Remove the pile of "Update copyright to ..." that I'd put in, and
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "symtab.h"
43 #include "gdbtypes.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "elf/dwarf.h"
47 #include "buildsym.h"
48 #include "demangle.h"
49 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
50 #include "language.h"
51 #include "complaints.h"
52
53 #include <fcntl.h>
54 #include "gdb_string.h"
55
56 #ifndef NO_SYS_FILE
57 #include <sys/file.h>
58 #endif
59
60 /* Some macros to provide DIE info for complaints. */
61
62 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
63 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
64
65 /* Complaints that can be issued during DWARF debug info reading. */
66
67 struct complaint no_bfd_get_N =
68 {
69 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
70 };
71
72 struct complaint malformed_die =
73 {
74 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
75 };
76
77 struct complaint bad_die_ref =
78 {
79 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
80 };
81
82 struct complaint unknown_attribute_form =
83 {
84 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
85 };
86
87 struct complaint unknown_attribute_length =
88 {
89 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
90 };
91
92 struct complaint unexpected_fund_type =
93 {
94 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
95 };
96
97 struct complaint unknown_type_modifier =
98 {
99 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
100 };
101
102 struct complaint volatile_ignored =
103 {
104 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
105 };
106
107 struct complaint const_ignored =
108 {
109 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
110 };
111
112 struct complaint botched_modified_type =
113 {
114 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
115 };
116
117 struct complaint op_deref2 =
118 {
119 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
120 };
121
122 struct complaint op_deref4 =
123 {
124 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
125 };
126
127 struct complaint basereg_not_handled =
128 {
129 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
130 };
131
132 struct complaint dup_user_type_allocation =
133 {
134 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
135 };
136
137 struct complaint dup_user_type_definition =
138 {
139 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
140 };
141
142 struct complaint missing_tag =
143 {
144 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
145 };
146
147 struct complaint bad_array_element_type =
148 {
149 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
150 };
151
152 struct complaint subscript_data_items =
153 {
154 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
155 };
156
157 struct complaint unhandled_array_subscript_format =
158 {
159 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
160 };
161
162 struct complaint unknown_array_subscript_format =
163 {
164 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
165 };
166
167 struct complaint not_row_major =
168 {
169 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
170 };
171
172 typedef unsigned int DIE_REF; /* Reference to a DIE */
173
174 #ifndef GCC_PRODUCER
175 #define GCC_PRODUCER "GNU C "
176 #endif
177
178 #ifndef GPLUS_PRODUCER
179 #define GPLUS_PRODUCER "GNU C++ "
180 #endif
181
182 #ifndef LCC_PRODUCER
183 #define LCC_PRODUCER "NCR C/C++"
184 #endif
185
186 #ifndef CHILL_PRODUCER
187 #define CHILL_PRODUCER "GNU Chill "
188 #endif
189
190 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
191 #ifndef DWARF_REG_TO_REGNUM
192 #define DWARF_REG_TO_REGNUM(num) (num)
193 #endif
194
195 /* Flags to target_to_host() that tell whether or not the data object is
196 expected to be signed. Used, for example, when fetching a signed
197 integer in the target environment which is used as a signed integer
198 in the host environment, and the two environments have different sized
199 ints. In this case, *somebody* has to sign extend the smaller sized
200 int. */
201
202 #define GET_UNSIGNED 0 /* No sign extension required */
203 #define GET_SIGNED 1 /* Sign extension required */
204
205 /* Defines for things which are specified in the document "DWARF Debugging
206 Information Format" published by UNIX International, Programming Languages
207 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
208
209 #define SIZEOF_DIE_LENGTH 4
210 #define SIZEOF_DIE_TAG 2
211 #define SIZEOF_ATTRIBUTE 2
212 #define SIZEOF_FORMAT_SPECIFIER 1
213 #define SIZEOF_FMT_FT 2
214 #define SIZEOF_LINETBL_LENGTH 4
215 #define SIZEOF_LINETBL_LINENO 4
216 #define SIZEOF_LINETBL_STMT 2
217 #define SIZEOF_LINETBL_DELTA 4
218 #define SIZEOF_LOC_ATOM_CODE 1
219
220 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
221
222 /* Macros that return the sizes of various types of data in the target
223 environment.
224
225 FIXME: Currently these are just compile time constants (as they are in
226 other parts of gdb as well). They need to be able to get the right size
227 either from the bfd or possibly from the DWARF info. It would be nice if
228 the DWARF producer inserted DIES that describe the fundamental types in
229 the target environment into the DWARF info, similar to the way dbx stabs
230 producers produce information about their fundamental types. */
231
232 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
233 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
234
235 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
236 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
237 However, the Issue 2 DWARF specification from AT&T defines it as
238 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
239 For backwards compatibility with the AT&T compiler produced executables
240 we define AT_short_element_list for this variant. */
241
242 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
243
244 /* External variables referenced. */
245
246 extern int info_verbose; /* From main.c; nonzero => verbose */
247 extern char *warning_pre_print; /* From utils.c */
248
249 /* The DWARF debugging information consists of two major pieces,
250 one is a block of DWARF Information Entries (DIE's) and the other
251 is a line number table. The "struct dieinfo" structure contains
252 the information for a single DIE, the one currently being processed.
253
254 In order to make it easier to randomly access the attribute fields
255 of the current DIE, which are specifically unordered within the DIE,
256 each DIE is scanned and an instance of the "struct dieinfo"
257 structure is initialized.
258
259 Initialization is done in two levels. The first, done by basicdieinfo(),
260 just initializes those fields that are vital to deciding whether or not
261 to use this DIE, how to skip past it, etc. The second, done by the
262 function completedieinfo(), fills in the rest of the information.
263
264 Attributes which have block forms are not interpreted at the time
265 the DIE is scanned, instead we just save pointers to the start
266 of their value fields.
267
268 Some fields have a flag <name>_p that is set when the value of the
269 field is valid (I.E. we found a matching attribute in the DIE). Since
270 we may want to test for the presence of some attributes in the DIE,
271 such as AT_low_pc, without restricting the values of the field,
272 we need someway to note that we found such an attribute.
273
274 */
275
276 typedef char BLOCK;
277
278 struct dieinfo {
279 char * die; /* Pointer to the raw DIE data */
280 unsigned long die_length; /* Length of the raw DIE data */
281 DIE_REF die_ref; /* Offset of this DIE */
282 unsigned short die_tag; /* Tag for this DIE */
283 unsigned long at_padding;
284 unsigned long at_sibling;
285 BLOCK * at_location;
286 char * at_name;
287 unsigned short at_fund_type;
288 BLOCK * at_mod_fund_type;
289 unsigned long at_user_def_type;
290 BLOCK * at_mod_u_d_type;
291 unsigned short at_ordering;
292 BLOCK * at_subscr_data;
293 unsigned long at_byte_size;
294 unsigned short at_bit_offset;
295 unsigned long at_bit_size;
296 BLOCK * at_element_list;
297 unsigned long at_stmt_list;
298 CORE_ADDR at_low_pc;
299 CORE_ADDR at_high_pc;
300 unsigned long at_language;
301 unsigned long at_member;
302 unsigned long at_discr;
303 BLOCK * at_discr_value;
304 BLOCK * at_string_length;
305 char * at_comp_dir;
306 char * at_producer;
307 unsigned long at_start_scope;
308 unsigned long at_stride_size;
309 unsigned long at_src_info;
310 char * at_prototyped;
311 unsigned int has_at_low_pc:1;
312 unsigned int has_at_stmt_list:1;
313 unsigned int has_at_byte_size:1;
314 unsigned int short_element_list:1;
315 };
316
317 static int diecount; /* Approximate count of dies for compilation unit */
318 static struct dieinfo *curdie; /* For warnings and such */
319
320 static char *dbbase; /* Base pointer to dwarf info */
321 static int dbsize; /* Size of dwarf info in bytes */
322 static int dbroff; /* Relative offset from start of .debug section */
323 static char *lnbase; /* Base pointer to line section */
324 static int isreg; /* Kludge to identify register variables */
325 static int optimized_out; /* Kludge to identify optimized out variables */
326 /* Kludge to identify basereg references. Nonzero if we have an offset
327 relative to a basereg. */
328 static int offreg;
329 /* Which base register is it relative to? */
330 static int basereg;
331
332 /* This value is added to each symbol value. FIXME: Generalize to
333 the section_offsets structure used by dbxread (once this is done,
334 pass the appropriate section number to end_symtab). */
335 static CORE_ADDR baseaddr; /* Add to each symbol value */
336
337 /* The section offsets used in the current psymtab or symtab. FIXME,
338 only used to pass one value (baseaddr) at the moment. */
339 static struct section_offsets *base_section_offsets;
340
341 /* We put a pointer to this structure in the read_symtab_private field
342 of the psymtab. */
343
344 struct dwfinfo {
345 /* Always the absolute file offset to the start of the ".debug"
346 section for the file containing the DIE's being accessed. */
347 file_ptr dbfoff;
348 /* Relative offset from the start of the ".debug" section to the
349 first DIE to be accessed. When building the partial symbol
350 table, this value will be zero since we are accessing the
351 entire ".debug" section. When expanding a partial symbol
352 table entry, this value will be the offset to the first
353 DIE for the compilation unit containing the symbol that
354 triggers the expansion. */
355 int dbroff;
356 /* The size of the chunk of DIE's being examined, in bytes. */
357 int dblength;
358 /* The absolute file offset to the line table fragment. Ignored
359 when building partial symbol tables, but used when expanding
360 them, and contains the absolute file offset to the fragment
361 of the ".line" section containing the line numbers for the
362 current compilation unit. */
363 file_ptr lnfoff;
364 };
365
366 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
367 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
368 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
369 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
370
371 /* The generic symbol table building routines have separate lists for
372 file scope symbols and all all other scopes (local scopes). So
373 we need to select the right one to pass to add_symbol_to_list().
374 We do it by keeping a pointer to the correct list in list_in_scope.
375
376 FIXME: The original dwarf code just treated the file scope as the first
377 local scope, and all other local scopes as nested local scopes, and worked
378 fine. Check to see if we really need to distinguish these in buildsym.c */
379
380 struct pending **list_in_scope = &file_symbols;
381
382 /* DIES which have user defined types or modified user defined types refer to
383 other DIES for the type information. Thus we need to associate the offset
384 of a DIE for a user defined type with a pointer to the type information.
385
386 Originally this was done using a simple but expensive algorithm, with an
387 array of unsorted structures, each containing an offset/type-pointer pair.
388 This array was scanned linearly each time a lookup was done. The result
389 was that gdb was spending over half it's startup time munging through this
390 array of pointers looking for a structure that had the right offset member.
391
392 The second attempt used the same array of structures, but the array was
393 sorted using qsort each time a new offset/type was recorded, and a binary
394 search was used to find the type pointer for a given DIE offset. This was
395 even slower, due to the overhead of sorting the array each time a new
396 offset/type pair was entered.
397
398 The third attempt uses a fixed size array of type pointers, indexed by a
399 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
400 we can divide any DIE offset by 4 to obtain a unique index into this fixed
401 size array. Since each element is a 4 byte pointer, it takes exactly as
402 much memory to hold this array as to hold the DWARF info for a given
403 compilation unit. But it gets freed as soon as we are done with it.
404 This has worked well in practice, as a reasonable tradeoff between memory
405 consumption and speed, without having to resort to much more complicated
406 algorithms. */
407
408 static struct type **utypes; /* Pointer to array of user type pointers */
409 static int numutypes; /* Max number of user type pointers */
410
411 /* Maintain an array of referenced fundamental types for the current
412 compilation unit being read. For DWARF version 1, we have to construct
413 the fundamental types on the fly, since no information about the
414 fundamental types is supplied. Each such fundamental type is created by
415 calling a language dependent routine to create the type, and then a
416 pointer to that type is then placed in the array at the index specified
417 by it's FT_<TYPENAME> value. The array has a fixed size set by the
418 FT_NUM_MEMBERS compile time constant, which is the number of predefined
419 fundamental types gdb knows how to construct. */
420
421 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
422
423 /* Record the language for the compilation unit which is currently being
424 processed. We know it once we have seen the TAG_compile_unit DIE,
425 and we need it while processing the DIE's for that compilation unit.
426 It is eventually saved in the symtab structure, but we don't finalize
427 the symtab struct until we have processed all the DIE's for the
428 compilation unit. We also need to get and save a pointer to the
429 language struct for this language, so we can call the language
430 dependent routines for doing things such as creating fundamental
431 types. */
432
433 static enum language cu_language;
434 static const struct language_defn *cu_language_defn;
435
436 /* Forward declarations of static functions so we don't have to worry
437 about ordering within this file. */
438
439 static int
440 attribute_size PARAMS ((unsigned int));
441
442 static CORE_ADDR
443 target_to_host PARAMS ((char *, int, int, struct objfile *));
444
445 static void
446 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
447
448 static void
449 handle_producer PARAMS ((char *));
450
451 static void
452 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
453
454 static void
455 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
456
457 static void
458 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
459 struct objfile *));
460
461 static void
462 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
463
464 static void
465 scan_compilation_units PARAMS ((char *, char *, file_ptr,
466 file_ptr, struct objfile *));
467
468 static void
469 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
470
471 static void
472 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
473
474 static void
475 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
476
477 static void
478 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
479
480 static void
481 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
482
483 static void
484 read_ofile_symtab PARAMS ((struct partial_symtab *));
485
486 static void
487 process_dies PARAMS ((char *, char *, struct objfile *));
488
489 static void
490 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
491 struct objfile *));
492
493 static struct type *
494 decode_array_element_type PARAMS ((char *));
495
496 static struct type *
497 decode_subscript_data_item PARAMS ((char *, char *));
498
499 static void
500 dwarf_read_array_type PARAMS ((struct dieinfo *));
501
502 static void
503 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
504
505 static void
506 read_tag_string_type PARAMS ((struct dieinfo *dip));
507
508 static void
509 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
510
511 static void
512 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
513
514 static struct type *
515 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
516
517 static struct type *
518 enum_type PARAMS ((struct dieinfo *, struct objfile *));
519
520 static void
521 decode_line_numbers PARAMS ((char *));
522
523 static struct type *
524 decode_die_type PARAMS ((struct dieinfo *));
525
526 static struct type *
527 decode_mod_fund_type PARAMS ((char *));
528
529 static struct type *
530 decode_mod_u_d_type PARAMS ((char *));
531
532 static struct type *
533 decode_modified_type PARAMS ((char *, unsigned int, int));
534
535 static struct type *
536 decode_fund_type PARAMS ((unsigned int));
537
538 static char *
539 create_name PARAMS ((char *, struct obstack *));
540
541 static struct type *
542 lookup_utype PARAMS ((DIE_REF));
543
544 static struct type *
545 alloc_utype PARAMS ((DIE_REF, struct type *));
546
547 static struct symbol *
548 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
549
550 static void
551 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
552 struct type *));
553
554 static int
555 locval PARAMS ((char *));
556
557 static void
558 set_cu_language PARAMS ((struct dieinfo *));
559
560 static struct type *
561 dwarf_fundamental_type PARAMS ((struct objfile *, int));
562
563
564 /*
565
566 LOCAL FUNCTION
567
568 dwarf_fundamental_type -- lookup or create a fundamental type
569
570 SYNOPSIS
571
572 struct type *
573 dwarf_fundamental_type (struct objfile *objfile, int typeid)
574
575 DESCRIPTION
576
577 DWARF version 1 doesn't supply any fundamental type information,
578 so gdb has to construct such types. It has a fixed number of
579 fundamental types that it knows how to construct, which is the
580 union of all types that it knows how to construct for all languages
581 that it knows about. These are enumerated in gdbtypes.h.
582
583 As an example, assume we find a DIE that references a DWARF
584 fundamental type of FT_integer. We first look in the ftypes
585 array to see if we already have such a type, indexed by the
586 gdb internal value of FT_INTEGER. If so, we simply return a
587 pointer to that type. If not, then we ask an appropriate
588 language dependent routine to create a type FT_INTEGER, using
589 defaults reasonable for the current target machine, and install
590 that type in ftypes for future reference.
591
592 RETURNS
593
594 Pointer to a fundamental type.
595
596 */
597
598 static struct type *
599 dwarf_fundamental_type (objfile, typeid)
600 struct objfile *objfile;
601 int typeid;
602 {
603 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
604 {
605 error ("internal error - invalid fundamental type id %d", typeid);
606 }
607
608 /* Look for this particular type in the fundamental type vector. If one is
609 not found, create and install one appropriate for the current language
610 and the current target machine. */
611
612 if (ftypes[typeid] == NULL)
613 {
614 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
615 }
616
617 return (ftypes[typeid]);
618 }
619
620 /*
621
622 LOCAL FUNCTION
623
624 set_cu_language -- set local copy of language for compilation unit
625
626 SYNOPSIS
627
628 void
629 set_cu_language (struct dieinfo *dip)
630
631 DESCRIPTION
632
633 Decode the language attribute for a compilation unit DIE and
634 remember what the language was. We use this at various times
635 when processing DIE's for a given compilation unit.
636
637 RETURNS
638
639 No return value.
640
641 */
642
643 static void
644 set_cu_language (dip)
645 struct dieinfo *dip;
646 {
647 switch (dip -> at_language)
648 {
649 case LANG_C89:
650 case LANG_C:
651 cu_language = language_c;
652 break;
653 case LANG_C_PLUS_PLUS:
654 cu_language = language_cplus;
655 break;
656 case LANG_CHILL:
657 cu_language = language_chill;
658 break;
659 case LANG_MODULA2:
660 cu_language = language_m2;
661 break;
662 case LANG_ADA83:
663 case LANG_COBOL74:
664 case LANG_COBOL85:
665 case LANG_FORTRAN77:
666 case LANG_FORTRAN90:
667 case LANG_PASCAL83:
668 /* We don't know anything special about these yet. */
669 cu_language = language_unknown;
670 break;
671 default:
672 /* If no at_language, try to deduce one from the filename */
673 cu_language = deduce_language_from_filename (dip -> at_name);
674 break;
675 }
676 cu_language_defn = language_def (cu_language);
677 }
678
679 /*
680
681 GLOBAL FUNCTION
682
683 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
684
685 SYNOPSIS
686
687 void dwarf_build_psymtabs (struct objfile *objfile,
688 struct section_offsets *section_offsets,
689 int mainline, file_ptr dbfoff, unsigned int dbfsize,
690 file_ptr lnoffset, unsigned int lnsize)
691
692 DESCRIPTION
693
694 This function is called upon to build partial symtabs from files
695 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
696
697 It is passed a bfd* containing the DIES
698 and line number information, the corresponding filename for that
699 file, a base address for relocating the symbols, a flag indicating
700 whether or not this debugging information is from a "main symbol
701 table" rather than a shared library or dynamically linked file,
702 and file offset/size pairs for the DIE information and line number
703 information.
704
705 RETURNS
706
707 No return value.
708
709 */
710
711 void
712 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
713 lnoffset, lnsize)
714 struct objfile *objfile;
715 struct section_offsets *section_offsets;
716 int mainline;
717 file_ptr dbfoff;
718 unsigned int dbfsize;
719 file_ptr lnoffset;
720 unsigned int lnsize;
721 {
722 bfd *abfd = objfile->obfd;
723 struct cleanup *back_to;
724
725 current_objfile = objfile;
726 dbsize = dbfsize;
727 dbbase = xmalloc (dbsize);
728 dbroff = 0;
729 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
730 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
731 {
732 free (dbbase);
733 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
734 }
735 back_to = make_cleanup (free, dbbase);
736
737 /* If we are reinitializing, or if we have never loaded syms yet, init.
738 Since we have no idea how many DIES we are looking at, we just guess
739 some arbitrary value. */
740
741 if (mainline || objfile -> global_psymbols.size == 0 ||
742 objfile -> static_psymbols.size == 0)
743 {
744 init_psymbol_list (objfile, 1024);
745 }
746
747 /* Save the relocation factor where everybody can see it. */
748
749 base_section_offsets = section_offsets;
750 baseaddr = ANOFFSET (section_offsets, 0);
751
752 /* Follow the compilation unit sibling chain, building a partial symbol
753 table entry for each one. Save enough information about each compilation
754 unit to locate the full DWARF information later. */
755
756 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
757
758 do_cleanups (back_to);
759 current_objfile = NULL;
760 }
761
762 /*
763
764 LOCAL FUNCTION
765
766 read_lexical_block_scope -- process all dies in a lexical block
767
768 SYNOPSIS
769
770 static void read_lexical_block_scope (struct dieinfo *dip,
771 char *thisdie, char *enddie)
772
773 DESCRIPTION
774
775 Process all the DIES contained within a lexical block scope.
776 Start a new scope, process the dies, and then close the scope.
777
778 */
779
780 static void
781 read_lexical_block_scope (dip, thisdie, enddie, objfile)
782 struct dieinfo *dip;
783 char *thisdie;
784 char *enddie;
785 struct objfile *objfile;
786 {
787 register struct context_stack *new;
788
789 push_context (0, dip -> at_low_pc);
790 process_dies (thisdie + dip -> die_length, enddie, objfile);
791 new = pop_context ();
792 if (local_symbols != NULL)
793 {
794 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
795 dip -> at_high_pc, objfile);
796 }
797 local_symbols = new -> locals;
798 }
799
800 /*
801
802 LOCAL FUNCTION
803
804 lookup_utype -- look up a user defined type from die reference
805
806 SYNOPSIS
807
808 static type *lookup_utype (DIE_REF die_ref)
809
810 DESCRIPTION
811
812 Given a DIE reference, lookup the user defined type associated with
813 that DIE, if it has been registered already. If not registered, then
814 return NULL. Alloc_utype() can be called to register an empty
815 type for this reference, which will be filled in later when the
816 actual referenced DIE is processed.
817 */
818
819 static struct type *
820 lookup_utype (die_ref)
821 DIE_REF die_ref;
822 {
823 struct type *type = NULL;
824 int utypeidx;
825
826 utypeidx = (die_ref - dbroff) / 4;
827 if ((utypeidx < 0) || (utypeidx >= numutypes))
828 {
829 complain (&bad_die_ref, DIE_ID, DIE_NAME);
830 }
831 else
832 {
833 type = *(utypes + utypeidx);
834 }
835 return (type);
836 }
837
838
839 /*
840
841 LOCAL FUNCTION
842
843 alloc_utype -- add a user defined type for die reference
844
845 SYNOPSIS
846
847 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
848
849 DESCRIPTION
850
851 Given a die reference DIE_REF, and a possible pointer to a user
852 defined type UTYPEP, register that this reference has a user
853 defined type and either use the specified type in UTYPEP or
854 make a new empty type that will be filled in later.
855
856 We should only be called after calling lookup_utype() to verify that
857 there is not currently a type registered for DIE_REF.
858 */
859
860 static struct type *
861 alloc_utype (die_ref, utypep)
862 DIE_REF die_ref;
863 struct type *utypep;
864 {
865 struct type **typep;
866 int utypeidx;
867
868 utypeidx = (die_ref - dbroff) / 4;
869 typep = utypes + utypeidx;
870 if ((utypeidx < 0) || (utypeidx >= numutypes))
871 {
872 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
873 complain (&bad_die_ref, DIE_ID, DIE_NAME);
874 }
875 else if (*typep != NULL)
876 {
877 utypep = *typep;
878 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
879 }
880 else
881 {
882 if (utypep == NULL)
883 {
884 utypep = alloc_type (current_objfile);
885 }
886 *typep = utypep;
887 }
888 return (utypep);
889 }
890
891 /*
892
893 LOCAL FUNCTION
894
895 decode_die_type -- return a type for a specified die
896
897 SYNOPSIS
898
899 static struct type *decode_die_type (struct dieinfo *dip)
900
901 DESCRIPTION
902
903 Given a pointer to a die information structure DIP, decode the
904 type of the die and return a pointer to the decoded type. All
905 dies without specific types default to type int.
906 */
907
908 static struct type *
909 decode_die_type (dip)
910 struct dieinfo *dip;
911 {
912 struct type *type = NULL;
913
914 if (dip -> at_fund_type != 0)
915 {
916 type = decode_fund_type (dip -> at_fund_type);
917 }
918 else if (dip -> at_mod_fund_type != NULL)
919 {
920 type = decode_mod_fund_type (dip -> at_mod_fund_type);
921 }
922 else if (dip -> at_user_def_type)
923 {
924 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
925 {
926 type = alloc_utype (dip -> at_user_def_type, NULL);
927 }
928 }
929 else if (dip -> at_mod_u_d_type)
930 {
931 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
932 }
933 else
934 {
935 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
936 }
937 return (type);
938 }
939
940 /*
941
942 LOCAL FUNCTION
943
944 struct_type -- compute and return the type for a struct or union
945
946 SYNOPSIS
947
948 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
949 char *enddie, struct objfile *objfile)
950
951 DESCRIPTION
952
953 Given pointer to a die information structure for a die which
954 defines a union or structure (and MUST define one or the other),
955 and pointers to the raw die data that define the range of dies which
956 define the members, compute and return the user defined type for the
957 structure or union.
958 */
959
960 static struct type *
961 struct_type (dip, thisdie, enddie, objfile)
962 struct dieinfo *dip;
963 char *thisdie;
964 char *enddie;
965 struct objfile *objfile;
966 {
967 struct type *type;
968 struct nextfield {
969 struct nextfield *next;
970 struct field field;
971 };
972 struct nextfield *list = NULL;
973 struct nextfield *new;
974 int nfields = 0;
975 int n;
976 struct dieinfo mbr;
977 char *nextdie;
978 int anonymous_size;
979
980 if ((type = lookup_utype (dip -> die_ref)) == NULL)
981 {
982 /* No forward references created an empty type, so install one now */
983 type = alloc_utype (dip -> die_ref, NULL);
984 }
985 INIT_CPLUS_SPECIFIC(type);
986 switch (dip -> die_tag)
987 {
988 case TAG_class_type:
989 TYPE_CODE (type) = TYPE_CODE_CLASS;
990 break;
991 case TAG_structure_type:
992 TYPE_CODE (type) = TYPE_CODE_STRUCT;
993 break;
994 case TAG_union_type:
995 TYPE_CODE (type) = TYPE_CODE_UNION;
996 break;
997 default:
998 /* Should never happen */
999 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1000 complain (&missing_tag, DIE_ID, DIE_NAME);
1001 break;
1002 }
1003 /* Some compilers try to be helpful by inventing "fake" names for
1004 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1005 Thanks, but no thanks... */
1006 if (dip -> at_name != NULL
1007 && *dip -> at_name != '~'
1008 && *dip -> at_name != '.')
1009 {
1010 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1011 "", "", dip -> at_name);
1012 }
1013 /* Use whatever size is known. Zero is a valid size. We might however
1014 wish to check has_at_byte_size to make sure that some byte size was
1015 given explicitly, but DWARF doesn't specify that explicit sizes of
1016 zero have to present, so complaining about missing sizes should
1017 probably not be the default. */
1018 TYPE_LENGTH (type) = dip -> at_byte_size;
1019 thisdie += dip -> die_length;
1020 while (thisdie < enddie)
1021 {
1022 basicdieinfo (&mbr, thisdie, objfile);
1023 completedieinfo (&mbr, objfile);
1024 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1025 {
1026 break;
1027 }
1028 else if (mbr.at_sibling != 0)
1029 {
1030 nextdie = dbbase + mbr.at_sibling - dbroff;
1031 }
1032 else
1033 {
1034 nextdie = thisdie + mbr.die_length;
1035 }
1036 switch (mbr.die_tag)
1037 {
1038 case TAG_member:
1039 /* Get space to record the next field's data. */
1040 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1041 new -> next = list;
1042 list = new;
1043 /* Save the data. */
1044 list -> field.name =
1045 obsavestring (mbr.at_name, strlen (mbr.at_name),
1046 &objfile -> type_obstack);
1047 list -> field.type = decode_die_type (&mbr);
1048 list -> field.bitpos = 8 * locval (mbr.at_location);
1049 /* Handle bit fields. */
1050 list -> field.bitsize = mbr.at_bit_size;
1051 if (BITS_BIG_ENDIAN)
1052 {
1053 /* For big endian bits, the at_bit_offset gives the
1054 additional bit offset from the MSB of the containing
1055 anonymous object to the MSB of the field. We don't
1056 have to do anything special since we don't need to
1057 know the size of the anonymous object. */
1058 list -> field.bitpos += mbr.at_bit_offset;
1059 }
1060 else
1061 {
1062 /* For little endian bits, we need to have a non-zero
1063 at_bit_size, so that we know we are in fact dealing
1064 with a bitfield. Compute the bit offset to the MSB
1065 of the anonymous object, subtract off the number of
1066 bits from the MSB of the field to the MSB of the
1067 object, and then subtract off the number of bits of
1068 the field itself. The result is the bit offset of
1069 the LSB of the field. */
1070 if (mbr.at_bit_size > 0)
1071 {
1072 if (mbr.has_at_byte_size)
1073 {
1074 /* The size of the anonymous object containing
1075 the bit field is explicit, so use the
1076 indicated size (in bytes). */
1077 anonymous_size = mbr.at_byte_size;
1078 }
1079 else
1080 {
1081 /* The size of the anonymous object containing
1082 the bit field matches the size of an object
1083 of the bit field's type. DWARF allows
1084 at_byte_size to be left out in such cases, as
1085 a debug information size optimization. */
1086 anonymous_size = TYPE_LENGTH (list -> field.type);
1087 }
1088 list -> field.bitpos +=
1089 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1090 }
1091 }
1092 nfields++;
1093 break;
1094 default:
1095 process_dies (thisdie, nextdie, objfile);
1096 break;
1097 }
1098 thisdie = nextdie;
1099 }
1100 /* Now create the vector of fields, and record how big it is. We may
1101 not even have any fields, if this DIE was generated due to a reference
1102 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1103 set, which clues gdb in to the fact that it needs to search elsewhere
1104 for the full structure definition. */
1105 if (nfields == 0)
1106 {
1107 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1108 }
1109 else
1110 {
1111 TYPE_NFIELDS (type) = nfields;
1112 TYPE_FIELDS (type) = (struct field *)
1113 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1114 /* Copy the saved-up fields into the field vector. */
1115 for (n = nfields; list; list = list -> next)
1116 {
1117 TYPE_FIELD (type, --n) = list -> field;
1118 }
1119 }
1120 return (type);
1121 }
1122
1123 /*
1124
1125 LOCAL FUNCTION
1126
1127 read_structure_scope -- process all dies within struct or union
1128
1129 SYNOPSIS
1130
1131 static void read_structure_scope (struct dieinfo *dip,
1132 char *thisdie, char *enddie, struct objfile *objfile)
1133
1134 DESCRIPTION
1135
1136 Called when we find the DIE that starts a structure or union
1137 scope (definition) to process all dies that define the members
1138 of the structure or union. DIP is a pointer to the die info
1139 struct for the DIE that names the structure or union.
1140
1141 NOTES
1142
1143 Note that we need to call struct_type regardless of whether or not
1144 the DIE has an at_name attribute, since it might be an anonymous
1145 structure or union. This gets the type entered into our set of
1146 user defined types.
1147
1148 However, if the structure is incomplete (an opaque struct/union)
1149 then suppress creating a symbol table entry for it since gdb only
1150 wants to find the one with the complete definition. Note that if
1151 it is complete, we just call new_symbol, which does it's own
1152 checking about whether the struct/union is anonymous or not (and
1153 suppresses creating a symbol table entry itself).
1154
1155 */
1156
1157 static void
1158 read_structure_scope (dip, thisdie, enddie, objfile)
1159 struct dieinfo *dip;
1160 char *thisdie;
1161 char *enddie;
1162 struct objfile *objfile;
1163 {
1164 struct type *type;
1165 struct symbol *sym;
1166
1167 type = struct_type (dip, thisdie, enddie, objfile);
1168 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1169 {
1170 sym = new_symbol (dip, objfile);
1171 if (sym != NULL)
1172 {
1173 SYMBOL_TYPE (sym) = type;
1174 if (cu_language == language_cplus)
1175 {
1176 synthesize_typedef (dip, objfile, type);
1177 }
1178 }
1179 }
1180 }
1181
1182 /*
1183
1184 LOCAL FUNCTION
1185
1186 decode_array_element_type -- decode type of the array elements
1187
1188 SYNOPSIS
1189
1190 static struct type *decode_array_element_type (char *scan, char *end)
1191
1192 DESCRIPTION
1193
1194 As the last step in decoding the array subscript information for an
1195 array DIE, we need to decode the type of the array elements. We are
1196 passed a pointer to this last part of the subscript information and
1197 must return the appropriate type. If the type attribute is not
1198 recognized, just warn about the problem and return type int.
1199 */
1200
1201 static struct type *
1202 decode_array_element_type (scan)
1203 char *scan;
1204 {
1205 struct type *typep;
1206 DIE_REF die_ref;
1207 unsigned short attribute;
1208 unsigned short fundtype;
1209 int nbytes;
1210
1211 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1212 current_objfile);
1213 scan += SIZEOF_ATTRIBUTE;
1214 if ((nbytes = attribute_size (attribute)) == -1)
1215 {
1216 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1217 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1218 }
1219 else
1220 {
1221 switch (attribute)
1222 {
1223 case AT_fund_type:
1224 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1225 current_objfile);
1226 typep = decode_fund_type (fundtype);
1227 break;
1228 case AT_mod_fund_type:
1229 typep = decode_mod_fund_type (scan);
1230 break;
1231 case AT_user_def_type:
1232 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1233 current_objfile);
1234 if ((typep = lookup_utype (die_ref)) == NULL)
1235 {
1236 typep = alloc_utype (die_ref, NULL);
1237 }
1238 break;
1239 case AT_mod_u_d_type:
1240 typep = decode_mod_u_d_type (scan);
1241 break;
1242 default:
1243 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1244 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1245 break;
1246 }
1247 }
1248 return (typep);
1249 }
1250
1251 /*
1252
1253 LOCAL FUNCTION
1254
1255 decode_subscript_data_item -- decode array subscript item
1256
1257 SYNOPSIS
1258
1259 static struct type *
1260 decode_subscript_data_item (char *scan, char *end)
1261
1262 DESCRIPTION
1263
1264 The array subscripts and the data type of the elements of an
1265 array are described by a list of data items, stored as a block
1266 of contiguous bytes. There is a data item describing each array
1267 dimension, and a final data item describing the element type.
1268 The data items are ordered the same as their appearance in the
1269 source (I.E. leftmost dimension first, next to leftmost second,
1270 etc).
1271
1272 The data items describing each array dimension consist of four
1273 parts: (1) a format specifier, (2) type type of the subscript
1274 index, (3) a description of the low bound of the array dimension,
1275 and (4) a description of the high bound of the array dimension.
1276
1277 The last data item is the description of the type of each of
1278 the array elements.
1279
1280 We are passed a pointer to the start of the block of bytes
1281 containing the remaining data items, and a pointer to the first
1282 byte past the data. This function recursively decodes the
1283 remaining data items and returns a type.
1284
1285 If we somehow fail to decode some data, we complain about it
1286 and return a type "array of int".
1287
1288 BUGS
1289 FIXME: This code only implements the forms currently used
1290 by the AT&T and GNU C compilers.
1291
1292 The end pointer is supplied for error checking, maybe we should
1293 use it for that...
1294 */
1295
1296 static struct type *
1297 decode_subscript_data_item (scan, end)
1298 char *scan;
1299 char *end;
1300 {
1301 struct type *typep = NULL; /* Array type we are building */
1302 struct type *nexttype; /* Type of each element (may be array) */
1303 struct type *indextype; /* Type of this index */
1304 struct type *rangetype;
1305 unsigned int format;
1306 unsigned short fundtype;
1307 unsigned long lowbound;
1308 unsigned long highbound;
1309 int nbytes;
1310
1311 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1312 current_objfile);
1313 scan += SIZEOF_FORMAT_SPECIFIER;
1314 switch (format)
1315 {
1316 case FMT_ET:
1317 typep = decode_array_element_type (scan);
1318 break;
1319 case FMT_FT_C_C:
1320 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1321 current_objfile);
1322 indextype = decode_fund_type (fundtype);
1323 scan += SIZEOF_FMT_FT;
1324 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1325 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1326 scan += nbytes;
1327 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1328 scan += nbytes;
1329 nexttype = decode_subscript_data_item (scan, end);
1330 if (nexttype == NULL)
1331 {
1332 /* Munged subscript data or other problem, fake it. */
1333 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1334 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1335 }
1336 rangetype = create_range_type ((struct type *) NULL, indextype,
1337 lowbound, highbound);
1338 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1339 break;
1340 case FMT_FT_C_X:
1341 case FMT_FT_X_C:
1342 case FMT_FT_X_X:
1343 case FMT_UT_C_C:
1344 case FMT_UT_C_X:
1345 case FMT_UT_X_C:
1346 case FMT_UT_X_X:
1347 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1348 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1349 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1350 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1351 break;
1352 default:
1353 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1354 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1355 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1356 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1357 break;
1358 }
1359 return (typep);
1360 }
1361
1362 /*
1363
1364 LOCAL FUNCTION
1365
1366 dwarf_read_array_type -- read TAG_array_type DIE
1367
1368 SYNOPSIS
1369
1370 static void dwarf_read_array_type (struct dieinfo *dip)
1371
1372 DESCRIPTION
1373
1374 Extract all information from a TAG_array_type DIE and add to
1375 the user defined type vector.
1376 */
1377
1378 static void
1379 dwarf_read_array_type (dip)
1380 struct dieinfo *dip;
1381 {
1382 struct type *type;
1383 struct type *utype;
1384 char *sub;
1385 char *subend;
1386 unsigned short blocksz;
1387 int nbytes;
1388
1389 if (dip -> at_ordering != ORD_row_major)
1390 {
1391 /* FIXME: Can gdb even handle column major arrays? */
1392 complain (&not_row_major, DIE_ID, DIE_NAME);
1393 }
1394 if ((sub = dip -> at_subscr_data) != NULL)
1395 {
1396 nbytes = attribute_size (AT_subscr_data);
1397 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1398 subend = sub + nbytes + blocksz;
1399 sub += nbytes;
1400 type = decode_subscript_data_item (sub, subend);
1401 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1402 {
1403 /* Install user defined type that has not been referenced yet. */
1404 alloc_utype (dip -> die_ref, type);
1405 }
1406 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1407 {
1408 /* Ick! A forward ref has already generated a blank type in our
1409 slot, and this type probably already has things pointing to it
1410 (which is what caused it to be created in the first place).
1411 If it's just a place holder we can plop our fully defined type
1412 on top of it. We can't recover the space allocated for our
1413 new type since it might be on an obstack, but we could reuse
1414 it if we kept a list of them, but it might not be worth it
1415 (FIXME). */
1416 *utype = *type;
1417 }
1418 else
1419 {
1420 /* Double ick! Not only is a type already in our slot, but
1421 someone has decorated it. Complain and leave it alone. */
1422 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1423 }
1424 }
1425 }
1426
1427 /*
1428
1429 LOCAL FUNCTION
1430
1431 read_tag_pointer_type -- read TAG_pointer_type DIE
1432
1433 SYNOPSIS
1434
1435 static void read_tag_pointer_type (struct dieinfo *dip)
1436
1437 DESCRIPTION
1438
1439 Extract all information from a TAG_pointer_type DIE and add to
1440 the user defined type vector.
1441 */
1442
1443 static void
1444 read_tag_pointer_type (dip)
1445 struct dieinfo *dip;
1446 {
1447 struct type *type;
1448 struct type *utype;
1449
1450 type = decode_die_type (dip);
1451 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1452 {
1453 utype = lookup_pointer_type (type);
1454 alloc_utype (dip -> die_ref, utype);
1455 }
1456 else
1457 {
1458 TYPE_TARGET_TYPE (utype) = type;
1459 TYPE_POINTER_TYPE (type) = utype;
1460
1461 /* We assume the machine has only one representation for pointers! */
1462 /* FIXME: This confuses host<->target data representations, and is a
1463 poor assumption besides. */
1464
1465 TYPE_LENGTH (utype) = sizeof (char *);
1466 TYPE_CODE (utype) = TYPE_CODE_PTR;
1467 }
1468 }
1469
1470 /*
1471
1472 LOCAL FUNCTION
1473
1474 read_tag_string_type -- read TAG_string_type DIE
1475
1476 SYNOPSIS
1477
1478 static void read_tag_string_type (struct dieinfo *dip)
1479
1480 DESCRIPTION
1481
1482 Extract all information from a TAG_string_type DIE and add to
1483 the user defined type vector. It isn't really a user defined
1484 type, but it behaves like one, with other DIE's using an
1485 AT_user_def_type attribute to reference it.
1486 */
1487
1488 static void
1489 read_tag_string_type (dip)
1490 struct dieinfo *dip;
1491 {
1492 struct type *utype;
1493 struct type *indextype;
1494 struct type *rangetype;
1495 unsigned long lowbound = 0;
1496 unsigned long highbound;
1497
1498 if (dip -> has_at_byte_size)
1499 {
1500 /* A fixed bounds string */
1501 highbound = dip -> at_byte_size - 1;
1502 }
1503 else
1504 {
1505 /* A varying length string. Stub for now. (FIXME) */
1506 highbound = 1;
1507 }
1508 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1509 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1510 highbound);
1511
1512 utype = lookup_utype (dip -> die_ref);
1513 if (utype == NULL)
1514 {
1515 /* No type defined, go ahead and create a blank one to use. */
1516 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1517 }
1518 else
1519 {
1520 /* Already a type in our slot due to a forward reference. Make sure it
1521 is a blank one. If not, complain and leave it alone. */
1522 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1523 {
1524 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1525 return;
1526 }
1527 }
1528
1529 /* Create the string type using the blank type we either found or created. */
1530 utype = create_string_type (utype, rangetype);
1531 }
1532
1533 /*
1534
1535 LOCAL FUNCTION
1536
1537 read_subroutine_type -- process TAG_subroutine_type dies
1538
1539 SYNOPSIS
1540
1541 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1542 char *enddie)
1543
1544 DESCRIPTION
1545
1546 Handle DIES due to C code like:
1547
1548 struct foo {
1549 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1550 int b;
1551 };
1552
1553 NOTES
1554
1555 The parameter DIES are currently ignored. See if gdb has a way to
1556 include this info in it's type system, and decode them if so. Is
1557 this what the type structure's "arg_types" field is for? (FIXME)
1558 */
1559
1560 static void
1561 read_subroutine_type (dip, thisdie, enddie)
1562 struct dieinfo *dip;
1563 char *thisdie;
1564 char *enddie;
1565 {
1566 struct type *type; /* Type that this function returns */
1567 struct type *ftype; /* Function that returns above type */
1568
1569 /* Decode the type that this subroutine returns */
1570
1571 type = decode_die_type (dip);
1572
1573 /* Check to see if we already have a partially constructed user
1574 defined type for this DIE, from a forward reference. */
1575
1576 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1577 {
1578 /* This is the first reference to one of these types. Make
1579 a new one and place it in the user defined types. */
1580 ftype = lookup_function_type (type);
1581 alloc_utype (dip -> die_ref, ftype);
1582 }
1583 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1584 {
1585 /* We have an existing partially constructed type, so bash it
1586 into the correct type. */
1587 TYPE_TARGET_TYPE (ftype) = type;
1588 TYPE_LENGTH (ftype) = 1;
1589 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1590 }
1591 else
1592 {
1593 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1594 }
1595 }
1596
1597 /*
1598
1599 LOCAL FUNCTION
1600
1601 read_enumeration -- process dies which define an enumeration
1602
1603 SYNOPSIS
1604
1605 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1606 char *enddie, struct objfile *objfile)
1607
1608 DESCRIPTION
1609
1610 Given a pointer to a die which begins an enumeration, process all
1611 the dies that define the members of the enumeration.
1612
1613 NOTES
1614
1615 Note that we need to call enum_type regardless of whether or not we
1616 have a symbol, since we might have an enum without a tag name (thus
1617 no symbol for the tagname).
1618 */
1619
1620 static void
1621 read_enumeration (dip, thisdie, enddie, objfile)
1622 struct dieinfo *dip;
1623 char *thisdie;
1624 char *enddie;
1625 struct objfile *objfile;
1626 {
1627 struct type *type;
1628 struct symbol *sym;
1629
1630 type = enum_type (dip, objfile);
1631 sym = new_symbol (dip, objfile);
1632 if (sym != NULL)
1633 {
1634 SYMBOL_TYPE (sym) = type;
1635 if (cu_language == language_cplus)
1636 {
1637 synthesize_typedef (dip, objfile, type);
1638 }
1639 }
1640 }
1641
1642 /*
1643
1644 LOCAL FUNCTION
1645
1646 enum_type -- decode and return a type for an enumeration
1647
1648 SYNOPSIS
1649
1650 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1651
1652 DESCRIPTION
1653
1654 Given a pointer to a die information structure for the die which
1655 starts an enumeration, process all the dies that define the members
1656 of the enumeration and return a type pointer for the enumeration.
1657
1658 At the same time, for each member of the enumeration, create a
1659 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1660 and give it the type of the enumeration itself.
1661
1662 NOTES
1663
1664 Note that the DWARF specification explicitly mandates that enum
1665 constants occur in reverse order from the source program order,
1666 for "consistency" and because this ordering is easier for many
1667 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1668 Entries). Because gdb wants to see the enum members in program
1669 source order, we have to ensure that the order gets reversed while
1670 we are processing them.
1671 */
1672
1673 static struct type *
1674 enum_type (dip, objfile)
1675 struct dieinfo *dip;
1676 struct objfile *objfile;
1677 {
1678 struct type *type;
1679 struct nextfield {
1680 struct nextfield *next;
1681 struct field field;
1682 };
1683 struct nextfield *list = NULL;
1684 struct nextfield *new;
1685 int nfields = 0;
1686 int n;
1687 char *scan;
1688 char *listend;
1689 unsigned short blocksz;
1690 struct symbol *sym;
1691 int nbytes;
1692 int unsigned_enum = 1;
1693
1694 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1695 {
1696 /* No forward references created an empty type, so install one now */
1697 type = alloc_utype (dip -> die_ref, NULL);
1698 }
1699 TYPE_CODE (type) = TYPE_CODE_ENUM;
1700 /* Some compilers try to be helpful by inventing "fake" names for
1701 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1702 Thanks, but no thanks... */
1703 if (dip -> at_name != NULL
1704 && *dip -> at_name != '~'
1705 && *dip -> at_name != '.')
1706 {
1707 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1708 "", "", dip -> at_name);
1709 }
1710 if (dip -> at_byte_size != 0)
1711 {
1712 TYPE_LENGTH (type) = dip -> at_byte_size;
1713 }
1714 if ((scan = dip -> at_element_list) != NULL)
1715 {
1716 if (dip -> short_element_list)
1717 {
1718 nbytes = attribute_size (AT_short_element_list);
1719 }
1720 else
1721 {
1722 nbytes = attribute_size (AT_element_list);
1723 }
1724 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1725 listend = scan + nbytes + blocksz;
1726 scan += nbytes;
1727 while (scan < listend)
1728 {
1729 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1730 new -> next = list;
1731 list = new;
1732 list -> field.type = NULL;
1733 list -> field.bitsize = 0;
1734 list -> field.bitpos =
1735 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1736 objfile);
1737 scan += TARGET_FT_LONG_SIZE (objfile);
1738 list -> field.name = obsavestring (scan, strlen (scan),
1739 &objfile -> type_obstack);
1740 scan += strlen (scan) + 1;
1741 nfields++;
1742 /* Handcraft a new symbol for this enum member. */
1743 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1744 sizeof (struct symbol));
1745 memset (sym, 0, sizeof (struct symbol));
1746 SYMBOL_NAME (sym) = create_name (list -> field.name,
1747 &objfile->symbol_obstack);
1748 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1749 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1750 SYMBOL_CLASS (sym) = LOC_CONST;
1751 SYMBOL_TYPE (sym) = type;
1752 SYMBOL_VALUE (sym) = list -> field.bitpos;
1753 if (SYMBOL_VALUE (sym) < 0)
1754 unsigned_enum = 0;
1755 add_symbol_to_list (sym, list_in_scope);
1756 }
1757 /* Now create the vector of fields, and record how big it is. This is
1758 where we reverse the order, by pulling the members off the list in
1759 reverse order from how they were inserted. If we have no fields
1760 (this is apparently possible in C++) then skip building a field
1761 vector. */
1762 if (nfields > 0)
1763 {
1764 if (unsigned_enum)
1765 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1766 TYPE_NFIELDS (type) = nfields;
1767 TYPE_FIELDS (type) = (struct field *)
1768 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1769 /* Copy the saved-up fields into the field vector. */
1770 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1771 {
1772 TYPE_FIELD (type, n++) = list -> field;
1773 }
1774 }
1775 }
1776 return (type);
1777 }
1778
1779 /*
1780
1781 LOCAL FUNCTION
1782
1783 read_func_scope -- process all dies within a function scope
1784
1785 DESCRIPTION
1786
1787 Process all dies within a given function scope. We are passed
1788 a die information structure pointer DIP for the die which
1789 starts the function scope, and pointers into the raw die data
1790 that define the dies within the function scope.
1791
1792 For now, we ignore lexical block scopes within the function.
1793 The problem is that AT&T cc does not define a DWARF lexical
1794 block scope for the function itself, while gcc defines a
1795 lexical block scope for the function. We need to think about
1796 how to handle this difference, or if it is even a problem.
1797 (FIXME)
1798 */
1799
1800 static void
1801 read_func_scope (dip, thisdie, enddie, objfile)
1802 struct dieinfo *dip;
1803 char *thisdie;
1804 char *enddie;
1805 struct objfile *objfile;
1806 {
1807 register struct context_stack *new;
1808
1809 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1810 objfile -> ei.entry_point < dip -> at_high_pc)
1811 {
1812 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1813 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1814 }
1815 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1816 {
1817 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1818 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1819 }
1820 new = push_context (0, dip -> at_low_pc);
1821 new -> name = new_symbol (dip, objfile);
1822 list_in_scope = &local_symbols;
1823 process_dies (thisdie + dip -> die_length, enddie, objfile);
1824 new = pop_context ();
1825 /* Make a block for the local symbols within. */
1826 finish_block (new -> name, &local_symbols, new -> old_blocks,
1827 new -> start_addr, dip -> at_high_pc, objfile);
1828 list_in_scope = &file_symbols;
1829 }
1830
1831
1832 /*
1833
1834 LOCAL FUNCTION
1835
1836 handle_producer -- process the AT_producer attribute
1837
1838 DESCRIPTION
1839
1840 Perform any operations that depend on finding a particular
1841 AT_producer attribute.
1842
1843 */
1844
1845 static void
1846 handle_producer (producer)
1847 char *producer;
1848 {
1849
1850 /* If this compilation unit was compiled with g++ or gcc, then set the
1851 processing_gcc_compilation flag. */
1852
1853 processing_gcc_compilation =
1854 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1855 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1856 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1857
1858 /* Select a demangling style if we can identify the producer and if
1859 the current style is auto. We leave the current style alone if it
1860 is not auto. We also leave the demangling style alone if we find a
1861 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1862
1863 if (AUTO_DEMANGLING)
1864 {
1865 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1866 {
1867 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1868 }
1869 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1870 {
1871 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1872 }
1873 }
1874 }
1875
1876
1877 /*
1878
1879 LOCAL FUNCTION
1880
1881 read_file_scope -- process all dies within a file scope
1882
1883 DESCRIPTION
1884
1885 Process all dies within a given file scope. We are passed a
1886 pointer to the die information structure for the die which
1887 starts the file scope, and pointers into the raw die data which
1888 mark the range of dies within the file scope.
1889
1890 When the partial symbol table is built, the file offset for the line
1891 number table for each compilation unit is saved in the partial symbol
1892 table entry for that compilation unit. As the symbols for each
1893 compilation unit are read, the line number table is read into memory
1894 and the variable lnbase is set to point to it. Thus all we have to
1895 do is use lnbase to access the line number table for the current
1896 compilation unit.
1897 */
1898
1899 static void
1900 read_file_scope (dip, thisdie, enddie, objfile)
1901 struct dieinfo *dip;
1902 char *thisdie;
1903 char *enddie;
1904 struct objfile *objfile;
1905 {
1906 struct cleanup *back_to;
1907 struct symtab *symtab;
1908
1909 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1910 objfile -> ei.entry_point < dip -> at_high_pc)
1911 {
1912 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1913 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1914 }
1915 set_cu_language (dip);
1916 if (dip -> at_producer != NULL)
1917 {
1918 handle_producer (dip -> at_producer);
1919 }
1920 numutypes = (enddie - thisdie) / 4;
1921 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1922 back_to = make_cleanup (free, utypes);
1923 memset (utypes, 0, numutypes * sizeof (struct type *));
1924 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1925 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1926 decode_line_numbers (lnbase);
1927 process_dies (thisdie + dip -> die_length, enddie, objfile);
1928
1929 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1930 if (symtab != NULL)
1931 {
1932 symtab -> language = cu_language;
1933 }
1934 do_cleanups (back_to);
1935 utypes = NULL;
1936 numutypes = 0;
1937 }
1938
1939 /*
1940
1941 LOCAL FUNCTION
1942
1943 process_dies -- process a range of DWARF Information Entries
1944
1945 SYNOPSIS
1946
1947 static void process_dies (char *thisdie, char *enddie,
1948 struct objfile *objfile)
1949
1950 DESCRIPTION
1951
1952 Process all DIE's in a specified range. May be (and almost
1953 certainly will be) called recursively.
1954 */
1955
1956 static void
1957 process_dies (thisdie, enddie, objfile)
1958 char *thisdie;
1959 char *enddie;
1960 struct objfile *objfile;
1961 {
1962 char *nextdie;
1963 struct dieinfo di;
1964
1965 while (thisdie < enddie)
1966 {
1967 basicdieinfo (&di, thisdie, objfile);
1968 if (di.die_length < SIZEOF_DIE_LENGTH)
1969 {
1970 break;
1971 }
1972 else if (di.die_tag == TAG_padding)
1973 {
1974 nextdie = thisdie + di.die_length;
1975 }
1976 else
1977 {
1978 completedieinfo (&di, objfile);
1979 if (di.at_sibling != 0)
1980 {
1981 nextdie = dbbase + di.at_sibling - dbroff;
1982 }
1983 else
1984 {
1985 nextdie = thisdie + di.die_length;
1986 }
1987 #ifdef SMASH_TEXT_ADDRESS
1988 /* I think that these are always text, not data, addresses. */
1989 SMASH_TEXT_ADDRESS (di.at_low_pc);
1990 SMASH_TEXT_ADDRESS (di.at_high_pc);
1991 #endif
1992 switch (di.die_tag)
1993 {
1994 case TAG_compile_unit:
1995 /* Skip Tag_compile_unit if we are already inside a compilation
1996 unit, we are unable to handle nested compilation units
1997 properly (FIXME). */
1998 if (current_subfile == NULL)
1999 read_file_scope (&di, thisdie, nextdie, objfile);
2000 else
2001 nextdie = thisdie + di.die_length;
2002 break;
2003 case TAG_global_subroutine:
2004 case TAG_subroutine:
2005 if (di.has_at_low_pc)
2006 {
2007 read_func_scope (&di, thisdie, nextdie, objfile);
2008 }
2009 break;
2010 case TAG_lexical_block:
2011 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2012 break;
2013 case TAG_class_type:
2014 case TAG_structure_type:
2015 case TAG_union_type:
2016 read_structure_scope (&di, thisdie, nextdie, objfile);
2017 break;
2018 case TAG_enumeration_type:
2019 read_enumeration (&di, thisdie, nextdie, objfile);
2020 break;
2021 case TAG_subroutine_type:
2022 read_subroutine_type (&di, thisdie, nextdie);
2023 break;
2024 case TAG_array_type:
2025 dwarf_read_array_type (&di);
2026 break;
2027 case TAG_pointer_type:
2028 read_tag_pointer_type (&di);
2029 break;
2030 case TAG_string_type:
2031 read_tag_string_type (&di);
2032 break;
2033 default:
2034 new_symbol (&di, objfile);
2035 break;
2036 }
2037 }
2038 thisdie = nextdie;
2039 }
2040 }
2041
2042 /*
2043
2044 LOCAL FUNCTION
2045
2046 decode_line_numbers -- decode a line number table fragment
2047
2048 SYNOPSIS
2049
2050 static void decode_line_numbers (char *tblscan, char *tblend,
2051 long length, long base, long line, long pc)
2052
2053 DESCRIPTION
2054
2055 Translate the DWARF line number information to gdb form.
2056
2057 The ".line" section contains one or more line number tables, one for
2058 each ".line" section from the objects that were linked.
2059
2060 The AT_stmt_list attribute for each TAG_source_file entry in the
2061 ".debug" section contains the offset into the ".line" section for the
2062 start of the table for that file.
2063
2064 The table itself has the following structure:
2065
2066 <table length><base address><source statement entry>
2067 4 bytes 4 bytes 10 bytes
2068
2069 The table length is the total size of the table, including the 4 bytes
2070 for the length information.
2071
2072 The base address is the address of the first instruction generated
2073 for the source file.
2074
2075 Each source statement entry has the following structure:
2076
2077 <line number><statement position><address delta>
2078 4 bytes 2 bytes 4 bytes
2079
2080 The line number is relative to the start of the file, starting with
2081 line 1.
2082
2083 The statement position either -1 (0xFFFF) or the number of characters
2084 from the beginning of the line to the beginning of the statement.
2085
2086 The address delta is the difference between the base address and
2087 the address of the first instruction for the statement.
2088
2089 Note that we must copy the bytes from the packed table to our local
2090 variables before attempting to use them, to avoid alignment problems
2091 on some machines, particularly RISC processors.
2092
2093 BUGS
2094
2095 Does gdb expect the line numbers to be sorted? They are now by
2096 chance/luck, but are not required to be. (FIXME)
2097
2098 The line with number 0 is unused, gdb apparently can discover the
2099 span of the last line some other way. How? (FIXME)
2100 */
2101
2102 static void
2103 decode_line_numbers (linetable)
2104 char *linetable;
2105 {
2106 char *tblscan;
2107 char *tblend;
2108 unsigned long length;
2109 unsigned long base;
2110 unsigned long line;
2111 unsigned long pc;
2112
2113 if (linetable != NULL)
2114 {
2115 tblscan = tblend = linetable;
2116 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2117 current_objfile);
2118 tblscan += SIZEOF_LINETBL_LENGTH;
2119 tblend += length;
2120 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2121 GET_UNSIGNED, current_objfile);
2122 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2123 base += baseaddr;
2124 while (tblscan < tblend)
2125 {
2126 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2127 current_objfile);
2128 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2129 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2130 current_objfile);
2131 tblscan += SIZEOF_LINETBL_DELTA;
2132 pc += base;
2133 if (line != 0)
2134 {
2135 record_line (current_subfile, line, pc);
2136 }
2137 }
2138 }
2139 }
2140
2141 /*
2142
2143 LOCAL FUNCTION
2144
2145 locval -- compute the value of a location attribute
2146
2147 SYNOPSIS
2148
2149 static int locval (char *loc)
2150
2151 DESCRIPTION
2152
2153 Given pointer to a string of bytes that define a location, compute
2154 the location and return the value.
2155 A location description containing no atoms indicates that the
2156 object is optimized out. The global optimized_out flag is set for
2157 those, the return value is meaningless.
2158
2159 When computing values involving the current value of the frame pointer,
2160 the value zero is used, which results in a value relative to the frame
2161 pointer, rather than the absolute value. This is what GDB wants
2162 anyway.
2163
2164 When the result is a register number, the global isreg flag is set,
2165 otherwise it is cleared. This is a kludge until we figure out a better
2166 way to handle the problem. Gdb's design does not mesh well with the
2167 DWARF notion of a location computing interpreter, which is a shame
2168 because the flexibility goes unused.
2169
2170 NOTES
2171
2172 Note that stack[0] is unused except as a default error return.
2173 Note that stack overflow is not yet handled.
2174 */
2175
2176 static int
2177 locval (loc)
2178 char *loc;
2179 {
2180 unsigned short nbytes;
2181 unsigned short locsize;
2182 auto long stack[64];
2183 int stacki;
2184 char *end;
2185 int loc_atom_code;
2186 int loc_value_size;
2187
2188 nbytes = attribute_size (AT_location);
2189 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2190 loc += nbytes;
2191 end = loc + locsize;
2192 stacki = 0;
2193 stack[stacki] = 0;
2194 isreg = 0;
2195 offreg = 0;
2196 optimized_out = 1;
2197 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2198 while (loc < end)
2199 {
2200 optimized_out = 0;
2201 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2202 current_objfile);
2203 loc += SIZEOF_LOC_ATOM_CODE;
2204 switch (loc_atom_code)
2205 {
2206 case 0:
2207 /* error */
2208 loc = end;
2209 break;
2210 case OP_REG:
2211 /* push register (number) */
2212 stack[++stacki]
2213 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2214 GET_UNSIGNED,
2215 current_objfile));
2216 loc += loc_value_size;
2217 isreg = 1;
2218 break;
2219 case OP_BASEREG:
2220 /* push value of register (number) */
2221 /* Actually, we compute the value as if register has 0, so the
2222 value ends up being the offset from that register. */
2223 offreg = 1;
2224 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2225 current_objfile);
2226 loc += loc_value_size;
2227 stack[++stacki] = 0;
2228 break;
2229 case OP_ADDR:
2230 /* push address (relocated address) */
2231 stack[++stacki] = target_to_host (loc, loc_value_size,
2232 GET_UNSIGNED, current_objfile);
2233 loc += loc_value_size;
2234 break;
2235 case OP_CONST:
2236 /* push constant (number) FIXME: signed or unsigned! */
2237 stack[++stacki] = target_to_host (loc, loc_value_size,
2238 GET_SIGNED, current_objfile);
2239 loc += loc_value_size;
2240 break;
2241 case OP_DEREF2:
2242 /* pop, deref and push 2 bytes (as a long) */
2243 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2244 break;
2245 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2246 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2247 break;
2248 case OP_ADD: /* pop top 2 items, add, push result */
2249 stack[stacki - 1] += stack[stacki];
2250 stacki--;
2251 break;
2252 }
2253 }
2254 return (stack[stacki]);
2255 }
2256
2257 /*
2258
2259 LOCAL FUNCTION
2260
2261 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2262
2263 SYNOPSIS
2264
2265 static void read_ofile_symtab (struct partial_symtab *pst)
2266
2267 DESCRIPTION
2268
2269 When expanding a partial symbol table entry to a full symbol table
2270 entry, this is the function that gets called to read in the symbols
2271 for the compilation unit. A pointer to the newly constructed symtab,
2272 which is now the new first one on the objfile's symtab list, is
2273 stashed in the partial symbol table entry.
2274 */
2275
2276 static void
2277 read_ofile_symtab (pst)
2278 struct partial_symtab *pst;
2279 {
2280 struct cleanup *back_to;
2281 unsigned long lnsize;
2282 file_ptr foffset;
2283 bfd *abfd;
2284 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2285
2286 abfd = pst -> objfile -> obfd;
2287 current_objfile = pst -> objfile;
2288
2289 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2290 unit, seek to the location in the file, and read in all the DIE's. */
2291
2292 diecount = 0;
2293 dbsize = DBLENGTH (pst);
2294 dbbase = xmalloc (dbsize);
2295 dbroff = DBROFF(pst);
2296 foffset = DBFOFF(pst) + dbroff;
2297 base_section_offsets = pst->section_offsets;
2298 baseaddr = ANOFFSET (pst->section_offsets, 0);
2299 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2300 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2301 {
2302 free (dbbase);
2303 error ("can't read DWARF data");
2304 }
2305 back_to = make_cleanup (free, dbbase);
2306
2307 /* If there is a line number table associated with this compilation unit
2308 then read the size of this fragment in bytes, from the fragment itself.
2309 Allocate a buffer for the fragment and read it in for future
2310 processing. */
2311
2312 lnbase = NULL;
2313 if (LNFOFF (pst))
2314 {
2315 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2316 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2317 sizeof (lnsizedata)))
2318 {
2319 error ("can't read DWARF line number table size");
2320 }
2321 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2322 GET_UNSIGNED, pst -> objfile);
2323 lnbase = xmalloc (lnsize);
2324 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2325 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2326 {
2327 free (lnbase);
2328 error ("can't read DWARF line numbers");
2329 }
2330 make_cleanup (free, lnbase);
2331 }
2332
2333 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2334 do_cleanups (back_to);
2335 current_objfile = NULL;
2336 pst -> symtab = pst -> objfile -> symtabs;
2337 }
2338
2339 /*
2340
2341 LOCAL FUNCTION
2342
2343 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2344
2345 SYNOPSIS
2346
2347 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2348
2349 DESCRIPTION
2350
2351 Called once for each partial symbol table entry that needs to be
2352 expanded into a full symbol table entry.
2353
2354 */
2355
2356 static void
2357 psymtab_to_symtab_1 (pst)
2358 struct partial_symtab *pst;
2359 {
2360 int i;
2361 struct cleanup *old_chain;
2362
2363 if (pst != NULL)
2364 {
2365 if (pst->readin)
2366 {
2367 warning ("psymtab for %s already read in. Shouldn't happen.",
2368 pst -> filename);
2369 }
2370 else
2371 {
2372 /* Read in all partial symtabs on which this one is dependent */
2373 for (i = 0; i < pst -> number_of_dependencies; i++)
2374 {
2375 if (!pst -> dependencies[i] -> readin)
2376 {
2377 /* Inform about additional files that need to be read in. */
2378 if (info_verbose)
2379 {
2380 fputs_filtered (" ", gdb_stdout);
2381 wrap_here ("");
2382 fputs_filtered ("and ", gdb_stdout);
2383 wrap_here ("");
2384 printf_filtered ("%s...",
2385 pst -> dependencies[i] -> filename);
2386 wrap_here ("");
2387 gdb_flush (gdb_stdout); /* Flush output */
2388 }
2389 psymtab_to_symtab_1 (pst -> dependencies[i]);
2390 }
2391 }
2392 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2393 {
2394 buildsym_init ();
2395 old_chain = make_cleanup (really_free_pendings, 0);
2396 read_ofile_symtab (pst);
2397 if (info_verbose)
2398 {
2399 printf_filtered ("%d DIE's, sorting...", diecount);
2400 wrap_here ("");
2401 gdb_flush (gdb_stdout);
2402 }
2403 sort_symtab_syms (pst -> symtab);
2404 do_cleanups (old_chain);
2405 }
2406 pst -> readin = 1;
2407 }
2408 }
2409 }
2410
2411 /*
2412
2413 LOCAL FUNCTION
2414
2415 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2416
2417 SYNOPSIS
2418
2419 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2420
2421 DESCRIPTION
2422
2423 This is the DWARF support entry point for building a full symbol
2424 table entry from a partial symbol table entry. We are passed a
2425 pointer to the partial symbol table entry that needs to be expanded.
2426
2427 */
2428
2429 static void
2430 dwarf_psymtab_to_symtab (pst)
2431 struct partial_symtab *pst;
2432 {
2433
2434 if (pst != NULL)
2435 {
2436 if (pst -> readin)
2437 {
2438 warning ("psymtab for %s already read in. Shouldn't happen.",
2439 pst -> filename);
2440 }
2441 else
2442 {
2443 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2444 {
2445 /* Print the message now, before starting serious work, to avoid
2446 disconcerting pauses. */
2447 if (info_verbose)
2448 {
2449 printf_filtered ("Reading in symbols for %s...",
2450 pst -> filename);
2451 gdb_flush (gdb_stdout);
2452 }
2453
2454 psymtab_to_symtab_1 (pst);
2455
2456 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2457 we need to do an equivalent or is this something peculiar to
2458 stabs/a.out format.
2459 Match with global symbols. This only needs to be done once,
2460 after all of the symtabs and dependencies have been read in.
2461 */
2462 scan_file_globals (pst -> objfile);
2463 #endif
2464
2465 /* Finish up the verbose info message. */
2466 if (info_verbose)
2467 {
2468 printf_filtered ("done.\n");
2469 gdb_flush (gdb_stdout);
2470 }
2471 }
2472 }
2473 }
2474 }
2475
2476 /*
2477
2478 LOCAL FUNCTION
2479
2480 add_enum_psymbol -- add enumeration members to partial symbol table
2481
2482 DESCRIPTION
2483
2484 Given pointer to a DIE that is known to be for an enumeration,
2485 extract the symbolic names of the enumeration members and add
2486 partial symbols for them.
2487 */
2488
2489 static void
2490 add_enum_psymbol (dip, objfile)
2491 struct dieinfo *dip;
2492 struct objfile *objfile;
2493 {
2494 char *scan;
2495 char *listend;
2496 unsigned short blocksz;
2497 int nbytes;
2498
2499 if ((scan = dip -> at_element_list) != NULL)
2500 {
2501 if (dip -> short_element_list)
2502 {
2503 nbytes = attribute_size (AT_short_element_list);
2504 }
2505 else
2506 {
2507 nbytes = attribute_size (AT_element_list);
2508 }
2509 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2510 scan += nbytes;
2511 listend = scan + blocksz;
2512 while (scan < listend)
2513 {
2514 scan += TARGET_FT_LONG_SIZE (objfile);
2515 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2516 objfile -> static_psymbols, 0, cu_language,
2517 objfile);
2518 scan += strlen (scan) + 1;
2519 }
2520 }
2521 }
2522
2523 /*
2524
2525 LOCAL FUNCTION
2526
2527 add_partial_symbol -- add symbol to partial symbol table
2528
2529 DESCRIPTION
2530
2531 Given a DIE, if it is one of the types that we want to
2532 add to a partial symbol table, finish filling in the die info
2533 and then add a partial symbol table entry for it.
2534
2535 NOTES
2536
2537 The caller must ensure that the DIE has a valid name attribute.
2538 */
2539
2540 static void
2541 add_partial_symbol (dip, objfile)
2542 struct dieinfo *dip;
2543 struct objfile *objfile;
2544 {
2545 switch (dip -> die_tag)
2546 {
2547 case TAG_global_subroutine:
2548 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2549 VAR_NAMESPACE, LOC_BLOCK,
2550 objfile -> global_psymbols,
2551 dip -> at_low_pc, cu_language, objfile);
2552 break;
2553 case TAG_global_variable:
2554 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2555 VAR_NAMESPACE, LOC_STATIC,
2556 objfile -> global_psymbols,
2557 0, cu_language, objfile);
2558 break;
2559 case TAG_subroutine:
2560 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2561 VAR_NAMESPACE, LOC_BLOCK,
2562 objfile -> static_psymbols,
2563 dip -> at_low_pc, cu_language, objfile);
2564 break;
2565 case TAG_local_variable:
2566 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2567 VAR_NAMESPACE, LOC_STATIC,
2568 objfile -> static_psymbols,
2569 0, cu_language, objfile);
2570 break;
2571 case TAG_typedef:
2572 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2573 VAR_NAMESPACE, LOC_TYPEDEF,
2574 objfile -> static_psymbols,
2575 0, cu_language, objfile);
2576 break;
2577 case TAG_class_type:
2578 case TAG_structure_type:
2579 case TAG_union_type:
2580 case TAG_enumeration_type:
2581 /* Do not add opaque aggregate definitions to the psymtab. */
2582 if (!dip -> has_at_byte_size)
2583 break;
2584 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2585 STRUCT_NAMESPACE, LOC_TYPEDEF,
2586 objfile -> static_psymbols,
2587 0, cu_language, objfile);
2588 if (cu_language == language_cplus)
2589 {
2590 /* For C++, these implicitly act as typedefs as well. */
2591 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2592 VAR_NAMESPACE, LOC_TYPEDEF,
2593 objfile -> static_psymbols,
2594 0, cu_language, objfile);
2595 }
2596 break;
2597 }
2598 }
2599
2600 /*
2601
2602 LOCAL FUNCTION
2603
2604 scan_partial_symbols -- scan DIE's within a single compilation unit
2605
2606 DESCRIPTION
2607
2608 Process the DIE's within a single compilation unit, looking for
2609 interesting DIE's that contribute to the partial symbol table entry
2610 for this compilation unit.
2611
2612 NOTES
2613
2614 There are some DIE's that may appear both at file scope and within
2615 the scope of a function. We are only interested in the ones at file
2616 scope, and the only way to tell them apart is to keep track of the
2617 scope. For example, consider the test case:
2618
2619 static int i;
2620 main () { int j; }
2621
2622 for which the relevant DWARF segment has the structure:
2623
2624 0x51:
2625 0x23 global subrtn sibling 0x9b
2626 name main
2627 fund_type FT_integer
2628 low_pc 0x800004cc
2629 high_pc 0x800004d4
2630
2631 0x74:
2632 0x23 local var sibling 0x97
2633 name j
2634 fund_type FT_integer
2635 location OP_BASEREG 0xe
2636 OP_CONST 0xfffffffc
2637 OP_ADD
2638 0x97:
2639 0x4
2640
2641 0x9b:
2642 0x1d local var sibling 0xb8
2643 name i
2644 fund_type FT_integer
2645 location OP_ADDR 0x800025dc
2646
2647 0xb8:
2648 0x4
2649
2650 We want to include the symbol 'i' in the partial symbol table, but
2651 not the symbol 'j'. In essence, we want to skip all the dies within
2652 the scope of a TAG_global_subroutine DIE.
2653
2654 Don't attempt to add anonymous structures or unions since they have
2655 no name. Anonymous enumerations however are processed, because we
2656 want to extract their member names (the check for a tag name is
2657 done later).
2658
2659 Also, for variables and subroutines, check that this is the place
2660 where the actual definition occurs, rather than just a reference
2661 to an external.
2662 */
2663
2664 static void
2665 scan_partial_symbols (thisdie, enddie, objfile)
2666 char *thisdie;
2667 char *enddie;
2668 struct objfile *objfile;
2669 {
2670 char *nextdie;
2671 char *temp;
2672 struct dieinfo di;
2673
2674 while (thisdie < enddie)
2675 {
2676 basicdieinfo (&di, thisdie, objfile);
2677 if (di.die_length < SIZEOF_DIE_LENGTH)
2678 {
2679 break;
2680 }
2681 else
2682 {
2683 nextdie = thisdie + di.die_length;
2684 /* To avoid getting complete die information for every die, we
2685 only do it (below) for the cases we are interested in. */
2686 switch (di.die_tag)
2687 {
2688 case TAG_global_subroutine:
2689 case TAG_subroutine:
2690 completedieinfo (&di, objfile);
2691 if (di.at_name && (di.has_at_low_pc || di.at_location))
2692 {
2693 add_partial_symbol (&di, objfile);
2694 /* If there is a sibling attribute, adjust the nextdie
2695 pointer to skip the entire scope of the subroutine.
2696 Apply some sanity checking to make sure we don't
2697 overrun or underrun the range of remaining DIE's */
2698 if (di.at_sibling != 0)
2699 {
2700 temp = dbbase + di.at_sibling - dbroff;
2701 if ((temp < thisdie) || (temp >= enddie))
2702 {
2703 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2704 di.at_sibling);
2705 }
2706 else
2707 {
2708 nextdie = temp;
2709 }
2710 }
2711 }
2712 break;
2713 case TAG_global_variable:
2714 case TAG_local_variable:
2715 completedieinfo (&di, objfile);
2716 if (di.at_name && (di.has_at_low_pc || di.at_location))
2717 {
2718 add_partial_symbol (&di, objfile);
2719 }
2720 break;
2721 case TAG_typedef:
2722 case TAG_class_type:
2723 case TAG_structure_type:
2724 case TAG_union_type:
2725 completedieinfo (&di, objfile);
2726 if (di.at_name)
2727 {
2728 add_partial_symbol (&di, objfile);
2729 }
2730 break;
2731 case TAG_enumeration_type:
2732 completedieinfo (&di, objfile);
2733 if (di.at_name)
2734 {
2735 add_partial_symbol (&di, objfile);
2736 }
2737 add_enum_psymbol (&di, objfile);
2738 break;
2739 }
2740 }
2741 thisdie = nextdie;
2742 }
2743 }
2744
2745 /*
2746
2747 LOCAL FUNCTION
2748
2749 scan_compilation_units -- build a psymtab entry for each compilation
2750
2751 DESCRIPTION
2752
2753 This is the top level dwarf parsing routine for building partial
2754 symbol tables.
2755
2756 It scans from the beginning of the DWARF table looking for the first
2757 TAG_compile_unit DIE, and then follows the sibling chain to locate
2758 each additional TAG_compile_unit DIE.
2759
2760 For each TAG_compile_unit DIE it creates a partial symtab structure,
2761 calls a subordinate routine to collect all the compilation unit's
2762 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2763 new partial symtab structure into the partial symbol table. It also
2764 records the appropriate information in the partial symbol table entry
2765 to allow the chunk of DIE's and line number table for this compilation
2766 unit to be located and re-read later, to generate a complete symbol
2767 table entry for the compilation unit.
2768
2769 Thus it effectively partitions up a chunk of DIE's for multiple
2770 compilation units into smaller DIE chunks and line number tables,
2771 and associates them with a partial symbol table entry.
2772
2773 NOTES
2774
2775 If any compilation unit has no line number table associated with
2776 it for some reason (a missing at_stmt_list attribute, rather than
2777 just one with a value of zero, which is valid) then we ensure that
2778 the recorded file offset is zero so that the routine which later
2779 reads line number table fragments knows that there is no fragment
2780 to read.
2781
2782 RETURNS
2783
2784 Returns no value.
2785
2786 */
2787
2788 static void
2789 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2790 char *thisdie;
2791 char *enddie;
2792 file_ptr dbfoff;
2793 file_ptr lnoffset;
2794 struct objfile *objfile;
2795 {
2796 char *nextdie;
2797 struct dieinfo di;
2798 struct partial_symtab *pst;
2799 int culength;
2800 int curoff;
2801 file_ptr curlnoffset;
2802
2803 while (thisdie < enddie)
2804 {
2805 basicdieinfo (&di, thisdie, objfile);
2806 if (di.die_length < SIZEOF_DIE_LENGTH)
2807 {
2808 break;
2809 }
2810 else if (di.die_tag != TAG_compile_unit)
2811 {
2812 nextdie = thisdie + di.die_length;
2813 }
2814 else
2815 {
2816 completedieinfo (&di, objfile);
2817 set_cu_language (&di);
2818 if (di.at_sibling != 0)
2819 {
2820 nextdie = dbbase + di.at_sibling - dbroff;
2821 }
2822 else
2823 {
2824 nextdie = thisdie + di.die_length;
2825 }
2826 curoff = thisdie - dbbase;
2827 culength = nextdie - thisdie;
2828 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2829
2830 /* First allocate a new partial symbol table structure */
2831
2832 pst = start_psymtab_common (objfile, base_section_offsets,
2833 di.at_name, di.at_low_pc,
2834 objfile -> global_psymbols.next,
2835 objfile -> static_psymbols.next);
2836
2837 pst -> texthigh = di.at_high_pc;
2838 pst -> read_symtab_private = (char *)
2839 obstack_alloc (&objfile -> psymbol_obstack,
2840 sizeof (struct dwfinfo));
2841 DBFOFF (pst) = dbfoff;
2842 DBROFF (pst) = curoff;
2843 DBLENGTH (pst) = culength;
2844 LNFOFF (pst) = curlnoffset;
2845 pst -> read_symtab = dwarf_psymtab_to_symtab;
2846
2847 /* Now look for partial symbols */
2848
2849 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2850
2851 pst -> n_global_syms = objfile -> global_psymbols.next -
2852 (objfile -> global_psymbols.list + pst -> globals_offset);
2853 pst -> n_static_syms = objfile -> static_psymbols.next -
2854 (objfile -> static_psymbols.list + pst -> statics_offset);
2855 sort_pst_symbols (pst);
2856 /* If there is already a psymtab or symtab for a file of this name,
2857 remove it. (If there is a symtab, more drastic things also
2858 happen.) This happens in VxWorks. */
2859 free_named_symtabs (pst -> filename);
2860 }
2861 thisdie = nextdie;
2862 }
2863 }
2864
2865 /*
2866
2867 LOCAL FUNCTION
2868
2869 new_symbol -- make a symbol table entry for a new symbol
2870
2871 SYNOPSIS
2872
2873 static struct symbol *new_symbol (struct dieinfo *dip,
2874 struct objfile *objfile)
2875
2876 DESCRIPTION
2877
2878 Given a pointer to a DWARF information entry, figure out if we need
2879 to make a symbol table entry for it, and if so, create a new entry
2880 and return a pointer to it.
2881 */
2882
2883 static struct symbol *
2884 new_symbol (dip, objfile)
2885 struct dieinfo *dip;
2886 struct objfile *objfile;
2887 {
2888 struct symbol *sym = NULL;
2889
2890 if (dip -> at_name != NULL)
2891 {
2892 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2893 sizeof (struct symbol));
2894 OBJSTAT (objfile, n_syms++);
2895 memset (sym, 0, sizeof (struct symbol));
2896 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2897 &objfile->symbol_obstack);
2898 /* default assumptions */
2899 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2900 SYMBOL_CLASS (sym) = LOC_STATIC;
2901 SYMBOL_TYPE (sym) = decode_die_type (dip);
2902
2903 /* If this symbol is from a C++ compilation, then attempt to cache the
2904 demangled form for future reference. This is a typical time versus
2905 space tradeoff, that was decided in favor of time because it sped up
2906 C++ symbol lookups by a factor of about 20. */
2907
2908 SYMBOL_LANGUAGE (sym) = cu_language;
2909 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2910 switch (dip -> die_tag)
2911 {
2912 case TAG_label:
2913 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2914 SYMBOL_CLASS (sym) = LOC_LABEL;
2915 break;
2916 case TAG_global_subroutine:
2917 case TAG_subroutine:
2918 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2919 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2920 SYMBOL_CLASS (sym) = LOC_BLOCK;
2921 if (dip -> die_tag == TAG_global_subroutine)
2922 {
2923 add_symbol_to_list (sym, &global_symbols);
2924 }
2925 else
2926 {
2927 add_symbol_to_list (sym, list_in_scope);
2928 }
2929 break;
2930 case TAG_global_variable:
2931 if (dip -> at_location != NULL)
2932 {
2933 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2934 add_symbol_to_list (sym, &global_symbols);
2935 SYMBOL_CLASS (sym) = LOC_STATIC;
2936 SYMBOL_VALUE (sym) += baseaddr;
2937 }
2938 break;
2939 case TAG_local_variable:
2940 if (dip -> at_location != NULL)
2941 {
2942 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2943 add_symbol_to_list (sym, list_in_scope);
2944 if (optimized_out)
2945 {
2946 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2947 }
2948 else if (isreg)
2949 {
2950 SYMBOL_CLASS (sym) = LOC_REGISTER;
2951 }
2952 else if (offreg)
2953 {
2954 SYMBOL_CLASS (sym) = LOC_BASEREG;
2955 SYMBOL_BASEREG (sym) = basereg;
2956 }
2957 else
2958 {
2959 SYMBOL_CLASS (sym) = LOC_STATIC;
2960 SYMBOL_VALUE (sym) += baseaddr;
2961 }
2962 }
2963 break;
2964 case TAG_formal_parameter:
2965 if (dip -> at_location != NULL)
2966 {
2967 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2968 }
2969 add_symbol_to_list (sym, list_in_scope);
2970 if (isreg)
2971 {
2972 SYMBOL_CLASS (sym) = LOC_REGPARM;
2973 }
2974 else if (offreg)
2975 {
2976 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2977 SYMBOL_BASEREG (sym) = basereg;
2978 }
2979 else
2980 {
2981 SYMBOL_CLASS (sym) = LOC_ARG;
2982 }
2983 break;
2984 case TAG_unspecified_parameters:
2985 /* From varargs functions; gdb doesn't seem to have any interest in
2986 this information, so just ignore it for now. (FIXME?) */
2987 break;
2988 case TAG_class_type:
2989 case TAG_structure_type:
2990 case TAG_union_type:
2991 case TAG_enumeration_type:
2992 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2993 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2994 add_symbol_to_list (sym, list_in_scope);
2995 break;
2996 case TAG_typedef:
2997 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2998 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2999 add_symbol_to_list (sym, list_in_scope);
3000 break;
3001 default:
3002 /* Not a tag we recognize. Hopefully we aren't processing trash
3003 data, but since we must specifically ignore things we don't
3004 recognize, there is nothing else we should do at this point. */
3005 break;
3006 }
3007 }
3008 return (sym);
3009 }
3010
3011 /*
3012
3013 LOCAL FUNCTION
3014
3015 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3016
3017 SYNOPSIS
3018
3019 static void synthesize_typedef (struct dieinfo *dip,
3020 struct objfile *objfile,
3021 struct type *type);
3022
3023 DESCRIPTION
3024
3025 Given a pointer to a DWARF information entry, synthesize a typedef
3026 for the name in the DIE, using the specified type.
3027
3028 This is used for C++ class, structs, unions, and enumerations to
3029 set up the tag name as a type.
3030
3031 */
3032
3033 static void
3034 synthesize_typedef (dip, objfile, type)
3035 struct dieinfo *dip;
3036 struct objfile *objfile;
3037 struct type *type;
3038 {
3039 struct symbol *sym = NULL;
3040
3041 if (dip -> at_name != NULL)
3042 {
3043 sym = (struct symbol *)
3044 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3045 OBJSTAT (objfile, n_syms++);
3046 memset (sym, 0, sizeof (struct symbol));
3047 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3048 &objfile->symbol_obstack);
3049 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3050 SYMBOL_TYPE (sym) = type;
3051 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3052 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3053 add_symbol_to_list (sym, list_in_scope);
3054 }
3055 }
3056
3057 /*
3058
3059 LOCAL FUNCTION
3060
3061 decode_mod_fund_type -- decode a modified fundamental type
3062
3063 SYNOPSIS
3064
3065 static struct type *decode_mod_fund_type (char *typedata)
3066
3067 DESCRIPTION
3068
3069 Decode a block of data containing a modified fundamental
3070 type specification. TYPEDATA is a pointer to the block,
3071 which starts with a length containing the size of the rest
3072 of the block. At the end of the block is a fundmental type
3073 code value that gives the fundamental type. Everything
3074 in between are type modifiers.
3075
3076 We simply compute the number of modifiers and call the general
3077 function decode_modified_type to do the actual work.
3078 */
3079
3080 static struct type *
3081 decode_mod_fund_type (typedata)
3082 char *typedata;
3083 {
3084 struct type *typep = NULL;
3085 unsigned short modcount;
3086 int nbytes;
3087
3088 /* Get the total size of the block, exclusive of the size itself */
3089
3090 nbytes = attribute_size (AT_mod_fund_type);
3091 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3092 typedata += nbytes;
3093
3094 /* Deduct the size of the fundamental type bytes at the end of the block. */
3095
3096 modcount -= attribute_size (AT_fund_type);
3097
3098 /* Now do the actual decoding */
3099
3100 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3101 return (typep);
3102 }
3103
3104 /*
3105
3106 LOCAL FUNCTION
3107
3108 decode_mod_u_d_type -- decode a modified user defined type
3109
3110 SYNOPSIS
3111
3112 static struct type *decode_mod_u_d_type (char *typedata)
3113
3114 DESCRIPTION
3115
3116 Decode a block of data containing a modified user defined
3117 type specification. TYPEDATA is a pointer to the block,
3118 which consists of a two byte length, containing the size
3119 of the rest of the block. At the end of the block is a
3120 four byte value that gives a reference to a user defined type.
3121 Everything in between are type modifiers.
3122
3123 We simply compute the number of modifiers and call the general
3124 function decode_modified_type to do the actual work.
3125 */
3126
3127 static struct type *
3128 decode_mod_u_d_type (typedata)
3129 char *typedata;
3130 {
3131 struct type *typep = NULL;
3132 unsigned short modcount;
3133 int nbytes;
3134
3135 /* Get the total size of the block, exclusive of the size itself */
3136
3137 nbytes = attribute_size (AT_mod_u_d_type);
3138 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3139 typedata += nbytes;
3140
3141 /* Deduct the size of the reference type bytes at the end of the block. */
3142
3143 modcount -= attribute_size (AT_user_def_type);
3144
3145 /* Now do the actual decoding */
3146
3147 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3148 return (typep);
3149 }
3150
3151 /*
3152
3153 LOCAL FUNCTION
3154
3155 decode_modified_type -- decode modified user or fundamental type
3156
3157 SYNOPSIS
3158
3159 static struct type *decode_modified_type (char *modifiers,
3160 unsigned short modcount, int mtype)
3161
3162 DESCRIPTION
3163
3164 Decode a modified type, either a modified fundamental type or
3165 a modified user defined type. MODIFIERS is a pointer to the
3166 block of bytes that define MODCOUNT modifiers. Immediately
3167 following the last modifier is a short containing the fundamental
3168 type or a long containing the reference to the user defined
3169 type. Which one is determined by MTYPE, which is either
3170 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3171 type we are generating.
3172
3173 We call ourself recursively to generate each modified type,`
3174 until MODCOUNT reaches zero, at which point we have consumed
3175 all the modifiers and generate either the fundamental type or
3176 user defined type. When the recursion unwinds, each modifier
3177 is applied in turn to generate the full modified type.
3178
3179 NOTES
3180
3181 If we find a modifier that we don't recognize, and it is not one
3182 of those reserved for application specific use, then we issue a
3183 warning and simply ignore the modifier.
3184
3185 BUGS
3186
3187 We currently ignore MOD_const and MOD_volatile. (FIXME)
3188
3189 */
3190
3191 static struct type *
3192 decode_modified_type (modifiers, modcount, mtype)
3193 char *modifiers;
3194 unsigned int modcount;
3195 int mtype;
3196 {
3197 struct type *typep = NULL;
3198 unsigned short fundtype;
3199 DIE_REF die_ref;
3200 char modifier;
3201 int nbytes;
3202
3203 if (modcount == 0)
3204 {
3205 switch (mtype)
3206 {
3207 case AT_mod_fund_type:
3208 nbytes = attribute_size (AT_fund_type);
3209 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3210 current_objfile);
3211 typep = decode_fund_type (fundtype);
3212 break;
3213 case AT_mod_u_d_type:
3214 nbytes = attribute_size (AT_user_def_type);
3215 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3216 current_objfile);
3217 if ((typep = lookup_utype (die_ref)) == NULL)
3218 {
3219 typep = alloc_utype (die_ref, NULL);
3220 }
3221 break;
3222 default:
3223 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3224 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3225 break;
3226 }
3227 }
3228 else
3229 {
3230 modifier = *modifiers++;
3231 typep = decode_modified_type (modifiers, --modcount, mtype);
3232 switch (modifier)
3233 {
3234 case MOD_pointer_to:
3235 typep = lookup_pointer_type (typep);
3236 break;
3237 case MOD_reference_to:
3238 typep = lookup_reference_type (typep);
3239 break;
3240 case MOD_const:
3241 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3242 break;
3243 case MOD_volatile:
3244 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3245 break;
3246 default:
3247 if (!(MOD_lo_user <= (unsigned char) modifier
3248 && (unsigned char) modifier <= MOD_hi_user))
3249 {
3250 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3251 }
3252 break;
3253 }
3254 }
3255 return (typep);
3256 }
3257
3258 /*
3259
3260 LOCAL FUNCTION
3261
3262 decode_fund_type -- translate basic DWARF type to gdb base type
3263
3264 DESCRIPTION
3265
3266 Given an integer that is one of the fundamental DWARF types,
3267 translate it to one of the basic internal gdb types and return
3268 a pointer to the appropriate gdb type (a "struct type *").
3269
3270 NOTES
3271
3272 For robustness, if we are asked to translate a fundamental
3273 type that we are unprepared to deal with, we return int so
3274 callers can always depend upon a valid type being returned,
3275 and so gdb may at least do something reasonable by default.
3276 If the type is not in the range of those types defined as
3277 application specific types, we also issue a warning.
3278 */
3279
3280 static struct type *
3281 decode_fund_type (fundtype)
3282 unsigned int fundtype;
3283 {
3284 struct type *typep = NULL;
3285
3286 switch (fundtype)
3287 {
3288
3289 case FT_void:
3290 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3291 break;
3292
3293 case FT_boolean: /* Was FT_set in AT&T version */
3294 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3295 break;
3296
3297 case FT_pointer: /* (void *) */
3298 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3299 typep = lookup_pointer_type (typep);
3300 break;
3301
3302 case FT_char:
3303 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3304 break;
3305
3306 case FT_signed_char:
3307 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3308 break;
3309
3310 case FT_unsigned_char:
3311 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3312 break;
3313
3314 case FT_short:
3315 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3316 break;
3317
3318 case FT_signed_short:
3319 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3320 break;
3321
3322 case FT_unsigned_short:
3323 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3324 break;
3325
3326 case FT_integer:
3327 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3328 break;
3329
3330 case FT_signed_integer:
3331 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3332 break;
3333
3334 case FT_unsigned_integer:
3335 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3336 break;
3337
3338 case FT_long:
3339 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3340 break;
3341
3342 case FT_signed_long:
3343 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3344 break;
3345
3346 case FT_unsigned_long:
3347 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3348 break;
3349
3350 case FT_long_long:
3351 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3352 break;
3353
3354 case FT_signed_long_long:
3355 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3356 break;
3357
3358 case FT_unsigned_long_long:
3359 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3360 break;
3361
3362 case FT_float:
3363 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3364 break;
3365
3366 case FT_dbl_prec_float:
3367 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3368 break;
3369
3370 case FT_ext_prec_float:
3371 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3372 break;
3373
3374 case FT_complex:
3375 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3376 break;
3377
3378 case FT_dbl_prec_complex:
3379 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3380 break;
3381
3382 case FT_ext_prec_complex:
3383 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3384 break;
3385
3386 }
3387
3388 if (typep == NULL)
3389 {
3390 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3391 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3392 {
3393 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3394 }
3395 }
3396
3397 return (typep);
3398 }
3399
3400 /*
3401
3402 LOCAL FUNCTION
3403
3404 create_name -- allocate a fresh copy of a string on an obstack
3405
3406 DESCRIPTION
3407
3408 Given a pointer to a string and a pointer to an obstack, allocates
3409 a fresh copy of the string on the specified obstack.
3410
3411 */
3412
3413 static char *
3414 create_name (name, obstackp)
3415 char *name;
3416 struct obstack *obstackp;
3417 {
3418 int length;
3419 char *newname;
3420
3421 length = strlen (name) + 1;
3422 newname = (char *) obstack_alloc (obstackp, length);
3423 strcpy (newname, name);
3424 return (newname);
3425 }
3426
3427 /*
3428
3429 LOCAL FUNCTION
3430
3431 basicdieinfo -- extract the minimal die info from raw die data
3432
3433 SYNOPSIS
3434
3435 void basicdieinfo (char *diep, struct dieinfo *dip,
3436 struct objfile *objfile)
3437
3438 DESCRIPTION
3439
3440 Given a pointer to raw DIE data, and a pointer to an instance of a
3441 die info structure, this function extracts the basic information
3442 from the DIE data required to continue processing this DIE, along
3443 with some bookkeeping information about the DIE.
3444
3445 The information we absolutely must have includes the DIE tag,
3446 and the DIE length. If we need the sibling reference, then we
3447 will have to call completedieinfo() to process all the remaining
3448 DIE information.
3449
3450 Note that since there is no guarantee that the data is properly
3451 aligned in memory for the type of access required (indirection
3452 through anything other than a char pointer), and there is no
3453 guarantee that it is in the same byte order as the gdb host,
3454 we call a function which deals with both alignment and byte
3455 swapping issues. Possibly inefficient, but quite portable.
3456
3457 We also take care of some other basic things at this point, such
3458 as ensuring that the instance of the die info structure starts
3459 out completely zero'd and that curdie is initialized for use
3460 in error reporting if we have a problem with the current die.
3461
3462 NOTES
3463
3464 All DIE's must have at least a valid length, thus the minimum
3465 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3466 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3467 are forced to be TAG_padding DIES.
3468
3469 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3470 that if a padding DIE is used for alignment and the amount needed is
3471 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3472 enough to align to the next alignment boundry.
3473
3474 We do some basic sanity checking here, such as verifying that the
3475 length of the die would not cause it to overrun the recorded end of
3476 the buffer holding the DIE info. If we find a DIE that is either
3477 too small or too large, we force it's length to zero which should
3478 cause the caller to take appropriate action.
3479 */
3480
3481 static void
3482 basicdieinfo (dip, diep, objfile)
3483 struct dieinfo *dip;
3484 char *diep;
3485 struct objfile *objfile;
3486 {
3487 curdie = dip;
3488 memset (dip, 0, sizeof (struct dieinfo));
3489 dip -> die = diep;
3490 dip -> die_ref = dbroff + (diep - dbbase);
3491 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3492 objfile);
3493 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3494 ((diep + dip -> die_length) > (dbbase + dbsize)))
3495 {
3496 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3497 dip -> die_length = 0;
3498 }
3499 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3500 {
3501 dip -> die_tag = TAG_padding;
3502 }
3503 else
3504 {
3505 diep += SIZEOF_DIE_LENGTH;
3506 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3507 objfile);
3508 }
3509 }
3510
3511 /*
3512
3513 LOCAL FUNCTION
3514
3515 completedieinfo -- finish reading the information for a given DIE
3516
3517 SYNOPSIS
3518
3519 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3520
3521 DESCRIPTION
3522
3523 Given a pointer to an already partially initialized die info structure,
3524 scan the raw DIE data and finish filling in the die info structure
3525 from the various attributes found.
3526
3527 Note that since there is no guarantee that the data is properly
3528 aligned in memory for the type of access required (indirection
3529 through anything other than a char pointer), and there is no
3530 guarantee that it is in the same byte order as the gdb host,
3531 we call a function which deals with both alignment and byte
3532 swapping issues. Possibly inefficient, but quite portable.
3533
3534 NOTES
3535
3536 Each time we are called, we increment the diecount variable, which
3537 keeps an approximate count of the number of dies processed for
3538 each compilation unit. This information is presented to the user
3539 if the info_verbose flag is set.
3540
3541 */
3542
3543 static void
3544 completedieinfo (dip, objfile)
3545 struct dieinfo *dip;
3546 struct objfile *objfile;
3547 {
3548 char *diep; /* Current pointer into raw DIE data */
3549 char *end; /* Terminate DIE scan here */
3550 unsigned short attr; /* Current attribute being scanned */
3551 unsigned short form; /* Form of the attribute */
3552 int nbytes; /* Size of next field to read */
3553
3554 diecount++;
3555 diep = dip -> die;
3556 end = diep + dip -> die_length;
3557 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3558 while (diep < end)
3559 {
3560 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3561 diep += SIZEOF_ATTRIBUTE;
3562 if ((nbytes = attribute_size (attr)) == -1)
3563 {
3564 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3565 diep = end;
3566 continue;
3567 }
3568 switch (attr)
3569 {
3570 case AT_fund_type:
3571 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3572 objfile);
3573 break;
3574 case AT_ordering:
3575 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3576 objfile);
3577 break;
3578 case AT_bit_offset:
3579 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3580 objfile);
3581 break;
3582 case AT_sibling:
3583 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3584 objfile);
3585 break;
3586 case AT_stmt_list:
3587 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3588 objfile);
3589 dip -> has_at_stmt_list = 1;
3590 break;
3591 case AT_low_pc:
3592 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3593 objfile);
3594 dip -> at_low_pc += baseaddr;
3595 dip -> has_at_low_pc = 1;
3596 break;
3597 case AT_high_pc:
3598 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3599 objfile);
3600 dip -> at_high_pc += baseaddr;
3601 break;
3602 case AT_language:
3603 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3604 objfile);
3605 break;
3606 case AT_user_def_type:
3607 dip -> at_user_def_type = target_to_host (diep, nbytes,
3608 GET_UNSIGNED, objfile);
3609 break;
3610 case AT_byte_size:
3611 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3612 objfile);
3613 dip -> has_at_byte_size = 1;
3614 break;
3615 case AT_bit_size:
3616 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3617 objfile);
3618 break;
3619 case AT_member:
3620 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3621 objfile);
3622 break;
3623 case AT_discr:
3624 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3625 objfile);
3626 break;
3627 case AT_location:
3628 dip -> at_location = diep;
3629 break;
3630 case AT_mod_fund_type:
3631 dip -> at_mod_fund_type = diep;
3632 break;
3633 case AT_subscr_data:
3634 dip -> at_subscr_data = diep;
3635 break;
3636 case AT_mod_u_d_type:
3637 dip -> at_mod_u_d_type = diep;
3638 break;
3639 case AT_element_list:
3640 dip -> at_element_list = diep;
3641 dip -> short_element_list = 0;
3642 break;
3643 case AT_short_element_list:
3644 dip -> at_element_list = diep;
3645 dip -> short_element_list = 1;
3646 break;
3647 case AT_discr_value:
3648 dip -> at_discr_value = diep;
3649 break;
3650 case AT_string_length:
3651 dip -> at_string_length = diep;
3652 break;
3653 case AT_name:
3654 dip -> at_name = diep;
3655 break;
3656 case AT_comp_dir:
3657 /* For now, ignore any "hostname:" portion, since gdb doesn't
3658 know how to deal with it. (FIXME). */
3659 dip -> at_comp_dir = strrchr (diep, ':');
3660 if (dip -> at_comp_dir != NULL)
3661 {
3662 dip -> at_comp_dir++;
3663 }
3664 else
3665 {
3666 dip -> at_comp_dir = diep;
3667 }
3668 break;
3669 case AT_producer:
3670 dip -> at_producer = diep;
3671 break;
3672 case AT_start_scope:
3673 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3674 objfile);
3675 break;
3676 case AT_stride_size:
3677 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3678 objfile);
3679 break;
3680 case AT_src_info:
3681 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3682 objfile);
3683 break;
3684 case AT_prototyped:
3685 dip -> at_prototyped = diep;
3686 break;
3687 default:
3688 /* Found an attribute that we are unprepared to handle. However
3689 it is specifically one of the design goals of DWARF that
3690 consumers should ignore unknown attributes. As long as the
3691 form is one that we recognize (so we know how to skip it),
3692 we can just ignore the unknown attribute. */
3693 break;
3694 }
3695 form = FORM_FROM_ATTR (attr);
3696 switch (form)
3697 {
3698 case FORM_DATA2:
3699 diep += 2;
3700 break;
3701 case FORM_DATA4:
3702 case FORM_REF:
3703 diep += 4;
3704 break;
3705 case FORM_DATA8:
3706 diep += 8;
3707 break;
3708 case FORM_ADDR:
3709 diep += TARGET_FT_POINTER_SIZE (objfile);
3710 break;
3711 case FORM_BLOCK2:
3712 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3713 break;
3714 case FORM_BLOCK4:
3715 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3716 break;
3717 case FORM_STRING:
3718 diep += strlen (diep) + 1;
3719 break;
3720 default:
3721 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3722 diep = end;
3723 break;
3724 }
3725 }
3726 }
3727
3728 /*
3729
3730 LOCAL FUNCTION
3731
3732 target_to_host -- swap in target data to host
3733
3734 SYNOPSIS
3735
3736 target_to_host (char *from, int nbytes, int signextend,
3737 struct objfile *objfile)
3738
3739 DESCRIPTION
3740
3741 Given pointer to data in target format in FROM, a byte count for
3742 the size of the data in NBYTES, a flag indicating whether or not
3743 the data is signed in SIGNEXTEND, and a pointer to the current
3744 objfile in OBJFILE, convert the data to host format and return
3745 the converted value.
3746
3747 NOTES
3748
3749 FIXME: If we read data that is known to be signed, and expect to
3750 use it as signed data, then we need to explicitly sign extend the
3751 result until the bfd library is able to do this for us.
3752
3753 FIXME: Would a 32 bit target ever need an 8 byte result?
3754
3755 */
3756
3757 static CORE_ADDR
3758 target_to_host (from, nbytes, signextend, objfile)
3759 char *from;
3760 int nbytes;
3761 int signextend; /* FIXME: Unused */
3762 struct objfile *objfile;
3763 {
3764 CORE_ADDR rtnval;
3765
3766 switch (nbytes)
3767 {
3768 case 8:
3769 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3770 break;
3771 case 4:
3772 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3773 break;
3774 case 2:
3775 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3776 break;
3777 case 1:
3778 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3779 break;
3780 default:
3781 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3782 rtnval = 0;
3783 break;
3784 }
3785 return (rtnval);
3786 }
3787
3788 /*
3789
3790 LOCAL FUNCTION
3791
3792 attribute_size -- compute size of data for a DWARF attribute
3793
3794 SYNOPSIS
3795
3796 static int attribute_size (unsigned int attr)
3797
3798 DESCRIPTION
3799
3800 Given a DWARF attribute in ATTR, compute the size of the first
3801 piece of data associated with this attribute and return that
3802 size.
3803
3804 Returns -1 for unrecognized attributes.
3805
3806 */
3807
3808 static int
3809 attribute_size (attr)
3810 unsigned int attr;
3811 {
3812 int nbytes; /* Size of next data for this attribute */
3813 unsigned short form; /* Form of the attribute */
3814
3815 form = FORM_FROM_ATTR (attr);
3816 switch (form)
3817 {
3818 case FORM_STRING: /* A variable length field is next */
3819 nbytes = 0;
3820 break;
3821 case FORM_DATA2: /* Next 2 byte field is the data itself */
3822 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3823 nbytes = 2;
3824 break;
3825 case FORM_DATA4: /* Next 4 byte field is the data itself */
3826 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3827 case FORM_REF: /* Next 4 byte field is a DIE offset */
3828 nbytes = 4;
3829 break;
3830 case FORM_DATA8: /* Next 8 byte field is the data itself */
3831 nbytes = 8;
3832 break;
3833 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3834 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3835 break;
3836 default:
3837 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3838 nbytes = -1;
3839 break;
3840 }
3841 return (nbytes);
3842 }
This page took 0.164449 seconds and 4 git commands to generate.