* corelow.c, exec.c, inftarg.c, m3-nat.c, op50-rom.c, procfs.c,
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "symtab.h"
43 #include "gdbtypes.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "elf/dwarf.h"
47 #include "buildsym.h"
48 #include "demangle.h"
49 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
50 #include "language.h"
51 #include "complaints.h"
52
53 #include <fcntl.h>
54 #include <string.h>
55
56 #ifndef NO_SYS_FILE
57 #include <sys/file.h>
58 #endif
59
60 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
61 #ifndef L_SET
62 #define L_SET 0
63 #endif
64
65 /* Some macros to provide DIE info for complaints. */
66
67 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
68 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
69
70 /* Complaints that can be issued during DWARF debug info reading. */
71
72 struct complaint no_bfd_get_N =
73 {
74 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
75 };
76
77 struct complaint malformed_die =
78 {
79 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
80 };
81
82 struct complaint bad_die_ref =
83 {
84 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
85 };
86
87 struct complaint unknown_attribute_form =
88 {
89 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
90 };
91
92 struct complaint unknown_attribute_length =
93 {
94 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
95 };
96
97 struct complaint unexpected_fund_type =
98 {
99 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
100 };
101
102 struct complaint unknown_type_modifier =
103 {
104 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
105 };
106
107 struct complaint volatile_ignored =
108 {
109 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
110 };
111
112 struct complaint const_ignored =
113 {
114 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
115 };
116
117 struct complaint botched_modified_type =
118 {
119 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
120 };
121
122 struct complaint op_deref2 =
123 {
124 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
125 };
126
127 struct complaint op_deref4 =
128 {
129 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
130 };
131
132 struct complaint basereg_not_handled =
133 {
134 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
135 };
136
137 struct complaint dup_user_type_allocation =
138 {
139 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
140 };
141
142 struct complaint dup_user_type_definition =
143 {
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
145 };
146
147 struct complaint missing_tag =
148 {
149 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
150 };
151
152 struct complaint bad_array_element_type =
153 {
154 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
155 };
156
157 struct complaint subscript_data_items =
158 {
159 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
160 };
161
162 struct complaint unhandled_array_subscript_format =
163 {
164 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
165 };
166
167 struct complaint unknown_array_subscript_format =
168 {
169 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
170 };
171
172 struct complaint not_row_major =
173 {
174 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
175 };
176
177 typedef unsigned int DIE_REF; /* Reference to a DIE */
178
179 #ifndef GCC_PRODUCER
180 #define GCC_PRODUCER "GNU C "
181 #endif
182
183 #ifndef GPLUS_PRODUCER
184 #define GPLUS_PRODUCER "GNU C++ "
185 #endif
186
187 #ifndef LCC_PRODUCER
188 #define LCC_PRODUCER "NCR C/C++"
189 #endif
190
191 #ifndef CHILL_PRODUCER
192 #define CHILL_PRODUCER "GNU Chill "
193 #endif
194
195 /* Flags to target_to_host() that tell whether or not the data object is
196 expected to be signed. Used, for example, when fetching a signed
197 integer in the target environment which is used as a signed integer
198 in the host environment, and the two environments have different sized
199 ints. In this case, *somebody* has to sign extend the smaller sized
200 int. */
201
202 #define GET_UNSIGNED 0 /* No sign extension required */
203 #define GET_SIGNED 1 /* Sign extension required */
204
205 /* Defines for things which are specified in the document "DWARF Debugging
206 Information Format" published by UNIX International, Programming Languages
207 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
208
209 #define SIZEOF_DIE_LENGTH 4
210 #define SIZEOF_DIE_TAG 2
211 #define SIZEOF_ATTRIBUTE 2
212 #define SIZEOF_FORMAT_SPECIFIER 1
213 #define SIZEOF_FMT_FT 2
214 #define SIZEOF_LINETBL_LENGTH 4
215 #define SIZEOF_LINETBL_LINENO 4
216 #define SIZEOF_LINETBL_STMT 2
217 #define SIZEOF_LINETBL_DELTA 4
218 #define SIZEOF_LOC_ATOM_CODE 1
219
220 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
221
222 /* Macros that return the sizes of various types of data in the target
223 environment.
224
225 FIXME: Currently these are just compile time constants (as they are in
226 other parts of gdb as well). They need to be able to get the right size
227 either from the bfd or possibly from the DWARF info. It would be nice if
228 the DWARF producer inserted DIES that describe the fundamental types in
229 the target environment into the DWARF info, similar to the way dbx stabs
230 producers produce information about their fundamental types. */
231
232 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
233 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
234
235 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
236 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
237 However, the Issue 2 DWARF specification from AT&T defines it as
238 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
239 For backwards compatibility with the AT&T compiler produced executables
240 we define AT_short_element_list for this variant. */
241
242 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
243
244 /* External variables referenced. */
245
246 extern int info_verbose; /* From main.c; nonzero => verbose */
247 extern char *warning_pre_print; /* From utils.c */
248
249 /* The DWARF debugging information consists of two major pieces,
250 one is a block of DWARF Information Entries (DIE's) and the other
251 is a line number table. The "struct dieinfo" structure contains
252 the information for a single DIE, the one currently being processed.
253
254 In order to make it easier to randomly access the attribute fields
255 of the current DIE, which are specifically unordered within the DIE,
256 each DIE is scanned and an instance of the "struct dieinfo"
257 structure is initialized.
258
259 Initialization is done in two levels. The first, done by basicdieinfo(),
260 just initializes those fields that are vital to deciding whether or not
261 to use this DIE, how to skip past it, etc. The second, done by the
262 function completedieinfo(), fills in the rest of the information.
263
264 Attributes which have block forms are not interpreted at the time
265 the DIE is scanned, instead we just save pointers to the start
266 of their value fields.
267
268 Some fields have a flag <name>_p that is set when the value of the
269 field is valid (I.E. we found a matching attribute in the DIE). Since
270 we may want to test for the presence of some attributes in the DIE,
271 such as AT_low_pc, without restricting the values of the field,
272 we need someway to note that we found such an attribute.
273
274 */
275
276 typedef char BLOCK;
277
278 struct dieinfo {
279 char * die; /* Pointer to the raw DIE data */
280 unsigned long die_length; /* Length of the raw DIE data */
281 DIE_REF die_ref; /* Offset of this DIE */
282 unsigned short die_tag; /* Tag for this DIE */
283 unsigned long at_padding;
284 unsigned long at_sibling;
285 BLOCK * at_location;
286 char * at_name;
287 unsigned short at_fund_type;
288 BLOCK * at_mod_fund_type;
289 unsigned long at_user_def_type;
290 BLOCK * at_mod_u_d_type;
291 unsigned short at_ordering;
292 BLOCK * at_subscr_data;
293 unsigned long at_byte_size;
294 unsigned short at_bit_offset;
295 unsigned long at_bit_size;
296 BLOCK * at_element_list;
297 unsigned long at_stmt_list;
298 unsigned long at_low_pc;
299 unsigned long at_high_pc;
300 unsigned long at_language;
301 unsigned long at_member;
302 unsigned long at_discr;
303 BLOCK * at_discr_value;
304 BLOCK * at_string_length;
305 char * at_comp_dir;
306 char * at_producer;
307 unsigned long at_start_scope;
308 unsigned long at_stride_size;
309 unsigned long at_src_info;
310 char * at_prototyped;
311 unsigned int has_at_low_pc:1;
312 unsigned int has_at_stmt_list:1;
313 unsigned int has_at_byte_size:1;
314 unsigned int short_element_list:1;
315 };
316
317 static int diecount; /* Approximate count of dies for compilation unit */
318 static struct dieinfo *curdie; /* For warnings and such */
319
320 static char *dbbase; /* Base pointer to dwarf info */
321 static int dbsize; /* Size of dwarf info in bytes */
322 static int dbroff; /* Relative offset from start of .debug section */
323 static char *lnbase; /* Base pointer to line section */
324 static int isreg; /* Kludge to identify register variables */
325 /* Kludge to identify basereg references. Nonzero if we have an offset
326 relative to a basereg. */
327 static int offreg;
328 /* Which base register is it relative to? */
329 static int basereg;
330
331 /* This value is added to each symbol value. FIXME: Generalize to
332 the section_offsets structure used by dbxread (once this is done,
333 pass the appropriate section number to end_symtab). */
334 static CORE_ADDR baseaddr; /* Add to each symbol value */
335
336 /* The section offsets used in the current psymtab or symtab. FIXME,
337 only used to pass one value (baseaddr) at the moment. */
338 static struct section_offsets *base_section_offsets;
339
340 /* Each partial symbol table entry contains a pointer to private data for the
341 read_symtab() function to use when expanding a partial symbol table entry
342 to a full symbol table entry. For DWARF debugging info, this data is
343 contained in the following structure and macros are provided for easy
344 access to the members given a pointer to a partial symbol table entry.
345
346 dbfoff Always the absolute file offset to the start of the ".debug"
347 section for the file containing the DIE's being accessed.
348
349 dbroff Relative offset from the start of the ".debug" access to the
350 first DIE to be accessed. When building the partial symbol
351 table, this value will be zero since we are accessing the
352 entire ".debug" section. When expanding a partial symbol
353 table entry, this value will be the offset to the first
354 DIE for the compilation unit containing the symbol that
355 triggers the expansion.
356
357 dblength The size of the chunk of DIE's being examined, in bytes.
358
359 lnfoff The absolute file offset to the line table fragment. Ignored
360 when building partial symbol tables, but used when expanding
361 them, and contains the absolute file offset to the fragment
362 of the ".line" section containing the line numbers for the
363 current compilation unit.
364 */
365
366 struct dwfinfo {
367 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
368 int dbroff; /* Relative offset from start of .debug section */
369 int dblength; /* Size of the chunk of DIE's being examined */
370 file_ptr lnfoff; /* Absolute file offset to line table fragment */
371 };
372
373 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
374 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
375 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
376 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
377
378 /* The generic symbol table building routines have separate lists for
379 file scope symbols and all all other scopes (local scopes). So
380 we need to select the right one to pass to add_symbol_to_list().
381 We do it by keeping a pointer to the correct list in list_in_scope.
382
383 FIXME: The original dwarf code just treated the file scope as the first
384 local scope, and all other local scopes as nested local scopes, and worked
385 fine. Check to see if we really need to distinguish these in buildsym.c */
386
387 struct pending **list_in_scope = &file_symbols;
388
389 /* DIES which have user defined types or modified user defined types refer to
390 other DIES for the type information. Thus we need to associate the offset
391 of a DIE for a user defined type with a pointer to the type information.
392
393 Originally this was done using a simple but expensive algorithm, with an
394 array of unsorted structures, each containing an offset/type-pointer pair.
395 This array was scanned linearly each time a lookup was done. The result
396 was that gdb was spending over half it's startup time munging through this
397 array of pointers looking for a structure that had the right offset member.
398
399 The second attempt used the same array of structures, but the array was
400 sorted using qsort each time a new offset/type was recorded, and a binary
401 search was used to find the type pointer for a given DIE offset. This was
402 even slower, due to the overhead of sorting the array each time a new
403 offset/type pair was entered.
404
405 The third attempt uses a fixed size array of type pointers, indexed by a
406 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
407 we can divide any DIE offset by 4 to obtain a unique index into this fixed
408 size array. Since each element is a 4 byte pointer, it takes exactly as
409 much memory to hold this array as to hold the DWARF info for a given
410 compilation unit. But it gets freed as soon as we are done with it.
411 This has worked well in practice, as a reasonable tradeoff between memory
412 consumption and speed, without having to resort to much more complicated
413 algorithms. */
414
415 static struct type **utypes; /* Pointer to array of user type pointers */
416 static int numutypes; /* Max number of user type pointers */
417
418 /* Maintain an array of referenced fundamental types for the current
419 compilation unit being read. For DWARF version 1, we have to construct
420 the fundamental types on the fly, since no information about the
421 fundamental types is supplied. Each such fundamental type is created by
422 calling a language dependent routine to create the type, and then a
423 pointer to that type is then placed in the array at the index specified
424 by it's FT_<TYPENAME> value. The array has a fixed size set by the
425 FT_NUM_MEMBERS compile time constant, which is the number of predefined
426 fundamental types gdb knows how to construct. */
427
428 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
429
430 /* Record the language for the compilation unit which is currently being
431 processed. We know it once we have seen the TAG_compile_unit DIE,
432 and we need it while processing the DIE's for that compilation unit.
433 It is eventually saved in the symtab structure, but we don't finalize
434 the symtab struct until we have processed all the DIE's for the
435 compilation unit. We also need to get and save a pointer to the
436 language struct for this language, so we can call the language
437 dependent routines for doing things such as creating fundamental
438 types. */
439
440 static enum language cu_language;
441 static const struct language_defn *cu_language_defn;
442
443 /* Forward declarations of static functions so we don't have to worry
444 about ordering within this file. */
445
446 static int
447 attribute_size PARAMS ((unsigned int));
448
449 static unsigned long
450 target_to_host PARAMS ((char *, int, int, struct objfile *));
451
452 static void
453 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
454
455 static void
456 handle_producer PARAMS ((char *));
457
458 static void
459 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
460
461 static void
462 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
463
464 static void
465 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
466 struct objfile *));
467
468 static void
469 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
470
471 static void
472 scan_compilation_units PARAMS ((char *, char *, file_ptr,
473 file_ptr, struct objfile *));
474
475 static void
476 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
477
478 static void
479 init_psymbol_list PARAMS ((struct objfile *, int));
480
481 static void
482 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
483
484 static void
485 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
486
487 static void
488 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
489
490 static void
491 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
492
493 static void
494 read_ofile_symtab PARAMS ((struct partial_symtab *));
495
496 static void
497 process_dies PARAMS ((char *, char *, struct objfile *));
498
499 static void
500 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
501 struct objfile *));
502
503 static struct type *
504 decode_array_element_type PARAMS ((char *));
505
506 static struct type *
507 decode_subscript_data_item PARAMS ((char *, char *));
508
509 static void
510 dwarf_read_array_type PARAMS ((struct dieinfo *));
511
512 static void
513 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
514
515 static void
516 read_tag_string_type PARAMS ((struct dieinfo *dip));
517
518 static void
519 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
520
521 static void
522 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
523
524 static struct type *
525 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
526
527 static struct type *
528 enum_type PARAMS ((struct dieinfo *, struct objfile *));
529
530 static void
531 decode_line_numbers PARAMS ((char *));
532
533 static struct type *
534 decode_die_type PARAMS ((struct dieinfo *));
535
536 static struct type *
537 decode_mod_fund_type PARAMS ((char *));
538
539 static struct type *
540 decode_mod_u_d_type PARAMS ((char *));
541
542 static struct type *
543 decode_modified_type PARAMS ((char *, unsigned int, int));
544
545 static struct type *
546 decode_fund_type PARAMS ((unsigned int));
547
548 static char *
549 create_name PARAMS ((char *, struct obstack *));
550
551 static struct type *
552 lookup_utype PARAMS ((DIE_REF));
553
554 static struct type *
555 alloc_utype PARAMS ((DIE_REF, struct type *));
556
557 static struct symbol *
558 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
559
560 static void
561 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
562 struct type *));
563
564 static int
565 locval PARAMS ((char *));
566
567 static void
568 set_cu_language PARAMS ((struct dieinfo *));
569
570 static struct type *
571 dwarf_fundamental_type PARAMS ((struct objfile *, int));
572
573
574 /*
575
576 LOCAL FUNCTION
577
578 dwarf_fundamental_type -- lookup or create a fundamental type
579
580 SYNOPSIS
581
582 struct type *
583 dwarf_fundamental_type (struct objfile *objfile, int typeid)
584
585 DESCRIPTION
586
587 DWARF version 1 doesn't supply any fundamental type information,
588 so gdb has to construct such types. It has a fixed number of
589 fundamental types that it knows how to construct, which is the
590 union of all types that it knows how to construct for all languages
591 that it knows about. These are enumerated in gdbtypes.h.
592
593 As an example, assume we find a DIE that references a DWARF
594 fundamental type of FT_integer. We first look in the ftypes
595 array to see if we already have such a type, indexed by the
596 gdb internal value of FT_INTEGER. If so, we simply return a
597 pointer to that type. If not, then we ask an appropriate
598 language dependent routine to create a type FT_INTEGER, using
599 defaults reasonable for the current target machine, and install
600 that type in ftypes for future reference.
601
602 RETURNS
603
604 Pointer to a fundamental type.
605
606 */
607
608 static struct type *
609 dwarf_fundamental_type (objfile, typeid)
610 struct objfile *objfile;
611 int typeid;
612 {
613 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
614 {
615 error ("internal error - invalid fundamental type id %d", typeid);
616 }
617
618 /* Look for this particular type in the fundamental type vector. If one is
619 not found, create and install one appropriate for the current language
620 and the current target machine. */
621
622 if (ftypes[typeid] == NULL)
623 {
624 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
625 }
626
627 return (ftypes[typeid]);
628 }
629
630 /*
631
632 LOCAL FUNCTION
633
634 set_cu_language -- set local copy of language for compilation unit
635
636 SYNOPSIS
637
638 void
639 set_cu_language (struct dieinfo *dip)
640
641 DESCRIPTION
642
643 Decode the language attribute for a compilation unit DIE and
644 remember what the language was. We use this at various times
645 when processing DIE's for a given compilation unit.
646
647 RETURNS
648
649 No return value.
650
651 */
652
653 static void
654 set_cu_language (dip)
655 struct dieinfo *dip;
656 {
657 switch (dip -> at_language)
658 {
659 case LANG_C89:
660 case LANG_C:
661 cu_language = language_c;
662 break;
663 case LANG_C_PLUS_PLUS:
664 cu_language = language_cplus;
665 break;
666 case LANG_CHILL:
667 cu_language = language_chill;
668 break;
669 case LANG_MODULA2:
670 cu_language = language_m2;
671 break;
672 case LANG_ADA83:
673 case LANG_COBOL74:
674 case LANG_COBOL85:
675 case LANG_FORTRAN77:
676 case LANG_FORTRAN90:
677 case LANG_PASCAL83:
678 /* We don't know anything special about these yet. */
679 cu_language = language_unknown;
680 break;
681 default:
682 /* If no at_language, try to deduce one from the filename */
683 cu_language = deduce_language_from_filename (dip -> at_name);
684 break;
685 }
686 cu_language_defn = language_def (cu_language);
687 }
688
689 /*
690
691 GLOBAL FUNCTION
692
693 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
694
695 SYNOPSIS
696
697 void dwarf_build_psymtabs (struct objfile *objfile,
698 struct section_offsets *section_offsets,
699 int mainline, file_ptr dbfoff, unsigned int dbfsize,
700 file_ptr lnoffset, unsigned int lnsize)
701
702 DESCRIPTION
703
704 This function is called upon to build partial symtabs from files
705 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
706
707 It is passed a bfd* containing the DIES
708 and line number information, the corresponding filename for that
709 file, a base address for relocating the symbols, a flag indicating
710 whether or not this debugging information is from a "main symbol
711 table" rather than a shared library or dynamically linked file,
712 and file offset/size pairs for the DIE information and line number
713 information.
714
715 RETURNS
716
717 No return value.
718
719 */
720
721 void
722 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
723 lnoffset, lnsize)
724 struct objfile *objfile;
725 struct section_offsets *section_offsets;
726 int mainline;
727 file_ptr dbfoff;
728 unsigned int dbfsize;
729 file_ptr lnoffset;
730 unsigned int lnsize;
731 {
732 bfd *abfd = objfile->obfd;
733 struct cleanup *back_to;
734
735 current_objfile = objfile;
736 dbsize = dbfsize;
737 dbbase = xmalloc (dbsize);
738 dbroff = 0;
739 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
740 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
741 {
742 free (dbbase);
743 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
744 }
745 back_to = make_cleanup (free, dbbase);
746
747 /* If we are reinitializing, or if we have never loaded syms yet, init.
748 Since we have no idea how many DIES we are looking at, we just guess
749 some arbitrary value. */
750
751 if (mainline || objfile -> global_psymbols.size == 0 ||
752 objfile -> static_psymbols.size == 0)
753 {
754 init_psymbol_list (objfile, 1024);
755 }
756
757 /* Save the relocation factor where everybody can see it. */
758
759 base_section_offsets = section_offsets;
760 baseaddr = ANOFFSET (section_offsets, 0);
761
762 /* Follow the compilation unit sibling chain, building a partial symbol
763 table entry for each one. Save enough information about each compilation
764 unit to locate the full DWARF information later. */
765
766 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
767
768 do_cleanups (back_to);
769 current_objfile = NULL;
770 }
771
772 /*
773
774 LOCAL FUNCTION
775
776 read_lexical_block_scope -- process all dies in a lexical block
777
778 SYNOPSIS
779
780 static void read_lexical_block_scope (struct dieinfo *dip,
781 char *thisdie, char *enddie)
782
783 DESCRIPTION
784
785 Process all the DIES contained within a lexical block scope.
786 Start a new scope, process the dies, and then close the scope.
787
788 */
789
790 static void
791 read_lexical_block_scope (dip, thisdie, enddie, objfile)
792 struct dieinfo *dip;
793 char *thisdie;
794 char *enddie;
795 struct objfile *objfile;
796 {
797 register struct context_stack *new;
798
799 push_context (0, dip -> at_low_pc);
800 process_dies (thisdie + dip -> die_length, enddie, objfile);
801 new = pop_context ();
802 if (local_symbols != NULL)
803 {
804 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
805 dip -> at_high_pc, objfile);
806 }
807 local_symbols = new -> locals;
808 }
809
810 /*
811
812 LOCAL FUNCTION
813
814 lookup_utype -- look up a user defined type from die reference
815
816 SYNOPSIS
817
818 static type *lookup_utype (DIE_REF die_ref)
819
820 DESCRIPTION
821
822 Given a DIE reference, lookup the user defined type associated with
823 that DIE, if it has been registered already. If not registered, then
824 return NULL. Alloc_utype() can be called to register an empty
825 type for this reference, which will be filled in later when the
826 actual referenced DIE is processed.
827 */
828
829 static struct type *
830 lookup_utype (die_ref)
831 DIE_REF die_ref;
832 {
833 struct type *type = NULL;
834 int utypeidx;
835
836 utypeidx = (die_ref - dbroff) / 4;
837 if ((utypeidx < 0) || (utypeidx >= numutypes))
838 {
839 complain (&bad_die_ref, DIE_ID, DIE_NAME);
840 }
841 else
842 {
843 type = *(utypes + utypeidx);
844 }
845 return (type);
846 }
847
848
849 /*
850
851 LOCAL FUNCTION
852
853 alloc_utype -- add a user defined type for die reference
854
855 SYNOPSIS
856
857 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
858
859 DESCRIPTION
860
861 Given a die reference DIE_REF, and a possible pointer to a user
862 defined type UTYPEP, register that this reference has a user
863 defined type and either use the specified type in UTYPEP or
864 make a new empty type that will be filled in later.
865
866 We should only be called after calling lookup_utype() to verify that
867 there is not currently a type registered for DIE_REF.
868 */
869
870 static struct type *
871 alloc_utype (die_ref, utypep)
872 DIE_REF die_ref;
873 struct type *utypep;
874 {
875 struct type **typep;
876 int utypeidx;
877
878 utypeidx = (die_ref - dbroff) / 4;
879 typep = utypes + utypeidx;
880 if ((utypeidx < 0) || (utypeidx >= numutypes))
881 {
882 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
883 complain (&bad_die_ref, DIE_ID, DIE_NAME);
884 }
885 else if (*typep != NULL)
886 {
887 utypep = *typep;
888 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
889 }
890 else
891 {
892 if (utypep == NULL)
893 {
894 utypep = alloc_type (current_objfile);
895 }
896 *typep = utypep;
897 }
898 return (utypep);
899 }
900
901 /*
902
903 LOCAL FUNCTION
904
905 decode_die_type -- return a type for a specified die
906
907 SYNOPSIS
908
909 static struct type *decode_die_type (struct dieinfo *dip)
910
911 DESCRIPTION
912
913 Given a pointer to a die information structure DIP, decode the
914 type of the die and return a pointer to the decoded type. All
915 dies without specific types default to type int.
916 */
917
918 static struct type *
919 decode_die_type (dip)
920 struct dieinfo *dip;
921 {
922 struct type *type = NULL;
923
924 if (dip -> at_fund_type != 0)
925 {
926 type = decode_fund_type (dip -> at_fund_type);
927 }
928 else if (dip -> at_mod_fund_type != NULL)
929 {
930 type = decode_mod_fund_type (dip -> at_mod_fund_type);
931 }
932 else if (dip -> at_user_def_type)
933 {
934 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
935 {
936 type = alloc_utype (dip -> at_user_def_type, NULL);
937 }
938 }
939 else if (dip -> at_mod_u_d_type)
940 {
941 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
942 }
943 else
944 {
945 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
946 }
947 return (type);
948 }
949
950 /*
951
952 LOCAL FUNCTION
953
954 struct_type -- compute and return the type for a struct or union
955
956 SYNOPSIS
957
958 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
959 char *enddie, struct objfile *objfile)
960
961 DESCRIPTION
962
963 Given pointer to a die information structure for a die which
964 defines a union or structure (and MUST define one or the other),
965 and pointers to the raw die data that define the range of dies which
966 define the members, compute and return the user defined type for the
967 structure or union.
968 */
969
970 static struct type *
971 struct_type (dip, thisdie, enddie, objfile)
972 struct dieinfo *dip;
973 char *thisdie;
974 char *enddie;
975 struct objfile *objfile;
976 {
977 struct type *type;
978 struct nextfield {
979 struct nextfield *next;
980 struct field field;
981 };
982 struct nextfield *list = NULL;
983 struct nextfield *new;
984 int nfields = 0;
985 int n;
986 struct dieinfo mbr;
987 char *nextdie;
988 int anonymous_size;
989
990 if ((type = lookup_utype (dip -> die_ref)) == NULL)
991 {
992 /* No forward references created an empty type, so install one now */
993 type = alloc_utype (dip -> die_ref, NULL);
994 }
995 INIT_CPLUS_SPECIFIC(type);
996 switch (dip -> die_tag)
997 {
998 case TAG_class_type:
999 TYPE_CODE (type) = TYPE_CODE_CLASS;
1000 break;
1001 case TAG_structure_type:
1002 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1003 break;
1004 case TAG_union_type:
1005 TYPE_CODE (type) = TYPE_CODE_UNION;
1006 break;
1007 default:
1008 /* Should never happen */
1009 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1010 complain (&missing_tag, DIE_ID, DIE_NAME);
1011 break;
1012 }
1013 /* Some compilers try to be helpful by inventing "fake" names for
1014 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1015 Thanks, but no thanks... */
1016 if (dip -> at_name != NULL
1017 && *dip -> at_name != '~'
1018 && *dip -> at_name != '.')
1019 {
1020 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1021 "", "", dip -> at_name);
1022 }
1023 /* Use whatever size is known. Zero is a valid size. We might however
1024 wish to check has_at_byte_size to make sure that some byte size was
1025 given explicitly, but DWARF doesn't specify that explicit sizes of
1026 zero have to present, so complaining about missing sizes should
1027 probably not be the default. */
1028 TYPE_LENGTH (type) = dip -> at_byte_size;
1029 thisdie += dip -> die_length;
1030 while (thisdie < enddie)
1031 {
1032 basicdieinfo (&mbr, thisdie, objfile);
1033 completedieinfo (&mbr, objfile);
1034 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1035 {
1036 break;
1037 }
1038 else if (mbr.at_sibling != 0)
1039 {
1040 nextdie = dbbase + mbr.at_sibling - dbroff;
1041 }
1042 else
1043 {
1044 nextdie = thisdie + mbr.die_length;
1045 }
1046 switch (mbr.die_tag)
1047 {
1048 case TAG_member:
1049 /* Get space to record the next field's data. */
1050 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1051 new -> next = list;
1052 list = new;
1053 /* Save the data. */
1054 list -> field.name =
1055 obsavestring (mbr.at_name, strlen (mbr.at_name),
1056 &objfile -> type_obstack);
1057 list -> field.type = decode_die_type (&mbr);
1058 list -> field.bitpos = 8 * locval (mbr.at_location);
1059 /* Handle bit fields. */
1060 list -> field.bitsize = mbr.at_bit_size;
1061 if (BITS_BIG_ENDIAN)
1062 {
1063 /* For big endian bits, the at_bit_offset gives the
1064 additional bit offset from the MSB of the containing
1065 anonymous object to the MSB of the field. We don't
1066 have to do anything special since we don't need to
1067 know the size of the anonymous object. */
1068 list -> field.bitpos += mbr.at_bit_offset;
1069 }
1070 else
1071 {
1072 /* For little endian bits, we need to have a non-zero
1073 at_bit_size, so that we know we are in fact dealing
1074 with a bitfield. Compute the bit offset to the MSB
1075 of the anonymous object, subtract off the number of
1076 bits from the MSB of the field to the MSB of the
1077 object, and then subtract off the number of bits of
1078 the field itself. The result is the bit offset of
1079 the LSB of the field. */
1080 if (mbr.at_bit_size > 0)
1081 {
1082 if (mbr.has_at_byte_size)
1083 {
1084 /* The size of the anonymous object containing
1085 the bit field is explicit, so use the
1086 indicated size (in bytes). */
1087 anonymous_size = mbr.at_byte_size;
1088 }
1089 else
1090 {
1091 /* The size of the anonymous object containing
1092 the bit field matches the size of an object
1093 of the bit field's type. DWARF allows
1094 at_byte_size to be left out in such cases, as
1095 a debug information size optimization. */
1096 anonymous_size = TYPE_LENGTH (list -> field.type);
1097 }
1098 list -> field.bitpos +=
1099 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1100 }
1101 }
1102 nfields++;
1103 break;
1104 default:
1105 process_dies (thisdie, nextdie, objfile);
1106 break;
1107 }
1108 thisdie = nextdie;
1109 }
1110 /* Now create the vector of fields, and record how big it is. We may
1111 not even have any fields, if this DIE was generated due to a reference
1112 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1113 set, which clues gdb in to the fact that it needs to search elsewhere
1114 for the full structure definition. */
1115 if (nfields == 0)
1116 {
1117 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1118 }
1119 else
1120 {
1121 TYPE_NFIELDS (type) = nfields;
1122 TYPE_FIELDS (type) = (struct field *)
1123 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1124 /* Copy the saved-up fields into the field vector. */
1125 for (n = nfields; list; list = list -> next)
1126 {
1127 TYPE_FIELD (type, --n) = list -> field;
1128 }
1129 }
1130 return (type);
1131 }
1132
1133 /*
1134
1135 LOCAL FUNCTION
1136
1137 read_structure_scope -- process all dies within struct or union
1138
1139 SYNOPSIS
1140
1141 static void read_structure_scope (struct dieinfo *dip,
1142 char *thisdie, char *enddie, struct objfile *objfile)
1143
1144 DESCRIPTION
1145
1146 Called when we find the DIE that starts a structure or union
1147 scope (definition) to process all dies that define the members
1148 of the structure or union. DIP is a pointer to the die info
1149 struct for the DIE that names the structure or union.
1150
1151 NOTES
1152
1153 Note that we need to call struct_type regardless of whether or not
1154 the DIE has an at_name attribute, since it might be an anonymous
1155 structure or union. This gets the type entered into our set of
1156 user defined types.
1157
1158 However, if the structure is incomplete (an opaque struct/union)
1159 then suppress creating a symbol table entry for it since gdb only
1160 wants to find the one with the complete definition. Note that if
1161 it is complete, we just call new_symbol, which does it's own
1162 checking about whether the struct/union is anonymous or not (and
1163 suppresses creating a symbol table entry itself).
1164
1165 */
1166
1167 static void
1168 read_structure_scope (dip, thisdie, enddie, objfile)
1169 struct dieinfo *dip;
1170 char *thisdie;
1171 char *enddie;
1172 struct objfile *objfile;
1173 {
1174 struct type *type;
1175 struct symbol *sym;
1176
1177 type = struct_type (dip, thisdie, enddie, objfile);
1178 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1179 {
1180 sym = new_symbol (dip, objfile);
1181 if (sym != NULL)
1182 {
1183 SYMBOL_TYPE (sym) = type;
1184 if (cu_language == language_cplus)
1185 {
1186 synthesize_typedef (dip, objfile, type);
1187 }
1188 }
1189 }
1190 }
1191
1192 /*
1193
1194 LOCAL FUNCTION
1195
1196 decode_array_element_type -- decode type of the array elements
1197
1198 SYNOPSIS
1199
1200 static struct type *decode_array_element_type (char *scan, char *end)
1201
1202 DESCRIPTION
1203
1204 As the last step in decoding the array subscript information for an
1205 array DIE, we need to decode the type of the array elements. We are
1206 passed a pointer to this last part of the subscript information and
1207 must return the appropriate type. If the type attribute is not
1208 recognized, just warn about the problem and return type int.
1209 */
1210
1211 static struct type *
1212 decode_array_element_type (scan)
1213 char *scan;
1214 {
1215 struct type *typep;
1216 DIE_REF die_ref;
1217 unsigned short attribute;
1218 unsigned short fundtype;
1219 int nbytes;
1220
1221 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1222 current_objfile);
1223 scan += SIZEOF_ATTRIBUTE;
1224 if ((nbytes = attribute_size (attribute)) == -1)
1225 {
1226 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1227 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1228 }
1229 else
1230 {
1231 switch (attribute)
1232 {
1233 case AT_fund_type:
1234 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1235 current_objfile);
1236 typep = decode_fund_type (fundtype);
1237 break;
1238 case AT_mod_fund_type:
1239 typep = decode_mod_fund_type (scan);
1240 break;
1241 case AT_user_def_type:
1242 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1243 current_objfile);
1244 if ((typep = lookup_utype (die_ref)) == NULL)
1245 {
1246 typep = alloc_utype (die_ref, NULL);
1247 }
1248 break;
1249 case AT_mod_u_d_type:
1250 typep = decode_mod_u_d_type (scan);
1251 break;
1252 default:
1253 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1254 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1255 break;
1256 }
1257 }
1258 return (typep);
1259 }
1260
1261 /*
1262
1263 LOCAL FUNCTION
1264
1265 decode_subscript_data_item -- decode array subscript item
1266
1267 SYNOPSIS
1268
1269 static struct type *
1270 decode_subscript_data_item (char *scan, char *end)
1271
1272 DESCRIPTION
1273
1274 The array subscripts and the data type of the elements of an
1275 array are described by a list of data items, stored as a block
1276 of contiguous bytes. There is a data item describing each array
1277 dimension, and a final data item describing the element type.
1278 The data items are ordered the same as their appearance in the
1279 source (I.E. leftmost dimension first, next to leftmost second,
1280 etc).
1281
1282 The data items describing each array dimension consist of four
1283 parts: (1) a format specifier, (2) type type of the subscript
1284 index, (3) a description of the low bound of the array dimension,
1285 and (4) a description of the high bound of the array dimension.
1286
1287 The last data item is the description of the type of each of
1288 the array elements.
1289
1290 We are passed a pointer to the start of the block of bytes
1291 containing the remaining data items, and a pointer to the first
1292 byte past the data. This function recursively decodes the
1293 remaining data items and returns a type.
1294
1295 If we somehow fail to decode some data, we complain about it
1296 and return a type "array of int".
1297
1298 BUGS
1299 FIXME: This code only implements the forms currently used
1300 by the AT&T and GNU C compilers.
1301
1302 The end pointer is supplied for error checking, maybe we should
1303 use it for that...
1304 */
1305
1306 static struct type *
1307 decode_subscript_data_item (scan, end)
1308 char *scan;
1309 char *end;
1310 {
1311 struct type *typep = NULL; /* Array type we are building */
1312 struct type *nexttype; /* Type of each element (may be array) */
1313 struct type *indextype; /* Type of this index */
1314 struct type *rangetype;
1315 unsigned int format;
1316 unsigned short fundtype;
1317 unsigned long lowbound;
1318 unsigned long highbound;
1319 int nbytes;
1320
1321 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1322 current_objfile);
1323 scan += SIZEOF_FORMAT_SPECIFIER;
1324 switch (format)
1325 {
1326 case FMT_ET:
1327 typep = decode_array_element_type (scan);
1328 break;
1329 case FMT_FT_C_C:
1330 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1331 current_objfile);
1332 indextype = decode_fund_type (fundtype);
1333 scan += SIZEOF_FMT_FT;
1334 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1335 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1336 scan += nbytes;
1337 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1338 scan += nbytes;
1339 nexttype = decode_subscript_data_item (scan, end);
1340 if (nexttype == NULL)
1341 {
1342 /* Munged subscript data or other problem, fake it. */
1343 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1344 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1345 }
1346 rangetype = create_range_type ((struct type *) NULL, indextype,
1347 lowbound, highbound);
1348 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1349 break;
1350 case FMT_FT_C_X:
1351 case FMT_FT_X_C:
1352 case FMT_FT_X_X:
1353 case FMT_UT_C_C:
1354 case FMT_UT_C_X:
1355 case FMT_UT_X_C:
1356 case FMT_UT_X_X:
1357 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1358 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1359 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1360 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1361 break;
1362 default:
1363 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1364 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1365 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1366 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1367 break;
1368 }
1369 return (typep);
1370 }
1371
1372 /*
1373
1374 LOCAL FUNCTION
1375
1376 dwarf_read_array_type -- read TAG_array_type DIE
1377
1378 SYNOPSIS
1379
1380 static void dwarf_read_array_type (struct dieinfo *dip)
1381
1382 DESCRIPTION
1383
1384 Extract all information from a TAG_array_type DIE and add to
1385 the user defined type vector.
1386 */
1387
1388 static void
1389 dwarf_read_array_type (dip)
1390 struct dieinfo *dip;
1391 {
1392 struct type *type;
1393 struct type *utype;
1394 char *sub;
1395 char *subend;
1396 unsigned short blocksz;
1397 int nbytes;
1398
1399 if (dip -> at_ordering != ORD_row_major)
1400 {
1401 /* FIXME: Can gdb even handle column major arrays? */
1402 complain (&not_row_major, DIE_ID, DIE_NAME);
1403 }
1404 if ((sub = dip -> at_subscr_data) != NULL)
1405 {
1406 nbytes = attribute_size (AT_subscr_data);
1407 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1408 subend = sub + nbytes + blocksz;
1409 sub += nbytes;
1410 type = decode_subscript_data_item (sub, subend);
1411 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1412 {
1413 /* Install user defined type that has not been referenced yet. */
1414 alloc_utype (dip -> die_ref, type);
1415 }
1416 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1417 {
1418 /* Ick! A forward ref has already generated a blank type in our
1419 slot, and this type probably already has things pointing to it
1420 (which is what caused it to be created in the first place).
1421 If it's just a place holder we can plop our fully defined type
1422 on top of it. We can't recover the space allocated for our
1423 new type since it might be on an obstack, but we could reuse
1424 it if we kept a list of them, but it might not be worth it
1425 (FIXME). */
1426 *utype = *type;
1427 }
1428 else
1429 {
1430 /* Double ick! Not only is a type already in our slot, but
1431 someone has decorated it. Complain and leave it alone. */
1432 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1433 }
1434 }
1435 }
1436
1437 /*
1438
1439 LOCAL FUNCTION
1440
1441 read_tag_pointer_type -- read TAG_pointer_type DIE
1442
1443 SYNOPSIS
1444
1445 static void read_tag_pointer_type (struct dieinfo *dip)
1446
1447 DESCRIPTION
1448
1449 Extract all information from a TAG_pointer_type DIE and add to
1450 the user defined type vector.
1451 */
1452
1453 static void
1454 read_tag_pointer_type (dip)
1455 struct dieinfo *dip;
1456 {
1457 struct type *type;
1458 struct type *utype;
1459
1460 type = decode_die_type (dip);
1461 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1462 {
1463 utype = lookup_pointer_type (type);
1464 alloc_utype (dip -> die_ref, utype);
1465 }
1466 else
1467 {
1468 TYPE_TARGET_TYPE (utype) = type;
1469 TYPE_POINTER_TYPE (type) = utype;
1470
1471 /* We assume the machine has only one representation for pointers! */
1472 /* FIXME: This confuses host<->target data representations, and is a
1473 poor assumption besides. */
1474
1475 TYPE_LENGTH (utype) = sizeof (char *);
1476 TYPE_CODE (utype) = TYPE_CODE_PTR;
1477 }
1478 }
1479
1480 /*
1481
1482 LOCAL FUNCTION
1483
1484 read_tag_string_type -- read TAG_string_type DIE
1485
1486 SYNOPSIS
1487
1488 static void read_tag_string_type (struct dieinfo *dip)
1489
1490 DESCRIPTION
1491
1492 Extract all information from a TAG_string_type DIE and add to
1493 the user defined type vector. It isn't really a user defined
1494 type, but it behaves like one, with other DIE's using an
1495 AT_user_def_type attribute to reference it.
1496 */
1497
1498 static void
1499 read_tag_string_type (dip)
1500 struct dieinfo *dip;
1501 {
1502 struct type *utype;
1503 struct type *indextype;
1504 struct type *rangetype;
1505 unsigned long lowbound = 0;
1506 unsigned long highbound;
1507
1508 if (dip -> has_at_byte_size)
1509 {
1510 /* A fixed bounds string */
1511 highbound = dip -> at_byte_size - 1;
1512 }
1513 else
1514 {
1515 /* A varying length string. Stub for now. (FIXME) */
1516 highbound = 1;
1517 }
1518 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1519 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1520 highbound);
1521
1522 utype = lookup_utype (dip -> die_ref);
1523 if (utype == NULL)
1524 {
1525 /* No type defined, go ahead and create a blank one to use. */
1526 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1527 }
1528 else
1529 {
1530 /* Already a type in our slot due to a forward reference. Make sure it
1531 is a blank one. If not, complain and leave it alone. */
1532 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1533 {
1534 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1535 return;
1536 }
1537 }
1538
1539 /* Create the string type using the blank type we either found or created. */
1540 utype = create_string_type (utype, rangetype);
1541 }
1542
1543 /*
1544
1545 LOCAL FUNCTION
1546
1547 read_subroutine_type -- process TAG_subroutine_type dies
1548
1549 SYNOPSIS
1550
1551 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1552 char *enddie)
1553
1554 DESCRIPTION
1555
1556 Handle DIES due to C code like:
1557
1558 struct foo {
1559 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1560 int b;
1561 };
1562
1563 NOTES
1564
1565 The parameter DIES are currently ignored. See if gdb has a way to
1566 include this info in it's type system, and decode them if so. Is
1567 this what the type structure's "arg_types" field is for? (FIXME)
1568 */
1569
1570 static void
1571 read_subroutine_type (dip, thisdie, enddie)
1572 struct dieinfo *dip;
1573 char *thisdie;
1574 char *enddie;
1575 {
1576 struct type *type; /* Type that this function returns */
1577 struct type *ftype; /* Function that returns above type */
1578
1579 /* Decode the type that this subroutine returns */
1580
1581 type = decode_die_type (dip);
1582
1583 /* Check to see if we already have a partially constructed user
1584 defined type for this DIE, from a forward reference. */
1585
1586 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1587 {
1588 /* This is the first reference to one of these types. Make
1589 a new one and place it in the user defined types. */
1590 ftype = lookup_function_type (type);
1591 alloc_utype (dip -> die_ref, ftype);
1592 }
1593 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1594 {
1595 /* We have an existing partially constructed type, so bash it
1596 into the correct type. */
1597 TYPE_TARGET_TYPE (ftype) = type;
1598 TYPE_FUNCTION_TYPE (type) = ftype;
1599 TYPE_LENGTH (ftype) = 1;
1600 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1601 }
1602 else
1603 {
1604 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1605 }
1606 }
1607
1608 /*
1609
1610 LOCAL FUNCTION
1611
1612 read_enumeration -- process dies which define an enumeration
1613
1614 SYNOPSIS
1615
1616 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1617 char *enddie, struct objfile *objfile)
1618
1619 DESCRIPTION
1620
1621 Given a pointer to a die which begins an enumeration, process all
1622 the dies that define the members of the enumeration.
1623
1624 NOTES
1625
1626 Note that we need to call enum_type regardless of whether or not we
1627 have a symbol, since we might have an enum without a tag name (thus
1628 no symbol for the tagname).
1629 */
1630
1631 static void
1632 read_enumeration (dip, thisdie, enddie, objfile)
1633 struct dieinfo *dip;
1634 char *thisdie;
1635 char *enddie;
1636 struct objfile *objfile;
1637 {
1638 struct type *type;
1639 struct symbol *sym;
1640
1641 type = enum_type (dip, objfile);
1642 sym = new_symbol (dip, objfile);
1643 if (sym != NULL)
1644 {
1645 SYMBOL_TYPE (sym) = type;
1646 if (cu_language == language_cplus)
1647 {
1648 synthesize_typedef (dip, objfile, type);
1649 }
1650 }
1651 }
1652
1653 /*
1654
1655 LOCAL FUNCTION
1656
1657 enum_type -- decode and return a type for an enumeration
1658
1659 SYNOPSIS
1660
1661 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1662
1663 DESCRIPTION
1664
1665 Given a pointer to a die information structure for the die which
1666 starts an enumeration, process all the dies that define the members
1667 of the enumeration and return a type pointer for the enumeration.
1668
1669 At the same time, for each member of the enumeration, create a
1670 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1671 and give it the type of the enumeration itself.
1672
1673 NOTES
1674
1675 Note that the DWARF specification explicitly mandates that enum
1676 constants occur in reverse order from the source program order,
1677 for "consistency" and because this ordering is easier for many
1678 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1679 Entries). Because gdb wants to see the enum members in program
1680 source order, we have to ensure that the order gets reversed while
1681 we are processing them.
1682 */
1683
1684 static struct type *
1685 enum_type (dip, objfile)
1686 struct dieinfo *dip;
1687 struct objfile *objfile;
1688 {
1689 struct type *type;
1690 struct nextfield {
1691 struct nextfield *next;
1692 struct field field;
1693 };
1694 struct nextfield *list = NULL;
1695 struct nextfield *new;
1696 int nfields = 0;
1697 int n;
1698 char *scan;
1699 char *listend;
1700 unsigned short blocksz;
1701 struct symbol *sym;
1702 int nbytes;
1703
1704 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1705 {
1706 /* No forward references created an empty type, so install one now */
1707 type = alloc_utype (dip -> die_ref, NULL);
1708 }
1709 TYPE_CODE (type) = TYPE_CODE_ENUM;
1710 /* Some compilers try to be helpful by inventing "fake" names for
1711 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1712 Thanks, but no thanks... */
1713 if (dip -> at_name != NULL
1714 && *dip -> at_name != '~'
1715 && *dip -> at_name != '.')
1716 {
1717 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1718 "", "", dip -> at_name);
1719 }
1720 if (dip -> at_byte_size != 0)
1721 {
1722 TYPE_LENGTH (type) = dip -> at_byte_size;
1723 }
1724 if ((scan = dip -> at_element_list) != NULL)
1725 {
1726 if (dip -> short_element_list)
1727 {
1728 nbytes = attribute_size (AT_short_element_list);
1729 }
1730 else
1731 {
1732 nbytes = attribute_size (AT_element_list);
1733 }
1734 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1735 listend = scan + nbytes + blocksz;
1736 scan += nbytes;
1737 while (scan < listend)
1738 {
1739 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1740 new -> next = list;
1741 list = new;
1742 list -> field.type = NULL;
1743 list -> field.bitsize = 0;
1744 list -> field.bitpos =
1745 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1746 objfile);
1747 scan += TARGET_FT_LONG_SIZE (objfile);
1748 list -> field.name = obsavestring (scan, strlen (scan),
1749 &objfile -> type_obstack);
1750 scan += strlen (scan) + 1;
1751 nfields++;
1752 /* Handcraft a new symbol for this enum member. */
1753 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1754 sizeof (struct symbol));
1755 memset (sym, 0, sizeof (struct symbol));
1756 SYMBOL_NAME (sym) = create_name (list -> field.name,
1757 &objfile->symbol_obstack);
1758 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1759 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1760 SYMBOL_CLASS (sym) = LOC_CONST;
1761 SYMBOL_TYPE (sym) = type;
1762 SYMBOL_VALUE (sym) = list -> field.bitpos;
1763 add_symbol_to_list (sym, list_in_scope);
1764 }
1765 /* Now create the vector of fields, and record how big it is. This is
1766 where we reverse the order, by pulling the members off the list in
1767 reverse order from how they were inserted. If we have no fields
1768 (this is apparently possible in C++) then skip building a field
1769 vector. */
1770 if (nfields > 0)
1771 {
1772 TYPE_NFIELDS (type) = nfields;
1773 TYPE_FIELDS (type) = (struct field *)
1774 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1775 /* Copy the saved-up fields into the field vector. */
1776 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1777 {
1778 TYPE_FIELD (type, n++) = list -> field;
1779 }
1780 }
1781 }
1782 return (type);
1783 }
1784
1785 /*
1786
1787 LOCAL FUNCTION
1788
1789 read_func_scope -- process all dies within a function scope
1790
1791 DESCRIPTION
1792
1793 Process all dies within a given function scope. We are passed
1794 a die information structure pointer DIP for the die which
1795 starts the function scope, and pointers into the raw die data
1796 that define the dies within the function scope.
1797
1798 For now, we ignore lexical block scopes within the function.
1799 The problem is that AT&T cc does not define a DWARF lexical
1800 block scope for the function itself, while gcc defines a
1801 lexical block scope for the function. We need to think about
1802 how to handle this difference, or if it is even a problem.
1803 (FIXME)
1804 */
1805
1806 static void
1807 read_func_scope (dip, thisdie, enddie, objfile)
1808 struct dieinfo *dip;
1809 char *thisdie;
1810 char *enddie;
1811 struct objfile *objfile;
1812 {
1813 register struct context_stack *new;
1814
1815 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1816 objfile -> ei.entry_point < dip -> at_high_pc)
1817 {
1818 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1819 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1820 }
1821 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1822 {
1823 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1824 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1825 }
1826 new = push_context (0, dip -> at_low_pc);
1827 new -> name = new_symbol (dip, objfile);
1828 list_in_scope = &local_symbols;
1829 process_dies (thisdie + dip -> die_length, enddie, objfile);
1830 new = pop_context ();
1831 /* Make a block for the local symbols within. */
1832 finish_block (new -> name, &local_symbols, new -> old_blocks,
1833 new -> start_addr, dip -> at_high_pc, objfile);
1834 list_in_scope = &file_symbols;
1835 }
1836
1837
1838 /*
1839
1840 LOCAL FUNCTION
1841
1842 handle_producer -- process the AT_producer attribute
1843
1844 DESCRIPTION
1845
1846 Perform any operations that depend on finding a particular
1847 AT_producer attribute.
1848
1849 */
1850
1851 static void
1852 handle_producer (producer)
1853 char *producer;
1854 {
1855
1856 /* If this compilation unit was compiled with g++ or gcc, then set the
1857 processing_gcc_compilation flag. */
1858
1859 processing_gcc_compilation =
1860 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1861 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1862 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1863
1864 /* Select a demangling style if we can identify the producer and if
1865 the current style is auto. We leave the current style alone if it
1866 is not auto. We also leave the demangling style alone if we find a
1867 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1868
1869 if (AUTO_DEMANGLING)
1870 {
1871 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1872 {
1873 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1874 }
1875 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1876 {
1877 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1878 }
1879 }
1880 }
1881
1882
1883 /*
1884
1885 LOCAL FUNCTION
1886
1887 read_file_scope -- process all dies within a file scope
1888
1889 DESCRIPTION
1890
1891 Process all dies within a given file scope. We are passed a
1892 pointer to the die information structure for the die which
1893 starts the file scope, and pointers into the raw die data which
1894 mark the range of dies within the file scope.
1895
1896 When the partial symbol table is built, the file offset for the line
1897 number table for each compilation unit is saved in the partial symbol
1898 table entry for that compilation unit. As the symbols for each
1899 compilation unit are read, the line number table is read into memory
1900 and the variable lnbase is set to point to it. Thus all we have to
1901 do is use lnbase to access the line number table for the current
1902 compilation unit.
1903 */
1904
1905 static void
1906 read_file_scope (dip, thisdie, enddie, objfile)
1907 struct dieinfo *dip;
1908 char *thisdie;
1909 char *enddie;
1910 struct objfile *objfile;
1911 {
1912 struct cleanup *back_to;
1913 struct symtab *symtab;
1914
1915 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1916 objfile -> ei.entry_point < dip -> at_high_pc)
1917 {
1918 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1919 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1920 }
1921 set_cu_language (dip);
1922 if (dip -> at_producer != NULL)
1923 {
1924 handle_producer (dip -> at_producer);
1925 }
1926 numutypes = (enddie - thisdie) / 4;
1927 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1928 back_to = make_cleanup (free, utypes);
1929 memset (utypes, 0, numutypes * sizeof (struct type *));
1930 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1931 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1932 decode_line_numbers (lnbase);
1933 process_dies (thisdie + dip -> die_length, enddie, objfile);
1934
1935 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1936 if (symtab != NULL)
1937 {
1938 symtab -> language = cu_language;
1939 }
1940 do_cleanups (back_to);
1941 utypes = NULL;
1942 numutypes = 0;
1943 }
1944
1945 /*
1946
1947 LOCAL FUNCTION
1948
1949 process_dies -- process a range of DWARF Information Entries
1950
1951 SYNOPSIS
1952
1953 static void process_dies (char *thisdie, char *enddie,
1954 struct objfile *objfile)
1955
1956 DESCRIPTION
1957
1958 Process all DIE's in a specified range. May be (and almost
1959 certainly will be) called recursively.
1960 */
1961
1962 static void
1963 process_dies (thisdie, enddie, objfile)
1964 char *thisdie;
1965 char *enddie;
1966 struct objfile *objfile;
1967 {
1968 char *nextdie;
1969 struct dieinfo di;
1970
1971 while (thisdie < enddie)
1972 {
1973 basicdieinfo (&di, thisdie, objfile);
1974 if (di.die_length < SIZEOF_DIE_LENGTH)
1975 {
1976 break;
1977 }
1978 else if (di.die_tag == TAG_padding)
1979 {
1980 nextdie = thisdie + di.die_length;
1981 }
1982 else
1983 {
1984 completedieinfo (&di, objfile);
1985 if (di.at_sibling != 0)
1986 {
1987 nextdie = dbbase + di.at_sibling - dbroff;
1988 }
1989 else
1990 {
1991 nextdie = thisdie + di.die_length;
1992 }
1993 #ifdef SMASH_TEXT_ADDRESS
1994 /* I think that these are always text, not data, addresses. */
1995 SMASH_TEXT_ADDRESS (di.at_low_pc);
1996 SMASH_TEXT_ADDRESS (di.at_high_pc);
1997 #endif
1998 switch (di.die_tag)
1999 {
2000 case TAG_compile_unit:
2001 /* Skip Tag_compile_unit if we are already inside a compilation
2002 unit, we are unable to handle nested compilation units
2003 properly (FIXME). */
2004 if (current_subfile == NULL)
2005 read_file_scope (&di, thisdie, nextdie, objfile);
2006 else
2007 nextdie = thisdie + di.die_length;
2008 break;
2009 case TAG_global_subroutine:
2010 case TAG_subroutine:
2011 if (di.has_at_low_pc)
2012 {
2013 read_func_scope (&di, thisdie, nextdie, objfile);
2014 }
2015 break;
2016 case TAG_lexical_block:
2017 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2018 break;
2019 case TAG_class_type:
2020 case TAG_structure_type:
2021 case TAG_union_type:
2022 read_structure_scope (&di, thisdie, nextdie, objfile);
2023 break;
2024 case TAG_enumeration_type:
2025 read_enumeration (&di, thisdie, nextdie, objfile);
2026 break;
2027 case TAG_subroutine_type:
2028 read_subroutine_type (&di, thisdie, nextdie);
2029 break;
2030 case TAG_array_type:
2031 dwarf_read_array_type (&di);
2032 break;
2033 case TAG_pointer_type:
2034 read_tag_pointer_type (&di);
2035 break;
2036 case TAG_string_type:
2037 read_tag_string_type (&di);
2038 break;
2039 default:
2040 new_symbol (&di, objfile);
2041 break;
2042 }
2043 }
2044 thisdie = nextdie;
2045 }
2046 }
2047
2048 /*
2049
2050 LOCAL FUNCTION
2051
2052 decode_line_numbers -- decode a line number table fragment
2053
2054 SYNOPSIS
2055
2056 static void decode_line_numbers (char *tblscan, char *tblend,
2057 long length, long base, long line, long pc)
2058
2059 DESCRIPTION
2060
2061 Translate the DWARF line number information to gdb form.
2062
2063 The ".line" section contains one or more line number tables, one for
2064 each ".line" section from the objects that were linked.
2065
2066 The AT_stmt_list attribute for each TAG_source_file entry in the
2067 ".debug" section contains the offset into the ".line" section for the
2068 start of the table for that file.
2069
2070 The table itself has the following structure:
2071
2072 <table length><base address><source statement entry>
2073 4 bytes 4 bytes 10 bytes
2074
2075 The table length is the total size of the table, including the 4 bytes
2076 for the length information.
2077
2078 The base address is the address of the first instruction generated
2079 for the source file.
2080
2081 Each source statement entry has the following structure:
2082
2083 <line number><statement position><address delta>
2084 4 bytes 2 bytes 4 bytes
2085
2086 The line number is relative to the start of the file, starting with
2087 line 1.
2088
2089 The statement position either -1 (0xFFFF) or the number of characters
2090 from the beginning of the line to the beginning of the statement.
2091
2092 The address delta is the difference between the base address and
2093 the address of the first instruction for the statement.
2094
2095 Note that we must copy the bytes from the packed table to our local
2096 variables before attempting to use them, to avoid alignment problems
2097 on some machines, particularly RISC processors.
2098
2099 BUGS
2100
2101 Does gdb expect the line numbers to be sorted? They are now by
2102 chance/luck, but are not required to be. (FIXME)
2103
2104 The line with number 0 is unused, gdb apparently can discover the
2105 span of the last line some other way. How? (FIXME)
2106 */
2107
2108 static void
2109 decode_line_numbers (linetable)
2110 char *linetable;
2111 {
2112 char *tblscan;
2113 char *tblend;
2114 unsigned long length;
2115 unsigned long base;
2116 unsigned long line;
2117 unsigned long pc;
2118
2119 if (linetable != NULL)
2120 {
2121 tblscan = tblend = linetable;
2122 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2123 current_objfile);
2124 tblscan += SIZEOF_LINETBL_LENGTH;
2125 tblend += length;
2126 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2127 GET_UNSIGNED, current_objfile);
2128 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2129 base += baseaddr;
2130 while (tblscan < tblend)
2131 {
2132 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2133 current_objfile);
2134 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2135 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2136 current_objfile);
2137 tblscan += SIZEOF_LINETBL_DELTA;
2138 pc += base;
2139 if (line != 0)
2140 {
2141 record_line (current_subfile, line, pc);
2142 }
2143 }
2144 }
2145 }
2146
2147 /*
2148
2149 LOCAL FUNCTION
2150
2151 locval -- compute the value of a location attribute
2152
2153 SYNOPSIS
2154
2155 static int locval (char *loc)
2156
2157 DESCRIPTION
2158
2159 Given pointer to a string of bytes that define a location, compute
2160 the location and return the value.
2161
2162 When computing values involving the current value of the frame pointer,
2163 the value zero is used, which results in a value relative to the frame
2164 pointer, rather than the absolute value. This is what GDB wants
2165 anyway.
2166
2167 When the result is a register number, the global isreg flag is set,
2168 otherwise it is cleared. This is a kludge until we figure out a better
2169 way to handle the problem. Gdb's design does not mesh well with the
2170 DWARF notion of a location computing interpreter, which is a shame
2171 because the flexibility goes unused.
2172
2173 NOTES
2174
2175 Note that stack[0] is unused except as a default error return.
2176 Note that stack overflow is not yet handled.
2177 */
2178
2179 static int
2180 locval (loc)
2181 char *loc;
2182 {
2183 unsigned short nbytes;
2184 unsigned short locsize;
2185 auto long stack[64];
2186 int stacki;
2187 char *end;
2188 int loc_atom_code;
2189 int loc_value_size;
2190
2191 nbytes = attribute_size (AT_location);
2192 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2193 loc += nbytes;
2194 end = loc + locsize;
2195 stacki = 0;
2196 stack[stacki] = 0;
2197 isreg = 0;
2198 offreg = 0;
2199 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2200 while (loc < end)
2201 {
2202 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2203 current_objfile);
2204 loc += SIZEOF_LOC_ATOM_CODE;
2205 switch (loc_atom_code)
2206 {
2207 case 0:
2208 /* error */
2209 loc = end;
2210 break;
2211 case OP_REG:
2212 /* push register (number) */
2213 stack[++stacki] = target_to_host (loc, loc_value_size,
2214 GET_UNSIGNED, current_objfile);
2215 loc += loc_value_size;
2216 isreg = 1;
2217 break;
2218 case OP_BASEREG:
2219 /* push value of register (number) */
2220 /* Actually, we compute the value as if register has 0, so the
2221 value ends up being the offset from that register. */
2222 offreg = 1;
2223 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2224 current_objfile);
2225 loc += loc_value_size;
2226 stack[++stacki] = 0;
2227 break;
2228 case OP_ADDR:
2229 /* push address (relocated address) */
2230 stack[++stacki] = target_to_host (loc, loc_value_size,
2231 GET_UNSIGNED, current_objfile);
2232 loc += loc_value_size;
2233 break;
2234 case OP_CONST:
2235 /* push constant (number) FIXME: signed or unsigned! */
2236 stack[++stacki] = target_to_host (loc, loc_value_size,
2237 GET_SIGNED, current_objfile);
2238 loc += loc_value_size;
2239 break;
2240 case OP_DEREF2:
2241 /* pop, deref and push 2 bytes (as a long) */
2242 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2243 break;
2244 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2245 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2246 break;
2247 case OP_ADD: /* pop top 2 items, add, push result */
2248 stack[stacki - 1] += stack[stacki];
2249 stacki--;
2250 break;
2251 }
2252 }
2253 return (stack[stacki]);
2254 }
2255
2256 /*
2257
2258 LOCAL FUNCTION
2259
2260 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2261
2262 SYNOPSIS
2263
2264 static void read_ofile_symtab (struct partial_symtab *pst)
2265
2266 DESCRIPTION
2267
2268 When expanding a partial symbol table entry to a full symbol table
2269 entry, this is the function that gets called to read in the symbols
2270 for the compilation unit. A pointer to the newly constructed symtab,
2271 which is now the new first one on the objfile's symtab list, is
2272 stashed in the partial symbol table entry.
2273 */
2274
2275 static void
2276 read_ofile_symtab (pst)
2277 struct partial_symtab *pst;
2278 {
2279 struct cleanup *back_to;
2280 unsigned long lnsize;
2281 file_ptr foffset;
2282 bfd *abfd;
2283 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2284
2285 abfd = pst -> objfile -> obfd;
2286 current_objfile = pst -> objfile;
2287
2288 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2289 unit, seek to the location in the file, and read in all the DIE's. */
2290
2291 diecount = 0;
2292 dbsize = DBLENGTH (pst);
2293 dbbase = xmalloc (dbsize);
2294 dbroff = DBROFF(pst);
2295 foffset = DBFOFF(pst) + dbroff;
2296 base_section_offsets = pst->section_offsets;
2297 baseaddr = ANOFFSET (pst->section_offsets, 0);
2298 if (bfd_seek (abfd, foffset, L_SET) ||
2299 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2300 {
2301 free (dbbase);
2302 error ("can't read DWARF data");
2303 }
2304 back_to = make_cleanup (free, dbbase);
2305
2306 /* If there is a line number table associated with this compilation unit
2307 then read the size of this fragment in bytes, from the fragment itself.
2308 Allocate a buffer for the fragment and read it in for future
2309 processing. */
2310
2311 lnbase = NULL;
2312 if (LNFOFF (pst))
2313 {
2314 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2315 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2316 sizeof (lnsizedata)))
2317 {
2318 error ("can't read DWARF line number table size");
2319 }
2320 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2321 GET_UNSIGNED, pst -> objfile);
2322 lnbase = xmalloc (lnsize);
2323 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2324 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2325 {
2326 free (lnbase);
2327 error ("can't read DWARF line numbers");
2328 }
2329 make_cleanup (free, lnbase);
2330 }
2331
2332 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2333 do_cleanups (back_to);
2334 current_objfile = NULL;
2335 pst -> symtab = pst -> objfile -> symtabs;
2336 }
2337
2338 /*
2339
2340 LOCAL FUNCTION
2341
2342 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2343
2344 SYNOPSIS
2345
2346 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2347
2348 DESCRIPTION
2349
2350 Called once for each partial symbol table entry that needs to be
2351 expanded into a full symbol table entry.
2352
2353 */
2354
2355 static void
2356 psymtab_to_symtab_1 (pst)
2357 struct partial_symtab *pst;
2358 {
2359 int i;
2360 struct cleanup *old_chain;
2361
2362 if (pst != NULL)
2363 {
2364 if (pst->readin)
2365 {
2366 warning ("psymtab for %s already read in. Shouldn't happen.",
2367 pst -> filename);
2368 }
2369 else
2370 {
2371 /* Read in all partial symtabs on which this one is dependent */
2372 for (i = 0; i < pst -> number_of_dependencies; i++)
2373 {
2374 if (!pst -> dependencies[i] -> readin)
2375 {
2376 /* Inform about additional files that need to be read in. */
2377 if (info_verbose)
2378 {
2379 fputs_filtered (" ", gdb_stdout);
2380 wrap_here ("");
2381 fputs_filtered ("and ", gdb_stdout);
2382 wrap_here ("");
2383 printf_filtered ("%s...",
2384 pst -> dependencies[i] -> filename);
2385 wrap_here ("");
2386 gdb_flush (gdb_stdout); /* Flush output */
2387 }
2388 psymtab_to_symtab_1 (pst -> dependencies[i]);
2389 }
2390 }
2391 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2392 {
2393 buildsym_init ();
2394 old_chain = make_cleanup (really_free_pendings, 0);
2395 read_ofile_symtab (pst);
2396 if (info_verbose)
2397 {
2398 printf_filtered ("%d DIE's, sorting...", diecount);
2399 wrap_here ("");
2400 gdb_flush (gdb_stdout);
2401 }
2402 sort_symtab_syms (pst -> symtab);
2403 do_cleanups (old_chain);
2404 }
2405 pst -> readin = 1;
2406 }
2407 }
2408 }
2409
2410 /*
2411
2412 LOCAL FUNCTION
2413
2414 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2415
2416 SYNOPSIS
2417
2418 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2419
2420 DESCRIPTION
2421
2422 This is the DWARF support entry point for building a full symbol
2423 table entry from a partial symbol table entry. We are passed a
2424 pointer to the partial symbol table entry that needs to be expanded.
2425
2426 */
2427
2428 static void
2429 dwarf_psymtab_to_symtab (pst)
2430 struct partial_symtab *pst;
2431 {
2432
2433 if (pst != NULL)
2434 {
2435 if (pst -> readin)
2436 {
2437 warning ("psymtab for %s already read in. Shouldn't happen.",
2438 pst -> filename);
2439 }
2440 else
2441 {
2442 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2443 {
2444 /* Print the message now, before starting serious work, to avoid
2445 disconcerting pauses. */
2446 if (info_verbose)
2447 {
2448 printf_filtered ("Reading in symbols for %s...",
2449 pst -> filename);
2450 gdb_flush (gdb_stdout);
2451 }
2452
2453 psymtab_to_symtab_1 (pst);
2454
2455 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2456 we need to do an equivalent or is this something peculiar to
2457 stabs/a.out format.
2458 Match with global symbols. This only needs to be done once,
2459 after all of the symtabs and dependencies have been read in.
2460 */
2461 scan_file_globals (pst -> objfile);
2462 #endif
2463
2464 /* Finish up the verbose info message. */
2465 if (info_verbose)
2466 {
2467 printf_filtered ("done.\n");
2468 gdb_flush (gdb_stdout);
2469 }
2470 }
2471 }
2472 }
2473 }
2474
2475 /*
2476
2477 LOCAL FUNCTION
2478
2479 init_psymbol_list -- initialize storage for partial symbols
2480
2481 SYNOPSIS
2482
2483 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2484
2485 DESCRIPTION
2486
2487 Initializes storage for all of the partial symbols that will be
2488 created by dwarf_build_psymtabs and subsidiaries.
2489 */
2490
2491 static void
2492 init_psymbol_list (objfile, total_symbols)
2493 struct objfile *objfile;
2494 int total_symbols;
2495 {
2496 /* Free any previously allocated psymbol lists. */
2497
2498 if (objfile -> global_psymbols.list)
2499 {
2500 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2501 }
2502 if (objfile -> static_psymbols.list)
2503 {
2504 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2505 }
2506
2507 /* Current best guess is that there are approximately a twentieth
2508 of the total symbols (in a debugging file) are global or static
2509 oriented symbols */
2510
2511 objfile -> global_psymbols.size = total_symbols / 10;
2512 objfile -> static_psymbols.size = total_symbols / 10;
2513 objfile -> global_psymbols.next =
2514 objfile -> global_psymbols.list = (struct partial_symbol *)
2515 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2516 * sizeof (struct partial_symbol));
2517 objfile -> static_psymbols.next =
2518 objfile -> static_psymbols.list = (struct partial_symbol *)
2519 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2520 * sizeof (struct partial_symbol));
2521 }
2522
2523 /*
2524
2525 LOCAL FUNCTION
2526
2527 add_enum_psymbol -- add enumeration members to partial symbol table
2528
2529 DESCRIPTION
2530
2531 Given pointer to a DIE that is known to be for an enumeration,
2532 extract the symbolic names of the enumeration members and add
2533 partial symbols for them.
2534 */
2535
2536 static void
2537 add_enum_psymbol (dip, objfile)
2538 struct dieinfo *dip;
2539 struct objfile *objfile;
2540 {
2541 char *scan;
2542 char *listend;
2543 unsigned short blocksz;
2544 int nbytes;
2545
2546 if ((scan = dip -> at_element_list) != NULL)
2547 {
2548 if (dip -> short_element_list)
2549 {
2550 nbytes = attribute_size (AT_short_element_list);
2551 }
2552 else
2553 {
2554 nbytes = attribute_size (AT_element_list);
2555 }
2556 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2557 scan += nbytes;
2558 listend = scan + blocksz;
2559 while (scan < listend)
2560 {
2561 scan += TARGET_FT_LONG_SIZE (objfile);
2562 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2563 objfile -> static_psymbols, 0, cu_language,
2564 objfile);
2565 scan += strlen (scan) + 1;
2566 }
2567 }
2568 }
2569
2570 /*
2571
2572 LOCAL FUNCTION
2573
2574 add_partial_symbol -- add symbol to partial symbol table
2575
2576 DESCRIPTION
2577
2578 Given a DIE, if it is one of the types that we want to
2579 add to a partial symbol table, finish filling in the die info
2580 and then add a partial symbol table entry for it.
2581
2582 NOTES
2583
2584 The caller must ensure that the DIE has a valid name attribute.
2585 */
2586
2587 static void
2588 add_partial_symbol (dip, objfile)
2589 struct dieinfo *dip;
2590 struct objfile *objfile;
2591 {
2592 switch (dip -> die_tag)
2593 {
2594 case TAG_global_subroutine:
2595 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2596 VAR_NAMESPACE, LOC_BLOCK,
2597 objfile -> global_psymbols,
2598 dip -> at_low_pc, cu_language, objfile);
2599 break;
2600 case TAG_global_variable:
2601 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2602 VAR_NAMESPACE, LOC_STATIC,
2603 objfile -> global_psymbols,
2604 0, cu_language, objfile);
2605 break;
2606 case TAG_subroutine:
2607 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2608 VAR_NAMESPACE, LOC_BLOCK,
2609 objfile -> static_psymbols,
2610 dip -> at_low_pc, cu_language, objfile);
2611 break;
2612 case TAG_local_variable:
2613 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2614 VAR_NAMESPACE, LOC_STATIC,
2615 objfile -> static_psymbols,
2616 0, cu_language, objfile);
2617 break;
2618 case TAG_typedef:
2619 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2620 VAR_NAMESPACE, LOC_TYPEDEF,
2621 objfile -> static_psymbols,
2622 0, cu_language, objfile);
2623 break;
2624 case TAG_class_type:
2625 case TAG_structure_type:
2626 case TAG_union_type:
2627 case TAG_enumeration_type:
2628 /* Do not add opaque aggregate definitions to the psymtab. */
2629 if (!dip -> has_at_byte_size)
2630 break;
2631 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2632 STRUCT_NAMESPACE, LOC_TYPEDEF,
2633 objfile -> static_psymbols,
2634 0, cu_language, objfile);
2635 if (cu_language == language_cplus)
2636 {
2637 /* For C++, these implicitly act as typedefs as well. */
2638 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2639 VAR_NAMESPACE, LOC_TYPEDEF,
2640 objfile -> static_psymbols,
2641 0, cu_language, objfile);
2642 }
2643 break;
2644 }
2645 }
2646
2647 /*
2648
2649 LOCAL FUNCTION
2650
2651 scan_partial_symbols -- scan DIE's within a single compilation unit
2652
2653 DESCRIPTION
2654
2655 Process the DIE's within a single compilation unit, looking for
2656 interesting DIE's that contribute to the partial symbol table entry
2657 for this compilation unit.
2658
2659 NOTES
2660
2661 There are some DIE's that may appear both at file scope and within
2662 the scope of a function. We are only interested in the ones at file
2663 scope, and the only way to tell them apart is to keep track of the
2664 scope. For example, consider the test case:
2665
2666 static int i;
2667 main () { int j; }
2668
2669 for which the relevant DWARF segment has the structure:
2670
2671 0x51:
2672 0x23 global subrtn sibling 0x9b
2673 name main
2674 fund_type FT_integer
2675 low_pc 0x800004cc
2676 high_pc 0x800004d4
2677
2678 0x74:
2679 0x23 local var sibling 0x97
2680 name j
2681 fund_type FT_integer
2682 location OP_BASEREG 0xe
2683 OP_CONST 0xfffffffc
2684 OP_ADD
2685 0x97:
2686 0x4
2687
2688 0x9b:
2689 0x1d local var sibling 0xb8
2690 name i
2691 fund_type FT_integer
2692 location OP_ADDR 0x800025dc
2693
2694 0xb8:
2695 0x4
2696
2697 We want to include the symbol 'i' in the partial symbol table, but
2698 not the symbol 'j'. In essence, we want to skip all the dies within
2699 the scope of a TAG_global_subroutine DIE.
2700
2701 Don't attempt to add anonymous structures or unions since they have
2702 no name. Anonymous enumerations however are processed, because we
2703 want to extract their member names (the check for a tag name is
2704 done later).
2705
2706 Also, for variables and subroutines, check that this is the place
2707 where the actual definition occurs, rather than just a reference
2708 to an external.
2709 */
2710
2711 static void
2712 scan_partial_symbols (thisdie, enddie, objfile)
2713 char *thisdie;
2714 char *enddie;
2715 struct objfile *objfile;
2716 {
2717 char *nextdie;
2718 char *temp;
2719 struct dieinfo di;
2720
2721 while (thisdie < enddie)
2722 {
2723 basicdieinfo (&di, thisdie, objfile);
2724 if (di.die_length < SIZEOF_DIE_LENGTH)
2725 {
2726 break;
2727 }
2728 else
2729 {
2730 nextdie = thisdie + di.die_length;
2731 /* To avoid getting complete die information for every die, we
2732 only do it (below) for the cases we are interested in. */
2733 switch (di.die_tag)
2734 {
2735 case TAG_global_subroutine:
2736 case TAG_subroutine:
2737 completedieinfo (&di, objfile);
2738 if (di.at_name && (di.has_at_low_pc || di.at_location))
2739 {
2740 add_partial_symbol (&di, objfile);
2741 /* If there is a sibling attribute, adjust the nextdie
2742 pointer to skip the entire scope of the subroutine.
2743 Apply some sanity checking to make sure we don't
2744 overrun or underrun the range of remaining DIE's */
2745 if (di.at_sibling != 0)
2746 {
2747 temp = dbbase + di.at_sibling - dbroff;
2748 if ((temp < thisdie) || (temp >= enddie))
2749 {
2750 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2751 di.at_sibling);
2752 }
2753 else
2754 {
2755 nextdie = temp;
2756 }
2757 }
2758 }
2759 break;
2760 case TAG_global_variable:
2761 case TAG_local_variable:
2762 completedieinfo (&di, objfile);
2763 if (di.at_name && (di.has_at_low_pc || di.at_location))
2764 {
2765 add_partial_symbol (&di, objfile);
2766 }
2767 break;
2768 case TAG_typedef:
2769 case TAG_class_type:
2770 case TAG_structure_type:
2771 case TAG_union_type:
2772 completedieinfo (&di, objfile);
2773 if (di.at_name)
2774 {
2775 add_partial_symbol (&di, objfile);
2776 }
2777 break;
2778 case TAG_enumeration_type:
2779 completedieinfo (&di, objfile);
2780 if (di.at_name)
2781 {
2782 add_partial_symbol (&di, objfile);
2783 }
2784 add_enum_psymbol (&di, objfile);
2785 break;
2786 }
2787 }
2788 thisdie = nextdie;
2789 }
2790 }
2791
2792 /*
2793
2794 LOCAL FUNCTION
2795
2796 scan_compilation_units -- build a psymtab entry for each compilation
2797
2798 DESCRIPTION
2799
2800 This is the top level dwarf parsing routine for building partial
2801 symbol tables.
2802
2803 It scans from the beginning of the DWARF table looking for the first
2804 TAG_compile_unit DIE, and then follows the sibling chain to locate
2805 each additional TAG_compile_unit DIE.
2806
2807 For each TAG_compile_unit DIE it creates a partial symtab structure,
2808 calls a subordinate routine to collect all the compilation unit's
2809 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2810 new partial symtab structure into the partial symbol table. It also
2811 records the appropriate information in the partial symbol table entry
2812 to allow the chunk of DIE's and line number table for this compilation
2813 unit to be located and re-read later, to generate a complete symbol
2814 table entry for the compilation unit.
2815
2816 Thus it effectively partitions up a chunk of DIE's for multiple
2817 compilation units into smaller DIE chunks and line number tables,
2818 and associates them with a partial symbol table entry.
2819
2820 NOTES
2821
2822 If any compilation unit has no line number table associated with
2823 it for some reason (a missing at_stmt_list attribute, rather than
2824 just one with a value of zero, which is valid) then we ensure that
2825 the recorded file offset is zero so that the routine which later
2826 reads line number table fragments knows that there is no fragment
2827 to read.
2828
2829 RETURNS
2830
2831 Returns no value.
2832
2833 */
2834
2835 static void
2836 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2837 char *thisdie;
2838 char *enddie;
2839 file_ptr dbfoff;
2840 file_ptr lnoffset;
2841 struct objfile *objfile;
2842 {
2843 char *nextdie;
2844 struct dieinfo di;
2845 struct partial_symtab *pst;
2846 int culength;
2847 int curoff;
2848 file_ptr curlnoffset;
2849
2850 while (thisdie < enddie)
2851 {
2852 basicdieinfo (&di, thisdie, objfile);
2853 if (di.die_length < SIZEOF_DIE_LENGTH)
2854 {
2855 break;
2856 }
2857 else if (di.die_tag != TAG_compile_unit)
2858 {
2859 nextdie = thisdie + di.die_length;
2860 }
2861 else
2862 {
2863 completedieinfo (&di, objfile);
2864 set_cu_language (&di);
2865 if (di.at_sibling != 0)
2866 {
2867 nextdie = dbbase + di.at_sibling - dbroff;
2868 }
2869 else
2870 {
2871 nextdie = thisdie + di.die_length;
2872 }
2873 curoff = thisdie - dbbase;
2874 culength = nextdie - thisdie;
2875 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2876
2877 /* First allocate a new partial symbol table structure */
2878
2879 pst = start_psymtab_common (objfile, base_section_offsets,
2880 di.at_name, di.at_low_pc,
2881 objfile -> global_psymbols.next,
2882 objfile -> static_psymbols.next);
2883
2884 pst -> texthigh = di.at_high_pc;
2885 pst -> read_symtab_private = (char *)
2886 obstack_alloc (&objfile -> psymbol_obstack,
2887 sizeof (struct dwfinfo));
2888 DBFOFF (pst) = dbfoff;
2889 DBROFF (pst) = curoff;
2890 DBLENGTH (pst) = culength;
2891 LNFOFF (pst) = curlnoffset;
2892 pst -> read_symtab = dwarf_psymtab_to_symtab;
2893
2894 /* Now look for partial symbols */
2895
2896 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2897
2898 pst -> n_global_syms = objfile -> global_psymbols.next -
2899 (objfile -> global_psymbols.list + pst -> globals_offset);
2900 pst -> n_static_syms = objfile -> static_psymbols.next -
2901 (objfile -> static_psymbols.list + pst -> statics_offset);
2902 sort_pst_symbols (pst);
2903 /* If there is already a psymtab or symtab for a file of this name,
2904 remove it. (If there is a symtab, more drastic things also
2905 happen.) This happens in VxWorks. */
2906 free_named_symtabs (pst -> filename);
2907 }
2908 thisdie = nextdie;
2909 }
2910 }
2911
2912 /*
2913
2914 LOCAL FUNCTION
2915
2916 new_symbol -- make a symbol table entry for a new symbol
2917
2918 SYNOPSIS
2919
2920 static struct symbol *new_symbol (struct dieinfo *dip,
2921 struct objfile *objfile)
2922
2923 DESCRIPTION
2924
2925 Given a pointer to a DWARF information entry, figure out if we need
2926 to make a symbol table entry for it, and if so, create a new entry
2927 and return a pointer to it.
2928 */
2929
2930 static struct symbol *
2931 new_symbol (dip, objfile)
2932 struct dieinfo *dip;
2933 struct objfile *objfile;
2934 {
2935 struct symbol *sym = NULL;
2936
2937 if (dip -> at_name != NULL)
2938 {
2939 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2940 sizeof (struct symbol));
2941 memset (sym, 0, sizeof (struct symbol));
2942 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2943 &objfile->symbol_obstack);
2944 /* default assumptions */
2945 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2946 SYMBOL_CLASS (sym) = LOC_STATIC;
2947 SYMBOL_TYPE (sym) = decode_die_type (dip);
2948
2949 /* If this symbol is from a C++ compilation, then attempt to cache the
2950 demangled form for future reference. This is a typical time versus
2951 space tradeoff, that was decided in favor of time because it sped up
2952 C++ symbol lookups by a factor of about 20. */
2953
2954 SYMBOL_LANGUAGE (sym) = cu_language;
2955 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2956 switch (dip -> die_tag)
2957 {
2958 case TAG_label:
2959 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2960 SYMBOL_CLASS (sym) = LOC_LABEL;
2961 break;
2962 case TAG_global_subroutine:
2963 case TAG_subroutine:
2964 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2965 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2966 SYMBOL_CLASS (sym) = LOC_BLOCK;
2967 if (dip -> die_tag == TAG_global_subroutine)
2968 {
2969 add_symbol_to_list (sym, &global_symbols);
2970 }
2971 else
2972 {
2973 add_symbol_to_list (sym, list_in_scope);
2974 }
2975 break;
2976 case TAG_global_variable:
2977 if (dip -> at_location != NULL)
2978 {
2979 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2980 add_symbol_to_list (sym, &global_symbols);
2981 SYMBOL_CLASS (sym) = LOC_STATIC;
2982 SYMBOL_VALUE (sym) += baseaddr;
2983 }
2984 break;
2985 case TAG_local_variable:
2986 if (dip -> at_location != NULL)
2987 {
2988 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2989 add_symbol_to_list (sym, list_in_scope);
2990 if (isreg)
2991 {
2992 SYMBOL_CLASS (sym) = LOC_REGISTER;
2993 }
2994 else if (offreg)
2995 {
2996 SYMBOL_CLASS (sym) = LOC_BASEREG;
2997 SYMBOL_BASEREG (sym) = basereg;
2998 }
2999 else
3000 {
3001 SYMBOL_CLASS (sym) = LOC_STATIC;
3002 SYMBOL_VALUE (sym) += baseaddr;
3003 }
3004 }
3005 break;
3006 case TAG_formal_parameter:
3007 if (dip -> at_location != NULL)
3008 {
3009 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3010 }
3011 add_symbol_to_list (sym, list_in_scope);
3012 if (isreg)
3013 {
3014 SYMBOL_CLASS (sym) = LOC_REGPARM;
3015 }
3016 else if (offreg)
3017 {
3018 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3019 SYMBOL_BASEREG (sym) = basereg;
3020 }
3021 else
3022 {
3023 SYMBOL_CLASS (sym) = LOC_ARG;
3024 }
3025 break;
3026 case TAG_unspecified_parameters:
3027 /* From varargs functions; gdb doesn't seem to have any interest in
3028 this information, so just ignore it for now. (FIXME?) */
3029 break;
3030 case TAG_class_type:
3031 case TAG_structure_type:
3032 case TAG_union_type:
3033 case TAG_enumeration_type:
3034 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3035 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3036 add_symbol_to_list (sym, list_in_scope);
3037 break;
3038 case TAG_typedef:
3039 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3040 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3041 add_symbol_to_list (sym, list_in_scope);
3042 break;
3043 default:
3044 /* Not a tag we recognize. Hopefully we aren't processing trash
3045 data, but since we must specifically ignore things we don't
3046 recognize, there is nothing else we should do at this point. */
3047 break;
3048 }
3049 }
3050 return (sym);
3051 }
3052
3053 /*
3054
3055 LOCAL FUNCTION
3056
3057 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3058
3059 SYNOPSIS
3060
3061 static void synthesize_typedef (struct dieinfo *dip,
3062 struct objfile *objfile,
3063 struct type *type);
3064
3065 DESCRIPTION
3066
3067 Given a pointer to a DWARF information entry, synthesize a typedef
3068 for the name in the DIE, using the specified type.
3069
3070 This is used for C++ class, structs, unions, and enumerations to
3071 set up the tag name as a type.
3072
3073 */
3074
3075 static void
3076 synthesize_typedef (dip, objfile, type)
3077 struct dieinfo *dip;
3078 struct objfile *objfile;
3079 struct type *type;
3080 {
3081 struct symbol *sym = NULL;
3082
3083 if (dip -> at_name != NULL)
3084 {
3085 sym = (struct symbol *)
3086 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3087 memset (sym, 0, sizeof (struct symbol));
3088 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3089 &objfile->symbol_obstack);
3090 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3091 SYMBOL_TYPE (sym) = type;
3092 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3093 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3094 add_symbol_to_list (sym, list_in_scope);
3095 }
3096 }
3097
3098 /*
3099
3100 LOCAL FUNCTION
3101
3102 decode_mod_fund_type -- decode a modified fundamental type
3103
3104 SYNOPSIS
3105
3106 static struct type *decode_mod_fund_type (char *typedata)
3107
3108 DESCRIPTION
3109
3110 Decode a block of data containing a modified fundamental
3111 type specification. TYPEDATA is a pointer to the block,
3112 which starts with a length containing the size of the rest
3113 of the block. At the end of the block is a fundmental type
3114 code value that gives the fundamental type. Everything
3115 in between are type modifiers.
3116
3117 We simply compute the number of modifiers and call the general
3118 function decode_modified_type to do the actual work.
3119 */
3120
3121 static struct type *
3122 decode_mod_fund_type (typedata)
3123 char *typedata;
3124 {
3125 struct type *typep = NULL;
3126 unsigned short modcount;
3127 int nbytes;
3128
3129 /* Get the total size of the block, exclusive of the size itself */
3130
3131 nbytes = attribute_size (AT_mod_fund_type);
3132 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3133 typedata += nbytes;
3134
3135 /* Deduct the size of the fundamental type bytes at the end of the block. */
3136
3137 modcount -= attribute_size (AT_fund_type);
3138
3139 /* Now do the actual decoding */
3140
3141 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3142 return (typep);
3143 }
3144
3145 /*
3146
3147 LOCAL FUNCTION
3148
3149 decode_mod_u_d_type -- decode a modified user defined type
3150
3151 SYNOPSIS
3152
3153 static struct type *decode_mod_u_d_type (char *typedata)
3154
3155 DESCRIPTION
3156
3157 Decode a block of data containing a modified user defined
3158 type specification. TYPEDATA is a pointer to the block,
3159 which consists of a two byte length, containing the size
3160 of the rest of the block. At the end of the block is a
3161 four byte value that gives a reference to a user defined type.
3162 Everything in between are type modifiers.
3163
3164 We simply compute the number of modifiers and call the general
3165 function decode_modified_type to do the actual work.
3166 */
3167
3168 static struct type *
3169 decode_mod_u_d_type (typedata)
3170 char *typedata;
3171 {
3172 struct type *typep = NULL;
3173 unsigned short modcount;
3174 int nbytes;
3175
3176 /* Get the total size of the block, exclusive of the size itself */
3177
3178 nbytes = attribute_size (AT_mod_u_d_type);
3179 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3180 typedata += nbytes;
3181
3182 /* Deduct the size of the reference type bytes at the end of the block. */
3183
3184 modcount -= attribute_size (AT_user_def_type);
3185
3186 /* Now do the actual decoding */
3187
3188 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3189 return (typep);
3190 }
3191
3192 /*
3193
3194 LOCAL FUNCTION
3195
3196 decode_modified_type -- decode modified user or fundamental type
3197
3198 SYNOPSIS
3199
3200 static struct type *decode_modified_type (char *modifiers,
3201 unsigned short modcount, int mtype)
3202
3203 DESCRIPTION
3204
3205 Decode a modified type, either a modified fundamental type or
3206 a modified user defined type. MODIFIERS is a pointer to the
3207 block of bytes that define MODCOUNT modifiers. Immediately
3208 following the last modifier is a short containing the fundamental
3209 type or a long containing the reference to the user defined
3210 type. Which one is determined by MTYPE, which is either
3211 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3212 type we are generating.
3213
3214 We call ourself recursively to generate each modified type,`
3215 until MODCOUNT reaches zero, at which point we have consumed
3216 all the modifiers and generate either the fundamental type or
3217 user defined type. When the recursion unwinds, each modifier
3218 is applied in turn to generate the full modified type.
3219
3220 NOTES
3221
3222 If we find a modifier that we don't recognize, and it is not one
3223 of those reserved for application specific use, then we issue a
3224 warning and simply ignore the modifier.
3225
3226 BUGS
3227
3228 We currently ignore MOD_const and MOD_volatile. (FIXME)
3229
3230 */
3231
3232 static struct type *
3233 decode_modified_type (modifiers, modcount, mtype)
3234 char *modifiers;
3235 unsigned int modcount;
3236 int mtype;
3237 {
3238 struct type *typep = NULL;
3239 unsigned short fundtype;
3240 DIE_REF die_ref;
3241 char modifier;
3242 int nbytes;
3243
3244 if (modcount == 0)
3245 {
3246 switch (mtype)
3247 {
3248 case AT_mod_fund_type:
3249 nbytes = attribute_size (AT_fund_type);
3250 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3251 current_objfile);
3252 typep = decode_fund_type (fundtype);
3253 break;
3254 case AT_mod_u_d_type:
3255 nbytes = attribute_size (AT_user_def_type);
3256 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3257 current_objfile);
3258 if ((typep = lookup_utype (die_ref)) == NULL)
3259 {
3260 typep = alloc_utype (die_ref, NULL);
3261 }
3262 break;
3263 default:
3264 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3265 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3266 break;
3267 }
3268 }
3269 else
3270 {
3271 modifier = *modifiers++;
3272 typep = decode_modified_type (modifiers, --modcount, mtype);
3273 switch (modifier)
3274 {
3275 case MOD_pointer_to:
3276 typep = lookup_pointer_type (typep);
3277 break;
3278 case MOD_reference_to:
3279 typep = lookup_reference_type (typep);
3280 break;
3281 case MOD_const:
3282 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3283 break;
3284 case MOD_volatile:
3285 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3286 break;
3287 default:
3288 if (!(MOD_lo_user <= (unsigned char) modifier
3289 && (unsigned char) modifier <= MOD_hi_user))
3290 {
3291 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3292 }
3293 break;
3294 }
3295 }
3296 return (typep);
3297 }
3298
3299 /*
3300
3301 LOCAL FUNCTION
3302
3303 decode_fund_type -- translate basic DWARF type to gdb base type
3304
3305 DESCRIPTION
3306
3307 Given an integer that is one of the fundamental DWARF types,
3308 translate it to one of the basic internal gdb types and return
3309 a pointer to the appropriate gdb type (a "struct type *").
3310
3311 NOTES
3312
3313 For robustness, if we are asked to translate a fundamental
3314 type that we are unprepared to deal with, we return int so
3315 callers can always depend upon a valid type being returned,
3316 and so gdb may at least do something reasonable by default.
3317 If the type is not in the range of those types defined as
3318 application specific types, we also issue a warning.
3319 */
3320
3321 static struct type *
3322 decode_fund_type (fundtype)
3323 unsigned int fundtype;
3324 {
3325 struct type *typep = NULL;
3326
3327 switch (fundtype)
3328 {
3329
3330 case FT_void:
3331 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3332 break;
3333
3334 case FT_boolean: /* Was FT_set in AT&T version */
3335 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3336 break;
3337
3338 case FT_pointer: /* (void *) */
3339 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3340 typep = lookup_pointer_type (typep);
3341 break;
3342
3343 case FT_char:
3344 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3345 break;
3346
3347 case FT_signed_char:
3348 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3349 break;
3350
3351 case FT_unsigned_char:
3352 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3353 break;
3354
3355 case FT_short:
3356 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3357 break;
3358
3359 case FT_signed_short:
3360 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3361 break;
3362
3363 case FT_unsigned_short:
3364 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3365 break;
3366
3367 case FT_integer:
3368 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3369 break;
3370
3371 case FT_signed_integer:
3372 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3373 break;
3374
3375 case FT_unsigned_integer:
3376 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3377 break;
3378
3379 case FT_long:
3380 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3381 break;
3382
3383 case FT_signed_long:
3384 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3385 break;
3386
3387 case FT_unsigned_long:
3388 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3389 break;
3390
3391 case FT_long_long:
3392 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3393 break;
3394
3395 case FT_signed_long_long:
3396 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3397 break;
3398
3399 case FT_unsigned_long_long:
3400 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3401 break;
3402
3403 case FT_float:
3404 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3405 break;
3406
3407 case FT_dbl_prec_float:
3408 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3409 break;
3410
3411 case FT_ext_prec_float:
3412 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3413 break;
3414
3415 case FT_complex:
3416 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3417 break;
3418
3419 case FT_dbl_prec_complex:
3420 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3421 break;
3422
3423 case FT_ext_prec_complex:
3424 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3425 break;
3426
3427 }
3428
3429 if (typep == NULL)
3430 {
3431 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3432 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3433 {
3434 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3435 }
3436 }
3437
3438 return (typep);
3439 }
3440
3441 /*
3442
3443 LOCAL FUNCTION
3444
3445 create_name -- allocate a fresh copy of a string on an obstack
3446
3447 DESCRIPTION
3448
3449 Given a pointer to a string and a pointer to an obstack, allocates
3450 a fresh copy of the string on the specified obstack.
3451
3452 */
3453
3454 static char *
3455 create_name (name, obstackp)
3456 char *name;
3457 struct obstack *obstackp;
3458 {
3459 int length;
3460 char *newname;
3461
3462 length = strlen (name) + 1;
3463 newname = (char *) obstack_alloc (obstackp, length);
3464 strcpy (newname, name);
3465 return (newname);
3466 }
3467
3468 /*
3469
3470 LOCAL FUNCTION
3471
3472 basicdieinfo -- extract the minimal die info from raw die data
3473
3474 SYNOPSIS
3475
3476 void basicdieinfo (char *diep, struct dieinfo *dip,
3477 struct objfile *objfile)
3478
3479 DESCRIPTION
3480
3481 Given a pointer to raw DIE data, and a pointer to an instance of a
3482 die info structure, this function extracts the basic information
3483 from the DIE data required to continue processing this DIE, along
3484 with some bookkeeping information about the DIE.
3485
3486 The information we absolutely must have includes the DIE tag,
3487 and the DIE length. If we need the sibling reference, then we
3488 will have to call completedieinfo() to process all the remaining
3489 DIE information.
3490
3491 Note that since there is no guarantee that the data is properly
3492 aligned in memory for the type of access required (indirection
3493 through anything other than a char pointer), and there is no
3494 guarantee that it is in the same byte order as the gdb host,
3495 we call a function which deals with both alignment and byte
3496 swapping issues. Possibly inefficient, but quite portable.
3497
3498 We also take care of some other basic things at this point, such
3499 as ensuring that the instance of the die info structure starts
3500 out completely zero'd and that curdie is initialized for use
3501 in error reporting if we have a problem with the current die.
3502
3503 NOTES
3504
3505 All DIE's must have at least a valid length, thus the minimum
3506 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3507 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3508 are forced to be TAG_padding DIES.
3509
3510 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3511 that if a padding DIE is used for alignment and the amount needed is
3512 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3513 enough to align to the next alignment boundry.
3514
3515 We do some basic sanity checking here, such as verifying that the
3516 length of the die would not cause it to overrun the recorded end of
3517 the buffer holding the DIE info. If we find a DIE that is either
3518 too small or too large, we force it's length to zero which should
3519 cause the caller to take appropriate action.
3520 */
3521
3522 static void
3523 basicdieinfo (dip, diep, objfile)
3524 struct dieinfo *dip;
3525 char *diep;
3526 struct objfile *objfile;
3527 {
3528 curdie = dip;
3529 memset (dip, 0, sizeof (struct dieinfo));
3530 dip -> die = diep;
3531 dip -> die_ref = dbroff + (diep - dbbase);
3532 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3533 objfile);
3534 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3535 ((diep + dip -> die_length) > (dbbase + dbsize)))
3536 {
3537 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3538 dip -> die_length = 0;
3539 }
3540 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3541 {
3542 dip -> die_tag = TAG_padding;
3543 }
3544 else
3545 {
3546 diep += SIZEOF_DIE_LENGTH;
3547 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3548 objfile);
3549 }
3550 }
3551
3552 /*
3553
3554 LOCAL FUNCTION
3555
3556 completedieinfo -- finish reading the information for a given DIE
3557
3558 SYNOPSIS
3559
3560 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3561
3562 DESCRIPTION
3563
3564 Given a pointer to an already partially initialized die info structure,
3565 scan the raw DIE data and finish filling in the die info structure
3566 from the various attributes found.
3567
3568 Note that since there is no guarantee that the data is properly
3569 aligned in memory for the type of access required (indirection
3570 through anything other than a char pointer), and there is no
3571 guarantee that it is in the same byte order as the gdb host,
3572 we call a function which deals with both alignment and byte
3573 swapping issues. Possibly inefficient, but quite portable.
3574
3575 NOTES
3576
3577 Each time we are called, we increment the diecount variable, which
3578 keeps an approximate count of the number of dies processed for
3579 each compilation unit. This information is presented to the user
3580 if the info_verbose flag is set.
3581
3582 */
3583
3584 static void
3585 completedieinfo (dip, objfile)
3586 struct dieinfo *dip;
3587 struct objfile *objfile;
3588 {
3589 char *diep; /* Current pointer into raw DIE data */
3590 char *end; /* Terminate DIE scan here */
3591 unsigned short attr; /* Current attribute being scanned */
3592 unsigned short form; /* Form of the attribute */
3593 int nbytes; /* Size of next field to read */
3594
3595 diecount++;
3596 diep = dip -> die;
3597 end = diep + dip -> die_length;
3598 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3599 while (diep < end)
3600 {
3601 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3602 diep += SIZEOF_ATTRIBUTE;
3603 if ((nbytes = attribute_size (attr)) == -1)
3604 {
3605 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3606 diep = end;
3607 continue;
3608 }
3609 switch (attr)
3610 {
3611 case AT_fund_type:
3612 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3613 objfile);
3614 break;
3615 case AT_ordering:
3616 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3617 objfile);
3618 break;
3619 case AT_bit_offset:
3620 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3621 objfile);
3622 break;
3623 case AT_sibling:
3624 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3625 objfile);
3626 break;
3627 case AT_stmt_list:
3628 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3629 objfile);
3630 dip -> has_at_stmt_list = 1;
3631 break;
3632 case AT_low_pc:
3633 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3634 objfile);
3635 dip -> at_low_pc += baseaddr;
3636 dip -> has_at_low_pc = 1;
3637 break;
3638 case AT_high_pc:
3639 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3640 objfile);
3641 dip -> at_high_pc += baseaddr;
3642 break;
3643 case AT_language:
3644 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3645 objfile);
3646 break;
3647 case AT_user_def_type:
3648 dip -> at_user_def_type = target_to_host (diep, nbytes,
3649 GET_UNSIGNED, objfile);
3650 break;
3651 case AT_byte_size:
3652 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3653 objfile);
3654 dip -> has_at_byte_size = 1;
3655 break;
3656 case AT_bit_size:
3657 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3658 objfile);
3659 break;
3660 case AT_member:
3661 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3662 objfile);
3663 break;
3664 case AT_discr:
3665 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3666 objfile);
3667 break;
3668 case AT_location:
3669 dip -> at_location = diep;
3670 break;
3671 case AT_mod_fund_type:
3672 dip -> at_mod_fund_type = diep;
3673 break;
3674 case AT_subscr_data:
3675 dip -> at_subscr_data = diep;
3676 break;
3677 case AT_mod_u_d_type:
3678 dip -> at_mod_u_d_type = diep;
3679 break;
3680 case AT_element_list:
3681 dip -> at_element_list = diep;
3682 dip -> short_element_list = 0;
3683 break;
3684 case AT_short_element_list:
3685 dip -> at_element_list = diep;
3686 dip -> short_element_list = 1;
3687 break;
3688 case AT_discr_value:
3689 dip -> at_discr_value = diep;
3690 break;
3691 case AT_string_length:
3692 dip -> at_string_length = diep;
3693 break;
3694 case AT_name:
3695 dip -> at_name = diep;
3696 break;
3697 case AT_comp_dir:
3698 /* For now, ignore any "hostname:" portion, since gdb doesn't
3699 know how to deal with it. (FIXME). */
3700 dip -> at_comp_dir = strrchr (diep, ':');
3701 if (dip -> at_comp_dir != NULL)
3702 {
3703 dip -> at_comp_dir++;
3704 }
3705 else
3706 {
3707 dip -> at_comp_dir = diep;
3708 }
3709 break;
3710 case AT_producer:
3711 dip -> at_producer = diep;
3712 break;
3713 case AT_start_scope:
3714 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3715 objfile);
3716 break;
3717 case AT_stride_size:
3718 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3719 objfile);
3720 break;
3721 case AT_src_info:
3722 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3723 objfile);
3724 break;
3725 case AT_prototyped:
3726 dip -> at_prototyped = diep;
3727 break;
3728 default:
3729 /* Found an attribute that we are unprepared to handle. However
3730 it is specifically one of the design goals of DWARF that
3731 consumers should ignore unknown attributes. As long as the
3732 form is one that we recognize (so we know how to skip it),
3733 we can just ignore the unknown attribute. */
3734 break;
3735 }
3736 form = FORM_FROM_ATTR (attr);
3737 switch (form)
3738 {
3739 case FORM_DATA2:
3740 diep += 2;
3741 break;
3742 case FORM_DATA4:
3743 case FORM_REF:
3744 diep += 4;
3745 break;
3746 case FORM_DATA8:
3747 diep += 8;
3748 break;
3749 case FORM_ADDR:
3750 diep += TARGET_FT_POINTER_SIZE (objfile);
3751 break;
3752 case FORM_BLOCK2:
3753 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3754 break;
3755 case FORM_BLOCK4:
3756 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3757 break;
3758 case FORM_STRING:
3759 diep += strlen (diep) + 1;
3760 break;
3761 default:
3762 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3763 diep = end;
3764 break;
3765 }
3766 }
3767 }
3768
3769 /*
3770
3771 LOCAL FUNCTION
3772
3773 target_to_host -- swap in target data to host
3774
3775 SYNOPSIS
3776
3777 target_to_host (char *from, int nbytes, int signextend,
3778 struct objfile *objfile)
3779
3780 DESCRIPTION
3781
3782 Given pointer to data in target format in FROM, a byte count for
3783 the size of the data in NBYTES, a flag indicating whether or not
3784 the data is signed in SIGNEXTEND, and a pointer to the current
3785 objfile in OBJFILE, convert the data to host format and return
3786 the converted value.
3787
3788 NOTES
3789
3790 FIXME: If we read data that is known to be signed, and expect to
3791 use it as signed data, then we need to explicitly sign extend the
3792 result until the bfd library is able to do this for us.
3793
3794 */
3795
3796 static unsigned long
3797 target_to_host (from, nbytes, signextend, objfile)
3798 char *from;
3799 int nbytes;
3800 int signextend; /* FIXME: Unused */
3801 struct objfile *objfile;
3802 {
3803 unsigned long rtnval;
3804
3805 switch (nbytes)
3806 {
3807 case 8:
3808 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3809 break;
3810 case 4:
3811 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3812 break;
3813 case 2:
3814 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3815 break;
3816 case 1:
3817 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3818 break;
3819 default:
3820 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3821 rtnval = 0;
3822 break;
3823 }
3824 return (rtnval);
3825 }
3826
3827 /*
3828
3829 LOCAL FUNCTION
3830
3831 attribute_size -- compute size of data for a DWARF attribute
3832
3833 SYNOPSIS
3834
3835 static int attribute_size (unsigned int attr)
3836
3837 DESCRIPTION
3838
3839 Given a DWARF attribute in ATTR, compute the size of the first
3840 piece of data associated with this attribute and return that
3841 size.
3842
3843 Returns -1 for unrecognized attributes.
3844
3845 */
3846
3847 static int
3848 attribute_size (attr)
3849 unsigned int attr;
3850 {
3851 int nbytes; /* Size of next data for this attribute */
3852 unsigned short form; /* Form of the attribute */
3853
3854 form = FORM_FROM_ATTR (attr);
3855 switch (form)
3856 {
3857 case FORM_STRING: /* A variable length field is next */
3858 nbytes = 0;
3859 break;
3860 case FORM_DATA2: /* Next 2 byte field is the data itself */
3861 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3862 nbytes = 2;
3863 break;
3864 case FORM_DATA4: /* Next 4 byte field is the data itself */
3865 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3866 case FORM_REF: /* Next 4 byte field is a DIE offset */
3867 nbytes = 4;
3868 break;
3869 case FORM_DATA8: /* Next 8 byte field is the data itself */
3870 nbytes = 8;
3871 break;
3872 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3873 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3874 break;
3875 default:
3876 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3877 nbytes = -1;
3878 break;
3879 }
3880 return (nbytes);
3881 }
This page took 0.107955 seconds and 4 git commands to generate.