use remote-utils facilities for baud_rate
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "bfd.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
48 #include "elf/dwarf.h"
49 #include "buildsym.h"
50 #include "demangle.h"
51 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
52 #include "language.h"
53 #include "complaints.h"
54
55 #include <fcntl.h>
56 #include <string.h>
57 #include <sys/types.h>
58
59 #ifndef NO_SYS_FILE
60 #include <sys/file.h>
61 #endif
62
63 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
64 #ifndef L_SET
65 #define L_SET 0
66 #endif
67
68 /* Some macros to provide DIE info for complaints. */
69
70 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
71 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
72
73 /* Complaints that can be issued during DWARF debug info reading. */
74
75 struct complaint no_bfd_get_N =
76 {
77 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
78 };
79
80 struct complaint malformed_die =
81 {
82 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
83 };
84
85 struct complaint bad_die_ref =
86 {
87 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
88 };
89
90 struct complaint unknown_attribute_form =
91 {
92 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
93 };
94
95 struct complaint unknown_attribute_length =
96 {
97 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
98 };
99
100 struct complaint unexpected_fund_type =
101 {
102 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
103 };
104
105 struct complaint unknown_type_modifier =
106 {
107 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
108 };
109
110 struct complaint volatile_ignored =
111 {
112 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
113 };
114
115 struct complaint const_ignored =
116 {
117 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
118 };
119
120 struct complaint botched_modified_type =
121 {
122 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
123 };
124
125 struct complaint op_deref2 =
126 {
127 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
128 };
129
130 struct complaint op_deref4 =
131 {
132 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
133 };
134
135 struct complaint basereg_not_handled =
136 {
137 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
138 };
139
140 struct complaint dup_user_type_allocation =
141 {
142 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
143 };
144
145 struct complaint dup_user_type_definition =
146 {
147 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
148 };
149
150 struct complaint missing_tag =
151 {
152 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
153 };
154
155 struct complaint bad_array_element_type =
156 {
157 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
158 };
159
160 struct complaint subscript_data_items =
161 {
162 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
163 };
164
165 struct complaint unhandled_array_subscript_format =
166 {
167 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
168 };
169
170 struct complaint unknown_array_subscript_format =
171 {
172 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
173 };
174
175 struct complaint not_row_major =
176 {
177 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
178 };
179
180 typedef unsigned int DIE_REF; /* Reference to a DIE */
181
182 #ifndef GCC_PRODUCER
183 #define GCC_PRODUCER "GNU C "
184 #endif
185
186 #ifndef GPLUS_PRODUCER
187 #define GPLUS_PRODUCER "GNU C++ "
188 #endif
189
190 #ifndef LCC_PRODUCER
191 #define LCC_PRODUCER "NCR C/C++"
192 #endif
193
194 #ifndef CHILL_PRODUCER
195 #define CHILL_PRODUCER "GNU Chill "
196 #endif
197
198 /* Flags to target_to_host() that tell whether or not the data object is
199 expected to be signed. Used, for example, when fetching a signed
200 integer in the target environment which is used as a signed integer
201 in the host environment, and the two environments have different sized
202 ints. In this case, *somebody* has to sign extend the smaller sized
203 int. */
204
205 #define GET_UNSIGNED 0 /* No sign extension required */
206 #define GET_SIGNED 1 /* Sign extension required */
207
208 /* Defines for things which are specified in the document "DWARF Debugging
209 Information Format" published by UNIX International, Programming Languages
210 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
211
212 #define SIZEOF_DIE_LENGTH 4
213 #define SIZEOF_DIE_TAG 2
214 #define SIZEOF_ATTRIBUTE 2
215 #define SIZEOF_FORMAT_SPECIFIER 1
216 #define SIZEOF_FMT_FT 2
217 #define SIZEOF_LINETBL_LENGTH 4
218 #define SIZEOF_LINETBL_LINENO 4
219 #define SIZEOF_LINETBL_STMT 2
220 #define SIZEOF_LINETBL_DELTA 4
221 #define SIZEOF_LOC_ATOM_CODE 1
222
223 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
224
225 /* Macros that return the sizes of various types of data in the target
226 environment.
227
228 FIXME: Currently these are just compile time constants (as they are in
229 other parts of gdb as well). They need to be able to get the right size
230 either from the bfd or possibly from the DWARF info. It would be nice if
231 the DWARF producer inserted DIES that describe the fundamental types in
232 the target environment into the DWARF info, similar to the way dbx stabs
233 producers produce information about their fundamental types. */
234
235 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
236 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
237
238 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
239 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
240 However, the Issue 2 DWARF specification from AT&T defines it as
241 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
242 For backwards compatibility with the AT&T compiler produced executables
243 we define AT_short_element_list for this variant. */
244
245 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
246
247 /* External variables referenced. */
248
249 extern int info_verbose; /* From main.c; nonzero => verbose */
250 extern char *warning_pre_print; /* From utils.c */
251
252 /* The DWARF debugging information consists of two major pieces,
253 one is a block of DWARF Information Entries (DIE's) and the other
254 is a line number table. The "struct dieinfo" structure contains
255 the information for a single DIE, the one currently being processed.
256
257 In order to make it easier to randomly access the attribute fields
258 of the current DIE, which are specifically unordered within the DIE,
259 each DIE is scanned and an instance of the "struct dieinfo"
260 structure is initialized.
261
262 Initialization is done in two levels. The first, done by basicdieinfo(),
263 just initializes those fields that are vital to deciding whether or not
264 to use this DIE, how to skip past it, etc. The second, done by the
265 function completedieinfo(), fills in the rest of the information.
266
267 Attributes which have block forms are not interpreted at the time
268 the DIE is scanned, instead we just save pointers to the start
269 of their value fields.
270
271 Some fields have a flag <name>_p that is set when the value of the
272 field is valid (I.E. we found a matching attribute in the DIE). Since
273 we may want to test for the presence of some attributes in the DIE,
274 such as AT_low_pc, without restricting the values of the field,
275 we need someway to note that we found such an attribute.
276
277 */
278
279 typedef char BLOCK;
280
281 struct dieinfo {
282 char * die; /* Pointer to the raw DIE data */
283 unsigned long die_length; /* Length of the raw DIE data */
284 DIE_REF die_ref; /* Offset of this DIE */
285 unsigned short die_tag; /* Tag for this DIE */
286 unsigned long at_padding;
287 unsigned long at_sibling;
288 BLOCK * at_location;
289 char * at_name;
290 unsigned short at_fund_type;
291 BLOCK * at_mod_fund_type;
292 unsigned long at_user_def_type;
293 BLOCK * at_mod_u_d_type;
294 unsigned short at_ordering;
295 BLOCK * at_subscr_data;
296 unsigned long at_byte_size;
297 unsigned short at_bit_offset;
298 unsigned long at_bit_size;
299 BLOCK * at_element_list;
300 unsigned long at_stmt_list;
301 unsigned long at_low_pc;
302 unsigned long at_high_pc;
303 unsigned long at_language;
304 unsigned long at_member;
305 unsigned long at_discr;
306 BLOCK * at_discr_value;
307 BLOCK * at_string_length;
308 char * at_comp_dir;
309 char * at_producer;
310 unsigned long at_start_scope;
311 unsigned long at_stride_size;
312 unsigned long at_src_info;
313 char * at_prototyped;
314 unsigned int has_at_low_pc:1;
315 unsigned int has_at_stmt_list:1;
316 unsigned int has_at_byte_size:1;
317 unsigned int short_element_list:1;
318 };
319
320 static int diecount; /* Approximate count of dies for compilation unit */
321 static struct dieinfo *curdie; /* For warnings and such */
322
323 static char *dbbase; /* Base pointer to dwarf info */
324 static int dbsize; /* Size of dwarf info in bytes */
325 static int dbroff; /* Relative offset from start of .debug section */
326 static char *lnbase; /* Base pointer to line section */
327 static int isreg; /* Kludge to identify register variables */
328 /* Kludge to identify basereg references. Nonzero if we have an offset
329 relative to a basereg. */
330 static int offreg;
331 /* Which base register is it relative to? */
332 static int basereg;
333
334 /* This value is added to each symbol value. FIXME: Generalize to
335 the section_offsets structure used by dbxread (once this is done,
336 pass the appropriate section number to end_symtab). */
337 static CORE_ADDR baseaddr; /* Add to each symbol value */
338
339 /* The section offsets used in the current psymtab or symtab. FIXME,
340 only used to pass one value (baseaddr) at the moment. */
341 static struct section_offsets *base_section_offsets;
342
343 /* Each partial symbol table entry contains a pointer to private data for the
344 read_symtab() function to use when expanding a partial symbol table entry
345 to a full symbol table entry. For DWARF debugging info, this data is
346 contained in the following structure and macros are provided for easy
347 access to the members given a pointer to a partial symbol table entry.
348
349 dbfoff Always the absolute file offset to the start of the ".debug"
350 section for the file containing the DIE's being accessed.
351
352 dbroff Relative offset from the start of the ".debug" access to the
353 first DIE to be accessed. When building the partial symbol
354 table, this value will be zero since we are accessing the
355 entire ".debug" section. When expanding a partial symbol
356 table entry, this value will be the offset to the first
357 DIE for the compilation unit containing the symbol that
358 triggers the expansion.
359
360 dblength The size of the chunk of DIE's being examined, in bytes.
361
362 lnfoff The absolute file offset to the line table fragment. Ignored
363 when building partial symbol tables, but used when expanding
364 them, and contains the absolute file offset to the fragment
365 of the ".line" section containing the line numbers for the
366 current compilation unit.
367 */
368
369 struct dwfinfo {
370 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
371 int dbroff; /* Relative offset from start of .debug section */
372 int dblength; /* Size of the chunk of DIE's being examined */
373 file_ptr lnfoff; /* Absolute file offset to line table fragment */
374 };
375
376 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
377 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
378 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
379 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
380
381 /* The generic symbol table building routines have separate lists for
382 file scope symbols and all all other scopes (local scopes). So
383 we need to select the right one to pass to add_symbol_to_list().
384 We do it by keeping a pointer to the correct list in list_in_scope.
385
386 FIXME: The original dwarf code just treated the file scope as the first
387 local scope, and all other local scopes as nested local scopes, and worked
388 fine. Check to see if we really need to distinguish these in buildsym.c */
389
390 struct pending **list_in_scope = &file_symbols;
391
392 /* DIES which have user defined types or modified user defined types refer to
393 other DIES for the type information. Thus we need to associate the offset
394 of a DIE for a user defined type with a pointer to the type information.
395
396 Originally this was done using a simple but expensive algorithm, with an
397 array of unsorted structures, each containing an offset/type-pointer pair.
398 This array was scanned linearly each time a lookup was done. The result
399 was that gdb was spending over half it's startup time munging through this
400 array of pointers looking for a structure that had the right offset member.
401
402 The second attempt used the same array of structures, but the array was
403 sorted using qsort each time a new offset/type was recorded, and a binary
404 search was used to find the type pointer for a given DIE offset. This was
405 even slower, due to the overhead of sorting the array each time a new
406 offset/type pair was entered.
407
408 The third attempt uses a fixed size array of type pointers, indexed by a
409 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
410 we can divide any DIE offset by 4 to obtain a unique index into this fixed
411 size array. Since each element is a 4 byte pointer, it takes exactly as
412 much memory to hold this array as to hold the DWARF info for a given
413 compilation unit. But it gets freed as soon as we are done with it.
414 This has worked well in practice, as a reasonable tradeoff between memory
415 consumption and speed, without having to resort to much more complicated
416 algorithms. */
417
418 static struct type **utypes; /* Pointer to array of user type pointers */
419 static int numutypes; /* Max number of user type pointers */
420
421 /* Maintain an array of referenced fundamental types for the current
422 compilation unit being read. For DWARF version 1, we have to construct
423 the fundamental types on the fly, since no information about the
424 fundamental types is supplied. Each such fundamental type is created by
425 calling a language dependent routine to create the type, and then a
426 pointer to that type is then placed in the array at the index specified
427 by it's FT_<TYPENAME> value. The array has a fixed size set by the
428 FT_NUM_MEMBERS compile time constant, which is the number of predefined
429 fundamental types gdb knows how to construct. */
430
431 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
432
433 /* Record the language for the compilation unit which is currently being
434 processed. We know it once we have seen the TAG_compile_unit DIE,
435 and we need it while processing the DIE's for that compilation unit.
436 It is eventually saved in the symtab structure, but we don't finalize
437 the symtab struct until we have processed all the DIE's for the
438 compilation unit. We also need to get and save a pointer to the
439 language struct for this language, so we can call the language
440 dependent routines for doing things such as creating fundamental
441 types. */
442
443 static enum language cu_language;
444 static const struct language_defn *cu_language_defn;
445
446 /* Forward declarations of static functions so we don't have to worry
447 about ordering within this file. */
448
449 static int
450 attribute_size PARAMS ((unsigned int));
451
452 static unsigned long
453 target_to_host PARAMS ((char *, int, int, struct objfile *));
454
455 static void
456 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
457
458 static void
459 handle_producer PARAMS ((char *));
460
461 static void
462 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
463
464 static void
465 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
466
467 static void
468 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
469 struct objfile *));
470
471 static void
472 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
473
474 static void
475 scan_compilation_units PARAMS ((char *, char *, file_ptr,
476 file_ptr, struct objfile *));
477
478 static void
479 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
480
481 static void
482 init_psymbol_list PARAMS ((struct objfile *, int));
483
484 static void
485 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
486
487 static void
488 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
489
490 static void
491 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
492
493 static void
494 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
495
496 static void
497 read_ofile_symtab PARAMS ((struct partial_symtab *));
498
499 static void
500 process_dies PARAMS ((char *, char *, struct objfile *));
501
502 static void
503 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
504 struct objfile *));
505
506 static struct type *
507 decode_array_element_type PARAMS ((char *));
508
509 static struct type *
510 decode_subscript_data_item PARAMS ((char *, char *));
511
512 static void
513 dwarf_read_array_type PARAMS ((struct dieinfo *));
514
515 static void
516 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
517
518 static void
519 read_tag_string_type PARAMS ((struct dieinfo *dip));
520
521 static void
522 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
523
524 static void
525 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
526
527 static struct type *
528 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
529
530 static struct type *
531 enum_type PARAMS ((struct dieinfo *, struct objfile *));
532
533 static void
534 decode_line_numbers PARAMS ((char *));
535
536 static struct type *
537 decode_die_type PARAMS ((struct dieinfo *));
538
539 static struct type *
540 decode_mod_fund_type PARAMS ((char *));
541
542 static struct type *
543 decode_mod_u_d_type PARAMS ((char *));
544
545 static struct type *
546 decode_modified_type PARAMS ((char *, unsigned int, int));
547
548 static struct type *
549 decode_fund_type PARAMS ((unsigned int));
550
551 static char *
552 create_name PARAMS ((char *, struct obstack *));
553
554 static struct type *
555 lookup_utype PARAMS ((DIE_REF));
556
557 static struct type *
558 alloc_utype PARAMS ((DIE_REF, struct type *));
559
560 static struct symbol *
561 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
562
563 static void
564 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
565 struct type *));
566
567 static int
568 locval PARAMS ((char *));
569
570 static void
571 set_cu_language PARAMS ((struct dieinfo *));
572
573 static struct type *
574 dwarf_fundamental_type PARAMS ((struct objfile *, int));
575
576
577 /*
578
579 LOCAL FUNCTION
580
581 dwarf_fundamental_type -- lookup or create a fundamental type
582
583 SYNOPSIS
584
585 struct type *
586 dwarf_fundamental_type (struct objfile *objfile, int typeid)
587
588 DESCRIPTION
589
590 DWARF version 1 doesn't supply any fundamental type information,
591 so gdb has to construct such types. It has a fixed number of
592 fundamental types that it knows how to construct, which is the
593 union of all types that it knows how to construct for all languages
594 that it knows about. These are enumerated in gdbtypes.h.
595
596 As an example, assume we find a DIE that references a DWARF
597 fundamental type of FT_integer. We first look in the ftypes
598 array to see if we already have such a type, indexed by the
599 gdb internal value of FT_INTEGER. If so, we simply return a
600 pointer to that type. If not, then we ask an appropriate
601 language dependent routine to create a type FT_INTEGER, using
602 defaults reasonable for the current target machine, and install
603 that type in ftypes for future reference.
604
605 RETURNS
606
607 Pointer to a fundamental type.
608
609 */
610
611 static struct type *
612 dwarf_fundamental_type (objfile, typeid)
613 struct objfile *objfile;
614 int typeid;
615 {
616 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
617 {
618 error ("internal error - invalid fundamental type id %d", typeid);
619 }
620
621 /* Look for this particular type in the fundamental type vector. If one is
622 not found, create and install one appropriate for the current language
623 and the current target machine. */
624
625 if (ftypes[typeid] == NULL)
626 {
627 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
628 }
629
630 return (ftypes[typeid]);
631 }
632
633 /*
634
635 LOCAL FUNCTION
636
637 set_cu_language -- set local copy of language for compilation unit
638
639 SYNOPSIS
640
641 void
642 set_cu_language (struct dieinfo *dip)
643
644 DESCRIPTION
645
646 Decode the language attribute for a compilation unit DIE and
647 remember what the language was. We use this at various times
648 when processing DIE's for a given compilation unit.
649
650 RETURNS
651
652 No return value.
653
654 */
655
656 static void
657 set_cu_language (dip)
658 struct dieinfo *dip;
659 {
660 switch (dip -> at_language)
661 {
662 case LANG_C89:
663 case LANG_C:
664 cu_language = language_c;
665 break;
666 case LANG_C_PLUS_PLUS:
667 cu_language = language_cplus;
668 break;
669 case LANG_CHILL:
670 cu_language = language_chill;
671 break;
672 case LANG_MODULA2:
673 cu_language = language_m2;
674 break;
675 case LANG_ADA83:
676 case LANG_COBOL74:
677 case LANG_COBOL85:
678 case LANG_FORTRAN77:
679 case LANG_FORTRAN90:
680 case LANG_PASCAL83:
681 /* We don't know anything special about these yet. */
682 cu_language = language_unknown;
683 break;
684 default:
685 /* If no at_language, try to deduce one from the filename */
686 cu_language = deduce_language_from_filename (dip -> at_name);
687 break;
688 }
689 cu_language_defn = language_def (cu_language);
690 }
691
692 /*
693
694 GLOBAL FUNCTION
695
696 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
697
698 SYNOPSIS
699
700 void dwarf_build_psymtabs (struct objfile *objfile,
701 struct section_offsets *section_offsets,
702 int mainline, file_ptr dbfoff, unsigned int dbfsize,
703 file_ptr lnoffset, unsigned int lnsize)
704
705 DESCRIPTION
706
707 This function is called upon to build partial symtabs from files
708 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
709
710 It is passed a bfd* containing the DIES
711 and line number information, the corresponding filename for that
712 file, a base address for relocating the symbols, a flag indicating
713 whether or not this debugging information is from a "main symbol
714 table" rather than a shared library or dynamically linked file,
715 and file offset/size pairs for the DIE information and line number
716 information.
717
718 RETURNS
719
720 No return value.
721
722 */
723
724 void
725 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
726 lnoffset, lnsize)
727 struct objfile *objfile;
728 struct section_offsets *section_offsets;
729 int mainline;
730 file_ptr dbfoff;
731 unsigned int dbfsize;
732 file_ptr lnoffset;
733 unsigned int lnsize;
734 {
735 bfd *abfd = objfile->obfd;
736 struct cleanup *back_to;
737
738 current_objfile = objfile;
739 dbsize = dbfsize;
740 dbbase = xmalloc (dbsize);
741 dbroff = 0;
742 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
743 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
744 {
745 free (dbbase);
746 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
747 }
748 back_to = make_cleanup (free, dbbase);
749
750 /* If we are reinitializing, or if we have never loaded syms yet, init.
751 Since we have no idea how many DIES we are looking at, we just guess
752 some arbitrary value. */
753
754 if (mainline || objfile -> global_psymbols.size == 0 ||
755 objfile -> static_psymbols.size == 0)
756 {
757 init_psymbol_list (objfile, 1024);
758 }
759
760 /* Save the relocation factor where everybody can see it. */
761
762 base_section_offsets = section_offsets;
763 baseaddr = ANOFFSET (section_offsets, 0);
764
765 /* Follow the compilation unit sibling chain, building a partial symbol
766 table entry for each one. Save enough information about each compilation
767 unit to locate the full DWARF information later. */
768
769 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
770
771 do_cleanups (back_to);
772 current_objfile = NULL;
773 }
774
775 /*
776
777 LOCAL FUNCTION
778
779 read_lexical_block_scope -- process all dies in a lexical block
780
781 SYNOPSIS
782
783 static void read_lexical_block_scope (struct dieinfo *dip,
784 char *thisdie, char *enddie)
785
786 DESCRIPTION
787
788 Process all the DIES contained within a lexical block scope.
789 Start a new scope, process the dies, and then close the scope.
790
791 */
792
793 static void
794 read_lexical_block_scope (dip, thisdie, enddie, objfile)
795 struct dieinfo *dip;
796 char *thisdie;
797 char *enddie;
798 struct objfile *objfile;
799 {
800 register struct context_stack *new;
801
802 push_context (0, dip -> at_low_pc);
803 process_dies (thisdie + dip -> die_length, enddie, objfile);
804 new = pop_context ();
805 if (local_symbols != NULL)
806 {
807 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
808 dip -> at_high_pc, objfile);
809 }
810 local_symbols = new -> locals;
811 }
812
813 /*
814
815 LOCAL FUNCTION
816
817 lookup_utype -- look up a user defined type from die reference
818
819 SYNOPSIS
820
821 static type *lookup_utype (DIE_REF die_ref)
822
823 DESCRIPTION
824
825 Given a DIE reference, lookup the user defined type associated with
826 that DIE, if it has been registered already. If not registered, then
827 return NULL. Alloc_utype() can be called to register an empty
828 type for this reference, which will be filled in later when the
829 actual referenced DIE is processed.
830 */
831
832 static struct type *
833 lookup_utype (die_ref)
834 DIE_REF die_ref;
835 {
836 struct type *type = NULL;
837 int utypeidx;
838
839 utypeidx = (die_ref - dbroff) / 4;
840 if ((utypeidx < 0) || (utypeidx >= numutypes))
841 {
842 complain (&bad_die_ref, DIE_ID, DIE_NAME);
843 }
844 else
845 {
846 type = *(utypes + utypeidx);
847 }
848 return (type);
849 }
850
851
852 /*
853
854 LOCAL FUNCTION
855
856 alloc_utype -- add a user defined type for die reference
857
858 SYNOPSIS
859
860 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
861
862 DESCRIPTION
863
864 Given a die reference DIE_REF, and a possible pointer to a user
865 defined type UTYPEP, register that this reference has a user
866 defined type and either use the specified type in UTYPEP or
867 make a new empty type that will be filled in later.
868
869 We should only be called after calling lookup_utype() to verify that
870 there is not currently a type registered for DIE_REF.
871 */
872
873 static struct type *
874 alloc_utype (die_ref, utypep)
875 DIE_REF die_ref;
876 struct type *utypep;
877 {
878 struct type **typep;
879 int utypeidx;
880
881 utypeidx = (die_ref - dbroff) / 4;
882 typep = utypes + utypeidx;
883 if ((utypeidx < 0) || (utypeidx >= numutypes))
884 {
885 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
886 complain (&bad_die_ref, DIE_ID, DIE_NAME);
887 }
888 else if (*typep != NULL)
889 {
890 utypep = *typep;
891 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
892 }
893 else
894 {
895 if (utypep == NULL)
896 {
897 utypep = alloc_type (current_objfile);
898 }
899 *typep = utypep;
900 }
901 return (utypep);
902 }
903
904 /*
905
906 LOCAL FUNCTION
907
908 decode_die_type -- return a type for a specified die
909
910 SYNOPSIS
911
912 static struct type *decode_die_type (struct dieinfo *dip)
913
914 DESCRIPTION
915
916 Given a pointer to a die information structure DIP, decode the
917 type of the die and return a pointer to the decoded type. All
918 dies without specific types default to type int.
919 */
920
921 static struct type *
922 decode_die_type (dip)
923 struct dieinfo *dip;
924 {
925 struct type *type = NULL;
926
927 if (dip -> at_fund_type != 0)
928 {
929 type = decode_fund_type (dip -> at_fund_type);
930 }
931 else if (dip -> at_mod_fund_type != NULL)
932 {
933 type = decode_mod_fund_type (dip -> at_mod_fund_type);
934 }
935 else if (dip -> at_user_def_type)
936 {
937 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
938 {
939 type = alloc_utype (dip -> at_user_def_type, NULL);
940 }
941 }
942 else if (dip -> at_mod_u_d_type)
943 {
944 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
945 }
946 else
947 {
948 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
949 }
950 return (type);
951 }
952
953 /*
954
955 LOCAL FUNCTION
956
957 struct_type -- compute and return the type for a struct or union
958
959 SYNOPSIS
960
961 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
962 char *enddie, struct objfile *objfile)
963
964 DESCRIPTION
965
966 Given pointer to a die information structure for a die which
967 defines a union or structure (and MUST define one or the other),
968 and pointers to the raw die data that define the range of dies which
969 define the members, compute and return the user defined type for the
970 structure or union.
971 */
972
973 static struct type *
974 struct_type (dip, thisdie, enddie, objfile)
975 struct dieinfo *dip;
976 char *thisdie;
977 char *enddie;
978 struct objfile *objfile;
979 {
980 struct type *type;
981 struct nextfield {
982 struct nextfield *next;
983 struct field field;
984 };
985 struct nextfield *list = NULL;
986 struct nextfield *new;
987 int nfields = 0;
988 int n;
989 struct dieinfo mbr;
990 char *nextdie;
991 #if !BITS_BIG_ENDIAN
992 int anonymous_size;
993 #endif
994
995 if ((type = lookup_utype (dip -> die_ref)) == NULL)
996 {
997 /* No forward references created an empty type, so install one now */
998 type = alloc_utype (dip -> die_ref, NULL);
999 }
1000 INIT_CPLUS_SPECIFIC(type);
1001 switch (dip -> die_tag)
1002 {
1003 case TAG_class_type:
1004 TYPE_CODE (type) = TYPE_CODE_CLASS;
1005 break;
1006 case TAG_structure_type:
1007 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1008 break;
1009 case TAG_union_type:
1010 TYPE_CODE (type) = TYPE_CODE_UNION;
1011 break;
1012 default:
1013 /* Should never happen */
1014 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1015 complain (&missing_tag, DIE_ID, DIE_NAME);
1016 break;
1017 }
1018 /* Some compilers try to be helpful by inventing "fake" names for
1019 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1020 Thanks, but no thanks... */
1021 if (dip -> at_name != NULL
1022 && *dip -> at_name != '~'
1023 && *dip -> at_name != '.')
1024 {
1025 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1026 "", "", dip -> at_name);
1027 }
1028 /* Use whatever size is known. Zero is a valid size. We might however
1029 wish to check has_at_byte_size to make sure that some byte size was
1030 given explicitly, but DWARF doesn't specify that explicit sizes of
1031 zero have to present, so complaining about missing sizes should
1032 probably not be the default. */
1033 TYPE_LENGTH (type) = dip -> at_byte_size;
1034 thisdie += dip -> die_length;
1035 while (thisdie < enddie)
1036 {
1037 basicdieinfo (&mbr, thisdie, objfile);
1038 completedieinfo (&mbr, objfile);
1039 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1040 {
1041 break;
1042 }
1043 else if (mbr.at_sibling != 0)
1044 {
1045 nextdie = dbbase + mbr.at_sibling - dbroff;
1046 }
1047 else
1048 {
1049 nextdie = thisdie + mbr.die_length;
1050 }
1051 switch (mbr.die_tag)
1052 {
1053 case TAG_member:
1054 /* Get space to record the next field's data. */
1055 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1056 new -> next = list;
1057 list = new;
1058 /* Save the data. */
1059 list -> field.name =
1060 obsavestring (mbr.at_name, strlen (mbr.at_name),
1061 &objfile -> type_obstack);
1062 list -> field.type = decode_die_type (&mbr);
1063 list -> field.bitpos = 8 * locval (mbr.at_location);
1064 /* Handle bit fields. */
1065 list -> field.bitsize = mbr.at_bit_size;
1066 #if BITS_BIG_ENDIAN
1067 /* For big endian bits, the at_bit_offset gives the additional
1068 bit offset from the MSB of the containing anonymous object to
1069 the MSB of the field. We don't have to do anything special
1070 since we don't need to know the size of the anonymous object. */
1071 list -> field.bitpos += mbr.at_bit_offset;
1072 #else
1073 /* For little endian bits, we need to have a non-zero at_bit_size,
1074 so that we know we are in fact dealing with a bitfield. Compute
1075 the bit offset to the MSB of the anonymous object, subtract off
1076 the number of bits from the MSB of the field to the MSB of the
1077 object, and then subtract off the number of bits of the field
1078 itself. The result is the bit offset of the LSB of the field. */
1079 if (mbr.at_bit_size > 0)
1080 {
1081 if (mbr.has_at_byte_size)
1082 {
1083 /* The size of the anonymous object containing the bit field
1084 is explicit, so use the indicated size (in bytes). */
1085 anonymous_size = mbr.at_byte_size;
1086 }
1087 else
1088 {
1089 /* The size of the anonymous object containing the bit field
1090 matches the size of an object of the bit field's type.
1091 DWARF allows at_byte_size to be left out in such cases,
1092 as a debug information size optimization. */
1093 anonymous_size = TYPE_LENGTH (list -> field.type);
1094 }
1095 list -> field.bitpos +=
1096 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1097 }
1098 #endif
1099 nfields++;
1100 break;
1101 default:
1102 process_dies (thisdie, nextdie, objfile);
1103 break;
1104 }
1105 thisdie = nextdie;
1106 }
1107 /* Now create the vector of fields, and record how big it is. We may
1108 not even have any fields, if this DIE was generated due to a reference
1109 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1110 set, which clues gdb in to the fact that it needs to search elsewhere
1111 for the full structure definition. */
1112 if (nfields == 0)
1113 {
1114 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1115 }
1116 else
1117 {
1118 TYPE_NFIELDS (type) = nfields;
1119 TYPE_FIELDS (type) = (struct field *)
1120 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1121 /* Copy the saved-up fields into the field vector. */
1122 for (n = nfields; list; list = list -> next)
1123 {
1124 TYPE_FIELD (type, --n) = list -> field;
1125 }
1126 }
1127 return (type);
1128 }
1129
1130 /*
1131
1132 LOCAL FUNCTION
1133
1134 read_structure_scope -- process all dies within struct or union
1135
1136 SYNOPSIS
1137
1138 static void read_structure_scope (struct dieinfo *dip,
1139 char *thisdie, char *enddie, struct objfile *objfile)
1140
1141 DESCRIPTION
1142
1143 Called when we find the DIE that starts a structure or union
1144 scope (definition) to process all dies that define the members
1145 of the structure or union. DIP is a pointer to the die info
1146 struct for the DIE that names the structure or union.
1147
1148 NOTES
1149
1150 Note that we need to call struct_type regardless of whether or not
1151 the DIE has an at_name attribute, since it might be an anonymous
1152 structure or union. This gets the type entered into our set of
1153 user defined types.
1154
1155 However, if the structure is incomplete (an opaque struct/union)
1156 then suppress creating a symbol table entry for it since gdb only
1157 wants to find the one with the complete definition. Note that if
1158 it is complete, we just call new_symbol, which does it's own
1159 checking about whether the struct/union is anonymous or not (and
1160 suppresses creating a symbol table entry itself).
1161
1162 */
1163
1164 static void
1165 read_structure_scope (dip, thisdie, enddie, objfile)
1166 struct dieinfo *dip;
1167 char *thisdie;
1168 char *enddie;
1169 struct objfile *objfile;
1170 {
1171 struct type *type;
1172 struct symbol *sym;
1173
1174 type = struct_type (dip, thisdie, enddie, objfile);
1175 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1176 {
1177 sym = new_symbol (dip, objfile);
1178 if (sym != NULL)
1179 {
1180 SYMBOL_TYPE (sym) = type;
1181 if (cu_language == language_cplus)
1182 {
1183 synthesize_typedef (dip, objfile, type);
1184 }
1185 }
1186 }
1187 }
1188
1189 /*
1190
1191 LOCAL FUNCTION
1192
1193 decode_array_element_type -- decode type of the array elements
1194
1195 SYNOPSIS
1196
1197 static struct type *decode_array_element_type (char *scan, char *end)
1198
1199 DESCRIPTION
1200
1201 As the last step in decoding the array subscript information for an
1202 array DIE, we need to decode the type of the array elements. We are
1203 passed a pointer to this last part of the subscript information and
1204 must return the appropriate type. If the type attribute is not
1205 recognized, just warn about the problem and return type int.
1206 */
1207
1208 static struct type *
1209 decode_array_element_type (scan)
1210 char *scan;
1211 {
1212 struct type *typep;
1213 DIE_REF die_ref;
1214 unsigned short attribute;
1215 unsigned short fundtype;
1216 int nbytes;
1217
1218 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1219 current_objfile);
1220 scan += SIZEOF_ATTRIBUTE;
1221 if ((nbytes = attribute_size (attribute)) == -1)
1222 {
1223 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1224 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1225 }
1226 else
1227 {
1228 switch (attribute)
1229 {
1230 case AT_fund_type:
1231 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1232 current_objfile);
1233 typep = decode_fund_type (fundtype);
1234 break;
1235 case AT_mod_fund_type:
1236 typep = decode_mod_fund_type (scan);
1237 break;
1238 case AT_user_def_type:
1239 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1240 current_objfile);
1241 if ((typep = lookup_utype (die_ref)) == NULL)
1242 {
1243 typep = alloc_utype (die_ref, NULL);
1244 }
1245 break;
1246 case AT_mod_u_d_type:
1247 typep = decode_mod_u_d_type (scan);
1248 break;
1249 default:
1250 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1251 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1252 break;
1253 }
1254 }
1255 return (typep);
1256 }
1257
1258 /*
1259
1260 LOCAL FUNCTION
1261
1262 decode_subscript_data_item -- decode array subscript item
1263
1264 SYNOPSIS
1265
1266 static struct type *
1267 decode_subscript_data_item (char *scan, char *end)
1268
1269 DESCRIPTION
1270
1271 The array subscripts and the data type of the elements of an
1272 array are described by a list of data items, stored as a block
1273 of contiguous bytes. There is a data item describing each array
1274 dimension, and a final data item describing the element type.
1275 The data items are ordered the same as their appearance in the
1276 source (I.E. leftmost dimension first, next to leftmost second,
1277 etc).
1278
1279 The data items describing each array dimension consist of four
1280 parts: (1) a format specifier, (2) type type of the subscript
1281 index, (3) a description of the low bound of the array dimension,
1282 and (4) a description of the high bound of the array dimension.
1283
1284 The last data item is the description of the type of each of
1285 the array elements.
1286
1287 We are passed a pointer to the start of the block of bytes
1288 containing the remaining data items, and a pointer to the first
1289 byte past the data. This function recursively decodes the
1290 remaining data items and returns a type.
1291
1292 If we somehow fail to decode some data, we complain about it
1293 and return a type "array of int".
1294
1295 BUGS
1296 FIXME: This code only implements the forms currently used
1297 by the AT&T and GNU C compilers.
1298
1299 The end pointer is supplied for error checking, maybe we should
1300 use it for that...
1301 */
1302
1303 static struct type *
1304 decode_subscript_data_item (scan, end)
1305 char *scan;
1306 char *end;
1307 {
1308 struct type *typep = NULL; /* Array type we are building */
1309 struct type *nexttype; /* Type of each element (may be array) */
1310 struct type *indextype; /* Type of this index */
1311 struct type *rangetype;
1312 unsigned int format;
1313 unsigned short fundtype;
1314 unsigned long lowbound;
1315 unsigned long highbound;
1316 int nbytes;
1317
1318 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1319 current_objfile);
1320 scan += SIZEOF_FORMAT_SPECIFIER;
1321 switch (format)
1322 {
1323 case FMT_ET:
1324 typep = decode_array_element_type (scan);
1325 break;
1326 case FMT_FT_C_C:
1327 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1328 current_objfile);
1329 indextype = decode_fund_type (fundtype);
1330 scan += SIZEOF_FMT_FT;
1331 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1332 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1333 scan += nbytes;
1334 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1335 scan += nbytes;
1336 nexttype = decode_subscript_data_item (scan, end);
1337 if (nexttype == NULL)
1338 {
1339 /* Munged subscript data or other problem, fake it. */
1340 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1341 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1342 }
1343 rangetype = create_range_type ((struct type *) NULL, indextype,
1344 lowbound, highbound);
1345 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1346 break;
1347 case FMT_FT_C_X:
1348 case FMT_FT_X_C:
1349 case FMT_FT_X_X:
1350 case FMT_UT_C_C:
1351 case FMT_UT_C_X:
1352 case FMT_UT_X_C:
1353 case FMT_UT_X_X:
1354 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1355 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1356 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1357 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1358 break;
1359 default:
1360 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1361 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1362 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1363 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1364 break;
1365 }
1366 return (typep);
1367 }
1368
1369 /*
1370
1371 LOCAL FUNCTION
1372
1373 dwarf_read_array_type -- read TAG_array_type DIE
1374
1375 SYNOPSIS
1376
1377 static void dwarf_read_array_type (struct dieinfo *dip)
1378
1379 DESCRIPTION
1380
1381 Extract all information from a TAG_array_type DIE and add to
1382 the user defined type vector.
1383 */
1384
1385 static void
1386 dwarf_read_array_type (dip)
1387 struct dieinfo *dip;
1388 {
1389 struct type *type;
1390 struct type *utype;
1391 char *sub;
1392 char *subend;
1393 unsigned short blocksz;
1394 int nbytes;
1395
1396 if (dip -> at_ordering != ORD_row_major)
1397 {
1398 /* FIXME: Can gdb even handle column major arrays? */
1399 complain (&not_row_major, DIE_ID, DIE_NAME);
1400 }
1401 if ((sub = dip -> at_subscr_data) != NULL)
1402 {
1403 nbytes = attribute_size (AT_subscr_data);
1404 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1405 subend = sub + nbytes + blocksz;
1406 sub += nbytes;
1407 type = decode_subscript_data_item (sub, subend);
1408 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1409 {
1410 /* Install user defined type that has not been referenced yet. */
1411 alloc_utype (dip -> die_ref, type);
1412 }
1413 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1414 {
1415 /* Ick! A forward ref has already generated a blank type in our
1416 slot, and this type probably already has things pointing to it
1417 (which is what caused it to be created in the first place).
1418 If it's just a place holder we can plop our fully defined type
1419 on top of it. We can't recover the space allocated for our
1420 new type since it might be on an obstack, but we could reuse
1421 it if we kept a list of them, but it might not be worth it
1422 (FIXME). */
1423 *utype = *type;
1424 }
1425 else
1426 {
1427 /* Double ick! Not only is a type already in our slot, but
1428 someone has decorated it. Complain and leave it alone. */
1429 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1430 }
1431 }
1432 }
1433
1434 /*
1435
1436 LOCAL FUNCTION
1437
1438 read_tag_pointer_type -- read TAG_pointer_type DIE
1439
1440 SYNOPSIS
1441
1442 static void read_tag_pointer_type (struct dieinfo *dip)
1443
1444 DESCRIPTION
1445
1446 Extract all information from a TAG_pointer_type DIE and add to
1447 the user defined type vector.
1448 */
1449
1450 static void
1451 read_tag_pointer_type (dip)
1452 struct dieinfo *dip;
1453 {
1454 struct type *type;
1455 struct type *utype;
1456
1457 type = decode_die_type (dip);
1458 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1459 {
1460 utype = lookup_pointer_type (type);
1461 alloc_utype (dip -> die_ref, utype);
1462 }
1463 else
1464 {
1465 TYPE_TARGET_TYPE (utype) = type;
1466 TYPE_POINTER_TYPE (type) = utype;
1467
1468 /* We assume the machine has only one representation for pointers! */
1469 /* FIXME: This confuses host<->target data representations, and is a
1470 poor assumption besides. */
1471
1472 TYPE_LENGTH (utype) = sizeof (char *);
1473 TYPE_CODE (utype) = TYPE_CODE_PTR;
1474 }
1475 }
1476
1477 /*
1478
1479 LOCAL FUNCTION
1480
1481 read_tag_string_type -- read TAG_string_type DIE
1482
1483 SYNOPSIS
1484
1485 static void read_tag_string_type (struct dieinfo *dip)
1486
1487 DESCRIPTION
1488
1489 Extract all information from a TAG_string_type DIE and add to
1490 the user defined type vector. It isn't really a user defined
1491 type, but it behaves like one, with other DIE's using an
1492 AT_user_def_type attribute to reference it.
1493 */
1494
1495 static void
1496 read_tag_string_type (dip)
1497 struct dieinfo *dip;
1498 {
1499 struct type *utype;
1500 struct type *indextype;
1501 struct type *rangetype;
1502 unsigned long lowbound = 0;
1503 unsigned long highbound;
1504
1505 if (dip -> has_at_byte_size)
1506 {
1507 /* A fixed bounds string */
1508 highbound = dip -> at_byte_size - 1;
1509 }
1510 else
1511 {
1512 /* A varying length string. Stub for now. (FIXME) */
1513 highbound = 1;
1514 }
1515 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1516 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1517 highbound);
1518
1519 utype = lookup_utype (dip -> die_ref);
1520 if (utype == NULL)
1521 {
1522 /* No type defined, go ahead and create a blank one to use. */
1523 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1524 }
1525 else
1526 {
1527 /* Already a type in our slot due to a forward reference. Make sure it
1528 is a blank one. If not, complain and leave it alone. */
1529 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1530 {
1531 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1532 return;
1533 }
1534 }
1535
1536 /* Create the string type using the blank type we either found or created. */
1537 utype = create_string_type (utype, rangetype);
1538 }
1539
1540 /*
1541
1542 LOCAL FUNCTION
1543
1544 read_subroutine_type -- process TAG_subroutine_type dies
1545
1546 SYNOPSIS
1547
1548 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1549 char *enddie)
1550
1551 DESCRIPTION
1552
1553 Handle DIES due to C code like:
1554
1555 struct foo {
1556 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1557 int b;
1558 };
1559
1560 NOTES
1561
1562 The parameter DIES are currently ignored. See if gdb has a way to
1563 include this info in it's type system, and decode them if so. Is
1564 this what the type structure's "arg_types" field is for? (FIXME)
1565 */
1566
1567 static void
1568 read_subroutine_type (dip, thisdie, enddie)
1569 struct dieinfo *dip;
1570 char *thisdie;
1571 char *enddie;
1572 {
1573 struct type *type; /* Type that this function returns */
1574 struct type *ftype; /* Function that returns above type */
1575
1576 /* Decode the type that this subroutine returns */
1577
1578 type = decode_die_type (dip);
1579
1580 /* Check to see if we already have a partially constructed user
1581 defined type for this DIE, from a forward reference. */
1582
1583 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1584 {
1585 /* This is the first reference to one of these types. Make
1586 a new one and place it in the user defined types. */
1587 ftype = lookup_function_type (type);
1588 alloc_utype (dip -> die_ref, ftype);
1589 }
1590 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1591 {
1592 /* We have an existing partially constructed type, so bash it
1593 into the correct type. */
1594 TYPE_TARGET_TYPE (ftype) = type;
1595 TYPE_FUNCTION_TYPE (type) = ftype;
1596 TYPE_LENGTH (ftype) = 1;
1597 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1598 }
1599 else
1600 {
1601 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1602 }
1603 }
1604
1605 /*
1606
1607 LOCAL FUNCTION
1608
1609 read_enumeration -- process dies which define an enumeration
1610
1611 SYNOPSIS
1612
1613 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1614 char *enddie, struct objfile *objfile)
1615
1616 DESCRIPTION
1617
1618 Given a pointer to a die which begins an enumeration, process all
1619 the dies that define the members of the enumeration.
1620
1621 NOTES
1622
1623 Note that we need to call enum_type regardless of whether or not we
1624 have a symbol, since we might have an enum without a tag name (thus
1625 no symbol for the tagname).
1626 */
1627
1628 static void
1629 read_enumeration (dip, thisdie, enddie, objfile)
1630 struct dieinfo *dip;
1631 char *thisdie;
1632 char *enddie;
1633 struct objfile *objfile;
1634 {
1635 struct type *type;
1636 struct symbol *sym;
1637
1638 type = enum_type (dip, objfile);
1639 sym = new_symbol (dip, objfile);
1640 if (sym != NULL)
1641 {
1642 SYMBOL_TYPE (sym) = type;
1643 if (cu_language == language_cplus)
1644 {
1645 synthesize_typedef (dip, objfile, type);
1646 }
1647 }
1648 }
1649
1650 /*
1651
1652 LOCAL FUNCTION
1653
1654 enum_type -- decode and return a type for an enumeration
1655
1656 SYNOPSIS
1657
1658 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1659
1660 DESCRIPTION
1661
1662 Given a pointer to a die information structure for the die which
1663 starts an enumeration, process all the dies that define the members
1664 of the enumeration and return a type pointer for the enumeration.
1665
1666 At the same time, for each member of the enumeration, create a
1667 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1668 and give it the type of the enumeration itself.
1669
1670 NOTES
1671
1672 Note that the DWARF specification explicitly mandates that enum
1673 constants occur in reverse order from the source program order,
1674 for "consistency" and because this ordering is easier for many
1675 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1676 Entries). Because gdb wants to see the enum members in program
1677 source order, we have to ensure that the order gets reversed while
1678 we are processing them.
1679 */
1680
1681 static struct type *
1682 enum_type (dip, objfile)
1683 struct dieinfo *dip;
1684 struct objfile *objfile;
1685 {
1686 struct type *type;
1687 struct nextfield {
1688 struct nextfield *next;
1689 struct field field;
1690 };
1691 struct nextfield *list = NULL;
1692 struct nextfield *new;
1693 int nfields = 0;
1694 int n;
1695 char *scan;
1696 char *listend;
1697 unsigned short blocksz;
1698 struct symbol *sym;
1699 int nbytes;
1700
1701 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1702 {
1703 /* No forward references created an empty type, so install one now */
1704 type = alloc_utype (dip -> die_ref, NULL);
1705 }
1706 TYPE_CODE (type) = TYPE_CODE_ENUM;
1707 /* Some compilers try to be helpful by inventing "fake" names for
1708 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1709 Thanks, but no thanks... */
1710 if (dip -> at_name != NULL
1711 && *dip -> at_name != '~'
1712 && *dip -> at_name != '.')
1713 {
1714 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1715 "", "", dip -> at_name);
1716 }
1717 if (dip -> at_byte_size != 0)
1718 {
1719 TYPE_LENGTH (type) = dip -> at_byte_size;
1720 }
1721 if ((scan = dip -> at_element_list) != NULL)
1722 {
1723 if (dip -> short_element_list)
1724 {
1725 nbytes = attribute_size (AT_short_element_list);
1726 }
1727 else
1728 {
1729 nbytes = attribute_size (AT_element_list);
1730 }
1731 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1732 listend = scan + nbytes + blocksz;
1733 scan += nbytes;
1734 while (scan < listend)
1735 {
1736 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1737 new -> next = list;
1738 list = new;
1739 list -> field.type = NULL;
1740 list -> field.bitsize = 0;
1741 list -> field.bitpos =
1742 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1743 objfile);
1744 scan += TARGET_FT_LONG_SIZE (objfile);
1745 list -> field.name = obsavestring (scan, strlen (scan),
1746 &objfile -> type_obstack);
1747 scan += strlen (scan) + 1;
1748 nfields++;
1749 /* Handcraft a new symbol for this enum member. */
1750 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1751 sizeof (struct symbol));
1752 memset (sym, 0, sizeof (struct symbol));
1753 SYMBOL_NAME (sym) = create_name (list -> field.name,
1754 &objfile->symbol_obstack);
1755 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1756 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1757 SYMBOL_CLASS (sym) = LOC_CONST;
1758 SYMBOL_TYPE (sym) = type;
1759 SYMBOL_VALUE (sym) = list -> field.bitpos;
1760 add_symbol_to_list (sym, list_in_scope);
1761 }
1762 /* Now create the vector of fields, and record how big it is. This is
1763 where we reverse the order, by pulling the members off the list in
1764 reverse order from how they were inserted. If we have no fields
1765 (this is apparently possible in C++) then skip building a field
1766 vector. */
1767 if (nfields > 0)
1768 {
1769 TYPE_NFIELDS (type) = nfields;
1770 TYPE_FIELDS (type) = (struct field *)
1771 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1772 /* Copy the saved-up fields into the field vector. */
1773 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1774 {
1775 TYPE_FIELD (type, n++) = list -> field;
1776 }
1777 }
1778 }
1779 return (type);
1780 }
1781
1782 /*
1783
1784 LOCAL FUNCTION
1785
1786 read_func_scope -- process all dies within a function scope
1787
1788 DESCRIPTION
1789
1790 Process all dies within a given function scope. We are passed
1791 a die information structure pointer DIP for the die which
1792 starts the function scope, and pointers into the raw die data
1793 that define the dies within the function scope.
1794
1795 For now, we ignore lexical block scopes within the function.
1796 The problem is that AT&T cc does not define a DWARF lexical
1797 block scope for the function itself, while gcc defines a
1798 lexical block scope for the function. We need to think about
1799 how to handle this difference, or if it is even a problem.
1800 (FIXME)
1801 */
1802
1803 static void
1804 read_func_scope (dip, thisdie, enddie, objfile)
1805 struct dieinfo *dip;
1806 char *thisdie;
1807 char *enddie;
1808 struct objfile *objfile;
1809 {
1810 register struct context_stack *new;
1811
1812 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1813 objfile -> ei.entry_point < dip -> at_high_pc)
1814 {
1815 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1816 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1817 }
1818 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1819 {
1820 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1821 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1822 }
1823 new = push_context (0, dip -> at_low_pc);
1824 new -> name = new_symbol (dip, objfile);
1825 list_in_scope = &local_symbols;
1826 process_dies (thisdie + dip -> die_length, enddie, objfile);
1827 new = pop_context ();
1828 /* Make a block for the local symbols within. */
1829 finish_block (new -> name, &local_symbols, new -> old_blocks,
1830 new -> start_addr, dip -> at_high_pc, objfile);
1831 list_in_scope = &file_symbols;
1832 }
1833
1834
1835 /*
1836
1837 LOCAL FUNCTION
1838
1839 handle_producer -- process the AT_producer attribute
1840
1841 DESCRIPTION
1842
1843 Perform any operations that depend on finding a particular
1844 AT_producer attribute.
1845
1846 */
1847
1848 static void
1849 handle_producer (producer)
1850 char *producer;
1851 {
1852
1853 /* If this compilation unit was compiled with g++ or gcc, then set the
1854 processing_gcc_compilation flag. */
1855
1856 processing_gcc_compilation =
1857 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1858 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1859 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1860
1861 /* Select a demangling style if we can identify the producer and if
1862 the current style is auto. We leave the current style alone if it
1863 is not auto. We also leave the demangling style alone if we find a
1864 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1865
1866 if (AUTO_DEMANGLING)
1867 {
1868 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1869 {
1870 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1871 }
1872 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1873 {
1874 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1875 }
1876 }
1877 }
1878
1879
1880 /*
1881
1882 LOCAL FUNCTION
1883
1884 read_file_scope -- process all dies within a file scope
1885
1886 DESCRIPTION
1887
1888 Process all dies within a given file scope. We are passed a
1889 pointer to the die information structure for the die which
1890 starts the file scope, and pointers into the raw die data which
1891 mark the range of dies within the file scope.
1892
1893 When the partial symbol table is built, the file offset for the line
1894 number table for each compilation unit is saved in the partial symbol
1895 table entry for that compilation unit. As the symbols for each
1896 compilation unit are read, the line number table is read into memory
1897 and the variable lnbase is set to point to it. Thus all we have to
1898 do is use lnbase to access the line number table for the current
1899 compilation unit.
1900 */
1901
1902 static void
1903 read_file_scope (dip, thisdie, enddie, objfile)
1904 struct dieinfo *dip;
1905 char *thisdie;
1906 char *enddie;
1907 struct objfile *objfile;
1908 {
1909 struct cleanup *back_to;
1910 struct symtab *symtab;
1911
1912 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1913 objfile -> ei.entry_point < dip -> at_high_pc)
1914 {
1915 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1916 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1917 }
1918 set_cu_language (dip);
1919 if (dip -> at_producer != NULL)
1920 {
1921 handle_producer (dip -> at_producer);
1922 }
1923 numutypes = (enddie - thisdie) / 4;
1924 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1925 back_to = make_cleanup (free, utypes);
1926 memset (utypes, 0, numutypes * sizeof (struct type *));
1927 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1928 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1929 decode_line_numbers (lnbase);
1930 process_dies (thisdie + dip -> die_length, enddie, objfile);
1931
1932 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1933 if (symtab != NULL)
1934 {
1935 symtab -> language = cu_language;
1936 }
1937 do_cleanups (back_to);
1938 utypes = NULL;
1939 numutypes = 0;
1940 }
1941
1942 /*
1943
1944 LOCAL FUNCTION
1945
1946 process_dies -- process a range of DWARF Information Entries
1947
1948 SYNOPSIS
1949
1950 static void process_dies (char *thisdie, char *enddie,
1951 struct objfile *objfile)
1952
1953 DESCRIPTION
1954
1955 Process all DIE's in a specified range. May be (and almost
1956 certainly will be) called recursively.
1957 */
1958
1959 static void
1960 process_dies (thisdie, enddie, objfile)
1961 char *thisdie;
1962 char *enddie;
1963 struct objfile *objfile;
1964 {
1965 char *nextdie;
1966 struct dieinfo di;
1967
1968 while (thisdie < enddie)
1969 {
1970 basicdieinfo (&di, thisdie, objfile);
1971 if (di.die_length < SIZEOF_DIE_LENGTH)
1972 {
1973 break;
1974 }
1975 else if (di.die_tag == TAG_padding)
1976 {
1977 nextdie = thisdie + di.die_length;
1978 }
1979 else
1980 {
1981 completedieinfo (&di, objfile);
1982 if (di.at_sibling != 0)
1983 {
1984 nextdie = dbbase + di.at_sibling - dbroff;
1985 }
1986 else
1987 {
1988 nextdie = thisdie + di.die_length;
1989 }
1990 switch (di.die_tag)
1991 {
1992 case TAG_compile_unit:
1993 read_file_scope (&di, thisdie, nextdie, objfile);
1994 break;
1995 case TAG_global_subroutine:
1996 case TAG_subroutine:
1997 if (di.has_at_low_pc)
1998 {
1999 read_func_scope (&di, thisdie, nextdie, objfile);
2000 }
2001 break;
2002 case TAG_lexical_block:
2003 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2004 break;
2005 case TAG_class_type:
2006 case TAG_structure_type:
2007 case TAG_union_type:
2008 read_structure_scope (&di, thisdie, nextdie, objfile);
2009 break;
2010 case TAG_enumeration_type:
2011 read_enumeration (&di, thisdie, nextdie, objfile);
2012 break;
2013 case TAG_subroutine_type:
2014 read_subroutine_type (&di, thisdie, nextdie);
2015 break;
2016 case TAG_array_type:
2017 dwarf_read_array_type (&di);
2018 break;
2019 case TAG_pointer_type:
2020 read_tag_pointer_type (&di);
2021 break;
2022 case TAG_string_type:
2023 read_tag_string_type (&di);
2024 break;
2025 default:
2026 new_symbol (&di, objfile);
2027 break;
2028 }
2029 }
2030 thisdie = nextdie;
2031 }
2032 }
2033
2034 /*
2035
2036 LOCAL FUNCTION
2037
2038 decode_line_numbers -- decode a line number table fragment
2039
2040 SYNOPSIS
2041
2042 static void decode_line_numbers (char *tblscan, char *tblend,
2043 long length, long base, long line, long pc)
2044
2045 DESCRIPTION
2046
2047 Translate the DWARF line number information to gdb form.
2048
2049 The ".line" section contains one or more line number tables, one for
2050 each ".line" section from the objects that were linked.
2051
2052 The AT_stmt_list attribute for each TAG_source_file entry in the
2053 ".debug" section contains the offset into the ".line" section for the
2054 start of the table for that file.
2055
2056 The table itself has the following structure:
2057
2058 <table length><base address><source statement entry>
2059 4 bytes 4 bytes 10 bytes
2060
2061 The table length is the total size of the table, including the 4 bytes
2062 for the length information.
2063
2064 The base address is the address of the first instruction generated
2065 for the source file.
2066
2067 Each source statement entry has the following structure:
2068
2069 <line number><statement position><address delta>
2070 4 bytes 2 bytes 4 bytes
2071
2072 The line number is relative to the start of the file, starting with
2073 line 1.
2074
2075 The statement position either -1 (0xFFFF) or the number of characters
2076 from the beginning of the line to the beginning of the statement.
2077
2078 The address delta is the difference between the base address and
2079 the address of the first instruction for the statement.
2080
2081 Note that we must copy the bytes from the packed table to our local
2082 variables before attempting to use them, to avoid alignment problems
2083 on some machines, particularly RISC processors.
2084
2085 BUGS
2086
2087 Does gdb expect the line numbers to be sorted? They are now by
2088 chance/luck, but are not required to be. (FIXME)
2089
2090 The line with number 0 is unused, gdb apparently can discover the
2091 span of the last line some other way. How? (FIXME)
2092 */
2093
2094 static void
2095 decode_line_numbers (linetable)
2096 char *linetable;
2097 {
2098 char *tblscan;
2099 char *tblend;
2100 unsigned long length;
2101 unsigned long base;
2102 unsigned long line;
2103 unsigned long pc;
2104
2105 if (linetable != NULL)
2106 {
2107 tblscan = tblend = linetable;
2108 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2109 current_objfile);
2110 tblscan += SIZEOF_LINETBL_LENGTH;
2111 tblend += length;
2112 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2113 GET_UNSIGNED, current_objfile);
2114 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2115 base += baseaddr;
2116 while (tblscan < tblend)
2117 {
2118 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2119 current_objfile);
2120 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2121 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2122 current_objfile);
2123 tblscan += SIZEOF_LINETBL_DELTA;
2124 pc += base;
2125 if (line != 0)
2126 {
2127 record_line (current_subfile, line, pc);
2128 }
2129 }
2130 }
2131 }
2132
2133 /*
2134
2135 LOCAL FUNCTION
2136
2137 locval -- compute the value of a location attribute
2138
2139 SYNOPSIS
2140
2141 static int locval (char *loc)
2142
2143 DESCRIPTION
2144
2145 Given pointer to a string of bytes that define a location, compute
2146 the location and return the value.
2147
2148 When computing values involving the current value of the frame pointer,
2149 the value zero is used, which results in a value relative to the frame
2150 pointer, rather than the absolute value. This is what GDB wants
2151 anyway.
2152
2153 When the result is a register number, the global isreg flag is set,
2154 otherwise it is cleared. This is a kludge until we figure out a better
2155 way to handle the problem. Gdb's design does not mesh well with the
2156 DWARF notion of a location computing interpreter, which is a shame
2157 because the flexibility goes unused.
2158
2159 NOTES
2160
2161 Note that stack[0] is unused except as a default error return.
2162 Note that stack overflow is not yet handled.
2163 */
2164
2165 static int
2166 locval (loc)
2167 char *loc;
2168 {
2169 unsigned short nbytes;
2170 unsigned short locsize;
2171 auto long stack[64];
2172 int stacki;
2173 char *end;
2174 int loc_atom_code;
2175 int loc_value_size;
2176
2177 nbytes = attribute_size (AT_location);
2178 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2179 loc += nbytes;
2180 end = loc + locsize;
2181 stacki = 0;
2182 stack[stacki] = 0;
2183 isreg = 0;
2184 offreg = 0;
2185 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2186 while (loc < end)
2187 {
2188 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2189 current_objfile);
2190 loc += SIZEOF_LOC_ATOM_CODE;
2191 switch (loc_atom_code)
2192 {
2193 case 0:
2194 /* error */
2195 loc = end;
2196 break;
2197 case OP_REG:
2198 /* push register (number) */
2199 stack[++stacki] = target_to_host (loc, loc_value_size,
2200 GET_UNSIGNED, current_objfile);
2201 loc += loc_value_size;
2202 isreg = 1;
2203 break;
2204 case OP_BASEREG:
2205 /* push value of register (number) */
2206 /* Actually, we compute the value as if register has 0, so the
2207 value ends up being the offset from that register. */
2208 offreg = 1;
2209 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2210 current_objfile);
2211 loc += loc_value_size;
2212 stack[++stacki] = 0;
2213 break;
2214 case OP_ADDR:
2215 /* push address (relocated address) */
2216 stack[++stacki] = target_to_host (loc, loc_value_size,
2217 GET_UNSIGNED, current_objfile);
2218 loc += loc_value_size;
2219 break;
2220 case OP_CONST:
2221 /* push constant (number) FIXME: signed or unsigned! */
2222 stack[++stacki] = target_to_host (loc, loc_value_size,
2223 GET_SIGNED, current_objfile);
2224 loc += loc_value_size;
2225 break;
2226 case OP_DEREF2:
2227 /* pop, deref and push 2 bytes (as a long) */
2228 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2229 break;
2230 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2231 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2232 break;
2233 case OP_ADD: /* pop top 2 items, add, push result */
2234 stack[stacki - 1] += stack[stacki];
2235 stacki--;
2236 break;
2237 }
2238 }
2239 return (stack[stacki]);
2240 }
2241
2242 /*
2243
2244 LOCAL FUNCTION
2245
2246 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2247
2248 SYNOPSIS
2249
2250 static void read_ofile_symtab (struct partial_symtab *pst)
2251
2252 DESCRIPTION
2253
2254 When expanding a partial symbol table entry to a full symbol table
2255 entry, this is the function that gets called to read in the symbols
2256 for the compilation unit. A pointer to the newly constructed symtab,
2257 which is now the new first one on the objfile's symtab list, is
2258 stashed in the partial symbol table entry.
2259 */
2260
2261 static void
2262 read_ofile_symtab (pst)
2263 struct partial_symtab *pst;
2264 {
2265 struct cleanup *back_to;
2266 unsigned long lnsize;
2267 file_ptr foffset;
2268 bfd *abfd;
2269 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2270
2271 abfd = pst -> objfile -> obfd;
2272 current_objfile = pst -> objfile;
2273
2274 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2275 unit, seek to the location in the file, and read in all the DIE's. */
2276
2277 diecount = 0;
2278 dbsize = DBLENGTH (pst);
2279 dbbase = xmalloc (dbsize);
2280 dbroff = DBROFF(pst);
2281 foffset = DBFOFF(pst) + dbroff;
2282 base_section_offsets = pst->section_offsets;
2283 baseaddr = ANOFFSET (pst->section_offsets, 0);
2284 if (bfd_seek (abfd, foffset, L_SET) ||
2285 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2286 {
2287 free (dbbase);
2288 error ("can't read DWARF data");
2289 }
2290 back_to = make_cleanup (free, dbbase);
2291
2292 /* If there is a line number table associated with this compilation unit
2293 then read the size of this fragment in bytes, from the fragment itself.
2294 Allocate a buffer for the fragment and read it in for future
2295 processing. */
2296
2297 lnbase = NULL;
2298 if (LNFOFF (pst))
2299 {
2300 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2301 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2302 sizeof (lnsizedata)))
2303 {
2304 error ("can't read DWARF line number table size");
2305 }
2306 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2307 GET_UNSIGNED, pst -> objfile);
2308 lnbase = xmalloc (lnsize);
2309 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2310 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2311 {
2312 free (lnbase);
2313 error ("can't read DWARF line numbers");
2314 }
2315 make_cleanup (free, lnbase);
2316 }
2317
2318 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2319 do_cleanups (back_to);
2320 current_objfile = NULL;
2321 pst -> symtab = pst -> objfile -> symtabs;
2322 }
2323
2324 /*
2325
2326 LOCAL FUNCTION
2327
2328 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2329
2330 SYNOPSIS
2331
2332 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2333
2334 DESCRIPTION
2335
2336 Called once for each partial symbol table entry that needs to be
2337 expanded into a full symbol table entry.
2338
2339 */
2340
2341 static void
2342 psymtab_to_symtab_1 (pst)
2343 struct partial_symtab *pst;
2344 {
2345 int i;
2346 struct cleanup *old_chain;
2347
2348 if (pst != NULL)
2349 {
2350 if (pst->readin)
2351 {
2352 warning ("psymtab for %s already read in. Shouldn't happen.",
2353 pst -> filename);
2354 }
2355 else
2356 {
2357 /* Read in all partial symtabs on which this one is dependent */
2358 for (i = 0; i < pst -> number_of_dependencies; i++)
2359 {
2360 if (!pst -> dependencies[i] -> readin)
2361 {
2362 /* Inform about additional files that need to be read in. */
2363 if (info_verbose)
2364 {
2365 fputs_filtered (" ", stdout);
2366 wrap_here ("");
2367 fputs_filtered ("and ", stdout);
2368 wrap_here ("");
2369 printf_filtered ("%s...",
2370 pst -> dependencies[i] -> filename);
2371 wrap_here ("");
2372 fflush (stdout); /* Flush output */
2373 }
2374 psymtab_to_symtab_1 (pst -> dependencies[i]);
2375 }
2376 }
2377 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2378 {
2379 buildsym_init ();
2380 old_chain = make_cleanup (really_free_pendings, 0);
2381 read_ofile_symtab (pst);
2382 if (info_verbose)
2383 {
2384 printf_filtered ("%d DIE's, sorting...", diecount);
2385 wrap_here ("");
2386 fflush (stdout);
2387 }
2388 sort_symtab_syms (pst -> symtab);
2389 do_cleanups (old_chain);
2390 }
2391 pst -> readin = 1;
2392 }
2393 }
2394 }
2395
2396 /*
2397
2398 LOCAL FUNCTION
2399
2400 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2401
2402 SYNOPSIS
2403
2404 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2405
2406 DESCRIPTION
2407
2408 This is the DWARF support entry point for building a full symbol
2409 table entry from a partial symbol table entry. We are passed a
2410 pointer to the partial symbol table entry that needs to be expanded.
2411
2412 */
2413
2414 static void
2415 dwarf_psymtab_to_symtab (pst)
2416 struct partial_symtab *pst;
2417 {
2418
2419 if (pst != NULL)
2420 {
2421 if (pst -> readin)
2422 {
2423 warning ("psymtab for %s already read in. Shouldn't happen.",
2424 pst -> filename);
2425 }
2426 else
2427 {
2428 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2429 {
2430 /* Print the message now, before starting serious work, to avoid
2431 disconcerting pauses. */
2432 if (info_verbose)
2433 {
2434 printf_filtered ("Reading in symbols for %s...",
2435 pst -> filename);
2436 fflush (stdout);
2437 }
2438
2439 psymtab_to_symtab_1 (pst);
2440
2441 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2442 we need to do an equivalent or is this something peculiar to
2443 stabs/a.out format.
2444 Match with global symbols. This only needs to be done once,
2445 after all of the symtabs and dependencies have been read in.
2446 */
2447 scan_file_globals (pst -> objfile);
2448 #endif
2449
2450 /* Finish up the verbose info message. */
2451 if (info_verbose)
2452 {
2453 printf_filtered ("done.\n");
2454 fflush (stdout);
2455 }
2456 }
2457 }
2458 }
2459 }
2460
2461 /*
2462
2463 LOCAL FUNCTION
2464
2465 init_psymbol_list -- initialize storage for partial symbols
2466
2467 SYNOPSIS
2468
2469 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2470
2471 DESCRIPTION
2472
2473 Initializes storage for all of the partial symbols that will be
2474 created by dwarf_build_psymtabs and subsidiaries.
2475 */
2476
2477 static void
2478 init_psymbol_list (objfile, total_symbols)
2479 struct objfile *objfile;
2480 int total_symbols;
2481 {
2482 /* Free any previously allocated psymbol lists. */
2483
2484 if (objfile -> global_psymbols.list)
2485 {
2486 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2487 }
2488 if (objfile -> static_psymbols.list)
2489 {
2490 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2491 }
2492
2493 /* Current best guess is that there are approximately a twentieth
2494 of the total symbols (in a debugging file) are global or static
2495 oriented symbols */
2496
2497 objfile -> global_psymbols.size = total_symbols / 10;
2498 objfile -> static_psymbols.size = total_symbols / 10;
2499 objfile -> global_psymbols.next =
2500 objfile -> global_psymbols.list = (struct partial_symbol *)
2501 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2502 * sizeof (struct partial_symbol));
2503 objfile -> static_psymbols.next =
2504 objfile -> static_psymbols.list = (struct partial_symbol *)
2505 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2506 * sizeof (struct partial_symbol));
2507 }
2508
2509 /*
2510
2511 LOCAL FUNCTION
2512
2513 add_enum_psymbol -- add enumeration members to partial symbol table
2514
2515 DESCRIPTION
2516
2517 Given pointer to a DIE that is known to be for an enumeration,
2518 extract the symbolic names of the enumeration members and add
2519 partial symbols for them.
2520 */
2521
2522 static void
2523 add_enum_psymbol (dip, objfile)
2524 struct dieinfo *dip;
2525 struct objfile *objfile;
2526 {
2527 char *scan;
2528 char *listend;
2529 unsigned short blocksz;
2530 int nbytes;
2531
2532 if ((scan = dip -> at_element_list) != NULL)
2533 {
2534 if (dip -> short_element_list)
2535 {
2536 nbytes = attribute_size (AT_short_element_list);
2537 }
2538 else
2539 {
2540 nbytes = attribute_size (AT_element_list);
2541 }
2542 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2543 scan += nbytes;
2544 listend = scan + blocksz;
2545 while (scan < listend)
2546 {
2547 scan += TARGET_FT_LONG_SIZE (objfile);
2548 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2549 objfile -> static_psymbols, 0, cu_language,
2550 objfile);
2551 scan += strlen (scan) + 1;
2552 }
2553 }
2554 }
2555
2556 /*
2557
2558 LOCAL FUNCTION
2559
2560 add_partial_symbol -- add symbol to partial symbol table
2561
2562 DESCRIPTION
2563
2564 Given a DIE, if it is one of the types that we want to
2565 add to a partial symbol table, finish filling in the die info
2566 and then add a partial symbol table entry for it.
2567
2568 NOTES
2569
2570 The caller must ensure that the DIE has a valid name attribute.
2571 */
2572
2573 static void
2574 add_partial_symbol (dip, objfile)
2575 struct dieinfo *dip;
2576 struct objfile *objfile;
2577 {
2578 switch (dip -> die_tag)
2579 {
2580 case TAG_global_subroutine:
2581 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2582 VAR_NAMESPACE, LOC_BLOCK,
2583 objfile -> global_psymbols,
2584 dip -> at_low_pc, cu_language, objfile);
2585 break;
2586 case TAG_global_variable:
2587 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2588 VAR_NAMESPACE, LOC_STATIC,
2589 objfile -> global_psymbols,
2590 0, cu_language, objfile);
2591 break;
2592 case TAG_subroutine:
2593 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2594 VAR_NAMESPACE, LOC_BLOCK,
2595 objfile -> static_psymbols,
2596 dip -> at_low_pc, cu_language, objfile);
2597 break;
2598 case TAG_local_variable:
2599 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2600 VAR_NAMESPACE, LOC_STATIC,
2601 objfile -> static_psymbols,
2602 0, cu_language, objfile);
2603 break;
2604 case TAG_typedef:
2605 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2606 VAR_NAMESPACE, LOC_TYPEDEF,
2607 objfile -> static_psymbols,
2608 0, cu_language, objfile);
2609 break;
2610 case TAG_class_type:
2611 case TAG_structure_type:
2612 case TAG_union_type:
2613 case TAG_enumeration_type:
2614 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2615 STRUCT_NAMESPACE, LOC_TYPEDEF,
2616 objfile -> static_psymbols,
2617 0, cu_language, objfile);
2618 if (cu_language == language_cplus)
2619 {
2620 /* For C++, these implicitly act as typedefs as well. */
2621 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2622 VAR_NAMESPACE, LOC_TYPEDEF,
2623 objfile -> static_psymbols,
2624 0, cu_language, objfile);
2625 }
2626 break;
2627 }
2628 }
2629
2630 /*
2631
2632 LOCAL FUNCTION
2633
2634 scan_partial_symbols -- scan DIE's within a single compilation unit
2635
2636 DESCRIPTION
2637
2638 Process the DIE's within a single compilation unit, looking for
2639 interesting DIE's that contribute to the partial symbol table entry
2640 for this compilation unit.
2641
2642 NOTES
2643
2644 There are some DIE's that may appear both at file scope and within
2645 the scope of a function. We are only interested in the ones at file
2646 scope, and the only way to tell them apart is to keep track of the
2647 scope. For example, consider the test case:
2648
2649 static int i;
2650 main () { int j; }
2651
2652 for which the relevant DWARF segment has the structure:
2653
2654 0x51:
2655 0x23 global subrtn sibling 0x9b
2656 name main
2657 fund_type FT_integer
2658 low_pc 0x800004cc
2659 high_pc 0x800004d4
2660
2661 0x74:
2662 0x23 local var sibling 0x97
2663 name j
2664 fund_type FT_integer
2665 location OP_BASEREG 0xe
2666 OP_CONST 0xfffffffc
2667 OP_ADD
2668 0x97:
2669 0x4
2670
2671 0x9b:
2672 0x1d local var sibling 0xb8
2673 name i
2674 fund_type FT_integer
2675 location OP_ADDR 0x800025dc
2676
2677 0xb8:
2678 0x4
2679
2680 We want to include the symbol 'i' in the partial symbol table, but
2681 not the symbol 'j'. In essence, we want to skip all the dies within
2682 the scope of a TAG_global_subroutine DIE.
2683
2684 Don't attempt to add anonymous structures or unions since they have
2685 no name. Anonymous enumerations however are processed, because we
2686 want to extract their member names (the check for a tag name is
2687 done later).
2688
2689 Also, for variables and subroutines, check that this is the place
2690 where the actual definition occurs, rather than just a reference
2691 to an external.
2692 */
2693
2694 static void
2695 scan_partial_symbols (thisdie, enddie, objfile)
2696 char *thisdie;
2697 char *enddie;
2698 struct objfile *objfile;
2699 {
2700 char *nextdie;
2701 char *temp;
2702 struct dieinfo di;
2703
2704 while (thisdie < enddie)
2705 {
2706 basicdieinfo (&di, thisdie, objfile);
2707 if (di.die_length < SIZEOF_DIE_LENGTH)
2708 {
2709 break;
2710 }
2711 else
2712 {
2713 nextdie = thisdie + di.die_length;
2714 /* To avoid getting complete die information for every die, we
2715 only do it (below) for the cases we are interested in. */
2716 switch (di.die_tag)
2717 {
2718 case TAG_global_subroutine:
2719 case TAG_subroutine:
2720 completedieinfo (&di, objfile);
2721 if (di.at_name && (di.has_at_low_pc || di.at_location))
2722 {
2723 add_partial_symbol (&di, objfile);
2724 /* If there is a sibling attribute, adjust the nextdie
2725 pointer to skip the entire scope of the subroutine.
2726 Apply some sanity checking to make sure we don't
2727 overrun or underrun the range of remaining DIE's */
2728 if (di.at_sibling != 0)
2729 {
2730 temp = dbbase + di.at_sibling - dbroff;
2731 if ((temp < thisdie) || (temp >= enddie))
2732 {
2733 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2734 di.at_sibling);
2735 }
2736 else
2737 {
2738 nextdie = temp;
2739 }
2740 }
2741 }
2742 break;
2743 case TAG_global_variable:
2744 case TAG_local_variable:
2745 completedieinfo (&di, objfile);
2746 if (di.at_name && (di.has_at_low_pc || di.at_location))
2747 {
2748 add_partial_symbol (&di, objfile);
2749 }
2750 break;
2751 case TAG_typedef:
2752 case TAG_class_type:
2753 case TAG_structure_type:
2754 case TAG_union_type:
2755 completedieinfo (&di, objfile);
2756 if (di.at_name)
2757 {
2758 add_partial_symbol (&di, objfile);
2759 }
2760 break;
2761 case TAG_enumeration_type:
2762 completedieinfo (&di, objfile);
2763 if (di.at_name)
2764 {
2765 add_partial_symbol (&di, objfile);
2766 }
2767 add_enum_psymbol (&di, objfile);
2768 break;
2769 }
2770 }
2771 thisdie = nextdie;
2772 }
2773 }
2774
2775 /*
2776
2777 LOCAL FUNCTION
2778
2779 scan_compilation_units -- build a psymtab entry for each compilation
2780
2781 DESCRIPTION
2782
2783 This is the top level dwarf parsing routine for building partial
2784 symbol tables.
2785
2786 It scans from the beginning of the DWARF table looking for the first
2787 TAG_compile_unit DIE, and then follows the sibling chain to locate
2788 each additional TAG_compile_unit DIE.
2789
2790 For each TAG_compile_unit DIE it creates a partial symtab structure,
2791 calls a subordinate routine to collect all the compilation unit's
2792 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2793 new partial symtab structure into the partial symbol table. It also
2794 records the appropriate information in the partial symbol table entry
2795 to allow the chunk of DIE's and line number table for this compilation
2796 unit to be located and re-read later, to generate a complete symbol
2797 table entry for the compilation unit.
2798
2799 Thus it effectively partitions up a chunk of DIE's for multiple
2800 compilation units into smaller DIE chunks and line number tables,
2801 and associates them with a partial symbol table entry.
2802
2803 NOTES
2804
2805 If any compilation unit has no line number table associated with
2806 it for some reason (a missing at_stmt_list attribute, rather than
2807 just one with a value of zero, which is valid) then we ensure that
2808 the recorded file offset is zero so that the routine which later
2809 reads line number table fragments knows that there is no fragment
2810 to read.
2811
2812 RETURNS
2813
2814 Returns no value.
2815
2816 */
2817
2818 static void
2819 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2820 char *thisdie;
2821 char *enddie;
2822 file_ptr dbfoff;
2823 file_ptr lnoffset;
2824 struct objfile *objfile;
2825 {
2826 char *nextdie;
2827 struct dieinfo di;
2828 struct partial_symtab *pst;
2829 int culength;
2830 int curoff;
2831 file_ptr curlnoffset;
2832
2833 while (thisdie < enddie)
2834 {
2835 basicdieinfo (&di, thisdie, objfile);
2836 if (di.die_length < SIZEOF_DIE_LENGTH)
2837 {
2838 break;
2839 }
2840 else if (di.die_tag != TAG_compile_unit)
2841 {
2842 nextdie = thisdie + di.die_length;
2843 }
2844 else
2845 {
2846 completedieinfo (&di, objfile);
2847 set_cu_language (&di);
2848 if (di.at_sibling != 0)
2849 {
2850 nextdie = dbbase + di.at_sibling - dbroff;
2851 }
2852 else
2853 {
2854 nextdie = thisdie + di.die_length;
2855 }
2856 curoff = thisdie - dbbase;
2857 culength = nextdie - thisdie;
2858 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2859
2860 /* First allocate a new partial symbol table structure */
2861
2862 pst = start_psymtab_common (objfile, base_section_offsets,
2863 di.at_name, di.at_low_pc,
2864 objfile -> global_psymbols.next,
2865 objfile -> static_psymbols.next);
2866
2867 pst -> texthigh = di.at_high_pc;
2868 pst -> read_symtab_private = (char *)
2869 obstack_alloc (&objfile -> psymbol_obstack,
2870 sizeof (struct dwfinfo));
2871 DBFOFF (pst) = dbfoff;
2872 DBROFF (pst) = curoff;
2873 DBLENGTH (pst) = culength;
2874 LNFOFF (pst) = curlnoffset;
2875 pst -> read_symtab = dwarf_psymtab_to_symtab;
2876
2877 /* Now look for partial symbols */
2878
2879 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2880
2881 pst -> n_global_syms = objfile -> global_psymbols.next -
2882 (objfile -> global_psymbols.list + pst -> globals_offset);
2883 pst -> n_static_syms = objfile -> static_psymbols.next -
2884 (objfile -> static_psymbols.list + pst -> statics_offset);
2885 sort_pst_symbols (pst);
2886 /* If there is already a psymtab or symtab for a file of this name,
2887 remove it. (If there is a symtab, more drastic things also
2888 happen.) This happens in VxWorks. */
2889 free_named_symtabs (pst -> filename);
2890 }
2891 thisdie = nextdie;
2892 }
2893 }
2894
2895 /*
2896
2897 LOCAL FUNCTION
2898
2899 new_symbol -- make a symbol table entry for a new symbol
2900
2901 SYNOPSIS
2902
2903 static struct symbol *new_symbol (struct dieinfo *dip,
2904 struct objfile *objfile)
2905
2906 DESCRIPTION
2907
2908 Given a pointer to a DWARF information entry, figure out if we need
2909 to make a symbol table entry for it, and if so, create a new entry
2910 and return a pointer to it.
2911 */
2912
2913 static struct symbol *
2914 new_symbol (dip, objfile)
2915 struct dieinfo *dip;
2916 struct objfile *objfile;
2917 {
2918 struct symbol *sym = NULL;
2919
2920 if (dip -> at_name != NULL)
2921 {
2922 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2923 sizeof (struct symbol));
2924 memset (sym, 0, sizeof (struct symbol));
2925 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2926 &objfile->symbol_obstack);
2927 /* default assumptions */
2928 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2929 SYMBOL_CLASS (sym) = LOC_STATIC;
2930 SYMBOL_TYPE (sym) = decode_die_type (dip);
2931
2932 /* If this symbol is from a C++ compilation, then attempt to cache the
2933 demangled form for future reference. This is a typical time versus
2934 space tradeoff, that was decided in favor of time because it sped up
2935 C++ symbol lookups by a factor of about 20. */
2936
2937 SYMBOL_LANGUAGE (sym) = cu_language;
2938 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2939 switch (dip -> die_tag)
2940 {
2941 case TAG_label:
2942 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2943 SYMBOL_CLASS (sym) = LOC_LABEL;
2944 break;
2945 case TAG_global_subroutine:
2946 case TAG_subroutine:
2947 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2948 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2949 SYMBOL_CLASS (sym) = LOC_BLOCK;
2950 if (dip -> die_tag == TAG_global_subroutine)
2951 {
2952 add_symbol_to_list (sym, &global_symbols);
2953 }
2954 else
2955 {
2956 add_symbol_to_list (sym, list_in_scope);
2957 }
2958 break;
2959 case TAG_global_variable:
2960 if (dip -> at_location != NULL)
2961 {
2962 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2963 add_symbol_to_list (sym, &global_symbols);
2964 SYMBOL_CLASS (sym) = LOC_STATIC;
2965 SYMBOL_VALUE (sym) += baseaddr;
2966 }
2967 break;
2968 case TAG_local_variable:
2969 if (dip -> at_location != NULL)
2970 {
2971 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2972 add_symbol_to_list (sym, list_in_scope);
2973 if (isreg)
2974 {
2975 SYMBOL_CLASS (sym) = LOC_REGISTER;
2976 }
2977 else if (offreg)
2978 {
2979 SYMBOL_CLASS (sym) = LOC_BASEREG;
2980 SYMBOL_BASEREG (sym) = basereg;
2981 }
2982 else
2983 {
2984 SYMBOL_CLASS (sym) = LOC_STATIC;
2985 SYMBOL_VALUE (sym) += baseaddr;
2986 }
2987 }
2988 break;
2989 case TAG_formal_parameter:
2990 if (dip -> at_location != NULL)
2991 {
2992 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2993 }
2994 add_symbol_to_list (sym, list_in_scope);
2995 if (isreg)
2996 {
2997 SYMBOL_CLASS (sym) = LOC_REGPARM;
2998 }
2999 else if (offreg)
3000 {
3001 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3002 SYMBOL_BASEREG (sym) = basereg;
3003 }
3004 else
3005 {
3006 SYMBOL_CLASS (sym) = LOC_ARG;
3007 }
3008 break;
3009 case TAG_unspecified_parameters:
3010 /* From varargs functions; gdb doesn't seem to have any interest in
3011 this information, so just ignore it for now. (FIXME?) */
3012 break;
3013 case TAG_class_type:
3014 case TAG_structure_type:
3015 case TAG_union_type:
3016 case TAG_enumeration_type:
3017 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3018 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3019 add_symbol_to_list (sym, list_in_scope);
3020 break;
3021 case TAG_typedef:
3022 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3023 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3024 add_symbol_to_list (sym, list_in_scope);
3025 break;
3026 default:
3027 /* Not a tag we recognize. Hopefully we aren't processing trash
3028 data, but since we must specifically ignore things we don't
3029 recognize, there is nothing else we should do at this point. */
3030 break;
3031 }
3032 }
3033 return (sym);
3034 }
3035
3036 /*
3037
3038 LOCAL FUNCTION
3039
3040 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3041
3042 SYNOPSIS
3043
3044 static void synthesize_typedef (struct dieinfo *dip,
3045 struct objfile *objfile,
3046 struct type *type);
3047
3048 DESCRIPTION
3049
3050 Given a pointer to a DWARF information entry, synthesize a typedef
3051 for the name in the DIE, using the specified type.
3052
3053 This is used for C++ class, structs, unions, and enumerations to
3054 set up the tag name as a type.
3055
3056 */
3057
3058 static void
3059 synthesize_typedef (dip, objfile, type)
3060 struct dieinfo *dip;
3061 struct objfile *objfile;
3062 struct type *type;
3063 {
3064 struct symbol *sym = NULL;
3065
3066 if (dip -> at_name != NULL)
3067 {
3068 sym = (struct symbol *)
3069 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3070 memset (sym, 0, sizeof (struct symbol));
3071 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3072 &objfile->symbol_obstack);
3073 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3074 SYMBOL_TYPE (sym) = type;
3075 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3076 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3077 add_symbol_to_list (sym, list_in_scope);
3078 }
3079 }
3080
3081 /*
3082
3083 LOCAL FUNCTION
3084
3085 decode_mod_fund_type -- decode a modified fundamental type
3086
3087 SYNOPSIS
3088
3089 static struct type *decode_mod_fund_type (char *typedata)
3090
3091 DESCRIPTION
3092
3093 Decode a block of data containing a modified fundamental
3094 type specification. TYPEDATA is a pointer to the block,
3095 which starts with a length containing the size of the rest
3096 of the block. At the end of the block is a fundmental type
3097 code value that gives the fundamental type. Everything
3098 in between are type modifiers.
3099
3100 We simply compute the number of modifiers and call the general
3101 function decode_modified_type to do the actual work.
3102 */
3103
3104 static struct type *
3105 decode_mod_fund_type (typedata)
3106 char *typedata;
3107 {
3108 struct type *typep = NULL;
3109 unsigned short modcount;
3110 int nbytes;
3111
3112 /* Get the total size of the block, exclusive of the size itself */
3113
3114 nbytes = attribute_size (AT_mod_fund_type);
3115 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3116 typedata += nbytes;
3117
3118 /* Deduct the size of the fundamental type bytes at the end of the block. */
3119
3120 modcount -= attribute_size (AT_fund_type);
3121
3122 /* Now do the actual decoding */
3123
3124 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3125 return (typep);
3126 }
3127
3128 /*
3129
3130 LOCAL FUNCTION
3131
3132 decode_mod_u_d_type -- decode a modified user defined type
3133
3134 SYNOPSIS
3135
3136 static struct type *decode_mod_u_d_type (char *typedata)
3137
3138 DESCRIPTION
3139
3140 Decode a block of data containing a modified user defined
3141 type specification. TYPEDATA is a pointer to the block,
3142 which consists of a two byte length, containing the size
3143 of the rest of the block. At the end of the block is a
3144 four byte value that gives a reference to a user defined type.
3145 Everything in between are type modifiers.
3146
3147 We simply compute the number of modifiers and call the general
3148 function decode_modified_type to do the actual work.
3149 */
3150
3151 static struct type *
3152 decode_mod_u_d_type (typedata)
3153 char *typedata;
3154 {
3155 struct type *typep = NULL;
3156 unsigned short modcount;
3157 int nbytes;
3158
3159 /* Get the total size of the block, exclusive of the size itself */
3160
3161 nbytes = attribute_size (AT_mod_u_d_type);
3162 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3163 typedata += nbytes;
3164
3165 /* Deduct the size of the reference type bytes at the end of the block. */
3166
3167 modcount -= attribute_size (AT_user_def_type);
3168
3169 /* Now do the actual decoding */
3170
3171 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3172 return (typep);
3173 }
3174
3175 /*
3176
3177 LOCAL FUNCTION
3178
3179 decode_modified_type -- decode modified user or fundamental type
3180
3181 SYNOPSIS
3182
3183 static struct type *decode_modified_type (char *modifiers,
3184 unsigned short modcount, int mtype)
3185
3186 DESCRIPTION
3187
3188 Decode a modified type, either a modified fundamental type or
3189 a modified user defined type. MODIFIERS is a pointer to the
3190 block of bytes that define MODCOUNT modifiers. Immediately
3191 following the last modifier is a short containing the fundamental
3192 type or a long containing the reference to the user defined
3193 type. Which one is determined by MTYPE, which is either
3194 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3195 type we are generating.
3196
3197 We call ourself recursively to generate each modified type,`
3198 until MODCOUNT reaches zero, at which point we have consumed
3199 all the modifiers and generate either the fundamental type or
3200 user defined type. When the recursion unwinds, each modifier
3201 is applied in turn to generate the full modified type.
3202
3203 NOTES
3204
3205 If we find a modifier that we don't recognize, and it is not one
3206 of those reserved for application specific use, then we issue a
3207 warning and simply ignore the modifier.
3208
3209 BUGS
3210
3211 We currently ignore MOD_const and MOD_volatile. (FIXME)
3212
3213 */
3214
3215 static struct type *
3216 decode_modified_type (modifiers, modcount, mtype)
3217 char *modifiers;
3218 unsigned int modcount;
3219 int mtype;
3220 {
3221 struct type *typep = NULL;
3222 unsigned short fundtype;
3223 DIE_REF die_ref;
3224 char modifier;
3225 int nbytes;
3226
3227 if (modcount == 0)
3228 {
3229 switch (mtype)
3230 {
3231 case AT_mod_fund_type:
3232 nbytes = attribute_size (AT_fund_type);
3233 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3234 current_objfile);
3235 typep = decode_fund_type (fundtype);
3236 break;
3237 case AT_mod_u_d_type:
3238 nbytes = attribute_size (AT_user_def_type);
3239 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3240 current_objfile);
3241 if ((typep = lookup_utype (die_ref)) == NULL)
3242 {
3243 typep = alloc_utype (die_ref, NULL);
3244 }
3245 break;
3246 default:
3247 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3248 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3249 break;
3250 }
3251 }
3252 else
3253 {
3254 modifier = *modifiers++;
3255 typep = decode_modified_type (modifiers, --modcount, mtype);
3256 switch (modifier)
3257 {
3258 case MOD_pointer_to:
3259 typep = lookup_pointer_type (typep);
3260 break;
3261 case MOD_reference_to:
3262 typep = lookup_reference_type (typep);
3263 break;
3264 case MOD_const:
3265 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3266 break;
3267 case MOD_volatile:
3268 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3269 break;
3270 default:
3271 if (!(MOD_lo_user <= (unsigned char) modifier
3272 && (unsigned char) modifier <= MOD_hi_user))
3273 {
3274 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3275 }
3276 break;
3277 }
3278 }
3279 return (typep);
3280 }
3281
3282 /*
3283
3284 LOCAL FUNCTION
3285
3286 decode_fund_type -- translate basic DWARF type to gdb base type
3287
3288 DESCRIPTION
3289
3290 Given an integer that is one of the fundamental DWARF types,
3291 translate it to one of the basic internal gdb types and return
3292 a pointer to the appropriate gdb type (a "struct type *").
3293
3294 NOTES
3295
3296 For robustness, if we are asked to translate a fundamental
3297 type that we are unprepared to deal with, we return int so
3298 callers can always depend upon a valid type being returned,
3299 and so gdb may at least do something reasonable by default.
3300 If the type is not in the range of those types defined as
3301 application specific types, we also issue a warning.
3302 */
3303
3304 static struct type *
3305 decode_fund_type (fundtype)
3306 unsigned int fundtype;
3307 {
3308 struct type *typep = NULL;
3309
3310 switch (fundtype)
3311 {
3312
3313 case FT_void:
3314 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3315 break;
3316
3317 case FT_boolean: /* Was FT_set in AT&T version */
3318 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3319 break;
3320
3321 case FT_pointer: /* (void *) */
3322 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3323 typep = lookup_pointer_type (typep);
3324 break;
3325
3326 case FT_char:
3327 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3328 break;
3329
3330 case FT_signed_char:
3331 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3332 break;
3333
3334 case FT_unsigned_char:
3335 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3336 break;
3337
3338 case FT_short:
3339 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3340 break;
3341
3342 case FT_signed_short:
3343 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3344 break;
3345
3346 case FT_unsigned_short:
3347 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3348 break;
3349
3350 case FT_integer:
3351 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3352 break;
3353
3354 case FT_signed_integer:
3355 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3356 break;
3357
3358 case FT_unsigned_integer:
3359 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3360 break;
3361
3362 case FT_long:
3363 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3364 break;
3365
3366 case FT_signed_long:
3367 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3368 break;
3369
3370 case FT_unsigned_long:
3371 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3372 break;
3373
3374 case FT_long_long:
3375 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3376 break;
3377
3378 case FT_signed_long_long:
3379 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3380 break;
3381
3382 case FT_unsigned_long_long:
3383 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3384 break;
3385
3386 case FT_float:
3387 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3388 break;
3389
3390 case FT_dbl_prec_float:
3391 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3392 break;
3393
3394 case FT_ext_prec_float:
3395 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3396 break;
3397
3398 case FT_complex:
3399 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3400 break;
3401
3402 case FT_dbl_prec_complex:
3403 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3404 break;
3405
3406 case FT_ext_prec_complex:
3407 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3408 break;
3409
3410 }
3411
3412 if (typep == NULL)
3413 {
3414 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3415 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3416 {
3417 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3418 }
3419 }
3420
3421 return (typep);
3422 }
3423
3424 /*
3425
3426 LOCAL FUNCTION
3427
3428 create_name -- allocate a fresh copy of a string on an obstack
3429
3430 DESCRIPTION
3431
3432 Given a pointer to a string and a pointer to an obstack, allocates
3433 a fresh copy of the string on the specified obstack.
3434
3435 */
3436
3437 static char *
3438 create_name (name, obstackp)
3439 char *name;
3440 struct obstack *obstackp;
3441 {
3442 int length;
3443 char *newname;
3444
3445 length = strlen (name) + 1;
3446 newname = (char *) obstack_alloc (obstackp, length);
3447 strcpy (newname, name);
3448 return (newname);
3449 }
3450
3451 /*
3452
3453 LOCAL FUNCTION
3454
3455 basicdieinfo -- extract the minimal die info from raw die data
3456
3457 SYNOPSIS
3458
3459 void basicdieinfo (char *diep, struct dieinfo *dip,
3460 struct objfile *objfile)
3461
3462 DESCRIPTION
3463
3464 Given a pointer to raw DIE data, and a pointer to an instance of a
3465 die info structure, this function extracts the basic information
3466 from the DIE data required to continue processing this DIE, along
3467 with some bookkeeping information about the DIE.
3468
3469 The information we absolutely must have includes the DIE tag,
3470 and the DIE length. If we need the sibling reference, then we
3471 will have to call completedieinfo() to process all the remaining
3472 DIE information.
3473
3474 Note that since there is no guarantee that the data is properly
3475 aligned in memory for the type of access required (indirection
3476 through anything other than a char pointer), and there is no
3477 guarantee that it is in the same byte order as the gdb host,
3478 we call a function which deals with both alignment and byte
3479 swapping issues. Possibly inefficient, but quite portable.
3480
3481 We also take care of some other basic things at this point, such
3482 as ensuring that the instance of the die info structure starts
3483 out completely zero'd and that curdie is initialized for use
3484 in error reporting if we have a problem with the current die.
3485
3486 NOTES
3487
3488 All DIE's must have at least a valid length, thus the minimum
3489 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3490 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3491 are forced to be TAG_padding DIES.
3492
3493 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3494 that if a padding DIE is used for alignment and the amount needed is
3495 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3496 enough to align to the next alignment boundry.
3497
3498 We do some basic sanity checking here, such as verifying that the
3499 length of the die would not cause it to overrun the recorded end of
3500 the buffer holding the DIE info. If we find a DIE that is either
3501 too small or too large, we force it's length to zero which should
3502 cause the caller to take appropriate action.
3503 */
3504
3505 static void
3506 basicdieinfo (dip, diep, objfile)
3507 struct dieinfo *dip;
3508 char *diep;
3509 struct objfile *objfile;
3510 {
3511 curdie = dip;
3512 memset (dip, 0, sizeof (struct dieinfo));
3513 dip -> die = diep;
3514 dip -> die_ref = dbroff + (diep - dbbase);
3515 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3516 objfile);
3517 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3518 ((diep + dip -> die_length) > (dbbase + dbsize)))
3519 {
3520 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3521 dip -> die_length = 0;
3522 }
3523 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3524 {
3525 dip -> die_tag = TAG_padding;
3526 }
3527 else
3528 {
3529 diep += SIZEOF_DIE_LENGTH;
3530 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3531 objfile);
3532 }
3533 }
3534
3535 /*
3536
3537 LOCAL FUNCTION
3538
3539 completedieinfo -- finish reading the information for a given DIE
3540
3541 SYNOPSIS
3542
3543 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3544
3545 DESCRIPTION
3546
3547 Given a pointer to an already partially initialized die info structure,
3548 scan the raw DIE data and finish filling in the die info structure
3549 from the various attributes found.
3550
3551 Note that since there is no guarantee that the data is properly
3552 aligned in memory for the type of access required (indirection
3553 through anything other than a char pointer), and there is no
3554 guarantee that it is in the same byte order as the gdb host,
3555 we call a function which deals with both alignment and byte
3556 swapping issues. Possibly inefficient, but quite portable.
3557
3558 NOTES
3559
3560 Each time we are called, we increment the diecount variable, which
3561 keeps an approximate count of the number of dies processed for
3562 each compilation unit. This information is presented to the user
3563 if the info_verbose flag is set.
3564
3565 */
3566
3567 static void
3568 completedieinfo (dip, objfile)
3569 struct dieinfo *dip;
3570 struct objfile *objfile;
3571 {
3572 char *diep; /* Current pointer into raw DIE data */
3573 char *end; /* Terminate DIE scan here */
3574 unsigned short attr; /* Current attribute being scanned */
3575 unsigned short form; /* Form of the attribute */
3576 int nbytes; /* Size of next field to read */
3577
3578 diecount++;
3579 diep = dip -> die;
3580 end = diep + dip -> die_length;
3581 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3582 while (diep < end)
3583 {
3584 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3585 diep += SIZEOF_ATTRIBUTE;
3586 if ((nbytes = attribute_size (attr)) == -1)
3587 {
3588 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3589 diep = end;
3590 continue;
3591 }
3592 switch (attr)
3593 {
3594 case AT_fund_type:
3595 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3596 objfile);
3597 break;
3598 case AT_ordering:
3599 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3600 objfile);
3601 break;
3602 case AT_bit_offset:
3603 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3604 objfile);
3605 break;
3606 case AT_sibling:
3607 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3608 objfile);
3609 break;
3610 case AT_stmt_list:
3611 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3612 objfile);
3613 dip -> has_at_stmt_list = 1;
3614 break;
3615 case AT_low_pc:
3616 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3617 objfile);
3618 dip -> at_low_pc += baseaddr;
3619 dip -> has_at_low_pc = 1;
3620 break;
3621 case AT_high_pc:
3622 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3623 objfile);
3624 dip -> at_high_pc += baseaddr;
3625 break;
3626 case AT_language:
3627 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3628 objfile);
3629 break;
3630 case AT_user_def_type:
3631 dip -> at_user_def_type = target_to_host (diep, nbytes,
3632 GET_UNSIGNED, objfile);
3633 break;
3634 case AT_byte_size:
3635 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3636 objfile);
3637 dip -> has_at_byte_size = 1;
3638 break;
3639 case AT_bit_size:
3640 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3641 objfile);
3642 break;
3643 case AT_member:
3644 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3645 objfile);
3646 break;
3647 case AT_discr:
3648 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3649 objfile);
3650 break;
3651 case AT_location:
3652 dip -> at_location = diep;
3653 break;
3654 case AT_mod_fund_type:
3655 dip -> at_mod_fund_type = diep;
3656 break;
3657 case AT_subscr_data:
3658 dip -> at_subscr_data = diep;
3659 break;
3660 case AT_mod_u_d_type:
3661 dip -> at_mod_u_d_type = diep;
3662 break;
3663 case AT_element_list:
3664 dip -> at_element_list = diep;
3665 dip -> short_element_list = 0;
3666 break;
3667 case AT_short_element_list:
3668 dip -> at_element_list = diep;
3669 dip -> short_element_list = 1;
3670 break;
3671 case AT_discr_value:
3672 dip -> at_discr_value = diep;
3673 break;
3674 case AT_string_length:
3675 dip -> at_string_length = diep;
3676 break;
3677 case AT_name:
3678 dip -> at_name = diep;
3679 break;
3680 case AT_comp_dir:
3681 /* For now, ignore any "hostname:" portion, since gdb doesn't
3682 know how to deal with it. (FIXME). */
3683 dip -> at_comp_dir = strrchr (diep, ':');
3684 if (dip -> at_comp_dir != NULL)
3685 {
3686 dip -> at_comp_dir++;
3687 }
3688 else
3689 {
3690 dip -> at_comp_dir = diep;
3691 }
3692 break;
3693 case AT_producer:
3694 dip -> at_producer = diep;
3695 break;
3696 case AT_start_scope:
3697 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3698 objfile);
3699 break;
3700 case AT_stride_size:
3701 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3702 objfile);
3703 break;
3704 case AT_src_info:
3705 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3706 objfile);
3707 break;
3708 case AT_prototyped:
3709 dip -> at_prototyped = diep;
3710 break;
3711 default:
3712 /* Found an attribute that we are unprepared to handle. However
3713 it is specifically one of the design goals of DWARF that
3714 consumers should ignore unknown attributes. As long as the
3715 form is one that we recognize (so we know how to skip it),
3716 we can just ignore the unknown attribute. */
3717 break;
3718 }
3719 form = FORM_FROM_ATTR (attr);
3720 switch (form)
3721 {
3722 case FORM_DATA2:
3723 diep += 2;
3724 break;
3725 case FORM_DATA4:
3726 case FORM_REF:
3727 diep += 4;
3728 break;
3729 case FORM_DATA8:
3730 diep += 8;
3731 break;
3732 case FORM_ADDR:
3733 diep += TARGET_FT_POINTER_SIZE (objfile);
3734 break;
3735 case FORM_BLOCK2:
3736 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3737 break;
3738 case FORM_BLOCK4:
3739 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3740 break;
3741 case FORM_STRING:
3742 diep += strlen (diep) + 1;
3743 break;
3744 default:
3745 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3746 diep = end;
3747 break;
3748 }
3749 }
3750 }
3751
3752 /*
3753
3754 LOCAL FUNCTION
3755
3756 target_to_host -- swap in target data to host
3757
3758 SYNOPSIS
3759
3760 target_to_host (char *from, int nbytes, int signextend,
3761 struct objfile *objfile)
3762
3763 DESCRIPTION
3764
3765 Given pointer to data in target format in FROM, a byte count for
3766 the size of the data in NBYTES, a flag indicating whether or not
3767 the data is signed in SIGNEXTEND, and a pointer to the current
3768 objfile in OBJFILE, convert the data to host format and return
3769 the converted value.
3770
3771 NOTES
3772
3773 FIXME: If we read data that is known to be signed, and expect to
3774 use it as signed data, then we need to explicitly sign extend the
3775 result until the bfd library is able to do this for us.
3776
3777 */
3778
3779 static unsigned long
3780 target_to_host (from, nbytes, signextend, objfile)
3781 char *from;
3782 int nbytes;
3783 int signextend; /* FIXME: Unused */
3784 struct objfile *objfile;
3785 {
3786 unsigned long rtnval;
3787
3788 switch (nbytes)
3789 {
3790 case 8:
3791 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3792 break;
3793 case 4:
3794 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3795 break;
3796 case 2:
3797 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3798 break;
3799 case 1:
3800 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3801 break;
3802 default:
3803 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3804 rtnval = 0;
3805 break;
3806 }
3807 return (rtnval);
3808 }
3809
3810 /*
3811
3812 LOCAL FUNCTION
3813
3814 attribute_size -- compute size of data for a DWARF attribute
3815
3816 SYNOPSIS
3817
3818 static int attribute_size (unsigned int attr)
3819
3820 DESCRIPTION
3821
3822 Given a DWARF attribute in ATTR, compute the size of the first
3823 piece of data associated with this attribute and return that
3824 size.
3825
3826 Returns -1 for unrecognized attributes.
3827
3828 */
3829
3830 static int
3831 attribute_size (attr)
3832 unsigned int attr;
3833 {
3834 int nbytes; /* Size of next data for this attribute */
3835 unsigned short form; /* Form of the attribute */
3836
3837 form = FORM_FROM_ATTR (attr);
3838 switch (form)
3839 {
3840 case FORM_STRING: /* A variable length field is next */
3841 nbytes = 0;
3842 break;
3843 case FORM_DATA2: /* Next 2 byte field is the data itself */
3844 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3845 nbytes = 2;
3846 break;
3847 case FORM_DATA4: /* Next 4 byte field is the data itself */
3848 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3849 case FORM_REF: /* Next 4 byte field is a DIE offset */
3850 nbytes = 4;
3851 break;
3852 case FORM_DATA8: /* Next 8 byte field is the data itself */
3853 nbytes = 8;
3854 break;
3855 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3856 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3857 break;
3858 default:
3859 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3860 nbytes = -1;
3861 break;
3862 }
3863 return (nbytes);
3864 }
This page took 0.106785 seconds and 4 git commands to generate.