* exec.c (xfer_memory): Add attrib argument.
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24
25 FIXME: Do we need to generate dependencies in partial symtabs?
26 (Perhaps we don't need to).
27
28 FIXME: Resolve minor differences between what information we put in the
29 partial symbol table and what dbxread puts in. For example, we don't yet
30 put enum constants there. And dbxread seems to invent a lot of typedefs
31 we never see. Use the new printpsym command to see the partial symbol table
32 contents.
33
34 FIXME: Figure out a better way to tell gdb about the name of the function
35 contain the user's entry point (I.E. main())
36
37 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38 other things to work on, if you get bored. :-)
39
40 */
41
42 #include "defs.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "elf/dwarf.h"
48 #include "buildsym.h"
49 #include "demangle.h"
50 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
51 #include "language.h"
52 #include "complaints.h"
53
54 #include <fcntl.h>
55 #include "gdb_string.h"
56
57 /* Some macros to provide DIE info for complaints. */
58
59 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
61
62 /* Complaints that can be issued during DWARF debug info reading. */
63
64 struct complaint no_bfd_get_N =
65 {
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
67 };
68
69 struct complaint malformed_die =
70 {
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
72 };
73
74 struct complaint bad_die_ref =
75 {
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
77 };
78
79 struct complaint unknown_attribute_form =
80 {
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
82 };
83
84 struct complaint unknown_attribute_length =
85 {
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
87 };
88
89 struct complaint unexpected_fund_type =
90 {
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
92 };
93
94 struct complaint unknown_type_modifier =
95 {
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
97 };
98
99 struct complaint volatile_ignored =
100 {
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
102 };
103
104 struct complaint const_ignored =
105 {
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
107 };
108
109 struct complaint botched_modified_type =
110 {
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
112 };
113
114 struct complaint op_deref2 =
115 {
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
117 };
118
119 struct complaint op_deref4 =
120 {
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
122 };
123
124 struct complaint basereg_not_handled =
125 {
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
127 };
128
129 struct complaint dup_user_type_allocation =
130 {
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
132 };
133
134 struct complaint dup_user_type_definition =
135 {
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
137 };
138
139 struct complaint missing_tag =
140 {
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
142 };
143
144 struct complaint bad_array_element_type =
145 {
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
147 };
148
149 struct complaint subscript_data_items =
150 {
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
152 };
153
154 struct complaint unhandled_array_subscript_format =
155 {
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
157 };
158
159 struct complaint unknown_array_subscript_format =
160 {
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
162 };
163
164 struct complaint not_row_major =
165 {
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
167 };
168
169 struct complaint missing_at_name =
170 {
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
172 };
173
174 typedef unsigned int DIE_REF; /* Reference to a DIE */
175
176 #ifndef GCC_PRODUCER
177 #define GCC_PRODUCER "GNU C "
178 #endif
179
180 #ifndef GPLUS_PRODUCER
181 #define GPLUS_PRODUCER "GNU C++ "
182 #endif
183
184 #ifndef LCC_PRODUCER
185 #define LCC_PRODUCER "NCR C/C++"
186 #endif
187
188 #ifndef CHILL_PRODUCER
189 #define CHILL_PRODUCER "GNU Chill "
190 #endif
191
192 /* Flags to target_to_host() that tell whether or not the data object is
193 expected to be signed. Used, for example, when fetching a signed
194 integer in the target environment which is used as a signed integer
195 in the host environment, and the two environments have different sized
196 ints. In this case, *somebody* has to sign extend the smaller sized
197 int. */
198
199 #define GET_UNSIGNED 0 /* No sign extension required */
200 #define GET_SIGNED 1 /* Sign extension required */
201
202 /* Defines for things which are specified in the document "DWARF Debugging
203 Information Format" published by UNIX International, Programming Languages
204 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
205
206 #define SIZEOF_DIE_LENGTH 4
207 #define SIZEOF_DIE_TAG 2
208 #define SIZEOF_ATTRIBUTE 2
209 #define SIZEOF_FORMAT_SPECIFIER 1
210 #define SIZEOF_FMT_FT 2
211 #define SIZEOF_LINETBL_LENGTH 4
212 #define SIZEOF_LINETBL_LINENO 4
213 #define SIZEOF_LINETBL_STMT 2
214 #define SIZEOF_LINETBL_DELTA 4
215 #define SIZEOF_LOC_ATOM_CODE 1
216
217 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
218
219 /* Macros that return the sizes of various types of data in the target
220 environment.
221
222 FIXME: Currently these are just compile time constants (as they are in
223 other parts of gdb as well). They need to be able to get the right size
224 either from the bfd or possibly from the DWARF info. It would be nice if
225 the DWARF producer inserted DIES that describe the fundamental types in
226 the target environment into the DWARF info, similar to the way dbx stabs
227 producers produce information about their fundamental types. */
228
229 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
230 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
231
232 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
233 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
234 However, the Issue 2 DWARF specification from AT&T defines it as
235 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
236 For backwards compatibility with the AT&T compiler produced executables
237 we define AT_short_element_list for this variant. */
238
239 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
240
241 /* External variables referenced. */
242
243 extern int info_verbose; /* From main.c; nonzero => verbose */
244 extern char *warning_pre_print; /* From utils.c */
245
246 /* The DWARF debugging information consists of two major pieces,
247 one is a block of DWARF Information Entries (DIE's) and the other
248 is a line number table. The "struct dieinfo" structure contains
249 the information for a single DIE, the one currently being processed.
250
251 In order to make it easier to randomly access the attribute fields
252 of the current DIE, which are specifically unordered within the DIE,
253 each DIE is scanned and an instance of the "struct dieinfo"
254 structure is initialized.
255
256 Initialization is done in two levels. The first, done by basicdieinfo(),
257 just initializes those fields that are vital to deciding whether or not
258 to use this DIE, how to skip past it, etc. The second, done by the
259 function completedieinfo(), fills in the rest of the information.
260
261 Attributes which have block forms are not interpreted at the time
262 the DIE is scanned, instead we just save pointers to the start
263 of their value fields.
264
265 Some fields have a flag <name>_p that is set when the value of the
266 field is valid (I.E. we found a matching attribute in the DIE). Since
267 we may want to test for the presence of some attributes in the DIE,
268 such as AT_low_pc, without restricting the values of the field,
269 we need someway to note that we found such an attribute.
270
271 */
272
273 typedef char BLOCK;
274
275 struct dieinfo
276 {
277 char *die; /* Pointer to the raw DIE data */
278 unsigned long die_length; /* Length of the raw DIE data */
279 DIE_REF die_ref; /* Offset of this DIE */
280 unsigned short die_tag; /* Tag for this DIE */
281 unsigned long at_padding;
282 unsigned long at_sibling;
283 BLOCK *at_location;
284 char *at_name;
285 unsigned short at_fund_type;
286 BLOCK *at_mod_fund_type;
287 unsigned long at_user_def_type;
288 BLOCK *at_mod_u_d_type;
289 unsigned short at_ordering;
290 BLOCK *at_subscr_data;
291 unsigned long at_byte_size;
292 unsigned short at_bit_offset;
293 unsigned long at_bit_size;
294 BLOCK *at_element_list;
295 unsigned long at_stmt_list;
296 CORE_ADDR at_low_pc;
297 CORE_ADDR at_high_pc;
298 unsigned long at_language;
299 unsigned long at_member;
300 unsigned long at_discr;
301 BLOCK *at_discr_value;
302 BLOCK *at_string_length;
303 char *at_comp_dir;
304 char *at_producer;
305 unsigned long at_start_scope;
306 unsigned long at_stride_size;
307 unsigned long at_src_info;
308 char *at_prototyped;
309 unsigned int has_at_low_pc:1;
310 unsigned int has_at_stmt_list:1;
311 unsigned int has_at_byte_size:1;
312 unsigned int short_element_list:1;
313
314 /* Kludge to identify register variables */
315
316 unsigned int isreg;
317
318 /* Kludge to identify optimized out variables */
319
320 unsigned int optimized_out;
321
322 /* Kludge to identify basereg references.
323 Nonzero if we have an offset relative to a basereg. */
324
325 unsigned int offreg;
326
327 /* Kludge to identify which base register is it relative to. */
328
329 unsigned int basereg;
330 };
331
332 static int diecount; /* Approximate count of dies for compilation unit */
333 static struct dieinfo *curdie; /* For warnings and such */
334
335 static char *dbbase; /* Base pointer to dwarf info */
336 static int dbsize; /* Size of dwarf info in bytes */
337 static int dbroff; /* Relative offset from start of .debug section */
338 static char *lnbase; /* Base pointer to line section */
339
340 /* This value is added to each symbol value. FIXME: Generalize to
341 the section_offsets structure used by dbxread (once this is done,
342 pass the appropriate section number to end_symtab). */
343 static CORE_ADDR baseaddr; /* Add to each symbol value */
344
345 /* The section offsets used in the current psymtab or symtab. FIXME,
346 only used to pass one value (baseaddr) at the moment. */
347 static struct section_offsets *base_section_offsets;
348
349 /* We put a pointer to this structure in the read_symtab_private field
350 of the psymtab. */
351
352 struct dwfinfo
353 {
354 /* Always the absolute file offset to the start of the ".debug"
355 section for the file containing the DIE's being accessed. */
356 file_ptr dbfoff;
357 /* Relative offset from the start of the ".debug" section to the
358 first DIE to be accessed. When building the partial symbol
359 table, this value will be zero since we are accessing the
360 entire ".debug" section. When expanding a partial symbol
361 table entry, this value will be the offset to the first
362 DIE for the compilation unit containing the symbol that
363 triggers the expansion. */
364 int dbroff;
365 /* The size of the chunk of DIE's being examined, in bytes. */
366 int dblength;
367 /* The absolute file offset to the line table fragment. Ignored
368 when building partial symbol tables, but used when expanding
369 them, and contains the absolute file offset to the fragment
370 of the ".line" section containing the line numbers for the
371 current compilation unit. */
372 file_ptr lnfoff;
373 };
374
375 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
376 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
377 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
378 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
379
380 /* The generic symbol table building routines have separate lists for
381 file scope symbols and all all other scopes (local scopes). So
382 we need to select the right one to pass to add_symbol_to_list().
383 We do it by keeping a pointer to the correct list in list_in_scope.
384
385 FIXME: The original dwarf code just treated the file scope as the first
386 local scope, and all other local scopes as nested local scopes, and worked
387 fine. Check to see if we really need to distinguish these in buildsym.c */
388
389 struct pending **list_in_scope = &file_symbols;
390
391 /* DIES which have user defined types or modified user defined types refer to
392 other DIES for the type information. Thus we need to associate the offset
393 of a DIE for a user defined type with a pointer to the type information.
394
395 Originally this was done using a simple but expensive algorithm, with an
396 array of unsorted structures, each containing an offset/type-pointer pair.
397 This array was scanned linearly each time a lookup was done. The result
398 was that gdb was spending over half it's startup time munging through this
399 array of pointers looking for a structure that had the right offset member.
400
401 The second attempt used the same array of structures, but the array was
402 sorted using qsort each time a new offset/type was recorded, and a binary
403 search was used to find the type pointer for a given DIE offset. This was
404 even slower, due to the overhead of sorting the array each time a new
405 offset/type pair was entered.
406
407 The third attempt uses a fixed size array of type pointers, indexed by a
408 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
409 we can divide any DIE offset by 4 to obtain a unique index into this fixed
410 size array. Since each element is a 4 byte pointer, it takes exactly as
411 much memory to hold this array as to hold the DWARF info for a given
412 compilation unit. But it gets freed as soon as we are done with it.
413 This has worked well in practice, as a reasonable tradeoff between memory
414 consumption and speed, without having to resort to much more complicated
415 algorithms. */
416
417 static struct type **utypes; /* Pointer to array of user type pointers */
418 static int numutypes; /* Max number of user type pointers */
419
420 /* Maintain an array of referenced fundamental types for the current
421 compilation unit being read. For DWARF version 1, we have to construct
422 the fundamental types on the fly, since no information about the
423 fundamental types is supplied. Each such fundamental type is created by
424 calling a language dependent routine to create the type, and then a
425 pointer to that type is then placed in the array at the index specified
426 by it's FT_<TYPENAME> value. The array has a fixed size set by the
427 FT_NUM_MEMBERS compile time constant, which is the number of predefined
428 fundamental types gdb knows how to construct. */
429
430 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
431
432 /* Record the language for the compilation unit which is currently being
433 processed. We know it once we have seen the TAG_compile_unit DIE,
434 and we need it while processing the DIE's for that compilation unit.
435 It is eventually saved in the symtab structure, but we don't finalize
436 the symtab struct until we have processed all the DIE's for the
437 compilation unit. We also need to get and save a pointer to the
438 language struct for this language, so we can call the language
439 dependent routines for doing things such as creating fundamental
440 types. */
441
442 static enum language cu_language;
443 static const struct language_defn *cu_language_defn;
444
445 /* Forward declarations of static functions so we don't have to worry
446 about ordering within this file. */
447
448 static void free_utypes (PTR);
449
450 static int attribute_size (unsigned int);
451
452 static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
453
454 static void add_enum_psymbol (struct dieinfo *, struct objfile *);
455
456 static void handle_producer (char *);
457
458 static void
459 read_file_scope (struct dieinfo *, char *, char *, struct objfile *);
460
461 static void
462 read_func_scope (struct dieinfo *, char *, char *, struct objfile *);
463
464 static void
465 read_lexical_block_scope (struct dieinfo *, char *, char *, struct objfile *);
466
467 static void scan_partial_symbols (char *, char *, struct objfile *);
468
469 static void
470 scan_compilation_units (char *, char *, file_ptr, file_ptr, struct objfile *);
471
472 static void add_partial_symbol (struct dieinfo *, struct objfile *);
473
474 static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
475
476 static void completedieinfo (struct dieinfo *, struct objfile *);
477
478 static void dwarf_psymtab_to_symtab (struct partial_symtab *);
479
480 static void psymtab_to_symtab_1 (struct partial_symtab *);
481
482 static void read_ofile_symtab (struct partial_symtab *);
483
484 static void process_dies (char *, char *, struct objfile *);
485
486 static void
487 read_structure_scope (struct dieinfo *, char *, char *, struct objfile *);
488
489 static struct type *decode_array_element_type (char *);
490
491 static struct type *decode_subscript_data_item (char *, char *);
492
493 static void dwarf_read_array_type (struct dieinfo *);
494
495 static void read_tag_pointer_type (struct dieinfo *dip);
496
497 static void read_tag_string_type (struct dieinfo *dip);
498
499 static void read_subroutine_type (struct dieinfo *, char *, char *);
500
501 static void
502 read_enumeration (struct dieinfo *, char *, char *, struct objfile *);
503
504 static struct type *struct_type (struct dieinfo *, char *, char *,
505 struct objfile *);
506
507 static struct type *enum_type (struct dieinfo *, struct objfile *);
508
509 static void decode_line_numbers (char *);
510
511 static struct type *decode_die_type (struct dieinfo *);
512
513 static struct type *decode_mod_fund_type (char *);
514
515 static struct type *decode_mod_u_d_type (char *);
516
517 static struct type *decode_modified_type (char *, unsigned int, int);
518
519 static struct type *decode_fund_type (unsigned int);
520
521 static char *create_name (char *, struct obstack *);
522
523 static struct type *lookup_utype (DIE_REF);
524
525 static struct type *alloc_utype (DIE_REF, struct type *);
526
527 static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
528
529 static void
530 synthesize_typedef (struct dieinfo *, struct objfile *, struct type *);
531
532 static int locval (struct dieinfo *);
533
534 static void set_cu_language (struct dieinfo *);
535
536 static struct type *dwarf_fundamental_type (struct objfile *, int);
537
538
539 /*
540
541 LOCAL FUNCTION
542
543 dwarf_fundamental_type -- lookup or create a fundamental type
544
545 SYNOPSIS
546
547 struct type *
548 dwarf_fundamental_type (struct objfile *objfile, int typeid)
549
550 DESCRIPTION
551
552 DWARF version 1 doesn't supply any fundamental type information,
553 so gdb has to construct such types. It has a fixed number of
554 fundamental types that it knows how to construct, which is the
555 union of all types that it knows how to construct for all languages
556 that it knows about. These are enumerated in gdbtypes.h.
557
558 As an example, assume we find a DIE that references a DWARF
559 fundamental type of FT_integer. We first look in the ftypes
560 array to see if we already have such a type, indexed by the
561 gdb internal value of FT_INTEGER. If so, we simply return a
562 pointer to that type. If not, then we ask an appropriate
563 language dependent routine to create a type FT_INTEGER, using
564 defaults reasonable for the current target machine, and install
565 that type in ftypes for future reference.
566
567 RETURNS
568
569 Pointer to a fundamental type.
570
571 */
572
573 static struct type *
574 dwarf_fundamental_type (struct objfile *objfile, int typeid)
575 {
576 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
577 {
578 error ("internal error - invalid fundamental type id %d", typeid);
579 }
580
581 /* Look for this particular type in the fundamental type vector. If one is
582 not found, create and install one appropriate for the current language
583 and the current target machine. */
584
585 if (ftypes[typeid] == NULL)
586 {
587 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
588 }
589
590 return (ftypes[typeid]);
591 }
592
593 /*
594
595 LOCAL FUNCTION
596
597 set_cu_language -- set local copy of language for compilation unit
598
599 SYNOPSIS
600
601 void
602 set_cu_language (struct dieinfo *dip)
603
604 DESCRIPTION
605
606 Decode the language attribute for a compilation unit DIE and
607 remember what the language was. We use this at various times
608 when processing DIE's for a given compilation unit.
609
610 RETURNS
611
612 No return value.
613
614 */
615
616 static void
617 set_cu_language (struct dieinfo *dip)
618 {
619 switch (dip->at_language)
620 {
621 case LANG_C89:
622 case LANG_C:
623 cu_language = language_c;
624 break;
625 case LANG_C_PLUS_PLUS:
626 cu_language = language_cplus;
627 break;
628 case LANG_CHILL:
629 cu_language = language_chill;
630 break;
631 case LANG_MODULA2:
632 cu_language = language_m2;
633 break;
634 case LANG_FORTRAN77:
635 case LANG_FORTRAN90:
636 cu_language = language_fortran;
637 break;
638 case LANG_ADA83:
639 case LANG_COBOL74:
640 case LANG_COBOL85:
641 case LANG_PASCAL83:
642 /* We don't know anything special about these yet. */
643 cu_language = language_unknown;
644 break;
645 default:
646 /* If no at_language, try to deduce one from the filename */
647 cu_language = deduce_language_from_filename (dip->at_name);
648 break;
649 }
650 cu_language_defn = language_def (cu_language);
651 }
652
653 /*
654
655 GLOBAL FUNCTION
656
657 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
658
659 SYNOPSIS
660
661 void dwarf_build_psymtabs (struct objfile *objfile,
662 int mainline, file_ptr dbfoff, unsigned int dbfsize,
663 file_ptr lnoffset, unsigned int lnsize)
664
665 DESCRIPTION
666
667 This function is called upon to build partial symtabs from files
668 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
669
670 It is passed a bfd* containing the DIES
671 and line number information, the corresponding filename for that
672 file, a base address for relocating the symbols, a flag indicating
673 whether or not this debugging information is from a "main symbol
674 table" rather than a shared library or dynamically linked file,
675 and file offset/size pairs for the DIE information and line number
676 information.
677
678 RETURNS
679
680 No return value.
681
682 */
683
684 void
685 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
686 unsigned int dbfsize, file_ptr lnoffset,
687 unsigned int lnsize)
688 {
689 bfd *abfd = objfile->obfd;
690 struct cleanup *back_to;
691
692 current_objfile = objfile;
693 dbsize = dbfsize;
694 dbbase = xmalloc (dbsize);
695 dbroff = 0;
696 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
697 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
698 {
699 xfree (dbbase);
700 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
701 }
702 back_to = make_cleanup (xfree, dbbase);
703
704 /* If we are reinitializing, or if we have never loaded syms yet, init.
705 Since we have no idea how many DIES we are looking at, we just guess
706 some arbitrary value. */
707
708 if (mainline || objfile->global_psymbols.size == 0 ||
709 objfile->static_psymbols.size == 0)
710 {
711 init_psymbol_list (objfile, 1024);
712 }
713
714 /* Save the relocation factor where everybody can see it. */
715
716 base_section_offsets = objfile->section_offsets;
717 baseaddr = ANOFFSET (objfile->section_offsets, 0);
718
719 /* Follow the compilation unit sibling chain, building a partial symbol
720 table entry for each one. Save enough information about each compilation
721 unit to locate the full DWARF information later. */
722
723 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
724
725 do_cleanups (back_to);
726 current_objfile = NULL;
727 }
728
729 /*
730
731 LOCAL FUNCTION
732
733 read_lexical_block_scope -- process all dies in a lexical block
734
735 SYNOPSIS
736
737 static void read_lexical_block_scope (struct dieinfo *dip,
738 char *thisdie, char *enddie)
739
740 DESCRIPTION
741
742 Process all the DIES contained within a lexical block scope.
743 Start a new scope, process the dies, and then close the scope.
744
745 */
746
747 static void
748 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
749 struct objfile *objfile)
750 {
751 register struct context_stack *new;
752
753 push_context (0, dip->at_low_pc);
754 process_dies (thisdie + dip->die_length, enddie, objfile);
755 new = pop_context ();
756 if (local_symbols != NULL)
757 {
758 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
759 dip->at_high_pc, objfile);
760 }
761 local_symbols = new->locals;
762 }
763
764 /*
765
766 LOCAL FUNCTION
767
768 lookup_utype -- look up a user defined type from die reference
769
770 SYNOPSIS
771
772 static type *lookup_utype (DIE_REF die_ref)
773
774 DESCRIPTION
775
776 Given a DIE reference, lookup the user defined type associated with
777 that DIE, if it has been registered already. If not registered, then
778 return NULL. Alloc_utype() can be called to register an empty
779 type for this reference, which will be filled in later when the
780 actual referenced DIE is processed.
781 */
782
783 static struct type *
784 lookup_utype (DIE_REF die_ref)
785 {
786 struct type *type = NULL;
787 int utypeidx;
788
789 utypeidx = (die_ref - dbroff) / 4;
790 if ((utypeidx < 0) || (utypeidx >= numutypes))
791 {
792 complain (&bad_die_ref, DIE_ID, DIE_NAME);
793 }
794 else
795 {
796 type = *(utypes + utypeidx);
797 }
798 return (type);
799 }
800
801
802 /*
803
804 LOCAL FUNCTION
805
806 alloc_utype -- add a user defined type for die reference
807
808 SYNOPSIS
809
810 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
811
812 DESCRIPTION
813
814 Given a die reference DIE_REF, and a possible pointer to a user
815 defined type UTYPEP, register that this reference has a user
816 defined type and either use the specified type in UTYPEP or
817 make a new empty type that will be filled in later.
818
819 We should only be called after calling lookup_utype() to verify that
820 there is not currently a type registered for DIE_REF.
821 */
822
823 static struct type *
824 alloc_utype (DIE_REF die_ref, struct type *utypep)
825 {
826 struct type **typep;
827 int utypeidx;
828
829 utypeidx = (die_ref - dbroff) / 4;
830 typep = utypes + utypeidx;
831 if ((utypeidx < 0) || (utypeidx >= numutypes))
832 {
833 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
834 complain (&bad_die_ref, DIE_ID, DIE_NAME);
835 }
836 else if (*typep != NULL)
837 {
838 utypep = *typep;
839 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
840 }
841 else
842 {
843 if (utypep == NULL)
844 {
845 utypep = alloc_type (current_objfile);
846 }
847 *typep = utypep;
848 }
849 return (utypep);
850 }
851
852 /*
853
854 LOCAL FUNCTION
855
856 free_utypes -- free the utypes array and reset pointer & count
857
858 SYNOPSIS
859
860 static void free_utypes (PTR dummy)
861
862 DESCRIPTION
863
864 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
865 and set numutypes back to zero. This ensures that the utypes does not get
866 referenced after being freed.
867 */
868
869 static void
870 free_utypes (PTR dummy)
871 {
872 xfree (utypes);
873 utypes = NULL;
874 numutypes = 0;
875 }
876
877
878 /*
879
880 LOCAL FUNCTION
881
882 decode_die_type -- return a type for a specified die
883
884 SYNOPSIS
885
886 static struct type *decode_die_type (struct dieinfo *dip)
887
888 DESCRIPTION
889
890 Given a pointer to a die information structure DIP, decode the
891 type of the die and return a pointer to the decoded type. All
892 dies without specific types default to type int.
893 */
894
895 static struct type *
896 decode_die_type (struct dieinfo *dip)
897 {
898 struct type *type = NULL;
899
900 if (dip->at_fund_type != 0)
901 {
902 type = decode_fund_type (dip->at_fund_type);
903 }
904 else if (dip->at_mod_fund_type != NULL)
905 {
906 type = decode_mod_fund_type (dip->at_mod_fund_type);
907 }
908 else if (dip->at_user_def_type)
909 {
910 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
911 {
912 type = alloc_utype (dip->at_user_def_type, NULL);
913 }
914 }
915 else if (dip->at_mod_u_d_type)
916 {
917 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
918 }
919 else
920 {
921 type = dwarf_fundamental_type (current_objfile, FT_VOID);
922 }
923 return (type);
924 }
925
926 /*
927
928 LOCAL FUNCTION
929
930 struct_type -- compute and return the type for a struct or union
931
932 SYNOPSIS
933
934 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
935 char *enddie, struct objfile *objfile)
936
937 DESCRIPTION
938
939 Given pointer to a die information structure for a die which
940 defines a union or structure (and MUST define one or the other),
941 and pointers to the raw die data that define the range of dies which
942 define the members, compute and return the user defined type for the
943 structure or union.
944 */
945
946 static struct type *
947 struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
948 struct objfile *objfile)
949 {
950 struct type *type;
951 struct nextfield
952 {
953 struct nextfield *next;
954 struct field field;
955 };
956 struct nextfield *list = NULL;
957 struct nextfield *new;
958 int nfields = 0;
959 int n;
960 struct dieinfo mbr;
961 char *nextdie;
962 int anonymous_size;
963
964 if ((type = lookup_utype (dip->die_ref)) == NULL)
965 {
966 /* No forward references created an empty type, so install one now */
967 type = alloc_utype (dip->die_ref, NULL);
968 }
969 INIT_CPLUS_SPECIFIC (type);
970 switch (dip->die_tag)
971 {
972 case TAG_class_type:
973 TYPE_CODE (type) = TYPE_CODE_CLASS;
974 break;
975 case TAG_structure_type:
976 TYPE_CODE (type) = TYPE_CODE_STRUCT;
977 break;
978 case TAG_union_type:
979 TYPE_CODE (type) = TYPE_CODE_UNION;
980 break;
981 default:
982 /* Should never happen */
983 TYPE_CODE (type) = TYPE_CODE_UNDEF;
984 complain (&missing_tag, DIE_ID, DIE_NAME);
985 break;
986 }
987 /* Some compilers try to be helpful by inventing "fake" names for
988 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
989 Thanks, but no thanks... */
990 if (dip->at_name != NULL
991 && *dip->at_name != '~'
992 && *dip->at_name != '.')
993 {
994 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
995 "", "", dip->at_name);
996 }
997 /* Use whatever size is known. Zero is a valid size. We might however
998 wish to check has_at_byte_size to make sure that some byte size was
999 given explicitly, but DWARF doesn't specify that explicit sizes of
1000 zero have to present, so complaining about missing sizes should
1001 probably not be the default. */
1002 TYPE_LENGTH (type) = dip->at_byte_size;
1003 thisdie += dip->die_length;
1004 while (thisdie < enddie)
1005 {
1006 basicdieinfo (&mbr, thisdie, objfile);
1007 completedieinfo (&mbr, objfile);
1008 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1009 {
1010 break;
1011 }
1012 else if (mbr.at_sibling != 0)
1013 {
1014 nextdie = dbbase + mbr.at_sibling - dbroff;
1015 }
1016 else
1017 {
1018 nextdie = thisdie + mbr.die_length;
1019 }
1020 switch (mbr.die_tag)
1021 {
1022 case TAG_member:
1023 /* Get space to record the next field's data. */
1024 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1025 new->next = list;
1026 list = new;
1027 /* Save the data. */
1028 list->field.name =
1029 obsavestring (mbr.at_name, strlen (mbr.at_name),
1030 &objfile->type_obstack);
1031 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1032 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1033 /* Handle bit fields. */
1034 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1035 if (BITS_BIG_ENDIAN)
1036 {
1037 /* For big endian bits, the at_bit_offset gives the
1038 additional bit offset from the MSB of the containing
1039 anonymous object to the MSB of the field. We don't
1040 have to do anything special since we don't need to
1041 know the size of the anonymous object. */
1042 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1043 }
1044 else
1045 {
1046 /* For little endian bits, we need to have a non-zero
1047 at_bit_size, so that we know we are in fact dealing
1048 with a bitfield. Compute the bit offset to the MSB
1049 of the anonymous object, subtract off the number of
1050 bits from the MSB of the field to the MSB of the
1051 object, and then subtract off the number of bits of
1052 the field itself. The result is the bit offset of
1053 the LSB of the field. */
1054 if (mbr.at_bit_size > 0)
1055 {
1056 if (mbr.has_at_byte_size)
1057 {
1058 /* The size of the anonymous object containing
1059 the bit field is explicit, so use the
1060 indicated size (in bytes). */
1061 anonymous_size = mbr.at_byte_size;
1062 }
1063 else
1064 {
1065 /* The size of the anonymous object containing
1066 the bit field matches the size of an object
1067 of the bit field's type. DWARF allows
1068 at_byte_size to be left out in such cases, as
1069 a debug information size optimization. */
1070 anonymous_size = TYPE_LENGTH (list->field.type);
1071 }
1072 FIELD_BITPOS (list->field) +=
1073 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1074 }
1075 }
1076 nfields++;
1077 break;
1078 default:
1079 process_dies (thisdie, nextdie, objfile);
1080 break;
1081 }
1082 thisdie = nextdie;
1083 }
1084 /* Now create the vector of fields, and record how big it is. We may
1085 not even have any fields, if this DIE was generated due to a reference
1086 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1087 set, which clues gdb in to the fact that it needs to search elsewhere
1088 for the full structure definition. */
1089 if (nfields == 0)
1090 {
1091 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1092 }
1093 else
1094 {
1095 TYPE_NFIELDS (type) = nfields;
1096 TYPE_FIELDS (type) = (struct field *)
1097 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1098 /* Copy the saved-up fields into the field vector. */
1099 for (n = nfields; list; list = list->next)
1100 {
1101 TYPE_FIELD (type, --n) = list->field;
1102 }
1103 }
1104 return (type);
1105 }
1106
1107 /*
1108
1109 LOCAL FUNCTION
1110
1111 read_structure_scope -- process all dies within struct or union
1112
1113 SYNOPSIS
1114
1115 static void read_structure_scope (struct dieinfo *dip,
1116 char *thisdie, char *enddie, struct objfile *objfile)
1117
1118 DESCRIPTION
1119
1120 Called when we find the DIE that starts a structure or union
1121 scope (definition) to process all dies that define the members
1122 of the structure or union. DIP is a pointer to the die info
1123 struct for the DIE that names the structure or union.
1124
1125 NOTES
1126
1127 Note that we need to call struct_type regardless of whether or not
1128 the DIE has an at_name attribute, since it might be an anonymous
1129 structure or union. This gets the type entered into our set of
1130 user defined types.
1131
1132 However, if the structure is incomplete (an opaque struct/union)
1133 then suppress creating a symbol table entry for it since gdb only
1134 wants to find the one with the complete definition. Note that if
1135 it is complete, we just call new_symbol, which does it's own
1136 checking about whether the struct/union is anonymous or not (and
1137 suppresses creating a symbol table entry itself).
1138
1139 */
1140
1141 static void
1142 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1143 struct objfile *objfile)
1144 {
1145 struct type *type;
1146 struct symbol *sym;
1147
1148 type = struct_type (dip, thisdie, enddie, objfile);
1149 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1150 {
1151 sym = new_symbol (dip, objfile);
1152 if (sym != NULL)
1153 {
1154 SYMBOL_TYPE (sym) = type;
1155 if (cu_language == language_cplus)
1156 {
1157 synthesize_typedef (dip, objfile, type);
1158 }
1159 }
1160 }
1161 }
1162
1163 /*
1164
1165 LOCAL FUNCTION
1166
1167 decode_array_element_type -- decode type of the array elements
1168
1169 SYNOPSIS
1170
1171 static struct type *decode_array_element_type (char *scan, char *end)
1172
1173 DESCRIPTION
1174
1175 As the last step in decoding the array subscript information for an
1176 array DIE, we need to decode the type of the array elements. We are
1177 passed a pointer to this last part of the subscript information and
1178 must return the appropriate type. If the type attribute is not
1179 recognized, just warn about the problem and return type int.
1180 */
1181
1182 static struct type *
1183 decode_array_element_type (char *scan)
1184 {
1185 struct type *typep;
1186 DIE_REF die_ref;
1187 unsigned short attribute;
1188 unsigned short fundtype;
1189 int nbytes;
1190
1191 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1192 current_objfile);
1193 scan += SIZEOF_ATTRIBUTE;
1194 if ((nbytes = attribute_size (attribute)) == -1)
1195 {
1196 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1197 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1198 }
1199 else
1200 {
1201 switch (attribute)
1202 {
1203 case AT_fund_type:
1204 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1205 current_objfile);
1206 typep = decode_fund_type (fundtype);
1207 break;
1208 case AT_mod_fund_type:
1209 typep = decode_mod_fund_type (scan);
1210 break;
1211 case AT_user_def_type:
1212 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1213 current_objfile);
1214 if ((typep = lookup_utype (die_ref)) == NULL)
1215 {
1216 typep = alloc_utype (die_ref, NULL);
1217 }
1218 break;
1219 case AT_mod_u_d_type:
1220 typep = decode_mod_u_d_type (scan);
1221 break;
1222 default:
1223 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1224 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1225 break;
1226 }
1227 }
1228 return (typep);
1229 }
1230
1231 /*
1232
1233 LOCAL FUNCTION
1234
1235 decode_subscript_data_item -- decode array subscript item
1236
1237 SYNOPSIS
1238
1239 static struct type *
1240 decode_subscript_data_item (char *scan, char *end)
1241
1242 DESCRIPTION
1243
1244 The array subscripts and the data type of the elements of an
1245 array are described by a list of data items, stored as a block
1246 of contiguous bytes. There is a data item describing each array
1247 dimension, and a final data item describing the element type.
1248 The data items are ordered the same as their appearance in the
1249 source (I.E. leftmost dimension first, next to leftmost second,
1250 etc).
1251
1252 The data items describing each array dimension consist of four
1253 parts: (1) a format specifier, (2) type type of the subscript
1254 index, (3) a description of the low bound of the array dimension,
1255 and (4) a description of the high bound of the array dimension.
1256
1257 The last data item is the description of the type of each of
1258 the array elements.
1259
1260 We are passed a pointer to the start of the block of bytes
1261 containing the remaining data items, and a pointer to the first
1262 byte past the data. This function recursively decodes the
1263 remaining data items and returns a type.
1264
1265 If we somehow fail to decode some data, we complain about it
1266 and return a type "array of int".
1267
1268 BUGS
1269 FIXME: This code only implements the forms currently used
1270 by the AT&T and GNU C compilers.
1271
1272 The end pointer is supplied for error checking, maybe we should
1273 use it for that...
1274 */
1275
1276 static struct type *
1277 decode_subscript_data_item (char *scan, char *end)
1278 {
1279 struct type *typep = NULL; /* Array type we are building */
1280 struct type *nexttype; /* Type of each element (may be array) */
1281 struct type *indextype; /* Type of this index */
1282 struct type *rangetype;
1283 unsigned int format;
1284 unsigned short fundtype;
1285 unsigned long lowbound;
1286 unsigned long highbound;
1287 int nbytes;
1288
1289 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1290 current_objfile);
1291 scan += SIZEOF_FORMAT_SPECIFIER;
1292 switch (format)
1293 {
1294 case FMT_ET:
1295 typep = decode_array_element_type (scan);
1296 break;
1297 case FMT_FT_C_C:
1298 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1299 current_objfile);
1300 indextype = decode_fund_type (fundtype);
1301 scan += SIZEOF_FMT_FT;
1302 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1303 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1304 scan += nbytes;
1305 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1306 scan += nbytes;
1307 nexttype = decode_subscript_data_item (scan, end);
1308 if (nexttype == NULL)
1309 {
1310 /* Munged subscript data or other problem, fake it. */
1311 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1312 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1313 }
1314 rangetype = create_range_type ((struct type *) NULL, indextype,
1315 lowbound, highbound);
1316 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1317 break;
1318 case FMT_FT_C_X:
1319 case FMT_FT_X_C:
1320 case FMT_FT_X_X:
1321 case FMT_UT_C_C:
1322 case FMT_UT_C_X:
1323 case FMT_UT_X_C:
1324 case FMT_UT_X_X:
1325 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1326 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1327 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1328 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1329 break;
1330 default:
1331 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1332 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1333 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1334 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1335 break;
1336 }
1337 return (typep);
1338 }
1339
1340 /*
1341
1342 LOCAL FUNCTION
1343
1344 dwarf_read_array_type -- read TAG_array_type DIE
1345
1346 SYNOPSIS
1347
1348 static void dwarf_read_array_type (struct dieinfo *dip)
1349
1350 DESCRIPTION
1351
1352 Extract all information from a TAG_array_type DIE and add to
1353 the user defined type vector.
1354 */
1355
1356 static void
1357 dwarf_read_array_type (struct dieinfo *dip)
1358 {
1359 struct type *type;
1360 struct type *utype;
1361 char *sub;
1362 char *subend;
1363 unsigned short blocksz;
1364 int nbytes;
1365
1366 if (dip->at_ordering != ORD_row_major)
1367 {
1368 /* FIXME: Can gdb even handle column major arrays? */
1369 complain (&not_row_major, DIE_ID, DIE_NAME);
1370 }
1371 if ((sub = dip->at_subscr_data) != NULL)
1372 {
1373 nbytes = attribute_size (AT_subscr_data);
1374 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1375 subend = sub + nbytes + blocksz;
1376 sub += nbytes;
1377 type = decode_subscript_data_item (sub, subend);
1378 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1379 {
1380 /* Install user defined type that has not been referenced yet. */
1381 alloc_utype (dip->die_ref, type);
1382 }
1383 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1384 {
1385 /* Ick! A forward ref has already generated a blank type in our
1386 slot, and this type probably already has things pointing to it
1387 (which is what caused it to be created in the first place).
1388 If it's just a place holder we can plop our fully defined type
1389 on top of it. We can't recover the space allocated for our
1390 new type since it might be on an obstack, but we could reuse
1391 it if we kept a list of them, but it might not be worth it
1392 (FIXME). */
1393 *utype = *type;
1394 }
1395 else
1396 {
1397 /* Double ick! Not only is a type already in our slot, but
1398 someone has decorated it. Complain and leave it alone. */
1399 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1400 }
1401 }
1402 }
1403
1404 /*
1405
1406 LOCAL FUNCTION
1407
1408 read_tag_pointer_type -- read TAG_pointer_type DIE
1409
1410 SYNOPSIS
1411
1412 static void read_tag_pointer_type (struct dieinfo *dip)
1413
1414 DESCRIPTION
1415
1416 Extract all information from a TAG_pointer_type DIE and add to
1417 the user defined type vector.
1418 */
1419
1420 static void
1421 read_tag_pointer_type (struct dieinfo *dip)
1422 {
1423 struct type *type;
1424 struct type *utype;
1425
1426 type = decode_die_type (dip);
1427 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1428 {
1429 utype = lookup_pointer_type (type);
1430 alloc_utype (dip->die_ref, utype);
1431 }
1432 else
1433 {
1434 TYPE_TARGET_TYPE (utype) = type;
1435 TYPE_POINTER_TYPE (type) = utype;
1436
1437 /* We assume the machine has only one representation for pointers! */
1438 /* FIXME: Possably a poor assumption */
1439 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1440 TYPE_CODE (utype) = TYPE_CODE_PTR;
1441 }
1442 }
1443
1444 /*
1445
1446 LOCAL FUNCTION
1447
1448 read_tag_string_type -- read TAG_string_type DIE
1449
1450 SYNOPSIS
1451
1452 static void read_tag_string_type (struct dieinfo *dip)
1453
1454 DESCRIPTION
1455
1456 Extract all information from a TAG_string_type DIE and add to
1457 the user defined type vector. It isn't really a user defined
1458 type, but it behaves like one, with other DIE's using an
1459 AT_user_def_type attribute to reference it.
1460 */
1461
1462 static void
1463 read_tag_string_type (struct dieinfo *dip)
1464 {
1465 struct type *utype;
1466 struct type *indextype;
1467 struct type *rangetype;
1468 unsigned long lowbound = 0;
1469 unsigned long highbound;
1470
1471 if (dip->has_at_byte_size)
1472 {
1473 /* A fixed bounds string */
1474 highbound = dip->at_byte_size - 1;
1475 }
1476 else
1477 {
1478 /* A varying length string. Stub for now. (FIXME) */
1479 highbound = 1;
1480 }
1481 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1482 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1483 highbound);
1484
1485 utype = lookup_utype (dip->die_ref);
1486 if (utype == NULL)
1487 {
1488 /* No type defined, go ahead and create a blank one to use. */
1489 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1490 }
1491 else
1492 {
1493 /* Already a type in our slot due to a forward reference. Make sure it
1494 is a blank one. If not, complain and leave it alone. */
1495 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1496 {
1497 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1498 return;
1499 }
1500 }
1501
1502 /* Create the string type using the blank type we either found or created. */
1503 utype = create_string_type (utype, rangetype);
1504 }
1505
1506 /*
1507
1508 LOCAL FUNCTION
1509
1510 read_subroutine_type -- process TAG_subroutine_type dies
1511
1512 SYNOPSIS
1513
1514 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1515 char *enddie)
1516
1517 DESCRIPTION
1518
1519 Handle DIES due to C code like:
1520
1521 struct foo {
1522 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1523 int b;
1524 };
1525
1526 NOTES
1527
1528 The parameter DIES are currently ignored. See if gdb has a way to
1529 include this info in it's type system, and decode them if so. Is
1530 this what the type structure's "arg_types" field is for? (FIXME)
1531 */
1532
1533 static void
1534 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1535 {
1536 struct type *type; /* Type that this function returns */
1537 struct type *ftype; /* Function that returns above type */
1538
1539 /* Decode the type that this subroutine returns */
1540
1541 type = decode_die_type (dip);
1542
1543 /* Check to see if we already have a partially constructed user
1544 defined type for this DIE, from a forward reference. */
1545
1546 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
1547 {
1548 /* This is the first reference to one of these types. Make
1549 a new one and place it in the user defined types. */
1550 ftype = lookup_function_type (type);
1551 alloc_utype (dip->die_ref, ftype);
1552 }
1553 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1554 {
1555 /* We have an existing partially constructed type, so bash it
1556 into the correct type. */
1557 TYPE_TARGET_TYPE (ftype) = type;
1558 TYPE_LENGTH (ftype) = 1;
1559 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1560 }
1561 else
1562 {
1563 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1564 }
1565 }
1566
1567 /*
1568
1569 LOCAL FUNCTION
1570
1571 read_enumeration -- process dies which define an enumeration
1572
1573 SYNOPSIS
1574
1575 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1576 char *enddie, struct objfile *objfile)
1577
1578 DESCRIPTION
1579
1580 Given a pointer to a die which begins an enumeration, process all
1581 the dies that define the members of the enumeration.
1582
1583 NOTES
1584
1585 Note that we need to call enum_type regardless of whether or not we
1586 have a symbol, since we might have an enum without a tag name (thus
1587 no symbol for the tagname).
1588 */
1589
1590 static void
1591 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1592 struct objfile *objfile)
1593 {
1594 struct type *type;
1595 struct symbol *sym;
1596
1597 type = enum_type (dip, objfile);
1598 sym = new_symbol (dip, objfile);
1599 if (sym != NULL)
1600 {
1601 SYMBOL_TYPE (sym) = type;
1602 if (cu_language == language_cplus)
1603 {
1604 synthesize_typedef (dip, objfile, type);
1605 }
1606 }
1607 }
1608
1609 /*
1610
1611 LOCAL FUNCTION
1612
1613 enum_type -- decode and return a type for an enumeration
1614
1615 SYNOPSIS
1616
1617 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1618
1619 DESCRIPTION
1620
1621 Given a pointer to a die information structure for the die which
1622 starts an enumeration, process all the dies that define the members
1623 of the enumeration and return a type pointer for the enumeration.
1624
1625 At the same time, for each member of the enumeration, create a
1626 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1627 and give it the type of the enumeration itself.
1628
1629 NOTES
1630
1631 Note that the DWARF specification explicitly mandates that enum
1632 constants occur in reverse order from the source program order,
1633 for "consistency" and because this ordering is easier for many
1634 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1635 Entries). Because gdb wants to see the enum members in program
1636 source order, we have to ensure that the order gets reversed while
1637 we are processing them.
1638 */
1639
1640 static struct type *
1641 enum_type (struct dieinfo *dip, struct objfile *objfile)
1642 {
1643 struct type *type;
1644 struct nextfield
1645 {
1646 struct nextfield *next;
1647 struct field field;
1648 };
1649 struct nextfield *list = NULL;
1650 struct nextfield *new;
1651 int nfields = 0;
1652 int n;
1653 char *scan;
1654 char *listend;
1655 unsigned short blocksz;
1656 struct symbol *sym;
1657 int nbytes;
1658 int unsigned_enum = 1;
1659
1660 if ((type = lookup_utype (dip->die_ref)) == NULL)
1661 {
1662 /* No forward references created an empty type, so install one now */
1663 type = alloc_utype (dip->die_ref, NULL);
1664 }
1665 TYPE_CODE (type) = TYPE_CODE_ENUM;
1666 /* Some compilers try to be helpful by inventing "fake" names for
1667 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1668 Thanks, but no thanks... */
1669 if (dip->at_name != NULL
1670 && *dip->at_name != '~'
1671 && *dip->at_name != '.')
1672 {
1673 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1674 "", "", dip->at_name);
1675 }
1676 if (dip->at_byte_size != 0)
1677 {
1678 TYPE_LENGTH (type) = dip->at_byte_size;
1679 }
1680 if ((scan = dip->at_element_list) != NULL)
1681 {
1682 if (dip->short_element_list)
1683 {
1684 nbytes = attribute_size (AT_short_element_list);
1685 }
1686 else
1687 {
1688 nbytes = attribute_size (AT_element_list);
1689 }
1690 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1691 listend = scan + nbytes + blocksz;
1692 scan += nbytes;
1693 while (scan < listend)
1694 {
1695 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1696 new->next = list;
1697 list = new;
1698 FIELD_TYPE (list->field) = NULL;
1699 FIELD_BITSIZE (list->field) = 0;
1700 FIELD_BITPOS (list->field) =
1701 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1702 objfile);
1703 scan += TARGET_FT_LONG_SIZE (objfile);
1704 list->field.name = obsavestring (scan, strlen (scan),
1705 &objfile->type_obstack);
1706 scan += strlen (scan) + 1;
1707 nfields++;
1708 /* Handcraft a new symbol for this enum member. */
1709 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1710 sizeof (struct symbol));
1711 memset (sym, 0, sizeof (struct symbol));
1712 SYMBOL_NAME (sym) = create_name (list->field.name,
1713 &objfile->symbol_obstack);
1714 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1715 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1716 SYMBOL_CLASS (sym) = LOC_CONST;
1717 SYMBOL_TYPE (sym) = type;
1718 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1719 if (SYMBOL_VALUE (sym) < 0)
1720 unsigned_enum = 0;
1721 add_symbol_to_list (sym, list_in_scope);
1722 }
1723 /* Now create the vector of fields, and record how big it is. This is
1724 where we reverse the order, by pulling the members off the list in
1725 reverse order from how they were inserted. If we have no fields
1726 (this is apparently possible in C++) then skip building a field
1727 vector. */
1728 if (nfields > 0)
1729 {
1730 if (unsigned_enum)
1731 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1732 TYPE_NFIELDS (type) = nfields;
1733 TYPE_FIELDS (type) = (struct field *)
1734 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1735 /* Copy the saved-up fields into the field vector. */
1736 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1737 {
1738 TYPE_FIELD (type, n++) = list->field;
1739 }
1740 }
1741 }
1742 return (type);
1743 }
1744
1745 /*
1746
1747 LOCAL FUNCTION
1748
1749 read_func_scope -- process all dies within a function scope
1750
1751 DESCRIPTION
1752
1753 Process all dies within a given function scope. We are passed
1754 a die information structure pointer DIP for the die which
1755 starts the function scope, and pointers into the raw die data
1756 that define the dies within the function scope.
1757
1758 For now, we ignore lexical block scopes within the function.
1759 The problem is that AT&T cc does not define a DWARF lexical
1760 block scope for the function itself, while gcc defines a
1761 lexical block scope for the function. We need to think about
1762 how to handle this difference, or if it is even a problem.
1763 (FIXME)
1764 */
1765
1766 static void
1767 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1768 struct objfile *objfile)
1769 {
1770 register struct context_stack *new;
1771
1772 /* AT_name is absent if the function is described with an
1773 AT_abstract_origin tag.
1774 Ignore the function description for now to avoid GDB core dumps.
1775 FIXME: Add code to handle AT_abstract_origin tags properly. */
1776 if (dip->at_name == NULL)
1777 {
1778 complain (&missing_at_name, DIE_ID);
1779 return;
1780 }
1781
1782 if (objfile->ei.entry_point >= dip->at_low_pc &&
1783 objfile->ei.entry_point < dip->at_high_pc)
1784 {
1785 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1786 objfile->ei.entry_func_highpc = dip->at_high_pc;
1787 }
1788 new = push_context (0, dip->at_low_pc);
1789 new->name = new_symbol (dip, objfile);
1790 list_in_scope = &local_symbols;
1791 process_dies (thisdie + dip->die_length, enddie, objfile);
1792 new = pop_context ();
1793 /* Make a block for the local symbols within. */
1794 finish_block (new->name, &local_symbols, new->old_blocks,
1795 new->start_addr, dip->at_high_pc, objfile);
1796 list_in_scope = &file_symbols;
1797 }
1798
1799
1800 /*
1801
1802 LOCAL FUNCTION
1803
1804 handle_producer -- process the AT_producer attribute
1805
1806 DESCRIPTION
1807
1808 Perform any operations that depend on finding a particular
1809 AT_producer attribute.
1810
1811 */
1812
1813 static void
1814 handle_producer (char *producer)
1815 {
1816
1817 /* If this compilation unit was compiled with g++ or gcc, then set the
1818 processing_gcc_compilation flag. */
1819
1820 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1821 {
1822 char version = producer[strlen (GCC_PRODUCER)];
1823 processing_gcc_compilation = (version == '2' ? 2 : 1);
1824 }
1825 else
1826 {
1827 processing_gcc_compilation =
1828 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1829 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
1830 }
1831
1832 /* Select a demangling style if we can identify the producer and if
1833 the current style is auto. We leave the current style alone if it
1834 is not auto. We also leave the demangling style alone if we find a
1835 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1836
1837 if (AUTO_DEMANGLING)
1838 {
1839 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1840 {
1841 #if 0
1842 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1843 know whether it will use the old style or v3 mangling. */
1844 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1845 #endif
1846 }
1847 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1848 {
1849 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1850 }
1851 }
1852 }
1853
1854
1855 /*
1856
1857 LOCAL FUNCTION
1858
1859 read_file_scope -- process all dies within a file scope
1860
1861 DESCRIPTION
1862
1863 Process all dies within a given file scope. We are passed a
1864 pointer to the die information structure for the die which
1865 starts the file scope, and pointers into the raw die data which
1866 mark the range of dies within the file scope.
1867
1868 When the partial symbol table is built, the file offset for the line
1869 number table for each compilation unit is saved in the partial symbol
1870 table entry for that compilation unit. As the symbols for each
1871 compilation unit are read, the line number table is read into memory
1872 and the variable lnbase is set to point to it. Thus all we have to
1873 do is use lnbase to access the line number table for the current
1874 compilation unit.
1875 */
1876
1877 static void
1878 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1879 struct objfile *objfile)
1880 {
1881 struct cleanup *back_to;
1882 struct symtab *symtab;
1883
1884 if (objfile->ei.entry_point >= dip->at_low_pc &&
1885 objfile->ei.entry_point < dip->at_high_pc)
1886 {
1887 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1888 objfile->ei.entry_file_highpc = dip->at_high_pc;
1889 }
1890 set_cu_language (dip);
1891 if (dip->at_producer != NULL)
1892 {
1893 handle_producer (dip->at_producer);
1894 }
1895 numutypes = (enddie - thisdie) / 4;
1896 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1897 back_to = make_cleanup (free_utypes, NULL);
1898 memset (utypes, 0, numutypes * sizeof (struct type *));
1899 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1900 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1901 record_debugformat ("DWARF 1");
1902 decode_line_numbers (lnbase);
1903 process_dies (thisdie + dip->die_length, enddie, objfile);
1904
1905 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1906 if (symtab != NULL)
1907 {
1908 symtab->language = cu_language;
1909 }
1910 do_cleanups (back_to);
1911 }
1912
1913 /*
1914
1915 LOCAL FUNCTION
1916
1917 process_dies -- process a range of DWARF Information Entries
1918
1919 SYNOPSIS
1920
1921 static void process_dies (char *thisdie, char *enddie,
1922 struct objfile *objfile)
1923
1924 DESCRIPTION
1925
1926 Process all DIE's in a specified range. May be (and almost
1927 certainly will be) called recursively.
1928 */
1929
1930 static void
1931 process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1932 {
1933 char *nextdie;
1934 struct dieinfo di;
1935
1936 while (thisdie < enddie)
1937 {
1938 basicdieinfo (&di, thisdie, objfile);
1939 if (di.die_length < SIZEOF_DIE_LENGTH)
1940 {
1941 break;
1942 }
1943 else if (di.die_tag == TAG_padding)
1944 {
1945 nextdie = thisdie + di.die_length;
1946 }
1947 else
1948 {
1949 completedieinfo (&di, objfile);
1950 if (di.at_sibling != 0)
1951 {
1952 nextdie = dbbase + di.at_sibling - dbroff;
1953 }
1954 else
1955 {
1956 nextdie = thisdie + di.die_length;
1957 }
1958 #ifdef SMASH_TEXT_ADDRESS
1959 /* I think that these are always text, not data, addresses. */
1960 SMASH_TEXT_ADDRESS (di.at_low_pc);
1961 SMASH_TEXT_ADDRESS (di.at_high_pc);
1962 #endif
1963 switch (di.die_tag)
1964 {
1965 case TAG_compile_unit:
1966 /* Skip Tag_compile_unit if we are already inside a compilation
1967 unit, we are unable to handle nested compilation units
1968 properly (FIXME). */
1969 if (current_subfile == NULL)
1970 read_file_scope (&di, thisdie, nextdie, objfile);
1971 else
1972 nextdie = thisdie + di.die_length;
1973 break;
1974 case TAG_global_subroutine:
1975 case TAG_subroutine:
1976 if (di.has_at_low_pc)
1977 {
1978 read_func_scope (&di, thisdie, nextdie, objfile);
1979 }
1980 break;
1981 case TAG_lexical_block:
1982 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1983 break;
1984 case TAG_class_type:
1985 case TAG_structure_type:
1986 case TAG_union_type:
1987 read_structure_scope (&di, thisdie, nextdie, objfile);
1988 break;
1989 case TAG_enumeration_type:
1990 read_enumeration (&di, thisdie, nextdie, objfile);
1991 break;
1992 case TAG_subroutine_type:
1993 read_subroutine_type (&di, thisdie, nextdie);
1994 break;
1995 case TAG_array_type:
1996 dwarf_read_array_type (&di);
1997 break;
1998 case TAG_pointer_type:
1999 read_tag_pointer_type (&di);
2000 break;
2001 case TAG_string_type:
2002 read_tag_string_type (&di);
2003 break;
2004 default:
2005 new_symbol (&di, objfile);
2006 break;
2007 }
2008 }
2009 thisdie = nextdie;
2010 }
2011 }
2012
2013 /*
2014
2015 LOCAL FUNCTION
2016
2017 decode_line_numbers -- decode a line number table fragment
2018
2019 SYNOPSIS
2020
2021 static void decode_line_numbers (char *tblscan, char *tblend,
2022 long length, long base, long line, long pc)
2023
2024 DESCRIPTION
2025
2026 Translate the DWARF line number information to gdb form.
2027
2028 The ".line" section contains one or more line number tables, one for
2029 each ".line" section from the objects that were linked.
2030
2031 The AT_stmt_list attribute for each TAG_source_file entry in the
2032 ".debug" section contains the offset into the ".line" section for the
2033 start of the table for that file.
2034
2035 The table itself has the following structure:
2036
2037 <table length><base address><source statement entry>
2038 4 bytes 4 bytes 10 bytes
2039
2040 The table length is the total size of the table, including the 4 bytes
2041 for the length information.
2042
2043 The base address is the address of the first instruction generated
2044 for the source file.
2045
2046 Each source statement entry has the following structure:
2047
2048 <line number><statement position><address delta>
2049 4 bytes 2 bytes 4 bytes
2050
2051 The line number is relative to the start of the file, starting with
2052 line 1.
2053
2054 The statement position either -1 (0xFFFF) or the number of characters
2055 from the beginning of the line to the beginning of the statement.
2056
2057 The address delta is the difference between the base address and
2058 the address of the first instruction for the statement.
2059
2060 Note that we must copy the bytes from the packed table to our local
2061 variables before attempting to use them, to avoid alignment problems
2062 on some machines, particularly RISC processors.
2063
2064 BUGS
2065
2066 Does gdb expect the line numbers to be sorted? They are now by
2067 chance/luck, but are not required to be. (FIXME)
2068
2069 The line with number 0 is unused, gdb apparently can discover the
2070 span of the last line some other way. How? (FIXME)
2071 */
2072
2073 static void
2074 decode_line_numbers (char *linetable)
2075 {
2076 char *tblscan;
2077 char *tblend;
2078 unsigned long length;
2079 unsigned long base;
2080 unsigned long line;
2081 unsigned long pc;
2082
2083 if (linetable != NULL)
2084 {
2085 tblscan = tblend = linetable;
2086 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2087 current_objfile);
2088 tblscan += SIZEOF_LINETBL_LENGTH;
2089 tblend += length;
2090 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2091 GET_UNSIGNED, current_objfile);
2092 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2093 base += baseaddr;
2094 while (tblscan < tblend)
2095 {
2096 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2097 current_objfile);
2098 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2099 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2100 current_objfile);
2101 tblscan += SIZEOF_LINETBL_DELTA;
2102 pc += base;
2103 if (line != 0)
2104 {
2105 record_line (current_subfile, line, pc);
2106 }
2107 }
2108 }
2109 }
2110
2111 /*
2112
2113 LOCAL FUNCTION
2114
2115 locval -- compute the value of a location attribute
2116
2117 SYNOPSIS
2118
2119 static int locval (struct dieinfo *dip)
2120
2121 DESCRIPTION
2122
2123 Given pointer to a string of bytes that define a location, compute
2124 the location and return the value.
2125 A location description containing no atoms indicates that the
2126 object is optimized out. The optimized_out flag is set for those,
2127 the return value is meaningless.
2128
2129 When computing values involving the current value of the frame pointer,
2130 the value zero is used, which results in a value relative to the frame
2131 pointer, rather than the absolute value. This is what GDB wants
2132 anyway.
2133
2134 When the result is a register number, the isreg flag is set, otherwise
2135 it is cleared. This is a kludge until we figure out a better
2136 way to handle the problem. Gdb's design does not mesh well with the
2137 DWARF notion of a location computing interpreter, which is a shame
2138 because the flexibility goes unused.
2139
2140 NOTES
2141
2142 Note that stack[0] is unused except as a default error return.
2143 Note that stack overflow is not yet handled.
2144 */
2145
2146 static int
2147 locval (struct dieinfo *dip)
2148 {
2149 unsigned short nbytes;
2150 unsigned short locsize;
2151 auto long stack[64];
2152 int stacki;
2153 char *loc;
2154 char *end;
2155 int loc_atom_code;
2156 int loc_value_size;
2157
2158 loc = dip->at_location;
2159 nbytes = attribute_size (AT_location);
2160 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2161 loc += nbytes;
2162 end = loc + locsize;
2163 stacki = 0;
2164 stack[stacki] = 0;
2165 dip->isreg = 0;
2166 dip->offreg = 0;
2167 dip->optimized_out = 1;
2168 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2169 while (loc < end)
2170 {
2171 dip->optimized_out = 0;
2172 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2173 current_objfile);
2174 loc += SIZEOF_LOC_ATOM_CODE;
2175 switch (loc_atom_code)
2176 {
2177 case 0:
2178 /* error */
2179 loc = end;
2180 break;
2181 case OP_REG:
2182 /* push register (number) */
2183 stack[++stacki]
2184 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2185 GET_UNSIGNED,
2186 current_objfile));
2187 loc += loc_value_size;
2188 dip->isreg = 1;
2189 break;
2190 case OP_BASEREG:
2191 /* push value of register (number) */
2192 /* Actually, we compute the value as if register has 0, so the
2193 value ends up being the offset from that register. */
2194 dip->offreg = 1;
2195 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2196 current_objfile);
2197 loc += loc_value_size;
2198 stack[++stacki] = 0;
2199 break;
2200 case OP_ADDR:
2201 /* push address (relocated address) */
2202 stack[++stacki] = target_to_host (loc, loc_value_size,
2203 GET_UNSIGNED, current_objfile);
2204 loc += loc_value_size;
2205 break;
2206 case OP_CONST:
2207 /* push constant (number) FIXME: signed or unsigned! */
2208 stack[++stacki] = target_to_host (loc, loc_value_size,
2209 GET_SIGNED, current_objfile);
2210 loc += loc_value_size;
2211 break;
2212 case OP_DEREF2:
2213 /* pop, deref and push 2 bytes (as a long) */
2214 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2215 break;
2216 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2217 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2218 break;
2219 case OP_ADD: /* pop top 2 items, add, push result */
2220 stack[stacki - 1] += stack[stacki];
2221 stacki--;
2222 break;
2223 }
2224 }
2225 return (stack[stacki]);
2226 }
2227
2228 /*
2229
2230 LOCAL FUNCTION
2231
2232 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2233
2234 SYNOPSIS
2235
2236 static void read_ofile_symtab (struct partial_symtab *pst)
2237
2238 DESCRIPTION
2239
2240 When expanding a partial symbol table entry to a full symbol table
2241 entry, this is the function that gets called to read in the symbols
2242 for the compilation unit. A pointer to the newly constructed symtab,
2243 which is now the new first one on the objfile's symtab list, is
2244 stashed in the partial symbol table entry.
2245 */
2246
2247 static void
2248 read_ofile_symtab (struct partial_symtab *pst)
2249 {
2250 struct cleanup *back_to;
2251 unsigned long lnsize;
2252 file_ptr foffset;
2253 bfd *abfd;
2254 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2255
2256 abfd = pst->objfile->obfd;
2257 current_objfile = pst->objfile;
2258
2259 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2260 unit, seek to the location in the file, and read in all the DIE's. */
2261
2262 diecount = 0;
2263 dbsize = DBLENGTH (pst);
2264 dbbase = xmalloc (dbsize);
2265 dbroff = DBROFF (pst);
2266 foffset = DBFOFF (pst) + dbroff;
2267 base_section_offsets = pst->section_offsets;
2268 baseaddr = ANOFFSET (pst->section_offsets, 0);
2269 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2270 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2271 {
2272 xfree (dbbase);
2273 error ("can't read DWARF data");
2274 }
2275 back_to = make_cleanup (xfree, dbbase);
2276
2277 /* If there is a line number table associated with this compilation unit
2278 then read the size of this fragment in bytes, from the fragment itself.
2279 Allocate a buffer for the fragment and read it in for future
2280 processing. */
2281
2282 lnbase = NULL;
2283 if (LNFOFF (pst))
2284 {
2285 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2286 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2287 sizeof (lnsizedata)))
2288 {
2289 error ("can't read DWARF line number table size");
2290 }
2291 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2292 GET_UNSIGNED, pst->objfile);
2293 lnbase = xmalloc (lnsize);
2294 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2295 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2296 {
2297 xfree (lnbase);
2298 error ("can't read DWARF line numbers");
2299 }
2300 make_cleanup (xfree, lnbase);
2301 }
2302
2303 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2304 do_cleanups (back_to);
2305 current_objfile = NULL;
2306 pst->symtab = pst->objfile->symtabs;
2307 }
2308
2309 /*
2310
2311 LOCAL FUNCTION
2312
2313 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2314
2315 SYNOPSIS
2316
2317 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2318
2319 DESCRIPTION
2320
2321 Called once for each partial symbol table entry that needs to be
2322 expanded into a full symbol table entry.
2323
2324 */
2325
2326 static void
2327 psymtab_to_symtab_1 (struct partial_symtab *pst)
2328 {
2329 int i;
2330 struct cleanup *old_chain;
2331
2332 if (pst != NULL)
2333 {
2334 if (pst->readin)
2335 {
2336 warning ("psymtab for %s already read in. Shouldn't happen.",
2337 pst->filename);
2338 }
2339 else
2340 {
2341 /* Read in all partial symtabs on which this one is dependent */
2342 for (i = 0; i < pst->number_of_dependencies; i++)
2343 {
2344 if (!pst->dependencies[i]->readin)
2345 {
2346 /* Inform about additional files that need to be read in. */
2347 if (info_verbose)
2348 {
2349 fputs_filtered (" ", gdb_stdout);
2350 wrap_here ("");
2351 fputs_filtered ("and ", gdb_stdout);
2352 wrap_here ("");
2353 printf_filtered ("%s...",
2354 pst->dependencies[i]->filename);
2355 wrap_here ("");
2356 gdb_flush (gdb_stdout); /* Flush output */
2357 }
2358 psymtab_to_symtab_1 (pst->dependencies[i]);
2359 }
2360 }
2361 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2362 {
2363 buildsym_init ();
2364 old_chain = make_cleanup (really_free_pendings, 0);
2365 read_ofile_symtab (pst);
2366 if (info_verbose)
2367 {
2368 printf_filtered ("%d DIE's, sorting...", diecount);
2369 wrap_here ("");
2370 gdb_flush (gdb_stdout);
2371 }
2372 sort_symtab_syms (pst->symtab);
2373 do_cleanups (old_chain);
2374 }
2375 pst->readin = 1;
2376 }
2377 }
2378 }
2379
2380 /*
2381
2382 LOCAL FUNCTION
2383
2384 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2385
2386 SYNOPSIS
2387
2388 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2389
2390 DESCRIPTION
2391
2392 This is the DWARF support entry point for building a full symbol
2393 table entry from a partial symbol table entry. We are passed a
2394 pointer to the partial symbol table entry that needs to be expanded.
2395
2396 */
2397
2398 static void
2399 dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2400 {
2401
2402 if (pst != NULL)
2403 {
2404 if (pst->readin)
2405 {
2406 warning ("psymtab for %s already read in. Shouldn't happen.",
2407 pst->filename);
2408 }
2409 else
2410 {
2411 if (DBLENGTH (pst) || pst->number_of_dependencies)
2412 {
2413 /* Print the message now, before starting serious work, to avoid
2414 disconcerting pauses. */
2415 if (info_verbose)
2416 {
2417 printf_filtered ("Reading in symbols for %s...",
2418 pst->filename);
2419 gdb_flush (gdb_stdout);
2420 }
2421
2422 psymtab_to_symtab_1 (pst);
2423
2424 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2425 we need to do an equivalent or is this something peculiar to
2426 stabs/a.out format.
2427 Match with global symbols. This only needs to be done once,
2428 after all of the symtabs and dependencies have been read in.
2429 */
2430 scan_file_globals (pst->objfile);
2431 #endif
2432
2433 /* Finish up the verbose info message. */
2434 if (info_verbose)
2435 {
2436 printf_filtered ("done.\n");
2437 gdb_flush (gdb_stdout);
2438 }
2439 }
2440 }
2441 }
2442 }
2443
2444 /*
2445
2446 LOCAL FUNCTION
2447
2448 add_enum_psymbol -- add enumeration members to partial symbol table
2449
2450 DESCRIPTION
2451
2452 Given pointer to a DIE that is known to be for an enumeration,
2453 extract the symbolic names of the enumeration members and add
2454 partial symbols for them.
2455 */
2456
2457 static void
2458 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2459 {
2460 char *scan;
2461 char *listend;
2462 unsigned short blocksz;
2463 int nbytes;
2464
2465 if ((scan = dip->at_element_list) != NULL)
2466 {
2467 if (dip->short_element_list)
2468 {
2469 nbytes = attribute_size (AT_short_element_list);
2470 }
2471 else
2472 {
2473 nbytes = attribute_size (AT_element_list);
2474 }
2475 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2476 scan += nbytes;
2477 listend = scan + blocksz;
2478 while (scan < listend)
2479 {
2480 scan += TARGET_FT_LONG_SIZE (objfile);
2481 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2482 &objfile->static_psymbols, 0, 0, cu_language,
2483 objfile);
2484 scan += strlen (scan) + 1;
2485 }
2486 }
2487 }
2488
2489 /*
2490
2491 LOCAL FUNCTION
2492
2493 add_partial_symbol -- add symbol to partial symbol table
2494
2495 DESCRIPTION
2496
2497 Given a DIE, if it is one of the types that we want to
2498 add to a partial symbol table, finish filling in the die info
2499 and then add a partial symbol table entry for it.
2500
2501 NOTES
2502
2503 The caller must ensure that the DIE has a valid name attribute.
2504 */
2505
2506 static void
2507 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2508 {
2509 switch (dip->die_tag)
2510 {
2511 case TAG_global_subroutine:
2512 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2513 VAR_NAMESPACE, LOC_BLOCK,
2514 &objfile->global_psymbols,
2515 0, dip->at_low_pc, cu_language, objfile);
2516 break;
2517 case TAG_global_variable:
2518 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2519 VAR_NAMESPACE, LOC_STATIC,
2520 &objfile->global_psymbols,
2521 0, 0, cu_language, objfile);
2522 break;
2523 case TAG_subroutine:
2524 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2525 VAR_NAMESPACE, LOC_BLOCK,
2526 &objfile->static_psymbols,
2527 0, dip->at_low_pc, cu_language, objfile);
2528 break;
2529 case TAG_local_variable:
2530 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2531 VAR_NAMESPACE, LOC_STATIC,
2532 &objfile->static_psymbols,
2533 0, 0, cu_language, objfile);
2534 break;
2535 case TAG_typedef:
2536 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2537 VAR_NAMESPACE, LOC_TYPEDEF,
2538 &objfile->static_psymbols,
2539 0, 0, cu_language, objfile);
2540 break;
2541 case TAG_class_type:
2542 case TAG_structure_type:
2543 case TAG_union_type:
2544 case TAG_enumeration_type:
2545 /* Do not add opaque aggregate definitions to the psymtab. */
2546 if (!dip->has_at_byte_size)
2547 break;
2548 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2549 STRUCT_NAMESPACE, LOC_TYPEDEF,
2550 &objfile->static_psymbols,
2551 0, 0, cu_language, objfile);
2552 if (cu_language == language_cplus)
2553 {
2554 /* For C++, these implicitly act as typedefs as well. */
2555 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2556 VAR_NAMESPACE, LOC_TYPEDEF,
2557 &objfile->static_psymbols,
2558 0, 0, cu_language, objfile);
2559 }
2560 break;
2561 }
2562 }
2563 /* *INDENT-OFF* */
2564 /*
2565
2566 LOCAL FUNCTION
2567
2568 scan_partial_symbols -- scan DIE's within a single compilation unit
2569
2570 DESCRIPTION
2571
2572 Process the DIE's within a single compilation unit, looking for
2573 interesting DIE's that contribute to the partial symbol table entry
2574 for this compilation unit.
2575
2576 NOTES
2577
2578 There are some DIE's that may appear both at file scope and within
2579 the scope of a function. We are only interested in the ones at file
2580 scope, and the only way to tell them apart is to keep track of the
2581 scope. For example, consider the test case:
2582
2583 static int i;
2584 main () { int j; }
2585
2586 for which the relevant DWARF segment has the structure:
2587
2588 0x51:
2589 0x23 global subrtn sibling 0x9b
2590 name main
2591 fund_type FT_integer
2592 low_pc 0x800004cc
2593 high_pc 0x800004d4
2594
2595 0x74:
2596 0x23 local var sibling 0x97
2597 name j
2598 fund_type FT_integer
2599 location OP_BASEREG 0xe
2600 OP_CONST 0xfffffffc
2601 OP_ADD
2602 0x97:
2603 0x4
2604
2605 0x9b:
2606 0x1d local var sibling 0xb8
2607 name i
2608 fund_type FT_integer
2609 location OP_ADDR 0x800025dc
2610
2611 0xb8:
2612 0x4
2613
2614 We want to include the symbol 'i' in the partial symbol table, but
2615 not the symbol 'j'. In essence, we want to skip all the dies within
2616 the scope of a TAG_global_subroutine DIE.
2617
2618 Don't attempt to add anonymous structures or unions since they have
2619 no name. Anonymous enumerations however are processed, because we
2620 want to extract their member names (the check for a tag name is
2621 done later).
2622
2623 Also, for variables and subroutines, check that this is the place
2624 where the actual definition occurs, rather than just a reference
2625 to an external.
2626 */
2627 /* *INDENT-ON* */
2628
2629
2630
2631 static void
2632 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2633 {
2634 char *nextdie;
2635 char *temp;
2636 struct dieinfo di;
2637
2638 while (thisdie < enddie)
2639 {
2640 basicdieinfo (&di, thisdie, objfile);
2641 if (di.die_length < SIZEOF_DIE_LENGTH)
2642 {
2643 break;
2644 }
2645 else
2646 {
2647 nextdie = thisdie + di.die_length;
2648 /* To avoid getting complete die information for every die, we
2649 only do it (below) for the cases we are interested in. */
2650 switch (di.die_tag)
2651 {
2652 case TAG_global_subroutine:
2653 case TAG_subroutine:
2654 completedieinfo (&di, objfile);
2655 if (di.at_name && (di.has_at_low_pc || di.at_location))
2656 {
2657 add_partial_symbol (&di, objfile);
2658 /* If there is a sibling attribute, adjust the nextdie
2659 pointer to skip the entire scope of the subroutine.
2660 Apply some sanity checking to make sure we don't
2661 overrun or underrun the range of remaining DIE's */
2662 if (di.at_sibling != 0)
2663 {
2664 temp = dbbase + di.at_sibling - dbroff;
2665 if ((temp < thisdie) || (temp >= enddie))
2666 {
2667 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2668 di.at_sibling);
2669 }
2670 else
2671 {
2672 nextdie = temp;
2673 }
2674 }
2675 }
2676 break;
2677 case TAG_global_variable:
2678 case TAG_local_variable:
2679 completedieinfo (&di, objfile);
2680 if (di.at_name && (di.has_at_low_pc || di.at_location))
2681 {
2682 add_partial_symbol (&di, objfile);
2683 }
2684 break;
2685 case TAG_typedef:
2686 case TAG_class_type:
2687 case TAG_structure_type:
2688 case TAG_union_type:
2689 completedieinfo (&di, objfile);
2690 if (di.at_name)
2691 {
2692 add_partial_symbol (&di, objfile);
2693 }
2694 break;
2695 case TAG_enumeration_type:
2696 completedieinfo (&di, objfile);
2697 if (di.at_name)
2698 {
2699 add_partial_symbol (&di, objfile);
2700 }
2701 add_enum_psymbol (&di, objfile);
2702 break;
2703 }
2704 }
2705 thisdie = nextdie;
2706 }
2707 }
2708
2709 /*
2710
2711 LOCAL FUNCTION
2712
2713 scan_compilation_units -- build a psymtab entry for each compilation
2714
2715 DESCRIPTION
2716
2717 This is the top level dwarf parsing routine for building partial
2718 symbol tables.
2719
2720 It scans from the beginning of the DWARF table looking for the first
2721 TAG_compile_unit DIE, and then follows the sibling chain to locate
2722 each additional TAG_compile_unit DIE.
2723
2724 For each TAG_compile_unit DIE it creates a partial symtab structure,
2725 calls a subordinate routine to collect all the compilation unit's
2726 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2727 new partial symtab structure into the partial symbol table. It also
2728 records the appropriate information in the partial symbol table entry
2729 to allow the chunk of DIE's and line number table for this compilation
2730 unit to be located and re-read later, to generate a complete symbol
2731 table entry for the compilation unit.
2732
2733 Thus it effectively partitions up a chunk of DIE's for multiple
2734 compilation units into smaller DIE chunks and line number tables,
2735 and associates them with a partial symbol table entry.
2736
2737 NOTES
2738
2739 If any compilation unit has no line number table associated with
2740 it for some reason (a missing at_stmt_list attribute, rather than
2741 just one with a value of zero, which is valid) then we ensure that
2742 the recorded file offset is zero so that the routine which later
2743 reads line number table fragments knows that there is no fragment
2744 to read.
2745
2746 RETURNS
2747
2748 Returns no value.
2749
2750 */
2751
2752 static void
2753 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2754 file_ptr lnoffset, struct objfile *objfile)
2755 {
2756 char *nextdie;
2757 struct dieinfo di;
2758 struct partial_symtab *pst;
2759 int culength;
2760 int curoff;
2761 file_ptr curlnoffset;
2762
2763 while (thisdie < enddie)
2764 {
2765 basicdieinfo (&di, thisdie, objfile);
2766 if (di.die_length < SIZEOF_DIE_LENGTH)
2767 {
2768 break;
2769 }
2770 else if (di.die_tag != TAG_compile_unit)
2771 {
2772 nextdie = thisdie + di.die_length;
2773 }
2774 else
2775 {
2776 completedieinfo (&di, objfile);
2777 set_cu_language (&di);
2778 if (di.at_sibling != 0)
2779 {
2780 nextdie = dbbase + di.at_sibling - dbroff;
2781 }
2782 else
2783 {
2784 nextdie = thisdie + di.die_length;
2785 }
2786 curoff = thisdie - dbbase;
2787 culength = nextdie - thisdie;
2788 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2789
2790 /* First allocate a new partial symbol table structure */
2791
2792 pst = start_psymtab_common (objfile, base_section_offsets,
2793 di.at_name, di.at_low_pc,
2794 objfile->global_psymbols.next,
2795 objfile->static_psymbols.next);
2796
2797 pst->texthigh = di.at_high_pc;
2798 pst->read_symtab_private = (char *)
2799 obstack_alloc (&objfile->psymbol_obstack,
2800 sizeof (struct dwfinfo));
2801 DBFOFF (pst) = dbfoff;
2802 DBROFF (pst) = curoff;
2803 DBLENGTH (pst) = culength;
2804 LNFOFF (pst) = curlnoffset;
2805 pst->read_symtab = dwarf_psymtab_to_symtab;
2806
2807 /* Now look for partial symbols */
2808
2809 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2810
2811 pst->n_global_syms = objfile->global_psymbols.next -
2812 (objfile->global_psymbols.list + pst->globals_offset);
2813 pst->n_static_syms = objfile->static_psymbols.next -
2814 (objfile->static_psymbols.list + pst->statics_offset);
2815 sort_pst_symbols (pst);
2816 /* If there is already a psymtab or symtab for a file of this name,
2817 remove it. (If there is a symtab, more drastic things also
2818 happen.) This happens in VxWorks. */
2819 free_named_symtabs (pst->filename);
2820 }
2821 thisdie = nextdie;
2822 }
2823 }
2824
2825 /*
2826
2827 LOCAL FUNCTION
2828
2829 new_symbol -- make a symbol table entry for a new symbol
2830
2831 SYNOPSIS
2832
2833 static struct symbol *new_symbol (struct dieinfo *dip,
2834 struct objfile *objfile)
2835
2836 DESCRIPTION
2837
2838 Given a pointer to a DWARF information entry, figure out if we need
2839 to make a symbol table entry for it, and if so, create a new entry
2840 and return a pointer to it.
2841 */
2842
2843 static struct symbol *
2844 new_symbol (struct dieinfo *dip, struct objfile *objfile)
2845 {
2846 struct symbol *sym = NULL;
2847
2848 if (dip->at_name != NULL)
2849 {
2850 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
2851 sizeof (struct symbol));
2852 OBJSTAT (objfile, n_syms++);
2853 memset (sym, 0, sizeof (struct symbol));
2854 SYMBOL_NAME (sym) = create_name (dip->at_name,
2855 &objfile->symbol_obstack);
2856 /* default assumptions */
2857 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2858 SYMBOL_CLASS (sym) = LOC_STATIC;
2859 SYMBOL_TYPE (sym) = decode_die_type (dip);
2860
2861 /* If this symbol is from a C++ compilation, then attempt to cache the
2862 demangled form for future reference. This is a typical time versus
2863 space tradeoff, that was decided in favor of time because it sped up
2864 C++ symbol lookups by a factor of about 20. */
2865
2866 SYMBOL_LANGUAGE (sym) = cu_language;
2867 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
2868 switch (dip->die_tag)
2869 {
2870 case TAG_label:
2871 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2872 SYMBOL_CLASS (sym) = LOC_LABEL;
2873 break;
2874 case TAG_global_subroutine:
2875 case TAG_subroutine:
2876 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2877 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2878 if (dip->at_prototyped)
2879 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2880 SYMBOL_CLASS (sym) = LOC_BLOCK;
2881 if (dip->die_tag == TAG_global_subroutine)
2882 {
2883 add_symbol_to_list (sym, &global_symbols);
2884 }
2885 else
2886 {
2887 add_symbol_to_list (sym, list_in_scope);
2888 }
2889 break;
2890 case TAG_global_variable:
2891 if (dip->at_location != NULL)
2892 {
2893 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2894 add_symbol_to_list (sym, &global_symbols);
2895 SYMBOL_CLASS (sym) = LOC_STATIC;
2896 SYMBOL_VALUE (sym) += baseaddr;
2897 }
2898 break;
2899 case TAG_local_variable:
2900 if (dip->at_location != NULL)
2901 {
2902 int loc = locval (dip);
2903 if (dip->optimized_out)
2904 {
2905 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2906 }
2907 else if (dip->isreg)
2908 {
2909 SYMBOL_CLASS (sym) = LOC_REGISTER;
2910 }
2911 else if (dip->offreg)
2912 {
2913 SYMBOL_CLASS (sym) = LOC_BASEREG;
2914 SYMBOL_BASEREG (sym) = dip->basereg;
2915 }
2916 else
2917 {
2918 SYMBOL_CLASS (sym) = LOC_STATIC;
2919 SYMBOL_VALUE (sym) += baseaddr;
2920 }
2921 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2922 {
2923 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2924 which may store to a bigger location than SYMBOL_VALUE. */
2925 SYMBOL_VALUE_ADDRESS (sym) = loc;
2926 }
2927 else
2928 {
2929 SYMBOL_VALUE (sym) = loc;
2930 }
2931 add_symbol_to_list (sym, list_in_scope);
2932 }
2933 break;
2934 case TAG_formal_parameter:
2935 if (dip->at_location != NULL)
2936 {
2937 SYMBOL_VALUE (sym) = locval (dip);
2938 }
2939 add_symbol_to_list (sym, list_in_scope);
2940 if (dip->isreg)
2941 {
2942 SYMBOL_CLASS (sym) = LOC_REGPARM;
2943 }
2944 else if (dip->offreg)
2945 {
2946 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2947 SYMBOL_BASEREG (sym) = dip->basereg;
2948 }
2949 else
2950 {
2951 SYMBOL_CLASS (sym) = LOC_ARG;
2952 }
2953 break;
2954 case TAG_unspecified_parameters:
2955 /* From varargs functions; gdb doesn't seem to have any interest in
2956 this information, so just ignore it for now. (FIXME?) */
2957 break;
2958 case TAG_class_type:
2959 case TAG_structure_type:
2960 case TAG_union_type:
2961 case TAG_enumeration_type:
2962 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2963 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2964 add_symbol_to_list (sym, list_in_scope);
2965 break;
2966 case TAG_typedef:
2967 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2968 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2969 add_symbol_to_list (sym, list_in_scope);
2970 break;
2971 default:
2972 /* Not a tag we recognize. Hopefully we aren't processing trash
2973 data, but since we must specifically ignore things we don't
2974 recognize, there is nothing else we should do at this point. */
2975 break;
2976 }
2977 }
2978 return (sym);
2979 }
2980
2981 /*
2982
2983 LOCAL FUNCTION
2984
2985 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2986
2987 SYNOPSIS
2988
2989 static void synthesize_typedef (struct dieinfo *dip,
2990 struct objfile *objfile,
2991 struct type *type);
2992
2993 DESCRIPTION
2994
2995 Given a pointer to a DWARF information entry, synthesize a typedef
2996 for the name in the DIE, using the specified type.
2997
2998 This is used for C++ class, structs, unions, and enumerations to
2999 set up the tag name as a type.
3000
3001 */
3002
3003 static void
3004 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3005 struct type *type)
3006 {
3007 struct symbol *sym = NULL;
3008
3009 if (dip->at_name != NULL)
3010 {
3011 sym = (struct symbol *)
3012 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
3013 OBJSTAT (objfile, n_syms++);
3014 memset (sym, 0, sizeof (struct symbol));
3015 SYMBOL_NAME (sym) = create_name (dip->at_name,
3016 &objfile->symbol_obstack);
3017 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3018 SYMBOL_TYPE (sym) = type;
3019 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3020 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3021 add_symbol_to_list (sym, list_in_scope);
3022 }
3023 }
3024
3025 /*
3026
3027 LOCAL FUNCTION
3028
3029 decode_mod_fund_type -- decode a modified fundamental type
3030
3031 SYNOPSIS
3032
3033 static struct type *decode_mod_fund_type (char *typedata)
3034
3035 DESCRIPTION
3036
3037 Decode a block of data containing a modified fundamental
3038 type specification. TYPEDATA is a pointer to the block,
3039 which starts with a length containing the size of the rest
3040 of the block. At the end of the block is a fundmental type
3041 code value that gives the fundamental type. Everything
3042 in between are type modifiers.
3043
3044 We simply compute the number of modifiers and call the general
3045 function decode_modified_type to do the actual work.
3046 */
3047
3048 static struct type *
3049 decode_mod_fund_type (char *typedata)
3050 {
3051 struct type *typep = NULL;
3052 unsigned short modcount;
3053 int nbytes;
3054
3055 /* Get the total size of the block, exclusive of the size itself */
3056
3057 nbytes = attribute_size (AT_mod_fund_type);
3058 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3059 typedata += nbytes;
3060
3061 /* Deduct the size of the fundamental type bytes at the end of the block. */
3062
3063 modcount -= attribute_size (AT_fund_type);
3064
3065 /* Now do the actual decoding */
3066
3067 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3068 return (typep);
3069 }
3070
3071 /*
3072
3073 LOCAL FUNCTION
3074
3075 decode_mod_u_d_type -- decode a modified user defined type
3076
3077 SYNOPSIS
3078
3079 static struct type *decode_mod_u_d_type (char *typedata)
3080
3081 DESCRIPTION
3082
3083 Decode a block of data containing a modified user defined
3084 type specification. TYPEDATA is a pointer to the block,
3085 which consists of a two byte length, containing the size
3086 of the rest of the block. At the end of the block is a
3087 four byte value that gives a reference to a user defined type.
3088 Everything in between are type modifiers.
3089
3090 We simply compute the number of modifiers and call the general
3091 function decode_modified_type to do the actual work.
3092 */
3093
3094 static struct type *
3095 decode_mod_u_d_type (char *typedata)
3096 {
3097 struct type *typep = NULL;
3098 unsigned short modcount;
3099 int nbytes;
3100
3101 /* Get the total size of the block, exclusive of the size itself */
3102
3103 nbytes = attribute_size (AT_mod_u_d_type);
3104 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3105 typedata += nbytes;
3106
3107 /* Deduct the size of the reference type bytes at the end of the block. */
3108
3109 modcount -= attribute_size (AT_user_def_type);
3110
3111 /* Now do the actual decoding */
3112
3113 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3114 return (typep);
3115 }
3116
3117 /*
3118
3119 LOCAL FUNCTION
3120
3121 decode_modified_type -- decode modified user or fundamental type
3122
3123 SYNOPSIS
3124
3125 static struct type *decode_modified_type (char *modifiers,
3126 unsigned short modcount, int mtype)
3127
3128 DESCRIPTION
3129
3130 Decode a modified type, either a modified fundamental type or
3131 a modified user defined type. MODIFIERS is a pointer to the
3132 block of bytes that define MODCOUNT modifiers. Immediately
3133 following the last modifier is a short containing the fundamental
3134 type or a long containing the reference to the user defined
3135 type. Which one is determined by MTYPE, which is either
3136 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3137 type we are generating.
3138
3139 We call ourself recursively to generate each modified type,`
3140 until MODCOUNT reaches zero, at which point we have consumed
3141 all the modifiers and generate either the fundamental type or
3142 user defined type. When the recursion unwinds, each modifier
3143 is applied in turn to generate the full modified type.
3144
3145 NOTES
3146
3147 If we find a modifier that we don't recognize, and it is not one
3148 of those reserved for application specific use, then we issue a
3149 warning and simply ignore the modifier.
3150
3151 BUGS
3152
3153 We currently ignore MOD_const and MOD_volatile. (FIXME)
3154
3155 */
3156
3157 static struct type *
3158 decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3159 {
3160 struct type *typep = NULL;
3161 unsigned short fundtype;
3162 DIE_REF die_ref;
3163 char modifier;
3164 int nbytes;
3165
3166 if (modcount == 0)
3167 {
3168 switch (mtype)
3169 {
3170 case AT_mod_fund_type:
3171 nbytes = attribute_size (AT_fund_type);
3172 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3173 current_objfile);
3174 typep = decode_fund_type (fundtype);
3175 break;
3176 case AT_mod_u_d_type:
3177 nbytes = attribute_size (AT_user_def_type);
3178 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3179 current_objfile);
3180 if ((typep = lookup_utype (die_ref)) == NULL)
3181 {
3182 typep = alloc_utype (die_ref, NULL);
3183 }
3184 break;
3185 default:
3186 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3187 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3188 break;
3189 }
3190 }
3191 else
3192 {
3193 modifier = *modifiers++;
3194 typep = decode_modified_type (modifiers, --modcount, mtype);
3195 switch (modifier)
3196 {
3197 case MOD_pointer_to:
3198 typep = lookup_pointer_type (typep);
3199 break;
3200 case MOD_reference_to:
3201 typep = lookup_reference_type (typep);
3202 break;
3203 case MOD_const:
3204 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3205 break;
3206 case MOD_volatile:
3207 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3208 break;
3209 default:
3210 if (!(MOD_lo_user <= (unsigned char) modifier
3211 && (unsigned char) modifier <= MOD_hi_user))
3212 {
3213 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3214 }
3215 break;
3216 }
3217 }
3218 return (typep);
3219 }
3220
3221 /*
3222
3223 LOCAL FUNCTION
3224
3225 decode_fund_type -- translate basic DWARF type to gdb base type
3226
3227 DESCRIPTION
3228
3229 Given an integer that is one of the fundamental DWARF types,
3230 translate it to one of the basic internal gdb types and return
3231 a pointer to the appropriate gdb type (a "struct type *").
3232
3233 NOTES
3234
3235 For robustness, if we are asked to translate a fundamental
3236 type that we are unprepared to deal with, we return int so
3237 callers can always depend upon a valid type being returned,
3238 and so gdb may at least do something reasonable by default.
3239 If the type is not in the range of those types defined as
3240 application specific types, we also issue a warning.
3241 */
3242
3243 static struct type *
3244 decode_fund_type (unsigned int fundtype)
3245 {
3246 struct type *typep = NULL;
3247
3248 switch (fundtype)
3249 {
3250
3251 case FT_void:
3252 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3253 break;
3254
3255 case FT_boolean: /* Was FT_set in AT&T version */
3256 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3257 break;
3258
3259 case FT_pointer: /* (void *) */
3260 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3261 typep = lookup_pointer_type (typep);
3262 break;
3263
3264 case FT_char:
3265 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3266 break;
3267
3268 case FT_signed_char:
3269 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3270 break;
3271
3272 case FT_unsigned_char:
3273 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3274 break;
3275
3276 case FT_short:
3277 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3278 break;
3279
3280 case FT_signed_short:
3281 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3282 break;
3283
3284 case FT_unsigned_short:
3285 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3286 break;
3287
3288 case FT_integer:
3289 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3290 break;
3291
3292 case FT_signed_integer:
3293 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3294 break;
3295
3296 case FT_unsigned_integer:
3297 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3298 break;
3299
3300 case FT_long:
3301 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3302 break;
3303
3304 case FT_signed_long:
3305 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3306 break;
3307
3308 case FT_unsigned_long:
3309 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3310 break;
3311
3312 case FT_long_long:
3313 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3314 break;
3315
3316 case FT_signed_long_long:
3317 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3318 break;
3319
3320 case FT_unsigned_long_long:
3321 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3322 break;
3323
3324 case FT_float:
3325 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3326 break;
3327
3328 case FT_dbl_prec_float:
3329 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3330 break;
3331
3332 case FT_ext_prec_float:
3333 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3334 break;
3335
3336 case FT_complex:
3337 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3338 break;
3339
3340 case FT_dbl_prec_complex:
3341 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3342 break;
3343
3344 case FT_ext_prec_complex:
3345 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3346 break;
3347
3348 }
3349
3350 if (typep == NULL)
3351 {
3352 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3353 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3354 {
3355 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3356 }
3357 }
3358
3359 return (typep);
3360 }
3361
3362 /*
3363
3364 LOCAL FUNCTION
3365
3366 create_name -- allocate a fresh copy of a string on an obstack
3367
3368 DESCRIPTION
3369
3370 Given a pointer to a string and a pointer to an obstack, allocates
3371 a fresh copy of the string on the specified obstack.
3372
3373 */
3374
3375 static char *
3376 create_name (char *name, struct obstack *obstackp)
3377 {
3378 int length;
3379 char *newname;
3380
3381 length = strlen (name) + 1;
3382 newname = (char *) obstack_alloc (obstackp, length);
3383 strcpy (newname, name);
3384 return (newname);
3385 }
3386
3387 /*
3388
3389 LOCAL FUNCTION
3390
3391 basicdieinfo -- extract the minimal die info from raw die data
3392
3393 SYNOPSIS
3394
3395 void basicdieinfo (char *diep, struct dieinfo *dip,
3396 struct objfile *objfile)
3397
3398 DESCRIPTION
3399
3400 Given a pointer to raw DIE data, and a pointer to an instance of a
3401 die info structure, this function extracts the basic information
3402 from the DIE data required to continue processing this DIE, along
3403 with some bookkeeping information about the DIE.
3404
3405 The information we absolutely must have includes the DIE tag,
3406 and the DIE length. If we need the sibling reference, then we
3407 will have to call completedieinfo() to process all the remaining
3408 DIE information.
3409
3410 Note that since there is no guarantee that the data is properly
3411 aligned in memory for the type of access required (indirection
3412 through anything other than a char pointer), and there is no
3413 guarantee that it is in the same byte order as the gdb host,
3414 we call a function which deals with both alignment and byte
3415 swapping issues. Possibly inefficient, but quite portable.
3416
3417 We also take care of some other basic things at this point, such
3418 as ensuring that the instance of the die info structure starts
3419 out completely zero'd and that curdie is initialized for use
3420 in error reporting if we have a problem with the current die.
3421
3422 NOTES
3423
3424 All DIE's must have at least a valid length, thus the minimum
3425 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3426 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3427 are forced to be TAG_padding DIES.
3428
3429 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3430 that if a padding DIE is used for alignment and the amount needed is
3431 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3432 enough to align to the next alignment boundry.
3433
3434 We do some basic sanity checking here, such as verifying that the
3435 length of the die would not cause it to overrun the recorded end of
3436 the buffer holding the DIE info. If we find a DIE that is either
3437 too small or too large, we force it's length to zero which should
3438 cause the caller to take appropriate action.
3439 */
3440
3441 static void
3442 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3443 {
3444 curdie = dip;
3445 memset (dip, 0, sizeof (struct dieinfo));
3446 dip->die = diep;
3447 dip->die_ref = dbroff + (diep - dbbase);
3448 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3449 objfile);
3450 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3451 ((diep + dip->die_length) > (dbbase + dbsize)))
3452 {
3453 complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
3454 dip->die_length = 0;
3455 }
3456 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3457 {
3458 dip->die_tag = TAG_padding;
3459 }
3460 else
3461 {
3462 diep += SIZEOF_DIE_LENGTH;
3463 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3464 objfile);
3465 }
3466 }
3467
3468 /*
3469
3470 LOCAL FUNCTION
3471
3472 completedieinfo -- finish reading the information for a given DIE
3473
3474 SYNOPSIS
3475
3476 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3477
3478 DESCRIPTION
3479
3480 Given a pointer to an already partially initialized die info structure,
3481 scan the raw DIE data and finish filling in the die info structure
3482 from the various attributes found.
3483
3484 Note that since there is no guarantee that the data is properly
3485 aligned in memory for the type of access required (indirection
3486 through anything other than a char pointer), and there is no
3487 guarantee that it is in the same byte order as the gdb host,
3488 we call a function which deals with both alignment and byte
3489 swapping issues. Possibly inefficient, but quite portable.
3490
3491 NOTES
3492
3493 Each time we are called, we increment the diecount variable, which
3494 keeps an approximate count of the number of dies processed for
3495 each compilation unit. This information is presented to the user
3496 if the info_verbose flag is set.
3497
3498 */
3499
3500 static void
3501 completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3502 {
3503 char *diep; /* Current pointer into raw DIE data */
3504 char *end; /* Terminate DIE scan here */
3505 unsigned short attr; /* Current attribute being scanned */
3506 unsigned short form; /* Form of the attribute */
3507 int nbytes; /* Size of next field to read */
3508
3509 diecount++;
3510 diep = dip->die;
3511 end = diep + dip->die_length;
3512 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3513 while (diep < end)
3514 {
3515 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3516 diep += SIZEOF_ATTRIBUTE;
3517 if ((nbytes = attribute_size (attr)) == -1)
3518 {
3519 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3520 diep = end;
3521 continue;
3522 }
3523 switch (attr)
3524 {
3525 case AT_fund_type:
3526 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3527 objfile);
3528 break;
3529 case AT_ordering:
3530 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3531 objfile);
3532 break;
3533 case AT_bit_offset:
3534 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3535 objfile);
3536 break;
3537 case AT_sibling:
3538 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3539 objfile);
3540 break;
3541 case AT_stmt_list:
3542 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3543 objfile);
3544 dip->has_at_stmt_list = 1;
3545 break;
3546 case AT_low_pc:
3547 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3548 objfile);
3549 dip->at_low_pc += baseaddr;
3550 dip->has_at_low_pc = 1;
3551 break;
3552 case AT_high_pc:
3553 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3554 objfile);
3555 dip->at_high_pc += baseaddr;
3556 break;
3557 case AT_language:
3558 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3559 objfile);
3560 break;
3561 case AT_user_def_type:
3562 dip->at_user_def_type = target_to_host (diep, nbytes,
3563 GET_UNSIGNED, objfile);
3564 break;
3565 case AT_byte_size:
3566 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3567 objfile);
3568 dip->has_at_byte_size = 1;
3569 break;
3570 case AT_bit_size:
3571 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3572 objfile);
3573 break;
3574 case AT_member:
3575 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3576 objfile);
3577 break;
3578 case AT_discr:
3579 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3580 objfile);
3581 break;
3582 case AT_location:
3583 dip->at_location = diep;
3584 break;
3585 case AT_mod_fund_type:
3586 dip->at_mod_fund_type = diep;
3587 break;
3588 case AT_subscr_data:
3589 dip->at_subscr_data = diep;
3590 break;
3591 case AT_mod_u_d_type:
3592 dip->at_mod_u_d_type = diep;
3593 break;
3594 case AT_element_list:
3595 dip->at_element_list = diep;
3596 dip->short_element_list = 0;
3597 break;
3598 case AT_short_element_list:
3599 dip->at_element_list = diep;
3600 dip->short_element_list = 1;
3601 break;
3602 case AT_discr_value:
3603 dip->at_discr_value = diep;
3604 break;
3605 case AT_string_length:
3606 dip->at_string_length = diep;
3607 break;
3608 case AT_name:
3609 dip->at_name = diep;
3610 break;
3611 case AT_comp_dir:
3612 /* For now, ignore any "hostname:" portion, since gdb doesn't
3613 know how to deal with it. (FIXME). */
3614 dip->at_comp_dir = strrchr (diep, ':');
3615 if (dip->at_comp_dir != NULL)
3616 {
3617 dip->at_comp_dir++;
3618 }
3619 else
3620 {
3621 dip->at_comp_dir = diep;
3622 }
3623 break;
3624 case AT_producer:
3625 dip->at_producer = diep;
3626 break;
3627 case AT_start_scope:
3628 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3629 objfile);
3630 break;
3631 case AT_stride_size:
3632 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3633 objfile);
3634 break;
3635 case AT_src_info:
3636 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3637 objfile);
3638 break;
3639 case AT_prototyped:
3640 dip->at_prototyped = diep;
3641 break;
3642 default:
3643 /* Found an attribute that we are unprepared to handle. However
3644 it is specifically one of the design goals of DWARF that
3645 consumers should ignore unknown attributes. As long as the
3646 form is one that we recognize (so we know how to skip it),
3647 we can just ignore the unknown attribute. */
3648 break;
3649 }
3650 form = FORM_FROM_ATTR (attr);
3651 switch (form)
3652 {
3653 case FORM_DATA2:
3654 diep += 2;
3655 break;
3656 case FORM_DATA4:
3657 case FORM_REF:
3658 diep += 4;
3659 break;
3660 case FORM_DATA8:
3661 diep += 8;
3662 break;
3663 case FORM_ADDR:
3664 diep += TARGET_FT_POINTER_SIZE (objfile);
3665 break;
3666 case FORM_BLOCK2:
3667 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3668 break;
3669 case FORM_BLOCK4:
3670 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3671 break;
3672 case FORM_STRING:
3673 diep += strlen (diep) + 1;
3674 break;
3675 default:
3676 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3677 diep = end;
3678 break;
3679 }
3680 }
3681 }
3682
3683 /*
3684
3685 LOCAL FUNCTION
3686
3687 target_to_host -- swap in target data to host
3688
3689 SYNOPSIS
3690
3691 target_to_host (char *from, int nbytes, int signextend,
3692 struct objfile *objfile)
3693
3694 DESCRIPTION
3695
3696 Given pointer to data in target format in FROM, a byte count for
3697 the size of the data in NBYTES, a flag indicating whether or not
3698 the data is signed in SIGNEXTEND, and a pointer to the current
3699 objfile in OBJFILE, convert the data to host format and return
3700 the converted value.
3701
3702 NOTES
3703
3704 FIXME: If we read data that is known to be signed, and expect to
3705 use it as signed data, then we need to explicitly sign extend the
3706 result until the bfd library is able to do this for us.
3707
3708 FIXME: Would a 32 bit target ever need an 8 byte result?
3709
3710 */
3711
3712 static CORE_ADDR
3713 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3714 struct objfile *objfile)
3715 {
3716 CORE_ADDR rtnval;
3717
3718 switch (nbytes)
3719 {
3720 case 8:
3721 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3722 break;
3723 case 4:
3724 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3725 break;
3726 case 2:
3727 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3728 break;
3729 case 1:
3730 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3731 break;
3732 default:
3733 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3734 rtnval = 0;
3735 break;
3736 }
3737 return (rtnval);
3738 }
3739
3740 /*
3741
3742 LOCAL FUNCTION
3743
3744 attribute_size -- compute size of data for a DWARF attribute
3745
3746 SYNOPSIS
3747
3748 static int attribute_size (unsigned int attr)
3749
3750 DESCRIPTION
3751
3752 Given a DWARF attribute in ATTR, compute the size of the first
3753 piece of data associated with this attribute and return that
3754 size.
3755
3756 Returns -1 for unrecognized attributes.
3757
3758 */
3759
3760 static int
3761 attribute_size (unsigned int attr)
3762 {
3763 int nbytes; /* Size of next data for this attribute */
3764 unsigned short form; /* Form of the attribute */
3765
3766 form = FORM_FROM_ATTR (attr);
3767 switch (form)
3768 {
3769 case FORM_STRING: /* A variable length field is next */
3770 nbytes = 0;
3771 break;
3772 case FORM_DATA2: /* Next 2 byte field is the data itself */
3773 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3774 nbytes = 2;
3775 break;
3776 case FORM_DATA4: /* Next 4 byte field is the data itself */
3777 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3778 case FORM_REF: /* Next 4 byte field is a DIE offset */
3779 nbytes = 4;
3780 break;
3781 case FORM_DATA8: /* Next 8 byte field is the data itself */
3782 nbytes = 8;
3783 break;
3784 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3785 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3786 break;
3787 default:
3788 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3789 nbytes = -1;
3790 break;
3791 }
3792 return (nbytes);
3793 }
This page took 0.111082 seconds and 4 git commands to generate.