* config/obj-coffbfd.c (fill_section): Don't set NOLOAD bit for
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Figure out how to get the frame pointer register number in the
25 execution environment of the target. Remove R_FP kludge
26
27 FIXME: Add generation of dependencies list to partial symtab code.
28
29 FIXME: Resolve minor differences between what information we put in the
30 partial symbol table and what dbxread puts in. For example, we don't yet
31 put enum constants there. And dbxread seems to invent a lot of typedefs
32 we never see. Use the new printpsym command to see the partial symbol table
33 contents.
34
35 FIXME: Figure out a better way to tell gdb about the name of the function
36 contain the user's entry point (I.E. main())
37
38 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
39 other things to work on, if you get bored. :-)
40
41 */
42
43 #include "defs.h"
44 #include "bfd.h"
45 #include "symtab.h"
46 #include "gdbtypes.h"
47 #include "symfile.h"
48 #include "objfiles.h"
49 #include "libbfd.h" /* FIXME Secret Internal BFD stuff (bfd_read) */
50 #include "elf/dwarf.h"
51 #include "buildsym.h"
52 #include "demangle.h"
53 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
54 #include "language.h"
55 #include "complaints.h"
56
57 #include <fcntl.h>
58 #include <string.h>
59 #include <sys/types.h>
60
61 #ifndef NO_SYS_FILE
62 #include <sys/file.h>
63 #endif
64
65 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
66 #ifndef L_SET
67 #define L_SET 0
68 #endif
69
70 /* Some macros to provide DIE info for complaints. */
71
72 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
73 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
74
75 /* Complaints that can be issued during DWARF debug info reading. */
76
77 struct complaint no_bfd_get_N =
78 {
79 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
80 };
81
82 struct complaint malformed_die =
83 {
84 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
85 };
86
87 struct complaint bad_die_ref =
88 {
89 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
90 };
91
92 struct complaint unknown_attribute_form =
93 {
94 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
95 };
96
97 struct complaint unknown_attribute_length =
98 {
99 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
100 };
101
102 struct complaint unexpected_fund_type =
103 {
104 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
105 };
106
107 struct complaint unknown_type_modifier =
108 {
109 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
110 };
111
112 struct complaint volatile_ignored =
113 {
114 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
115 };
116
117 struct complaint const_ignored =
118 {
119 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
120 };
121
122 struct complaint botched_modified_type =
123 {
124 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
125 };
126
127 struct complaint op_deref2 =
128 {
129 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
130 };
131
132 struct complaint op_deref4 =
133 {
134 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
135 };
136
137 struct complaint basereg_not_handled =
138 {
139 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
140 };
141
142 struct complaint dup_user_type_allocation =
143 {
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
145 };
146
147 struct complaint dup_user_type_definition =
148 {
149 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
150 };
151
152 struct complaint missing_tag =
153 {
154 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
155 };
156
157 struct complaint bad_array_element_type =
158 {
159 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
160 };
161
162 struct complaint subscript_data_items =
163 {
164 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
165 };
166
167 struct complaint unhandled_array_subscript_format =
168 {
169 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
170 };
171
172 struct complaint unknown_array_subscript_format =
173 {
174 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
175 };
176
177 struct complaint not_row_major =
178 {
179 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
180 };
181
182 #ifndef R_FP /* FIXME */
183 #define R_FP 14 /* Kludge to get frame pointer register number */
184 #endif
185
186 typedef unsigned int DIE_REF; /* Reference to a DIE */
187
188 #ifndef GCC_PRODUCER
189 #define GCC_PRODUCER "GNU C "
190 #endif
191
192 #ifndef GPLUS_PRODUCER
193 #define GPLUS_PRODUCER "GNU C++ "
194 #endif
195
196 #ifndef LCC_PRODUCER
197 #define LCC_PRODUCER "NCR C/C++"
198 #endif
199
200 /* start-sanitize-chill */
201 #ifndef CHILL_PRODUCER
202 #define CHILL_PRODUCER "GNU Chill "
203 #endif
204 /* end-sanitize-chill */
205
206 /* Flags to target_to_host() that tell whether or not the data object is
207 expected to be signed. Used, for example, when fetching a signed
208 integer in the target environment which is used as a signed integer
209 in the host environment, and the two environments have different sized
210 ints. In this case, *somebody* has to sign extend the smaller sized
211 int. */
212
213 #define GET_UNSIGNED 0 /* No sign extension required */
214 #define GET_SIGNED 1 /* Sign extension required */
215
216 /* Defines for things which are specified in the document "DWARF Debugging
217 Information Format" published by UNIX International, Programming Languages
218 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
219
220 #define SIZEOF_DIE_LENGTH 4
221 #define SIZEOF_DIE_TAG 2
222 #define SIZEOF_ATTRIBUTE 2
223 #define SIZEOF_FORMAT_SPECIFIER 1
224 #define SIZEOF_FMT_FT 2
225 #define SIZEOF_LINETBL_LENGTH 4
226 #define SIZEOF_LINETBL_LINENO 4
227 #define SIZEOF_LINETBL_STMT 2
228 #define SIZEOF_LINETBL_DELTA 4
229 #define SIZEOF_LOC_ATOM_CODE 1
230
231 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
232
233 /* Macros that return the sizes of various types of data in the target
234 environment.
235
236 FIXME: Currently these are just compile time constants (as they are in
237 other parts of gdb as well). They need to be able to get the right size
238 either from the bfd or possibly from the DWARF info. It would be nice if
239 the DWARF producer inserted DIES that describe the fundamental types in
240 the target environment into the DWARF info, similar to the way dbx stabs
241 producers produce information about their fundamental types. */
242
243 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
244 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
245
246 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
247 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
248 However, the Issue 2 DWARF specification from AT&T defines it as
249 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
250 For backwards compatibility with the AT&T compiler produced executables
251 we define AT_short_element_list for this variant. */
252
253 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
254
255 /* External variables referenced. */
256
257 extern int info_verbose; /* From main.c; nonzero => verbose */
258 extern char *warning_pre_print; /* From utils.c */
259
260 /* The DWARF debugging information consists of two major pieces,
261 one is a block of DWARF Information Entries (DIE's) and the other
262 is a line number table. The "struct dieinfo" structure contains
263 the information for a single DIE, the one currently being processed.
264
265 In order to make it easier to randomly access the attribute fields
266 of the current DIE, which are specifically unordered within the DIE,
267 each DIE is scanned and an instance of the "struct dieinfo"
268 structure is initialized.
269
270 Initialization is done in two levels. The first, done by basicdieinfo(),
271 just initializes those fields that are vital to deciding whether or not
272 to use this DIE, how to skip past it, etc. The second, done by the
273 function completedieinfo(), fills in the rest of the information.
274
275 Attributes which have block forms are not interpreted at the time
276 the DIE is scanned, instead we just save pointers to the start
277 of their value fields.
278
279 Some fields have a flag <name>_p that is set when the value of the
280 field is valid (I.E. we found a matching attribute in the DIE). Since
281 we may want to test for the presence of some attributes in the DIE,
282 such as AT_low_pc, without restricting the values of the field,
283 we need someway to note that we found such an attribute.
284
285 */
286
287 typedef char BLOCK;
288
289 struct dieinfo {
290 char * die; /* Pointer to the raw DIE data */
291 unsigned long die_length; /* Length of the raw DIE data */
292 DIE_REF die_ref; /* Offset of this DIE */
293 unsigned short die_tag; /* Tag for this DIE */
294 unsigned long at_padding;
295 unsigned long at_sibling;
296 BLOCK * at_location;
297 char * at_name;
298 unsigned short at_fund_type;
299 BLOCK * at_mod_fund_type;
300 unsigned long at_user_def_type;
301 BLOCK * at_mod_u_d_type;
302 unsigned short at_ordering;
303 BLOCK * at_subscr_data;
304 unsigned long at_byte_size;
305 unsigned short at_bit_offset;
306 unsigned long at_bit_size;
307 BLOCK * at_element_list;
308 unsigned long at_stmt_list;
309 unsigned long at_low_pc;
310 unsigned long at_high_pc;
311 unsigned long at_language;
312 unsigned long at_member;
313 unsigned long at_discr;
314 BLOCK * at_discr_value;
315 BLOCK * at_string_length;
316 char * at_comp_dir;
317 char * at_producer;
318 unsigned long at_start_scope;
319 unsigned long at_stride_size;
320 unsigned long at_src_info;
321 char * at_prototyped;
322 unsigned int has_at_low_pc:1;
323 unsigned int has_at_stmt_list:1;
324 unsigned int has_at_byte_size:1;
325 unsigned int short_element_list:1;
326 };
327
328 static int diecount; /* Approximate count of dies for compilation unit */
329 static struct dieinfo *curdie; /* For warnings and such */
330
331 static char *dbbase; /* Base pointer to dwarf info */
332 static int dbsize; /* Size of dwarf info in bytes */
333 static int dbroff; /* Relative offset from start of .debug section */
334 static char *lnbase; /* Base pointer to line section */
335 static int isreg; /* Kludge to identify register variables */
336 static int offreg; /* Kludge to identify basereg references */
337
338 /* This value is added to each symbol value. FIXME: Generalize to
339 the section_offsets structure used by dbxread (once this is done,
340 pass the appropriate section number to end_symtab). */
341 static CORE_ADDR baseaddr; /* Add to each symbol value */
342
343 /* The section offsets used in the current psymtab or symtab. FIXME,
344 only used to pass one value (baseaddr) at the moment. */
345 static struct section_offsets *base_section_offsets;
346
347 /* Each partial symbol table entry contains a pointer to private data for the
348 read_symtab() function to use when expanding a partial symbol table entry
349 to a full symbol table entry. For DWARF debugging info, this data is
350 contained in the following structure and macros are provided for easy
351 access to the members given a pointer to a partial symbol table entry.
352
353 dbfoff Always the absolute file offset to the start of the ".debug"
354 section for the file containing the DIE's being accessed.
355
356 dbroff Relative offset from the start of the ".debug" access to the
357 first DIE to be accessed. When building the partial symbol
358 table, this value will be zero since we are accessing the
359 entire ".debug" section. When expanding a partial symbol
360 table entry, this value will be the offset to the first
361 DIE for the compilation unit containing the symbol that
362 triggers the expansion.
363
364 dblength The size of the chunk of DIE's being examined, in bytes.
365
366 lnfoff The absolute file offset to the line table fragment. Ignored
367 when building partial symbol tables, but used when expanding
368 them, and contains the absolute file offset to the fragment
369 of the ".line" section containing the line numbers for the
370 current compilation unit.
371 */
372
373 struct dwfinfo {
374 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
375 int dbroff; /* Relative offset from start of .debug section */
376 int dblength; /* Size of the chunk of DIE's being examined */
377 file_ptr lnfoff; /* Absolute file offset to line table fragment */
378 };
379
380 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
381 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
382 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
383 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
384
385 /* The generic symbol table building routines have separate lists for
386 file scope symbols and all all other scopes (local scopes). So
387 we need to select the right one to pass to add_symbol_to_list().
388 We do it by keeping a pointer to the correct list in list_in_scope.
389
390 FIXME: The original dwarf code just treated the file scope as the first
391 local scope, and all other local scopes as nested local scopes, and worked
392 fine. Check to see if we really need to distinguish these in buildsym.c */
393
394 struct pending **list_in_scope = &file_symbols;
395
396 /* DIES which have user defined types or modified user defined types refer to
397 other DIES for the type information. Thus we need to associate the offset
398 of a DIE for a user defined type with a pointer to the type information.
399
400 Originally this was done using a simple but expensive algorithm, with an
401 array of unsorted structures, each containing an offset/type-pointer pair.
402 This array was scanned linearly each time a lookup was done. The result
403 was that gdb was spending over half it's startup time munging through this
404 array of pointers looking for a structure that had the right offset member.
405
406 The second attempt used the same array of structures, but the array was
407 sorted using qsort each time a new offset/type was recorded, and a binary
408 search was used to find the type pointer for a given DIE offset. This was
409 even slower, due to the overhead of sorting the array each time a new
410 offset/type pair was entered.
411
412 The third attempt uses a fixed size array of type pointers, indexed by a
413 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
414 we can divide any DIE offset by 4 to obtain a unique index into this fixed
415 size array. Since each element is a 4 byte pointer, it takes exactly as
416 much memory to hold this array as to hold the DWARF info for a given
417 compilation unit. But it gets freed as soon as we are done with it.
418 This has worked well in practice, as a reasonable tradeoff between memory
419 consumption and speed, without having to resort to much more complicated
420 algorithms. */
421
422 static struct type **utypes; /* Pointer to array of user type pointers */
423 static int numutypes; /* Max number of user type pointers */
424
425 /* Maintain an array of referenced fundamental types for the current
426 compilation unit being read. For DWARF version 1, we have to construct
427 the fundamental types on the fly, since no information about the
428 fundamental types is supplied. Each such fundamental type is created by
429 calling a language dependent routine to create the type, and then a
430 pointer to that type is then placed in the array at the index specified
431 by it's FT_<TYPENAME> value. The array has a fixed size set by the
432 FT_NUM_MEMBERS compile time constant, which is the number of predefined
433 fundamental types gdb knows how to construct. */
434
435 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
436
437 /* Record the language for the compilation unit which is currently being
438 processed. We know it once we have seen the TAG_compile_unit DIE,
439 and we need it while processing the DIE's for that compilation unit.
440 It is eventually saved in the symtab structure, but we don't finalize
441 the symtab struct until we have processed all the DIE's for the
442 compilation unit. We also need to get and save a pointer to the
443 language struct for this language, so we can call the language
444 dependent routines for doing things such as creating fundamental
445 types. */
446
447 static enum language cu_language;
448 static const struct language_defn *cu_language_defn;
449
450 /* Forward declarations of static functions so we don't have to worry
451 about ordering within this file. */
452
453 static int
454 attribute_size PARAMS ((unsigned int));
455
456 static unsigned long
457 target_to_host PARAMS ((char *, int, int, struct objfile *));
458
459 static void
460 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
461
462 static void
463 handle_producer PARAMS ((char *));
464
465 static void
466 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
467
468 static void
469 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
470
471 static void
472 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
473 struct objfile *));
474
475 static void
476 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
477
478 static void
479 scan_compilation_units PARAMS ((char *, char *, file_ptr,
480 file_ptr, struct objfile *));
481
482 static void
483 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
484
485 static void
486 init_psymbol_list PARAMS ((struct objfile *, int));
487
488 static void
489 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
490
491 static void
492 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
493
494 static void
495 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
496
497 static void
498 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
499
500 static struct symtab *
501 read_ofile_symtab PARAMS ((struct partial_symtab *));
502
503 static void
504 process_dies PARAMS ((char *, char *, struct objfile *));
505
506 static void
507 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
508 struct objfile *));
509
510 static struct type *
511 decode_array_element_type PARAMS ((char *));
512
513 static struct type *
514 decode_subscript_data_item PARAMS ((char *, char *));
515
516 static void
517 dwarf_read_array_type PARAMS ((struct dieinfo *));
518
519 static void
520 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
521
522 static void
523 read_tag_string_type PARAMS ((struct dieinfo *dip));
524
525 static void
526 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
527
528 static void
529 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
530
531 static struct type *
532 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
533
534 static struct type *
535 enum_type PARAMS ((struct dieinfo *, struct objfile *));
536
537 static void
538 decode_line_numbers PARAMS ((char *));
539
540 static struct type *
541 decode_die_type PARAMS ((struct dieinfo *));
542
543 static struct type *
544 decode_mod_fund_type PARAMS ((char *));
545
546 static struct type *
547 decode_mod_u_d_type PARAMS ((char *));
548
549 static struct type *
550 decode_modified_type PARAMS ((char *, unsigned int, int));
551
552 static struct type *
553 decode_fund_type PARAMS ((unsigned int));
554
555 static char *
556 create_name PARAMS ((char *, struct obstack *));
557
558 static struct type *
559 lookup_utype PARAMS ((DIE_REF));
560
561 static struct type *
562 alloc_utype PARAMS ((DIE_REF, struct type *));
563
564 static struct symbol *
565 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
566
567 static void
568 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
569 struct type *));
570
571 static int
572 locval PARAMS ((char *));
573
574 static void
575 record_minimal_symbol PARAMS ((char *, CORE_ADDR, enum minimal_symbol_type,
576 struct objfile *));
577
578 static void
579 set_cu_language PARAMS ((struct dieinfo *));
580
581 static struct type *
582 dwarf_fundamental_type PARAMS ((struct objfile *, int));
583
584
585 /*
586
587 LOCAL FUNCTION
588
589 dwarf_fundamental_type -- lookup or create a fundamental type
590
591 SYNOPSIS
592
593 struct type *
594 dwarf_fundamental_type (struct objfile *objfile, int typeid)
595
596 DESCRIPTION
597
598 DWARF version 1 doesn't supply any fundamental type information,
599 so gdb has to construct such types. It has a fixed number of
600 fundamental types that it knows how to construct, which is the
601 union of all types that it knows how to construct for all languages
602 that it knows about. These are enumerated in gdbtypes.h.
603
604 As an example, assume we find a DIE that references a DWARF
605 fundamental type of FT_integer. We first look in the ftypes
606 array to see if we already have such a type, indexed by the
607 gdb internal value of FT_INTEGER. If so, we simply return a
608 pointer to that type. If not, then we ask an appropriate
609 language dependent routine to create a type FT_INTEGER, using
610 defaults reasonable for the current target machine, and install
611 that type in ftypes for future reference.
612
613 RETURNS
614
615 Pointer to a fundamental type.
616
617 */
618
619 static struct type *
620 dwarf_fundamental_type (objfile, typeid)
621 struct objfile *objfile;
622 int typeid;
623 {
624 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
625 {
626 error ("internal error - invalid fundamental type id %d", typeid);
627 }
628
629 /* Look for this particular type in the fundamental type vector. If one is
630 not found, create and install one appropriate for the current language
631 and the current target machine. */
632
633 if (ftypes[typeid] == NULL)
634 {
635 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
636 }
637
638 return (ftypes[typeid]);
639 }
640
641 /*
642
643 LOCAL FUNCTION
644
645 set_cu_language -- set local copy of language for compilation unit
646
647 SYNOPSIS
648
649 void
650 set_cu_language (struct dieinfo *dip)
651
652 DESCRIPTION
653
654 Decode the language attribute for a compilation unit DIE and
655 remember what the language was. We use this at various times
656 when processing DIE's for a given compilation unit.
657
658 RETURNS
659
660 No return value.
661
662 */
663
664 static void
665 set_cu_language (dip)
666 struct dieinfo *dip;
667 {
668 switch (dip -> at_language)
669 {
670 case LANG_C89:
671 case LANG_C:
672 cu_language = language_c;
673 break;
674 case LANG_C_PLUS_PLUS:
675 cu_language = language_cplus;
676 break;
677 /* start-sanitize-chill */
678 case LANG_CHILL:
679 cu_language = language_chill;
680 break;
681 /* end-sanitize-chill */
682 case LANG_MODULA2:
683 cu_language = language_m2;
684 break;
685 case LANG_ADA83:
686 case LANG_COBOL74:
687 case LANG_COBOL85:
688 case LANG_FORTRAN77:
689 case LANG_FORTRAN90:
690 case LANG_PASCAL83:
691 /* We don't know anything special about these yet. */
692 cu_language = language_unknown;
693 break;
694 default:
695 /* If no at_language, try to deduce one from the filename */
696 cu_language = deduce_language_from_filename (dip -> at_name);
697 break;
698 }
699 cu_language_defn = language_def (cu_language);
700 }
701
702 /*
703
704 GLOBAL FUNCTION
705
706 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
707
708 SYNOPSIS
709
710 void dwarf_build_psymtabs (struct objfile *objfile,
711 struct section_offsets *section_offsets,
712 int mainline, file_ptr dbfoff, unsigned int dbfsize,
713 file_ptr lnoffset, unsigned int lnsize)
714
715 DESCRIPTION
716
717 This function is called upon to build partial symtabs from files
718 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
719
720 It is passed a bfd* containing the DIES
721 and line number information, the corresponding filename for that
722 file, a base address for relocating the symbols, a flag indicating
723 whether or not this debugging information is from a "main symbol
724 table" rather than a shared library or dynamically linked file,
725 and file offset/size pairs for the DIE information and line number
726 information.
727
728 RETURNS
729
730 No return value.
731
732 */
733
734 void
735 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
736 lnoffset, lnsize)
737 struct objfile *objfile;
738 struct section_offsets *section_offsets;
739 int mainline;
740 file_ptr dbfoff;
741 unsigned int dbfsize;
742 file_ptr lnoffset;
743 unsigned int lnsize;
744 {
745 bfd *abfd = objfile->obfd;
746 struct cleanup *back_to;
747
748 current_objfile = objfile;
749 dbsize = dbfsize;
750 dbbase = xmalloc (dbsize);
751 dbroff = 0;
752 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
753 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
754 {
755 free (dbbase);
756 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
757 }
758 back_to = make_cleanup (free, dbbase);
759
760 /* If we are reinitializing, or if we have never loaded syms yet, init.
761 Since we have no idea how many DIES we are looking at, we just guess
762 some arbitrary value. */
763
764 if (mainline || objfile -> global_psymbols.size == 0 ||
765 objfile -> static_psymbols.size == 0)
766 {
767 init_psymbol_list (objfile, 1024);
768 }
769
770 /* Save the relocation factor where everybody can see it. */
771
772 base_section_offsets = section_offsets;
773 baseaddr = ANOFFSET (section_offsets, 0);
774
775 /* Follow the compilation unit sibling chain, building a partial symbol
776 table entry for each one. Save enough information about each compilation
777 unit to locate the full DWARF information later. */
778
779 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
780
781 do_cleanups (back_to);
782 current_objfile = NULL;
783 }
784
785
786 /*
787
788 LOCAL FUNCTION
789
790 record_minimal_symbol -- add entry to gdb's minimal symbol table
791
792 SYNOPSIS
793
794 static void record_minimal_symbol (char *name, CORE_ADDR address,
795 enum minimal_symbol_type ms_type,
796 struct objfile *objfile)
797
798 DESCRIPTION
799
800 Given a pointer to the name of a symbol that should be added to the
801 minimal symbol table, and the address associated with that
802 symbol, records this information for later use in building the
803 minimal symbol table.
804
805 */
806
807 static void
808 record_minimal_symbol (name, address, ms_type, objfile)
809 char *name;
810 CORE_ADDR address;
811 enum minimal_symbol_type ms_type;
812 struct objfile *objfile;
813 {
814 name = obsavestring (name, strlen (name), &objfile -> symbol_obstack);
815 prim_record_minimal_symbol (name, address, ms_type);
816 }
817
818 /*
819
820 LOCAL FUNCTION
821
822 read_lexical_block_scope -- process all dies in a lexical block
823
824 SYNOPSIS
825
826 static void read_lexical_block_scope (struct dieinfo *dip,
827 char *thisdie, char *enddie)
828
829 DESCRIPTION
830
831 Process all the DIES contained within a lexical block scope.
832 Start a new scope, process the dies, and then close the scope.
833
834 */
835
836 static void
837 read_lexical_block_scope (dip, thisdie, enddie, objfile)
838 struct dieinfo *dip;
839 char *thisdie;
840 char *enddie;
841 struct objfile *objfile;
842 {
843 register struct context_stack *new;
844
845 push_context (0, dip -> at_low_pc);
846 process_dies (thisdie + dip -> die_length, enddie, objfile);
847 new = pop_context ();
848 if (local_symbols != NULL)
849 {
850 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
851 dip -> at_high_pc, objfile);
852 }
853 local_symbols = new -> locals;
854 }
855
856 /*
857
858 LOCAL FUNCTION
859
860 lookup_utype -- look up a user defined type from die reference
861
862 SYNOPSIS
863
864 static type *lookup_utype (DIE_REF die_ref)
865
866 DESCRIPTION
867
868 Given a DIE reference, lookup the user defined type associated with
869 that DIE, if it has been registered already. If not registered, then
870 return NULL. Alloc_utype() can be called to register an empty
871 type for this reference, which will be filled in later when the
872 actual referenced DIE is processed.
873 */
874
875 static struct type *
876 lookup_utype (die_ref)
877 DIE_REF die_ref;
878 {
879 struct type *type = NULL;
880 int utypeidx;
881
882 utypeidx = (die_ref - dbroff) / 4;
883 if ((utypeidx < 0) || (utypeidx >= numutypes))
884 {
885 complain (&bad_die_ref, DIE_ID, DIE_NAME);
886 }
887 else
888 {
889 type = *(utypes + utypeidx);
890 }
891 return (type);
892 }
893
894
895 /*
896
897 LOCAL FUNCTION
898
899 alloc_utype -- add a user defined type for die reference
900
901 SYNOPSIS
902
903 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
904
905 DESCRIPTION
906
907 Given a die reference DIE_REF, and a possible pointer to a user
908 defined type UTYPEP, register that this reference has a user
909 defined type and either use the specified type in UTYPEP or
910 make a new empty type that will be filled in later.
911
912 We should only be called after calling lookup_utype() to verify that
913 there is not currently a type registered for DIE_REF.
914 */
915
916 static struct type *
917 alloc_utype (die_ref, utypep)
918 DIE_REF die_ref;
919 struct type *utypep;
920 {
921 struct type **typep;
922 int utypeidx;
923
924 utypeidx = (die_ref - dbroff) / 4;
925 typep = utypes + utypeidx;
926 if ((utypeidx < 0) || (utypeidx >= numutypes))
927 {
928 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
929 complain (&bad_die_ref, DIE_ID, DIE_NAME);
930 }
931 else if (*typep != NULL)
932 {
933 utypep = *typep;
934 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
935 }
936 else
937 {
938 if (utypep == NULL)
939 {
940 utypep = alloc_type (current_objfile);
941 }
942 *typep = utypep;
943 }
944 return (utypep);
945 }
946
947 /*
948
949 LOCAL FUNCTION
950
951 decode_die_type -- return a type for a specified die
952
953 SYNOPSIS
954
955 static struct type *decode_die_type (struct dieinfo *dip)
956
957 DESCRIPTION
958
959 Given a pointer to a die information structure DIP, decode the
960 type of the die and return a pointer to the decoded type. All
961 dies without specific types default to type int.
962 */
963
964 static struct type *
965 decode_die_type (dip)
966 struct dieinfo *dip;
967 {
968 struct type *type = NULL;
969
970 if (dip -> at_fund_type != 0)
971 {
972 type = decode_fund_type (dip -> at_fund_type);
973 }
974 else if (dip -> at_mod_fund_type != NULL)
975 {
976 type = decode_mod_fund_type (dip -> at_mod_fund_type);
977 }
978 else if (dip -> at_user_def_type)
979 {
980 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
981 {
982 type = alloc_utype (dip -> at_user_def_type, NULL);
983 }
984 }
985 else if (dip -> at_mod_u_d_type)
986 {
987 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
988 }
989 else
990 {
991 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
992 }
993 return (type);
994 }
995
996 /*
997
998 LOCAL FUNCTION
999
1000 struct_type -- compute and return the type for a struct or union
1001
1002 SYNOPSIS
1003
1004 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
1005 char *enddie, struct objfile *objfile)
1006
1007 DESCRIPTION
1008
1009 Given pointer to a die information structure for a die which
1010 defines a union or structure (and MUST define one or the other),
1011 and pointers to the raw die data that define the range of dies which
1012 define the members, compute and return the user defined type for the
1013 structure or union.
1014 */
1015
1016 static struct type *
1017 struct_type (dip, thisdie, enddie, objfile)
1018 struct dieinfo *dip;
1019 char *thisdie;
1020 char *enddie;
1021 struct objfile *objfile;
1022 {
1023 struct type *type;
1024 struct nextfield {
1025 struct nextfield *next;
1026 struct field field;
1027 };
1028 struct nextfield *list = NULL;
1029 struct nextfield *new;
1030 int nfields = 0;
1031 int n;
1032 char *tpart1;
1033 struct dieinfo mbr;
1034 char *nextdie;
1035 #if !BITS_BIG_ENDIAN
1036 int anonymous_size;
1037 #endif
1038
1039 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1040 {
1041 /* No forward references created an empty type, so install one now */
1042 type = alloc_utype (dip -> die_ref, NULL);
1043 }
1044 INIT_CPLUS_SPECIFIC(type);
1045 switch (dip -> die_tag)
1046 {
1047 case TAG_class_type:
1048 TYPE_CODE (type) = TYPE_CODE_CLASS;
1049 tpart1 = "class";
1050 break;
1051 case TAG_structure_type:
1052 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1053 tpart1 = "struct";
1054 break;
1055 case TAG_union_type:
1056 TYPE_CODE (type) = TYPE_CODE_UNION;
1057 tpart1 = "union";
1058 break;
1059 default:
1060 /* Should never happen */
1061 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1062 tpart1 = "???";
1063 complain (&missing_tag, DIE_ID, DIE_NAME);
1064 break;
1065 }
1066 /* Some compilers try to be helpful by inventing "fake" names for
1067 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1068 Thanks, but no thanks... */
1069 if (dip -> at_name != NULL
1070 && *dip -> at_name != '~'
1071 && *dip -> at_name != '.')
1072 {
1073 TYPE_NAME (type) = obconcat (&objfile -> type_obstack,
1074 tpart1, " ", dip -> at_name);
1075 }
1076 /* Use whatever size is known. Zero is a valid size. We might however
1077 wish to check has_at_byte_size to make sure that some byte size was
1078 given explicitly, but DWARF doesn't specify that explicit sizes of
1079 zero have to present, so complaining about missing sizes should
1080 probably not be the default. */
1081 TYPE_LENGTH (type) = dip -> at_byte_size;
1082 thisdie += dip -> die_length;
1083 while (thisdie < enddie)
1084 {
1085 basicdieinfo (&mbr, thisdie, objfile);
1086 completedieinfo (&mbr, objfile);
1087 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1088 {
1089 break;
1090 }
1091 else if (mbr.at_sibling != 0)
1092 {
1093 nextdie = dbbase + mbr.at_sibling - dbroff;
1094 }
1095 else
1096 {
1097 nextdie = thisdie + mbr.die_length;
1098 }
1099 switch (mbr.die_tag)
1100 {
1101 case TAG_member:
1102 /* Get space to record the next field's data. */
1103 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1104 new -> next = list;
1105 list = new;
1106 /* Save the data. */
1107 list -> field.name =
1108 obsavestring (mbr.at_name, strlen (mbr.at_name),
1109 &objfile -> type_obstack);
1110 list -> field.type = decode_die_type (&mbr);
1111 list -> field.bitpos = 8 * locval (mbr.at_location);
1112 /* Handle bit fields. */
1113 list -> field.bitsize = mbr.at_bit_size;
1114 #if BITS_BIG_ENDIAN
1115 /* For big endian bits, the at_bit_offset gives the additional
1116 bit offset from the MSB of the containing anonymous object to
1117 the MSB of the field. We don't have to do anything special
1118 since we don't need to know the size of the anonymous object. */
1119 list -> field.bitpos += mbr.at_bit_offset;
1120 #else
1121 /* For little endian bits, we need to have a non-zero at_bit_size,
1122 so that we know we are in fact dealing with a bitfield. Compute
1123 the bit offset to the MSB of the anonymous object, subtract off
1124 the number of bits from the MSB of the field to the MSB of the
1125 object, and then subtract off the number of bits of the field
1126 itself. The result is the bit offset of the LSB of the field. */
1127 if (mbr.at_bit_size > 0)
1128 {
1129 if (mbr.has_at_byte_size)
1130 {
1131 /* The size of the anonymous object containing the bit field
1132 is explicit, so use the indicated size (in bytes). */
1133 anonymous_size = mbr.at_byte_size;
1134 }
1135 else
1136 {
1137 /* The size of the anonymous object containing the bit field
1138 matches the size of an object of the bit field's type.
1139 DWARF allows at_byte_size to be left out in such cases,
1140 as a debug information size optimization. */
1141 anonymous_size = TYPE_LENGTH (list -> field.type);
1142 }
1143 list -> field.bitpos +=
1144 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1145 }
1146 #endif
1147 nfields++;
1148 break;
1149 default:
1150 process_dies (thisdie, nextdie, objfile);
1151 break;
1152 }
1153 thisdie = nextdie;
1154 }
1155 /* Now create the vector of fields, and record how big it is. We may
1156 not even have any fields, if this DIE was generated due to a reference
1157 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1158 set, which clues gdb in to the fact that it needs to search elsewhere
1159 for the full structure definition. */
1160 if (nfields == 0)
1161 {
1162 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1163 }
1164 else
1165 {
1166 TYPE_NFIELDS (type) = nfields;
1167 TYPE_FIELDS (type) = (struct field *)
1168 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1169 /* Copy the saved-up fields into the field vector. */
1170 for (n = nfields; list; list = list -> next)
1171 {
1172 TYPE_FIELD (type, --n) = list -> field;
1173 }
1174 }
1175 return (type);
1176 }
1177
1178 /*
1179
1180 LOCAL FUNCTION
1181
1182 read_structure_scope -- process all dies within struct or union
1183
1184 SYNOPSIS
1185
1186 static void read_structure_scope (struct dieinfo *dip,
1187 char *thisdie, char *enddie, struct objfile *objfile)
1188
1189 DESCRIPTION
1190
1191 Called when we find the DIE that starts a structure or union
1192 scope (definition) to process all dies that define the members
1193 of the structure or union. DIP is a pointer to the die info
1194 struct for the DIE that names the structure or union.
1195
1196 NOTES
1197
1198 Note that we need to call struct_type regardless of whether or not
1199 the DIE has an at_name attribute, since it might be an anonymous
1200 structure or union. This gets the type entered into our set of
1201 user defined types.
1202
1203 However, if the structure is incomplete (an opaque struct/union)
1204 then suppress creating a symbol table entry for it since gdb only
1205 wants to find the one with the complete definition. Note that if
1206 it is complete, we just call new_symbol, which does it's own
1207 checking about whether the struct/union is anonymous or not (and
1208 suppresses creating a symbol table entry itself).
1209
1210 */
1211
1212 static void
1213 read_structure_scope (dip, thisdie, enddie, objfile)
1214 struct dieinfo *dip;
1215 char *thisdie;
1216 char *enddie;
1217 struct objfile *objfile;
1218 {
1219 struct type *type;
1220 struct symbol *sym;
1221
1222 type = struct_type (dip, thisdie, enddie, objfile);
1223 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1224 {
1225 sym = new_symbol (dip, objfile);
1226 if (sym != NULL)
1227 {
1228 SYMBOL_TYPE (sym) = type;
1229 if (cu_language == language_cplus)
1230 {
1231 synthesize_typedef (dip, objfile, type);
1232 }
1233 }
1234 }
1235 }
1236
1237 /*
1238
1239 LOCAL FUNCTION
1240
1241 decode_array_element_type -- decode type of the array elements
1242
1243 SYNOPSIS
1244
1245 static struct type *decode_array_element_type (char *scan, char *end)
1246
1247 DESCRIPTION
1248
1249 As the last step in decoding the array subscript information for an
1250 array DIE, we need to decode the type of the array elements. We are
1251 passed a pointer to this last part of the subscript information and
1252 must return the appropriate type. If the type attribute is not
1253 recognized, just warn about the problem and return type int.
1254 */
1255
1256 static struct type *
1257 decode_array_element_type (scan)
1258 char *scan;
1259 {
1260 struct type *typep;
1261 DIE_REF die_ref;
1262 unsigned short attribute;
1263 unsigned short fundtype;
1264 int nbytes;
1265
1266 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1267 current_objfile);
1268 scan += SIZEOF_ATTRIBUTE;
1269 if ((nbytes = attribute_size (attribute)) == -1)
1270 {
1271 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1272 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1273 }
1274 else
1275 {
1276 switch (attribute)
1277 {
1278 case AT_fund_type:
1279 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1280 current_objfile);
1281 typep = decode_fund_type (fundtype);
1282 break;
1283 case AT_mod_fund_type:
1284 typep = decode_mod_fund_type (scan);
1285 break;
1286 case AT_user_def_type:
1287 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1288 current_objfile);
1289 if ((typep = lookup_utype (die_ref)) == NULL)
1290 {
1291 typep = alloc_utype (die_ref, NULL);
1292 }
1293 break;
1294 case AT_mod_u_d_type:
1295 typep = decode_mod_u_d_type (scan);
1296 break;
1297 default:
1298 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1299 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1300 break;
1301 }
1302 }
1303 return (typep);
1304 }
1305
1306 /*
1307
1308 LOCAL FUNCTION
1309
1310 decode_subscript_data_item -- decode array subscript item
1311
1312 SYNOPSIS
1313
1314 static struct type *
1315 decode_subscript_data_item (char *scan, char *end)
1316
1317 DESCRIPTION
1318
1319 The array subscripts and the data type of the elements of an
1320 array are described by a list of data items, stored as a block
1321 of contiguous bytes. There is a data item describing each array
1322 dimension, and a final data item describing the element type.
1323 The data items are ordered the same as their appearance in the
1324 source (I.E. leftmost dimension first, next to leftmost second,
1325 etc).
1326
1327 The data items describing each array dimension consist of four
1328 parts: (1) a format specifier, (2) type type of the subscript
1329 index, (3) a description of the low bound of the array dimension,
1330 and (4) a description of the high bound of the array dimension.
1331
1332 The last data item is the description of the type of each of
1333 the array elements.
1334
1335 We are passed a pointer to the start of the block of bytes
1336 containing the remaining data items, and a pointer to the first
1337 byte past the data. This function recursively decodes the
1338 remaining data items and returns a type.
1339
1340 If we somehow fail to decode some data, we complain about it
1341 and return a type "array of int".
1342
1343 BUGS
1344 FIXME: This code only implements the forms currently used
1345 by the AT&T and GNU C compilers.
1346
1347 The end pointer is supplied for error checking, maybe we should
1348 use it for that...
1349 */
1350
1351 static struct type *
1352 decode_subscript_data_item (scan, end)
1353 char *scan;
1354 char *end;
1355 {
1356 struct type *typep = NULL; /* Array type we are building */
1357 struct type *nexttype; /* Type of each element (may be array) */
1358 struct type *indextype; /* Type of this index */
1359 struct type *rangetype;
1360 unsigned int format;
1361 unsigned short fundtype;
1362 unsigned long lowbound;
1363 unsigned long highbound;
1364 int nbytes;
1365
1366 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1367 current_objfile);
1368 scan += SIZEOF_FORMAT_SPECIFIER;
1369 switch (format)
1370 {
1371 case FMT_ET:
1372 typep = decode_array_element_type (scan);
1373 break;
1374 case FMT_FT_C_C:
1375 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1376 current_objfile);
1377 indextype = decode_fund_type (fundtype);
1378 scan += SIZEOF_FMT_FT;
1379 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1380 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1381 scan += nbytes;
1382 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1383 scan += nbytes;
1384 nexttype = decode_subscript_data_item (scan, end);
1385 if (nexttype == NULL)
1386 {
1387 /* Munged subscript data or other problem, fake it. */
1388 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1389 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1390 }
1391 rangetype = create_range_type ((struct type *) NULL, indextype,
1392 lowbound, highbound);
1393 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1394 break;
1395 case FMT_FT_C_X:
1396 case FMT_FT_X_C:
1397 case FMT_FT_X_X:
1398 case FMT_UT_C_C:
1399 case FMT_UT_C_X:
1400 case FMT_UT_X_C:
1401 case FMT_UT_X_X:
1402 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1403 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1404 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1405 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1406 break;
1407 default:
1408 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1409 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1410 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1411 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1412 break;
1413 }
1414 return (typep);
1415 }
1416
1417 /*
1418
1419 LOCAL FUNCTION
1420
1421 dwarf_read_array_type -- read TAG_array_type DIE
1422
1423 SYNOPSIS
1424
1425 static void dwarf_read_array_type (struct dieinfo *dip)
1426
1427 DESCRIPTION
1428
1429 Extract all information from a TAG_array_type DIE and add to
1430 the user defined type vector.
1431 */
1432
1433 static void
1434 dwarf_read_array_type (dip)
1435 struct dieinfo *dip;
1436 {
1437 struct type *type;
1438 struct type *utype;
1439 char *sub;
1440 char *subend;
1441 unsigned short blocksz;
1442 int nbytes;
1443
1444 if (dip -> at_ordering != ORD_row_major)
1445 {
1446 /* FIXME: Can gdb even handle column major arrays? */
1447 complain (&not_row_major, DIE_ID, DIE_NAME);
1448 }
1449 if ((sub = dip -> at_subscr_data) != NULL)
1450 {
1451 nbytes = attribute_size (AT_subscr_data);
1452 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1453 subend = sub + nbytes + blocksz;
1454 sub += nbytes;
1455 type = decode_subscript_data_item (sub, subend);
1456 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1457 {
1458 /* Install user defined type that has not been referenced yet. */
1459 alloc_utype (dip -> die_ref, type);
1460 }
1461 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1462 {
1463 /* Ick! A forward ref has already generated a blank type in our
1464 slot, and this type probably already has things pointing to it
1465 (which is what caused it to be created in the first place).
1466 If it's just a place holder we can plop our fully defined type
1467 on top of it. We can't recover the space allocated for our
1468 new type since it might be on an obstack, but we could reuse
1469 it if we kept a list of them, but it might not be worth it
1470 (FIXME). */
1471 *utype = *type;
1472 }
1473 else
1474 {
1475 /* Double ick! Not only is a type already in our slot, but
1476 someone has decorated it. Complain and leave it alone. */
1477 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1478 }
1479 }
1480 }
1481
1482 /*
1483
1484 LOCAL FUNCTION
1485
1486 read_tag_pointer_type -- read TAG_pointer_type DIE
1487
1488 SYNOPSIS
1489
1490 static void read_tag_pointer_type (struct dieinfo *dip)
1491
1492 DESCRIPTION
1493
1494 Extract all information from a TAG_pointer_type DIE and add to
1495 the user defined type vector.
1496 */
1497
1498 static void
1499 read_tag_pointer_type (dip)
1500 struct dieinfo *dip;
1501 {
1502 struct type *type;
1503 struct type *utype;
1504
1505 type = decode_die_type (dip);
1506 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1507 {
1508 utype = lookup_pointer_type (type);
1509 alloc_utype (dip -> die_ref, utype);
1510 }
1511 else
1512 {
1513 TYPE_TARGET_TYPE (utype) = type;
1514 TYPE_POINTER_TYPE (type) = utype;
1515
1516 /* We assume the machine has only one representation for pointers! */
1517 /* FIXME: This confuses host<->target data representations, and is a
1518 poor assumption besides. */
1519
1520 TYPE_LENGTH (utype) = sizeof (char *);
1521 TYPE_CODE (utype) = TYPE_CODE_PTR;
1522 }
1523 }
1524
1525 /*
1526
1527 LOCAL FUNCTION
1528
1529 read_tag_string_type -- read TAG_string_type DIE
1530
1531 SYNOPSIS
1532
1533 static void read_tag_string_type (struct dieinfo *dip)
1534
1535 DESCRIPTION
1536
1537 Extract all information from a TAG_string_type DIE and add to
1538 the user defined type vector. It isn't really a user defined
1539 type, but it behaves like one, with other DIE's using an
1540 AT_user_def_type attribute to reference it.
1541 */
1542
1543 static void
1544 read_tag_string_type (dip)
1545 struct dieinfo *dip;
1546 {
1547 struct type *utype;
1548 struct type *indextype;
1549 struct type *rangetype;
1550 unsigned long lowbound = 0;
1551 unsigned long highbound;
1552
1553 if (dip -> has_at_byte_size)
1554 {
1555 /* A fixed bounds string */
1556 highbound = dip -> at_byte_size - 1;
1557 }
1558 else
1559 {
1560 /* A varying length string. Stub for now. (FIXME) */
1561 highbound = 1;
1562 }
1563 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1564 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1565 highbound);
1566
1567 utype = lookup_utype (dip -> die_ref);
1568 if (utype == NULL)
1569 {
1570 /* No type defined, go ahead and create a blank one to use. */
1571 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1572 }
1573 else
1574 {
1575 /* Already a type in our slot due to a forward reference. Make sure it
1576 is a blank one. If not, complain and leave it alone. */
1577 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1578 {
1579 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1580 return;
1581 }
1582 }
1583
1584 /* Create the string type using the blank type we either found or created. */
1585 utype = create_string_type (utype, rangetype);
1586 }
1587
1588 /*
1589
1590 LOCAL FUNCTION
1591
1592 read_subroutine_type -- process TAG_subroutine_type dies
1593
1594 SYNOPSIS
1595
1596 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1597 char *enddie)
1598
1599 DESCRIPTION
1600
1601 Handle DIES due to C code like:
1602
1603 struct foo {
1604 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1605 int b;
1606 };
1607
1608 NOTES
1609
1610 The parameter DIES are currently ignored. See if gdb has a way to
1611 include this info in it's type system, and decode them if so. Is
1612 this what the type structure's "arg_types" field is for? (FIXME)
1613 */
1614
1615 static void
1616 read_subroutine_type (dip, thisdie, enddie)
1617 struct dieinfo *dip;
1618 char *thisdie;
1619 char *enddie;
1620 {
1621 struct type *type; /* Type that this function returns */
1622 struct type *ftype; /* Function that returns above type */
1623
1624 /* Decode the type that this subroutine returns */
1625
1626 type = decode_die_type (dip);
1627
1628 /* Check to see if we already have a partially constructed user
1629 defined type for this DIE, from a forward reference. */
1630
1631 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1632 {
1633 /* This is the first reference to one of these types. Make
1634 a new one and place it in the user defined types. */
1635 ftype = lookup_function_type (type);
1636 alloc_utype (dip -> die_ref, ftype);
1637 }
1638 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1639 {
1640 /* We have an existing partially constructed type, so bash it
1641 into the correct type. */
1642 TYPE_TARGET_TYPE (ftype) = type;
1643 TYPE_FUNCTION_TYPE (type) = ftype;
1644 TYPE_LENGTH (ftype) = 1;
1645 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1646 }
1647 else
1648 {
1649 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1650 }
1651 }
1652
1653 /*
1654
1655 LOCAL FUNCTION
1656
1657 read_enumeration -- process dies which define an enumeration
1658
1659 SYNOPSIS
1660
1661 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1662 char *enddie, struct objfile *objfile)
1663
1664 DESCRIPTION
1665
1666 Given a pointer to a die which begins an enumeration, process all
1667 the dies that define the members of the enumeration.
1668
1669 NOTES
1670
1671 Note that we need to call enum_type regardless of whether or not we
1672 have a symbol, since we might have an enum without a tag name (thus
1673 no symbol for the tagname).
1674 */
1675
1676 static void
1677 read_enumeration (dip, thisdie, enddie, objfile)
1678 struct dieinfo *dip;
1679 char *thisdie;
1680 char *enddie;
1681 struct objfile *objfile;
1682 {
1683 struct type *type;
1684 struct symbol *sym;
1685
1686 type = enum_type (dip, objfile);
1687 sym = new_symbol (dip, objfile);
1688 if (sym != NULL)
1689 {
1690 SYMBOL_TYPE (sym) = type;
1691 if (cu_language == language_cplus)
1692 {
1693 synthesize_typedef (dip, objfile, type);
1694 }
1695 }
1696 }
1697
1698 /*
1699
1700 LOCAL FUNCTION
1701
1702 enum_type -- decode and return a type for an enumeration
1703
1704 SYNOPSIS
1705
1706 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1707
1708 DESCRIPTION
1709
1710 Given a pointer to a die information structure for the die which
1711 starts an enumeration, process all the dies that define the members
1712 of the enumeration and return a type pointer for the enumeration.
1713
1714 At the same time, for each member of the enumeration, create a
1715 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1716 and give it the type of the enumeration itself.
1717
1718 NOTES
1719
1720 Note that the DWARF specification explicitly mandates that enum
1721 constants occur in reverse order from the source program order,
1722 for "consistency" and because this ordering is easier for many
1723 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1724 Entries). Because gdb wants to see the enum members in program
1725 source order, we have to ensure that the order gets reversed while
1726 we are processing them.
1727 */
1728
1729 static struct type *
1730 enum_type (dip, objfile)
1731 struct dieinfo *dip;
1732 struct objfile *objfile;
1733 {
1734 struct type *type;
1735 struct nextfield {
1736 struct nextfield *next;
1737 struct field field;
1738 };
1739 struct nextfield *list = NULL;
1740 struct nextfield *new;
1741 int nfields = 0;
1742 int n;
1743 char *scan;
1744 char *listend;
1745 unsigned short blocksz;
1746 struct symbol *sym;
1747 int nbytes;
1748
1749 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1750 {
1751 /* No forward references created an empty type, so install one now */
1752 type = alloc_utype (dip -> die_ref, NULL);
1753 }
1754 TYPE_CODE (type) = TYPE_CODE_ENUM;
1755 /* Some compilers try to be helpful by inventing "fake" names for
1756 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1757 Thanks, but no thanks... */
1758 if (dip -> at_name != NULL
1759 && *dip -> at_name != '~'
1760 && *dip -> at_name != '.')
1761 {
1762 TYPE_NAME (type) = obconcat (&objfile -> type_obstack, "enum",
1763 " ", dip -> at_name);
1764 }
1765 if (dip -> at_byte_size != 0)
1766 {
1767 TYPE_LENGTH (type) = dip -> at_byte_size;
1768 }
1769 if ((scan = dip -> at_element_list) != NULL)
1770 {
1771 if (dip -> short_element_list)
1772 {
1773 nbytes = attribute_size (AT_short_element_list);
1774 }
1775 else
1776 {
1777 nbytes = attribute_size (AT_element_list);
1778 }
1779 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1780 listend = scan + nbytes + blocksz;
1781 scan += nbytes;
1782 while (scan < listend)
1783 {
1784 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1785 new -> next = list;
1786 list = new;
1787 list -> field.type = NULL;
1788 list -> field.bitsize = 0;
1789 list -> field.bitpos =
1790 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1791 objfile);
1792 scan += TARGET_FT_LONG_SIZE (objfile);
1793 list -> field.name = obsavestring (scan, strlen (scan),
1794 &objfile -> type_obstack);
1795 scan += strlen (scan) + 1;
1796 nfields++;
1797 /* Handcraft a new symbol for this enum member. */
1798 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1799 sizeof (struct symbol));
1800 memset (sym, 0, sizeof (struct symbol));
1801 SYMBOL_NAME (sym) = create_name (list -> field.name,
1802 &objfile->symbol_obstack);
1803 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1804 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1805 SYMBOL_CLASS (sym) = LOC_CONST;
1806 SYMBOL_TYPE (sym) = type;
1807 SYMBOL_VALUE (sym) = list -> field.bitpos;
1808 add_symbol_to_list (sym, list_in_scope);
1809 }
1810 /* Now create the vector of fields, and record how big it is. This is
1811 where we reverse the order, by pulling the members off the list in
1812 reverse order from how they were inserted. If we have no fields
1813 (this is apparently possible in C++) then skip building a field
1814 vector. */
1815 if (nfields > 0)
1816 {
1817 TYPE_NFIELDS (type) = nfields;
1818 TYPE_FIELDS (type) = (struct field *)
1819 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1820 /* Copy the saved-up fields into the field vector. */
1821 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1822 {
1823 TYPE_FIELD (type, n++) = list -> field;
1824 }
1825 }
1826 }
1827 return (type);
1828 }
1829
1830 /*
1831
1832 LOCAL FUNCTION
1833
1834 read_func_scope -- process all dies within a function scope
1835
1836 DESCRIPTION
1837
1838 Process all dies within a given function scope. We are passed
1839 a die information structure pointer DIP for the die which
1840 starts the function scope, and pointers into the raw die data
1841 that define the dies within the function scope.
1842
1843 For now, we ignore lexical block scopes within the function.
1844 The problem is that AT&T cc does not define a DWARF lexical
1845 block scope for the function itself, while gcc defines a
1846 lexical block scope for the function. We need to think about
1847 how to handle this difference, or if it is even a problem.
1848 (FIXME)
1849 */
1850
1851 static void
1852 read_func_scope (dip, thisdie, enddie, objfile)
1853 struct dieinfo *dip;
1854 char *thisdie;
1855 char *enddie;
1856 struct objfile *objfile;
1857 {
1858 register struct context_stack *new;
1859
1860 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1861 objfile -> ei.entry_point < dip -> at_high_pc)
1862 {
1863 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1864 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1865 }
1866 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1867 {
1868 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1869 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1870 }
1871 new = push_context (0, dip -> at_low_pc);
1872 new -> name = new_symbol (dip, objfile);
1873 list_in_scope = &local_symbols;
1874 process_dies (thisdie + dip -> die_length, enddie, objfile);
1875 new = pop_context ();
1876 /* Make a block for the local symbols within. */
1877 finish_block (new -> name, &local_symbols, new -> old_blocks,
1878 new -> start_addr, dip -> at_high_pc, objfile);
1879 list_in_scope = &file_symbols;
1880 }
1881
1882
1883 /*
1884
1885 LOCAL FUNCTION
1886
1887 handle_producer -- process the AT_producer attribute
1888
1889 DESCRIPTION
1890
1891 Perform any operations that depend on finding a particular
1892 AT_producer attribute.
1893
1894 */
1895
1896 static void
1897 handle_producer (producer)
1898 char *producer;
1899 {
1900
1901 /* If this compilation unit was compiled with g++ or gcc, then set the
1902 processing_gcc_compilation flag. */
1903
1904 processing_gcc_compilation =
1905 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1906 /* start-sanitize-chill */
1907 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1908 /* end-sanitize-chill */
1909 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1910
1911 /* Select a demangling style if we can identify the producer and if
1912 the current style is auto. We leave the current style alone if it
1913 is not auto. We also leave the demangling style alone if we find a
1914 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1915
1916 if (AUTO_DEMANGLING)
1917 {
1918 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1919 {
1920 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1921 }
1922 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1923 {
1924 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1925 }
1926 }
1927 }
1928
1929
1930 /*
1931
1932 LOCAL FUNCTION
1933
1934 read_file_scope -- process all dies within a file scope
1935
1936 DESCRIPTION
1937
1938 Process all dies within a given file scope. We are passed a
1939 pointer to the die information structure for the die which
1940 starts the file scope, and pointers into the raw die data which
1941 mark the range of dies within the file scope.
1942
1943 When the partial symbol table is built, the file offset for the line
1944 number table for each compilation unit is saved in the partial symbol
1945 table entry for that compilation unit. As the symbols for each
1946 compilation unit are read, the line number table is read into memory
1947 and the variable lnbase is set to point to it. Thus all we have to
1948 do is use lnbase to access the line number table for the current
1949 compilation unit.
1950 */
1951
1952 static void
1953 read_file_scope (dip, thisdie, enddie, objfile)
1954 struct dieinfo *dip;
1955 char *thisdie;
1956 char *enddie;
1957 struct objfile *objfile;
1958 {
1959 struct cleanup *back_to;
1960 struct symtab *symtab;
1961
1962 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1963 objfile -> ei.entry_point < dip -> at_high_pc)
1964 {
1965 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1966 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1967 }
1968 set_cu_language (dip);
1969 if (dip -> at_producer != NULL)
1970 {
1971 handle_producer (dip -> at_producer);
1972 }
1973 numutypes = (enddie - thisdie) / 4;
1974 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1975 back_to = make_cleanup (free, utypes);
1976 memset (utypes, 0, numutypes * sizeof (struct type *));
1977 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1978 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1979 decode_line_numbers (lnbase);
1980 process_dies (thisdie + dip -> die_length, enddie, objfile);
1981
1982 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1983 if (symtab != NULL)
1984 {
1985 symtab -> language = cu_language;
1986 }
1987 do_cleanups (back_to);
1988 utypes = NULL;
1989 numutypes = 0;
1990 }
1991
1992 /*
1993
1994 LOCAL FUNCTION
1995
1996 process_dies -- process a range of DWARF Information Entries
1997
1998 SYNOPSIS
1999
2000 static void process_dies (char *thisdie, char *enddie,
2001 struct objfile *objfile)
2002
2003 DESCRIPTION
2004
2005 Process all DIE's in a specified range. May be (and almost
2006 certainly will be) called recursively.
2007 */
2008
2009 static void
2010 process_dies (thisdie, enddie, objfile)
2011 char *thisdie;
2012 char *enddie;
2013 struct objfile *objfile;
2014 {
2015 char *nextdie;
2016 struct dieinfo di;
2017
2018 while (thisdie < enddie)
2019 {
2020 basicdieinfo (&di, thisdie, objfile);
2021 if (di.die_length < SIZEOF_DIE_LENGTH)
2022 {
2023 break;
2024 }
2025 else if (di.die_tag == TAG_padding)
2026 {
2027 nextdie = thisdie + di.die_length;
2028 }
2029 else
2030 {
2031 completedieinfo (&di, objfile);
2032 if (di.at_sibling != 0)
2033 {
2034 nextdie = dbbase + di.at_sibling - dbroff;
2035 }
2036 else
2037 {
2038 nextdie = thisdie + di.die_length;
2039 }
2040 switch (di.die_tag)
2041 {
2042 case TAG_compile_unit:
2043 read_file_scope (&di, thisdie, nextdie, objfile);
2044 break;
2045 case TAG_global_subroutine:
2046 case TAG_subroutine:
2047 if (di.has_at_low_pc)
2048 {
2049 read_func_scope (&di, thisdie, nextdie, objfile);
2050 }
2051 break;
2052 case TAG_lexical_block:
2053 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2054 break;
2055 case TAG_class_type:
2056 case TAG_structure_type:
2057 case TAG_union_type:
2058 read_structure_scope (&di, thisdie, nextdie, objfile);
2059 break;
2060 case TAG_enumeration_type:
2061 read_enumeration (&di, thisdie, nextdie, objfile);
2062 break;
2063 case TAG_subroutine_type:
2064 read_subroutine_type (&di, thisdie, nextdie);
2065 break;
2066 case TAG_array_type:
2067 dwarf_read_array_type (&di);
2068 break;
2069 case TAG_pointer_type:
2070 read_tag_pointer_type (&di);
2071 break;
2072 case TAG_string_type:
2073 read_tag_string_type (&di);
2074 break;
2075 default:
2076 new_symbol (&di, objfile);
2077 break;
2078 }
2079 }
2080 thisdie = nextdie;
2081 }
2082 }
2083
2084 /*
2085
2086 LOCAL FUNCTION
2087
2088 decode_line_numbers -- decode a line number table fragment
2089
2090 SYNOPSIS
2091
2092 static void decode_line_numbers (char *tblscan, char *tblend,
2093 long length, long base, long line, long pc)
2094
2095 DESCRIPTION
2096
2097 Translate the DWARF line number information to gdb form.
2098
2099 The ".line" section contains one or more line number tables, one for
2100 each ".line" section from the objects that were linked.
2101
2102 The AT_stmt_list attribute for each TAG_source_file entry in the
2103 ".debug" section contains the offset into the ".line" section for the
2104 start of the table for that file.
2105
2106 The table itself has the following structure:
2107
2108 <table length><base address><source statement entry>
2109 4 bytes 4 bytes 10 bytes
2110
2111 The table length is the total size of the table, including the 4 bytes
2112 for the length information.
2113
2114 The base address is the address of the first instruction generated
2115 for the source file.
2116
2117 Each source statement entry has the following structure:
2118
2119 <line number><statement position><address delta>
2120 4 bytes 2 bytes 4 bytes
2121
2122 The line number is relative to the start of the file, starting with
2123 line 1.
2124
2125 The statement position either -1 (0xFFFF) or the number of characters
2126 from the beginning of the line to the beginning of the statement.
2127
2128 The address delta is the difference between the base address and
2129 the address of the first instruction for the statement.
2130
2131 Note that we must copy the bytes from the packed table to our local
2132 variables before attempting to use them, to avoid alignment problems
2133 on some machines, particularly RISC processors.
2134
2135 BUGS
2136
2137 Does gdb expect the line numbers to be sorted? They are now by
2138 chance/luck, but are not required to be. (FIXME)
2139
2140 The line with number 0 is unused, gdb apparently can discover the
2141 span of the last line some other way. How? (FIXME)
2142 */
2143
2144 static void
2145 decode_line_numbers (linetable)
2146 char *linetable;
2147 {
2148 char *tblscan;
2149 char *tblend;
2150 unsigned long length;
2151 unsigned long base;
2152 unsigned long line;
2153 unsigned long pc;
2154
2155 if (linetable != NULL)
2156 {
2157 tblscan = tblend = linetable;
2158 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2159 current_objfile);
2160 tblscan += SIZEOF_LINETBL_LENGTH;
2161 tblend += length;
2162 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2163 GET_UNSIGNED, current_objfile);
2164 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2165 base += baseaddr;
2166 while (tblscan < tblend)
2167 {
2168 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2169 current_objfile);
2170 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2171 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2172 current_objfile);
2173 tblscan += SIZEOF_LINETBL_DELTA;
2174 pc += base;
2175 if (line != 0)
2176 {
2177 record_line (current_subfile, line, pc);
2178 }
2179 }
2180 }
2181 }
2182
2183 /*
2184
2185 LOCAL FUNCTION
2186
2187 locval -- compute the value of a location attribute
2188
2189 SYNOPSIS
2190
2191 static int locval (char *loc)
2192
2193 DESCRIPTION
2194
2195 Given pointer to a string of bytes that define a location, compute
2196 the location and return the value.
2197
2198 When computing values involving the current value of the frame pointer,
2199 the value zero is used, which results in a value relative to the frame
2200 pointer, rather than the absolute value. This is what GDB wants
2201 anyway.
2202
2203 When the result is a register number, the global isreg flag is set,
2204 otherwise it is cleared. This is a kludge until we figure out a better
2205 way to handle the problem. Gdb's design does not mesh well with the
2206 DWARF notion of a location computing interpreter, which is a shame
2207 because the flexibility goes unused.
2208
2209 NOTES
2210
2211 Note that stack[0] is unused except as a default error return.
2212 Note that stack overflow is not yet handled.
2213 */
2214
2215 static int
2216 locval (loc)
2217 char *loc;
2218 {
2219 unsigned short nbytes;
2220 unsigned short locsize;
2221 auto long stack[64];
2222 int stacki;
2223 char *end;
2224 long regno;
2225 int loc_atom_code;
2226 int loc_value_size;
2227
2228 nbytes = attribute_size (AT_location);
2229 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2230 loc += nbytes;
2231 end = loc + locsize;
2232 stacki = 0;
2233 stack[stacki] = 0;
2234 isreg = 0;
2235 offreg = 0;
2236 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2237 while (loc < end)
2238 {
2239 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2240 current_objfile);
2241 loc += SIZEOF_LOC_ATOM_CODE;
2242 switch (loc_atom_code)
2243 {
2244 case 0:
2245 /* error */
2246 loc = end;
2247 break;
2248 case OP_REG:
2249 /* push register (number) */
2250 stack[++stacki] = target_to_host (loc, loc_value_size,
2251 GET_UNSIGNED, current_objfile);
2252 loc += loc_value_size;
2253 isreg = 1;
2254 break;
2255 case OP_BASEREG:
2256 /* push value of register (number) */
2257 /* Actually, we compute the value as if register has 0 */
2258 offreg = 1;
2259 regno = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2260 current_objfile);
2261 loc += loc_value_size;
2262 if (regno == R_FP)
2263 {
2264 stack[++stacki] = 0;
2265 }
2266 else
2267 {
2268 stack[++stacki] = 0;
2269
2270 complain (&basereg_not_handled, DIE_ID, DIE_NAME, regno);
2271 }
2272 break;
2273 case OP_ADDR:
2274 /* push address (relocated address) */
2275 stack[++stacki] = target_to_host (loc, loc_value_size,
2276 GET_UNSIGNED, current_objfile);
2277 loc += loc_value_size;
2278 break;
2279 case OP_CONST:
2280 /* push constant (number) FIXME: signed or unsigned! */
2281 stack[++stacki] = target_to_host (loc, loc_value_size,
2282 GET_SIGNED, current_objfile);
2283 loc += loc_value_size;
2284 break;
2285 case OP_DEREF2:
2286 /* pop, deref and push 2 bytes (as a long) */
2287 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2288 break;
2289 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2290 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2291 break;
2292 case OP_ADD: /* pop top 2 items, add, push result */
2293 stack[stacki - 1] += stack[stacki];
2294 stacki--;
2295 break;
2296 }
2297 }
2298 return (stack[stacki]);
2299 }
2300
2301 /*
2302
2303 LOCAL FUNCTION
2304
2305 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2306
2307 SYNOPSIS
2308
2309 static struct symtab *read_ofile_symtab (struct partial_symtab *pst)
2310
2311 DESCRIPTION
2312
2313 When expanding a partial symbol table entry to a full symbol table
2314 entry, this is the function that gets called to read in the symbols
2315 for the compilation unit.
2316
2317 Returns a pointer to the newly constructed symtab (which is now
2318 the new first one on the objfile's symtab list).
2319 */
2320
2321 static struct symtab *
2322 read_ofile_symtab (pst)
2323 struct partial_symtab *pst;
2324 {
2325 struct cleanup *back_to;
2326 unsigned long lnsize;
2327 file_ptr foffset;
2328 bfd *abfd;
2329 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2330
2331 abfd = pst -> objfile -> obfd;
2332 current_objfile = pst -> objfile;
2333
2334 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2335 unit, seek to the location in the file, and read in all the DIE's. */
2336
2337 diecount = 0;
2338 dbsize = DBLENGTH (pst);
2339 dbbase = xmalloc (dbsize);
2340 dbroff = DBROFF(pst);
2341 foffset = DBFOFF(pst) + dbroff;
2342 base_section_offsets = pst->section_offsets;
2343 baseaddr = ANOFFSET (pst->section_offsets, 0);
2344 if (bfd_seek (abfd, foffset, L_SET) ||
2345 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2346 {
2347 free (dbbase);
2348 error ("can't read DWARF data");
2349 }
2350 back_to = make_cleanup (free, dbbase);
2351
2352 /* If there is a line number table associated with this compilation unit
2353 then read the size of this fragment in bytes, from the fragment itself.
2354 Allocate a buffer for the fragment and read it in for future
2355 processing. */
2356
2357 lnbase = NULL;
2358 if (LNFOFF (pst))
2359 {
2360 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2361 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2362 sizeof (lnsizedata)))
2363 {
2364 error ("can't read DWARF line number table size");
2365 }
2366 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2367 GET_UNSIGNED, pst -> objfile);
2368 lnbase = xmalloc (lnsize);
2369 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2370 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2371 {
2372 free (lnbase);
2373 error ("can't read DWARF line numbers");
2374 }
2375 make_cleanup (free, lnbase);
2376 }
2377
2378 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2379 do_cleanups (back_to);
2380 current_objfile = NULL;
2381 return (pst -> objfile -> symtabs);
2382 }
2383
2384 /*
2385
2386 LOCAL FUNCTION
2387
2388 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2389
2390 SYNOPSIS
2391
2392 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2393
2394 DESCRIPTION
2395
2396 Called once for each partial symbol table entry that needs to be
2397 expanded into a full symbol table entry.
2398
2399 */
2400
2401 static void
2402 psymtab_to_symtab_1 (pst)
2403 struct partial_symtab *pst;
2404 {
2405 int i;
2406 struct cleanup *old_chain;
2407
2408 if (pst != NULL)
2409 {
2410 if (pst->readin)
2411 {
2412 warning ("psymtab for %s already read in. Shouldn't happen.",
2413 pst -> filename);
2414 }
2415 else
2416 {
2417 /* Read in all partial symtabs on which this one is dependent */
2418 for (i = 0; i < pst -> number_of_dependencies; i++)
2419 {
2420 if (!pst -> dependencies[i] -> readin)
2421 {
2422 /* Inform about additional files that need to be read in. */
2423 if (info_verbose)
2424 {
2425 fputs_filtered (" ", stdout);
2426 wrap_here ("");
2427 fputs_filtered ("and ", stdout);
2428 wrap_here ("");
2429 printf_filtered ("%s...",
2430 pst -> dependencies[i] -> filename);
2431 wrap_here ("");
2432 fflush (stdout); /* Flush output */
2433 }
2434 psymtab_to_symtab_1 (pst -> dependencies[i]);
2435 }
2436 }
2437 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2438 {
2439 buildsym_init ();
2440 old_chain = make_cleanup (really_free_pendings, 0);
2441 pst -> symtab = read_ofile_symtab (pst);
2442 if (info_verbose)
2443 {
2444 printf_filtered ("%d DIE's, sorting...", diecount);
2445 wrap_here ("");
2446 fflush (stdout);
2447 }
2448 sort_symtab_syms (pst -> symtab);
2449 do_cleanups (old_chain);
2450 }
2451 pst -> readin = 1;
2452 }
2453 }
2454 }
2455
2456 /*
2457
2458 LOCAL FUNCTION
2459
2460 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2461
2462 SYNOPSIS
2463
2464 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2465
2466 DESCRIPTION
2467
2468 This is the DWARF support entry point for building a full symbol
2469 table entry from a partial symbol table entry. We are passed a
2470 pointer to the partial symbol table entry that needs to be expanded.
2471
2472 */
2473
2474 static void
2475 dwarf_psymtab_to_symtab (pst)
2476 struct partial_symtab *pst;
2477 {
2478
2479 if (pst != NULL)
2480 {
2481 if (pst -> readin)
2482 {
2483 warning ("psymtab for %s already read in. Shouldn't happen.",
2484 pst -> filename);
2485 }
2486 else
2487 {
2488 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2489 {
2490 /* Print the message now, before starting serious work, to avoid
2491 disconcerting pauses. */
2492 if (info_verbose)
2493 {
2494 printf_filtered ("Reading in symbols for %s...",
2495 pst -> filename);
2496 fflush (stdout);
2497 }
2498
2499 psymtab_to_symtab_1 (pst);
2500
2501 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2502 we need to do an equivalent or is this something peculiar to
2503 stabs/a.out format.
2504 Match with global symbols. This only needs to be done once,
2505 after all of the symtabs and dependencies have been read in.
2506 */
2507 scan_file_globals (pst -> objfile);
2508 #endif
2509
2510 /* Finish up the verbose info message. */
2511 if (info_verbose)
2512 {
2513 printf_filtered ("done.\n");
2514 fflush (stdout);
2515 }
2516 }
2517 }
2518 }
2519 }
2520
2521 /*
2522
2523 LOCAL FUNCTION
2524
2525 init_psymbol_list -- initialize storage for partial symbols
2526
2527 SYNOPSIS
2528
2529 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2530
2531 DESCRIPTION
2532
2533 Initializes storage for all of the partial symbols that will be
2534 created by dwarf_build_psymtabs and subsidiaries.
2535 */
2536
2537 static void
2538 init_psymbol_list (objfile, total_symbols)
2539 struct objfile *objfile;
2540 int total_symbols;
2541 {
2542 /* Free any previously allocated psymbol lists. */
2543
2544 if (objfile -> global_psymbols.list)
2545 {
2546 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2547 }
2548 if (objfile -> static_psymbols.list)
2549 {
2550 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2551 }
2552
2553 /* Current best guess is that there are approximately a twentieth
2554 of the total symbols (in a debugging file) are global or static
2555 oriented symbols */
2556
2557 objfile -> global_psymbols.size = total_symbols / 10;
2558 objfile -> static_psymbols.size = total_symbols / 10;
2559 objfile -> global_psymbols.next =
2560 objfile -> global_psymbols.list = (struct partial_symbol *)
2561 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2562 * sizeof (struct partial_symbol));
2563 objfile -> static_psymbols.next =
2564 objfile -> static_psymbols.list = (struct partial_symbol *)
2565 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2566 * sizeof (struct partial_symbol));
2567 }
2568
2569 /*
2570
2571 LOCAL FUNCTION
2572
2573 add_enum_psymbol -- add enumeration members to partial symbol table
2574
2575 DESCRIPTION
2576
2577 Given pointer to a DIE that is known to be for an enumeration,
2578 extract the symbolic names of the enumeration members and add
2579 partial symbols for them.
2580 */
2581
2582 static void
2583 add_enum_psymbol (dip, objfile)
2584 struct dieinfo *dip;
2585 struct objfile *objfile;
2586 {
2587 char *scan;
2588 char *listend;
2589 unsigned short blocksz;
2590 int nbytes;
2591
2592 if ((scan = dip -> at_element_list) != NULL)
2593 {
2594 if (dip -> short_element_list)
2595 {
2596 nbytes = attribute_size (AT_short_element_list);
2597 }
2598 else
2599 {
2600 nbytes = attribute_size (AT_element_list);
2601 }
2602 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2603 scan += nbytes;
2604 listend = scan + blocksz;
2605 while (scan < listend)
2606 {
2607 scan += TARGET_FT_LONG_SIZE (objfile);
2608 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2609 objfile -> static_psymbols, 0, cu_language,
2610 objfile);
2611 scan += strlen (scan) + 1;
2612 }
2613 }
2614 }
2615
2616 /*
2617
2618 LOCAL FUNCTION
2619
2620 add_partial_symbol -- add symbol to partial symbol table
2621
2622 DESCRIPTION
2623
2624 Given a DIE, if it is one of the types that we want to
2625 add to a partial symbol table, finish filling in the die info
2626 and then add a partial symbol table entry for it.
2627
2628 NOTES
2629
2630 The caller must ensure that the DIE has a valid name attribute.
2631 */
2632
2633 static void
2634 add_partial_symbol (dip, objfile)
2635 struct dieinfo *dip;
2636 struct objfile *objfile;
2637 {
2638 switch (dip -> die_tag)
2639 {
2640 case TAG_global_subroutine:
2641 record_minimal_symbol (dip -> at_name, dip -> at_low_pc, mst_text,
2642 objfile);
2643 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2644 VAR_NAMESPACE, LOC_BLOCK,
2645 objfile -> global_psymbols,
2646 dip -> at_low_pc, cu_language, objfile);
2647 break;
2648 case TAG_global_variable:
2649 record_minimal_symbol (dip -> at_name, locval (dip -> at_location),
2650 mst_data, objfile);
2651 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2652 VAR_NAMESPACE, LOC_STATIC,
2653 objfile -> global_psymbols,
2654 0, cu_language, objfile);
2655 break;
2656 case TAG_subroutine:
2657 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2658 VAR_NAMESPACE, LOC_BLOCK,
2659 objfile -> static_psymbols,
2660 dip -> at_low_pc, cu_language, objfile);
2661 break;
2662 case TAG_local_variable:
2663 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2664 VAR_NAMESPACE, LOC_STATIC,
2665 objfile -> static_psymbols,
2666 0, cu_language, objfile);
2667 break;
2668 case TAG_typedef:
2669 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2670 VAR_NAMESPACE, LOC_TYPEDEF,
2671 objfile -> static_psymbols,
2672 0, cu_language, objfile);
2673 break;
2674 case TAG_class_type:
2675 case TAG_structure_type:
2676 case TAG_union_type:
2677 case TAG_enumeration_type:
2678 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2679 STRUCT_NAMESPACE, LOC_TYPEDEF,
2680 objfile -> static_psymbols,
2681 0, cu_language, objfile);
2682 if (cu_language == language_cplus)
2683 {
2684 /* For C++, these implicitly act as typedefs as well. */
2685 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2686 VAR_NAMESPACE, LOC_TYPEDEF,
2687 objfile -> static_psymbols,
2688 0, cu_language, objfile);
2689 }
2690 break;
2691 }
2692 }
2693
2694 /*
2695
2696 LOCAL FUNCTION
2697
2698 scan_partial_symbols -- scan DIE's within a single compilation unit
2699
2700 DESCRIPTION
2701
2702 Process the DIE's within a single compilation unit, looking for
2703 interesting DIE's that contribute to the partial symbol table entry
2704 for this compilation unit.
2705
2706 NOTES
2707
2708 There are some DIE's that may appear both at file scope and within
2709 the scope of a function. We are only interested in the ones at file
2710 scope, and the only way to tell them apart is to keep track of the
2711 scope. For example, consider the test case:
2712
2713 static int i;
2714 main () { int j; }
2715
2716 for which the relevant DWARF segment has the structure:
2717
2718 0x51:
2719 0x23 global subrtn sibling 0x9b
2720 name main
2721 fund_type FT_integer
2722 low_pc 0x800004cc
2723 high_pc 0x800004d4
2724
2725 0x74:
2726 0x23 local var sibling 0x97
2727 name j
2728 fund_type FT_integer
2729 location OP_BASEREG 0xe
2730 OP_CONST 0xfffffffc
2731 OP_ADD
2732 0x97:
2733 0x4
2734
2735 0x9b:
2736 0x1d local var sibling 0xb8
2737 name i
2738 fund_type FT_integer
2739 location OP_ADDR 0x800025dc
2740
2741 0xb8:
2742 0x4
2743
2744 We want to include the symbol 'i' in the partial symbol table, but
2745 not the symbol 'j'. In essence, we want to skip all the dies within
2746 the scope of a TAG_global_subroutine DIE.
2747
2748 Don't attempt to add anonymous structures or unions since they have
2749 no name. Anonymous enumerations however are processed, because we
2750 want to extract their member names (the check for a tag name is
2751 done later).
2752
2753 Also, for variables and subroutines, check that this is the place
2754 where the actual definition occurs, rather than just a reference
2755 to an external.
2756 */
2757
2758 static void
2759 scan_partial_symbols (thisdie, enddie, objfile)
2760 char *thisdie;
2761 char *enddie;
2762 struct objfile *objfile;
2763 {
2764 char *nextdie;
2765 char *temp;
2766 struct dieinfo di;
2767
2768 while (thisdie < enddie)
2769 {
2770 basicdieinfo (&di, thisdie, objfile);
2771 if (di.die_length < SIZEOF_DIE_LENGTH)
2772 {
2773 break;
2774 }
2775 else
2776 {
2777 nextdie = thisdie + di.die_length;
2778 /* To avoid getting complete die information for every die, we
2779 only do it (below) for the cases we are interested in. */
2780 switch (di.die_tag)
2781 {
2782 case TAG_global_subroutine:
2783 case TAG_subroutine:
2784 completedieinfo (&di, objfile);
2785 if (di.at_name && (di.has_at_low_pc || di.at_location))
2786 {
2787 add_partial_symbol (&di, objfile);
2788 /* If there is a sibling attribute, adjust the nextdie
2789 pointer to skip the entire scope of the subroutine.
2790 Apply some sanity checking to make sure we don't
2791 overrun or underrun the range of remaining DIE's */
2792 if (di.at_sibling != 0)
2793 {
2794 temp = dbbase + di.at_sibling - dbroff;
2795 if ((temp < thisdie) || (temp >= enddie))
2796 {
2797 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2798 di.at_sibling);
2799 }
2800 else
2801 {
2802 nextdie = temp;
2803 }
2804 }
2805 }
2806 break;
2807 case TAG_global_variable:
2808 case TAG_local_variable:
2809 completedieinfo (&di, objfile);
2810 if (di.at_name && (di.has_at_low_pc || di.at_location))
2811 {
2812 add_partial_symbol (&di, objfile);
2813 }
2814 break;
2815 case TAG_typedef:
2816 case TAG_class_type:
2817 case TAG_structure_type:
2818 case TAG_union_type:
2819 completedieinfo (&di, objfile);
2820 if (di.at_name)
2821 {
2822 add_partial_symbol (&di, objfile);
2823 }
2824 break;
2825 case TAG_enumeration_type:
2826 completedieinfo (&di, objfile);
2827 if (di.at_name)
2828 {
2829 add_partial_symbol (&di, objfile);
2830 }
2831 add_enum_psymbol (&di, objfile);
2832 break;
2833 }
2834 }
2835 thisdie = nextdie;
2836 }
2837 }
2838
2839 /*
2840
2841 LOCAL FUNCTION
2842
2843 scan_compilation_units -- build a psymtab entry for each compilation
2844
2845 DESCRIPTION
2846
2847 This is the top level dwarf parsing routine for building partial
2848 symbol tables.
2849
2850 It scans from the beginning of the DWARF table looking for the first
2851 TAG_compile_unit DIE, and then follows the sibling chain to locate
2852 each additional TAG_compile_unit DIE.
2853
2854 For each TAG_compile_unit DIE it creates a partial symtab structure,
2855 calls a subordinate routine to collect all the compilation unit's
2856 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2857 new partial symtab structure into the partial symbol table. It also
2858 records the appropriate information in the partial symbol table entry
2859 to allow the chunk of DIE's and line number table for this compilation
2860 unit to be located and re-read later, to generate a complete symbol
2861 table entry for the compilation unit.
2862
2863 Thus it effectively partitions up a chunk of DIE's for multiple
2864 compilation units into smaller DIE chunks and line number tables,
2865 and associates them with a partial symbol table entry.
2866
2867 NOTES
2868
2869 If any compilation unit has no line number table associated with
2870 it for some reason (a missing at_stmt_list attribute, rather than
2871 just one with a value of zero, which is valid) then we ensure that
2872 the recorded file offset is zero so that the routine which later
2873 reads line number table fragments knows that there is no fragment
2874 to read.
2875
2876 RETURNS
2877
2878 Returns no value.
2879
2880 */
2881
2882 static void
2883 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2884 char *thisdie;
2885 char *enddie;
2886 file_ptr dbfoff;
2887 file_ptr lnoffset;
2888 struct objfile *objfile;
2889 {
2890 char *nextdie;
2891 struct dieinfo di;
2892 struct partial_symtab *pst;
2893 int culength;
2894 int curoff;
2895 file_ptr curlnoffset;
2896
2897 while (thisdie < enddie)
2898 {
2899 basicdieinfo (&di, thisdie, objfile);
2900 if (di.die_length < SIZEOF_DIE_LENGTH)
2901 {
2902 break;
2903 }
2904 else if (di.die_tag != TAG_compile_unit)
2905 {
2906 nextdie = thisdie + di.die_length;
2907 }
2908 else
2909 {
2910 completedieinfo (&di, objfile);
2911 set_cu_language (&di);
2912 if (di.at_sibling != 0)
2913 {
2914 nextdie = dbbase + di.at_sibling - dbroff;
2915 }
2916 else
2917 {
2918 nextdie = thisdie + di.die_length;
2919 }
2920 curoff = thisdie - dbbase;
2921 culength = nextdie - thisdie;
2922 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2923
2924 /* First allocate a new partial symbol table structure */
2925
2926 pst = start_psymtab_common (objfile, base_section_offsets,
2927 di.at_name, di.at_low_pc,
2928 objfile -> global_psymbols.next,
2929 objfile -> static_psymbols.next);
2930
2931 pst -> texthigh = di.at_high_pc;
2932 pst -> read_symtab_private = (char *)
2933 obstack_alloc (&objfile -> psymbol_obstack,
2934 sizeof (struct dwfinfo));
2935 DBFOFF (pst) = dbfoff;
2936 DBROFF (pst) = curoff;
2937 DBLENGTH (pst) = culength;
2938 LNFOFF (pst) = curlnoffset;
2939 pst -> read_symtab = dwarf_psymtab_to_symtab;
2940
2941 /* Now look for partial symbols */
2942
2943 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2944
2945 pst -> n_global_syms = objfile -> global_psymbols.next -
2946 (objfile -> global_psymbols.list + pst -> globals_offset);
2947 pst -> n_static_syms = objfile -> static_psymbols.next -
2948 (objfile -> static_psymbols.list + pst -> statics_offset);
2949 sort_pst_symbols (pst);
2950 /* If there is already a psymtab or symtab for a file of this name,
2951 remove it. (If there is a symtab, more drastic things also
2952 happen.) This happens in VxWorks. */
2953 free_named_symtabs (pst -> filename);
2954 }
2955 thisdie = nextdie;
2956 }
2957 }
2958
2959 /*
2960
2961 LOCAL FUNCTION
2962
2963 new_symbol -- make a symbol table entry for a new symbol
2964
2965 SYNOPSIS
2966
2967 static struct symbol *new_symbol (struct dieinfo *dip,
2968 struct objfile *objfile)
2969
2970 DESCRIPTION
2971
2972 Given a pointer to a DWARF information entry, figure out if we need
2973 to make a symbol table entry for it, and if so, create a new entry
2974 and return a pointer to it.
2975 */
2976
2977 static struct symbol *
2978 new_symbol (dip, objfile)
2979 struct dieinfo *dip;
2980 struct objfile *objfile;
2981 {
2982 struct symbol *sym = NULL;
2983
2984 if (dip -> at_name != NULL)
2985 {
2986 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2987 sizeof (struct symbol));
2988 memset (sym, 0, sizeof (struct symbol));
2989 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2990 &objfile->symbol_obstack);
2991 /* default assumptions */
2992 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2993 SYMBOL_CLASS (sym) = LOC_STATIC;
2994 SYMBOL_TYPE (sym) = decode_die_type (dip);
2995
2996 /* If this symbol is from a C++ compilation, then attempt to cache the
2997 demangled form for future reference. This is a typical time versus
2998 space tradeoff, that was decided in favor of time because it sped up
2999 C++ symbol lookups by a factor of about 20. */
3000
3001 SYMBOL_LANGUAGE (sym) = cu_language;
3002 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
3003 switch (dip -> die_tag)
3004 {
3005 case TAG_label:
3006 SYMBOL_VALUE (sym) = dip -> at_low_pc;
3007 SYMBOL_CLASS (sym) = LOC_LABEL;
3008 break;
3009 case TAG_global_subroutine:
3010 case TAG_subroutine:
3011 SYMBOL_VALUE (sym) = dip -> at_low_pc;
3012 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
3013 SYMBOL_CLASS (sym) = LOC_BLOCK;
3014 if (dip -> die_tag == TAG_global_subroutine)
3015 {
3016 add_symbol_to_list (sym, &global_symbols);
3017 }
3018 else
3019 {
3020 add_symbol_to_list (sym, list_in_scope);
3021 }
3022 break;
3023 case TAG_global_variable:
3024 if (dip -> at_location != NULL)
3025 {
3026 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3027 add_symbol_to_list (sym, &global_symbols);
3028 SYMBOL_CLASS (sym) = LOC_STATIC;
3029 SYMBOL_VALUE (sym) += baseaddr;
3030 }
3031 break;
3032 case TAG_local_variable:
3033 if (dip -> at_location != NULL)
3034 {
3035 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3036 add_symbol_to_list (sym, list_in_scope);
3037 if (isreg)
3038 {
3039 SYMBOL_CLASS (sym) = LOC_REGISTER;
3040 }
3041 else if (offreg)
3042 {
3043 SYMBOL_CLASS (sym) = LOC_LOCAL;
3044 }
3045 else
3046 {
3047 SYMBOL_CLASS (sym) = LOC_STATIC;
3048 SYMBOL_VALUE (sym) += baseaddr;
3049 }
3050 }
3051 break;
3052 case TAG_formal_parameter:
3053 if (dip -> at_location != NULL)
3054 {
3055 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3056 }
3057 add_symbol_to_list (sym, list_in_scope);
3058 if (isreg)
3059 {
3060 SYMBOL_CLASS (sym) = LOC_REGPARM;
3061 }
3062 else
3063 {
3064 SYMBOL_CLASS (sym) = LOC_ARG;
3065 }
3066 break;
3067 case TAG_unspecified_parameters:
3068 /* From varargs functions; gdb doesn't seem to have any interest in
3069 this information, so just ignore it for now. (FIXME?) */
3070 break;
3071 case TAG_class_type:
3072 case TAG_structure_type:
3073 case TAG_union_type:
3074 case TAG_enumeration_type:
3075 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3076 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3077 add_symbol_to_list (sym, list_in_scope);
3078 break;
3079 case TAG_typedef:
3080 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3081 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3082 add_symbol_to_list (sym, list_in_scope);
3083 break;
3084 default:
3085 /* Not a tag we recognize. Hopefully we aren't processing trash
3086 data, but since we must specifically ignore things we don't
3087 recognize, there is nothing else we should do at this point. */
3088 break;
3089 }
3090 }
3091 return (sym);
3092 }
3093
3094 /*
3095
3096 LOCAL FUNCTION
3097
3098 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3099
3100 SYNOPSIS
3101
3102 static void synthesize_typedef (struct dieinfo *dip,
3103 struct objfile *objfile,
3104 struct type *type);
3105
3106 DESCRIPTION
3107
3108 Given a pointer to a DWARF information entry, synthesize a typedef
3109 for the name in the DIE, using the specified type.
3110
3111 This is used for C++ class, structs, unions, and enumerations to
3112 set up the tag name as a type.
3113
3114 */
3115
3116 static void
3117 synthesize_typedef (dip, objfile, type)
3118 struct dieinfo *dip;
3119 struct objfile *objfile;
3120 struct type *type;
3121 {
3122 struct symbol *sym = NULL;
3123
3124 if (dip -> at_name != NULL)
3125 {
3126 sym = (struct symbol *)
3127 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3128 memset (sym, 0, sizeof (struct symbol));
3129 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3130 &objfile->symbol_obstack);
3131 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3132 SYMBOL_TYPE (sym) = type;
3133 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3134 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3135 add_symbol_to_list (sym, list_in_scope);
3136 }
3137 }
3138
3139 /*
3140
3141 LOCAL FUNCTION
3142
3143 decode_mod_fund_type -- decode a modified fundamental type
3144
3145 SYNOPSIS
3146
3147 static struct type *decode_mod_fund_type (char *typedata)
3148
3149 DESCRIPTION
3150
3151 Decode a block of data containing a modified fundamental
3152 type specification. TYPEDATA is a pointer to the block,
3153 which starts with a length containing the size of the rest
3154 of the block. At the end of the block is a fundmental type
3155 code value that gives the fundamental type. Everything
3156 in between are type modifiers.
3157
3158 We simply compute the number of modifiers and call the general
3159 function decode_modified_type to do the actual work.
3160 */
3161
3162 static struct type *
3163 decode_mod_fund_type (typedata)
3164 char *typedata;
3165 {
3166 struct type *typep = NULL;
3167 unsigned short modcount;
3168 int nbytes;
3169
3170 /* Get the total size of the block, exclusive of the size itself */
3171
3172 nbytes = attribute_size (AT_mod_fund_type);
3173 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3174 typedata += nbytes;
3175
3176 /* Deduct the size of the fundamental type bytes at the end of the block. */
3177
3178 modcount -= attribute_size (AT_fund_type);
3179
3180 /* Now do the actual decoding */
3181
3182 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3183 return (typep);
3184 }
3185
3186 /*
3187
3188 LOCAL FUNCTION
3189
3190 decode_mod_u_d_type -- decode a modified user defined type
3191
3192 SYNOPSIS
3193
3194 static struct type *decode_mod_u_d_type (char *typedata)
3195
3196 DESCRIPTION
3197
3198 Decode a block of data containing a modified user defined
3199 type specification. TYPEDATA is a pointer to the block,
3200 which consists of a two byte length, containing the size
3201 of the rest of the block. At the end of the block is a
3202 four byte value that gives a reference to a user defined type.
3203 Everything in between are type modifiers.
3204
3205 We simply compute the number of modifiers and call the general
3206 function decode_modified_type to do the actual work.
3207 */
3208
3209 static struct type *
3210 decode_mod_u_d_type (typedata)
3211 char *typedata;
3212 {
3213 struct type *typep = NULL;
3214 unsigned short modcount;
3215 int nbytes;
3216
3217 /* Get the total size of the block, exclusive of the size itself */
3218
3219 nbytes = attribute_size (AT_mod_u_d_type);
3220 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3221 typedata += nbytes;
3222
3223 /* Deduct the size of the reference type bytes at the end of the block. */
3224
3225 modcount -= attribute_size (AT_user_def_type);
3226
3227 /* Now do the actual decoding */
3228
3229 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3230 return (typep);
3231 }
3232
3233 /*
3234
3235 LOCAL FUNCTION
3236
3237 decode_modified_type -- decode modified user or fundamental type
3238
3239 SYNOPSIS
3240
3241 static struct type *decode_modified_type (char *modifiers,
3242 unsigned short modcount, int mtype)
3243
3244 DESCRIPTION
3245
3246 Decode a modified type, either a modified fundamental type or
3247 a modified user defined type. MODIFIERS is a pointer to the
3248 block of bytes that define MODCOUNT modifiers. Immediately
3249 following the last modifier is a short containing the fundamental
3250 type or a long containing the reference to the user defined
3251 type. Which one is determined by MTYPE, which is either
3252 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3253 type we are generating.
3254
3255 We call ourself recursively to generate each modified type,`
3256 until MODCOUNT reaches zero, at which point we have consumed
3257 all the modifiers and generate either the fundamental type or
3258 user defined type. When the recursion unwinds, each modifier
3259 is applied in turn to generate the full modified type.
3260
3261 NOTES
3262
3263 If we find a modifier that we don't recognize, and it is not one
3264 of those reserved for application specific use, then we issue a
3265 warning and simply ignore the modifier.
3266
3267 BUGS
3268
3269 We currently ignore MOD_const and MOD_volatile. (FIXME)
3270
3271 */
3272
3273 static struct type *
3274 decode_modified_type (modifiers, modcount, mtype)
3275 char *modifiers;
3276 unsigned int modcount;
3277 int mtype;
3278 {
3279 struct type *typep = NULL;
3280 unsigned short fundtype;
3281 DIE_REF die_ref;
3282 char modifier;
3283 int nbytes;
3284
3285 if (modcount == 0)
3286 {
3287 switch (mtype)
3288 {
3289 case AT_mod_fund_type:
3290 nbytes = attribute_size (AT_fund_type);
3291 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3292 current_objfile);
3293 typep = decode_fund_type (fundtype);
3294 break;
3295 case AT_mod_u_d_type:
3296 nbytes = attribute_size (AT_user_def_type);
3297 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3298 current_objfile);
3299 if ((typep = lookup_utype (die_ref)) == NULL)
3300 {
3301 typep = alloc_utype (die_ref, NULL);
3302 }
3303 break;
3304 default:
3305 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3306 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3307 break;
3308 }
3309 }
3310 else
3311 {
3312 modifier = *modifiers++;
3313 typep = decode_modified_type (modifiers, --modcount, mtype);
3314 switch (modifier)
3315 {
3316 case MOD_pointer_to:
3317 typep = lookup_pointer_type (typep);
3318 break;
3319 case MOD_reference_to:
3320 typep = lookup_reference_type (typep);
3321 break;
3322 case MOD_const:
3323 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3324 break;
3325 case MOD_volatile:
3326 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3327 break;
3328 default:
3329 if (!(MOD_lo_user <= (unsigned char) modifier
3330 && (unsigned char) modifier <= MOD_hi_user))
3331 {
3332 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3333 }
3334 break;
3335 }
3336 }
3337 return (typep);
3338 }
3339
3340 /*
3341
3342 LOCAL FUNCTION
3343
3344 decode_fund_type -- translate basic DWARF type to gdb base type
3345
3346 DESCRIPTION
3347
3348 Given an integer that is one of the fundamental DWARF types,
3349 translate it to one of the basic internal gdb types and return
3350 a pointer to the appropriate gdb type (a "struct type *").
3351
3352 NOTES
3353
3354 For robustness, if we are asked to translate a fundamental
3355 type that we are unprepared to deal with, we return int so
3356 callers can always depend upon a valid type being returned,
3357 and so gdb may at least do something reasonable by default.
3358 If the type is not in the range of those types defined as
3359 application specific types, we also issue a warning.
3360 */
3361
3362 static struct type *
3363 decode_fund_type (fundtype)
3364 unsigned int fundtype;
3365 {
3366 struct type *typep = NULL;
3367
3368 switch (fundtype)
3369 {
3370
3371 case FT_void:
3372 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3373 break;
3374
3375 case FT_boolean: /* Was FT_set in AT&T version */
3376 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3377 break;
3378
3379 case FT_pointer: /* (void *) */
3380 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3381 typep = lookup_pointer_type (typep);
3382 break;
3383
3384 case FT_char:
3385 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3386 break;
3387
3388 case FT_signed_char:
3389 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3390 break;
3391
3392 case FT_unsigned_char:
3393 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3394 break;
3395
3396 case FT_short:
3397 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3398 break;
3399
3400 case FT_signed_short:
3401 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3402 break;
3403
3404 case FT_unsigned_short:
3405 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3406 break;
3407
3408 case FT_integer:
3409 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3410 break;
3411
3412 case FT_signed_integer:
3413 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3414 break;
3415
3416 case FT_unsigned_integer:
3417 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3418 break;
3419
3420 case FT_long:
3421 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3422 break;
3423
3424 case FT_signed_long:
3425 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3426 break;
3427
3428 case FT_unsigned_long:
3429 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3430 break;
3431
3432 case FT_long_long:
3433 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3434 break;
3435
3436 case FT_signed_long_long:
3437 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3438 break;
3439
3440 case FT_unsigned_long_long:
3441 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3442 break;
3443
3444 case FT_float:
3445 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3446 break;
3447
3448 case FT_dbl_prec_float:
3449 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3450 break;
3451
3452 case FT_ext_prec_float:
3453 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3454 break;
3455
3456 case FT_complex:
3457 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3458 break;
3459
3460 case FT_dbl_prec_complex:
3461 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3462 break;
3463
3464 case FT_ext_prec_complex:
3465 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3466 break;
3467
3468 }
3469
3470 if (typep == NULL)
3471 {
3472 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3473 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3474 {
3475 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3476 }
3477 }
3478
3479 return (typep);
3480 }
3481
3482 /*
3483
3484 LOCAL FUNCTION
3485
3486 create_name -- allocate a fresh copy of a string on an obstack
3487
3488 DESCRIPTION
3489
3490 Given a pointer to a string and a pointer to an obstack, allocates
3491 a fresh copy of the string on the specified obstack.
3492
3493 */
3494
3495 static char *
3496 create_name (name, obstackp)
3497 char *name;
3498 struct obstack *obstackp;
3499 {
3500 int length;
3501 char *newname;
3502
3503 length = strlen (name) + 1;
3504 newname = (char *) obstack_alloc (obstackp, length);
3505 strcpy (newname, name);
3506 return (newname);
3507 }
3508
3509 /*
3510
3511 LOCAL FUNCTION
3512
3513 basicdieinfo -- extract the minimal die info from raw die data
3514
3515 SYNOPSIS
3516
3517 void basicdieinfo (char *diep, struct dieinfo *dip,
3518 struct objfile *objfile)
3519
3520 DESCRIPTION
3521
3522 Given a pointer to raw DIE data, and a pointer to an instance of a
3523 die info structure, this function extracts the basic information
3524 from the DIE data required to continue processing this DIE, along
3525 with some bookkeeping information about the DIE.
3526
3527 The information we absolutely must have includes the DIE tag,
3528 and the DIE length. If we need the sibling reference, then we
3529 will have to call completedieinfo() to process all the remaining
3530 DIE information.
3531
3532 Note that since there is no guarantee that the data is properly
3533 aligned in memory for the type of access required (indirection
3534 through anything other than a char pointer), and there is no
3535 guarantee that it is in the same byte order as the gdb host,
3536 we call a function which deals with both alignment and byte
3537 swapping issues. Possibly inefficient, but quite portable.
3538
3539 We also take care of some other basic things at this point, such
3540 as ensuring that the instance of the die info structure starts
3541 out completely zero'd and that curdie is initialized for use
3542 in error reporting if we have a problem with the current die.
3543
3544 NOTES
3545
3546 All DIE's must have at least a valid length, thus the minimum
3547 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3548 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3549 are forced to be TAG_padding DIES.
3550
3551 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3552 that if a padding DIE is used for alignment and the amount needed is
3553 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3554 enough to align to the next alignment boundry.
3555
3556 We do some basic sanity checking here, such as verifying that the
3557 length of the die would not cause it to overrun the recorded end of
3558 the buffer holding the DIE info. If we find a DIE that is either
3559 too small or too large, we force it's length to zero which should
3560 cause the caller to take appropriate action.
3561 */
3562
3563 static void
3564 basicdieinfo (dip, diep, objfile)
3565 struct dieinfo *dip;
3566 char *diep;
3567 struct objfile *objfile;
3568 {
3569 curdie = dip;
3570 memset (dip, 0, sizeof (struct dieinfo));
3571 dip -> die = diep;
3572 dip -> die_ref = dbroff + (diep - dbbase);
3573 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3574 objfile);
3575 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3576 ((diep + dip -> die_length) > (dbbase + dbsize)))
3577 {
3578 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3579 dip -> die_length = 0;
3580 }
3581 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3582 {
3583 dip -> die_tag = TAG_padding;
3584 }
3585 else
3586 {
3587 diep += SIZEOF_DIE_LENGTH;
3588 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3589 objfile);
3590 }
3591 }
3592
3593 /*
3594
3595 LOCAL FUNCTION
3596
3597 completedieinfo -- finish reading the information for a given DIE
3598
3599 SYNOPSIS
3600
3601 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3602
3603 DESCRIPTION
3604
3605 Given a pointer to an already partially initialized die info structure,
3606 scan the raw DIE data and finish filling in the die info structure
3607 from the various attributes found.
3608
3609 Note that since there is no guarantee that the data is properly
3610 aligned in memory for the type of access required (indirection
3611 through anything other than a char pointer), and there is no
3612 guarantee that it is in the same byte order as the gdb host,
3613 we call a function which deals with both alignment and byte
3614 swapping issues. Possibly inefficient, but quite portable.
3615
3616 NOTES
3617
3618 Each time we are called, we increment the diecount variable, which
3619 keeps an approximate count of the number of dies processed for
3620 each compilation unit. This information is presented to the user
3621 if the info_verbose flag is set.
3622
3623 */
3624
3625 static void
3626 completedieinfo (dip, objfile)
3627 struct dieinfo *dip;
3628 struct objfile *objfile;
3629 {
3630 char *diep; /* Current pointer into raw DIE data */
3631 char *end; /* Terminate DIE scan here */
3632 unsigned short attr; /* Current attribute being scanned */
3633 unsigned short form; /* Form of the attribute */
3634 int nbytes; /* Size of next field to read */
3635
3636 diecount++;
3637 diep = dip -> die;
3638 end = diep + dip -> die_length;
3639 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3640 while (diep < end)
3641 {
3642 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3643 diep += SIZEOF_ATTRIBUTE;
3644 if ((nbytes = attribute_size (attr)) == -1)
3645 {
3646 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3647 diep = end;
3648 continue;
3649 }
3650 switch (attr)
3651 {
3652 case AT_fund_type:
3653 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3654 objfile);
3655 break;
3656 case AT_ordering:
3657 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3658 objfile);
3659 break;
3660 case AT_bit_offset:
3661 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3662 objfile);
3663 break;
3664 case AT_sibling:
3665 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3666 objfile);
3667 break;
3668 case AT_stmt_list:
3669 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3670 objfile);
3671 dip -> has_at_stmt_list = 1;
3672 break;
3673 case AT_low_pc:
3674 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3675 objfile);
3676 dip -> at_low_pc += baseaddr;
3677 dip -> has_at_low_pc = 1;
3678 break;
3679 case AT_high_pc:
3680 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3681 objfile);
3682 dip -> at_high_pc += baseaddr;
3683 break;
3684 case AT_language:
3685 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3686 objfile);
3687 break;
3688 case AT_user_def_type:
3689 dip -> at_user_def_type = target_to_host (diep, nbytes,
3690 GET_UNSIGNED, objfile);
3691 break;
3692 case AT_byte_size:
3693 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3694 objfile);
3695 dip -> has_at_byte_size = 1;
3696 break;
3697 case AT_bit_size:
3698 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3699 objfile);
3700 break;
3701 case AT_member:
3702 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3703 objfile);
3704 break;
3705 case AT_discr:
3706 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3707 objfile);
3708 break;
3709 case AT_location:
3710 dip -> at_location = diep;
3711 break;
3712 case AT_mod_fund_type:
3713 dip -> at_mod_fund_type = diep;
3714 break;
3715 case AT_subscr_data:
3716 dip -> at_subscr_data = diep;
3717 break;
3718 case AT_mod_u_d_type:
3719 dip -> at_mod_u_d_type = diep;
3720 break;
3721 case AT_element_list:
3722 dip -> at_element_list = diep;
3723 dip -> short_element_list = 0;
3724 break;
3725 case AT_short_element_list:
3726 dip -> at_element_list = diep;
3727 dip -> short_element_list = 1;
3728 break;
3729 case AT_discr_value:
3730 dip -> at_discr_value = diep;
3731 break;
3732 case AT_string_length:
3733 dip -> at_string_length = diep;
3734 break;
3735 case AT_name:
3736 dip -> at_name = diep;
3737 break;
3738 case AT_comp_dir:
3739 /* For now, ignore any "hostname:" portion, since gdb doesn't
3740 know how to deal with it. (FIXME). */
3741 dip -> at_comp_dir = strrchr (diep, ':');
3742 if (dip -> at_comp_dir != NULL)
3743 {
3744 dip -> at_comp_dir++;
3745 }
3746 else
3747 {
3748 dip -> at_comp_dir = diep;
3749 }
3750 break;
3751 case AT_producer:
3752 dip -> at_producer = diep;
3753 break;
3754 case AT_start_scope:
3755 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3756 objfile);
3757 break;
3758 case AT_stride_size:
3759 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3760 objfile);
3761 break;
3762 case AT_src_info:
3763 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3764 objfile);
3765 break;
3766 case AT_prototyped:
3767 dip -> at_prototyped = diep;
3768 break;
3769 default:
3770 /* Found an attribute that we are unprepared to handle. However
3771 it is specifically one of the design goals of DWARF that
3772 consumers should ignore unknown attributes. As long as the
3773 form is one that we recognize (so we know how to skip it),
3774 we can just ignore the unknown attribute. */
3775 break;
3776 }
3777 form = FORM_FROM_ATTR (attr);
3778 switch (form)
3779 {
3780 case FORM_DATA2:
3781 diep += 2;
3782 break;
3783 case FORM_DATA4:
3784 case FORM_REF:
3785 diep += 4;
3786 break;
3787 case FORM_DATA8:
3788 diep += 8;
3789 break;
3790 case FORM_ADDR:
3791 diep += TARGET_FT_POINTER_SIZE (objfile);
3792 break;
3793 case FORM_BLOCK2:
3794 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3795 break;
3796 case FORM_BLOCK4:
3797 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3798 break;
3799 case FORM_STRING:
3800 diep += strlen (diep) + 1;
3801 break;
3802 default:
3803 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3804 diep = end;
3805 break;
3806 }
3807 }
3808 }
3809
3810 /*
3811
3812 LOCAL FUNCTION
3813
3814 target_to_host -- swap in target data to host
3815
3816 SYNOPSIS
3817
3818 target_to_host (char *from, int nbytes, int signextend,
3819 struct objfile *objfile)
3820
3821 DESCRIPTION
3822
3823 Given pointer to data in target format in FROM, a byte count for
3824 the size of the data in NBYTES, a flag indicating whether or not
3825 the data is signed in SIGNEXTEND, and a pointer to the current
3826 objfile in OBJFILE, convert the data to host format and return
3827 the converted value.
3828
3829 NOTES
3830
3831 FIXME: If we read data that is known to be signed, and expect to
3832 use it as signed data, then we need to explicitly sign extend the
3833 result until the bfd library is able to do this for us.
3834
3835 */
3836
3837 static unsigned long
3838 target_to_host (from, nbytes, signextend, objfile)
3839 char *from;
3840 int nbytes;
3841 int signextend; /* FIXME: Unused */
3842 struct objfile *objfile;
3843 {
3844 unsigned long rtnval;
3845
3846 switch (nbytes)
3847 {
3848 case 8:
3849 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3850 break;
3851 case 4:
3852 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3853 break;
3854 case 2:
3855 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3856 break;
3857 case 1:
3858 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3859 break;
3860 default:
3861 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3862 rtnval = 0;
3863 break;
3864 }
3865 return (rtnval);
3866 }
3867
3868 /*
3869
3870 LOCAL FUNCTION
3871
3872 attribute_size -- compute size of data for a DWARF attribute
3873
3874 SYNOPSIS
3875
3876 static int attribute_size (unsigned int attr)
3877
3878 DESCRIPTION
3879
3880 Given a DWARF attribute in ATTR, compute the size of the first
3881 piece of data associated with this attribute and return that
3882 size.
3883
3884 Returns -1 for unrecognized attributes.
3885
3886 */
3887
3888 static int
3889 attribute_size (attr)
3890 unsigned int attr;
3891 {
3892 int nbytes; /* Size of next data for this attribute */
3893 unsigned short form; /* Form of the attribute */
3894
3895 form = FORM_FROM_ATTR (attr);
3896 switch (form)
3897 {
3898 case FORM_STRING: /* A variable length field is next */
3899 nbytes = 0;
3900 break;
3901 case FORM_DATA2: /* Next 2 byte field is the data itself */
3902 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3903 nbytes = 2;
3904 break;
3905 case FORM_DATA4: /* Next 4 byte field is the data itself */
3906 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3907 case FORM_REF: /* Next 4 byte field is a DIE offset */
3908 nbytes = 4;
3909 break;
3910 case FORM_DATA8: /* Next 8 byte field is the data itself */
3911 nbytes = 8;
3912 break;
3913 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3914 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3915 break;
3916 default:
3917 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3918 nbytes = -1;
3919 break;
3920 }
3921 return (nbytes);
3922 }
This page took 0.108435 seconds and 4 git commands to generate.