* Many places: replace "the inferior" in messages with "the program"
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Figure out how to get the frame pointer register number in the
25 execution environment of the target. Remove R_FP kludge
26
27 FIXME: Add generation of dependencies list to partial symtab code.
28
29 FIXME: Resolve minor differences between what information we put in the
30 partial symbol table and what dbxread puts in. For example, we don't yet
31 put enum constants there. And dbxread seems to invent a lot of typedefs
32 we never see. Use the new printpsym command to see the partial symbol table
33 contents.
34
35 FIXME: Figure out a better way to tell gdb about the name of the function
36 contain the user's entry point (I.E. main())
37
38 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
39 other things to work on, if you get bored. :-)
40
41 */
42
43 #include "defs.h"
44 #include "bfd.h"
45 #include "symtab.h"
46 #include "gdbtypes.h"
47 #include "symfile.h"
48 #include "objfiles.h"
49 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
50 #include "elf/dwarf.h"
51 #include "buildsym.h"
52 #include "demangle.h"
53 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54 #include "language.h"
55 #include "complaints.h"
56
57 #include <fcntl.h>
58 #include <string.h>
59 #include <sys/types.h>
60
61 #ifndef NO_SYS_FILE
62 #include <sys/file.h>
63 #endif
64
65 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
66 #ifndef L_SET
67 #define L_SET 0
68 #endif
69
70 /* Some macros to provide DIE info for complaints. */
71
72 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
73 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
74
75 /* Complaints that can be issued during DWARF debug info reading. */
76
77 struct complaint no_bfd_get_N =
78 {
79 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
80 };
81
82 struct complaint malformed_die =
83 {
84 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
85 };
86
87 struct complaint bad_die_ref =
88 {
89 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
90 };
91
92 struct complaint unknown_attribute_form =
93 {
94 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
95 };
96
97 struct complaint unknown_attribute_length =
98 {
99 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
100 };
101
102 struct complaint unexpected_fund_type =
103 {
104 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
105 };
106
107 struct complaint unknown_type_modifier =
108 {
109 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
110 };
111
112 struct complaint volatile_ignored =
113 {
114 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
115 };
116
117 struct complaint const_ignored =
118 {
119 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
120 };
121
122 struct complaint botched_modified_type =
123 {
124 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
125 };
126
127 struct complaint op_deref2 =
128 {
129 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
130 };
131
132 struct complaint op_deref4 =
133 {
134 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
135 };
136
137 struct complaint basereg_not_handled =
138 {
139 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
140 };
141
142 struct complaint dup_user_type_allocation =
143 {
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
145 };
146
147 struct complaint dup_user_type_definition =
148 {
149 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
150 };
151
152 struct complaint missing_tag =
153 {
154 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
155 };
156
157 struct complaint bad_array_element_type =
158 {
159 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
160 };
161
162 struct complaint subscript_data_items =
163 {
164 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
165 };
166
167 struct complaint unhandled_array_subscript_format =
168 {
169 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
170 };
171
172 struct complaint unknown_array_subscript_format =
173 {
174 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
175 };
176
177 struct complaint not_row_major =
178 {
179 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
180 };
181
182 #ifndef R_FP /* FIXME */
183 #define R_FP 14 /* Kludge to get frame pointer register number */
184 #endif
185
186 typedef unsigned int DIE_REF; /* Reference to a DIE */
187
188 #ifndef GCC_PRODUCER
189 #define GCC_PRODUCER "GNU C "
190 #endif
191
192 #ifndef GPLUS_PRODUCER
193 #define GPLUS_PRODUCER "GNU C++ "
194 #endif
195
196 #ifndef LCC_PRODUCER
197 #define LCC_PRODUCER "NCR C/C++"
198 #endif
199
200 #ifndef CHILL_PRODUCER
201 #define CHILL_PRODUCER "GNU Chill "
202 #endif
203
204 /* Flags to target_to_host() that tell whether or not the data object is
205 expected to be signed. Used, for example, when fetching a signed
206 integer in the target environment which is used as a signed integer
207 in the host environment, and the two environments have different sized
208 ints. In this case, *somebody* has to sign extend the smaller sized
209 int. */
210
211 #define GET_UNSIGNED 0 /* No sign extension required */
212 #define GET_SIGNED 1 /* Sign extension required */
213
214 /* Defines for things which are specified in the document "DWARF Debugging
215 Information Format" published by UNIX International, Programming Languages
216 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
217
218 #define SIZEOF_DIE_LENGTH 4
219 #define SIZEOF_DIE_TAG 2
220 #define SIZEOF_ATTRIBUTE 2
221 #define SIZEOF_FORMAT_SPECIFIER 1
222 #define SIZEOF_FMT_FT 2
223 #define SIZEOF_LINETBL_LENGTH 4
224 #define SIZEOF_LINETBL_LINENO 4
225 #define SIZEOF_LINETBL_STMT 2
226 #define SIZEOF_LINETBL_DELTA 4
227 #define SIZEOF_LOC_ATOM_CODE 1
228
229 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
230
231 /* Macros that return the sizes of various types of data in the target
232 environment.
233
234 FIXME: Currently these are just compile time constants (as they are in
235 other parts of gdb as well). They need to be able to get the right size
236 either from the bfd or possibly from the DWARF info. It would be nice if
237 the DWARF producer inserted DIES that describe the fundamental types in
238 the target environment into the DWARF info, similar to the way dbx stabs
239 producers produce information about their fundamental types. */
240
241 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
242 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
243
244 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
245 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
246 However, the Issue 2 DWARF specification from AT&T defines it as
247 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
248 For backwards compatibility with the AT&T compiler produced executables
249 we define AT_short_element_list for this variant. */
250
251 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
252
253 /* External variables referenced. */
254
255 extern int info_verbose; /* From main.c; nonzero => verbose */
256 extern char *warning_pre_print; /* From utils.c */
257
258 /* The DWARF debugging information consists of two major pieces,
259 one is a block of DWARF Information Entries (DIE's) and the other
260 is a line number table. The "struct dieinfo" structure contains
261 the information for a single DIE, the one currently being processed.
262
263 In order to make it easier to randomly access the attribute fields
264 of the current DIE, which are specifically unordered within the DIE,
265 each DIE is scanned and an instance of the "struct dieinfo"
266 structure is initialized.
267
268 Initialization is done in two levels. The first, done by basicdieinfo(),
269 just initializes those fields that are vital to deciding whether or not
270 to use this DIE, how to skip past it, etc. The second, done by the
271 function completedieinfo(), fills in the rest of the information.
272
273 Attributes which have block forms are not interpreted at the time
274 the DIE is scanned, instead we just save pointers to the start
275 of their value fields.
276
277 Some fields have a flag <name>_p that is set when the value of the
278 field is valid (I.E. we found a matching attribute in the DIE). Since
279 we may want to test for the presence of some attributes in the DIE,
280 such as AT_low_pc, without restricting the values of the field,
281 we need someway to note that we found such an attribute.
282
283 */
284
285 typedef char BLOCK;
286
287 struct dieinfo {
288 char * die; /* Pointer to the raw DIE data */
289 unsigned long die_length; /* Length of the raw DIE data */
290 DIE_REF die_ref; /* Offset of this DIE */
291 unsigned short die_tag; /* Tag for this DIE */
292 unsigned long at_padding;
293 unsigned long at_sibling;
294 BLOCK * at_location;
295 char * at_name;
296 unsigned short at_fund_type;
297 BLOCK * at_mod_fund_type;
298 unsigned long at_user_def_type;
299 BLOCK * at_mod_u_d_type;
300 unsigned short at_ordering;
301 BLOCK * at_subscr_data;
302 unsigned long at_byte_size;
303 unsigned short at_bit_offset;
304 unsigned long at_bit_size;
305 BLOCK * at_element_list;
306 unsigned long at_stmt_list;
307 unsigned long at_low_pc;
308 unsigned long at_high_pc;
309 unsigned long at_language;
310 unsigned long at_member;
311 unsigned long at_discr;
312 BLOCK * at_discr_value;
313 BLOCK * at_string_length;
314 char * at_comp_dir;
315 char * at_producer;
316 unsigned long at_start_scope;
317 unsigned long at_stride_size;
318 unsigned long at_src_info;
319 char * at_prototyped;
320 unsigned int has_at_low_pc:1;
321 unsigned int has_at_stmt_list:1;
322 unsigned int has_at_byte_size:1;
323 unsigned int short_element_list:1;
324 };
325
326 static int diecount; /* Approximate count of dies for compilation unit */
327 static struct dieinfo *curdie; /* For warnings and such */
328
329 static char *dbbase; /* Base pointer to dwarf info */
330 static int dbsize; /* Size of dwarf info in bytes */
331 static int dbroff; /* Relative offset from start of .debug section */
332 static char *lnbase; /* Base pointer to line section */
333 static int isreg; /* Kludge to identify register variables */
334 static int offreg; /* Kludge to identify basereg references */
335
336 /* This value is added to each symbol value. FIXME: Generalize to
337 the section_offsets structure used by dbxread (once this is done,
338 pass the appropriate section number to end_symtab). */
339 static CORE_ADDR baseaddr; /* Add to each symbol value */
340
341 /* The section offsets used in the current psymtab or symtab. FIXME,
342 only used to pass one value (baseaddr) at the moment. */
343 static struct section_offsets *base_section_offsets;
344
345 /* Each partial symbol table entry contains a pointer to private data for the
346 read_symtab() function to use when expanding a partial symbol table entry
347 to a full symbol table entry. For DWARF debugging info, this data is
348 contained in the following structure and macros are provided for easy
349 access to the members given a pointer to a partial symbol table entry.
350
351 dbfoff Always the absolute file offset to the start of the ".debug"
352 section for the file containing the DIE's being accessed.
353
354 dbroff Relative offset from the start of the ".debug" access to the
355 first DIE to be accessed. When building the partial symbol
356 table, this value will be zero since we are accessing the
357 entire ".debug" section. When expanding a partial symbol
358 table entry, this value will be the offset to the first
359 DIE for the compilation unit containing the symbol that
360 triggers the expansion.
361
362 dblength The size of the chunk of DIE's being examined, in bytes.
363
364 lnfoff The absolute file offset to the line table fragment. Ignored
365 when building partial symbol tables, but used when expanding
366 them, and contains the absolute file offset to the fragment
367 of the ".line" section containing the line numbers for the
368 current compilation unit.
369 */
370
371 struct dwfinfo {
372 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
373 int dbroff; /* Relative offset from start of .debug section */
374 int dblength; /* Size of the chunk of DIE's being examined */
375 file_ptr lnfoff; /* Absolute file offset to line table fragment */
376 };
377
378 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
383 /* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
387
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
391
392 struct pending **list_in_scope = &file_symbols;
393
394 /* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
419
420 static struct type **utypes; /* Pointer to array of user type pointers */
421 static int numutypes; /* Max number of user type pointers */
422
423 /* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
435 /* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
444
445 static enum language cu_language;
446 static const struct language_defn *cu_language_defn;
447
448 /* Forward declarations of static functions so we don't have to worry
449 about ordering within this file. */
450
451 static int
452 attribute_size PARAMS ((unsigned int));
453
454 static unsigned long
455 target_to_host PARAMS ((char *, int, int, struct objfile *));
456
457 static void
458 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
459
460 static void
461 handle_producer PARAMS ((char *));
462
463 static void
464 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
465
466 static void
467 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
468
469 static void
470 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
471 struct objfile *));
472
473 static void
474 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
475
476 static void
477 scan_compilation_units PARAMS ((char *, char *, file_ptr,
478 file_ptr, struct objfile *));
479
480 static void
481 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
482
483 static void
484 init_psymbol_list PARAMS ((struct objfile *, int));
485
486 static void
487 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
488
489 static void
490 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
491
492 static void
493 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495 static void
496 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
497
498 static struct symtab *
499 read_ofile_symtab PARAMS ((struct partial_symtab *));
500
501 static void
502 process_dies PARAMS ((char *, char *, struct objfile *));
503
504 static void
505 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
507
508 static struct type *
509 decode_array_element_type PARAMS ((char *));
510
511 static struct type *
512 decode_subscript_data_item PARAMS ((char *, char *));
513
514 static void
515 dwarf_read_array_type PARAMS ((struct dieinfo *));
516
517 static void
518 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
519
520 static void
521 read_tag_string_type PARAMS ((struct dieinfo *dip));
522
523 static void
524 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
525
526 static void
527 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
528
529 static struct type *
530 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
531
532 static struct type *
533 enum_type PARAMS ((struct dieinfo *, struct objfile *));
534
535 static void
536 decode_line_numbers PARAMS ((char *));
537
538 static struct type *
539 decode_die_type PARAMS ((struct dieinfo *));
540
541 static struct type *
542 decode_mod_fund_type PARAMS ((char *));
543
544 static struct type *
545 decode_mod_u_d_type PARAMS ((char *));
546
547 static struct type *
548 decode_modified_type PARAMS ((char *, unsigned int, int));
549
550 static struct type *
551 decode_fund_type PARAMS ((unsigned int));
552
553 static char *
554 create_name PARAMS ((char *, struct obstack *));
555
556 static struct type *
557 lookup_utype PARAMS ((DIE_REF));
558
559 static struct type *
560 alloc_utype PARAMS ((DIE_REF, struct type *));
561
562 static struct symbol *
563 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
564
565 static void
566 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
569 static int
570 locval PARAMS ((char *));
571
572 static void
573 record_minimal_symbol PARAMS ((char *, CORE_ADDR, enum minimal_symbol_type,
574 struct objfile *));
575
576 static void
577 set_cu_language PARAMS ((struct dieinfo *));
578
579 static struct type *
580 dwarf_fundamental_type PARAMS ((struct objfile *, int));
581
582
583 /*
584
585 LOCAL FUNCTION
586
587 dwarf_fundamental_type -- lookup or create a fundamental type
588
589 SYNOPSIS
590
591 struct type *
592 dwarf_fundamental_type (struct objfile *objfile, int typeid)
593
594 DESCRIPTION
595
596 DWARF version 1 doesn't supply any fundamental type information,
597 so gdb has to construct such types. It has a fixed number of
598 fundamental types that it knows how to construct, which is the
599 union of all types that it knows how to construct for all languages
600 that it knows about. These are enumerated in gdbtypes.h.
601
602 As an example, assume we find a DIE that references a DWARF
603 fundamental type of FT_integer. We first look in the ftypes
604 array to see if we already have such a type, indexed by the
605 gdb internal value of FT_INTEGER. If so, we simply return a
606 pointer to that type. If not, then we ask an appropriate
607 language dependent routine to create a type FT_INTEGER, using
608 defaults reasonable for the current target machine, and install
609 that type in ftypes for future reference.
610
611 RETURNS
612
613 Pointer to a fundamental type.
614
615 */
616
617 static struct type *
618 dwarf_fundamental_type (objfile, typeid)
619 struct objfile *objfile;
620 int typeid;
621 {
622 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
623 {
624 error ("internal error - invalid fundamental type id %d", typeid);
625 }
626
627 /* Look for this particular type in the fundamental type vector. If one is
628 not found, create and install one appropriate for the current language
629 and the current target machine. */
630
631 if (ftypes[typeid] == NULL)
632 {
633 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
634 }
635
636 return (ftypes[typeid]);
637 }
638
639 /*
640
641 LOCAL FUNCTION
642
643 set_cu_language -- set local copy of language for compilation unit
644
645 SYNOPSIS
646
647 void
648 set_cu_language (struct dieinfo *dip)
649
650 DESCRIPTION
651
652 Decode the language attribute for a compilation unit DIE and
653 remember what the language was. We use this at various times
654 when processing DIE's for a given compilation unit.
655
656 RETURNS
657
658 No return value.
659
660 */
661
662 static void
663 set_cu_language (dip)
664 struct dieinfo *dip;
665 {
666 switch (dip -> at_language)
667 {
668 case LANG_C89:
669 case LANG_C:
670 cu_language = language_c;
671 break;
672 case LANG_C_PLUS_PLUS:
673 cu_language = language_cplus;
674 break;
675 case LANG_CHILL:
676 cu_language = language_chill;
677 break;
678 case LANG_MODULA2:
679 cu_language = language_m2;
680 break;
681 case LANG_ADA83:
682 case LANG_COBOL74:
683 case LANG_COBOL85:
684 case LANG_FORTRAN77:
685 case LANG_FORTRAN90:
686 case LANG_PASCAL83:
687 /* We don't know anything special about these yet. */
688 cu_language = language_unknown;
689 break;
690 default:
691 /* If no at_language, try to deduce one from the filename */
692 cu_language = deduce_language_from_filename (dip -> at_name);
693 break;
694 }
695 cu_language_defn = language_def (cu_language);
696 }
697
698 /*
699
700 GLOBAL FUNCTION
701
702 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
703
704 SYNOPSIS
705
706 void dwarf_build_psymtabs (struct objfile *objfile,
707 struct section_offsets *section_offsets,
708 int mainline, file_ptr dbfoff, unsigned int dbfsize,
709 file_ptr lnoffset, unsigned int lnsize)
710
711 DESCRIPTION
712
713 This function is called upon to build partial symtabs from files
714 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
715
716 It is passed a bfd* containing the DIES
717 and line number information, the corresponding filename for that
718 file, a base address for relocating the symbols, a flag indicating
719 whether or not this debugging information is from a "main symbol
720 table" rather than a shared library or dynamically linked file,
721 and file offset/size pairs for the DIE information and line number
722 information.
723
724 RETURNS
725
726 No return value.
727
728 */
729
730 void
731 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
732 lnoffset, lnsize)
733 struct objfile *objfile;
734 struct section_offsets *section_offsets;
735 int mainline;
736 file_ptr dbfoff;
737 unsigned int dbfsize;
738 file_ptr lnoffset;
739 unsigned int lnsize;
740 {
741 bfd *abfd = objfile->obfd;
742 struct cleanup *back_to;
743
744 current_objfile = objfile;
745 dbsize = dbfsize;
746 dbbase = xmalloc (dbsize);
747 dbroff = 0;
748 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
749 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
750 {
751 free (dbbase);
752 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
753 }
754 back_to = make_cleanup (free, dbbase);
755
756 /* If we are reinitializing, or if we have never loaded syms yet, init.
757 Since we have no idea how many DIES we are looking at, we just guess
758 some arbitrary value. */
759
760 if (mainline || objfile -> global_psymbols.size == 0 ||
761 objfile -> static_psymbols.size == 0)
762 {
763 init_psymbol_list (objfile, 1024);
764 }
765
766 /* Save the relocation factor where everybody can see it. */
767
768 base_section_offsets = section_offsets;
769 baseaddr = ANOFFSET (section_offsets, 0);
770
771 /* Follow the compilation unit sibling chain, building a partial symbol
772 table entry for each one. Save enough information about each compilation
773 unit to locate the full DWARF information later. */
774
775 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
776
777 do_cleanups (back_to);
778 current_objfile = NULL;
779 }
780
781
782 /*
783
784 LOCAL FUNCTION
785
786 record_minimal_symbol -- add entry to gdb's minimal symbol table
787
788 SYNOPSIS
789
790 static void record_minimal_symbol (char *name, CORE_ADDR address,
791 enum minimal_symbol_type ms_type,
792 struct objfile *objfile)
793
794 DESCRIPTION
795
796 Given a pointer to the name of a symbol that should be added to the
797 minimal symbol table, and the address associated with that
798 symbol, records this information for later use in building the
799 minimal symbol table.
800
801 */
802
803 static void
804 record_minimal_symbol (name, address, ms_type, objfile)
805 char *name;
806 CORE_ADDR address;
807 enum minimal_symbol_type ms_type;
808 struct objfile *objfile;
809 {
810 name = obsavestring (name, strlen (name), &objfile -> symbol_obstack);
811 prim_record_minimal_symbol (name, address, ms_type);
812 }
813
814 /*
815
816 LOCAL FUNCTION
817
818 read_lexical_block_scope -- process all dies in a lexical block
819
820 SYNOPSIS
821
822 static void read_lexical_block_scope (struct dieinfo *dip,
823 char *thisdie, char *enddie)
824
825 DESCRIPTION
826
827 Process all the DIES contained within a lexical block scope.
828 Start a new scope, process the dies, and then close the scope.
829
830 */
831
832 static void
833 read_lexical_block_scope (dip, thisdie, enddie, objfile)
834 struct dieinfo *dip;
835 char *thisdie;
836 char *enddie;
837 struct objfile *objfile;
838 {
839 register struct context_stack *new;
840
841 push_context (0, dip -> at_low_pc);
842 process_dies (thisdie + dip -> die_length, enddie, objfile);
843 new = pop_context ();
844 if (local_symbols != NULL)
845 {
846 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
847 dip -> at_high_pc, objfile);
848 }
849 local_symbols = new -> locals;
850 }
851
852 /*
853
854 LOCAL FUNCTION
855
856 lookup_utype -- look up a user defined type from die reference
857
858 SYNOPSIS
859
860 static type *lookup_utype (DIE_REF die_ref)
861
862 DESCRIPTION
863
864 Given a DIE reference, lookup the user defined type associated with
865 that DIE, if it has been registered already. If not registered, then
866 return NULL. Alloc_utype() can be called to register an empty
867 type for this reference, which will be filled in later when the
868 actual referenced DIE is processed.
869 */
870
871 static struct type *
872 lookup_utype (die_ref)
873 DIE_REF die_ref;
874 {
875 struct type *type = NULL;
876 int utypeidx;
877
878 utypeidx = (die_ref - dbroff) / 4;
879 if ((utypeidx < 0) || (utypeidx >= numutypes))
880 {
881 complain (&bad_die_ref, DIE_ID, DIE_NAME);
882 }
883 else
884 {
885 type = *(utypes + utypeidx);
886 }
887 return (type);
888 }
889
890
891 /*
892
893 LOCAL FUNCTION
894
895 alloc_utype -- add a user defined type for die reference
896
897 SYNOPSIS
898
899 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
900
901 DESCRIPTION
902
903 Given a die reference DIE_REF, and a possible pointer to a user
904 defined type UTYPEP, register that this reference has a user
905 defined type and either use the specified type in UTYPEP or
906 make a new empty type that will be filled in later.
907
908 We should only be called after calling lookup_utype() to verify that
909 there is not currently a type registered for DIE_REF.
910 */
911
912 static struct type *
913 alloc_utype (die_ref, utypep)
914 DIE_REF die_ref;
915 struct type *utypep;
916 {
917 struct type **typep;
918 int utypeidx;
919
920 utypeidx = (die_ref - dbroff) / 4;
921 typep = utypes + utypeidx;
922 if ((utypeidx < 0) || (utypeidx >= numutypes))
923 {
924 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
925 complain (&bad_die_ref, DIE_ID, DIE_NAME);
926 }
927 else if (*typep != NULL)
928 {
929 utypep = *typep;
930 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
931 }
932 else
933 {
934 if (utypep == NULL)
935 {
936 utypep = alloc_type (current_objfile);
937 }
938 *typep = utypep;
939 }
940 return (utypep);
941 }
942
943 /*
944
945 LOCAL FUNCTION
946
947 decode_die_type -- return a type for a specified die
948
949 SYNOPSIS
950
951 static struct type *decode_die_type (struct dieinfo *dip)
952
953 DESCRIPTION
954
955 Given a pointer to a die information structure DIP, decode the
956 type of the die and return a pointer to the decoded type. All
957 dies without specific types default to type int.
958 */
959
960 static struct type *
961 decode_die_type (dip)
962 struct dieinfo *dip;
963 {
964 struct type *type = NULL;
965
966 if (dip -> at_fund_type != 0)
967 {
968 type = decode_fund_type (dip -> at_fund_type);
969 }
970 else if (dip -> at_mod_fund_type != NULL)
971 {
972 type = decode_mod_fund_type (dip -> at_mod_fund_type);
973 }
974 else if (dip -> at_user_def_type)
975 {
976 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
977 {
978 type = alloc_utype (dip -> at_user_def_type, NULL);
979 }
980 }
981 else if (dip -> at_mod_u_d_type)
982 {
983 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
984 }
985 else
986 {
987 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
988 }
989 return (type);
990 }
991
992 /*
993
994 LOCAL FUNCTION
995
996 struct_type -- compute and return the type for a struct or union
997
998 SYNOPSIS
999
1000 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
1001 char *enddie, struct objfile *objfile)
1002
1003 DESCRIPTION
1004
1005 Given pointer to a die information structure for a die which
1006 defines a union or structure (and MUST define one or the other),
1007 and pointers to the raw die data that define the range of dies which
1008 define the members, compute and return the user defined type for the
1009 structure or union.
1010 */
1011
1012 static struct type *
1013 struct_type (dip, thisdie, enddie, objfile)
1014 struct dieinfo *dip;
1015 char *thisdie;
1016 char *enddie;
1017 struct objfile *objfile;
1018 {
1019 struct type *type;
1020 struct nextfield {
1021 struct nextfield *next;
1022 struct field field;
1023 };
1024 struct nextfield *list = NULL;
1025 struct nextfield *new;
1026 int nfields = 0;
1027 int n;
1028 char *tpart1;
1029 struct dieinfo mbr;
1030 char *nextdie;
1031 #if !BITS_BIG_ENDIAN
1032 int anonymous_size;
1033 #endif
1034
1035 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1036 {
1037 /* No forward references created an empty type, so install one now */
1038 type = alloc_utype (dip -> die_ref, NULL);
1039 }
1040 INIT_CPLUS_SPECIFIC(type);
1041 switch (dip -> die_tag)
1042 {
1043 case TAG_class_type:
1044 TYPE_CODE (type) = TYPE_CODE_CLASS;
1045 tpart1 = "class";
1046 break;
1047 case TAG_structure_type:
1048 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1049 tpart1 = "struct";
1050 break;
1051 case TAG_union_type:
1052 TYPE_CODE (type) = TYPE_CODE_UNION;
1053 tpart1 = "union";
1054 break;
1055 default:
1056 /* Should never happen */
1057 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1058 tpart1 = "???";
1059 complain (&missing_tag, DIE_ID, DIE_NAME);
1060 break;
1061 }
1062 /* Some compilers try to be helpful by inventing "fake" names for
1063 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1064 Thanks, but no thanks... */
1065 if (dip -> at_name != NULL
1066 && *dip -> at_name != '~'
1067 && *dip -> at_name != '.')
1068 {
1069 TYPE_NAME (type) = obconcat (&objfile -> type_obstack,
1070 tpart1, " ", dip -> at_name);
1071 }
1072 /* Use whatever size is known. Zero is a valid size. We might however
1073 wish to check has_at_byte_size to make sure that some byte size was
1074 given explicitly, but DWARF doesn't specify that explicit sizes of
1075 zero have to present, so complaining about missing sizes should
1076 probably not be the default. */
1077 TYPE_LENGTH (type) = dip -> at_byte_size;
1078 thisdie += dip -> die_length;
1079 while (thisdie < enddie)
1080 {
1081 basicdieinfo (&mbr, thisdie, objfile);
1082 completedieinfo (&mbr, objfile);
1083 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1084 {
1085 break;
1086 }
1087 else if (mbr.at_sibling != 0)
1088 {
1089 nextdie = dbbase + mbr.at_sibling - dbroff;
1090 }
1091 else
1092 {
1093 nextdie = thisdie + mbr.die_length;
1094 }
1095 switch (mbr.die_tag)
1096 {
1097 case TAG_member:
1098 /* Get space to record the next field's data. */
1099 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1100 new -> next = list;
1101 list = new;
1102 /* Save the data. */
1103 list -> field.name =
1104 obsavestring (mbr.at_name, strlen (mbr.at_name),
1105 &objfile -> type_obstack);
1106 list -> field.type = decode_die_type (&mbr);
1107 list -> field.bitpos = 8 * locval (mbr.at_location);
1108 /* Handle bit fields. */
1109 list -> field.bitsize = mbr.at_bit_size;
1110 #if BITS_BIG_ENDIAN
1111 /* For big endian bits, the at_bit_offset gives the additional
1112 bit offset from the MSB of the containing anonymous object to
1113 the MSB of the field. We don't have to do anything special
1114 since we don't need to know the size of the anonymous object. */
1115 list -> field.bitpos += mbr.at_bit_offset;
1116 #else
1117 /* For little endian bits, we need to have a non-zero at_bit_size,
1118 so that we know we are in fact dealing with a bitfield. Compute
1119 the bit offset to the MSB of the anonymous object, subtract off
1120 the number of bits from the MSB of the field to the MSB of the
1121 object, and then subtract off the number of bits of the field
1122 itself. The result is the bit offset of the LSB of the field. */
1123 if (mbr.at_bit_size > 0)
1124 {
1125 if (mbr.has_at_byte_size)
1126 {
1127 /* The size of the anonymous object containing the bit field
1128 is explicit, so use the indicated size (in bytes). */
1129 anonymous_size = mbr.at_byte_size;
1130 }
1131 else
1132 {
1133 /* The size of the anonymous object containing the bit field
1134 matches the size of an object of the bit field's type.
1135 DWARF allows at_byte_size to be left out in such cases,
1136 as a debug information size optimization. */
1137 anonymous_size = TYPE_LENGTH (list -> field.type);
1138 }
1139 list -> field.bitpos +=
1140 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1141 }
1142 #endif
1143 nfields++;
1144 break;
1145 default:
1146 process_dies (thisdie, nextdie, objfile);
1147 break;
1148 }
1149 thisdie = nextdie;
1150 }
1151 /* Now create the vector of fields, and record how big it is. We may
1152 not even have any fields, if this DIE was generated due to a reference
1153 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1154 set, which clues gdb in to the fact that it needs to search elsewhere
1155 for the full structure definition. */
1156 if (nfields == 0)
1157 {
1158 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1159 }
1160 else
1161 {
1162 TYPE_NFIELDS (type) = nfields;
1163 TYPE_FIELDS (type) = (struct field *)
1164 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1165 /* Copy the saved-up fields into the field vector. */
1166 for (n = nfields; list; list = list -> next)
1167 {
1168 TYPE_FIELD (type, --n) = list -> field;
1169 }
1170 }
1171 return (type);
1172 }
1173
1174 /*
1175
1176 LOCAL FUNCTION
1177
1178 read_structure_scope -- process all dies within struct or union
1179
1180 SYNOPSIS
1181
1182 static void read_structure_scope (struct dieinfo *dip,
1183 char *thisdie, char *enddie, struct objfile *objfile)
1184
1185 DESCRIPTION
1186
1187 Called when we find the DIE that starts a structure or union
1188 scope (definition) to process all dies that define the members
1189 of the structure or union. DIP is a pointer to the die info
1190 struct for the DIE that names the structure or union.
1191
1192 NOTES
1193
1194 Note that we need to call struct_type regardless of whether or not
1195 the DIE has an at_name attribute, since it might be an anonymous
1196 structure or union. This gets the type entered into our set of
1197 user defined types.
1198
1199 However, if the structure is incomplete (an opaque struct/union)
1200 then suppress creating a symbol table entry for it since gdb only
1201 wants to find the one with the complete definition. Note that if
1202 it is complete, we just call new_symbol, which does it's own
1203 checking about whether the struct/union is anonymous or not (and
1204 suppresses creating a symbol table entry itself).
1205
1206 */
1207
1208 static void
1209 read_structure_scope (dip, thisdie, enddie, objfile)
1210 struct dieinfo *dip;
1211 char *thisdie;
1212 char *enddie;
1213 struct objfile *objfile;
1214 {
1215 struct type *type;
1216 struct symbol *sym;
1217
1218 type = struct_type (dip, thisdie, enddie, objfile);
1219 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1220 {
1221 sym = new_symbol (dip, objfile);
1222 if (sym != NULL)
1223 {
1224 SYMBOL_TYPE (sym) = type;
1225 if (cu_language == language_cplus)
1226 {
1227 synthesize_typedef (dip, objfile, type);
1228 }
1229 }
1230 }
1231 }
1232
1233 /*
1234
1235 LOCAL FUNCTION
1236
1237 decode_array_element_type -- decode type of the array elements
1238
1239 SYNOPSIS
1240
1241 static struct type *decode_array_element_type (char *scan, char *end)
1242
1243 DESCRIPTION
1244
1245 As the last step in decoding the array subscript information for an
1246 array DIE, we need to decode the type of the array elements. We are
1247 passed a pointer to this last part of the subscript information and
1248 must return the appropriate type. If the type attribute is not
1249 recognized, just warn about the problem and return type int.
1250 */
1251
1252 static struct type *
1253 decode_array_element_type (scan)
1254 char *scan;
1255 {
1256 struct type *typep;
1257 DIE_REF die_ref;
1258 unsigned short attribute;
1259 unsigned short fundtype;
1260 int nbytes;
1261
1262 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1263 current_objfile);
1264 scan += SIZEOF_ATTRIBUTE;
1265 if ((nbytes = attribute_size (attribute)) == -1)
1266 {
1267 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1268 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1269 }
1270 else
1271 {
1272 switch (attribute)
1273 {
1274 case AT_fund_type:
1275 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1276 current_objfile);
1277 typep = decode_fund_type (fundtype);
1278 break;
1279 case AT_mod_fund_type:
1280 typep = decode_mod_fund_type (scan);
1281 break;
1282 case AT_user_def_type:
1283 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1284 current_objfile);
1285 if ((typep = lookup_utype (die_ref)) == NULL)
1286 {
1287 typep = alloc_utype (die_ref, NULL);
1288 }
1289 break;
1290 case AT_mod_u_d_type:
1291 typep = decode_mod_u_d_type (scan);
1292 break;
1293 default:
1294 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1295 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1296 break;
1297 }
1298 }
1299 return (typep);
1300 }
1301
1302 /*
1303
1304 LOCAL FUNCTION
1305
1306 decode_subscript_data_item -- decode array subscript item
1307
1308 SYNOPSIS
1309
1310 static struct type *
1311 decode_subscript_data_item (char *scan, char *end)
1312
1313 DESCRIPTION
1314
1315 The array subscripts and the data type of the elements of an
1316 array are described by a list of data items, stored as a block
1317 of contiguous bytes. There is a data item describing each array
1318 dimension, and a final data item describing the element type.
1319 The data items are ordered the same as their appearance in the
1320 source (I.E. leftmost dimension first, next to leftmost second,
1321 etc).
1322
1323 The data items describing each array dimension consist of four
1324 parts: (1) a format specifier, (2) type type of the subscript
1325 index, (3) a description of the low bound of the array dimension,
1326 and (4) a description of the high bound of the array dimension.
1327
1328 The last data item is the description of the type of each of
1329 the array elements.
1330
1331 We are passed a pointer to the start of the block of bytes
1332 containing the remaining data items, and a pointer to the first
1333 byte past the data. This function recursively decodes the
1334 remaining data items and returns a type.
1335
1336 If we somehow fail to decode some data, we complain about it
1337 and return a type "array of int".
1338
1339 BUGS
1340 FIXME: This code only implements the forms currently used
1341 by the AT&T and GNU C compilers.
1342
1343 The end pointer is supplied for error checking, maybe we should
1344 use it for that...
1345 */
1346
1347 static struct type *
1348 decode_subscript_data_item (scan, end)
1349 char *scan;
1350 char *end;
1351 {
1352 struct type *typep = NULL; /* Array type we are building */
1353 struct type *nexttype; /* Type of each element (may be array) */
1354 struct type *indextype; /* Type of this index */
1355 struct type *rangetype;
1356 unsigned int format;
1357 unsigned short fundtype;
1358 unsigned long lowbound;
1359 unsigned long highbound;
1360 int nbytes;
1361
1362 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1363 current_objfile);
1364 scan += SIZEOF_FORMAT_SPECIFIER;
1365 switch (format)
1366 {
1367 case FMT_ET:
1368 typep = decode_array_element_type (scan);
1369 break;
1370 case FMT_FT_C_C:
1371 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1372 current_objfile);
1373 indextype = decode_fund_type (fundtype);
1374 scan += SIZEOF_FMT_FT;
1375 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1376 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1377 scan += nbytes;
1378 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1379 scan += nbytes;
1380 nexttype = decode_subscript_data_item (scan, end);
1381 if (nexttype == NULL)
1382 {
1383 /* Munged subscript data or other problem, fake it. */
1384 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1385 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1386 }
1387 rangetype = create_range_type ((struct type *) NULL, indextype,
1388 lowbound, highbound);
1389 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1390 break;
1391 case FMT_FT_C_X:
1392 case FMT_FT_X_C:
1393 case FMT_FT_X_X:
1394 case FMT_UT_C_C:
1395 case FMT_UT_C_X:
1396 case FMT_UT_X_C:
1397 case FMT_UT_X_X:
1398 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1399 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1400 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1401 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1402 break;
1403 default:
1404 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1405 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1406 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1407 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1408 break;
1409 }
1410 return (typep);
1411 }
1412
1413 /*
1414
1415 LOCAL FUNCTION
1416
1417 dwarf_read_array_type -- read TAG_array_type DIE
1418
1419 SYNOPSIS
1420
1421 static void dwarf_read_array_type (struct dieinfo *dip)
1422
1423 DESCRIPTION
1424
1425 Extract all information from a TAG_array_type DIE and add to
1426 the user defined type vector.
1427 */
1428
1429 static void
1430 dwarf_read_array_type (dip)
1431 struct dieinfo *dip;
1432 {
1433 struct type *type;
1434 struct type *utype;
1435 char *sub;
1436 char *subend;
1437 unsigned short blocksz;
1438 int nbytes;
1439
1440 if (dip -> at_ordering != ORD_row_major)
1441 {
1442 /* FIXME: Can gdb even handle column major arrays? */
1443 complain (&not_row_major, DIE_ID, DIE_NAME);
1444 }
1445 if ((sub = dip -> at_subscr_data) != NULL)
1446 {
1447 nbytes = attribute_size (AT_subscr_data);
1448 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1449 subend = sub + nbytes + blocksz;
1450 sub += nbytes;
1451 type = decode_subscript_data_item (sub, subend);
1452 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1453 {
1454 /* Install user defined type that has not been referenced yet. */
1455 alloc_utype (dip -> die_ref, type);
1456 }
1457 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1458 {
1459 /* Ick! A forward ref has already generated a blank type in our
1460 slot, and this type probably already has things pointing to it
1461 (which is what caused it to be created in the first place).
1462 If it's just a place holder we can plop our fully defined type
1463 on top of it. We can't recover the space allocated for our
1464 new type since it might be on an obstack, but we could reuse
1465 it if we kept a list of them, but it might not be worth it
1466 (FIXME). */
1467 *utype = *type;
1468 }
1469 else
1470 {
1471 /* Double ick! Not only is a type already in our slot, but
1472 someone has decorated it. Complain and leave it alone. */
1473 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1474 }
1475 }
1476 }
1477
1478 /*
1479
1480 LOCAL FUNCTION
1481
1482 read_tag_pointer_type -- read TAG_pointer_type DIE
1483
1484 SYNOPSIS
1485
1486 static void read_tag_pointer_type (struct dieinfo *dip)
1487
1488 DESCRIPTION
1489
1490 Extract all information from a TAG_pointer_type DIE and add to
1491 the user defined type vector.
1492 */
1493
1494 static void
1495 read_tag_pointer_type (dip)
1496 struct dieinfo *dip;
1497 {
1498 struct type *type;
1499 struct type *utype;
1500
1501 type = decode_die_type (dip);
1502 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1503 {
1504 utype = lookup_pointer_type (type);
1505 alloc_utype (dip -> die_ref, utype);
1506 }
1507 else
1508 {
1509 TYPE_TARGET_TYPE (utype) = type;
1510 TYPE_POINTER_TYPE (type) = utype;
1511
1512 /* We assume the machine has only one representation for pointers! */
1513 /* FIXME: This confuses host<->target data representations, and is a
1514 poor assumption besides. */
1515
1516 TYPE_LENGTH (utype) = sizeof (char *);
1517 TYPE_CODE (utype) = TYPE_CODE_PTR;
1518 }
1519 }
1520
1521 /*
1522
1523 LOCAL FUNCTION
1524
1525 read_tag_string_type -- read TAG_string_type DIE
1526
1527 SYNOPSIS
1528
1529 static void read_tag_string_type (struct dieinfo *dip)
1530
1531 DESCRIPTION
1532
1533 Extract all information from a TAG_string_type DIE and add to
1534 the user defined type vector. It isn't really a user defined
1535 type, but it behaves like one, with other DIE's using an
1536 AT_user_def_type attribute to reference it.
1537 */
1538
1539 static void
1540 read_tag_string_type (dip)
1541 struct dieinfo *dip;
1542 {
1543 struct type *utype;
1544 struct type *indextype;
1545 struct type *rangetype;
1546 unsigned long lowbound = 0;
1547 unsigned long highbound;
1548
1549 if (dip -> has_at_byte_size)
1550 {
1551 /* A fixed bounds string */
1552 highbound = dip -> at_byte_size - 1;
1553 }
1554 else
1555 {
1556 /* A varying length string. Stub for now. (FIXME) */
1557 highbound = 1;
1558 }
1559 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1560 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1561 highbound);
1562
1563 utype = lookup_utype (dip -> die_ref);
1564 if (utype == NULL)
1565 {
1566 /* No type defined, go ahead and create a blank one to use. */
1567 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1568 }
1569 else
1570 {
1571 /* Already a type in our slot due to a forward reference. Make sure it
1572 is a blank one. If not, complain and leave it alone. */
1573 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1574 {
1575 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1576 return;
1577 }
1578 }
1579
1580 /* Create the string type using the blank type we either found or created. */
1581 utype = create_string_type (utype, rangetype);
1582 }
1583
1584 /*
1585
1586 LOCAL FUNCTION
1587
1588 read_subroutine_type -- process TAG_subroutine_type dies
1589
1590 SYNOPSIS
1591
1592 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1593 char *enddie)
1594
1595 DESCRIPTION
1596
1597 Handle DIES due to C code like:
1598
1599 struct foo {
1600 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1601 int b;
1602 };
1603
1604 NOTES
1605
1606 The parameter DIES are currently ignored. See if gdb has a way to
1607 include this info in it's type system, and decode them if so. Is
1608 this what the type structure's "arg_types" field is for? (FIXME)
1609 */
1610
1611 static void
1612 read_subroutine_type (dip, thisdie, enddie)
1613 struct dieinfo *dip;
1614 char *thisdie;
1615 char *enddie;
1616 {
1617 struct type *type; /* Type that this function returns */
1618 struct type *ftype; /* Function that returns above type */
1619
1620 /* Decode the type that this subroutine returns */
1621
1622 type = decode_die_type (dip);
1623
1624 /* Check to see if we already have a partially constructed user
1625 defined type for this DIE, from a forward reference. */
1626
1627 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1628 {
1629 /* This is the first reference to one of these types. Make
1630 a new one and place it in the user defined types. */
1631 ftype = lookup_function_type (type);
1632 alloc_utype (dip -> die_ref, ftype);
1633 }
1634 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1635 {
1636 /* We have an existing partially constructed type, so bash it
1637 into the correct type. */
1638 TYPE_TARGET_TYPE (ftype) = type;
1639 TYPE_FUNCTION_TYPE (type) = ftype;
1640 TYPE_LENGTH (ftype) = 1;
1641 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1642 }
1643 else
1644 {
1645 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1646 }
1647 }
1648
1649 /*
1650
1651 LOCAL FUNCTION
1652
1653 read_enumeration -- process dies which define an enumeration
1654
1655 SYNOPSIS
1656
1657 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1658 char *enddie, struct objfile *objfile)
1659
1660 DESCRIPTION
1661
1662 Given a pointer to a die which begins an enumeration, process all
1663 the dies that define the members of the enumeration.
1664
1665 NOTES
1666
1667 Note that we need to call enum_type regardless of whether or not we
1668 have a symbol, since we might have an enum without a tag name (thus
1669 no symbol for the tagname).
1670 */
1671
1672 static void
1673 read_enumeration (dip, thisdie, enddie, objfile)
1674 struct dieinfo *dip;
1675 char *thisdie;
1676 char *enddie;
1677 struct objfile *objfile;
1678 {
1679 struct type *type;
1680 struct symbol *sym;
1681
1682 type = enum_type (dip, objfile);
1683 sym = new_symbol (dip, objfile);
1684 if (sym != NULL)
1685 {
1686 SYMBOL_TYPE (sym) = type;
1687 if (cu_language == language_cplus)
1688 {
1689 synthesize_typedef (dip, objfile, type);
1690 }
1691 }
1692 }
1693
1694 /*
1695
1696 LOCAL FUNCTION
1697
1698 enum_type -- decode and return a type for an enumeration
1699
1700 SYNOPSIS
1701
1702 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1703
1704 DESCRIPTION
1705
1706 Given a pointer to a die information structure for the die which
1707 starts an enumeration, process all the dies that define the members
1708 of the enumeration and return a type pointer for the enumeration.
1709
1710 At the same time, for each member of the enumeration, create a
1711 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1712 and give it the type of the enumeration itself.
1713
1714 NOTES
1715
1716 Note that the DWARF specification explicitly mandates that enum
1717 constants occur in reverse order from the source program order,
1718 for "consistency" and because this ordering is easier for many
1719 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1720 Entries). Because gdb wants to see the enum members in program
1721 source order, we have to ensure that the order gets reversed while
1722 we are processing them.
1723 */
1724
1725 static struct type *
1726 enum_type (dip, objfile)
1727 struct dieinfo *dip;
1728 struct objfile *objfile;
1729 {
1730 struct type *type;
1731 struct nextfield {
1732 struct nextfield *next;
1733 struct field field;
1734 };
1735 struct nextfield *list = NULL;
1736 struct nextfield *new;
1737 int nfields = 0;
1738 int n;
1739 char *scan;
1740 char *listend;
1741 unsigned short blocksz;
1742 struct symbol *sym;
1743 int nbytes;
1744
1745 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1746 {
1747 /* No forward references created an empty type, so install one now */
1748 type = alloc_utype (dip -> die_ref, NULL);
1749 }
1750 TYPE_CODE (type) = TYPE_CODE_ENUM;
1751 /* Some compilers try to be helpful by inventing "fake" names for
1752 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1753 Thanks, but no thanks... */
1754 if (dip -> at_name != NULL
1755 && *dip -> at_name != '~'
1756 && *dip -> at_name != '.')
1757 {
1758 TYPE_NAME (type) = obconcat (&objfile -> type_obstack, "enum",
1759 " ", dip -> at_name);
1760 }
1761 if (dip -> at_byte_size != 0)
1762 {
1763 TYPE_LENGTH (type) = dip -> at_byte_size;
1764 }
1765 if ((scan = dip -> at_element_list) != NULL)
1766 {
1767 if (dip -> short_element_list)
1768 {
1769 nbytes = attribute_size (AT_short_element_list);
1770 }
1771 else
1772 {
1773 nbytes = attribute_size (AT_element_list);
1774 }
1775 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1776 listend = scan + nbytes + blocksz;
1777 scan += nbytes;
1778 while (scan < listend)
1779 {
1780 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1781 new -> next = list;
1782 list = new;
1783 list -> field.type = NULL;
1784 list -> field.bitsize = 0;
1785 list -> field.bitpos =
1786 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1787 objfile);
1788 scan += TARGET_FT_LONG_SIZE (objfile);
1789 list -> field.name = obsavestring (scan, strlen (scan),
1790 &objfile -> type_obstack);
1791 scan += strlen (scan) + 1;
1792 nfields++;
1793 /* Handcraft a new symbol for this enum member. */
1794 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1795 sizeof (struct symbol));
1796 memset (sym, 0, sizeof (struct symbol));
1797 SYMBOL_NAME (sym) = create_name (list -> field.name,
1798 &objfile->symbol_obstack);
1799 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1800 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1801 SYMBOL_CLASS (sym) = LOC_CONST;
1802 SYMBOL_TYPE (sym) = type;
1803 SYMBOL_VALUE (sym) = list -> field.bitpos;
1804 add_symbol_to_list (sym, list_in_scope);
1805 }
1806 /* Now create the vector of fields, and record how big it is. This is
1807 where we reverse the order, by pulling the members off the list in
1808 reverse order from how they were inserted. If we have no fields
1809 (this is apparently possible in C++) then skip building a field
1810 vector. */
1811 if (nfields > 0)
1812 {
1813 TYPE_NFIELDS (type) = nfields;
1814 TYPE_FIELDS (type) = (struct field *)
1815 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1816 /* Copy the saved-up fields into the field vector. */
1817 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1818 {
1819 TYPE_FIELD (type, n++) = list -> field;
1820 }
1821 }
1822 }
1823 return (type);
1824 }
1825
1826 /*
1827
1828 LOCAL FUNCTION
1829
1830 read_func_scope -- process all dies within a function scope
1831
1832 DESCRIPTION
1833
1834 Process all dies within a given function scope. We are passed
1835 a die information structure pointer DIP for the die which
1836 starts the function scope, and pointers into the raw die data
1837 that define the dies within the function scope.
1838
1839 For now, we ignore lexical block scopes within the function.
1840 The problem is that AT&T cc does not define a DWARF lexical
1841 block scope for the function itself, while gcc defines a
1842 lexical block scope for the function. We need to think about
1843 how to handle this difference, or if it is even a problem.
1844 (FIXME)
1845 */
1846
1847 static void
1848 read_func_scope (dip, thisdie, enddie, objfile)
1849 struct dieinfo *dip;
1850 char *thisdie;
1851 char *enddie;
1852 struct objfile *objfile;
1853 {
1854 register struct context_stack *new;
1855
1856 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1857 objfile -> ei.entry_point < dip -> at_high_pc)
1858 {
1859 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1860 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1861 }
1862 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1863 {
1864 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1865 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1866 }
1867 new = push_context (0, dip -> at_low_pc);
1868 new -> name = new_symbol (dip, objfile);
1869 list_in_scope = &local_symbols;
1870 process_dies (thisdie + dip -> die_length, enddie, objfile);
1871 new = pop_context ();
1872 /* Make a block for the local symbols within. */
1873 finish_block (new -> name, &local_symbols, new -> old_blocks,
1874 new -> start_addr, dip -> at_high_pc, objfile);
1875 list_in_scope = &file_symbols;
1876 }
1877
1878
1879 /*
1880
1881 LOCAL FUNCTION
1882
1883 handle_producer -- process the AT_producer attribute
1884
1885 DESCRIPTION
1886
1887 Perform any operations that depend on finding a particular
1888 AT_producer attribute.
1889
1890 */
1891
1892 static void
1893 handle_producer (producer)
1894 char *producer;
1895 {
1896
1897 /* If this compilation unit was compiled with g++ or gcc, then set the
1898 processing_gcc_compilation flag. */
1899
1900 processing_gcc_compilation =
1901 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1902 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1903 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1904
1905 /* Select a demangling style if we can identify the producer and if
1906 the current style is auto. We leave the current style alone if it
1907 is not auto. We also leave the demangling style alone if we find a
1908 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1909
1910 if (AUTO_DEMANGLING)
1911 {
1912 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1913 {
1914 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1915 }
1916 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1917 {
1918 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1919 }
1920 }
1921 }
1922
1923
1924 /*
1925
1926 LOCAL FUNCTION
1927
1928 read_file_scope -- process all dies within a file scope
1929
1930 DESCRIPTION
1931
1932 Process all dies within a given file scope. We are passed a
1933 pointer to the die information structure for the die which
1934 starts the file scope, and pointers into the raw die data which
1935 mark the range of dies within the file scope.
1936
1937 When the partial symbol table is built, the file offset for the line
1938 number table for each compilation unit is saved in the partial symbol
1939 table entry for that compilation unit. As the symbols for each
1940 compilation unit are read, the line number table is read into memory
1941 and the variable lnbase is set to point to it. Thus all we have to
1942 do is use lnbase to access the line number table for the current
1943 compilation unit.
1944 */
1945
1946 static void
1947 read_file_scope (dip, thisdie, enddie, objfile)
1948 struct dieinfo *dip;
1949 char *thisdie;
1950 char *enddie;
1951 struct objfile *objfile;
1952 {
1953 struct cleanup *back_to;
1954 struct symtab *symtab;
1955
1956 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1957 objfile -> ei.entry_point < dip -> at_high_pc)
1958 {
1959 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1960 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1961 }
1962 set_cu_language (dip);
1963 if (dip -> at_producer != NULL)
1964 {
1965 handle_producer (dip -> at_producer);
1966 }
1967 numutypes = (enddie - thisdie) / 4;
1968 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1969 back_to = make_cleanup (free, utypes);
1970 memset (utypes, 0, numutypes * sizeof (struct type *));
1971 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1972 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1973 decode_line_numbers (lnbase);
1974 process_dies (thisdie + dip -> die_length, enddie, objfile);
1975
1976 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1977 if (symtab != NULL)
1978 {
1979 symtab -> language = cu_language;
1980 }
1981 do_cleanups (back_to);
1982 utypes = NULL;
1983 numutypes = 0;
1984 }
1985
1986 /*
1987
1988 LOCAL FUNCTION
1989
1990 process_dies -- process a range of DWARF Information Entries
1991
1992 SYNOPSIS
1993
1994 static void process_dies (char *thisdie, char *enddie,
1995 struct objfile *objfile)
1996
1997 DESCRIPTION
1998
1999 Process all DIE's in a specified range. May be (and almost
2000 certainly will be) called recursively.
2001 */
2002
2003 static void
2004 process_dies (thisdie, enddie, objfile)
2005 char *thisdie;
2006 char *enddie;
2007 struct objfile *objfile;
2008 {
2009 char *nextdie;
2010 struct dieinfo di;
2011
2012 while (thisdie < enddie)
2013 {
2014 basicdieinfo (&di, thisdie, objfile);
2015 if (di.die_length < SIZEOF_DIE_LENGTH)
2016 {
2017 break;
2018 }
2019 else if (di.die_tag == TAG_padding)
2020 {
2021 nextdie = thisdie + di.die_length;
2022 }
2023 else
2024 {
2025 completedieinfo (&di, objfile);
2026 if (di.at_sibling != 0)
2027 {
2028 nextdie = dbbase + di.at_sibling - dbroff;
2029 }
2030 else
2031 {
2032 nextdie = thisdie + di.die_length;
2033 }
2034 switch (di.die_tag)
2035 {
2036 case TAG_compile_unit:
2037 read_file_scope (&di, thisdie, nextdie, objfile);
2038 break;
2039 case TAG_global_subroutine:
2040 case TAG_subroutine:
2041 if (di.has_at_low_pc)
2042 {
2043 read_func_scope (&di, thisdie, nextdie, objfile);
2044 }
2045 break;
2046 case TAG_lexical_block:
2047 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2048 break;
2049 case TAG_class_type:
2050 case TAG_structure_type:
2051 case TAG_union_type:
2052 read_structure_scope (&di, thisdie, nextdie, objfile);
2053 break;
2054 case TAG_enumeration_type:
2055 read_enumeration (&di, thisdie, nextdie, objfile);
2056 break;
2057 case TAG_subroutine_type:
2058 read_subroutine_type (&di, thisdie, nextdie);
2059 break;
2060 case TAG_array_type:
2061 dwarf_read_array_type (&di);
2062 break;
2063 case TAG_pointer_type:
2064 read_tag_pointer_type (&di);
2065 break;
2066 case TAG_string_type:
2067 read_tag_string_type (&di);
2068 break;
2069 default:
2070 new_symbol (&di, objfile);
2071 break;
2072 }
2073 }
2074 thisdie = nextdie;
2075 }
2076 }
2077
2078 /*
2079
2080 LOCAL FUNCTION
2081
2082 decode_line_numbers -- decode a line number table fragment
2083
2084 SYNOPSIS
2085
2086 static void decode_line_numbers (char *tblscan, char *tblend,
2087 long length, long base, long line, long pc)
2088
2089 DESCRIPTION
2090
2091 Translate the DWARF line number information to gdb form.
2092
2093 The ".line" section contains one or more line number tables, one for
2094 each ".line" section from the objects that were linked.
2095
2096 The AT_stmt_list attribute for each TAG_source_file entry in the
2097 ".debug" section contains the offset into the ".line" section for the
2098 start of the table for that file.
2099
2100 The table itself has the following structure:
2101
2102 <table length><base address><source statement entry>
2103 4 bytes 4 bytes 10 bytes
2104
2105 The table length is the total size of the table, including the 4 bytes
2106 for the length information.
2107
2108 The base address is the address of the first instruction generated
2109 for the source file.
2110
2111 Each source statement entry has the following structure:
2112
2113 <line number><statement position><address delta>
2114 4 bytes 2 bytes 4 bytes
2115
2116 The line number is relative to the start of the file, starting with
2117 line 1.
2118
2119 The statement position either -1 (0xFFFF) or the number of characters
2120 from the beginning of the line to the beginning of the statement.
2121
2122 The address delta is the difference between the base address and
2123 the address of the first instruction for the statement.
2124
2125 Note that we must copy the bytes from the packed table to our local
2126 variables before attempting to use them, to avoid alignment problems
2127 on some machines, particularly RISC processors.
2128
2129 BUGS
2130
2131 Does gdb expect the line numbers to be sorted? They are now by
2132 chance/luck, but are not required to be. (FIXME)
2133
2134 The line with number 0 is unused, gdb apparently can discover the
2135 span of the last line some other way. How? (FIXME)
2136 */
2137
2138 static void
2139 decode_line_numbers (linetable)
2140 char *linetable;
2141 {
2142 char *tblscan;
2143 char *tblend;
2144 unsigned long length;
2145 unsigned long base;
2146 unsigned long line;
2147 unsigned long pc;
2148
2149 if (linetable != NULL)
2150 {
2151 tblscan = tblend = linetable;
2152 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2153 current_objfile);
2154 tblscan += SIZEOF_LINETBL_LENGTH;
2155 tblend += length;
2156 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2157 GET_UNSIGNED, current_objfile);
2158 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2159 base += baseaddr;
2160 while (tblscan < tblend)
2161 {
2162 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2163 current_objfile);
2164 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2165 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2166 current_objfile);
2167 tblscan += SIZEOF_LINETBL_DELTA;
2168 pc += base;
2169 if (line != 0)
2170 {
2171 record_line (current_subfile, line, pc);
2172 }
2173 }
2174 }
2175 }
2176
2177 /*
2178
2179 LOCAL FUNCTION
2180
2181 locval -- compute the value of a location attribute
2182
2183 SYNOPSIS
2184
2185 static int locval (char *loc)
2186
2187 DESCRIPTION
2188
2189 Given pointer to a string of bytes that define a location, compute
2190 the location and return the value.
2191
2192 When computing values involving the current value of the frame pointer,
2193 the value zero is used, which results in a value relative to the frame
2194 pointer, rather than the absolute value. This is what GDB wants
2195 anyway.
2196
2197 When the result is a register number, the global isreg flag is set,
2198 otherwise it is cleared. This is a kludge until we figure out a better
2199 way to handle the problem. Gdb's design does not mesh well with the
2200 DWARF notion of a location computing interpreter, which is a shame
2201 because the flexibility goes unused.
2202
2203 NOTES
2204
2205 Note that stack[0] is unused except as a default error return.
2206 Note that stack overflow is not yet handled.
2207 */
2208
2209 static int
2210 locval (loc)
2211 char *loc;
2212 {
2213 unsigned short nbytes;
2214 unsigned short locsize;
2215 auto long stack[64];
2216 int stacki;
2217 char *end;
2218 long regno;
2219 int loc_atom_code;
2220 int loc_value_size;
2221
2222 nbytes = attribute_size (AT_location);
2223 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2224 loc += nbytes;
2225 end = loc + locsize;
2226 stacki = 0;
2227 stack[stacki] = 0;
2228 isreg = 0;
2229 offreg = 0;
2230 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2231 while (loc < end)
2232 {
2233 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2234 current_objfile);
2235 loc += SIZEOF_LOC_ATOM_CODE;
2236 switch (loc_atom_code)
2237 {
2238 case 0:
2239 /* error */
2240 loc = end;
2241 break;
2242 case OP_REG:
2243 /* push register (number) */
2244 stack[++stacki] = target_to_host (loc, loc_value_size,
2245 GET_UNSIGNED, current_objfile);
2246 loc += loc_value_size;
2247 isreg = 1;
2248 break;
2249 case OP_BASEREG:
2250 /* push value of register (number) */
2251 /* Actually, we compute the value as if register has 0 */
2252 offreg = 1;
2253 regno = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2254 current_objfile);
2255 loc += loc_value_size;
2256 if (regno == R_FP)
2257 {
2258 stack[++stacki] = 0;
2259 }
2260 else
2261 {
2262 stack[++stacki] = 0;
2263
2264 complain (&basereg_not_handled, DIE_ID, DIE_NAME, regno);
2265 }
2266 break;
2267 case OP_ADDR:
2268 /* push address (relocated address) */
2269 stack[++stacki] = target_to_host (loc, loc_value_size,
2270 GET_UNSIGNED, current_objfile);
2271 loc += loc_value_size;
2272 break;
2273 case OP_CONST:
2274 /* push constant (number) FIXME: signed or unsigned! */
2275 stack[++stacki] = target_to_host (loc, loc_value_size,
2276 GET_SIGNED, current_objfile);
2277 loc += loc_value_size;
2278 break;
2279 case OP_DEREF2:
2280 /* pop, deref and push 2 bytes (as a long) */
2281 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2282 break;
2283 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2284 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2285 break;
2286 case OP_ADD: /* pop top 2 items, add, push result */
2287 stack[stacki - 1] += stack[stacki];
2288 stacki--;
2289 break;
2290 }
2291 }
2292 return (stack[stacki]);
2293 }
2294
2295 /*
2296
2297 LOCAL FUNCTION
2298
2299 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2300
2301 SYNOPSIS
2302
2303 static struct symtab *read_ofile_symtab (struct partial_symtab *pst)
2304
2305 DESCRIPTION
2306
2307 When expanding a partial symbol table entry to a full symbol table
2308 entry, this is the function that gets called to read in the symbols
2309 for the compilation unit.
2310
2311 Returns a pointer to the newly constructed symtab (which is now
2312 the new first one on the objfile's symtab list).
2313 */
2314
2315 static struct symtab *
2316 read_ofile_symtab (pst)
2317 struct partial_symtab *pst;
2318 {
2319 struct cleanup *back_to;
2320 unsigned long lnsize;
2321 file_ptr foffset;
2322 bfd *abfd;
2323 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2324
2325 abfd = pst -> objfile -> obfd;
2326 current_objfile = pst -> objfile;
2327
2328 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2329 unit, seek to the location in the file, and read in all the DIE's. */
2330
2331 diecount = 0;
2332 dbsize = DBLENGTH (pst);
2333 dbbase = xmalloc (dbsize);
2334 dbroff = DBROFF(pst);
2335 foffset = DBFOFF(pst) + dbroff;
2336 base_section_offsets = pst->section_offsets;
2337 baseaddr = ANOFFSET (pst->section_offsets, 0);
2338 if (bfd_seek (abfd, foffset, L_SET) ||
2339 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2340 {
2341 free (dbbase);
2342 error ("can't read DWARF data");
2343 }
2344 back_to = make_cleanup (free, dbbase);
2345
2346 /* If there is a line number table associated with this compilation unit
2347 then read the size of this fragment in bytes, from the fragment itself.
2348 Allocate a buffer for the fragment and read it in for future
2349 processing. */
2350
2351 lnbase = NULL;
2352 if (LNFOFF (pst))
2353 {
2354 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2355 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2356 sizeof (lnsizedata)))
2357 {
2358 error ("can't read DWARF line number table size");
2359 }
2360 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2361 GET_UNSIGNED, pst -> objfile);
2362 lnbase = xmalloc (lnsize);
2363 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2364 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2365 {
2366 free (lnbase);
2367 error ("can't read DWARF line numbers");
2368 }
2369 make_cleanup (free, lnbase);
2370 }
2371
2372 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2373 do_cleanups (back_to);
2374 current_objfile = NULL;
2375 return (pst -> objfile -> symtabs);
2376 }
2377
2378 /*
2379
2380 LOCAL FUNCTION
2381
2382 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2383
2384 SYNOPSIS
2385
2386 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2387
2388 DESCRIPTION
2389
2390 Called once for each partial symbol table entry that needs to be
2391 expanded into a full symbol table entry.
2392
2393 */
2394
2395 static void
2396 psymtab_to_symtab_1 (pst)
2397 struct partial_symtab *pst;
2398 {
2399 int i;
2400 struct cleanup *old_chain;
2401
2402 if (pst != NULL)
2403 {
2404 if (pst->readin)
2405 {
2406 warning ("psymtab for %s already read in. Shouldn't happen.",
2407 pst -> filename);
2408 }
2409 else
2410 {
2411 /* Read in all partial symtabs on which this one is dependent */
2412 for (i = 0; i < pst -> number_of_dependencies; i++)
2413 {
2414 if (!pst -> dependencies[i] -> readin)
2415 {
2416 /* Inform about additional files that need to be read in. */
2417 if (info_verbose)
2418 {
2419 fputs_filtered (" ", stdout);
2420 wrap_here ("");
2421 fputs_filtered ("and ", stdout);
2422 wrap_here ("");
2423 printf_filtered ("%s...",
2424 pst -> dependencies[i] -> filename);
2425 wrap_here ("");
2426 fflush (stdout); /* Flush output */
2427 }
2428 psymtab_to_symtab_1 (pst -> dependencies[i]);
2429 }
2430 }
2431 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2432 {
2433 buildsym_init ();
2434 old_chain = make_cleanup (really_free_pendings, 0);
2435 pst -> symtab = read_ofile_symtab (pst);
2436 if (info_verbose)
2437 {
2438 printf_filtered ("%d DIE's, sorting...", diecount);
2439 wrap_here ("");
2440 fflush (stdout);
2441 }
2442 sort_symtab_syms (pst -> symtab);
2443 do_cleanups (old_chain);
2444 }
2445 pst -> readin = 1;
2446 }
2447 }
2448 }
2449
2450 /*
2451
2452 LOCAL FUNCTION
2453
2454 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2455
2456 SYNOPSIS
2457
2458 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2459
2460 DESCRIPTION
2461
2462 This is the DWARF support entry point for building a full symbol
2463 table entry from a partial symbol table entry. We are passed a
2464 pointer to the partial symbol table entry that needs to be expanded.
2465
2466 */
2467
2468 static void
2469 dwarf_psymtab_to_symtab (pst)
2470 struct partial_symtab *pst;
2471 {
2472
2473 if (pst != NULL)
2474 {
2475 if (pst -> readin)
2476 {
2477 warning ("psymtab for %s already read in. Shouldn't happen.",
2478 pst -> filename);
2479 }
2480 else
2481 {
2482 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2483 {
2484 /* Print the message now, before starting serious work, to avoid
2485 disconcerting pauses. */
2486 if (info_verbose)
2487 {
2488 printf_filtered ("Reading in symbols for %s...",
2489 pst -> filename);
2490 fflush (stdout);
2491 }
2492
2493 psymtab_to_symtab_1 (pst);
2494
2495 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2496 we need to do an equivalent or is this something peculiar to
2497 stabs/a.out format.
2498 Match with global symbols. This only needs to be done once,
2499 after all of the symtabs and dependencies have been read in.
2500 */
2501 scan_file_globals (pst -> objfile);
2502 #endif
2503
2504 /* Finish up the verbose info message. */
2505 if (info_verbose)
2506 {
2507 printf_filtered ("done.\n");
2508 fflush (stdout);
2509 }
2510 }
2511 }
2512 }
2513 }
2514
2515 /*
2516
2517 LOCAL FUNCTION
2518
2519 init_psymbol_list -- initialize storage for partial symbols
2520
2521 SYNOPSIS
2522
2523 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2524
2525 DESCRIPTION
2526
2527 Initializes storage for all of the partial symbols that will be
2528 created by dwarf_build_psymtabs and subsidiaries.
2529 */
2530
2531 static void
2532 init_psymbol_list (objfile, total_symbols)
2533 struct objfile *objfile;
2534 int total_symbols;
2535 {
2536 /* Free any previously allocated psymbol lists. */
2537
2538 if (objfile -> global_psymbols.list)
2539 {
2540 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2541 }
2542 if (objfile -> static_psymbols.list)
2543 {
2544 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2545 }
2546
2547 /* Current best guess is that there are approximately a twentieth
2548 of the total symbols (in a debugging file) are global or static
2549 oriented symbols */
2550
2551 objfile -> global_psymbols.size = total_symbols / 10;
2552 objfile -> static_psymbols.size = total_symbols / 10;
2553 objfile -> global_psymbols.next =
2554 objfile -> global_psymbols.list = (struct partial_symbol *)
2555 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2556 * sizeof (struct partial_symbol));
2557 objfile -> static_psymbols.next =
2558 objfile -> static_psymbols.list = (struct partial_symbol *)
2559 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2560 * sizeof (struct partial_symbol));
2561 }
2562
2563 /*
2564
2565 LOCAL FUNCTION
2566
2567 add_enum_psymbol -- add enumeration members to partial symbol table
2568
2569 DESCRIPTION
2570
2571 Given pointer to a DIE that is known to be for an enumeration,
2572 extract the symbolic names of the enumeration members and add
2573 partial symbols for them.
2574 */
2575
2576 static void
2577 add_enum_psymbol (dip, objfile)
2578 struct dieinfo *dip;
2579 struct objfile *objfile;
2580 {
2581 char *scan;
2582 char *listend;
2583 unsigned short blocksz;
2584 int nbytes;
2585
2586 if ((scan = dip -> at_element_list) != NULL)
2587 {
2588 if (dip -> short_element_list)
2589 {
2590 nbytes = attribute_size (AT_short_element_list);
2591 }
2592 else
2593 {
2594 nbytes = attribute_size (AT_element_list);
2595 }
2596 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2597 scan += nbytes;
2598 listend = scan + blocksz;
2599 while (scan < listend)
2600 {
2601 scan += TARGET_FT_LONG_SIZE (objfile);
2602 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2603 objfile -> static_psymbols, 0, cu_language,
2604 objfile);
2605 scan += strlen (scan) + 1;
2606 }
2607 }
2608 }
2609
2610 /*
2611
2612 LOCAL FUNCTION
2613
2614 add_partial_symbol -- add symbol to partial symbol table
2615
2616 DESCRIPTION
2617
2618 Given a DIE, if it is one of the types that we want to
2619 add to a partial symbol table, finish filling in the die info
2620 and then add a partial symbol table entry for it.
2621
2622 NOTES
2623
2624 The caller must ensure that the DIE has a valid name attribute.
2625 */
2626
2627 static void
2628 add_partial_symbol (dip, objfile)
2629 struct dieinfo *dip;
2630 struct objfile *objfile;
2631 {
2632 switch (dip -> die_tag)
2633 {
2634 case TAG_global_subroutine:
2635 record_minimal_symbol (dip -> at_name, dip -> at_low_pc, mst_text,
2636 objfile);
2637 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2638 VAR_NAMESPACE, LOC_BLOCK,
2639 objfile -> global_psymbols,
2640 dip -> at_low_pc, cu_language, objfile);
2641 break;
2642 case TAG_global_variable:
2643 record_minimal_symbol (dip -> at_name, locval (dip -> at_location),
2644 mst_data, objfile);
2645 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2646 VAR_NAMESPACE, LOC_STATIC,
2647 objfile -> global_psymbols,
2648 0, cu_language, objfile);
2649 break;
2650 case TAG_subroutine:
2651 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2652 VAR_NAMESPACE, LOC_BLOCK,
2653 objfile -> static_psymbols,
2654 dip -> at_low_pc, cu_language, objfile);
2655 break;
2656 case TAG_local_variable:
2657 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2658 VAR_NAMESPACE, LOC_STATIC,
2659 objfile -> static_psymbols,
2660 0, cu_language, objfile);
2661 break;
2662 case TAG_typedef:
2663 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2664 VAR_NAMESPACE, LOC_TYPEDEF,
2665 objfile -> static_psymbols,
2666 0, cu_language, objfile);
2667 break;
2668 case TAG_class_type:
2669 case TAG_structure_type:
2670 case TAG_union_type:
2671 case TAG_enumeration_type:
2672 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2673 STRUCT_NAMESPACE, LOC_TYPEDEF,
2674 objfile -> static_psymbols,
2675 0, cu_language, objfile);
2676 if (cu_language == language_cplus)
2677 {
2678 /* For C++, these implicitly act as typedefs as well. */
2679 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2680 VAR_NAMESPACE, LOC_TYPEDEF,
2681 objfile -> static_psymbols,
2682 0, cu_language, objfile);
2683 }
2684 break;
2685 }
2686 }
2687
2688 /*
2689
2690 LOCAL FUNCTION
2691
2692 scan_partial_symbols -- scan DIE's within a single compilation unit
2693
2694 DESCRIPTION
2695
2696 Process the DIE's within a single compilation unit, looking for
2697 interesting DIE's that contribute to the partial symbol table entry
2698 for this compilation unit.
2699
2700 NOTES
2701
2702 There are some DIE's that may appear both at file scope and within
2703 the scope of a function. We are only interested in the ones at file
2704 scope, and the only way to tell them apart is to keep track of the
2705 scope. For example, consider the test case:
2706
2707 static int i;
2708 main () { int j; }
2709
2710 for which the relevant DWARF segment has the structure:
2711
2712 0x51:
2713 0x23 global subrtn sibling 0x9b
2714 name main
2715 fund_type FT_integer
2716 low_pc 0x800004cc
2717 high_pc 0x800004d4
2718
2719 0x74:
2720 0x23 local var sibling 0x97
2721 name j
2722 fund_type FT_integer
2723 location OP_BASEREG 0xe
2724 OP_CONST 0xfffffffc
2725 OP_ADD
2726 0x97:
2727 0x4
2728
2729 0x9b:
2730 0x1d local var sibling 0xb8
2731 name i
2732 fund_type FT_integer
2733 location OP_ADDR 0x800025dc
2734
2735 0xb8:
2736 0x4
2737
2738 We want to include the symbol 'i' in the partial symbol table, but
2739 not the symbol 'j'. In essence, we want to skip all the dies within
2740 the scope of a TAG_global_subroutine DIE.
2741
2742 Don't attempt to add anonymous structures or unions since they have
2743 no name. Anonymous enumerations however are processed, because we
2744 want to extract their member names (the check for a tag name is
2745 done later).
2746
2747 Also, for variables and subroutines, check that this is the place
2748 where the actual definition occurs, rather than just a reference
2749 to an external.
2750 */
2751
2752 static void
2753 scan_partial_symbols (thisdie, enddie, objfile)
2754 char *thisdie;
2755 char *enddie;
2756 struct objfile *objfile;
2757 {
2758 char *nextdie;
2759 char *temp;
2760 struct dieinfo di;
2761
2762 while (thisdie < enddie)
2763 {
2764 basicdieinfo (&di, thisdie, objfile);
2765 if (di.die_length < SIZEOF_DIE_LENGTH)
2766 {
2767 break;
2768 }
2769 else
2770 {
2771 nextdie = thisdie + di.die_length;
2772 /* To avoid getting complete die information for every die, we
2773 only do it (below) for the cases we are interested in. */
2774 switch (di.die_tag)
2775 {
2776 case TAG_global_subroutine:
2777 case TAG_subroutine:
2778 completedieinfo (&di, objfile);
2779 if (di.at_name && (di.has_at_low_pc || di.at_location))
2780 {
2781 add_partial_symbol (&di, objfile);
2782 /* If there is a sibling attribute, adjust the nextdie
2783 pointer to skip the entire scope of the subroutine.
2784 Apply some sanity checking to make sure we don't
2785 overrun or underrun the range of remaining DIE's */
2786 if (di.at_sibling != 0)
2787 {
2788 temp = dbbase + di.at_sibling - dbroff;
2789 if ((temp < thisdie) || (temp >= enddie))
2790 {
2791 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2792 di.at_sibling);
2793 }
2794 else
2795 {
2796 nextdie = temp;
2797 }
2798 }
2799 }
2800 break;
2801 case TAG_global_variable:
2802 case TAG_local_variable:
2803 completedieinfo (&di, objfile);
2804 if (di.at_name && (di.has_at_low_pc || di.at_location))
2805 {
2806 add_partial_symbol (&di, objfile);
2807 }
2808 break;
2809 case TAG_typedef:
2810 case TAG_class_type:
2811 case TAG_structure_type:
2812 case TAG_union_type:
2813 completedieinfo (&di, objfile);
2814 if (di.at_name)
2815 {
2816 add_partial_symbol (&di, objfile);
2817 }
2818 break;
2819 case TAG_enumeration_type:
2820 completedieinfo (&di, objfile);
2821 if (di.at_name)
2822 {
2823 add_partial_symbol (&di, objfile);
2824 }
2825 add_enum_psymbol (&di, objfile);
2826 break;
2827 }
2828 }
2829 thisdie = nextdie;
2830 }
2831 }
2832
2833 /*
2834
2835 LOCAL FUNCTION
2836
2837 scan_compilation_units -- build a psymtab entry for each compilation
2838
2839 DESCRIPTION
2840
2841 This is the top level dwarf parsing routine for building partial
2842 symbol tables.
2843
2844 It scans from the beginning of the DWARF table looking for the first
2845 TAG_compile_unit DIE, and then follows the sibling chain to locate
2846 each additional TAG_compile_unit DIE.
2847
2848 For each TAG_compile_unit DIE it creates a partial symtab structure,
2849 calls a subordinate routine to collect all the compilation unit's
2850 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2851 new partial symtab structure into the partial symbol table. It also
2852 records the appropriate information in the partial symbol table entry
2853 to allow the chunk of DIE's and line number table for this compilation
2854 unit to be located and re-read later, to generate a complete symbol
2855 table entry for the compilation unit.
2856
2857 Thus it effectively partitions up a chunk of DIE's for multiple
2858 compilation units into smaller DIE chunks and line number tables,
2859 and associates them with a partial symbol table entry.
2860
2861 NOTES
2862
2863 If any compilation unit has no line number table associated with
2864 it for some reason (a missing at_stmt_list attribute, rather than
2865 just one with a value of zero, which is valid) then we ensure that
2866 the recorded file offset is zero so that the routine which later
2867 reads line number table fragments knows that there is no fragment
2868 to read.
2869
2870 RETURNS
2871
2872 Returns no value.
2873
2874 */
2875
2876 static void
2877 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2878 char *thisdie;
2879 char *enddie;
2880 file_ptr dbfoff;
2881 file_ptr lnoffset;
2882 struct objfile *objfile;
2883 {
2884 char *nextdie;
2885 struct dieinfo di;
2886 struct partial_symtab *pst;
2887 int culength;
2888 int curoff;
2889 file_ptr curlnoffset;
2890
2891 while (thisdie < enddie)
2892 {
2893 basicdieinfo (&di, thisdie, objfile);
2894 if (di.die_length < SIZEOF_DIE_LENGTH)
2895 {
2896 break;
2897 }
2898 else if (di.die_tag != TAG_compile_unit)
2899 {
2900 nextdie = thisdie + di.die_length;
2901 }
2902 else
2903 {
2904 completedieinfo (&di, objfile);
2905 set_cu_language (&di);
2906 if (di.at_sibling != 0)
2907 {
2908 nextdie = dbbase + di.at_sibling - dbroff;
2909 }
2910 else
2911 {
2912 nextdie = thisdie + di.die_length;
2913 }
2914 curoff = thisdie - dbbase;
2915 culength = nextdie - thisdie;
2916 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2917
2918 /* First allocate a new partial symbol table structure */
2919
2920 pst = start_psymtab_common (objfile, base_section_offsets,
2921 di.at_name, di.at_low_pc,
2922 objfile -> global_psymbols.next,
2923 objfile -> static_psymbols.next);
2924
2925 pst -> texthigh = di.at_high_pc;
2926 pst -> read_symtab_private = (char *)
2927 obstack_alloc (&objfile -> psymbol_obstack,
2928 sizeof (struct dwfinfo));
2929 DBFOFF (pst) = dbfoff;
2930 DBROFF (pst) = curoff;
2931 DBLENGTH (pst) = culength;
2932 LNFOFF (pst) = curlnoffset;
2933 pst -> read_symtab = dwarf_psymtab_to_symtab;
2934
2935 /* Now look for partial symbols */
2936
2937 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2938
2939 pst -> n_global_syms = objfile -> global_psymbols.next -
2940 (objfile -> global_psymbols.list + pst -> globals_offset);
2941 pst -> n_static_syms = objfile -> static_psymbols.next -
2942 (objfile -> static_psymbols.list + pst -> statics_offset);
2943 sort_pst_symbols (pst);
2944 /* If there is already a psymtab or symtab for a file of this name,
2945 remove it. (If there is a symtab, more drastic things also
2946 happen.) This happens in VxWorks. */
2947 free_named_symtabs (pst -> filename);
2948 }
2949 thisdie = nextdie;
2950 }
2951 }
2952
2953 /*
2954
2955 LOCAL FUNCTION
2956
2957 new_symbol -- make a symbol table entry for a new symbol
2958
2959 SYNOPSIS
2960
2961 static struct symbol *new_symbol (struct dieinfo *dip,
2962 struct objfile *objfile)
2963
2964 DESCRIPTION
2965
2966 Given a pointer to a DWARF information entry, figure out if we need
2967 to make a symbol table entry for it, and if so, create a new entry
2968 and return a pointer to it.
2969 */
2970
2971 static struct symbol *
2972 new_symbol (dip, objfile)
2973 struct dieinfo *dip;
2974 struct objfile *objfile;
2975 {
2976 struct symbol *sym = NULL;
2977
2978 if (dip -> at_name != NULL)
2979 {
2980 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2981 sizeof (struct symbol));
2982 memset (sym, 0, sizeof (struct symbol));
2983 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2984 &objfile->symbol_obstack);
2985 /* default assumptions */
2986 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2987 SYMBOL_CLASS (sym) = LOC_STATIC;
2988 SYMBOL_TYPE (sym) = decode_die_type (dip);
2989
2990 /* If this symbol is from a C++ compilation, then attempt to cache the
2991 demangled form for future reference. This is a typical time versus
2992 space tradeoff, that was decided in favor of time because it sped up
2993 C++ symbol lookups by a factor of about 20. */
2994
2995 SYMBOL_LANGUAGE (sym) = cu_language;
2996 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2997 switch (dip -> die_tag)
2998 {
2999 case TAG_label:
3000 SYMBOL_VALUE (sym) = dip -> at_low_pc;
3001 SYMBOL_CLASS (sym) = LOC_LABEL;
3002 break;
3003 case TAG_global_subroutine:
3004 case TAG_subroutine:
3005 SYMBOL_VALUE (sym) = dip -> at_low_pc;
3006 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
3007 SYMBOL_CLASS (sym) = LOC_BLOCK;
3008 if (dip -> die_tag == TAG_global_subroutine)
3009 {
3010 add_symbol_to_list (sym, &global_symbols);
3011 }
3012 else
3013 {
3014 add_symbol_to_list (sym, list_in_scope);
3015 }
3016 break;
3017 case TAG_global_variable:
3018 if (dip -> at_location != NULL)
3019 {
3020 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3021 add_symbol_to_list (sym, &global_symbols);
3022 SYMBOL_CLASS (sym) = LOC_STATIC;
3023 SYMBOL_VALUE (sym) += baseaddr;
3024 }
3025 break;
3026 case TAG_local_variable:
3027 if (dip -> at_location != NULL)
3028 {
3029 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3030 add_symbol_to_list (sym, list_in_scope);
3031 if (isreg)
3032 {
3033 SYMBOL_CLASS (sym) = LOC_REGISTER;
3034 }
3035 else if (offreg)
3036 {
3037 SYMBOL_CLASS (sym) = LOC_LOCAL;
3038 }
3039 else
3040 {
3041 SYMBOL_CLASS (sym) = LOC_STATIC;
3042 SYMBOL_VALUE (sym) += baseaddr;
3043 }
3044 }
3045 break;
3046 case TAG_formal_parameter:
3047 if (dip -> at_location != NULL)
3048 {
3049 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3050 }
3051 add_symbol_to_list (sym, list_in_scope);
3052 if (isreg)
3053 {
3054 SYMBOL_CLASS (sym) = LOC_REGPARM;
3055 }
3056 else
3057 {
3058 SYMBOL_CLASS (sym) = LOC_ARG;
3059 }
3060 break;
3061 case TAG_unspecified_parameters:
3062 /* From varargs functions; gdb doesn't seem to have any interest in
3063 this information, so just ignore it for now. (FIXME?) */
3064 break;
3065 case TAG_class_type:
3066 case TAG_structure_type:
3067 case TAG_union_type:
3068 case TAG_enumeration_type:
3069 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3070 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3071 add_symbol_to_list (sym, list_in_scope);
3072 break;
3073 case TAG_typedef:
3074 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3075 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3076 add_symbol_to_list (sym, list_in_scope);
3077 break;
3078 default:
3079 /* Not a tag we recognize. Hopefully we aren't processing trash
3080 data, but since we must specifically ignore things we don't
3081 recognize, there is nothing else we should do at this point. */
3082 break;
3083 }
3084 }
3085 return (sym);
3086 }
3087
3088 /*
3089
3090 LOCAL FUNCTION
3091
3092 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3093
3094 SYNOPSIS
3095
3096 static void synthesize_typedef (struct dieinfo *dip,
3097 struct objfile *objfile,
3098 struct type *type);
3099
3100 DESCRIPTION
3101
3102 Given a pointer to a DWARF information entry, synthesize a typedef
3103 for the name in the DIE, using the specified type.
3104
3105 This is used for C++ class, structs, unions, and enumerations to
3106 set up the tag name as a type.
3107
3108 */
3109
3110 static void
3111 synthesize_typedef (dip, objfile, type)
3112 struct dieinfo *dip;
3113 struct objfile *objfile;
3114 struct type *type;
3115 {
3116 struct symbol *sym = NULL;
3117
3118 if (dip -> at_name != NULL)
3119 {
3120 sym = (struct symbol *)
3121 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3122 memset (sym, 0, sizeof (struct symbol));
3123 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3124 &objfile->symbol_obstack);
3125 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3126 SYMBOL_TYPE (sym) = type;
3127 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3128 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3129 add_symbol_to_list (sym, list_in_scope);
3130 }
3131 }
3132
3133 /*
3134
3135 LOCAL FUNCTION
3136
3137 decode_mod_fund_type -- decode a modified fundamental type
3138
3139 SYNOPSIS
3140
3141 static struct type *decode_mod_fund_type (char *typedata)
3142
3143 DESCRIPTION
3144
3145 Decode a block of data containing a modified fundamental
3146 type specification. TYPEDATA is a pointer to the block,
3147 which starts with a length containing the size of the rest
3148 of the block. At the end of the block is a fundmental type
3149 code value that gives the fundamental type. Everything
3150 in between are type modifiers.
3151
3152 We simply compute the number of modifiers and call the general
3153 function decode_modified_type to do the actual work.
3154 */
3155
3156 static struct type *
3157 decode_mod_fund_type (typedata)
3158 char *typedata;
3159 {
3160 struct type *typep = NULL;
3161 unsigned short modcount;
3162 int nbytes;
3163
3164 /* Get the total size of the block, exclusive of the size itself */
3165
3166 nbytes = attribute_size (AT_mod_fund_type);
3167 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3168 typedata += nbytes;
3169
3170 /* Deduct the size of the fundamental type bytes at the end of the block. */
3171
3172 modcount -= attribute_size (AT_fund_type);
3173
3174 /* Now do the actual decoding */
3175
3176 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3177 return (typep);
3178 }
3179
3180 /*
3181
3182 LOCAL FUNCTION
3183
3184 decode_mod_u_d_type -- decode a modified user defined type
3185
3186 SYNOPSIS
3187
3188 static struct type *decode_mod_u_d_type (char *typedata)
3189
3190 DESCRIPTION
3191
3192 Decode a block of data containing a modified user defined
3193 type specification. TYPEDATA is a pointer to the block,
3194 which consists of a two byte length, containing the size
3195 of the rest of the block. At the end of the block is a
3196 four byte value that gives a reference to a user defined type.
3197 Everything in between are type modifiers.
3198
3199 We simply compute the number of modifiers and call the general
3200 function decode_modified_type to do the actual work.
3201 */
3202
3203 static struct type *
3204 decode_mod_u_d_type (typedata)
3205 char *typedata;
3206 {
3207 struct type *typep = NULL;
3208 unsigned short modcount;
3209 int nbytes;
3210
3211 /* Get the total size of the block, exclusive of the size itself */
3212
3213 nbytes = attribute_size (AT_mod_u_d_type);
3214 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3215 typedata += nbytes;
3216
3217 /* Deduct the size of the reference type bytes at the end of the block. */
3218
3219 modcount -= attribute_size (AT_user_def_type);
3220
3221 /* Now do the actual decoding */
3222
3223 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3224 return (typep);
3225 }
3226
3227 /*
3228
3229 LOCAL FUNCTION
3230
3231 decode_modified_type -- decode modified user or fundamental type
3232
3233 SYNOPSIS
3234
3235 static struct type *decode_modified_type (char *modifiers,
3236 unsigned short modcount, int mtype)
3237
3238 DESCRIPTION
3239
3240 Decode a modified type, either a modified fundamental type or
3241 a modified user defined type. MODIFIERS is a pointer to the
3242 block of bytes that define MODCOUNT modifiers. Immediately
3243 following the last modifier is a short containing the fundamental
3244 type or a long containing the reference to the user defined
3245 type. Which one is determined by MTYPE, which is either
3246 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3247 type we are generating.
3248
3249 We call ourself recursively to generate each modified type,`
3250 until MODCOUNT reaches zero, at which point we have consumed
3251 all the modifiers and generate either the fundamental type or
3252 user defined type. When the recursion unwinds, each modifier
3253 is applied in turn to generate the full modified type.
3254
3255 NOTES
3256
3257 If we find a modifier that we don't recognize, and it is not one
3258 of those reserved for application specific use, then we issue a
3259 warning and simply ignore the modifier.
3260
3261 BUGS
3262
3263 We currently ignore MOD_const and MOD_volatile. (FIXME)
3264
3265 */
3266
3267 static struct type *
3268 decode_modified_type (modifiers, modcount, mtype)
3269 char *modifiers;
3270 unsigned int modcount;
3271 int mtype;
3272 {
3273 struct type *typep = NULL;
3274 unsigned short fundtype;
3275 DIE_REF die_ref;
3276 char modifier;
3277 int nbytes;
3278
3279 if (modcount == 0)
3280 {
3281 switch (mtype)
3282 {
3283 case AT_mod_fund_type:
3284 nbytes = attribute_size (AT_fund_type);
3285 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3286 current_objfile);
3287 typep = decode_fund_type (fundtype);
3288 break;
3289 case AT_mod_u_d_type:
3290 nbytes = attribute_size (AT_user_def_type);
3291 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3292 current_objfile);
3293 if ((typep = lookup_utype (die_ref)) == NULL)
3294 {
3295 typep = alloc_utype (die_ref, NULL);
3296 }
3297 break;
3298 default:
3299 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3300 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3301 break;
3302 }
3303 }
3304 else
3305 {
3306 modifier = *modifiers++;
3307 typep = decode_modified_type (modifiers, --modcount, mtype);
3308 switch (modifier)
3309 {
3310 case MOD_pointer_to:
3311 typep = lookup_pointer_type (typep);
3312 break;
3313 case MOD_reference_to:
3314 typep = lookup_reference_type (typep);
3315 break;
3316 case MOD_const:
3317 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3318 break;
3319 case MOD_volatile:
3320 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3321 break;
3322 default:
3323 if (!(MOD_lo_user <= (unsigned char) modifier
3324 && (unsigned char) modifier <= MOD_hi_user))
3325 {
3326 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3327 }
3328 break;
3329 }
3330 }
3331 return (typep);
3332 }
3333
3334 /*
3335
3336 LOCAL FUNCTION
3337
3338 decode_fund_type -- translate basic DWARF type to gdb base type
3339
3340 DESCRIPTION
3341
3342 Given an integer that is one of the fundamental DWARF types,
3343 translate it to one of the basic internal gdb types and return
3344 a pointer to the appropriate gdb type (a "struct type *").
3345
3346 NOTES
3347
3348 For robustness, if we are asked to translate a fundamental
3349 type that we are unprepared to deal with, we return int so
3350 callers can always depend upon a valid type being returned,
3351 and so gdb may at least do something reasonable by default.
3352 If the type is not in the range of those types defined as
3353 application specific types, we also issue a warning.
3354 */
3355
3356 static struct type *
3357 decode_fund_type (fundtype)
3358 unsigned int fundtype;
3359 {
3360 struct type *typep = NULL;
3361
3362 switch (fundtype)
3363 {
3364
3365 case FT_void:
3366 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3367 break;
3368
3369 case FT_boolean: /* Was FT_set in AT&T version */
3370 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3371 break;
3372
3373 case FT_pointer: /* (void *) */
3374 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3375 typep = lookup_pointer_type (typep);
3376 break;
3377
3378 case FT_char:
3379 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3380 break;
3381
3382 case FT_signed_char:
3383 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3384 break;
3385
3386 case FT_unsigned_char:
3387 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3388 break;
3389
3390 case FT_short:
3391 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3392 break;
3393
3394 case FT_signed_short:
3395 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3396 break;
3397
3398 case FT_unsigned_short:
3399 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3400 break;
3401
3402 case FT_integer:
3403 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3404 break;
3405
3406 case FT_signed_integer:
3407 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3408 break;
3409
3410 case FT_unsigned_integer:
3411 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3412 break;
3413
3414 case FT_long:
3415 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3416 break;
3417
3418 case FT_signed_long:
3419 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3420 break;
3421
3422 case FT_unsigned_long:
3423 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3424 break;
3425
3426 case FT_long_long:
3427 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3428 break;
3429
3430 case FT_signed_long_long:
3431 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3432 break;
3433
3434 case FT_unsigned_long_long:
3435 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3436 break;
3437
3438 case FT_float:
3439 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3440 break;
3441
3442 case FT_dbl_prec_float:
3443 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3444 break;
3445
3446 case FT_ext_prec_float:
3447 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3448 break;
3449
3450 case FT_complex:
3451 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3452 break;
3453
3454 case FT_dbl_prec_complex:
3455 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3456 break;
3457
3458 case FT_ext_prec_complex:
3459 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3460 break;
3461
3462 }
3463
3464 if (typep == NULL)
3465 {
3466 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3467 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3468 {
3469 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3470 }
3471 }
3472
3473 return (typep);
3474 }
3475
3476 /*
3477
3478 LOCAL FUNCTION
3479
3480 create_name -- allocate a fresh copy of a string on an obstack
3481
3482 DESCRIPTION
3483
3484 Given a pointer to a string and a pointer to an obstack, allocates
3485 a fresh copy of the string on the specified obstack.
3486
3487 */
3488
3489 static char *
3490 create_name (name, obstackp)
3491 char *name;
3492 struct obstack *obstackp;
3493 {
3494 int length;
3495 char *newname;
3496
3497 length = strlen (name) + 1;
3498 newname = (char *) obstack_alloc (obstackp, length);
3499 strcpy (newname, name);
3500 return (newname);
3501 }
3502
3503 /*
3504
3505 LOCAL FUNCTION
3506
3507 basicdieinfo -- extract the minimal die info from raw die data
3508
3509 SYNOPSIS
3510
3511 void basicdieinfo (char *diep, struct dieinfo *dip,
3512 struct objfile *objfile)
3513
3514 DESCRIPTION
3515
3516 Given a pointer to raw DIE data, and a pointer to an instance of a
3517 die info structure, this function extracts the basic information
3518 from the DIE data required to continue processing this DIE, along
3519 with some bookkeeping information about the DIE.
3520
3521 The information we absolutely must have includes the DIE tag,
3522 and the DIE length. If we need the sibling reference, then we
3523 will have to call completedieinfo() to process all the remaining
3524 DIE information.
3525
3526 Note that since there is no guarantee that the data is properly
3527 aligned in memory for the type of access required (indirection
3528 through anything other than a char pointer), and there is no
3529 guarantee that it is in the same byte order as the gdb host,
3530 we call a function which deals with both alignment and byte
3531 swapping issues. Possibly inefficient, but quite portable.
3532
3533 We also take care of some other basic things at this point, such
3534 as ensuring that the instance of the die info structure starts
3535 out completely zero'd and that curdie is initialized for use
3536 in error reporting if we have a problem with the current die.
3537
3538 NOTES
3539
3540 All DIE's must have at least a valid length, thus the minimum
3541 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3542 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3543 are forced to be TAG_padding DIES.
3544
3545 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3546 that if a padding DIE is used for alignment and the amount needed is
3547 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3548 enough to align to the next alignment boundry.
3549
3550 We do some basic sanity checking here, such as verifying that the
3551 length of the die would not cause it to overrun the recorded end of
3552 the buffer holding the DIE info. If we find a DIE that is either
3553 too small or too large, we force it's length to zero which should
3554 cause the caller to take appropriate action.
3555 */
3556
3557 static void
3558 basicdieinfo (dip, diep, objfile)
3559 struct dieinfo *dip;
3560 char *diep;
3561 struct objfile *objfile;
3562 {
3563 curdie = dip;
3564 memset (dip, 0, sizeof (struct dieinfo));
3565 dip -> die = diep;
3566 dip -> die_ref = dbroff + (diep - dbbase);
3567 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3568 objfile);
3569 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3570 ((diep + dip -> die_length) > (dbbase + dbsize)))
3571 {
3572 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3573 dip -> die_length = 0;
3574 }
3575 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3576 {
3577 dip -> die_tag = TAG_padding;
3578 }
3579 else
3580 {
3581 diep += SIZEOF_DIE_LENGTH;
3582 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3583 objfile);
3584 }
3585 }
3586
3587 /*
3588
3589 LOCAL FUNCTION
3590
3591 completedieinfo -- finish reading the information for a given DIE
3592
3593 SYNOPSIS
3594
3595 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3596
3597 DESCRIPTION
3598
3599 Given a pointer to an already partially initialized die info structure,
3600 scan the raw DIE data and finish filling in the die info structure
3601 from the various attributes found.
3602
3603 Note that since there is no guarantee that the data is properly
3604 aligned in memory for the type of access required (indirection
3605 through anything other than a char pointer), and there is no
3606 guarantee that it is in the same byte order as the gdb host,
3607 we call a function which deals with both alignment and byte
3608 swapping issues. Possibly inefficient, but quite portable.
3609
3610 NOTES
3611
3612 Each time we are called, we increment the diecount variable, which
3613 keeps an approximate count of the number of dies processed for
3614 each compilation unit. This information is presented to the user
3615 if the info_verbose flag is set.
3616
3617 */
3618
3619 static void
3620 completedieinfo (dip, objfile)
3621 struct dieinfo *dip;
3622 struct objfile *objfile;
3623 {
3624 char *diep; /* Current pointer into raw DIE data */
3625 char *end; /* Terminate DIE scan here */
3626 unsigned short attr; /* Current attribute being scanned */
3627 unsigned short form; /* Form of the attribute */
3628 int nbytes; /* Size of next field to read */
3629
3630 diecount++;
3631 diep = dip -> die;
3632 end = diep + dip -> die_length;
3633 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3634 while (diep < end)
3635 {
3636 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3637 diep += SIZEOF_ATTRIBUTE;
3638 if ((nbytes = attribute_size (attr)) == -1)
3639 {
3640 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3641 diep = end;
3642 continue;
3643 }
3644 switch (attr)
3645 {
3646 case AT_fund_type:
3647 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3648 objfile);
3649 break;
3650 case AT_ordering:
3651 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
3653 break;
3654 case AT_bit_offset:
3655 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 objfile);
3657 break;
3658 case AT_sibling:
3659 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
3661 break;
3662 case AT_stmt_list:
3663 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3664 objfile);
3665 dip -> has_at_stmt_list = 1;
3666 break;
3667 case AT_low_pc:
3668 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3669 objfile);
3670 dip -> at_low_pc += baseaddr;
3671 dip -> has_at_low_pc = 1;
3672 break;
3673 case AT_high_pc:
3674 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3675 objfile);
3676 dip -> at_high_pc += baseaddr;
3677 break;
3678 case AT_language:
3679 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3680 objfile);
3681 break;
3682 case AT_user_def_type:
3683 dip -> at_user_def_type = target_to_host (diep, nbytes,
3684 GET_UNSIGNED, objfile);
3685 break;
3686 case AT_byte_size:
3687 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3688 objfile);
3689 dip -> has_at_byte_size = 1;
3690 break;
3691 case AT_bit_size:
3692 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3693 objfile);
3694 break;
3695 case AT_member:
3696 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3697 objfile);
3698 break;
3699 case AT_discr:
3700 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3701 objfile);
3702 break;
3703 case AT_location:
3704 dip -> at_location = diep;
3705 break;
3706 case AT_mod_fund_type:
3707 dip -> at_mod_fund_type = diep;
3708 break;
3709 case AT_subscr_data:
3710 dip -> at_subscr_data = diep;
3711 break;
3712 case AT_mod_u_d_type:
3713 dip -> at_mod_u_d_type = diep;
3714 break;
3715 case AT_element_list:
3716 dip -> at_element_list = diep;
3717 dip -> short_element_list = 0;
3718 break;
3719 case AT_short_element_list:
3720 dip -> at_element_list = diep;
3721 dip -> short_element_list = 1;
3722 break;
3723 case AT_discr_value:
3724 dip -> at_discr_value = diep;
3725 break;
3726 case AT_string_length:
3727 dip -> at_string_length = diep;
3728 break;
3729 case AT_name:
3730 dip -> at_name = diep;
3731 break;
3732 case AT_comp_dir:
3733 /* For now, ignore any "hostname:" portion, since gdb doesn't
3734 know how to deal with it. (FIXME). */
3735 dip -> at_comp_dir = strrchr (diep, ':');
3736 if (dip -> at_comp_dir != NULL)
3737 {
3738 dip -> at_comp_dir++;
3739 }
3740 else
3741 {
3742 dip -> at_comp_dir = diep;
3743 }
3744 break;
3745 case AT_producer:
3746 dip -> at_producer = diep;
3747 break;
3748 case AT_start_scope:
3749 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3750 objfile);
3751 break;
3752 case AT_stride_size:
3753 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3754 objfile);
3755 break;
3756 case AT_src_info:
3757 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3758 objfile);
3759 break;
3760 case AT_prototyped:
3761 dip -> at_prototyped = diep;
3762 break;
3763 default:
3764 /* Found an attribute that we are unprepared to handle. However
3765 it is specifically one of the design goals of DWARF that
3766 consumers should ignore unknown attributes. As long as the
3767 form is one that we recognize (so we know how to skip it),
3768 we can just ignore the unknown attribute. */
3769 break;
3770 }
3771 form = FORM_FROM_ATTR (attr);
3772 switch (form)
3773 {
3774 case FORM_DATA2:
3775 diep += 2;
3776 break;
3777 case FORM_DATA4:
3778 case FORM_REF:
3779 diep += 4;
3780 break;
3781 case FORM_DATA8:
3782 diep += 8;
3783 break;
3784 case FORM_ADDR:
3785 diep += TARGET_FT_POINTER_SIZE (objfile);
3786 break;
3787 case FORM_BLOCK2:
3788 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3789 break;
3790 case FORM_BLOCK4:
3791 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3792 break;
3793 case FORM_STRING:
3794 diep += strlen (diep) + 1;
3795 break;
3796 default:
3797 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3798 diep = end;
3799 break;
3800 }
3801 }
3802 }
3803
3804 /*
3805
3806 LOCAL FUNCTION
3807
3808 target_to_host -- swap in target data to host
3809
3810 SYNOPSIS
3811
3812 target_to_host (char *from, int nbytes, int signextend,
3813 struct objfile *objfile)
3814
3815 DESCRIPTION
3816
3817 Given pointer to data in target format in FROM, a byte count for
3818 the size of the data in NBYTES, a flag indicating whether or not
3819 the data is signed in SIGNEXTEND, and a pointer to the current
3820 objfile in OBJFILE, convert the data to host format and return
3821 the converted value.
3822
3823 NOTES
3824
3825 FIXME: If we read data that is known to be signed, and expect to
3826 use it as signed data, then we need to explicitly sign extend the
3827 result until the bfd library is able to do this for us.
3828
3829 */
3830
3831 static unsigned long
3832 target_to_host (from, nbytes, signextend, objfile)
3833 char *from;
3834 int nbytes;
3835 int signextend; /* FIXME: Unused */
3836 struct objfile *objfile;
3837 {
3838 unsigned long rtnval;
3839
3840 switch (nbytes)
3841 {
3842 case 8:
3843 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3844 break;
3845 case 4:
3846 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3847 break;
3848 case 2:
3849 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3850 break;
3851 case 1:
3852 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3853 break;
3854 default:
3855 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3856 rtnval = 0;
3857 break;
3858 }
3859 return (rtnval);
3860 }
3861
3862 /*
3863
3864 LOCAL FUNCTION
3865
3866 attribute_size -- compute size of data for a DWARF attribute
3867
3868 SYNOPSIS
3869
3870 static int attribute_size (unsigned int attr)
3871
3872 DESCRIPTION
3873
3874 Given a DWARF attribute in ATTR, compute the size of the first
3875 piece of data associated with this attribute and return that
3876 size.
3877
3878 Returns -1 for unrecognized attributes.
3879
3880 */
3881
3882 static int
3883 attribute_size (attr)
3884 unsigned int attr;
3885 {
3886 int nbytes; /* Size of next data for this attribute */
3887 unsigned short form; /* Form of the attribute */
3888
3889 form = FORM_FROM_ATTR (attr);
3890 switch (form)
3891 {
3892 case FORM_STRING: /* A variable length field is next */
3893 nbytes = 0;
3894 break;
3895 case FORM_DATA2: /* Next 2 byte field is the data itself */
3896 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3897 nbytes = 2;
3898 break;
3899 case FORM_DATA4: /* Next 4 byte field is the data itself */
3900 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3901 case FORM_REF: /* Next 4 byte field is a DIE offset */
3902 nbytes = 4;
3903 break;
3904 case FORM_DATA8: /* Next 8 byte field is the data itself */
3905 nbytes = 8;
3906 break;
3907 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3908 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3909 break;
3910 default:
3911 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3912 nbytes = -1;
3913 break;
3914 }
3915 return (nbytes);
3916 }
This page took 0.107793 seconds and 4 git commands to generate.