Use gdb::unique_ptr in elf_read_minimal_symbols
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2016 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50
51 extern void _initialize_elfread (void);
52
53 /* Forward declarations. */
54 extern const struct sym_fns elf_sym_fns_gdb_index;
55 extern const struct sym_fns elf_sym_fns_lazy_psyms;
56
57 /* The struct elfinfo is available only during ELF symbol table and
58 psymtab reading. It is destroyed at the completion of psymtab-reading.
59 It's local to elf_symfile_read. */
60
61 struct elfinfo
62 {
63 asection *stabsect; /* Section pointer for .stab section */
64 asection *mdebugsect; /* Section pointer for .mdebug section */
65 };
66
67 /* Per-BFD data for probe info. */
68
69 static const struct bfd_data *probe_key = NULL;
70
71 /* Minimal symbols located at the GOT entries for .plt - that is the real
72 pointer where the given entry will jump to. It gets updated by the real
73 function address during lazy ld.so resolving in the inferior. These
74 minimal symbols are indexed for <tab>-completion. */
75
76 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
77
78 /* Locate the segments in ABFD. */
79
80 static struct symfile_segment_data *
81 elf_symfile_segments (bfd *abfd)
82 {
83 Elf_Internal_Phdr *phdrs, **segments;
84 long phdrs_size;
85 int num_phdrs, num_segments, num_sections, i;
86 asection *sect;
87 struct symfile_segment_data *data;
88
89 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
90 if (phdrs_size == -1)
91 return NULL;
92
93 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
94 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
95 if (num_phdrs == -1)
96 return NULL;
97
98 num_segments = 0;
99 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
100 for (i = 0; i < num_phdrs; i++)
101 if (phdrs[i].p_type == PT_LOAD)
102 segments[num_segments++] = &phdrs[i];
103
104 if (num_segments == 0)
105 return NULL;
106
107 data = XCNEW (struct symfile_segment_data);
108 data->num_segments = num_segments;
109 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
110 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
111
112 for (i = 0; i < num_segments; i++)
113 {
114 data->segment_bases[i] = segments[i]->p_vaddr;
115 data->segment_sizes[i] = segments[i]->p_memsz;
116 }
117
118 num_sections = bfd_count_sections (abfd);
119 data->segment_info = XCNEWVEC (int, num_sections);
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
124 CORE_ADDR vma;
125
126 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
127 continue;
128
129 vma = bfd_get_section_vma (abfd, sect);
130
131 for (j = 0; j < num_segments; j++)
132 if (segments[j]->p_memsz > 0
133 && vma >= segments[j]->p_vaddr
134 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
135 {
136 data->segment_info[i] = j + 1;
137 break;
138 }
139
140 /* We should have found a segment for every non-empty section.
141 If we haven't, we will not relocate this section by any
142 offsets we apply to the segments. As an exception, do not
143 warn about SHT_NOBITS sections; in normal ELF execution
144 environments, SHT_NOBITS means zero-initialized and belongs
145 in a segment, but in no-OS environments some tools (e.g. ARM
146 RealView) use SHT_NOBITS for uninitialized data. Since it is
147 uninitialized, it doesn't need a program header. Such
148 binaries are not relocatable. */
149 if (bfd_get_section_size (sect) > 0 && j == num_segments
150 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
151 warning (_("Loadable section \"%s\" outside of ELF segments"),
152 bfd_section_name (abfd, sect));
153 }
154
155 return data;
156 }
157
158 /* We are called once per section from elf_symfile_read. We
159 need to examine each section we are passed, check to see
160 if it is something we are interested in processing, and
161 if so, stash away some access information for the section.
162
163 For now we recognize the dwarf debug information sections and
164 line number sections from matching their section names. The
165 ELF definition is no real help here since it has no direct
166 knowledge of DWARF (by design, so any debugging format can be
167 used).
168
169 We also recognize the ".stab" sections used by the Sun compilers
170 released with Solaris 2.
171
172 FIXME: The section names should not be hardwired strings (what
173 should they be? I don't think most object file formats have enough
174 section flags to specify what kind of debug section it is.
175 -kingdon). */
176
177 static void
178 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
179 {
180 struct elfinfo *ei;
181
182 ei = (struct elfinfo *) eip;
183 if (strcmp (sectp->name, ".stab") == 0)
184 {
185 ei->stabsect = sectp;
186 }
187 else if (strcmp (sectp->name, ".mdebug") == 0)
188 {
189 ei->mdebugsect = sectp;
190 }
191 }
192
193 static struct minimal_symbol *
194 record_minimal_symbol (minimal_symbol_reader &reader,
195 const char *name, int name_len, int copy_name,
196 CORE_ADDR address,
197 enum minimal_symbol_type ms_type,
198 asection *bfd_section, struct objfile *objfile)
199 {
200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
201
202 if (ms_type == mst_text || ms_type == mst_file_text
203 || ms_type == mst_text_gnu_ifunc)
204 address = gdbarch_addr_bits_remove (gdbarch, address);
205
206 return reader.record_full (name, name_len, copy_name, address,
207 ms_type,
208 gdb_bfd_section_index (objfile->obfd,
209 bfd_section));
210 }
211
212 /* Read the symbol table of an ELF file.
213
214 Given an objfile, a symbol table, and a flag indicating whether the
215 symbol table contains regular, dynamic, or synthetic symbols, add all
216 the global function and data symbols to the minimal symbol table.
217
218 In stabs-in-ELF, as implemented by Sun, there are some local symbols
219 defined in the ELF symbol table, which can be used to locate
220 the beginnings of sections from each ".o" file that was linked to
221 form the executable objfile. We gather any such info and record it
222 in data structures hung off the objfile's private data. */
223
224 #define ST_REGULAR 0
225 #define ST_DYNAMIC 1
226 #define ST_SYNTHETIC 2
227
228 static void
229 elf_symtab_read (minimal_symbol_reader &reader,
230 struct objfile *objfile, int type,
231 long number_of_symbols, asymbol **symbol_table,
232 int copy_names)
233 {
234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
235 asymbol *sym;
236 long i;
237 CORE_ADDR symaddr;
238 enum minimal_symbol_type ms_type;
239 /* Name of the last file symbol. This is either a constant string or is
240 saved on the objfile's filename cache. */
241 const char *filesymname = "";
242 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
243 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
244 int elf_make_msymbol_special_p
245 = gdbarch_elf_make_msymbol_special_p (gdbarch);
246
247 for (i = 0; i < number_of_symbols; i++)
248 {
249 sym = symbol_table[i];
250 if (sym->name == NULL || *sym->name == '\0')
251 {
252 /* Skip names that don't exist (shouldn't happen), or names
253 that are null strings (may happen). */
254 continue;
255 }
256
257 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
258 symbols which do not correspond to objects in the symbol table,
259 but have some other target-specific meaning. */
260 if (bfd_is_target_special_symbol (objfile->obfd, sym))
261 {
262 if (gdbarch_record_special_symbol_p (gdbarch))
263 gdbarch_record_special_symbol (gdbarch, objfile, sym);
264 continue;
265 }
266
267 if (type == ST_DYNAMIC
268 && sym->section == bfd_und_section_ptr
269 && (sym->flags & BSF_FUNCTION))
270 {
271 struct minimal_symbol *msym;
272 bfd *abfd = objfile->obfd;
273 asection *sect;
274
275 /* Symbol is a reference to a function defined in
276 a shared library.
277 If its value is non zero then it is usually the address
278 of the corresponding entry in the procedure linkage table,
279 plus the desired section offset.
280 If its value is zero then the dynamic linker has to resolve
281 the symbol. We are unable to find any meaningful address
282 for this symbol in the executable file, so we skip it. */
283 symaddr = sym->value;
284 if (symaddr == 0)
285 continue;
286
287 /* sym->section is the undefined section. However, we want to
288 record the section where the PLT stub resides with the
289 minimal symbol. Search the section table for the one that
290 covers the stub's address. */
291 for (sect = abfd->sections; sect != NULL; sect = sect->next)
292 {
293 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
294 continue;
295
296 if (symaddr >= bfd_get_section_vma (abfd, sect)
297 && symaddr < bfd_get_section_vma (abfd, sect)
298 + bfd_get_section_size (sect))
299 break;
300 }
301 if (!sect)
302 continue;
303
304 /* On ia64-hpux, we have discovered that the system linker
305 adds undefined symbols with nonzero addresses that cannot
306 be right (their address points inside the code of another
307 function in the .text section). This creates problems
308 when trying to determine which symbol corresponds to
309 a given address.
310
311 We try to detect those buggy symbols by checking which
312 section we think they correspond to. Normally, PLT symbols
313 are stored inside their own section, and the typical name
314 for that section is ".plt". So, if there is a ".plt"
315 section, and yet the section name of our symbol does not
316 start with ".plt", we ignore that symbol. */
317 if (!startswith (sect->name, ".plt")
318 && bfd_get_section_by_name (abfd, ".plt") != NULL)
319 continue;
320
321 msym = record_minimal_symbol
322 (reader, sym->name, strlen (sym->name), copy_names,
323 symaddr, mst_solib_trampoline, sect, objfile);
324 if (msym != NULL)
325 {
326 msym->filename = filesymname;
327 if (elf_make_msymbol_special_p)
328 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
329 }
330 continue;
331 }
332
333 /* If it is a nonstripped executable, do not enter dynamic
334 symbols, as the dynamic symbol table is usually a subset
335 of the main symbol table. */
336 if (type == ST_DYNAMIC && !stripped)
337 continue;
338 if (sym->flags & BSF_FILE)
339 {
340 filesymname
341 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
342 objfile->per_bfd->filename_cache);
343 }
344 else if (sym->flags & BSF_SECTION_SYM)
345 continue;
346 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
347 | BSF_GNU_UNIQUE))
348 {
349 struct minimal_symbol *msym;
350
351 /* Select global/local/weak symbols. Note that bfd puts abs
352 symbols in their own section, so all symbols we are
353 interested in will have a section. */
354 /* Bfd symbols are section relative. */
355 symaddr = sym->value + sym->section->vma;
356 /* For non-absolute symbols, use the type of the section
357 they are relative to, to intuit text/data. Bfd provides
358 no way of figuring this out for absolute symbols. */
359 if (sym->section == bfd_abs_section_ptr)
360 {
361 /* This is a hack to get the minimal symbol type
362 right for Irix 5, which has absolute addresses
363 with special section indices for dynamic symbols.
364
365 NOTE: uweigand-20071112: Synthetic symbols do not
366 have an ELF-private part, so do not touch those. */
367 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
368 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
369
370 switch (shndx)
371 {
372 case SHN_MIPS_TEXT:
373 ms_type = mst_text;
374 break;
375 case SHN_MIPS_DATA:
376 ms_type = mst_data;
377 break;
378 case SHN_MIPS_ACOMMON:
379 ms_type = mst_bss;
380 break;
381 default:
382 ms_type = mst_abs;
383 }
384
385 /* If it is an Irix dynamic symbol, skip section name
386 symbols, relocate all others by section offset. */
387 if (ms_type != mst_abs)
388 {
389 if (sym->name[0] == '.')
390 continue;
391 }
392 }
393 else if (sym->section->flags & SEC_CODE)
394 {
395 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
396 {
397 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
398 ms_type = mst_text_gnu_ifunc;
399 else
400 ms_type = mst_text;
401 }
402 /* The BSF_SYNTHETIC check is there to omit ppc64 function
403 descriptors mistaken for static functions starting with 'L'.
404 */
405 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
406 && (sym->flags & BSF_SYNTHETIC) == 0)
407 || ((sym->flags & BSF_LOCAL)
408 && sym->name[0] == '$'
409 && sym->name[1] == 'L'))
410 /* Looks like a compiler-generated label. Skip
411 it. The assembler should be skipping these (to
412 keep executables small), but apparently with
413 gcc on the (deleted) delta m88k SVR4, it loses.
414 So to have us check too should be harmless (but
415 I encourage people to fix this in the assembler
416 instead of adding checks here). */
417 continue;
418 else
419 {
420 ms_type = mst_file_text;
421 }
422 }
423 else if (sym->section->flags & SEC_ALLOC)
424 {
425 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
426 {
427 if (sym->section->flags & SEC_LOAD)
428 {
429 ms_type = mst_data;
430 }
431 else
432 {
433 ms_type = mst_bss;
434 }
435 }
436 else if (sym->flags & BSF_LOCAL)
437 {
438 if (sym->section->flags & SEC_LOAD)
439 {
440 ms_type = mst_file_data;
441 }
442 else
443 {
444 ms_type = mst_file_bss;
445 }
446 }
447 else
448 {
449 ms_type = mst_unknown;
450 }
451 }
452 else
453 {
454 /* FIXME: Solaris2 shared libraries include lots of
455 odd "absolute" and "undefined" symbols, that play
456 hob with actions like finding what function the PC
457 is in. Ignore them if they aren't text, data, or bss. */
458 /* ms_type = mst_unknown; */
459 continue; /* Skip this symbol. */
460 }
461 msym = record_minimal_symbol
462 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
463 ms_type, sym->section, objfile);
464
465 if (msym)
466 {
467 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
468 ELF-private part. */
469 if (type != ST_SYNTHETIC)
470 {
471 /* Pass symbol size field in via BFD. FIXME!!! */
472 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
473 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
474 }
475
476 msym->filename = filesymname;
477 if (elf_make_msymbol_special_p)
478 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
479 }
480
481 /* If we see a default versioned symbol, install it under
482 its version-less name. */
483 if (msym != NULL)
484 {
485 const char *atsign = strchr (sym->name, '@');
486
487 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
488 {
489 int len = atsign - sym->name;
490
491 record_minimal_symbol (reader, sym->name, len, 1, symaddr,
492 ms_type, sym->section, objfile);
493 }
494 }
495
496 /* For @plt symbols, also record a trampoline to the
497 destination symbol. The @plt symbol will be used in
498 disassembly, and the trampoline will be used when we are
499 trying to find the target. */
500 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
501 {
502 int len = strlen (sym->name);
503
504 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
505 {
506 struct minimal_symbol *mtramp;
507
508 mtramp = record_minimal_symbol (reader, sym->name, len - 4, 1,
509 symaddr,
510 mst_solib_trampoline,
511 sym->section, objfile);
512 if (mtramp)
513 {
514 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
515 mtramp->created_by_gdb = 1;
516 mtramp->filename = filesymname;
517 if (elf_make_msymbol_special_p)
518 gdbarch_elf_make_msymbol_special (gdbarch,
519 sym, mtramp);
520 }
521 }
522 }
523 }
524 }
525 }
526
527 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
528 for later look ups of which function to call when user requests
529 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
530 library defining `function' we cannot yet know while reading OBJFILE which
531 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
532 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
533
534 static void
535 elf_rel_plt_read (minimal_symbol_reader &reader,
536 struct objfile *objfile, asymbol **dyn_symbol_table)
537 {
538 bfd *obfd = objfile->obfd;
539 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
540 asection *plt, *relplt, *got_plt;
541 int plt_elf_idx;
542 bfd_size_type reloc_count, reloc;
543 char *string_buffer = NULL;
544 size_t string_buffer_size = 0;
545 struct cleanup *back_to;
546 struct gdbarch *gdbarch = get_objfile_arch (objfile);
547 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
548 size_t ptr_size = TYPE_LENGTH (ptr_type);
549
550 if (objfile->separate_debug_objfile_backlink)
551 return;
552
553 plt = bfd_get_section_by_name (obfd, ".plt");
554 if (plt == NULL)
555 return;
556 plt_elf_idx = elf_section_data (plt)->this_idx;
557
558 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
559 if (got_plt == NULL)
560 {
561 /* For platforms where there is no separate .got.plt. */
562 got_plt = bfd_get_section_by_name (obfd, ".got");
563 if (got_plt == NULL)
564 return;
565 }
566
567 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
568 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
569 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
570 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
571 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
572 break;
573 if (relplt == NULL)
574 return;
575
576 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
577 return;
578
579 back_to = make_cleanup (free_current_contents, &string_buffer);
580
581 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
582 for (reloc = 0; reloc < reloc_count; reloc++)
583 {
584 const char *name;
585 struct minimal_symbol *msym;
586 CORE_ADDR address;
587 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
588 size_t name_len;
589
590 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
591 name_len = strlen (name);
592 address = relplt->relocation[reloc].address;
593
594 /* Does the pointer reside in the .got.plt section? */
595 if (!(bfd_get_section_vma (obfd, got_plt) <= address
596 && address < bfd_get_section_vma (obfd, got_plt)
597 + bfd_get_section_size (got_plt)))
598 continue;
599
600 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
601 OBJFILE the symbol is undefined and the objfile having NAME defined
602 may not yet have been loaded. */
603
604 if (string_buffer_size < name_len + got_suffix_len + 1)
605 {
606 string_buffer_size = 2 * (name_len + got_suffix_len);
607 string_buffer = (char *) xrealloc (string_buffer, string_buffer_size);
608 }
609 memcpy (string_buffer, name, name_len);
610 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
611 got_suffix_len + 1);
612
613 msym = record_minimal_symbol (reader, string_buffer,
614 name_len + got_suffix_len,
615 1, address, mst_slot_got_plt, got_plt,
616 objfile);
617 if (msym)
618 SET_MSYMBOL_SIZE (msym, ptr_size);
619 }
620
621 do_cleanups (back_to);
622 }
623
624 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
625
626 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
627
628 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
629
630 struct elf_gnu_ifunc_cache
631 {
632 /* This is always a function entry address, not a function descriptor. */
633 CORE_ADDR addr;
634
635 char name[1];
636 };
637
638 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
639
640 static hashval_t
641 elf_gnu_ifunc_cache_hash (const void *a_voidp)
642 {
643 const struct elf_gnu_ifunc_cache *a
644 = (const struct elf_gnu_ifunc_cache *) a_voidp;
645
646 return htab_hash_string (a->name);
647 }
648
649 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
650
651 static int
652 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
653 {
654 const struct elf_gnu_ifunc_cache *a
655 = (const struct elf_gnu_ifunc_cache *) a_voidp;
656 const struct elf_gnu_ifunc_cache *b
657 = (const struct elf_gnu_ifunc_cache *) b_voidp;
658
659 return strcmp (a->name, b->name) == 0;
660 }
661
662 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
663 function entry address ADDR. Return 1 if NAME and ADDR are considered as
664 valid and therefore they were successfully recorded, return 0 otherwise.
665
666 Function does not expect a duplicate entry. Use
667 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
668 exists. */
669
670 static int
671 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
672 {
673 struct bound_minimal_symbol msym;
674 asection *sect;
675 struct objfile *objfile;
676 htab_t htab;
677 struct elf_gnu_ifunc_cache entry_local, *entry_p;
678 void **slot;
679
680 msym = lookup_minimal_symbol_by_pc (addr);
681 if (msym.minsym == NULL)
682 return 0;
683 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
684 return 0;
685 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
686 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
687 objfile = msym.objfile;
688
689 /* If .plt jumps back to .plt the symbol is still deferred for later
690 resolution and it has no use for GDB. Besides ".text" this symbol can
691 reside also in ".opd" for ppc64 function descriptor. */
692 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
693 return 0;
694
695 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
696 if (htab == NULL)
697 {
698 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
699 elf_gnu_ifunc_cache_eq,
700 NULL, &objfile->objfile_obstack,
701 hashtab_obstack_allocate,
702 dummy_obstack_deallocate);
703 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
704 }
705
706 entry_local.addr = addr;
707 obstack_grow (&objfile->objfile_obstack, &entry_local,
708 offsetof (struct elf_gnu_ifunc_cache, name));
709 obstack_grow_str0 (&objfile->objfile_obstack, name);
710 entry_p
711 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
712
713 slot = htab_find_slot (htab, entry_p, INSERT);
714 if (*slot != NULL)
715 {
716 struct elf_gnu_ifunc_cache *entry_found_p
717 = (struct elf_gnu_ifunc_cache *) *slot;
718 struct gdbarch *gdbarch = get_objfile_arch (objfile);
719
720 if (entry_found_p->addr != addr)
721 {
722 /* This case indicates buggy inferior program, the resolved address
723 should never change. */
724
725 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
726 "function_address from %s to %s"),
727 name, paddress (gdbarch, entry_found_p->addr),
728 paddress (gdbarch, addr));
729 }
730
731 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
732 }
733 *slot = entry_p;
734
735 return 1;
736 }
737
738 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
739 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
740 is not NULL) and the function returns 1. It returns 0 otherwise.
741
742 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
743 function. */
744
745 static int
746 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
747 {
748 struct objfile *objfile;
749
750 ALL_PSPACE_OBJFILES (current_program_space, objfile)
751 {
752 htab_t htab;
753 struct elf_gnu_ifunc_cache *entry_p;
754 void **slot;
755
756 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
757 if (htab == NULL)
758 continue;
759
760 entry_p = ((struct elf_gnu_ifunc_cache *)
761 alloca (sizeof (*entry_p) + strlen (name)));
762 strcpy (entry_p->name, name);
763
764 slot = htab_find_slot (htab, entry_p, NO_INSERT);
765 if (slot == NULL)
766 continue;
767 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
768 gdb_assert (entry_p != NULL);
769
770 if (addr_p)
771 *addr_p = entry_p->addr;
772 return 1;
773 }
774
775 return 0;
776 }
777
778 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
779 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
780 is not NULL) and the function returns 1. It returns 0 otherwise.
781
782 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
783 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
784 prevent cache entries duplicates. */
785
786 static int
787 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
788 {
789 char *name_got_plt;
790 struct objfile *objfile;
791 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
792
793 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
794 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
795
796 ALL_PSPACE_OBJFILES (current_program_space, objfile)
797 {
798 bfd *obfd = objfile->obfd;
799 struct gdbarch *gdbarch = get_objfile_arch (objfile);
800 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
801 size_t ptr_size = TYPE_LENGTH (ptr_type);
802 CORE_ADDR pointer_address, addr;
803 asection *plt;
804 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
805 struct bound_minimal_symbol msym;
806
807 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
808 if (msym.minsym == NULL)
809 continue;
810 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
811 continue;
812 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
813
814 plt = bfd_get_section_by_name (obfd, ".plt");
815 if (plt == NULL)
816 continue;
817
818 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
819 continue;
820 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
821 continue;
822 addr = extract_typed_address (buf, ptr_type);
823 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
824 &current_target);
825 addr = gdbarch_addr_bits_remove (gdbarch, addr);
826
827 if (addr_p)
828 *addr_p = addr;
829 if (elf_gnu_ifunc_record_cache (name, addr))
830 return 1;
831 }
832
833 return 0;
834 }
835
836 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
837 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
838 is not NULL) and the function returns 1. It returns 0 otherwise.
839
840 Both the elf_objfile_gnu_ifunc_cache_data hash table and
841 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
842
843 static int
844 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
845 {
846 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
847 return 1;
848
849 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
850 return 1;
851
852 return 0;
853 }
854
855 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
856 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
857 is the entry point of the resolved STT_GNU_IFUNC target function to call.
858 */
859
860 static CORE_ADDR
861 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
862 {
863 const char *name_at_pc;
864 CORE_ADDR start_at_pc, address;
865 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
866 struct value *function, *address_val;
867 CORE_ADDR hwcap = 0;
868 struct value *hwcap_val;
869
870 /* Try first any non-intrusive methods without an inferior call. */
871
872 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
873 && start_at_pc == pc)
874 {
875 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
876 return address;
877 }
878 else
879 name_at_pc = NULL;
880
881 function = allocate_value (func_func_type);
882 set_value_address (function, pc);
883
884 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
885 parameter. FUNCTION is the function entry address. ADDRESS may be a
886 function descriptor. */
887
888 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
889 hwcap_val = value_from_longest (builtin_type (gdbarch)
890 ->builtin_unsigned_long, hwcap);
891 address_val = call_function_by_hand (function, 1, &hwcap_val);
892 address = value_as_address (address_val);
893 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
894 &current_target);
895 address = gdbarch_addr_bits_remove (gdbarch, address);
896
897 if (name_at_pc)
898 elf_gnu_ifunc_record_cache (name_at_pc, address);
899
900 return address;
901 }
902
903 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
904
905 static void
906 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
907 {
908 struct breakpoint *b_return;
909 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
910 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
911 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
912 int thread_id = ptid_to_global_thread_id (inferior_ptid);
913
914 gdb_assert (b->type == bp_gnu_ifunc_resolver);
915
916 for (b_return = b->related_breakpoint; b_return != b;
917 b_return = b_return->related_breakpoint)
918 {
919 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
920 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
921 gdb_assert (frame_id_p (b_return->frame_id));
922
923 if (b_return->thread == thread_id
924 && b_return->loc->requested_address == prev_pc
925 && frame_id_eq (b_return->frame_id, prev_frame_id))
926 break;
927 }
928
929 if (b_return == b)
930 {
931 struct symtab_and_line sal;
932
933 /* No need to call find_pc_line for symbols resolving as this is only
934 a helper breakpointer never shown to the user. */
935
936 init_sal (&sal);
937 sal.pspace = current_inferior ()->pspace;
938 sal.pc = prev_pc;
939 sal.section = find_pc_overlay (sal.pc);
940 sal.explicit_pc = 1;
941 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
942 prev_frame_id,
943 bp_gnu_ifunc_resolver_return);
944
945 /* set_momentary_breakpoint invalidates PREV_FRAME. */
946 prev_frame = NULL;
947
948 /* Add new b_return to the ring list b->related_breakpoint. */
949 gdb_assert (b_return->related_breakpoint == b_return);
950 b_return->related_breakpoint = b->related_breakpoint;
951 b->related_breakpoint = b_return;
952 }
953 }
954
955 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
956
957 static void
958 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
959 {
960 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
961 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
962 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
963 struct regcache *regcache = get_thread_regcache (inferior_ptid);
964 struct value *func_func;
965 struct value *value;
966 CORE_ADDR resolved_address, resolved_pc;
967 struct symtab_and_line sal;
968 struct symtabs_and_lines sals, sals_end;
969
970 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
971
972 while (b->related_breakpoint != b)
973 {
974 struct breakpoint *b_next = b->related_breakpoint;
975
976 switch (b->type)
977 {
978 case bp_gnu_ifunc_resolver:
979 break;
980 case bp_gnu_ifunc_resolver_return:
981 delete_breakpoint (b);
982 break;
983 default:
984 internal_error (__FILE__, __LINE__,
985 _("handle_inferior_event: Invalid "
986 "gnu-indirect-function breakpoint type %d"),
987 (int) b->type);
988 }
989 b = b_next;
990 }
991 gdb_assert (b->type == bp_gnu_ifunc_resolver);
992 gdb_assert (b->loc->next == NULL);
993
994 func_func = allocate_value (func_func_type);
995 set_value_address (func_func, b->loc->related_address);
996
997 value = allocate_value (value_type);
998 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
999 value_contents_raw (value), NULL);
1000 resolved_address = value_as_address (value);
1001 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1002 resolved_address,
1003 &current_target);
1004 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1005
1006 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1007 elf_gnu_ifunc_record_cache (event_location_to_string (b->location),
1008 resolved_pc);
1009
1010 sal = find_pc_line (resolved_pc, 0);
1011 sals.nelts = 1;
1012 sals.sals = &sal;
1013 sals_end.nelts = 0;
1014
1015 b->type = bp_breakpoint;
1016 update_breakpoint_locations (b, current_program_space, sals, sals_end);
1017 }
1018
1019 /* A helper function for elf_symfile_read that reads the minimal
1020 symbols. */
1021
1022 static void
1023 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1024 const struct elfinfo *ei)
1025 {
1026 bfd *synth_abfd, *abfd = objfile->obfd;
1027 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1028 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1029 asymbol *synthsyms;
1030 struct dbx_symfile_info *dbx;
1031
1032 if (symtab_create_debug)
1033 {
1034 fprintf_unfiltered (gdb_stdlog,
1035 "Reading minimal symbols of objfile %s ...\n",
1036 objfile_name (objfile));
1037 }
1038
1039 /* If we already have minsyms, then we can skip some work here.
1040 However, if there were stabs or mdebug sections, we go ahead and
1041 redo all the work anyway, because the psym readers for those
1042 kinds of debuginfo need extra information found here. This can
1043 go away once all types of symbols are in the per-BFD object. */
1044 if (objfile->per_bfd->minsyms_read
1045 && ei->stabsect == NULL
1046 && ei->mdebugsect == NULL)
1047 {
1048 if (symtab_create_debug)
1049 fprintf_unfiltered (gdb_stdlog,
1050 "... minimal symbols previously read\n");
1051 return;
1052 }
1053
1054 minimal_symbol_reader reader (objfile);
1055
1056 /* Allocate struct to keep track of the symfile. */
1057 dbx = XCNEW (struct dbx_symfile_info);
1058 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1059
1060 /* Process the normal ELF symbol table first. */
1061
1062 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1063 if (storage_needed < 0)
1064 error (_("Can't read symbols from %s: %s"),
1065 bfd_get_filename (objfile->obfd),
1066 bfd_errmsg (bfd_get_error ()));
1067
1068 if (storage_needed > 0)
1069 {
1070 /* Memory gets permanently referenced from ABFD after
1071 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1072
1073 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1074 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1075
1076 if (symcount < 0)
1077 error (_("Can't read symbols from %s: %s"),
1078 bfd_get_filename (objfile->obfd),
1079 bfd_errmsg (bfd_get_error ()));
1080
1081 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table, 0);
1082 }
1083
1084 /* Add the dynamic symbols. */
1085
1086 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1087
1088 if (storage_needed > 0)
1089 {
1090 /* Memory gets permanently referenced from ABFD after
1091 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1092 It happens only in the case when elf_slurp_reloc_table sees
1093 asection->relocation NULL. Determining which section is asection is
1094 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1095 implementation detail, though. */
1096
1097 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1098 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1099 dyn_symbol_table);
1100
1101 if (dynsymcount < 0)
1102 error (_("Can't read symbols from %s: %s"),
1103 bfd_get_filename (objfile->obfd),
1104 bfd_errmsg (bfd_get_error ()));
1105
1106 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1107 dyn_symbol_table, 0);
1108
1109 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1110 }
1111
1112 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1113 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1114
1115 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1116 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1117 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1118 read the code address from .opd while it reads the .symtab section from
1119 a separate debug info file as the .opd section is SHT_NOBITS there.
1120
1121 With SYNTH_ABFD the .opd section will be read from the original
1122 backlinked binary where it is valid. */
1123
1124 if (objfile->separate_debug_objfile_backlink)
1125 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1126 else
1127 synth_abfd = abfd;
1128
1129 /* Add synthetic symbols - for instance, names for any PLT entries. */
1130
1131 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1132 dynsymcount, dyn_symbol_table,
1133 &synthsyms);
1134 if (synthcount > 0)
1135 {
1136 long i;
1137
1138 gdb::unique_ptr<asymbol *[]>
1139 synth_symbol_table (new asymbol *[synthcount]);
1140 for (i = 0; i < synthcount; i++)
1141 synth_symbol_table[i] = synthsyms + i;
1142 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1143 synth_symbol_table.get (), 1);
1144 }
1145
1146 /* Install any minimal symbols that have been collected as the current
1147 minimal symbols for this objfile. The debug readers below this point
1148 should not generate new minimal symbols; if they do it's their
1149 responsibility to install them. "mdebug" appears to be the only one
1150 which will do this. */
1151
1152 reader.install ();
1153
1154 if (symtab_create_debug)
1155 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1156 }
1157
1158 /* Scan and build partial symbols for a symbol file.
1159 We have been initialized by a call to elf_symfile_init, which
1160 currently does nothing.
1161
1162 This function only does the minimum work necessary for letting the
1163 user "name" things symbolically; it does not read the entire symtab.
1164 Instead, it reads the external and static symbols and puts them in partial
1165 symbol tables. When more extensive information is requested of a
1166 file, the corresponding partial symbol table is mutated into a full
1167 fledged symbol table by going back and reading the symbols
1168 for real.
1169
1170 We look for sections with specific names, to tell us what debug
1171 format to look for: FIXME!!!
1172
1173 elfstab_build_psymtabs() handles STABS symbols;
1174 mdebug_build_psymtabs() handles ECOFF debugging information.
1175
1176 Note that ELF files have a "minimal" symbol table, which looks a lot
1177 like a COFF symbol table, but has only the minimal information necessary
1178 for linking. We process this also, and use the information to
1179 build gdb's minimal symbol table. This gives us some minimal debugging
1180 capability even for files compiled without -g. */
1181
1182 static void
1183 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1184 {
1185 bfd *abfd = objfile->obfd;
1186 struct elfinfo ei;
1187
1188 memset ((char *) &ei, 0, sizeof (ei));
1189 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1190
1191 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1192
1193 /* ELF debugging information is inserted into the psymtab in the
1194 order of least informative first - most informative last. Since
1195 the psymtab table is searched `most recent insertion first' this
1196 increases the probability that more detailed debug information
1197 for a section is found.
1198
1199 For instance, an object file might contain both .mdebug (XCOFF)
1200 and .debug_info (DWARF2) sections then .mdebug is inserted first
1201 (searched last) and DWARF2 is inserted last (searched first). If
1202 we don't do this then the XCOFF info is found first - for code in
1203 an included file XCOFF info is useless. */
1204
1205 if (ei.mdebugsect)
1206 {
1207 const struct ecoff_debug_swap *swap;
1208
1209 /* .mdebug section, presumably holding ECOFF debugging
1210 information. */
1211 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1212 if (swap)
1213 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1214 }
1215 if (ei.stabsect)
1216 {
1217 asection *str_sect;
1218
1219 /* Stab sections have an associated string table that looks like
1220 a separate section. */
1221 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1222
1223 /* FIXME should probably warn about a stab section without a stabstr. */
1224 if (str_sect)
1225 elfstab_build_psymtabs (objfile,
1226 ei.stabsect,
1227 str_sect->filepos,
1228 bfd_section_size (abfd, str_sect));
1229 }
1230
1231 if (dwarf2_has_info (objfile, NULL))
1232 {
1233 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1234 information present in OBJFILE. If there is such debug info present
1235 never use .gdb_index. */
1236
1237 if (!objfile_has_partial_symbols (objfile)
1238 && dwarf2_initialize_objfile (objfile))
1239 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1240 else
1241 {
1242 /* It is ok to do this even if the stabs reader made some
1243 partial symbols, because OBJF_PSYMTABS_READ has not been
1244 set, and so our lazy reader function will still be called
1245 when needed. */
1246 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1247 }
1248 }
1249 /* If the file has its own symbol tables it has no separate debug
1250 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1251 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1252 `.note.gnu.build-id'.
1253
1254 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1255 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1256 an objfile via find_separate_debug_file_in_section there was no separate
1257 debug info available. Therefore do not attempt to search for another one,
1258 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1259 be NULL and we would possibly violate it. */
1260
1261 else if (!objfile_has_partial_symbols (objfile)
1262 && objfile->separate_debug_objfile == NULL
1263 && objfile->separate_debug_objfile_backlink == NULL)
1264 {
1265 char *debugfile;
1266
1267 debugfile = find_separate_debug_file_by_buildid (objfile);
1268
1269 if (debugfile == NULL)
1270 debugfile = find_separate_debug_file_by_debuglink (objfile);
1271
1272 if (debugfile)
1273 {
1274 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1275 bfd *abfd = symfile_bfd_open (debugfile);
1276
1277 make_cleanup_bfd_unref (abfd);
1278 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
1279 do_cleanups (cleanup);
1280 }
1281 }
1282 }
1283
1284 /* Callback to lazily read psymtabs. */
1285
1286 static void
1287 read_psyms (struct objfile *objfile)
1288 {
1289 if (dwarf2_has_info (objfile, NULL))
1290 dwarf2_build_psymtabs (objfile);
1291 }
1292
1293 /* Initialize anything that needs initializing when a completely new symbol
1294 file is specified (not just adding some symbols from another file, e.g. a
1295 shared library).
1296
1297 We reinitialize buildsym, since we may be reading stabs from an ELF
1298 file. */
1299
1300 static void
1301 elf_new_init (struct objfile *ignore)
1302 {
1303 stabsread_new_init ();
1304 buildsym_new_init ();
1305 }
1306
1307 /* Perform any local cleanups required when we are done with a particular
1308 objfile. I.E, we are in the process of discarding all symbol information
1309 for an objfile, freeing up all memory held for it, and unlinking the
1310 objfile struct from the global list of known objfiles. */
1311
1312 static void
1313 elf_symfile_finish (struct objfile *objfile)
1314 {
1315 dwarf2_free_objfile (objfile);
1316 }
1317
1318 /* ELF specific initialization routine for reading symbols. */
1319
1320 static void
1321 elf_symfile_init (struct objfile *objfile)
1322 {
1323 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1324 find this causes a significant slowdown in gdb then we could
1325 set it in the debug symbol readers only when necessary. */
1326 objfile->flags |= OBJF_REORDERED;
1327 }
1328
1329 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1330
1331 static VEC (probe_p) *
1332 elf_get_probes (struct objfile *objfile)
1333 {
1334 VEC (probe_p) *probes_per_bfd;
1335
1336 /* Have we parsed this objfile's probes already? */
1337 probes_per_bfd = (VEC (probe_p) *) bfd_data (objfile->obfd, probe_key);
1338
1339 if (!probes_per_bfd)
1340 {
1341 int ix;
1342 const struct probe_ops *probe_ops;
1343
1344 /* Here we try to gather information about all types of probes from the
1345 objfile. */
1346 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1347 ix++)
1348 probe_ops->get_probes (&probes_per_bfd, objfile);
1349
1350 if (probes_per_bfd == NULL)
1351 {
1352 VEC_reserve (probe_p, probes_per_bfd, 1);
1353 gdb_assert (probes_per_bfd != NULL);
1354 }
1355
1356 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1357 }
1358
1359 return probes_per_bfd;
1360 }
1361
1362 /* Helper function used to free the space allocated for storing SystemTap
1363 probe information. */
1364
1365 static void
1366 probe_key_free (bfd *abfd, void *d)
1367 {
1368 int ix;
1369 VEC (probe_p) *probes = (VEC (probe_p) *) d;
1370 struct probe *probe;
1371
1372 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1373 probe->pops->destroy (probe);
1374
1375 VEC_free (probe_p, probes);
1376 }
1377
1378 \f
1379
1380 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1381
1382 static const struct sym_probe_fns elf_probe_fns =
1383 {
1384 elf_get_probes, /* sym_get_probes */
1385 };
1386
1387 /* Register that we are able to handle ELF object file formats. */
1388
1389 static const struct sym_fns elf_sym_fns =
1390 {
1391 elf_new_init, /* init anything gbl to entire symtab */
1392 elf_symfile_init, /* read initial info, setup for sym_read() */
1393 elf_symfile_read, /* read a symbol file into symtab */
1394 NULL, /* sym_read_psymbols */
1395 elf_symfile_finish, /* finished with file, cleanup */
1396 default_symfile_offsets, /* Translate ext. to int. relocation */
1397 elf_symfile_segments, /* Get segment information from a file. */
1398 NULL,
1399 default_symfile_relocate, /* Relocate a debug section. */
1400 &elf_probe_fns, /* sym_probe_fns */
1401 &psym_functions
1402 };
1403
1404 /* The same as elf_sym_fns, but not registered and lazily reads
1405 psymbols. */
1406
1407 const struct sym_fns elf_sym_fns_lazy_psyms =
1408 {
1409 elf_new_init, /* init anything gbl to entire symtab */
1410 elf_symfile_init, /* read initial info, setup for sym_read() */
1411 elf_symfile_read, /* read a symbol file into symtab */
1412 read_psyms, /* sym_read_psymbols */
1413 elf_symfile_finish, /* finished with file, cleanup */
1414 default_symfile_offsets, /* Translate ext. to int. relocation */
1415 elf_symfile_segments, /* Get segment information from a file. */
1416 NULL,
1417 default_symfile_relocate, /* Relocate a debug section. */
1418 &elf_probe_fns, /* sym_probe_fns */
1419 &psym_functions
1420 };
1421
1422 /* The same as elf_sym_fns, but not registered and uses the
1423 DWARF-specific GNU index rather than psymtab. */
1424 const struct sym_fns elf_sym_fns_gdb_index =
1425 {
1426 elf_new_init, /* init anything gbl to entire symab */
1427 elf_symfile_init, /* read initial info, setup for sym_red() */
1428 elf_symfile_read, /* read a symbol file into symtab */
1429 NULL, /* sym_read_psymbols */
1430 elf_symfile_finish, /* finished with file, cleanup */
1431 default_symfile_offsets, /* Translate ext. to int. relocatin */
1432 elf_symfile_segments, /* Get segment information from a file. */
1433 NULL,
1434 default_symfile_relocate, /* Relocate a debug section. */
1435 &elf_probe_fns, /* sym_probe_fns */
1436 &dwarf2_gdb_index_functions
1437 };
1438
1439 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1440
1441 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1442 {
1443 elf_gnu_ifunc_resolve_addr,
1444 elf_gnu_ifunc_resolve_name,
1445 elf_gnu_ifunc_resolver_stop,
1446 elf_gnu_ifunc_resolver_return_stop
1447 };
1448
1449 void
1450 _initialize_elfread (void)
1451 {
1452 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1453 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1454
1455 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1456 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1457 }
This page took 0.059675 seconds and 5 git commands to generate.