1322 etc).
1323
1324 The data items describing each array dimension consist of four
1325 parts: (1) a format specifier, (2) type type of the subscript
1326 index, (3) a description of the low bound of the array dimension,
1327 and (4) a description of the high bound of the array dimension.
1328
1329 The last data item is the description of the type of each of
1330 the array elements.
1331
1332 We are passed a pointer to the start of the block of bytes
1333 containing the remaining data items, and a pointer to the first
1334 byte past the data. This function recursively decodes the
1335 remaining data items and returns a type.
1336
1337 If we somehow fail to decode some data, we complain about it
1338 and return a type "array of int".
1339
1340 BUGS
1341 FIXME: This code only implements the forms currently used
1342 by the AT&T and GNU C compilers.
1343
1344 The end pointer is supplied for error checking, maybe we should
1345 use it for that...
1346 */
1347
1348 static struct type *
1349 decode_subscript_data_item (scan, end)
1350 char *scan;
1351 char *end;
1352 {
1353 struct type *typep = NULL; /* Array type we are building */
1354 struct type *nexttype; /* Type of each element (may be array) */
1355 struct type *indextype; /* Type of this index */
1356 struct type *rangetype;
1357 unsigned int format;
1358 unsigned short fundtype;
1359 unsigned long lowbound;
1360 unsigned long highbound;
1361 int nbytes;
1362
1363 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1364 current_objfile);
1365 scan += SIZEOF_FORMAT_SPECIFIER;
1366 switch (format)
1367 {
1368 case FMT_ET:
1369 typep = decode_array_element_type (scan);
1370 break;
1371 case FMT_FT_C_C:
1372 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1373 current_objfile);
1374 indextype = decode_fund_type (fundtype);
1375 scan += SIZEOF_FMT_FT;
1376 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1377 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1378 scan += nbytes;
1379 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1380 scan += nbytes;
1381 nexttype = decode_subscript_data_item (scan, end);
1382 if (nexttype == NULL)
1383 {
1384 /* Munged subscript data or other problem, fake it. */
1385 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1386 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1387 }
1388 rangetype = create_range_type ((struct type *) NULL, indextype,
1389 lowbound, highbound);
1390 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1391 break;
1392 case FMT_FT_C_X:
1393 case FMT_FT_X_C:
1394 case FMT_FT_X_X:
1395 case FMT_UT_C_C:
1396 case FMT_UT_C_X:
1397 case FMT_UT_X_C:
1398 case FMT_UT_X_X:
1399 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1400 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1401 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1402 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1403 break;
1404 default:
1405 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1406 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1407 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1408 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1409 break;
1410 }
1411 return (typep);
1412 }
1413
1414 /*
1415
1416 LOCAL FUNCTION
1417
1418 dwarf_read_array_type -- read TAG_array_type DIE
1419
1420 SYNOPSIS
1421
1422 static void dwarf_read_array_type (struct dieinfo *dip)
1423
1424 DESCRIPTION
1425
1426 Extract all information from a TAG_array_type DIE and add to
1427 the user defined type vector.
1428 */
1429
1430 static void
1431 dwarf_read_array_type (dip)
1432 struct dieinfo *dip;
1433 {
1434 struct type *type;
1435 struct type *utype;
1436 char *sub;
1437 char *subend;
1438 unsigned short blocksz;
1439 int nbytes;
1440
1441 if (dip -> at_ordering != ORD_row_major)
1442 {
1443 /* FIXME: Can gdb even handle column major arrays? */
1444 complain (&not_row_major, DIE_ID, DIE_NAME);
1445 }
1446 if ((sub = dip -> at_subscr_data) != NULL)
1447 {
1448 nbytes = attribute_size (AT_subscr_data);
1449 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1450 subend = sub + nbytes + blocksz;
1451 sub += nbytes;
1452 type = decode_subscript_data_item (sub, subend);
1453 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1454 {
1455 /* Install user defined type that has not been referenced yet. */
1456 alloc_utype (dip -> die_ref, type);
1457 }
1458 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1459 {
1460 /* Ick! A forward ref has already generated a blank type in our
1461 slot, and this type probably already has things pointing to it
1462 (which is what caused it to be created in the first place).
1463 If it's just a place holder we can plop our fully defined type
1464 on top of it. We can't recover the space allocated for our
1465 new type since it might be on an obstack, but we could reuse
1466 it if we kept a list of them, but it might not be worth it
1467 (FIXME). */
1468 *utype = *type;
1469 }
1470 else
1471 {
1472 /* Double ick! Not only is a type already in our slot, but
1473 someone has decorated it. Complain and leave it alone. */
1474 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1475 }
1476 }
1477 }
1478
1479 /*
1480
1481 LOCAL FUNCTION
1482
1483 read_tag_pointer_type -- read TAG_pointer_type DIE
1484
1485 SYNOPSIS
1486
1487 static void read_tag_pointer_type (struct dieinfo *dip)
1488
1489 DESCRIPTION
1490
1491 Extract all information from a TAG_pointer_type DIE and add to
1492 the user defined type vector.
1493 */
1494
1495 static void
1496 read_tag_pointer_type (dip)
1497 struct dieinfo *dip;
1498 {
1499 struct type *type;
1500 struct type *utype;
1501
1502 type = decode_die_type (dip);
1503 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1504 {
1505 utype = lookup_pointer_type (type);
1506 alloc_utype (dip -> die_ref, utype);
1507 }
1508 else
1509 {
1510 TYPE_TARGET_TYPE (utype) = type;
1511 TYPE_POINTER_TYPE (type) = utype;
1512
1513 /* We assume the machine has only one representation for pointers! */
1514 /* FIXME: This confuses host<->target data representations, and is a
1515 poor assumption besides. */
1516
1517 TYPE_LENGTH (utype) = sizeof (char *);
1518 TYPE_CODE (utype) = TYPE_CODE_PTR;
1519 }
1520 }
1521
1522 /*
1523
1524 LOCAL FUNCTION
1525
1526 read_tag_string_type -- read TAG_string_type DIE
1527
1528 SYNOPSIS
1529
1530 static void read_tag_string_type (struct dieinfo *dip)
1531
1532 DESCRIPTION
1533
1534 Extract all information from a TAG_string_type DIE and add to
1535 the user defined type vector. It isn't really a user defined
1536 type, but it behaves like one, with other DIE's using an
1537 AT_user_def_type attribute to reference it.
1538 */
1539
1540 static void
1541 read_tag_string_type (dip)
1542 struct dieinfo *dip;
1543 {
1544 struct type *utype;
1545 struct type *indextype;
1546 struct type *rangetype;
1547 unsigned long lowbound = 0;
1548 unsigned long highbound;
1549
1550 if (dip -> has_at_byte_size)
1551 {
1552 /* A fixed bounds string */
1553 highbound = dip -> at_byte_size - 1;
1554 }
1555 else
1556 {
1557 /* A varying length string. Stub for now. (FIXME) */
1558 highbound = 1;
1559 }
1560 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1561 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1562 highbound);
1563
1564 utype = lookup_utype (dip -> die_ref);
1565 if (utype == NULL)
1566 {
1567 /* No type defined, go ahead and create a blank one to use. */
1568 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1569 }
1570 else
1571 {
1572 /* Already a type in our slot due to a forward reference. Make sure it
1573 is a blank one. If not, complain and leave it alone. */
1574 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1575 {
1576 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1577 return;
1578 }
1579 }
1580
1581 /* Create the string type using the blank type we either found or created. */
1582 utype = create_string_type (utype, rangetype);
1583 }
1584
1585 /*
1586
1587 LOCAL FUNCTION
1588
1589 read_subroutine_type -- process TAG_subroutine_type dies
1590
1591 SYNOPSIS
1592
1593 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1594 char *enddie)
1595
1596 DESCRIPTION
1597
1598 Handle DIES due to C code like:
1599
1600 struct foo {
1601 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1602 int b;
1603 };
1604
1605 NOTES
1606
1607 The parameter DIES are currently ignored. See if gdb has a way to
1608 include this info in it's type system, and decode them if so. Is
1609 this what the type structure's "arg_types" field is for? (FIXME)
1610 */
1611
1612 static void
1613 read_subroutine_type (dip, thisdie, enddie)
1614 struct dieinfo *dip;
1615 char *thisdie;
1616 char *enddie;
1617 {
1618 struct type *type; /* Type that this function returns */
1619 struct type *ftype; /* Function that returns above type */
1620
1621 /* Decode the type that this subroutine returns */
1622
1623 type = decode_die_type (dip);
1624
1625 /* Check to see if we already have a partially constructed user
1626 defined type for this DIE, from a forward reference. */
1627
1628 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1629 {
1630 /* This is the first reference to one of these types. Make
1631 a new one and place it in the user defined types. */
1632 ftype = lookup_function_type (type);
1633 alloc_utype (dip -> die_ref, ftype);
1634 }
1635 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1636 {
1637 /* We have an existing partially constructed type, so bash it
1638 into the correct type. */
1639 TYPE_TARGET_TYPE (ftype) = type;
1640 TYPE_FUNCTION_TYPE (type) = ftype;
1641 TYPE_LENGTH (ftype) = 1;
1642 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1643 }
1644 else
1645 {
1646 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1647 }
1648 }
1649
1650 /*
1651
1652 LOCAL FUNCTION
1653
1654 read_enumeration -- process dies which define an enumeration
1655
1656 SYNOPSIS
1657
1658 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1659 char *enddie, struct objfile *objfile)
1660
1661 DESCRIPTION
1662
1663 Given a pointer to a die which begins an enumeration, process all
1664 the dies that define the members of the enumeration.
1665
1666 NOTES
1667
1668 Note that we need to call enum_type regardless of whether or not we
1669 have a symbol, since we might have an enum without a tag name (thus
1670 no symbol for the tagname).
1671 */
1672
1673 static void
1674 read_enumeration (dip, thisdie, enddie, objfile)
1675 struct dieinfo *dip;
1676 char *thisdie;
1677 char *enddie;
1678 struct objfile *objfile;
1679 {
1680 struct type *type;
1681 struct symbol *sym;
1682
1683 type = enum_type (dip, objfile);
1684 sym = new_symbol (dip, objfile);
1685 if (sym != NULL)
1686 {
1687 SYMBOL_TYPE (sym) = type;
1688 if (cu_language == language_cplus)
1689 {
1690 synthesize_typedef (dip, objfile, type);
1691 }
1692 }
1693 }
1694
1695 /*
1696
1697 LOCAL FUNCTION
1698
1699 enum_type -- decode and return a type for an enumeration
1700
1701 SYNOPSIS
1702
1703 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1704
1705 DESCRIPTION
1706
1707 Given a pointer to a die information structure for the die which
1708 starts an enumeration, process all the dies that define the members
1709 of the enumeration and return a type pointer for the enumeration.
1710
1711 At the same time, for each member of the enumeration, create a
1712 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1713 and give it the type of the enumeration itself.
1714
1715 NOTES
1716
1717 Note that the DWARF specification explicitly mandates that enum
1718 constants occur in reverse order from the source program order,
1719 for "consistency" and because this ordering is easier for many
1720 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1721 Entries). Because gdb wants to see the enum members in program
1722 source order, we have to ensure that the order gets reversed while
1723 we are processing them.
1724 */
1725
1726 static struct type *
1727 enum_type (dip, objfile)
1728 struct dieinfo *dip;
1729 struct objfile *objfile;
1730 {
1731 struct type *type;
1732 struct nextfield {
1733 struct nextfield *next;
1734 struct field field;
1735 };
1736 struct nextfield *list = NULL;
1737 struct nextfield *new;
1738 int nfields = 0;
1739 int n;
1740 char *scan;
1741 char *listend;
1742 unsigned short blocksz;
1743 struct symbol *sym;
1744 int nbytes;
1745
1746 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1747 {
1748 /* No forward references created an empty type, so install one now */
1749 type = alloc_utype (dip -> die_ref, NULL);
1750 }
1751 TYPE_CODE (type) = TYPE_CODE_ENUM;
1752 /* Some compilers try to be helpful by inventing "fake" names for
1753 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1754 Thanks, but no thanks... */
1755 if (dip -> at_name != NULL
1756 && *dip -> at_name != '~'
1757 && *dip -> at_name != '.')
1758 {
1759 TYPE_NAME (type) = obconcat (&objfile -> type_obstack, "enum",
1760 " ", dip -> at_name);
1761 }
1762 if (dip -> at_byte_size != 0)
1763 {
1764 TYPE_LENGTH (type) = dip -> at_byte_size;
1765 }
1766 if ((scan = dip -> at_element_list) != NULL)
1767 {
1768 if (dip -> short_element_list)
1769 {
1770 nbytes = attribute_size (AT_short_element_list);
1771 }
1772 else
1773 {
1774 nbytes = attribute_size (AT_element_list);
1775 }
1776 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1777 listend = scan + nbytes + blocksz;
1778 scan += nbytes;
1779 while (scan < listend)
1780 {
1781 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1782 new -> next = list;
1783 list = new;
1784 list -> field.type = NULL;
1785 list -> field.bitsize = 0;
1786 list -> field.bitpos =
1787 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1788 objfile);
1789 scan += TARGET_FT_LONG_SIZE (objfile);
1790 list -> field.name = obsavestring (scan, strlen (scan),
1791 &objfile -> type_obstack);
1792 scan += strlen (scan) + 1;
1793 nfields++;
1794 /* Handcraft a new symbol for this enum member. */
1795 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1796 sizeof (struct symbol));
1797 memset (sym, 0, sizeof (struct symbol));
1798 SYMBOL_NAME (sym) = create_name (list -> field.name,
1799 &objfile->symbol_obstack);
1800 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1801 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1802 SYMBOL_CLASS (sym) = LOC_CONST;
1803 SYMBOL_TYPE (sym) = type;
1804 SYMBOL_VALUE (sym) = list -> field.bitpos;
1805 add_symbol_to_list (sym, list_in_scope);
1806 }
1807 /* Now create the vector of fields, and record how big it is. This is
1808 where we reverse the order, by pulling the members off the list in
1809 reverse order from how they were inserted. If we have no fields
1810 (this is apparently possible in C++) then skip building a field
1811 vector. */
1812 if (nfields > 0)
1813 {
1814 TYPE_NFIELDS (type) = nfields;
1815 TYPE_FIELDS (type) = (struct field *)
1816 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1817 /* Copy the saved-up fields into the field vector. */
1818 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1819 {
1820 TYPE_FIELD (type, n++) = list -> field;
1821 }
1822 }
1823 }
1824 return (type);
1825 }
1826
1827 /*
1828
1829 LOCAL FUNCTION
1830
1831 read_func_scope -- process all dies within a function scope
1832
1833 DESCRIPTION
1834
1835 Process all dies within a given function scope. We are passed
1836 a die information structure pointer DIP for the die which
1837 starts the function scope, and pointers into the raw die data
1838 that define the dies within the function scope.
1839
1840 For now, we ignore lexical block scopes within the function.
1841 The problem is that AT&T cc does not define a DWARF lexical
1842 block scope for the function itself, while gcc defines a
1843 lexical block scope for the function. We need to think about
1844 how to handle this difference, or if it is even a problem.
1845 (FIXME)
1846 */
1847
1848 static void
1849 read_func_scope (dip, thisdie, enddie, objfile)
1850 struct dieinfo *dip;
1851 char *thisdie;
1852 char *enddie;
1853 struct objfile *objfile;
1854 {
1855 register struct context_stack *new;
1856
1857 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1858 objfile -> ei.entry_point < dip -> at_high_pc)
1859 {
1860 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1861 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1862 }
1863 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1864 {
1865 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1866 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1867 }
1868 new = push_context (0, dip -> at_low_pc);
1869 new -> name = new_symbol (dip, objfile);
1870 list_in_scope = &local_symbols;
1871 process_dies (thisdie + dip -> die_length, enddie, objfile);
1872 new = pop_context ();
1873 /* Make a block for the local symbols within. */
1874 finish_block (new -> name, &local_symbols, new -> old_blocks,
1875 new -> start_addr, dip -> at_high_pc, objfile);
1876 list_in_scope = &file_symbols;
1877 }
1878
1879
1880 /*
1881
1882 LOCAL FUNCTION
1883
1884 handle_producer -- process the AT_producer attribute
1885
1886 DESCRIPTION
1887
1888 Perform any operations that depend on finding a particular
1889 AT_producer attribute.
1890
1891 */
1892
1893 static void
1894 handle_producer (producer)
1895 char *producer;
1896 {
1897
1898 /* If this compilation unit was compiled with g++ or gcc, then set the
1899 processing_gcc_compilation flag. */
1900
1901 processing_gcc_compilation =
1902 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1903 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1904 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1905
1906 /* Select a demangling style if we can identify the producer and if
1907 the current style is auto. We leave the current style alone if it
1908 is not auto. We also leave the demangling style alone if we find a
1909 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1910
1911 if (AUTO_DEMANGLING)
1912 {
1913 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1914 {
1915 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1916 }
1917 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1918 {
1919 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1920 }
1921 }
1922 }
1923
1924
1925 /*
1926
1927 LOCAL FUNCTION
1928
1929 read_file_scope -- process all dies within a file scope
1930
1931 DESCRIPTION
1932
1933 Process all dies within a given file scope. We are passed a
1934 pointer to the die information structure for the die which
1935 starts the file scope, and pointers into the raw die data which
1936 mark the range of dies within the file scope.
1937
1938 When the partial symbol table is built, the file offset for the line
1939 number table for each compilation unit is saved in the partial symbol
1940 table entry for that compilation unit. As the symbols for each
1941 compilation unit are read, the line number table is read into memory
1942 and the variable lnbase is set to point to it. Thus all we have to
1943 do is use lnbase to access the line number table for the current
1944 compilation unit.
1945 */
1946
1947 static void
1948 read_file_scope (dip, thisdie, enddie, objfile)
1949 struct dieinfo *dip;
1950 char *thisdie;
1951 char *enddie;
1952 struct objfile *objfile;
1953 {
1954 struct cleanup *back_to;
1955 struct symtab *symtab;
1956
1957 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1958 objfile -> ei.entry_point < dip -> at_high_pc)
1959 {
1960 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1961 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1962 }
1963 set_cu_language (dip);
1964 if (dip -> at_producer != NULL)
1965 {
1966 handle_producer (dip -> at_producer);
1967 }
1968 numutypes = (enddie - thisdie) / 4;
1969 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1970 back_to = make_cleanup (free, utypes);
1971 memset (utypes, 0, numutypes * sizeof (struct type *));
1972 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1973 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1974 decode_line_numbers (lnbase);
1975 process_dies (thisdie + dip -> die_length, enddie, objfile);
1976
1977 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1978 if (symtab != NULL)
1979 {
1980 symtab -> language = cu_language;
1981 }
1982 do_cleanups (back_to);
1983 utypes = NULL;
1984 numutypes = 0;
1985 }
1986
1987 /*
1988
1989 LOCAL FUNCTION
1990
1991 process_dies -- process a range of DWARF Information Entries
1992
1993 SYNOPSIS
1994
1995 static void process_dies (char *thisdie, char *enddie,
1996 struct objfile *objfile)
1997
1998 DESCRIPTION
1999
2000 Process all DIE's in a specified range. May be (and almost
2001 certainly will be) called recursively.
2002 */
2003
2004 static void
2005 process_dies (thisdie, enddie, objfile)
2006 char *thisdie;
2007 char *enddie;
2008 struct objfile *objfile;
2009 {
2010 char *nextdie;
2011 struct dieinfo di;
2012
2013 while (thisdie < enddie)
2014 {
2015 basicdieinfo (&di, thisdie, objfile);
2016 if (di.die_length < SIZEOF_DIE_LENGTH)
2017 {
2018 break;
2019 }
2020 else if (di.die_tag == TAG_padding)
2021 {
2022 nextdie = thisdie + di.die_length;
2023 }
2024 else
2025 {
2026 completedieinfo (&di, objfile);
2027 if (di.at_sibling != 0)
2028 {
2029 nextdie = dbbase + di.at_sibling - dbroff;
2030 }
2031 else
2032 {
2033 nextdie = thisdie + di.die_length;
2034 }
2035 switch (di.die_tag)
2036 {
2037 case TAG_compile_unit:
2038 read_file_scope (&di, thisdie, nextdie, objfile);
2039 break;
2040 case TAG_global_subroutine:
2041 case TAG_subroutine:
2042 if (di.has_at_low_pc)
2043 {
2044 read_func_scope (&di, thisdie, nextdie, objfile);
2045 }
2046 break;
2047 case TAG_lexical_block:
2048 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2049 break;
2050 case TAG_class_type:
2051 case TAG_structure_type:
2052 case TAG_union_type:
2053 read_structure_scope (&di, thisdie, nextdie, objfile);
2054 break;
2055 case TAG_enumeration_type:
2056 read_enumeration (&di, thisdie, nextdie, objfile);
2057 break;
2058 case TAG_subroutine_type:
2059 read_subroutine_type (&di, thisdie, nextdie);
2060 break;
2061 case TAG_array_type:
2062 dwarf_read_array_type (&di);
2063 break;
2064 case TAG_pointer_type:
2065 read_tag_pointer_type (&di);
2066 break;
2067 case TAG_string_type:
2068 read_tag_string_type (&di);
2069 break;
2070 default:
2071 new_symbol (&di, objfile);
2072 break;
2073 }
2074 }
2075 thisdie = nextdie;
2076 }
2077 }
2078
2079 /*
2080
2081 LOCAL FUNCTION
2082
2083 decode_line_numbers -- decode a line number table fragment
2084
2085 SYNOPSIS
2086
2087 static void decode_line_numbers (char *tblscan, char *tblend,
2088 long length, long base, long line, long pc)
2089
2090 DESCRIPTION
2091
2092 Translate the DWARF line number information to gdb form.
2093
2094 The ".line" section contains one or more line number tables, one for
2095 each ".line" section from the objects that were linked.
2096
2097 The AT_stmt_list attribute for each TAG_source_file entry in the
2098 ".debug" section contains the offset into the ".line" section for the
2099 start of the table for that file.
2100
2101 The table itself has the following structure:
2102
2103 <table length><base address><source statement entry>
2104 4 bytes 4 bytes 10 bytes
2105
2106 The table length is the total size of the table, including the 4 bytes
2107 for the length information.
2108
2109 The base address is the address of the first instruction generated
2110 for the source file.
2111
2112 Each source statement entry has the following structure:
2113
2114 <line number><statement position><address delta>
2115 4 bytes 2 bytes 4 bytes
2116
2117 The line number is relative to the start of the file, starting with
2118 line 1.
2119
2120 The statement position either -1 (0xFFFF) or the number of characters
2121 from the beginning of the line to the beginning of the statement.
2122
2123 The address delta is the difference between the base address and
2124 the address of the first instruction for the statement.
2125
2126 Note that we must copy the bytes from the packed table to our local
2127 variables before attempting to use them, to avoid alignment problems
2128 on some machines, particularly RISC processors.
2129
2130 BUGS
2131
2132 Does gdb expect the line numbers to be sorted? They are now by
2133 chance/luck, but are not required to be. (FIXME)
2134
2135 The line with number 0 is unused, gdb apparently can discover the
2136 span of the last line some other way. How? (FIXME)
2137 */
2138
2139 static void
2140 decode_line_numbers (linetable)
2141 char *linetable;
2142 {
2143 char *tblscan;
2144 char *tblend;
2145 unsigned long length;
2146 unsigned long base;
2147 unsigned long line;
2148 unsigned long pc;
2149
2150 if (linetable != NULL)
2151 {
2152 tblscan = tblend = linetable;
2153 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2154 current_objfile);
2155 tblscan += SIZEOF_LINETBL_LENGTH;
2156 tblend += length;
2157 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2158 GET_UNSIGNED, current_objfile);
2159 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2160 base += baseaddr;
2161 while (tblscan < tblend)
2162 {
2163 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2164 current_objfile);
2165 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2166 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2167 current_objfile);
2168 tblscan += SIZEOF_LINETBL_DELTA;
2169 pc += base;
2170 if (line != 0)
2171 {
2172 record_line (current_subfile, line, pc);
2173 }
2174 }
2175 }
2176 }
2177
2178 /*
2179
2180 LOCAL FUNCTION
2181
2182 locval -- compute the value of a location attribute
2183
2184 SYNOPSIS
2185
2186 static int locval (char *loc)
2187
2188 DESCRIPTION
2189
2190 Given pointer to a string of bytes that define a location, compute
2191 the location and return the value.
2192
2193 When computing values involving the current value of the frame pointer,
2194 the value zero is used, which results in a value relative to the frame
2195 pointer, rather than the absolute value. This is what GDB wants
2196 anyway.
2197
2198 When the result is a register number, the global isreg flag is set,
2199 otherwise it is cleared. This is a kludge until we figure out a better
2200 way to handle the problem. Gdb's design does not mesh well with the
2201 DWARF notion of a location computing interpreter, which is a shame
2202 because the flexibility goes unused.
2203
2204 NOTES
2205
2206 Note that stack[0] is unused except as a default error return.
2207 Note that stack overflow is not yet handled.
2208 */
2209
2210 static int
2211 locval (loc)
2212 char *loc;
2213 {
2214 unsigned short nbytes;
2215 unsigned short locsize;
2216 auto long stack[64];
2217 int stacki;
2218 char *end;
2219 long regno;
2220 int loc_atom_code;
2221 int loc_value_size;
2222
2223 nbytes = attribute_size (AT_location);
2224 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2225 loc += nbytes;
2226 end = loc + locsize;
2227 stacki = 0;
2228 stack[stacki] = 0;
2229 isreg = 0;
2230 offreg = 0;
2231 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2232 while (loc < end)
2233 {
2234 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2235 current_objfile);
2236 loc += SIZEOF_LOC_ATOM_CODE;
2237 switch (loc_atom_code)
2238 {
2239 case 0:
2240 /* error */
2241 loc = end;
2242 break;
2243 case OP_REG:
2244 /* push register (number) */
2245 stack[++stacki] = target_to_host (loc, loc_value_size,
2246 GET_UNSIGNED, current_objfile);
2247 loc += loc_value_size;
2248 isreg = 1;
2249 break;
2250 case OP_BASEREG:
2251 /* push value of register (number) */
2252 /* Actually, we compute the value as if register has 0 */
2253 offreg = 1;
2254 regno = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2255 current_objfile);
2256 loc += loc_value_size;
2257 if (regno == R_FP)
2258 {
2259 stack[++stacki] = 0;
2260 }
2261 else
2262 {
2263 stack[++stacki] = 0;
2264
2265 complain (&basereg_not_handled, DIE_ID, DIE_NAME, regno);
2266 }
2267 break;
2268 case OP_ADDR:
2269 /* push address (relocated address) */
2270 stack[++stacki] = target_to_host (loc, loc_value_size,
2271 GET_UNSIGNED, current_objfile);
2272 loc += loc_value_size;
2273 break;
2274 case OP_CONST:
2275 /* push constant (number) FIXME: signed or unsigned! */
2276 stack[++stacki] = target_to_host (loc, loc_value_size,
2277 GET_SIGNED, current_objfile);
2278 loc += loc_value_size;
2279 break;
2280 case OP_DEREF2:
2281 /* pop, deref and push 2 bytes (as a long) */
2282 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2283 break;
2284 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2285 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2286 break;
2287 case OP_ADD: /* pop top 2 items, add, push result */
2288 stack[stacki - 1] += stack[stacki];
2289 stacki--;
2290 break;
2291 }
2292 }
2293 return (stack[stacki]);
2294 }
2295
2296 /*
2297
2298 LOCAL FUNCTION
2299
2300 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2301
2302 SYNOPSIS
2303
2304 static void read_ofile_symtab (struct partial_symtab *pst)
2305
2306 DESCRIPTION
2307
2308 When expanding a partial symbol table entry to a full symbol table
2309 entry, this is the function that gets called to read in the symbols
2310 for the compilation unit. A pointer to the newly constructed symtab,
2311 which is now the new first one on the objfile's symtab list, is
2312 stashed in the partial symbol table entry.
2313 */
2314
2315 static void
2316 read_ofile_symtab (pst)
2317 struct partial_symtab *pst;
2318 {
2319 struct cleanup *back_to;
2320 unsigned long lnsize;
2321 file_ptr foffset;
2322 bfd *abfd;
2323 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2324
2325 abfd = pst -> objfile -> obfd;
2326 current_objfile = pst -> objfile;
2327
2328 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2329 unit, seek to the location in the file, and read in all the DIE's. */
2330
2331 diecount = 0;
2332 dbsize = DBLENGTH (pst);
2333 dbbase = xmalloc (dbsize);
2334 dbroff = DBROFF(pst);
2335 foffset = DBFOFF(pst) + dbroff;
2336 base_section_offsets = pst->section_offsets;
2337 baseaddr = ANOFFSET (pst->section_offsets, 0);
2338 if (bfd_seek (abfd, foffset, L_SET) ||
2339 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2340 {
2341 free (dbbase);
2342 error ("can't read DWARF data");
2343 }
2344 back_to = make_cleanup (free, dbbase);
2345
2346 /* If there is a line number table associated with this compilation unit
2347 then read the size of this fragment in bytes, from the fragment itself.
2348 Allocate a buffer for the fragment and read it in for future
2349 processing. */
2350
2351 lnbase = NULL;
2352 if (LNFOFF (pst))
2353 {
2354 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2355 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2356 sizeof (lnsizedata)))
2357 {
2358 error ("can't read DWARF line number table size");
2359 }
2360 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2361 GET_UNSIGNED, pst -> objfile);
2362 lnbase = xmalloc (lnsize);
2363 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2364 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2365 {
2366 free (lnbase);
2367 error ("can't read DWARF line numbers");
2368 }
2369 make_cleanup (free, lnbase);
2370 }
2371
2372 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2373 do_cleanups (back_to);
2374 current_objfile = NULL;
2375 pst -> symtab = pst -> objfile -> symtabs;
2376 }
2377
2378 /*
2379
2380 LOCAL FUNCTION
2381
2382 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2383
2384 SYNOPSIS
2385
2386 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2387
2388 DESCRIPTION
2389
2390 Called once for each partial symbol table entry that needs to be
2391 expanded into a full symbol table entry.
2392
2393 */
2394
2395 static void
2396 psymtab_to_symtab_1 (pst)
2397 struct partial_symtab *pst;
2398 {
2399 int i;
2400 struct cleanup *old_chain;
2401
2402 if (pst != NULL)
2403 {
2404 if (pst->readin)
2405 {
2406 warning ("psymtab for %s already read in. Shouldn't happen.",
2407 pst -> filename);
2408 }
2409 else
2410 {
2411 /* Read in all partial symtabs on which this one is dependent */
2412 for (i = 0; i < pst -> number_of_dependencies; i++)
2413 {
2414 if (!pst -> dependencies[i] -> readin)
2415 {
2416 /* Inform about additional files that need to be read in. */
2417 if (info_verbose)
2418 {
2419 fputs_filtered (" ", stdout);
2420 wrap_here ("");
2421 fputs_filtered ("and ", stdout);
2422 wrap_here ("");
2423 printf_filtered ("%s...",
2424 pst -> dependencies[i] -> filename);
2425 wrap_here ("");
2426 fflush (stdout); /* Flush output */
2427 }
2428 psymtab_to_symtab_1 (pst -> dependencies[i]);
2429 }
2430 }
2431 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2432 {
2433 buildsym_init ();
2434 old_chain = make_cleanup (really_free_pendings, 0);
2435 read_ofile_symtab (pst);
2436 if (info_verbose)
2437 {
2438 printf_filtered ("%d DIE's, sorting...", diecount);
2439 wrap_here ("");
2440 fflush (stdout);
2441 }
2442 sort_symtab_syms (pst -> symtab);
2443 do_cleanups (old_chain);
2444 }
2445 pst -> readin = 1;
2446 }
2447 }
2448 }
2449
2450 /*
2451
2452 LOCAL FUNCTION
2453
2454 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2455
2456 SYNOPSIS
2457
2458 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2459
2460 DESCRIPTION
2461
2462 This is the DWARF support entry point for building a full symbol
2463 table entry from a partial symbol table entry. We are passed a
2464 pointer to the partial symbol table entry that needs to be expanded.
2465
2466 */
2467
2468 static void
2469 dwarf_psymtab_to_symtab (pst)
2470 struct partial_symtab *pst;
2471 {
2472
2473 if (pst != NULL)
2474 {
2475 if (pst -> readin)
2476 {
2477 warning ("psymtab for %s already read in. Shouldn't happen.",
2478 pst -> filename);
2479 }
2480 else
2481 {
2482 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2483 {
2484 /* Print the message now, before starting serious work, to avoid
2485 disconcerting pauses. */
2486 if (info_verbose)
2487 {
2488 printf_filtered ("Reading in symbols for %s...",
2489 pst -> filename);
2490 fflush (stdout);
2491 }
2492
2493 psymtab_to_symtab_1 (pst);
2494
2495 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2496 we need to do an equivalent or is this something peculiar to
2497 stabs/a.out format.
2498 Match with global symbols. This only needs to be done once,
2499 after all of the symtabs and dependencies have been read in.
2500 */
2501 scan_file_globals (pst -> objfile);
2502 #endif
2503
2504 /* Finish up the verbose info message. */
2505 if (info_verbose)
2506 {
2507 printf_filtered ("done.\n");
2508 fflush (stdout);
2509 }
2510 }
2511 }
2512 }
2513 }
2514
2515 /*
2516
2517 LOCAL FUNCTION
2518
2519 init_psymbol_list -- initialize storage for partial symbols
2520
2521 SYNOPSIS
2522
2523 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2524
2525 DESCRIPTION
2526
2527 Initializes storage for all of the partial symbols that will be
2528 created by dwarf_build_psymtabs and subsidiaries.
2529 */
2530
2531 static void
2532 init_psymbol_list (objfile, total_symbols)
2533 struct objfile *objfile;
2534 int total_symbols;
2535 {
2536 /* Free any previously allocated psymbol lists. */
2537
2538 if (objfile -> global_psymbols.list)
2539 {
2540 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2541 }
2542 if (objfile -> static_psymbols.list)
2543 {
2544 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2545 }
2546
2547 /* Current best guess is that there are approximately a twentieth
2548 of the total symbols (in a debugging file) are global or static
2549 oriented symbols */
2550
2551 objfile -> global_psymbols.size = total_symbols / 10;
2552 objfile -> static_psymbols.size = total_symbols / 10;
2553 objfile -> global_psymbols.next =
2554 objfile -> global_psymbols.list = (struct partial_symbol *)
2555 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2556 * sizeof (struct partial_symbol));
2557 objfile -> static_psymbols.next =
2558 objfile -> static_psymbols.list = (struct partial_symbol *)
2559 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2560 * sizeof (struct partial_symbol));
2561 }
2562
2563 /*
2564
2565 LOCAL FUNCTION
2566
2567 add_enum_psymbol -- add enumeration members to partial symbol table
2568
2569 DESCRIPTION
2570
2571 Given pointer to a DIE that is known to be for an enumeration,
2572 extract the symbolic names of the enumeration members and add
2573 partial symbols for them.
2574 */
2575
2576 static void
2577 add_enum_psymbol (dip, objfile)
2578 struct dieinfo *dip;
2579 struct objfile *objfile;
2580 {
2581 char *scan;
2582 char *listend;
2583 unsigned short blocksz;
2584 int nbytes;
2585
2586 if ((scan = dip -> at_element_list) != NULL)
2587 {
2588 if (dip -> short_element_list)
2589 {
2590 nbytes = attribute_size (AT_short_element_list);
2591 }
2592 else
2593 {
2594 nbytes = attribute_size (AT_element_list);
2595 }
2596 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2597 scan += nbytes;
2598 listend = scan + blocksz;
2599 while (scan < listend)
2600 {
2601 scan += TARGET_FT_LONG_SIZE (objfile);
2602 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2603 objfile -> static_psymbols, 0, cu_language,
2604 objfile);
2605 scan += strlen (scan) + 1;
2606 }
2607 }
2608 }
2609
2610 /*
2611
2612 LOCAL FUNCTION
2613
2614 add_partial_symbol -- add symbol to partial symbol table
2615
2616 DESCRIPTION
2617
2618 Given a DIE, if it is one of the types that we want to
2619 add to a partial symbol table, finish filling in the die info
2620 and then add a partial symbol table entry for it.
2621
2622 NOTES
2623
2624 The caller must ensure that the DIE has a valid name attribute.
2625 */
2626
2627 static void
2628 add_partial_symbol (dip, objfile)
2629 struct dieinfo *dip;
2630 struct objfile *objfile;
2631 {
2632 switch (dip -> die_tag)
2633 {
2634 case TAG_global_subroutine:
2635 record_minimal_symbol (dip -> at_name, dip -> at_low_pc, mst_text,
2636 objfile);
2637 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2638 VAR_NAMESPACE, LOC_BLOCK,
2639 objfile -> global_psymbols,
2640 dip -> at_low_pc, cu_language, objfile);
2641 break;
2642 case TAG_global_variable:
2643 record_minimal_symbol (dip -> at_name, locval (dip -> at_location),
2644 mst_data, objfile);
2645 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2646 VAR_NAMESPACE, LOC_STATIC,
2647 objfile -> global_psymbols,
2648 0, cu_language, objfile);
2649 break;
2650 case TAG_subroutine:
2651 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2652 VAR_NAMESPACE, LOC_BLOCK,
2653 objfile -> static_psymbols,
2654 dip -> at_low_pc, cu_language, objfile);
2655 break;
2656 case TAG_local_variable:
2657 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2658 VAR_NAMESPACE, LOC_STATIC,
2659 objfile -> static_psymbols,
2660 0, cu_language, objfile);
2661 break;
2662 case TAG_typedef:
2663 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2664 VAR_NAMESPACE, LOC_TYPEDEF,
2665 objfile -> static_psymbols,
2666 0, cu_language, objfile);
2667 break;
2668 case TAG_class_type:
2669 case TAG_structure_type:
2670 case TAG_union_type:
2671 case TAG_enumeration_type:
2672 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2673 STRUCT_NAMESPACE, LOC_TYPEDEF,
2674 objfile -> static_psymbols,
2675 0, cu_language, objfile);
2676 if (cu_language == language_cplus)
2677 {
2678 /* For C++, these implicitly act as typedefs as well. */
2679 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2680 VAR_NAMESPACE, LOC_TYPEDEF,
2681 objfile -> static_psymbols,
2682 0, cu_language, objfile);
2683 }
2684 break;
2685 }
2686 }
2687
2688 /*
2689
2690 LOCAL FUNCTION
2691
2692 scan_partial_symbols -- scan DIE's within a single compilation unit
2693
2694 DESCRIPTION
2695
2696 Process the DIE's within a single compilation unit, looking for
2697 interesting DIE's that contribute to the partial symbol table entry
2698 for this compilation unit.
2699
2700 NOTES
2701
2702 There are some DIE's that may appear both at file scope and within
2703 the scope of a function. We are only interested in the ones at file
2704 scope, and the only way to tell them apart is to keep track of the
2705 scope. For example, consider the test case:
2706
2707 static int i;
2708 main () { int j; }
2709
2710 for which the relevant DWARF segment has the structure:
2711
2712 0x51:
2713 0x23 global subrtn sibling 0x9b
2714 name main
2715 fund_type FT_integer
2716 low_pc 0x800004cc
2717 high_pc 0x800004d4
2718
2719 0x74:
2720 0x23 local var sibling 0x97
2721 name j
2722 fund_type FT_integer
2723 location OP_BASEREG 0xe
2724 OP_CONST 0xfffffffc
2725 OP_ADD
2726 0x97:
2727 0x4
2728
2729 0x9b:
2730 0x1d local var sibling 0xb8
2731 name i
2732 fund_type FT_integer
2733 location OP_ADDR 0x800025dc
2734
2735 0xb8:
2736 0x4
2737
2738 We want to include the symbol 'i' in the partial symbol table, but
2739 not the symbol 'j'. In essence, we want to skip all the dies within
2740 the scope of a TAG_global_subroutine DIE.
2741
2742 Don't attempt to add anonymous structures or unions since they have
2743 no name. Anonymous enumerations however are processed, because we
2744 want to extract their member names (the check for a tag name is
2745 done later).
2746
2747 Also, for variables and subroutines, check that this is the place
2748 where the actual definition occurs, rather than just a reference
2749 to an external.
2750 */
2751
2752 static void
2753 scan_partial_symbols (thisdie, enddie, objfile)
2754 char *thisdie;
2755 char *enddie;
2756 struct objfile *objfile;
2757 {
2758 char *nextdie;
2759 char *temp;
2760 struct dieinfo di;
2761
2762 while (thisdie < enddie)
2763 {
2764 basicdieinfo (&di, thisdie, objfile);
2765 if (di.die_length < SIZEOF_DIE_LENGTH)
2766 {
2767 break;
2768 }
2769 else
2770 {
2771 nextdie = thisdie + di.die_length;
2772 /* To avoid getting complete die information for every die, we
2773 only do it (below) for the cases we are interested in. */
2774 switch (di.die_tag)
2775 {
2776 case TAG_global_subroutine:
2777 case TAG_subroutine:
2778 completedieinfo (&di, objfile);
2779 if (di.at_name && (di.has_at_low_pc || di.at_location))
2780 {
2781 add_partial_symbol (&di, objfile);
2782 /* If there is a sibling attribute, adjust the nextdie
2783 pointer to skip the entire scope of the subroutine.
2784 Apply some sanity checking to make sure we don't
2785 overrun or underrun the range of remaining DIE's */
2786 if (di.at_sibling != 0)
2787 {
2788 temp = dbbase + di.at_sibling - dbroff;
2789 if ((temp < thisdie) || (temp >= enddie))
2790 {
2791 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2792 di.at_sibling);
2793 }
2794 else
2795 {
2796 nextdie = temp;
2797 }
2798 }
2799 }
2800 break;
2801 case TAG_global_variable:
2802 case TAG_local_variable:
2803 completedieinfo (&di, objfile);
2804 if (di.at_name && (di.has_at_low_pc || di.at_location))
2805 {
2806 add_partial_symbol (&di, objfile);
2807 }
2808 break;
2809 case TAG_typedef:
2810 case TAG_class_type:
2811 case TAG_structure_type:
2812 case TAG_union_type:
2813 completedieinfo (&di, objfile);
2814 if (di.at_name)
2815 {
2816 add_partial_symbol (&di, objfile);
2817 }
2818 break;
2819 case TAG_enumeration_type:
2820 completedieinfo (&di, objfile);
2821 if (di.at_name)
2822 {
2823 add_partial_symbol (&di, objfile);
2824 }
2825 add_enum_psymbol (&di, objfile);
2826 break;
2827 }
2828 }
2829 thisdie = nextdie;
2830 }
2831 }
2832
2833 /*
2834
2835 LOCAL FUNCTION
2836
2837 scan_compilation_units -- build a psymtab entry for each compilation
2838
2839 DESCRIPTION
2840
2841 This is the top level dwarf parsing routine for building partial
2842 symbol tables.
2843
2844 It scans from the beginning of the DWARF table looking for the first
2845 TAG_compile_unit DIE, and then follows the sibling chain to locate
2846 each additional TAG_compile_unit DIE.
2847
2848 For each TAG_compile_unit DIE it creates a partial symtab structure,
2849 calls a subordinate routine to collect all the compilation unit's
2850 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2851 new partial symtab structure into the partial symbol table. It also
2852 records the appropriate information in the partial symbol table entry
2853 to allow the chunk of DIE's and line number table for this compilation
2854 unit to be located and re-read later, to generate a complete symbol
2855 table entry for the compilation unit.
2856
2857 Thus it effectively partitions up a chunk of DIE's for multiple
2858 compilation units into smaller DIE chunks and line number tables,
2859 and associates them with a partial symbol table entry.
2860
2861 NOTES
2862
2863 If any compilation unit has no line number table associated with
2864 it for some reason (a missing at_stmt_list attribute, rather than
2865 just one with a value of zero, which is valid) then we ensure that
2866 the recorded file offset is zero so that the routine which later
2867 reads line number table fragments knows that there is no fragment
2868 to read.
2869
2870 RETURNS
2871
2872 Returns no value.
2873
2874 */
2875
2876 static void
2877 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2878 char *thisdie;
2879 char *enddie;
2880 file_ptr dbfoff;
2881 file_ptr lnoffset;
2882 struct objfile *objfile;
2883 {
2884 char *nextdie;
2885 struct dieinfo di;
2886 struct partial_symtab *pst;
2887 int culength;
2888 int curoff;
2889 file_ptr curlnoffset;
2890
2891 while (thisdie < enddie)
2892 {
2893 basicdieinfo (&di, thisdie, objfile);
2894 if (di.die_length < SIZEOF_DIE_LENGTH)
2895 {
2896 break;
2897 }
2898 else if (di.die_tag != TAG_compile_unit)
2899 {
2900 nextdie = thisdie + di.die_length;
2901 }
2902 else
2903 {
2904 completedieinfo (&di, objfile);
2905 set_cu_language (&di);
2906 if (di.at_sibling != 0)
2907 {
2908 nextdie = dbbase + di.at_sibling - dbroff;
2909 }
2910 else
2911 {
2912 nextdie = thisdie + di.die_length;
2913 }
2914 curoff = thisdie - dbbase;
2915 culength = nextdie - thisdie;
2916 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2917
2918 /* First allocate a new partial symbol table structure */
2919
2920 pst = start_psymtab_common (objfile, base_section_offsets,
2921 di.at_name, di.at_low_pc,
2922 objfile -> global_psymbols.next,
2923 objfile -> static_psymbols.next);
2924
2925 pst -> texthigh = di.at_high_pc;
2926 pst -> read_symtab_private = (char *)
2927 obstack_alloc (&objfile -> psymbol_obstack,
2928 sizeof (struct dwfinfo));
2929 DBFOFF (pst) = dbfoff;
2930 DBROFF (pst) = curoff;
2931 DBLENGTH (pst) = culength;
2932 LNFOFF (pst) = curlnoffset;
2933 pst -> read_symtab = dwarf_psymtab_to_symtab;
2934
2935 /* Now look for partial symbols */
2936
2937 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2938
2939 pst -> n_global_syms = objfile -> global_psymbols.next -
2940 (objfile -> global_psymbols.list + pst -> globals_offset);
2941 pst -> n_static_syms = objfile -> static_psymbols.next -
2942 (objfile -> static_psymbols.list + pst -> statics_offset);
2943 sort_pst_symbols (pst);
2944 /* If there is already a psymtab or symtab for a file of this name,
2945 remove it. (If there is a symtab, more drastic things also
2946 happen.) This happens in VxWorks. */
2947 free_named_symtabs (pst -> filename);
2948 }
2949 thisdie = nextdie;
2950 }
2951 }
2952
2953 /*
2954
2955 LOCAL FUNCTION
2956
2957 new_symbol -- make a symbol table entry for a new symbol
2958
2959 SYNOPSIS
2960
2961 static struct symbol *new_symbol (struct dieinfo *dip,
2962 struct objfile *objfile)
2963
2964 DESCRIPTION
2965
2966 Given a pointer to a DWARF information entry, figure out if we need
2967 to make a symbol table entry for it, and if so, create a new entry
2968 and return a pointer to it.
2969 */
2970
2971 static struct symbol *
2972 new_symbol (dip, objfile)
2973 struct dieinfo *dip;
2974 struct objfile *objfile;
2975 {
2976 struct symbol *sym = NULL;
2977
2978 if (dip -> at_name != NULL)
2979 {
2980 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2981 sizeof (struct symbol));
2982 memset (sym, 0, sizeof (struct symbol));
2983 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2984 &objfile->symbol_obstack);
2985 /* default assumptions */
2986 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2987 SYMBOL_CLASS (sym) = LOC_STATIC;
2988 SYMBOL_TYPE (sym) = decode_die_type (dip);
2989
2990 /* If this symbol is from a C++ compilation, then attempt to cache the
2991 demangled form for future reference. This is a typical time versus
2992 space tradeoff, that was decided in favor of time because it sped up
2993 C++ symbol lookups by a factor of about 20. */
2994
2995 SYMBOL_LANGUAGE (sym) = cu_language;
2996 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2997 switch (dip -> die_tag)
2998 {
2999 case TAG_label:
3000 SYMBOL_VALUE (sym) = dip -> at_low_pc;
3001 SYMBOL_CLASS (sym) = LOC_LABEL;
3002 break;
3003 case TAG_global_subroutine:
3004 case TAG_subroutine:
3005 SYMBOL_VALUE (sym) = dip -> at_low_pc;
3006 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
3007 SYMBOL_CLASS (sym) = LOC_BLOCK;
3008 if (dip -> die_tag == TAG_global_subroutine)
3009 {
3010 add_symbol_to_list (sym, &global_symbols);
3011 }
3012 else
3013 {
3014 add_symbol_to_list (sym, list_in_scope);
3015 }
3016 break;
3017 case TAG_global_variable:
3018 if (dip -> at_location != NULL)
3019 {
3020 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3021 add_symbol_to_list (sym, &global_symbols);
3022 SYMBOL_CLASS (sym) = LOC_STATIC;
3023 SYMBOL_VALUE (sym) += baseaddr;
3024 }
3025 break;
3026 case TAG_local_variable:
3027 if (dip -> at_location != NULL)
3028 {
3029 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3030 add_symbol_to_list (sym, list_in_scope);
3031 if (isreg)
3032 {
3033 SYMBOL_CLASS (sym) = LOC_REGISTER;
3034 }
3035 else if (offreg)
3036 {
3037 SYMBOL_CLASS (sym) = LOC_LOCAL;
3038 }
3039 else
3040 {
3041 SYMBOL_CLASS (sym) = LOC_STATIC;
3042 SYMBOL_VALUE (sym) += baseaddr;
3043 }
3044 }
3045 break;
3046 case TAG_formal_parameter:
3047 if (dip -> at_location != NULL)
3048 {
3049 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3050 }
3051 add_symbol_to_list (sym, list_in_scope);
3052 if (isreg)
3053 {
3054 SYMBOL_CLASS (sym) = LOC_REGPARM;
3055 }
3056 else
3057 {
3058 SYMBOL_CLASS (sym) = LOC_ARG;
3059 }
3060 break;
3061 case TAG_unspecified_parameters:
3062 /* From varargs functions; gdb doesn't seem to have any interest in
3063 this information, so just ignore it for now. (FIXME?) */
3064 break;
3065 case TAG_class_type:
3066 case TAG_structure_type:
3067 case TAG_union_type:
3068 case TAG_enumeration_type:
3069 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3070 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3071 add_symbol_to_list (sym, list_in_scope);
3072 break;
3073 case TAG_typedef:
3074 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3075 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3076 add_symbol_to_list (sym, list_in_scope);
3077 break;
3078 default:
3079 /* Not a tag we recognize. Hopefully we aren't processing trash
3080 data, but since we must specifically ignore things we don't
3081 recognize, there is nothing else we should do at this point. */
3082 break;
3083 }
3084 }
3085 return (sym);
3086 }
3087
3088 /*
3089
3090 LOCAL FUNCTION
3091
3092 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3093
3094 SYNOPSIS
3095
3096 static void synthesize_typedef (struct dieinfo *dip,
3097 struct objfile *objfile,
3098 struct type *type);
3099
3100 DESCRIPTION
3101
3102 Given a pointer to a DWARF information entry, synthesize a typedef
3103 for the name in the DIE, using the specified type.
3104
3105 This is used for C++ class, structs, unions, and enumerations to
3106 set up the tag name as a type.
3107
3108 */
3109
3110 static void
3111 synthesize_typedef (dip, objfile, type)
3112 struct dieinfo *dip;
3113 struct objfile *objfile;
3114 struct type *type;
3115 {
3116 struct symbol *sym = NULL;
3117
3118 if (dip -> at_name != NULL)
3119 {
3120 sym = (struct symbol *)
3121 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3122 memset (sym, 0, sizeof (struct symbol));
3123 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3124 &objfile->symbol_obstack);
3125 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3126 SYMBOL_TYPE (sym) = type;
3127 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3128 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3129 add_symbol_to_list (sym, list_in_scope);
3130 }
3131 }
3132
3133 /*
3134
3135 LOCAL FUNCTION
3136
3137 decode_mod_fund_type -- decode a modified fundamental type
3138
3139 SYNOPSIS
3140
3141 static struct type *decode_mod_fund_type (char *typedata)
3142
3143 DESCRIPTION
3144
3145 Decode a block of data containing a modified fundamental
3146 type specification. TYPEDATA is a pointer to the block,
3147 which starts with a length containing the size of the rest
3148 of the block. At the end of the block is a fundmental type
3149 code value that gives the fundamental type. Everything
3150 in between are type modifiers.
3151
3152 We simply compute the number of modifiers and call the general
3153 function decode_modified_type to do the actual work.
3154 */
3155
3156 static struct type *
3157 decode_mod_fund_type (typedata)
3158 char *typedata;
3159 {
3160 struct type *typep = NULL;
3161 unsigned short modcount;
3162 int nbytes;
3163
3164 /* Get the total size of the block, exclusive of the size itself */
3165
3166 nbytes = attribute_size (AT_mod_fund_type);
3167 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3168 typedata += nbytes;
3169
3170 /* Deduct the size of the fundamental type bytes at the end of the block. */
3171
3172 modcount -= attribute_size (AT_fund_type);
3173
3174 /* Now do the actual decoding */
3175
3176 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3177 return (typep);
3178 }
3179
3180 /*
3181
3182 LOCAL FUNCTION
3183
3184 decode_mod_u_d_type -- decode a modified user defined type
3185
3186 SYNOPSIS
3187
3188 static struct type *decode_mod_u_d_type (char *typedata)
3189
3190 DESCRIPTION
3191
3192 Decode a block of data containing a modified user defined
3193 type specification. TYPEDATA is a pointer to the block,
3194 which consists of a two byte length, containing the size
3195 of the rest of the block. At the end of the block is a
3196 four byte value that gives a reference to a user defined type.
3197 Everything in between are type modifiers.
3198
3199 We simply compute the number of modifiers and call the general
3200 function decode_modified_type to do the actual work.
3201 */
3202
3203 static struct type *
3204 decode_mod_u_d_type (typedata)
3205 char *typedata;
3206 {
3207 struct type *typep = NULL;
3208 unsigned short modcount;
3209 int nbytes;
3210
3211 /* Get the total size of the block, exclusive of the size itself */
3212
3213 nbytes = attribute_size (AT_mod_u_d_type);
3214 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3215 typedata += nbytes;
3216
3217 /* Deduct the size of the reference type bytes at the end of the block. */
3218
3219 modcount -= attribute_size (AT_user_def_type);
3220
3221 /* Now do the actual decoding */
3222
3223 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3224 return (typep);
3225 }
3226
3227 /*
3228
3229 LOCAL FUNCTION
3230
3231 decode_modified_type -- decode modified user or fundamental type
3232
3233 SYNOPSIS
3234
3235 static struct type *decode_modified_type (char *modifiers,
3236 unsigned short modcount, int mtype)
3237
3238 DESCRIPTION
3239
3240 Decode a modified type, either a modified fundamental type or
3241 a modified user defined type. MODIFIERS is a pointer to the
3242 block of bytes that define MODCOUNT modifiers. Immediately
3243 following the last modifier is a short containing the fundamental
3244 type or a long containing the reference to the user defined
3245 type. Which one is determined by MTYPE, which is either
3246 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3247 type we are generating.
3248
3249 We call ourself recursively to generate each modified type,`
3250 until MODCOUNT reaches zero, at which point we have consumed
3251 all the modifiers and generate either the fundamental type or
3252 user defined type. When the recursion unwinds, each modifier
3253 is applied in turn to generate the full modified type.
3254
3255 NOTES
3256
3257 If we find a modifier that we don't recognize, and it is not one
3258 of those reserved for application specific use, then we issue a
3259 warning and simply ignore the modifier.
3260
3261 BUGS
3262
3263 We currently ignore MOD_const and MOD_volatile. (FIXME)
3264
3265 */
3266
3267 static struct type *
3268 decode_modified_type (modifiers, modcount, mtype)
3269 char *modifiers;
3270 unsigned int modcount;
3271 int mtype;
3272 {
3273 struct type *typep = NULL;
3274 unsigned short fundtype;
3275 DIE_REF die_ref;
3276 char modifier;
3277 int nbytes;
3278
3279 if (modcount == 0)
3280 {
3281 switch (mtype)
3282 {
3283 case AT_mod_fund_type:
3284 nbytes = attribute_size (AT_fund_type);
3285 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3286 current_objfile);
3287 typep = decode_fund_type (fundtype);
3288 break;
3289 case AT_mod_u_d_type:
3290 nbytes = attribute_size (AT_user_def_type);
3291 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3292 current_objfile);
3293 if ((typep = lookup_utype (die_ref)) == NULL)
3294 {
3295 typep = alloc_utype (die_ref, NULL);
3296 }
3297 break;
3298 default:
3299 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3300 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3301 break;
3302 }
3303 }
3304 else
3305 {
3306 modifier = *modifiers++;
3307 typep = decode_modified_type (modifiers, --modcount, mtype);
3308 switch (modifier)
3309 {
3310 case MOD_pointer_to:
3311 typep = lookup_pointer_type (typep);
3312 break;
3313 case MOD_reference_to:
3314 typep = lookup_reference_type (typep);
3315 break;
3316 case MOD_const:
3317 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3318 break;
3319 case MOD_volatile:
3320 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3321 break;
3322 default:
3323 if (!(MOD_lo_user <= (unsigned char) modifier
3324 && (unsigned char) modifier <= MOD_hi_user))
3325 {
3326 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3327 }
3328 break;
3329 }
3330 }
3331 return (typep);
3332 }
3333
3334 /*
3335
3336 LOCAL FUNCTION
3337
3338 decode_fund_type -- translate basic DWARF type to gdb base type
3339
3340 DESCRIPTION
3341
3342 Given an integer that is one of the fundamental DWARF types,
3343 translate it to one of the basic internal gdb types and return
3344 a pointer to the appropriate gdb type (a "struct type *").
3345
3346 NOTES
3347
3348 For robustness, if we are asked to translate a fundamental
3349 type that we are unprepared to deal with, we return int so
3350 callers can always depend upon a valid type being returned,
3351 and so gdb may at least do something reasonable by default.
3352 If the type is not in the range of those types defined as
3353 application specific types, we also issue a warning.
3354 */
3355
3356 static struct type *
3357 decode_fund_type (fundtype)
3358 unsigned int fundtype;
3359 {
3360 struct type *typep = NULL;
3361
3362 switch (fundtype)
3363 {
3364
3365 case FT_void:
3366 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3367 break;
3368
3369 case FT_boolean: /* Was FT_set in AT&T version */
3370 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3371 break;
3372
3373 case FT_pointer: /* (void *) */
3374 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3375 typep = lookup_pointer_type (typep);
3376 break;
3377
3378 case FT_char:
3379 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3380 break;
3381
3382 case FT_signed_char:
3383 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3384 break;
3385
3386 case FT_unsigned_char:
3387 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3388 break;
3389
3390 case FT_short:
3391 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3392 break;
3393
3394 case FT_signed_short:
3395 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3396 break;
3397
3398 case FT_unsigned_short:
3399 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3400 break;
3401
3402 case FT_integer:
3403 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3404 break;
3405
3406 case FT_signed_integer:
3407 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3408 break;
3409
3410 case FT_unsigned_integer:
3411 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3412 break;
3413
3414 case FT_long:
3415 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3416 break;
3417
3418 case FT_signed_long:
3419 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3420 break;
3421
3422 case FT_unsigned_long:
3423 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3424 break;
3425
3426 case FT_long_long:
3427 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3428 break;
3429
3430 case FT_signed_long_long:
3431 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3432 break;
3433
3434 case FT_unsigned_long_long:
3435 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3436 break;
3437
3438 case FT_float:
3439 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3440 break;
3441
3442 case FT_dbl_prec_float:
3443 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3444 break;
3445
3446 case FT_ext_prec_float:
3447 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3448 break;
3449
3450 case FT_complex:
3451 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3452 break;
3453
3454 case FT_dbl_prec_complex:
3455 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3456 break;
3457
3458 case FT_ext_prec_complex:
3459 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3460 break;
3461
3462 }
3463
3464 if (typep == NULL)
3465 {
3466 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3467 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3468 {
3469 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3470 }
3471 }
3472
3473 return (typep);
3474 }
3475
3476 /*
3477
3478 LOCAL FUNCTION
3479
3480 create_name -- allocate a fresh copy of a string on an obstack
3481
3482 DESCRIPTION
3483
3484 Given a pointer to a string and a pointer to an obstack, allocates
3485 a fresh copy of the string on the specified obstack.
3486
3487 */
3488
3489 static char *
3490 create_name (name, obstackp)
3491 char *name;
3492 struct obstack *obstackp;
3493 {
3494 int length;
3495 char *newname;
3496
3497 length = strlen (name) + 1;
3498 newname = (char *) obstack_alloc (obstackp, length);
3499 strcpy (newname, name);
3500 return (newname);
3501 }
3502
3503 /*
3504
3505 LOCAL FUNCTION
3506
3507 basicdieinfo -- extract the minimal die info from raw die data
3508
3509 SYNOPSIS
3510
3511 void basicdieinfo (char *diep, struct dieinfo *dip,
3512 struct objfile *objfile)
3513
3514 DESCRIPTION
3515
3516 Given a pointer to raw DIE data, and a pointer to an instance of a
3517 die info structure, this function extracts the basic information
3518 from the DIE data required to continue processing this DIE, along
3519 with some bookkeeping information about the DIE.
3520
3521 The information we absolutely must have includes the DIE tag,
3522 and the DIE length. If we need the sibling reference, then we
3523 will have to call completedieinfo() to process all the remaining
3524 DIE information.
3525
3526 Note that since there is no guarantee that the data is properly
3527 aligned in memory for the type of access required (indirection
3528 through anything other than a char pointer), and there is no
3529 guarantee that it is in the same byte order as the gdb host,
3530 we call a function which deals with both alignment and byte
3531 swapping issues. Possibly inefficient, but quite portable.
3532
3533 We also take care of some other basic things at this point, such
3534 as ensuring that the instance of the die info structure starts
3535 out completely zero'd and that curdie is initialized for use
3536 in error reporting if we have a problem with the current die.
3537
3538 NOTES
3539
3540 All DIE's must have at least a valid length, thus the minimum
3541 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3542 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3543 are forced to be TAG_padding DIES.
3544
3545 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3546 that if a padding DIE is used for alignment and the amount needed is
3547 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3548 enough to align to the next alignment boundry.
3549
3550 We do some basic sanity checking here, such as verifying that the
3551 length of the die would not cause it to overrun the recorded end of
3552 the buffer holding the DIE info. If we find a DIE that is either
3553 too small or too large, we force it's length to zero which should
3554 cause the caller to take appropriate action.
3555 */
3556
3557 static void
3558 basicdieinfo (dip, diep, objfile)
3559 struct dieinfo *dip;
3560 char *diep;
3561 struct objfile *objfile;
3562 {
3563 curdie = dip;
3564 memset (dip, 0, sizeof (struct dieinfo));
3565 dip -> die = diep;
3566 dip -> die_ref = dbroff + (diep - dbbase);
3567 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3568 objfile);
3569 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3570 ((diep + dip -> die_length) > (dbbase + dbsize)))
3571 {
3572 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3573 dip -> die_length = 0;
3574 }
3575 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3576 {
3577 dip -> die_tag = TAG_padding;
3578 }
3579 else
3580 {
3581 diep += SIZEOF_DIE_LENGTH;
3582 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3583 objfile);
3584 }
3585 }
3586
3587 /*
3588
3589 LOCAL FUNCTION
3590
3591 completedieinfo -- finish reading the information for a given DIE
3592
3593 SYNOPSIS
3594
3595 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3596
3597 DESCRIPTION
3598
3599 Given a pointer to an already partially initialized die info structure,
3600 scan the raw DIE data and finish filling in the die info structure
3601 from the various attributes found.
3602
3603 Note that since there is no guarantee that the data is properly
3604 aligned in memory for the type of access required (indirection
3605 through anything other than a char pointer), and there is no
3606 guarantee that it is in the same byte order as the gdb host,
3607 we call a function which deals with both alignment and byte
3608 swapping issues. Possibly inefficient, but quite portable.
3609
3610 NOTES
3611
3612 Each time we are called, we increment the diecount variable, which
3613 keeps an approximate count of the number of dies processed for
3614 each compilation unit. This information is presented to the user
3615 if the info_verbose flag is set.
3616
3617 */
3618
3619 static void
3620 completedieinfo (dip, objfile)
3621 struct dieinfo *dip;
3622 struct objfile *objfile;
3623 {
3624 char *diep; /* Current pointer into raw DIE data */
3625 char *end; /* Terminate DIE scan here */
3626 unsigned short attr; /* Current attribute being scanned */
3627 unsigned short form; /* Form of the attribute */
3628 int nbytes; /* Size of next field to read */
3629
3630 diecount++;
3631 diep = dip -> die;
3632 end = diep + dip -> die_length;
3633 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3634 while (diep < end)
3635 {
3636 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3637 diep += SIZEOF_ATTRIBUTE;
3638 if ((nbytes = attribute_size (attr)) == -1)
3639 {
3640 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3641 diep = end;
3642 continue;
3643 }
3644 switch (attr)
3645 {
3646 case AT_fund_type:
3647 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3648 objfile);
3649 break;
3650 case AT_ordering:
3651 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
3653 break;
3654 case AT_bit_offset:
3655 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 objfile);
3657 break;
3658 case AT_sibling:
3659 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
3661 break;
3662 case AT_stmt_list:
3663 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3664 objfile);
3665 dip -> has_at_stmt_list = 1;
3666 break;
3667 case AT_low_pc:
3668 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3669 objfile);
3670 dip -> at_low_pc += baseaddr;
3671 dip -> has_at_low_pc = 1;
3672 break;
3673 case AT_high_pc:
3674 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3675 objfile);
3676 dip -> at_high_pc += baseaddr;
3677 break;
3678 case AT_language:
3679 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3680 objfile);
3681 break;
3682 case AT_user_def_type:
3683 dip -> at_user_def_type = target_to_host (diep, nbytes,
3684 GET_UNSIGNED, objfile);
3685 break;
3686 case AT_byte_size:
3687 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3688 objfile);
3689 dip -> has_at_byte_size = 1;
3690 break;
3691 case AT_bit_size:
3692 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3693 objfile);
3694 break;
3695 case AT_member:
3696 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3697 objfile);
3698 break;
3699 case AT_discr:
3700 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3701 objfile);
3702 break;
3703 case AT_location:
3704 dip -> at_location = diep;
3705 break;
3706 case AT_mod_fund_type:
3707 dip -> at_mod_fund_type = diep;
3708 break;
3709 case AT_subscr_data:
3710 dip -> at_subscr_data = diep;
3711 break;
3712 case AT_mod_u_d_type:
3713 dip -> at_mod_u_d_type = diep;
3714 break;
3715 case AT_element_list:
3716 dip -> at_element_list = diep;
3717 dip -> short_element_list = 0;
3718 break;
3719 case AT_short_element_list:
3720 dip -> at_element_list = diep;
3721 dip -> short_element_list = 1;
3722 break;
3723 case AT_discr_value:
3724 dip -> at_discr_value = diep;
3725 break;
3726 case AT_string_length:
3727 dip -> at_string_length = diep;
3728 break;
3729 case AT_name:
3730 dip -> at_name = diep;
3731 break;
3732 case AT_comp_dir:
3733 /* For now, ignore any "hostname:" portion, since gdb doesn't
3734 know how to deal with it. (FIXME). */
3735 dip -> at_comp_dir = strrchr (diep, ':');
3736 if (dip -> at_comp_dir != NULL)
3737 {
3738 dip -> at_comp_dir++;
3739 }
3740 else
3741 {
3742 dip -> at_comp_dir = diep;
3743 }
3744 break;
3745 case AT_producer:
3746 dip -> at_producer = diep;
3747 break;
3748 case AT_start_scope:
3749 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3750 objfile);
3751 break;
3752 case AT_stride_size:
3753 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3754 objfile);
3755 break;
3756 case AT_src_info:
3757 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3758 objfile);
3759 break;
3760 case AT_prototyped:
3761 dip -> at_prototyped = diep;
3762 break;
3763 default:
3764 /* Found an attribute that we are unprepared to handle. However
3765 it is specifically one of the design goals of DWARF that
3766 consumers should ignore unknown attributes. As long as the
3767 form is one that we recognize (so we know how to skip it),
3768 we can just ignore the unknown attribute. */
3769 break;
3770 }
3771 form = FORM_FROM_ATTR (attr);
3772 switch (form)
3773 {
3774 case FORM_DATA2:
3775 diep += 2;
3776 break;
3777 case FORM_DATA4:
3778 case FORM_REF:
3779 diep += 4;
3780 break;
3781 case FORM_DATA8:
3782 diep += 8;
3783 break;
3784 case FORM_ADDR:
3785 diep += TARGET_FT_POINTER_SIZE (objfile);
3786 break;
3787 case FORM_BLOCK2:
3788 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3789 break;
3790 case FORM_BLOCK4:
3791 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3792 break;
3793 case FORM_STRING:
3794 diep += strlen (diep) + 1;
3795 break;
3796 default:
3797 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3798 diep = end;
3799 break;
3800 }
3801 }
3802 }
3803
3804 /*
3805
3806 LOCAL FUNCTION
3807
3808 target_to_host -- swap in target data to host
3809
3810 SYNOPSIS
3811
3812 target_to_host (char *from, int nbytes, int signextend,
3813 struct objfile *objfile)
3814
3815 DESCRIPTION
3816
3817 Given pointer to data in target format in FROM, a byte count for
3818 the size of the data in NBYTES, a flag indicating whether or not
3819 the data is signed in SIGNEXTEND, and a pointer to the current
3820 objfile in OBJFILE, convert the data to host format and return
3821 the converted value.
3822
3823 NOTES
3824
3825 FIXME: If we read data that is known to be signed, and expect to
3826 use it as signed data, then we need to explicitly sign extend the
3827 result until the bfd library is able to do this for us.
3828
3829 */
3830
3831 static unsigned long
3832 target_to_host (from, nbytes, signextend, objfile)
3833 char *from;
3834 int nbytes;
3835 int signextend; /* FIXME: Unused */
3836 struct objfile *objfile;
3837 {
3838 unsigned long rtnval;
3839
3840 switch (nbytes)
3841 {
3842 case 8:
3843 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3844 break;
3845 case 4:
3846 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3847 break;
3848 case 2:
3849 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3850 break;
3851 case 1:
3852 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3853 break;
3854 default:
3855 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3856 rtnval = 0;
3857 break;
3858 }
3859 return (rtnval);
3860 }
3861
3862 /*
3863
3864 LOCAL FUNCTION
3865
3866 attribute_size -- compute size of data for a DWARF attribute
3867
3868 SYNOPSIS
3869
3870 static int attribute_size (unsigned int attr)
3871
3872 DESCRIPTION
3873
3874 Given a DWARF attribute in ATTR, compute the size of the first
3875 piece of data associated with this attribute and return that
3876 size.
3877
3878 Returns -1 for unrecognized attributes.
3879
3880 */
3881
3882 static int
3883 attribute_size (attr)
3884 unsigned int attr;
3885 {
3886 int nbytes; /* Size of next data for this attribute */
3887 unsigned short form; /* Form of the attribute */
3888
3889 form = FORM_FROM_ATTR (attr);
3890 switch (form)
3891 {
3892 case FORM_STRING: /* A variable length field is next */
3893 nbytes = 0;
3894 break;
3895 case FORM_DATA2: /* Next 2 byte field is the data itself */
3896 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3897 nbytes = 2;
3898 break;
3899 case FORM_DATA4: /* Next 4 byte field is the data itself */
3900 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3901 case FORM_REF: /* Next 4 byte field is a DIE offset */
3902 nbytes = 4;
3903 break;
3904 case FORM_DATA8: /* Next 8 byte field is the data itself */
3905 nbytes = 8;
3906 break;
3907 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3908 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3909 break;
3910 default:
3911 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3912 nbytes = -1;
3913 break;
3914 }
3915 return (nbytes);
3916 }
This page took 0.109246 seconds and 4 git commands to generate.