4318ebf9eb9b9ea5ef9b66f6f1905d01da555f98
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2020 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "complaints.h"
33 #include "demangle.h"
34 #include "psympriv.h"
35 #include "filenames.h"
36 #include "probe.h"
37 #include "arch-utils.h"
38 #include "gdbtypes.h"
39 #include "value.h"
40 #include "infcall.h"
41 #include "gdbthread.h"
42 #include "inferior.h"
43 #include "regcache.h"
44 #include "bcache.h"
45 #include "gdb_bfd.h"
46 #include "build-id.h"
47 #include "location.h"
48 #include "auxv.h"
49 #include "mdebugread.h"
50 #include "ctfread.h"
51 #include "gdbsupport/gdb_string_view.h"
52 #include "gdbsupport/scoped_fd.h"
53 #include "debuginfod-support.h"
54
55 /* Forward declarations. */
56 extern const struct sym_fns elf_sym_fns_gdb_index;
57 extern const struct sym_fns elf_sym_fns_debug_names;
58 extern const struct sym_fns elf_sym_fns_lazy_psyms;
59
60 /* The struct elfinfo is available only during ELF symbol table and
61 psymtab reading. It is destroyed at the completion of psymtab-reading.
62 It's local to elf_symfile_read. */
63
64 struct elfinfo
65 {
66 asection *stabsect; /* Section pointer for .stab section */
67 asection *mdebugsect; /* Section pointer for .mdebug section */
68 asection *ctfsect; /* Section pointer for .ctf section */
69 };
70
71 /* Type for per-BFD data. */
72
73 typedef std::vector<std::unique_ptr<probe>> elfread_data;
74
75 /* Per-BFD data for probe info. */
76
77 static const struct bfd_key<elfread_data> probe_key;
78
79 /* Minimal symbols located at the GOT entries for .plt - that is the real
80 pointer where the given entry will jump to. It gets updated by the real
81 function address during lazy ld.so resolving in the inferior. These
82 minimal symbols are indexed for <tab>-completion. */
83
84 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
85
86 /* Locate the segments in ABFD. */
87
88 static symfile_segment_data_up
89 elf_symfile_segments (bfd *abfd)
90 {
91 Elf_Internal_Phdr *phdrs, **segments;
92 long phdrs_size;
93 int num_phdrs, num_segments, num_sections, i;
94 asection *sect;
95
96 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
97 if (phdrs_size == -1)
98 return NULL;
99
100 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
101 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
102 if (num_phdrs == -1)
103 return NULL;
104
105 num_segments = 0;
106 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
107 for (i = 0; i < num_phdrs; i++)
108 if (phdrs[i].p_type == PT_LOAD)
109 segments[num_segments++] = &phdrs[i];
110
111 if (num_segments == 0)
112 return NULL;
113
114 symfile_segment_data_up data (new symfile_segment_data);
115 data->segments.reserve (num_segments);
116
117 for (i = 0; i < num_segments; i++)
118 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
119
120 num_sections = bfd_count_sections (abfd);
121 data->segment_info = XCNEWVEC (int, num_sections);
122
123 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
124 {
125 int j;
126
127 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
128 continue;
129
130 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
131
132 for (j = 0; j < num_segments; j++)
133 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_section_size (sect) > 0 && j == num_segments
149 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
150 warning (_("Loadable section \"%s\" outside of ELF segments"),
151 bfd_section_name (sect));
152 }
153
154 return data;
155 }
156
157 /* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
161
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
166 used).
167
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
170
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
173 section flags to specify what kind of debug section it is.
174 -kingdon). */
175
176 static void
177 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
178 {
179 struct elfinfo *ei;
180
181 ei = (struct elfinfo *) eip;
182 if (strcmp (sectp->name, ".stab") == 0)
183 {
184 ei->stabsect = sectp;
185 }
186 else if (strcmp (sectp->name, ".mdebug") == 0)
187 {
188 ei->mdebugsect = sectp;
189 }
190 else if (strcmp (sectp->name, ".ctf") == 0)
191 {
192 ei->ctfsect = sectp;
193 }
194 }
195
196 static struct minimal_symbol *
197 record_minimal_symbol (minimal_symbol_reader &reader,
198 gdb::string_view name, bool copy_name,
199 CORE_ADDR address,
200 enum minimal_symbol_type ms_type,
201 asection *bfd_section, struct objfile *objfile)
202 {
203 struct gdbarch *gdbarch = objfile->arch ();
204
205 if (ms_type == mst_text || ms_type == mst_file_text
206 || ms_type == mst_text_gnu_ifunc)
207 address = gdbarch_addr_bits_remove (gdbarch, address);
208
209 /* We only setup section information for allocatable sections. Usually
210 we'd only expect to find msymbols for allocatable sections, but if the
211 ELF is malformed then this might not be the case. In that case don't
212 create an msymbol that references an uninitialised section object. */
213 int section_index = 0;
214 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
215 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
216
217 struct minimal_symbol *result
218 = reader.record_full (name, copy_name, address, ms_type, section_index);
219 if ((objfile->flags & OBJF_MAINLINE) == 0
220 && (ms_type == mst_data || ms_type == mst_bss))
221 result->maybe_copied = 1;
222
223 return result;
224 }
225
226 /* Read the symbol table of an ELF file.
227
228 Given an objfile, a symbol table, and a flag indicating whether the
229 symbol table contains regular, dynamic, or synthetic symbols, add all
230 the global function and data symbols to the minimal symbol table.
231
232 In stabs-in-ELF, as implemented by Sun, there are some local symbols
233 defined in the ELF symbol table, which can be used to locate
234 the beginnings of sections from each ".o" file that was linked to
235 form the executable objfile. We gather any such info and record it
236 in data structures hung off the objfile's private data. */
237
238 #define ST_REGULAR 0
239 #define ST_DYNAMIC 1
240 #define ST_SYNTHETIC 2
241
242 static void
243 elf_symtab_read (minimal_symbol_reader &reader,
244 struct objfile *objfile, int type,
245 long number_of_symbols, asymbol **symbol_table,
246 bool copy_names)
247 {
248 struct gdbarch *gdbarch = objfile->arch ();
249 asymbol *sym;
250 long i;
251 CORE_ADDR symaddr;
252 enum minimal_symbol_type ms_type;
253 /* Name of the last file symbol. This is either a constant string or is
254 saved on the objfile's filename cache. */
255 const char *filesymname = "";
256 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
257 int elf_make_msymbol_special_p
258 = gdbarch_elf_make_msymbol_special_p (gdbarch);
259
260 for (i = 0; i < number_of_symbols; i++)
261 {
262 sym = symbol_table[i];
263 if (sym->name == NULL || *sym->name == '\0')
264 {
265 /* Skip names that don't exist (shouldn't happen), or names
266 that are null strings (may happen). */
267 continue;
268 }
269
270 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
271 symbols which do not correspond to objects in the symbol table,
272 but have some other target-specific meaning. */
273 if (bfd_is_target_special_symbol (objfile->obfd, sym))
274 {
275 if (gdbarch_record_special_symbol_p (gdbarch))
276 gdbarch_record_special_symbol (gdbarch, objfile, sym);
277 continue;
278 }
279
280 if (type == ST_DYNAMIC
281 && sym->section == bfd_und_section_ptr
282 && (sym->flags & BSF_FUNCTION))
283 {
284 struct minimal_symbol *msym;
285 bfd *abfd = objfile->obfd;
286 asection *sect;
287
288 /* Symbol is a reference to a function defined in
289 a shared library.
290 If its value is non zero then it is usually the address
291 of the corresponding entry in the procedure linkage table,
292 plus the desired section offset.
293 If its value is zero then the dynamic linker has to resolve
294 the symbol. We are unable to find any meaningful address
295 for this symbol in the executable file, so we skip it. */
296 symaddr = sym->value;
297 if (symaddr == 0)
298 continue;
299
300 /* sym->section is the undefined section. However, we want to
301 record the section where the PLT stub resides with the
302 minimal symbol. Search the section table for the one that
303 covers the stub's address. */
304 for (sect = abfd->sections; sect != NULL; sect = sect->next)
305 {
306 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
307 continue;
308
309 if (symaddr >= bfd_section_vma (sect)
310 && symaddr < bfd_section_vma (sect)
311 + bfd_section_size (sect))
312 break;
313 }
314 if (!sect)
315 continue;
316
317 /* On ia64-hpux, we have discovered that the system linker
318 adds undefined symbols with nonzero addresses that cannot
319 be right (their address points inside the code of another
320 function in the .text section). This creates problems
321 when trying to determine which symbol corresponds to
322 a given address.
323
324 We try to detect those buggy symbols by checking which
325 section we think they correspond to. Normally, PLT symbols
326 are stored inside their own section, and the typical name
327 for that section is ".plt". So, if there is a ".plt"
328 section, and yet the section name of our symbol does not
329 start with ".plt", we ignore that symbol. */
330 if (!startswith (sect->name, ".plt")
331 && bfd_get_section_by_name (abfd, ".plt") != NULL)
332 continue;
333
334 msym = record_minimal_symbol
335 (reader, sym->name, copy_names,
336 symaddr, mst_solib_trampoline, sect, objfile);
337 if (msym != NULL)
338 {
339 msym->filename = filesymname;
340 if (elf_make_msymbol_special_p)
341 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
342 }
343 continue;
344 }
345
346 /* If it is a nonstripped executable, do not enter dynamic
347 symbols, as the dynamic symbol table is usually a subset
348 of the main symbol table. */
349 if (type == ST_DYNAMIC && !stripped)
350 continue;
351 if (sym->flags & BSF_FILE)
352 filesymname = objfile->intern (sym->name);
353 else if (sym->flags & BSF_SECTION_SYM)
354 continue;
355 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
356 | BSF_GNU_UNIQUE))
357 {
358 struct minimal_symbol *msym;
359
360 /* Select global/local/weak symbols. Note that bfd puts abs
361 symbols in their own section, so all symbols we are
362 interested in will have a section. */
363 /* Bfd symbols are section relative. */
364 symaddr = sym->value + sym->section->vma;
365 /* For non-absolute symbols, use the type of the section
366 they are relative to, to intuit text/data. Bfd provides
367 no way of figuring this out for absolute symbols. */
368 if (sym->section == bfd_abs_section_ptr)
369 {
370 /* This is a hack to get the minimal symbol type
371 right for Irix 5, which has absolute addresses
372 with special section indices for dynamic symbols.
373
374 NOTE: uweigand-20071112: Synthetic symbols do not
375 have an ELF-private part, so do not touch those. */
376 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
377 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
378
379 switch (shndx)
380 {
381 case SHN_MIPS_TEXT:
382 ms_type = mst_text;
383 break;
384 case SHN_MIPS_DATA:
385 ms_type = mst_data;
386 break;
387 case SHN_MIPS_ACOMMON:
388 ms_type = mst_bss;
389 break;
390 default:
391 ms_type = mst_abs;
392 }
393
394 /* If it is an Irix dynamic symbol, skip section name
395 symbols, relocate all others by section offset. */
396 if (ms_type != mst_abs)
397 {
398 if (sym->name[0] == '.')
399 continue;
400 }
401 }
402 else if (sym->section->flags & SEC_CODE)
403 {
404 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
405 {
406 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
407 ms_type = mst_text_gnu_ifunc;
408 else
409 ms_type = mst_text;
410 }
411 /* The BSF_SYNTHETIC check is there to omit ppc64 function
412 descriptors mistaken for static functions starting with 'L'.
413 */
414 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
415 && (sym->flags & BSF_SYNTHETIC) == 0)
416 || ((sym->flags & BSF_LOCAL)
417 && sym->name[0] == '$'
418 && sym->name[1] == 'L'))
419 /* Looks like a compiler-generated label. Skip
420 it. The assembler should be skipping these (to
421 keep executables small), but apparently with
422 gcc on the (deleted) delta m88k SVR4, it loses.
423 So to have us check too should be harmless (but
424 I encourage people to fix this in the assembler
425 instead of adding checks here). */
426 continue;
427 else
428 {
429 ms_type = mst_file_text;
430 }
431 }
432 else if (sym->section->flags & SEC_ALLOC)
433 {
434 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
435 {
436 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
437 {
438 ms_type = mst_data_gnu_ifunc;
439 }
440 else if (sym->section->flags & SEC_LOAD)
441 {
442 ms_type = mst_data;
443 }
444 else
445 {
446 ms_type = mst_bss;
447 }
448 }
449 else if (sym->flags & BSF_LOCAL)
450 {
451 if (sym->section->flags & SEC_LOAD)
452 {
453 ms_type = mst_file_data;
454 }
455 else
456 {
457 ms_type = mst_file_bss;
458 }
459 }
460 else
461 {
462 ms_type = mst_unknown;
463 }
464 }
465 else
466 {
467 /* FIXME: Solaris2 shared libraries include lots of
468 odd "absolute" and "undefined" symbols, that play
469 hob with actions like finding what function the PC
470 is in. Ignore them if they aren't text, data, or bss. */
471 /* ms_type = mst_unknown; */
472 continue; /* Skip this symbol. */
473 }
474 msym = record_minimal_symbol
475 (reader, sym->name, copy_names, symaddr,
476 ms_type, sym->section, objfile);
477
478 if (msym)
479 {
480 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
481 ELF-private part. */
482 if (type != ST_SYNTHETIC)
483 {
484 /* Pass symbol size field in via BFD. FIXME!!! */
485 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
486 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
487 }
488
489 msym->filename = filesymname;
490 if (elf_make_msymbol_special_p)
491 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
492 }
493
494 /* If we see a default versioned symbol, install it under
495 its version-less name. */
496 if (msym != NULL)
497 {
498 const char *atsign = strchr (sym->name, '@');
499
500 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
501 {
502 int len = atsign - sym->name;
503
504 record_minimal_symbol (reader,
505 gdb::string_view (sym->name, len),
506 true, symaddr, ms_type, sym->section,
507 objfile);
508 }
509 }
510
511 /* For @plt symbols, also record a trampoline to the
512 destination symbol. The @plt symbol will be used in
513 disassembly, and the trampoline will be used when we are
514 trying to find the target. */
515 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
516 {
517 int len = strlen (sym->name);
518
519 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
520 {
521 struct minimal_symbol *mtramp;
522
523 mtramp = record_minimal_symbol
524 (reader, gdb::string_view (sym->name, len - 4), true,
525 symaddr, mst_solib_trampoline, sym->section, objfile);
526 if (mtramp)
527 {
528 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
529 mtramp->created_by_gdb = 1;
530 mtramp->filename = filesymname;
531 if (elf_make_msymbol_special_p)
532 gdbarch_elf_make_msymbol_special (gdbarch,
533 sym, mtramp);
534 }
535 }
536 }
537 }
538 }
539 }
540
541 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
542 for later look ups of which function to call when user requests
543 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
544 library defining `function' we cannot yet know while reading OBJFILE which
545 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
546 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
547
548 static void
549 elf_rel_plt_read (minimal_symbol_reader &reader,
550 struct objfile *objfile, asymbol **dyn_symbol_table)
551 {
552 bfd *obfd = objfile->obfd;
553 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
554 asection *relplt, *got_plt;
555 bfd_size_type reloc_count, reloc;
556 struct gdbarch *gdbarch = objfile->arch ();
557 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
558 size_t ptr_size = TYPE_LENGTH (ptr_type);
559
560 if (objfile->separate_debug_objfile_backlink)
561 return;
562
563 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
564 if (got_plt == NULL)
565 {
566 /* For platforms where there is no separate .got.plt. */
567 got_plt = bfd_get_section_by_name (obfd, ".got");
568 if (got_plt == NULL)
569 return;
570 }
571
572 /* Depending on system, we may find jump slots in a relocation
573 section for either .got.plt or .plt. */
574 asection *plt = bfd_get_section_by_name (obfd, ".plt");
575 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
576
577 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
578
579 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
580 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
581 {
582 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
583
584 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
585 {
586 if (this_hdr.sh_info == plt_elf_idx
587 || this_hdr.sh_info == got_plt_elf_idx)
588 break;
589 }
590 }
591 if (relplt == NULL)
592 return;
593
594 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
595 return;
596
597 std::string string_buffer;
598
599 /* Does ADDRESS reside in SECTION of OBFD? */
600 auto within_section = [obfd] (asection *section, CORE_ADDR address)
601 {
602 if (section == NULL)
603 return false;
604
605 return (bfd_section_vma (section) <= address
606 && (address < bfd_section_vma (section)
607 + bfd_section_size (section)));
608 };
609
610 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
611 for (reloc = 0; reloc < reloc_count; reloc++)
612 {
613 const char *name;
614 struct minimal_symbol *msym;
615 CORE_ADDR address;
616 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
617 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
618
619 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
620 address = relplt->relocation[reloc].address;
621
622 asection *msym_section;
623
624 /* Does the pointer reside in either the .got.plt or .plt
625 sections? */
626 if (within_section (got_plt, address))
627 msym_section = got_plt;
628 else if (within_section (plt, address))
629 msym_section = plt;
630 else
631 continue;
632
633 /* We cannot check if NAME is a reference to
634 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
635 symbol is undefined and the objfile having NAME defined may
636 not yet have been loaded. */
637
638 string_buffer.assign (name);
639 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
640
641 msym = record_minimal_symbol (reader, string_buffer,
642 true, address, mst_slot_got_plt,
643 msym_section, objfile);
644 if (msym)
645 SET_MSYMBOL_SIZE (msym, ptr_size);
646 }
647 }
648
649 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
650
651 static const struct objfile_key<htab, htab_deleter>
652 elf_objfile_gnu_ifunc_cache_data;
653
654 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
655
656 struct elf_gnu_ifunc_cache
657 {
658 /* This is always a function entry address, not a function descriptor. */
659 CORE_ADDR addr;
660
661 char name[1];
662 };
663
664 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
665
666 static hashval_t
667 elf_gnu_ifunc_cache_hash (const void *a_voidp)
668 {
669 const struct elf_gnu_ifunc_cache *a
670 = (const struct elf_gnu_ifunc_cache *) a_voidp;
671
672 return htab_hash_string (a->name);
673 }
674
675 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
676
677 static int
678 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
679 {
680 const struct elf_gnu_ifunc_cache *a
681 = (const struct elf_gnu_ifunc_cache *) a_voidp;
682 const struct elf_gnu_ifunc_cache *b
683 = (const struct elf_gnu_ifunc_cache *) b_voidp;
684
685 return strcmp (a->name, b->name) == 0;
686 }
687
688 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
689 function entry address ADDR. Return 1 if NAME and ADDR are considered as
690 valid and therefore they were successfully recorded, return 0 otherwise.
691
692 Function does not expect a duplicate entry. Use
693 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
694 exists. */
695
696 static int
697 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
698 {
699 struct bound_minimal_symbol msym;
700 struct objfile *objfile;
701 htab_t htab;
702 struct elf_gnu_ifunc_cache entry_local, *entry_p;
703 void **slot;
704
705 msym = lookup_minimal_symbol_by_pc (addr);
706 if (msym.minsym == NULL)
707 return 0;
708 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
709 return 0;
710 objfile = msym.objfile;
711
712 /* If .plt jumps back to .plt the symbol is still deferred for later
713 resolution and it has no use for GDB. */
714 const char *target_name = msym.minsym->linkage_name ();
715 size_t len = strlen (target_name);
716
717 /* Note we check the symbol's name instead of checking whether the
718 symbol is in the .plt section because some systems have @plt
719 symbols in the .text section. */
720 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
721 return 0;
722
723 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
724 if (htab == NULL)
725 {
726 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
727 elf_gnu_ifunc_cache_eq,
728 NULL, xcalloc, xfree);
729 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
730 }
731
732 entry_local.addr = addr;
733 obstack_grow (&objfile->objfile_obstack, &entry_local,
734 offsetof (struct elf_gnu_ifunc_cache, name));
735 obstack_grow_str0 (&objfile->objfile_obstack, name);
736 entry_p
737 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
738
739 slot = htab_find_slot (htab, entry_p, INSERT);
740 if (*slot != NULL)
741 {
742 struct elf_gnu_ifunc_cache *entry_found_p
743 = (struct elf_gnu_ifunc_cache *) *slot;
744 struct gdbarch *gdbarch = objfile->arch ();
745
746 if (entry_found_p->addr != addr)
747 {
748 /* This case indicates buggy inferior program, the resolved address
749 should never change. */
750
751 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
752 "function_address from %s to %s"),
753 name, paddress (gdbarch, entry_found_p->addr),
754 paddress (gdbarch, addr));
755 }
756
757 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
758 }
759 *slot = entry_p;
760
761 return 1;
762 }
763
764 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
765 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
766 is not NULL) and the function returns 1. It returns 0 otherwise.
767
768 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
769 function. */
770
771 static int
772 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
773 {
774 for (objfile *objfile : current_program_space->objfiles ())
775 {
776 htab_t htab;
777 struct elf_gnu_ifunc_cache *entry_p;
778 void **slot;
779
780 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
781 if (htab == NULL)
782 continue;
783
784 entry_p = ((struct elf_gnu_ifunc_cache *)
785 alloca (sizeof (*entry_p) + strlen (name)));
786 strcpy (entry_p->name, name);
787
788 slot = htab_find_slot (htab, entry_p, NO_INSERT);
789 if (slot == NULL)
790 continue;
791 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
792 gdb_assert (entry_p != NULL);
793
794 if (addr_p)
795 *addr_p = entry_p->addr;
796 return 1;
797 }
798
799 return 0;
800 }
801
802 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
803 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
804 is not NULL) and the function returns 1. It returns 0 otherwise.
805
806 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
807 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
808 prevent cache entries duplicates. */
809
810 static int
811 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
812 {
813 char *name_got_plt;
814 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
815
816 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
817 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
818
819 for (objfile *objfile : current_program_space->objfiles ())
820 {
821 bfd *obfd = objfile->obfd;
822 struct gdbarch *gdbarch = objfile->arch ();
823 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
824 size_t ptr_size = TYPE_LENGTH (ptr_type);
825 CORE_ADDR pointer_address, addr;
826 asection *plt;
827 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
828 struct bound_minimal_symbol msym;
829
830 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
831 if (msym.minsym == NULL)
832 continue;
833 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
834 continue;
835 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
836
837 plt = bfd_get_section_by_name (obfd, ".plt");
838 if (plt == NULL)
839 continue;
840
841 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
842 continue;
843 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
844 continue;
845 addr = extract_typed_address (buf, ptr_type);
846 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
847 current_top_target ());
848 addr = gdbarch_addr_bits_remove (gdbarch, addr);
849
850 if (elf_gnu_ifunc_record_cache (name, addr))
851 {
852 if (addr_p != NULL)
853 *addr_p = addr;
854 return 1;
855 }
856 }
857
858 return 0;
859 }
860
861 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
862 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
863 is not NULL) and the function returns true. It returns false otherwise.
864
865 Both the elf_objfile_gnu_ifunc_cache_data hash table and
866 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
867
868 static bool
869 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
870 {
871 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
872 return true;
873
874 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
875 return true;
876
877 return false;
878 }
879
880 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
881 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
882 is the entry point of the resolved STT_GNU_IFUNC target function to call.
883 */
884
885 static CORE_ADDR
886 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
887 {
888 const char *name_at_pc;
889 CORE_ADDR start_at_pc, address;
890 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
891 struct value *function, *address_val;
892 CORE_ADDR hwcap = 0;
893 struct value *hwcap_val;
894
895 /* Try first any non-intrusive methods without an inferior call. */
896
897 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
898 && start_at_pc == pc)
899 {
900 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
901 return address;
902 }
903 else
904 name_at_pc = NULL;
905
906 function = allocate_value (func_func_type);
907 VALUE_LVAL (function) = lval_memory;
908 set_value_address (function, pc);
909
910 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
911 parameter. FUNCTION is the function entry address. ADDRESS may be a
912 function descriptor. */
913
914 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
915 hwcap_val = value_from_longest (builtin_type (gdbarch)
916 ->builtin_unsigned_long, hwcap);
917 address_val = call_function_by_hand (function, NULL, hwcap_val);
918 address = value_as_address (address_val);
919 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
920 address = gdbarch_addr_bits_remove (gdbarch, address);
921
922 if (name_at_pc)
923 elf_gnu_ifunc_record_cache (name_at_pc, address);
924
925 return address;
926 }
927
928 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
929
930 static void
931 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
932 {
933 struct breakpoint *b_return;
934 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
935 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
936 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
937 int thread_id = inferior_thread ()->global_num;
938
939 gdb_assert (b->type == bp_gnu_ifunc_resolver);
940
941 for (b_return = b->related_breakpoint; b_return != b;
942 b_return = b_return->related_breakpoint)
943 {
944 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
945 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
946 gdb_assert (frame_id_p (b_return->frame_id));
947
948 if (b_return->thread == thread_id
949 && b_return->loc->requested_address == prev_pc
950 && frame_id_eq (b_return->frame_id, prev_frame_id))
951 break;
952 }
953
954 if (b_return == b)
955 {
956 /* No need to call find_pc_line for symbols resolving as this is only
957 a helper breakpointer never shown to the user. */
958
959 symtab_and_line sal;
960 sal.pspace = current_inferior ()->pspace;
961 sal.pc = prev_pc;
962 sal.section = find_pc_overlay (sal.pc);
963 sal.explicit_pc = 1;
964 b_return
965 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
966 prev_frame_id,
967 bp_gnu_ifunc_resolver_return).release ();
968
969 /* set_momentary_breakpoint invalidates PREV_FRAME. */
970 prev_frame = NULL;
971
972 /* Add new b_return to the ring list b->related_breakpoint. */
973 gdb_assert (b_return->related_breakpoint == b_return);
974 b_return->related_breakpoint = b->related_breakpoint;
975 b->related_breakpoint = b_return;
976 }
977 }
978
979 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
980
981 static void
982 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
983 {
984 thread_info *thread = inferior_thread ();
985 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
986 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
987 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
988 struct regcache *regcache = get_thread_regcache (thread);
989 struct value *func_func;
990 struct value *value;
991 CORE_ADDR resolved_address, resolved_pc;
992
993 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
994
995 while (b->related_breakpoint != b)
996 {
997 struct breakpoint *b_next = b->related_breakpoint;
998
999 switch (b->type)
1000 {
1001 case bp_gnu_ifunc_resolver:
1002 break;
1003 case bp_gnu_ifunc_resolver_return:
1004 delete_breakpoint (b);
1005 break;
1006 default:
1007 internal_error (__FILE__, __LINE__,
1008 _("handle_inferior_event: Invalid "
1009 "gnu-indirect-function breakpoint type %d"),
1010 (int) b->type);
1011 }
1012 b = b_next;
1013 }
1014 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1015 gdb_assert (b->loc->next == NULL);
1016
1017 func_func = allocate_value (func_func_type);
1018 VALUE_LVAL (func_func) = lval_memory;
1019 set_value_address (func_func, b->loc->related_address);
1020
1021 value = allocate_value (value_type);
1022 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1023 value_contents_raw (value), NULL);
1024 resolved_address = value_as_address (value);
1025 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1026 resolved_address,
1027 current_top_target ());
1028 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1029
1030 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1031 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1032 resolved_pc);
1033
1034 b->type = bp_breakpoint;
1035 update_breakpoint_locations (b, current_program_space,
1036 find_function_start_sal (resolved_pc, NULL, true),
1037 {});
1038 }
1039
1040 /* A helper function for elf_symfile_read that reads the minimal
1041 symbols. */
1042
1043 static void
1044 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1045 const struct elfinfo *ei)
1046 {
1047 bfd *synth_abfd, *abfd = objfile->obfd;
1048 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1049 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1050 asymbol *synthsyms;
1051
1052 if (symtab_create_debug)
1053 {
1054 fprintf_unfiltered (gdb_stdlog,
1055 "Reading minimal symbols of objfile %s ...\n",
1056 objfile_name (objfile));
1057 }
1058
1059 /* If we already have minsyms, then we can skip some work here.
1060 However, if there were stabs or mdebug sections, we go ahead and
1061 redo all the work anyway, because the psym readers for those
1062 kinds of debuginfo need extra information found here. This can
1063 go away once all types of symbols are in the per-BFD object. */
1064 if (objfile->per_bfd->minsyms_read
1065 && ei->stabsect == NULL
1066 && ei->mdebugsect == NULL
1067 && ei->ctfsect == NULL)
1068 {
1069 if (symtab_create_debug)
1070 fprintf_unfiltered (gdb_stdlog,
1071 "... minimal symbols previously read\n");
1072 return;
1073 }
1074
1075 minimal_symbol_reader reader (objfile);
1076
1077 /* Process the normal ELF symbol table first. */
1078
1079 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1080 if (storage_needed < 0)
1081 error (_("Can't read symbols from %s: %s"),
1082 bfd_get_filename (objfile->obfd),
1083 bfd_errmsg (bfd_get_error ()));
1084
1085 if (storage_needed > 0)
1086 {
1087 /* Memory gets permanently referenced from ABFD after
1088 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1089
1090 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1091 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1092
1093 if (symcount < 0)
1094 error (_("Can't read symbols from %s: %s"),
1095 bfd_get_filename (objfile->obfd),
1096 bfd_errmsg (bfd_get_error ()));
1097
1098 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1099 false);
1100 }
1101
1102 /* Add the dynamic symbols. */
1103
1104 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1105
1106 if (storage_needed > 0)
1107 {
1108 /* Memory gets permanently referenced from ABFD after
1109 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1110 It happens only in the case when elf_slurp_reloc_table sees
1111 asection->relocation NULL. Determining which section is asection is
1112 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1113 implementation detail, though. */
1114
1115 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1116 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1117 dyn_symbol_table);
1118
1119 if (dynsymcount < 0)
1120 error (_("Can't read symbols from %s: %s"),
1121 bfd_get_filename (objfile->obfd),
1122 bfd_errmsg (bfd_get_error ()));
1123
1124 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1125 dyn_symbol_table, false);
1126
1127 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1128 }
1129
1130 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1131 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1132
1133 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1134 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1135 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1136 read the code address from .opd while it reads the .symtab section from
1137 a separate debug info file as the .opd section is SHT_NOBITS there.
1138
1139 With SYNTH_ABFD the .opd section will be read from the original
1140 backlinked binary where it is valid. */
1141
1142 if (objfile->separate_debug_objfile_backlink)
1143 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1144 else
1145 synth_abfd = abfd;
1146
1147 /* Add synthetic symbols - for instance, names for any PLT entries. */
1148
1149 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1150 dynsymcount, dyn_symbol_table,
1151 &synthsyms);
1152 if (synthcount > 0)
1153 {
1154 long i;
1155
1156 std::unique_ptr<asymbol *[]>
1157 synth_symbol_table (new asymbol *[synthcount]);
1158 for (i = 0; i < synthcount; i++)
1159 synth_symbol_table[i] = synthsyms + i;
1160 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1161 synth_symbol_table.get (), true);
1162
1163 xfree (synthsyms);
1164 synthsyms = NULL;
1165 }
1166
1167 /* Install any minimal symbols that have been collected as the current
1168 minimal symbols for this objfile. The debug readers below this point
1169 should not generate new minimal symbols; if they do it's their
1170 responsibility to install them. "mdebug" appears to be the only one
1171 which will do this. */
1172
1173 reader.install ();
1174
1175 if (symtab_create_debug)
1176 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1177 }
1178
1179 /* Scan and build partial symbols for a symbol file.
1180 We have been initialized by a call to elf_symfile_init, which
1181 currently does nothing.
1182
1183 This function only does the minimum work necessary for letting the
1184 user "name" things symbolically; it does not read the entire symtab.
1185 Instead, it reads the external and static symbols and puts them in partial
1186 symbol tables. When more extensive information is requested of a
1187 file, the corresponding partial symbol table is mutated into a full
1188 fledged symbol table by going back and reading the symbols
1189 for real.
1190
1191 We look for sections with specific names, to tell us what debug
1192 format to look for: FIXME!!!
1193
1194 elfstab_build_psymtabs() handles STABS symbols;
1195 mdebug_build_psymtabs() handles ECOFF debugging information.
1196
1197 Note that ELF files have a "minimal" symbol table, which looks a lot
1198 like a COFF symbol table, but has only the minimal information necessary
1199 for linking. We process this also, and use the information to
1200 build gdb's minimal symbol table. This gives us some minimal debugging
1201 capability even for files compiled without -g. */
1202
1203 static void
1204 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1205 {
1206 bfd *abfd = objfile->obfd;
1207 struct elfinfo ei;
1208 bool has_dwarf2 = true;
1209
1210 memset ((char *) &ei, 0, sizeof (ei));
1211 if (!(objfile->flags & OBJF_READNEVER))
1212 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1213
1214 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1215
1216 /* ELF debugging information is inserted into the psymtab in the
1217 order of least informative first - most informative last. Since
1218 the psymtab table is searched `most recent insertion first' this
1219 increases the probability that more detailed debug information
1220 for a section is found.
1221
1222 For instance, an object file might contain both .mdebug (XCOFF)
1223 and .debug_info (DWARF2) sections then .mdebug is inserted first
1224 (searched last) and DWARF2 is inserted last (searched first). If
1225 we don't do this then the XCOFF info is found first - for code in
1226 an included file XCOFF info is useless. */
1227
1228 if (ei.mdebugsect)
1229 {
1230 const struct ecoff_debug_swap *swap;
1231
1232 /* .mdebug section, presumably holding ECOFF debugging
1233 information. */
1234 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1235 if (swap)
1236 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1237 }
1238 if (ei.stabsect)
1239 {
1240 asection *str_sect;
1241
1242 /* Stab sections have an associated string table that looks like
1243 a separate section. */
1244 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1245
1246 /* FIXME should probably warn about a stab section without a stabstr. */
1247 if (str_sect)
1248 elfstab_build_psymtabs (objfile,
1249 ei.stabsect,
1250 str_sect->filepos,
1251 bfd_section_size (str_sect));
1252 }
1253
1254 if (dwarf2_has_info (objfile, NULL, true))
1255 {
1256 dw_index_kind index_kind;
1257
1258 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1259 debug information present in OBJFILE. If there is such debug
1260 info present never use an index. */
1261 if (!objfile_has_partial_symbols (objfile)
1262 && dwarf2_initialize_objfile (objfile, &index_kind))
1263 {
1264 switch (index_kind)
1265 {
1266 case dw_index_kind::GDB_INDEX:
1267 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1268 break;
1269 case dw_index_kind::DEBUG_NAMES:
1270 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1271 break;
1272 }
1273 }
1274 else
1275 {
1276 /* It is ok to do this even if the stabs reader made some
1277 partial symbols, because OBJF_PSYMTABS_READ has not been
1278 set, and so our lazy reader function will still be called
1279 when needed. */
1280 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1281 }
1282 }
1283 /* If the file has its own symbol tables it has no separate debug
1284 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1285 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1286 `.note.gnu.build-id'.
1287
1288 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1289 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1290 an objfile via find_separate_debug_file_in_section there was no separate
1291 debug info available. Therefore do not attempt to search for another one,
1292 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1293 be NULL and we would possibly violate it. */
1294
1295 else if (!objfile_has_partial_symbols (objfile)
1296 && objfile->separate_debug_objfile == NULL
1297 && objfile->separate_debug_objfile_backlink == NULL)
1298 {
1299 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1300
1301 if (debugfile.empty ())
1302 debugfile = find_separate_debug_file_by_debuglink (objfile);
1303
1304 if (!debugfile.empty ())
1305 {
1306 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1307
1308 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1309 symfile_flags, objfile);
1310 }
1311 else
1312 {
1313 has_dwarf2 = false;
1314 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1315
1316 if (build_id != nullptr)
1317 {
1318 gdb::unique_xmalloc_ptr<char> symfile_path;
1319 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1320 build_id->size,
1321 objfile->original_name,
1322 &symfile_path));
1323
1324 if (fd.get () >= 0)
1325 {
1326 /* File successfully retrieved from server. */
1327 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1328
1329 if (debug_bfd == nullptr)
1330 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1331 objfile->original_name);
1332 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1333 {
1334 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1335 symfile_flags, objfile);
1336 has_dwarf2 = true;
1337 }
1338 }
1339 }
1340 }
1341 }
1342
1343 /* Read the CTF section only if there is no DWARF info. */
1344 if (!has_dwarf2 && ei.ctfsect)
1345 {
1346 elfctf_build_psymtabs (objfile);
1347 }
1348 }
1349
1350 /* Callback to lazily read psymtabs. */
1351
1352 static void
1353 read_psyms (struct objfile *objfile)
1354 {
1355 if (dwarf2_has_info (objfile, NULL))
1356 dwarf2_build_psymtabs (objfile);
1357 }
1358
1359 /* Initialize anything that needs initializing when a completely new symbol
1360 file is specified (not just adding some symbols from another file, e.g. a
1361 shared library). */
1362
1363 static void
1364 elf_new_init (struct objfile *ignore)
1365 {
1366 }
1367
1368 /* Perform any local cleanups required when we are done with a particular
1369 objfile. I.E, we are in the process of discarding all symbol information
1370 for an objfile, freeing up all memory held for it, and unlinking the
1371 objfile struct from the global list of known objfiles. */
1372
1373 static void
1374 elf_symfile_finish (struct objfile *objfile)
1375 {
1376 }
1377
1378 /* ELF specific initialization routine for reading symbols. */
1379
1380 static void
1381 elf_symfile_init (struct objfile *objfile)
1382 {
1383 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1384 find this causes a significant slowdown in gdb then we could
1385 set it in the debug symbol readers only when necessary. */
1386 objfile->flags |= OBJF_REORDERED;
1387 }
1388
1389 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1390
1391 static const elfread_data &
1392 elf_get_probes (struct objfile *objfile)
1393 {
1394 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
1395
1396 if (probes_per_bfd == NULL)
1397 {
1398 probes_per_bfd = probe_key.emplace (objfile->obfd);
1399
1400 /* Here we try to gather information about all types of probes from the
1401 objfile. */
1402 for (const static_probe_ops *ops : all_static_probe_ops)
1403 ops->get_probes (probes_per_bfd, objfile);
1404 }
1405
1406 return *probes_per_bfd;
1407 }
1408
1409 \f
1410
1411 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1412
1413 static const struct sym_probe_fns elf_probe_fns =
1414 {
1415 elf_get_probes, /* sym_get_probes */
1416 };
1417
1418 /* Register that we are able to handle ELF object file formats. */
1419
1420 static const struct sym_fns elf_sym_fns =
1421 {
1422 elf_new_init, /* init anything gbl to entire symtab */
1423 elf_symfile_init, /* read initial info, setup for sym_read() */
1424 elf_symfile_read, /* read a symbol file into symtab */
1425 NULL, /* sym_read_psymbols */
1426 elf_symfile_finish, /* finished with file, cleanup */
1427 default_symfile_offsets, /* Translate ext. to int. relocation */
1428 elf_symfile_segments, /* Get segment information from a file. */
1429 NULL,
1430 default_symfile_relocate, /* Relocate a debug section. */
1431 &elf_probe_fns, /* sym_probe_fns */
1432 &psym_functions
1433 };
1434
1435 /* The same as elf_sym_fns, but not registered and lazily reads
1436 psymbols. */
1437
1438 const struct sym_fns elf_sym_fns_lazy_psyms =
1439 {
1440 elf_new_init, /* init anything gbl to entire symtab */
1441 elf_symfile_init, /* read initial info, setup for sym_read() */
1442 elf_symfile_read, /* read a symbol file into symtab */
1443 read_psyms, /* sym_read_psymbols */
1444 elf_symfile_finish, /* finished with file, cleanup */
1445 default_symfile_offsets, /* Translate ext. to int. relocation */
1446 elf_symfile_segments, /* Get segment information from a file. */
1447 NULL,
1448 default_symfile_relocate, /* Relocate a debug section. */
1449 &elf_probe_fns, /* sym_probe_fns */
1450 &psym_functions
1451 };
1452
1453 /* The same as elf_sym_fns, but not registered and uses the
1454 DWARF-specific GNU index rather than psymtab. */
1455 const struct sym_fns elf_sym_fns_gdb_index =
1456 {
1457 elf_new_init, /* init anything gbl to entire symab */
1458 elf_symfile_init, /* read initial info, setup for sym_red() */
1459 elf_symfile_read, /* read a symbol file into symtab */
1460 NULL, /* sym_read_psymbols */
1461 elf_symfile_finish, /* finished with file, cleanup */
1462 default_symfile_offsets, /* Translate ext. to int. relocation */
1463 elf_symfile_segments, /* Get segment information from a file. */
1464 NULL,
1465 default_symfile_relocate, /* Relocate a debug section. */
1466 &elf_probe_fns, /* sym_probe_fns */
1467 &dwarf2_gdb_index_functions
1468 };
1469
1470 /* The same as elf_sym_fns, but not registered and uses the
1471 DWARF-specific .debug_names index rather than psymtab. */
1472 const struct sym_fns elf_sym_fns_debug_names =
1473 {
1474 elf_new_init, /* init anything gbl to entire symab */
1475 elf_symfile_init, /* read initial info, setup for sym_red() */
1476 elf_symfile_read, /* read a symbol file into symtab */
1477 NULL, /* sym_read_psymbols */
1478 elf_symfile_finish, /* finished with file, cleanup */
1479 default_symfile_offsets, /* Translate ext. to int. relocation */
1480 elf_symfile_segments, /* Get segment information from a file. */
1481 NULL,
1482 default_symfile_relocate, /* Relocate a debug section. */
1483 &elf_probe_fns, /* sym_probe_fns */
1484 &dwarf2_debug_names_functions
1485 };
1486
1487 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1488
1489 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1490 {
1491 elf_gnu_ifunc_resolve_addr,
1492 elf_gnu_ifunc_resolve_name,
1493 elf_gnu_ifunc_resolver_stop,
1494 elf_gnu_ifunc_resolver_return_stop
1495 };
1496
1497 void _initialize_elfread ();
1498 void
1499 _initialize_elfread ()
1500 {
1501 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1502
1503 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1504 }
This page took 0.058606 seconds and 4 git commands to generate.