* record.c (record_open, record_store_registers, record_xfer_partial):
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static char *get_label (struct expression *, int *);
60
61 static struct value *evaluate_struct_tuple (struct value *,
62 struct expression *, int *,
63 enum noside, int);
64
65 static LONGEST init_array_element (struct value *, struct value *,
66 struct expression *, int *, enum noside,
67 LONGEST, LONGEST);
68
69 struct value *
70 evaluate_subexp (struct type *expect_type, struct expression *exp,
71 int *pos, enum noside noside)
72 {
73 return (*exp->language_defn->la_exp_desc->evaluate_exp)
74 (expect_type, exp, pos, noside);
75 }
76 \f
77 /* Parse the string EXP as a C expression, evaluate it,
78 and return the result as a number. */
79
80 CORE_ADDR
81 parse_and_eval_address (char *exp)
82 {
83 struct expression *expr = parse_expression (exp);
84 CORE_ADDR addr;
85 struct cleanup *old_chain =
86 make_cleanup (free_current_contents, &expr);
87
88 addr = value_as_address (evaluate_expression (expr));
89 do_cleanups (old_chain);
90 return addr;
91 }
92
93 /* Like parse_and_eval_address but takes a pointer to a char * variable
94 and advanced that variable across the characters parsed. */
95
96 CORE_ADDR
97 parse_and_eval_address_1 (char **expptr)
98 {
99 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
100 CORE_ADDR addr;
101 struct cleanup *old_chain =
102 make_cleanup (free_current_contents, &expr);
103
104 addr = value_as_address (evaluate_expression (expr));
105 do_cleanups (old_chain);
106 return addr;
107 }
108
109 /* Like parse_and_eval_address, but treats the value of the expression
110 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
111 LONGEST
112 parse_and_eval_long (char *exp)
113 {
114 struct expression *expr = parse_expression (exp);
115 LONGEST retval;
116 struct cleanup *old_chain =
117 make_cleanup (free_current_contents, &expr);
118
119 retval = value_as_long (evaluate_expression (expr));
120 do_cleanups (old_chain);
121 return (retval);
122 }
123
124 struct value *
125 parse_and_eval (char *exp)
126 {
127 struct expression *expr = parse_expression (exp);
128 struct value *val;
129 struct cleanup *old_chain =
130 make_cleanup (free_current_contents, &expr);
131
132 val = evaluate_expression (expr);
133 do_cleanups (old_chain);
134 return val;
135 }
136
137 /* Parse up to a comma (or to a closeparen)
138 in the string EXPP as an expression, evaluate it, and return the value.
139 EXPP is advanced to point to the comma. */
140
141 struct value *
142 parse_to_comma_and_eval (char **expp)
143 {
144 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
145 struct value *val;
146 struct cleanup *old_chain =
147 make_cleanup (free_current_contents, &expr);
148
149 val = evaluate_expression (expr);
150 do_cleanups (old_chain);
151 return val;
152 }
153 \f
154 /* Evaluate an expression in internal prefix form
155 such as is constructed by parse.y.
156
157 See expression.h for info on the format of an expression. */
158
159 struct value *
160 evaluate_expression (struct expression *exp)
161 {
162 int pc = 0;
163 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
164 }
165
166 /* Evaluate an expression, avoiding all memory references
167 and getting a value whose type alone is correct. */
168
169 struct value *
170 evaluate_type (struct expression *exp)
171 {
172 int pc = 0;
173 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
174 }
175
176 /* Evaluate a subexpression, avoiding all memory references and
177 getting a value whose type alone is correct. */
178
179 struct value *
180 evaluate_subexpression_type (struct expression *exp, int subexp)
181 {
182 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
183 }
184
185 /* Extract a field operation from an expression. If the subexpression
186 of EXP starting at *SUBEXP is not a structure dereference
187 operation, return NULL. Otherwise, return the name of the
188 dereferenced field, and advance *SUBEXP to point to the
189 subexpression of the left-hand-side of the dereference. This is
190 used when completing field names. */
191
192 char *
193 extract_field_op (struct expression *exp, int *subexp)
194 {
195 int tem;
196 char *result;
197 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
198 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
199 return NULL;
200 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
201 result = &exp->elts[*subexp + 2].string;
202 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
203 return result;
204 }
205
206 /* If the next expression is an OP_LABELED, skips past it,
207 returning the label. Otherwise, does nothing and returns NULL. */
208
209 static char *
210 get_label (struct expression *exp, int *pos)
211 {
212 if (exp->elts[*pos].opcode == OP_LABELED)
213 {
214 int pc = (*pos)++;
215 char *name = &exp->elts[pc + 2].string;
216 int tem = longest_to_int (exp->elts[pc + 1].longconst);
217 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
218 return name;
219 }
220 else
221 return NULL;
222 }
223
224 /* This function evaluates tuples (in (the deleted) Chill) or
225 brace-initializers (in C/C++) for structure types. */
226
227 static struct value *
228 evaluate_struct_tuple (struct value *struct_val,
229 struct expression *exp,
230 int *pos, enum noside noside, int nargs)
231 {
232 struct type *struct_type = check_typedef (value_type (struct_val));
233 struct type *substruct_type = struct_type;
234 struct type *field_type;
235 int fieldno = -1;
236 int variantno = -1;
237 int subfieldno = -1;
238 while (--nargs >= 0)
239 {
240 int pc = *pos;
241 struct value *val = NULL;
242 int nlabels = 0;
243 int bitpos, bitsize;
244 bfd_byte *addr;
245
246 /* Skip past the labels, and count them. */
247 while (get_label (exp, pos) != NULL)
248 nlabels++;
249
250 do
251 {
252 char *label = get_label (exp, &pc);
253 if (label)
254 {
255 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
256 fieldno++)
257 {
258 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
259 if (field_name != NULL && strcmp (field_name, label) == 0)
260 {
261 variantno = -1;
262 subfieldno = fieldno;
263 substruct_type = struct_type;
264 goto found;
265 }
266 }
267 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
268 fieldno++)
269 {
270 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
271 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
272 if ((field_name == 0 || *field_name == '\0')
273 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
274 {
275 variantno = 0;
276 for (; variantno < TYPE_NFIELDS (field_type);
277 variantno++)
278 {
279 substruct_type
280 = TYPE_FIELD_TYPE (field_type, variantno);
281 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
282 {
283 for (subfieldno = 0;
284 subfieldno < TYPE_NFIELDS (substruct_type);
285 subfieldno++)
286 {
287 if (strcmp(TYPE_FIELD_NAME (substruct_type,
288 subfieldno),
289 label) == 0)
290 {
291 goto found;
292 }
293 }
294 }
295 }
296 }
297 }
298 error (_("there is no field named %s"), label);
299 found:
300 ;
301 }
302 else
303 {
304 /* Unlabelled tuple element - go to next field. */
305 if (variantno >= 0)
306 {
307 subfieldno++;
308 if (subfieldno >= TYPE_NFIELDS (substruct_type))
309 {
310 variantno = -1;
311 substruct_type = struct_type;
312 }
313 }
314 if (variantno < 0)
315 {
316 fieldno++;
317 /* Skip static fields. */
318 while (fieldno < TYPE_NFIELDS (struct_type)
319 && field_is_static (&TYPE_FIELD (struct_type,
320 fieldno)))
321 fieldno++;
322 subfieldno = fieldno;
323 if (fieldno >= TYPE_NFIELDS (struct_type))
324 error (_("too many initializers"));
325 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
326 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
327 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
328 error (_("don't know which variant you want to set"));
329 }
330 }
331
332 /* Here, struct_type is the type of the inner struct,
333 while substruct_type is the type of the inner struct.
334 These are the same for normal structures, but a variant struct
335 contains anonymous union fields that contain substruct fields.
336 The value fieldno is the index of the top-level (normal or
337 anonymous union) field in struct_field, while the value
338 subfieldno is the index of the actual real (named inner) field
339 in substruct_type. */
340
341 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
342 if (val == 0)
343 val = evaluate_subexp (field_type, exp, pos, noside);
344
345 /* Now actually set the field in struct_val. */
346
347 /* Assign val to field fieldno. */
348 if (value_type (val) != field_type)
349 val = value_cast (field_type, val);
350
351 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
352 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
353 if (variantno >= 0)
354 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
355 addr = value_contents_writeable (struct_val) + bitpos / 8;
356 if (bitsize)
357 modify_field (struct_type, addr,
358 value_as_long (val), bitpos % 8, bitsize);
359 else
360 memcpy (addr, value_contents (val),
361 TYPE_LENGTH (value_type (val)));
362 }
363 while (--nlabels > 0);
364 }
365 return struct_val;
366 }
367
368 /* Recursive helper function for setting elements of array tuples for
369 (the deleted) Chill. The target is ARRAY (which has bounds
370 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
371 and NOSIDE are as usual. Evaluates index expresions and sets the
372 specified element(s) of ARRAY to ELEMENT. Returns last index
373 value. */
374
375 static LONGEST
376 init_array_element (struct value *array, struct value *element,
377 struct expression *exp, int *pos,
378 enum noside noside, LONGEST low_bound, LONGEST high_bound)
379 {
380 LONGEST index;
381 int element_size = TYPE_LENGTH (value_type (element));
382 if (exp->elts[*pos].opcode == BINOP_COMMA)
383 {
384 (*pos)++;
385 init_array_element (array, element, exp, pos, noside,
386 low_bound, high_bound);
387 return init_array_element (array, element,
388 exp, pos, noside, low_bound, high_bound);
389 }
390 else if (exp->elts[*pos].opcode == BINOP_RANGE)
391 {
392 LONGEST low, high;
393 (*pos)++;
394 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
395 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
396 if (low < low_bound || high > high_bound)
397 error (_("tuple range index out of range"));
398 for (index = low; index <= high; index++)
399 {
400 memcpy (value_contents_raw (array)
401 + (index - low_bound) * element_size,
402 value_contents (element), element_size);
403 }
404 }
405 else
406 {
407 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
408 if (index < low_bound || index > high_bound)
409 error (_("tuple index out of range"));
410 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
411 value_contents (element), element_size);
412 }
413 return index;
414 }
415
416 static struct value *
417 value_f90_subarray (struct value *array,
418 struct expression *exp, int *pos, enum noside noside)
419 {
420 int pc = (*pos) + 1;
421 LONGEST low_bound, high_bound;
422 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
423 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
424
425 *pos += 3;
426
427 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
428 low_bound = TYPE_LOW_BOUND (range);
429 else
430 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
431
432 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
433 high_bound = TYPE_HIGH_BOUND (range);
434 else
435 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
436
437 return value_slice (array, low_bound, high_bound - low_bound + 1);
438 }
439
440
441 /* Promote value ARG1 as appropriate before performing a unary operation
442 on this argument.
443 If the result is not appropriate for any particular language then it
444 needs to patch this function. */
445
446 void
447 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
448 struct value **arg1)
449 {
450 struct type *type1;
451
452 *arg1 = coerce_ref (*arg1);
453 type1 = check_typedef (value_type (*arg1));
454
455 if (is_integral_type (type1))
456 {
457 switch (language->la_language)
458 {
459 default:
460 /* Perform integral promotion for ANSI C/C++.
461 If not appropropriate for any particular language
462 it needs to modify this function. */
463 {
464 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
465 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
466 *arg1 = value_cast (builtin_int, *arg1);
467 }
468 break;
469 }
470 }
471 }
472
473 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
474 operation on those two operands.
475 If the result is not appropriate for any particular language then it
476 needs to patch this function. */
477
478 void
479 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
480 struct value **arg1, struct value **arg2)
481 {
482 struct type *promoted_type = NULL;
483 struct type *type1;
484 struct type *type2;
485
486 *arg1 = coerce_ref (*arg1);
487 *arg2 = coerce_ref (*arg2);
488
489 type1 = check_typedef (value_type (*arg1));
490 type2 = check_typedef (value_type (*arg2));
491
492 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
493 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
494 && !is_integral_type (type1))
495 || (TYPE_CODE (type2) != TYPE_CODE_FLT
496 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
497 && !is_integral_type (type2)))
498 return;
499
500 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
501 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
502 {
503 /* No promotion required. */
504 }
505 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
506 || TYPE_CODE (type2) == TYPE_CODE_FLT)
507 {
508 switch (language->la_language)
509 {
510 case language_c:
511 case language_cplus:
512 case language_asm:
513 case language_objc:
514 /* No promotion required. */
515 break;
516
517 default:
518 /* For other languages the result type is unchanged from gdb
519 version 6.7 for backward compatibility.
520 If either arg was long double, make sure that value is also long
521 double. Otherwise use double. */
522 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
523 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
524 promoted_type = builtin_type (gdbarch)->builtin_long_double;
525 else
526 promoted_type = builtin_type (gdbarch)->builtin_double;
527 break;
528 }
529 }
530 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
531 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
532 {
533 /* No promotion required. */
534 }
535 else
536 /* Integral operations here. */
537 /* FIXME: Also mixed integral/booleans, with result an integer. */
538 {
539 const struct builtin_type *builtin = builtin_type (gdbarch);
540 unsigned int promoted_len1 = TYPE_LENGTH (type1);
541 unsigned int promoted_len2 = TYPE_LENGTH (type2);
542 int is_unsigned1 = TYPE_UNSIGNED (type1);
543 int is_unsigned2 = TYPE_UNSIGNED (type2);
544 unsigned int result_len;
545 int unsigned_operation;
546
547 /* Determine type length and signedness after promotion for
548 both operands. */
549 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
550 {
551 is_unsigned1 = 0;
552 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
553 }
554 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
555 {
556 is_unsigned2 = 0;
557 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
558 }
559
560 if (promoted_len1 > promoted_len2)
561 {
562 unsigned_operation = is_unsigned1;
563 result_len = promoted_len1;
564 }
565 else if (promoted_len2 > promoted_len1)
566 {
567 unsigned_operation = is_unsigned2;
568 result_len = promoted_len2;
569 }
570 else
571 {
572 unsigned_operation = is_unsigned1 || is_unsigned2;
573 result_len = promoted_len1;
574 }
575
576 switch (language->la_language)
577 {
578 case language_c:
579 case language_cplus:
580 case language_asm:
581 case language_objc:
582 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
583 {
584 promoted_type = (unsigned_operation
585 ? builtin->builtin_unsigned_int
586 : builtin->builtin_int);
587 }
588 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
589 {
590 promoted_type = (unsigned_operation
591 ? builtin->builtin_unsigned_long
592 : builtin->builtin_long);
593 }
594 else
595 {
596 promoted_type = (unsigned_operation
597 ? builtin->builtin_unsigned_long_long
598 : builtin->builtin_long_long);
599 }
600 break;
601
602 default:
603 /* For other languages the result type is unchanged from gdb
604 version 6.7 for backward compatibility.
605 If either arg was long long, make sure that value is also long
606 long. Otherwise use long. */
607 if (unsigned_operation)
608 {
609 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
610 promoted_type = builtin->builtin_unsigned_long_long;
611 else
612 promoted_type = builtin->builtin_unsigned_long;
613 }
614 else
615 {
616 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
617 promoted_type = builtin->builtin_long_long;
618 else
619 promoted_type = builtin->builtin_long;
620 }
621 break;
622 }
623 }
624
625 if (promoted_type)
626 {
627 /* Promote both operands to common type. */
628 *arg1 = value_cast (promoted_type, *arg1);
629 *arg2 = value_cast (promoted_type, *arg2);
630 }
631 }
632
633 static int
634 ptrmath_type_p (struct type *type)
635 {
636 type = check_typedef (type);
637 if (TYPE_CODE (type) == TYPE_CODE_REF)
638 type = TYPE_TARGET_TYPE (type);
639
640 switch (TYPE_CODE (type))
641 {
642 case TYPE_CODE_PTR:
643 case TYPE_CODE_FUNC:
644 return 1;
645
646 case TYPE_CODE_ARRAY:
647 return current_language->c_style_arrays;
648
649 default:
650 return 0;
651 }
652 }
653
654 struct value *
655 evaluate_subexp_standard (struct type *expect_type,
656 struct expression *exp, int *pos,
657 enum noside noside)
658 {
659 enum exp_opcode op;
660 int tem, tem2, tem3;
661 int pc, pc2 = 0, oldpos;
662 struct value *arg1 = NULL;
663 struct value *arg2 = NULL;
664 struct value *arg3;
665 struct type *type;
666 int nargs;
667 struct value **argvec;
668 int upper, lower, retcode;
669 int code;
670 int ix;
671 long mem_offset;
672 struct type **arg_types;
673 int save_pos1;
674
675 pc = (*pos)++;
676 op = exp->elts[pc].opcode;
677
678 switch (op)
679 {
680 case OP_SCOPE:
681 tem = longest_to_int (exp->elts[pc + 2].longconst);
682 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
683 if (noside == EVAL_SKIP)
684 goto nosideret;
685 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
686 &exp->elts[pc + 3].string,
687 0, noside);
688 if (arg1 == NULL)
689 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
690 return arg1;
691
692 case OP_LONG:
693 (*pos) += 3;
694 return value_from_longest (exp->elts[pc + 1].type,
695 exp->elts[pc + 2].longconst);
696
697 case OP_DOUBLE:
698 (*pos) += 3;
699 return value_from_double (exp->elts[pc + 1].type,
700 exp->elts[pc + 2].doubleconst);
701
702 case OP_DECFLOAT:
703 (*pos) += 3;
704 return value_from_decfloat (exp->elts[pc + 1].type,
705 exp->elts[pc + 2].decfloatconst);
706
707 case OP_VAR_VALUE:
708 (*pos) += 3;
709 if (noside == EVAL_SKIP)
710 goto nosideret;
711
712 /* JYG: We used to just return value_zero of the symbol type
713 if we're asked to avoid side effects. Otherwise we return
714 value_of_variable (...). However I'm not sure if
715 value_of_variable () has any side effect.
716 We need a full value object returned here for whatis_exp ()
717 to call evaluate_type () and then pass the full value to
718 value_rtti_target_type () if we are dealing with a pointer
719 or reference to a base class and print object is on. */
720
721 {
722 volatile struct gdb_exception except;
723 struct value *ret = NULL;
724
725 TRY_CATCH (except, RETURN_MASK_ERROR)
726 {
727 ret = value_of_variable (exp->elts[pc + 2].symbol,
728 exp->elts[pc + 1].block);
729 }
730
731 if (except.reason < 0)
732 {
733 if (noside == EVAL_AVOID_SIDE_EFFECTS)
734 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
735 else
736 throw_exception (except);
737 }
738
739 return ret;
740 }
741
742 case OP_LAST:
743 (*pos) += 2;
744 return
745 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
746
747 case OP_REGISTER:
748 {
749 const char *name = &exp->elts[pc + 2].string;
750 int regno;
751 struct value *val;
752
753 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
754 regno = user_reg_map_name_to_regnum (exp->gdbarch,
755 name, strlen (name));
756 if (regno == -1)
757 error (_("Register $%s not available."), name);
758
759 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
760 a value with the appropriate register type. Unfortunately,
761 we don't have easy access to the type of user registers.
762 So for these registers, we fetch the register value regardless
763 of the evaluation mode. */
764 if (noside == EVAL_AVOID_SIDE_EFFECTS
765 && regno < gdbarch_num_regs (exp->gdbarch)
766 + gdbarch_num_pseudo_regs (exp->gdbarch))
767 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
768 else
769 val = value_of_register (regno, get_selected_frame (NULL));
770 if (val == NULL)
771 error (_("Value of register %s not available."), name);
772 else
773 return val;
774 }
775 case OP_BOOL:
776 (*pos) += 2;
777 type = language_bool_type (exp->language_defn, exp->gdbarch);
778 return value_from_longest (type, exp->elts[pc + 1].longconst);
779
780 case OP_INTERNALVAR:
781 (*pos) += 2;
782 return value_of_internalvar (exp->gdbarch,
783 exp->elts[pc + 1].internalvar);
784
785 case OP_STRING:
786 tem = longest_to_int (exp->elts[pc + 1].longconst);
787 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
788 if (noside == EVAL_SKIP)
789 goto nosideret;
790 type = language_string_char_type (exp->language_defn, exp->gdbarch);
791 return value_string (&exp->elts[pc + 2].string, tem, type);
792
793 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
794 tem = longest_to_int (exp->elts[pc + 1].longconst);
795 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
796 if (noside == EVAL_SKIP)
797 {
798 goto nosideret;
799 }
800 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
801
802 case OP_BITSTRING:
803 tem = longest_to_int (exp->elts[pc + 1].longconst);
804 (*pos)
805 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
806 if (noside == EVAL_SKIP)
807 goto nosideret;
808 return value_bitstring (&exp->elts[pc + 2].string, tem,
809 builtin_type (exp->gdbarch)->builtin_int);
810 break;
811
812 case OP_ARRAY:
813 (*pos) += 3;
814 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
815 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
816 nargs = tem3 - tem2 + 1;
817 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
818
819 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
820 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
821 {
822 struct value *rec = allocate_value (expect_type);
823 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
824 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
825 }
826
827 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
828 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
829 {
830 struct type *range_type = TYPE_INDEX_TYPE (type);
831 struct type *element_type = TYPE_TARGET_TYPE (type);
832 struct value *array = allocate_value (expect_type);
833 int element_size = TYPE_LENGTH (check_typedef (element_type));
834 LONGEST low_bound, high_bound, index;
835 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
836 {
837 low_bound = 0;
838 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
839 }
840 index = low_bound;
841 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
842 for (tem = nargs; --nargs >= 0;)
843 {
844 struct value *element;
845 int index_pc = 0;
846 if (exp->elts[*pos].opcode == BINOP_RANGE)
847 {
848 index_pc = ++(*pos);
849 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
850 }
851 element = evaluate_subexp (element_type, exp, pos, noside);
852 if (value_type (element) != element_type)
853 element = value_cast (element_type, element);
854 if (index_pc)
855 {
856 int continue_pc = *pos;
857 *pos = index_pc;
858 index = init_array_element (array, element, exp, pos, noside,
859 low_bound, high_bound);
860 *pos = continue_pc;
861 }
862 else
863 {
864 if (index > high_bound)
865 /* to avoid memory corruption */
866 error (_("Too many array elements"));
867 memcpy (value_contents_raw (array)
868 + (index - low_bound) * element_size,
869 value_contents (element),
870 element_size);
871 }
872 index++;
873 }
874 return array;
875 }
876
877 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
878 && TYPE_CODE (type) == TYPE_CODE_SET)
879 {
880 struct value *set = allocate_value (expect_type);
881 gdb_byte *valaddr = value_contents_raw (set);
882 struct type *element_type = TYPE_INDEX_TYPE (type);
883 struct type *check_type = element_type;
884 LONGEST low_bound, high_bound;
885
886 /* get targettype of elementtype */
887 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE ||
888 TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
889 check_type = TYPE_TARGET_TYPE (check_type);
890
891 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
892 error (_("(power)set type with unknown size"));
893 memset (valaddr, '\0', TYPE_LENGTH (type));
894 for (tem = 0; tem < nargs; tem++)
895 {
896 LONGEST range_low, range_high;
897 struct type *range_low_type, *range_high_type;
898 struct value *elem_val;
899 if (exp->elts[*pos].opcode == BINOP_RANGE)
900 {
901 (*pos)++;
902 elem_val = evaluate_subexp (element_type, exp, pos, noside);
903 range_low_type = value_type (elem_val);
904 range_low = value_as_long (elem_val);
905 elem_val = evaluate_subexp (element_type, exp, pos, noside);
906 range_high_type = value_type (elem_val);
907 range_high = value_as_long (elem_val);
908 }
909 else
910 {
911 elem_val = evaluate_subexp (element_type, exp, pos, noside);
912 range_low_type = range_high_type = value_type (elem_val);
913 range_low = range_high = value_as_long (elem_val);
914 }
915 /* check types of elements to avoid mixture of elements from
916 different types. Also check if type of element is "compatible"
917 with element type of powerset */
918 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
919 range_low_type = TYPE_TARGET_TYPE (range_low_type);
920 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
921 range_high_type = TYPE_TARGET_TYPE (range_high_type);
922 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) ||
923 (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM &&
924 (range_low_type != range_high_type)))
925 /* different element modes */
926 error (_("POWERSET tuple elements of different mode"));
927 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) ||
928 (TYPE_CODE (check_type) == TYPE_CODE_ENUM &&
929 range_low_type != check_type))
930 error (_("incompatible POWERSET tuple elements"));
931 if (range_low > range_high)
932 {
933 warning (_("empty POWERSET tuple range"));
934 continue;
935 }
936 if (range_low < low_bound || range_high > high_bound)
937 error (_("POWERSET tuple element out of range"));
938 range_low -= low_bound;
939 range_high -= low_bound;
940 for (; range_low <= range_high; range_low++)
941 {
942 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
943 if (gdbarch_bits_big_endian (exp->gdbarch))
944 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
945 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
946 |= 1 << bit_index;
947 }
948 }
949 return set;
950 }
951
952 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
953 for (tem = 0; tem < nargs; tem++)
954 {
955 /* Ensure that array expressions are coerced into pointer objects. */
956 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
957 }
958 if (noside == EVAL_SKIP)
959 goto nosideret;
960 return value_array (tem2, tem3, argvec);
961
962 case TERNOP_SLICE:
963 {
964 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
965 int lowbound
966 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
967 int upper
968 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
969 if (noside == EVAL_SKIP)
970 goto nosideret;
971 return value_slice (array, lowbound, upper - lowbound + 1);
972 }
973
974 case TERNOP_SLICE_COUNT:
975 {
976 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
977 int lowbound
978 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
979 int length
980 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
981 return value_slice (array, lowbound, length);
982 }
983
984 case TERNOP_COND:
985 /* Skip third and second args to evaluate the first one. */
986 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
987 if (value_logical_not (arg1))
988 {
989 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
990 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
991 }
992 else
993 {
994 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
995 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
996 return arg2;
997 }
998
999 case OP_OBJC_SELECTOR:
1000 { /* Objective C @selector operator. */
1001 char *sel = &exp->elts[pc + 2].string;
1002 int len = longest_to_int (exp->elts[pc + 1].longconst);
1003 struct type *selector_type;
1004
1005 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1006 if (noside == EVAL_SKIP)
1007 goto nosideret;
1008
1009 if (sel[len] != 0)
1010 sel[len] = 0; /* Make sure it's terminated. */
1011
1012 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1013 return value_from_longest (selector_type,
1014 lookup_child_selector (exp->gdbarch, sel));
1015 }
1016
1017 case OP_OBJC_MSGCALL:
1018 { /* Objective C message (method) call. */
1019
1020 CORE_ADDR responds_selector = 0;
1021 CORE_ADDR method_selector = 0;
1022
1023 CORE_ADDR selector = 0;
1024
1025 int struct_return = 0;
1026 int sub_no_side = 0;
1027
1028 struct value *msg_send = NULL;
1029 struct value *msg_send_stret = NULL;
1030 int gnu_runtime = 0;
1031
1032 struct value *target = NULL;
1033 struct value *method = NULL;
1034 struct value *called_method = NULL;
1035
1036 struct type *selector_type = NULL;
1037 struct type *long_type;
1038
1039 struct value *ret = NULL;
1040 CORE_ADDR addr = 0;
1041
1042 selector = exp->elts[pc + 1].longconst;
1043 nargs = exp->elts[pc + 2].longconst;
1044 argvec = (struct value **) alloca (sizeof (struct value *)
1045 * (nargs + 5));
1046
1047 (*pos) += 3;
1048
1049 long_type = builtin_type (exp->gdbarch)->builtin_long;
1050 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1051
1052 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1053 sub_no_side = EVAL_NORMAL;
1054 else
1055 sub_no_side = noside;
1056
1057 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1058
1059 if (value_as_long (target) == 0)
1060 return value_from_longest (long_type, 0);
1061
1062 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1063 gnu_runtime = 1;
1064
1065 /* Find the method dispatch (Apple runtime) or method lookup
1066 (GNU runtime) function for Objective-C. These will be used
1067 to lookup the symbol information for the method. If we
1068 can't find any symbol information, then we'll use these to
1069 call the method, otherwise we can call the method
1070 directly. The msg_send_stret function is used in the special
1071 case of a method that returns a structure (Apple runtime
1072 only). */
1073 if (gnu_runtime)
1074 {
1075 struct type *type = selector_type;
1076 type = lookup_function_type (type);
1077 type = lookup_pointer_type (type);
1078 type = lookup_function_type (type);
1079 type = lookup_pointer_type (type);
1080
1081 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1082 msg_send_stret
1083 = find_function_in_inferior ("objc_msg_lookup", NULL);
1084
1085 msg_send = value_from_pointer (type, value_as_address (msg_send));
1086 msg_send_stret = value_from_pointer (type,
1087 value_as_address (msg_send_stret));
1088 }
1089 else
1090 {
1091 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1092 /* Special dispatcher for methods returning structs */
1093 msg_send_stret
1094 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1095 }
1096
1097 /* Verify the target object responds to this method. The
1098 standard top-level 'Object' class uses a different name for
1099 the verification method than the non-standard, but more
1100 often used, 'NSObject' class. Make sure we check for both. */
1101
1102 responds_selector
1103 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1104 if (responds_selector == 0)
1105 responds_selector
1106 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1107
1108 if (responds_selector == 0)
1109 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1110
1111 method_selector
1112 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1113 if (method_selector == 0)
1114 method_selector
1115 = lookup_child_selector (exp->gdbarch, "methodFor:");
1116
1117 if (method_selector == 0)
1118 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1119
1120 /* Call the verification method, to make sure that the target
1121 class implements the desired method. */
1122
1123 argvec[0] = msg_send;
1124 argvec[1] = target;
1125 argvec[2] = value_from_longest (long_type, responds_selector);
1126 argvec[3] = value_from_longest (long_type, selector);
1127 argvec[4] = 0;
1128
1129 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1130 if (gnu_runtime)
1131 {
1132 /* Function objc_msg_lookup returns a pointer. */
1133 argvec[0] = ret;
1134 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1135 }
1136 if (value_as_long (ret) == 0)
1137 error (_("Target does not respond to this message selector."));
1138
1139 /* Call "methodForSelector:" method, to get the address of a
1140 function method that implements this selector for this
1141 class. If we can find a symbol at that address, then we
1142 know the return type, parameter types etc. (that's a good
1143 thing). */
1144
1145 argvec[0] = msg_send;
1146 argvec[1] = target;
1147 argvec[2] = value_from_longest (long_type, method_selector);
1148 argvec[3] = value_from_longest (long_type, selector);
1149 argvec[4] = 0;
1150
1151 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1152 if (gnu_runtime)
1153 {
1154 argvec[0] = ret;
1155 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1156 }
1157
1158 /* ret should now be the selector. */
1159
1160 addr = value_as_long (ret);
1161 if (addr)
1162 {
1163 struct symbol *sym = NULL;
1164 /* Is it a high_level symbol? */
1165
1166 sym = find_pc_function (addr);
1167 if (sym != NULL)
1168 method = value_of_variable (sym, 0);
1169 }
1170
1171 /* If we found a method with symbol information, check to see
1172 if it returns a struct. Otherwise assume it doesn't. */
1173
1174 if (method)
1175 {
1176 struct block *b;
1177 CORE_ADDR funaddr;
1178 struct type *val_type;
1179
1180 funaddr = find_function_addr (method, &val_type);
1181
1182 b = block_for_pc (funaddr);
1183
1184 CHECK_TYPEDEF (val_type);
1185
1186 if ((val_type == NULL)
1187 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1188 {
1189 if (expect_type != NULL)
1190 val_type = expect_type;
1191 }
1192
1193 struct_return = using_struct_return (exp->gdbarch,
1194 value_type (method), val_type);
1195 }
1196 else if (expect_type != NULL)
1197 {
1198 struct_return = using_struct_return (exp->gdbarch, NULL,
1199 check_typedef (expect_type));
1200 }
1201
1202 /* Found a function symbol. Now we will substitute its
1203 value in place of the message dispatcher (obj_msgSend),
1204 so that we call the method directly instead of thru
1205 the dispatcher. The main reason for doing this is that
1206 we can now evaluate the return value and parameter values
1207 according to their known data types, in case we need to
1208 do things like promotion, dereferencing, special handling
1209 of structs and doubles, etc.
1210
1211 We want to use the type signature of 'method', but still
1212 jump to objc_msgSend() or objc_msgSend_stret() to better
1213 mimic the behavior of the runtime. */
1214
1215 if (method)
1216 {
1217 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1218 error (_("method address has symbol information with non-function type; skipping"));
1219 if (struct_return)
1220 set_value_address (method, value_as_address (msg_send_stret));
1221 else
1222 set_value_address (method, value_as_address (msg_send));
1223 called_method = method;
1224 }
1225 else
1226 {
1227 if (struct_return)
1228 called_method = msg_send_stret;
1229 else
1230 called_method = msg_send;
1231 }
1232
1233 if (noside == EVAL_SKIP)
1234 goto nosideret;
1235
1236 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1237 {
1238 /* If the return type doesn't look like a function type,
1239 call an error. This can happen if somebody tries to
1240 turn a variable into a function call. This is here
1241 because people often want to call, eg, strcmp, which
1242 gdb doesn't know is a function. If gdb isn't asked for
1243 it's opinion (ie. through "whatis"), it won't offer
1244 it. */
1245
1246 struct type *type = value_type (called_method);
1247 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1248 type = TYPE_TARGET_TYPE (type);
1249 type = TYPE_TARGET_TYPE (type);
1250
1251 if (type)
1252 {
1253 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1254 return allocate_value (expect_type);
1255 else
1256 return allocate_value (type);
1257 }
1258 else
1259 error (_("Expression of type other than \"method returning ...\" used as a method"));
1260 }
1261
1262 /* Now depending on whether we found a symbol for the method,
1263 we will either call the runtime dispatcher or the method
1264 directly. */
1265
1266 argvec[0] = called_method;
1267 argvec[1] = target;
1268 argvec[2] = value_from_longest (long_type, selector);
1269 /* User-supplied arguments. */
1270 for (tem = 0; tem < nargs; tem++)
1271 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1272 argvec[tem + 3] = 0;
1273
1274 if (gnu_runtime && (method != NULL))
1275 {
1276 /* Function objc_msg_lookup returns a pointer. */
1277 deprecated_set_value_type (argvec[0],
1278 lookup_function_type (lookup_pointer_type (value_type (argvec[0]))));
1279 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1280 }
1281
1282 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1283 return ret;
1284 }
1285 break;
1286
1287 case OP_FUNCALL:
1288 (*pos) += 2;
1289 op = exp->elts[*pos].opcode;
1290 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1291 /* Allocate arg vector, including space for the function to be
1292 called in argvec[0] and a terminating NULL */
1293 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1294 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1295 {
1296 nargs++;
1297 /* First, evaluate the structure into arg2 */
1298 pc2 = (*pos)++;
1299
1300 if (noside == EVAL_SKIP)
1301 goto nosideret;
1302
1303 if (op == STRUCTOP_MEMBER)
1304 {
1305 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1306 }
1307 else
1308 {
1309 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1310 }
1311
1312 /* If the function is a virtual function, then the
1313 aggregate value (providing the structure) plays
1314 its part by providing the vtable. Otherwise,
1315 it is just along for the ride: call the function
1316 directly. */
1317
1318 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1319
1320 if (TYPE_CODE (check_typedef (value_type (arg1)))
1321 != TYPE_CODE_METHODPTR)
1322 error (_("Non-pointer-to-member value used in pointer-to-member "
1323 "construct"));
1324
1325 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1326 {
1327 struct type *method_type = check_typedef (value_type (arg1));
1328 arg1 = value_zero (method_type, not_lval);
1329 }
1330 else
1331 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1332
1333 /* Now, say which argument to start evaluating from */
1334 tem = 2;
1335 }
1336 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1337 {
1338 /* Hair for method invocations */
1339 int tem2;
1340
1341 nargs++;
1342 /* First, evaluate the structure into arg2 */
1343 pc2 = (*pos)++;
1344 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1345 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1346 if (noside == EVAL_SKIP)
1347 goto nosideret;
1348
1349 if (op == STRUCTOP_STRUCT)
1350 {
1351 /* If v is a variable in a register, and the user types
1352 v.method (), this will produce an error, because v has
1353 no address.
1354
1355 A possible way around this would be to allocate a
1356 copy of the variable on the stack, copy in the
1357 contents, call the function, and copy out the
1358 contents. I.e. convert this from call by reference
1359 to call by copy-return (or whatever it's called).
1360 However, this does not work because it is not the
1361 same: the method being called could stash a copy of
1362 the address, and then future uses through that address
1363 (after the method returns) would be expected to
1364 use the variable itself, not some copy of it. */
1365 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1366 }
1367 else
1368 {
1369 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1370 }
1371 /* Now, say which argument to start evaluating from */
1372 tem = 2;
1373 }
1374 else
1375 {
1376 /* Non-method function call */
1377 save_pos1 = *pos;
1378 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1379 tem = 1;
1380 type = value_type (argvec[0]);
1381 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1382 type = TYPE_TARGET_TYPE (type);
1383 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1384 {
1385 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1386 {
1387 /* pai: FIXME This seems to be coercing arguments before
1388 * overload resolution has been done! */
1389 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1390 exp, pos, noside);
1391 }
1392 }
1393 }
1394
1395 /* Evaluate arguments */
1396 for (; tem <= nargs; tem++)
1397 {
1398 /* Ensure that array expressions are coerced into pointer objects. */
1399 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1400 }
1401
1402 /* signal end of arglist */
1403 argvec[tem] = 0;
1404
1405 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1406 {
1407 int static_memfuncp;
1408 char tstr[256];
1409
1410 /* Method invocation : stuff "this" as first parameter */
1411 argvec[1] = arg2;
1412 /* Name of method from expression */
1413 strcpy (tstr, &exp->elts[pc2 + 2].string);
1414
1415 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1416 {
1417 /* Language is C++, do some overload resolution before evaluation */
1418 struct value *valp = NULL;
1419
1420 /* Prepare list of argument types for overload resolution */
1421 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1422 for (ix = 1; ix <= nargs; ix++)
1423 arg_types[ix - 1] = value_type (argvec[ix]);
1424
1425 (void) find_overload_match (arg_types, nargs, tstr,
1426 1 /* method */ , 0 /* strict match */ ,
1427 &arg2 /* the object */ , NULL,
1428 &valp, NULL, &static_memfuncp);
1429
1430
1431 argvec[1] = arg2; /* the ``this'' pointer */
1432 argvec[0] = valp; /* use the method found after overload resolution */
1433 }
1434 else
1435 /* Non-C++ case -- or no overload resolution */
1436 {
1437 struct value *temp = arg2;
1438 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1439 &static_memfuncp,
1440 op == STRUCTOP_STRUCT
1441 ? "structure" : "structure pointer");
1442 /* value_struct_elt updates temp with the correct value
1443 of the ``this'' pointer if necessary, so modify argvec[1] to
1444 reflect any ``this'' changes. */
1445 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1446 value_address (temp)
1447 + value_embedded_offset (temp));
1448 argvec[1] = arg2; /* the ``this'' pointer */
1449 }
1450
1451 if (static_memfuncp)
1452 {
1453 argvec[1] = argvec[0];
1454 nargs--;
1455 argvec++;
1456 }
1457 }
1458 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1459 {
1460 argvec[1] = arg2;
1461 argvec[0] = arg1;
1462 }
1463 else if (op == OP_VAR_VALUE)
1464 {
1465 /* Non-member function being called */
1466 /* fn: This can only be done for C++ functions. A C-style function
1467 in a C++ program, for instance, does not have the fields that
1468 are expected here */
1469
1470 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1471 {
1472 /* Language is C++, do some overload resolution before evaluation */
1473 struct symbol *symp;
1474
1475 /* Prepare list of argument types for overload resolution */
1476 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1477 for (ix = 1; ix <= nargs; ix++)
1478 arg_types[ix - 1] = value_type (argvec[ix]);
1479
1480 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1481 0 /* not method */ , 0 /* strict match */ ,
1482 NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
1483 NULL, &symp, NULL);
1484
1485 /* Now fix the expression being evaluated */
1486 exp->elts[save_pos1+2].symbol = symp;
1487 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1488 }
1489 else
1490 {
1491 /* Not C++, or no overload resolution allowed */
1492 /* nothing to be done; argvec already correctly set up */
1493 }
1494 }
1495 else
1496 {
1497 /* It is probably a C-style function */
1498 /* nothing to be done; argvec already correctly set up */
1499 }
1500
1501 do_call_it:
1502
1503 if (noside == EVAL_SKIP)
1504 goto nosideret;
1505 if (argvec[0] == NULL)
1506 error (_("Cannot evaluate function -- may be inlined"));
1507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1508 {
1509 /* If the return type doesn't look like a function type, call an
1510 error. This can happen if somebody tries to turn a variable into
1511 a function call. This is here because people often want to
1512 call, eg, strcmp, which gdb doesn't know is a function. If
1513 gdb isn't asked for it's opinion (ie. through "whatis"),
1514 it won't offer it. */
1515
1516 struct type *ftype = value_type (argvec[0]);
1517
1518 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1519 {
1520 /* We don't know anything about what the internal
1521 function might return, but we have to return
1522 something. */
1523 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1524 not_lval);
1525 }
1526 else if (TYPE_TARGET_TYPE (ftype))
1527 return allocate_value (TYPE_TARGET_TYPE (ftype));
1528 else
1529 error (_("Expression of type other than \"Function returning ...\" used as function"));
1530 }
1531 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1532 return call_internal_function (exp->gdbarch, exp->language_defn,
1533 argvec[0], nargs, argvec + 1);
1534
1535 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1536 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1537
1538 case OP_F77_UNDETERMINED_ARGLIST:
1539
1540 /* Remember that in F77, functions, substring ops and
1541 array subscript operations cannot be disambiguated
1542 at parse time. We have made all array subscript operations,
1543 substring operations as well as function calls come here
1544 and we now have to discover what the heck this thing actually was.
1545 If it is a function, we process just as if we got an OP_FUNCALL. */
1546
1547 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1548 (*pos) += 2;
1549
1550 /* First determine the type code we are dealing with. */
1551 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1552 type = check_typedef (value_type (arg1));
1553 code = TYPE_CODE (type);
1554
1555 if (code == TYPE_CODE_PTR)
1556 {
1557 /* Fortran always passes variable to subroutines as pointer.
1558 So we need to look into its target type to see if it is
1559 array, string or function. If it is, we need to switch
1560 to the target value the original one points to. */
1561 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1562
1563 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1564 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1565 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1566 {
1567 arg1 = value_ind (arg1);
1568 type = check_typedef (value_type (arg1));
1569 code = TYPE_CODE (type);
1570 }
1571 }
1572
1573 switch (code)
1574 {
1575 case TYPE_CODE_ARRAY:
1576 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1577 return value_f90_subarray (arg1, exp, pos, noside);
1578 else
1579 goto multi_f77_subscript;
1580
1581 case TYPE_CODE_STRING:
1582 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1583 return value_f90_subarray (arg1, exp, pos, noside);
1584 else
1585 {
1586 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1587 return value_subscript (arg1, value_as_long (arg2));
1588 }
1589
1590 case TYPE_CODE_PTR:
1591 case TYPE_CODE_FUNC:
1592 /* It's a function call. */
1593 /* Allocate arg vector, including space for the function to be
1594 called in argvec[0] and a terminating NULL */
1595 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1596 argvec[0] = arg1;
1597 tem = 1;
1598 for (; tem <= nargs; tem++)
1599 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1600 argvec[tem] = 0; /* signal end of arglist */
1601 goto do_call_it;
1602
1603 default:
1604 error (_("Cannot perform substring on this type"));
1605 }
1606
1607 case OP_COMPLEX:
1608 /* We have a complex number, There should be 2 floating
1609 point numbers that compose it */
1610 (*pos) += 2;
1611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1612 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1613
1614 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1615
1616 case STRUCTOP_STRUCT:
1617 tem = longest_to_int (exp->elts[pc + 1].longconst);
1618 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1619 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1620 if (noside == EVAL_SKIP)
1621 goto nosideret;
1622 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1623 return value_zero (lookup_struct_elt_type (value_type (arg1),
1624 &exp->elts[pc + 2].string,
1625 0),
1626 lval_memory);
1627 else
1628 {
1629 struct value *temp = arg1;
1630 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1631 NULL, "structure");
1632 }
1633
1634 case STRUCTOP_PTR:
1635 tem = longest_to_int (exp->elts[pc + 1].longconst);
1636 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1637 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1638 if (noside == EVAL_SKIP)
1639 goto nosideret;
1640
1641 /* JYG: if print object is on we need to replace the base type
1642 with rtti type in order to continue on with successful
1643 lookup of member / method only available in the rtti type. */
1644 {
1645 struct type *type = value_type (arg1);
1646 struct type *real_type;
1647 int full, top, using_enc;
1648 struct value_print_options opts;
1649
1650 get_user_print_options (&opts);
1651 if (opts.objectprint && TYPE_TARGET_TYPE(type) &&
1652 (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1653 {
1654 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1655 if (real_type)
1656 {
1657 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1658 real_type = lookup_pointer_type (real_type);
1659 else
1660 real_type = lookup_reference_type (real_type);
1661
1662 arg1 = value_cast (real_type, arg1);
1663 }
1664 }
1665 }
1666
1667 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1668 return value_zero (lookup_struct_elt_type (value_type (arg1),
1669 &exp->elts[pc + 2].string,
1670 0),
1671 lval_memory);
1672 else
1673 {
1674 struct value *temp = arg1;
1675 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1676 NULL, "structure pointer");
1677 }
1678
1679 case STRUCTOP_MEMBER:
1680 case STRUCTOP_MPTR:
1681 if (op == STRUCTOP_MEMBER)
1682 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1683 else
1684 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1685
1686 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1687
1688 if (noside == EVAL_SKIP)
1689 goto nosideret;
1690
1691 type = check_typedef (value_type (arg2));
1692 switch (TYPE_CODE (type))
1693 {
1694 case TYPE_CODE_METHODPTR:
1695 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1696 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1697 else
1698 {
1699 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1700 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1701 return value_ind (arg2);
1702 }
1703
1704 case TYPE_CODE_MEMBERPTR:
1705 /* Now, convert these values to an address. */
1706 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1707 arg1);
1708
1709 mem_offset = value_as_long (arg2);
1710
1711 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1712 value_as_long (arg1) + mem_offset);
1713 return value_ind (arg3);
1714
1715 default:
1716 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1717 }
1718
1719 case BINOP_CONCAT:
1720 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1721 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1722 if (noside == EVAL_SKIP)
1723 goto nosideret;
1724 if (binop_user_defined_p (op, arg1, arg2))
1725 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1726 else
1727 return value_concat (arg1, arg2);
1728
1729 case BINOP_ASSIGN:
1730 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1731 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1732
1733 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1734 return arg1;
1735 if (binop_user_defined_p (op, arg1, arg2))
1736 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1737 else
1738 return value_assign (arg1, arg2);
1739
1740 case BINOP_ASSIGN_MODIFY:
1741 (*pos) += 2;
1742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1743 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1744 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1745 return arg1;
1746 op = exp->elts[pc + 1].opcode;
1747 if (binop_user_defined_p (op, arg1, arg2))
1748 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1749 else if (op == BINOP_ADD && ptrmath_type_p (value_type (arg1))
1750 && is_integral_type (value_type (arg2)))
1751 arg2 = value_ptradd (arg1, value_as_long (arg2));
1752 else if (op == BINOP_SUB && ptrmath_type_p (value_type (arg1))
1753 && is_integral_type (value_type (arg2)))
1754 arg2 = value_ptradd (arg1, - value_as_long (arg2));
1755 else
1756 {
1757 struct value *tmp = arg1;
1758
1759 /* For shift and integer exponentiation operations,
1760 only promote the first argument. */
1761 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1762 && is_integral_type (value_type (arg2)))
1763 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
1764 else
1765 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1766
1767 arg2 = value_binop (tmp, arg2, op);
1768 }
1769 return value_assign (arg1, arg2);
1770
1771 case BINOP_ADD:
1772 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1773 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1774 if (noside == EVAL_SKIP)
1775 goto nosideret;
1776 if (binop_user_defined_p (op, arg1, arg2))
1777 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1778 else if (ptrmath_type_p (value_type (arg1))
1779 && is_integral_type (value_type (arg2)))
1780 return value_ptradd (arg1, value_as_long (arg2));
1781 else if (ptrmath_type_p (value_type (arg2))
1782 && is_integral_type (value_type (arg1)))
1783 return value_ptradd (arg2, value_as_long (arg1));
1784 else
1785 {
1786 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1787 return value_binop (arg1, arg2, BINOP_ADD);
1788 }
1789
1790 case BINOP_SUB:
1791 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1792 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1793 if (noside == EVAL_SKIP)
1794 goto nosideret;
1795 if (binop_user_defined_p (op, arg1, arg2))
1796 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1797 else if (ptrmath_type_p (value_type (arg1))
1798 && ptrmath_type_p (value_type (arg2)))
1799 {
1800 /* FIXME -- should be ptrdiff_t */
1801 type = builtin_type (exp->gdbarch)->builtin_long;
1802 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1803 }
1804 else if (ptrmath_type_p (value_type (arg1))
1805 && is_integral_type (value_type (arg2)))
1806 return value_ptradd (arg1, - value_as_long (arg2));
1807 else
1808 {
1809 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1810 return value_binop (arg1, arg2, BINOP_SUB);
1811 }
1812
1813 case BINOP_EXP:
1814 case BINOP_MUL:
1815 case BINOP_DIV:
1816 case BINOP_INTDIV:
1817 case BINOP_REM:
1818 case BINOP_MOD:
1819 case BINOP_LSH:
1820 case BINOP_RSH:
1821 case BINOP_BITWISE_AND:
1822 case BINOP_BITWISE_IOR:
1823 case BINOP_BITWISE_XOR:
1824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1825 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1826 if (noside == EVAL_SKIP)
1827 goto nosideret;
1828 if (binop_user_defined_p (op, arg1, arg2))
1829 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1830 else
1831 {
1832 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1833 fudge arg2 to avoid division-by-zero, the caller is
1834 (theoretically) only looking for the type of the result. */
1835 if (noside == EVAL_AVOID_SIDE_EFFECTS
1836 /* ??? Do we really want to test for BINOP_MOD here?
1837 The implementation of value_binop gives it a well-defined
1838 value. */
1839 && (op == BINOP_DIV
1840 || op == BINOP_INTDIV
1841 || op == BINOP_REM
1842 || op == BINOP_MOD)
1843 && value_logical_not (arg2))
1844 {
1845 struct value *v_one, *retval;
1846
1847 v_one = value_one (value_type (arg2), not_lval);
1848 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1849 retval = value_binop (arg1, v_one, op);
1850 return retval;
1851 }
1852 else
1853 {
1854 /* For shift and integer exponentiation operations,
1855 only promote the first argument. */
1856 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1857 && is_integral_type (value_type (arg2)))
1858 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1859 else
1860 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1861
1862 return value_binop (arg1, arg2, op);
1863 }
1864 }
1865
1866 case BINOP_RANGE:
1867 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1868 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1869 if (noside == EVAL_SKIP)
1870 goto nosideret;
1871 error (_("':' operator used in invalid context"));
1872
1873 case BINOP_SUBSCRIPT:
1874 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1875 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1876 if (noside == EVAL_SKIP)
1877 goto nosideret;
1878 if (binop_user_defined_p (op, arg1, arg2))
1879 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1880 else
1881 {
1882 /* If the user attempts to subscript something that is not an
1883 array or pointer type (like a plain int variable for example),
1884 then report this as an error. */
1885
1886 arg1 = coerce_ref (arg1);
1887 type = check_typedef (value_type (arg1));
1888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
1889 && TYPE_CODE (type) != TYPE_CODE_PTR)
1890 {
1891 if (TYPE_NAME (type))
1892 error (_("cannot subscript something of type `%s'"),
1893 TYPE_NAME (type));
1894 else
1895 error (_("cannot subscript requested type"));
1896 }
1897
1898 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1899 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1900 else
1901 return value_subscript (arg1, value_as_long (arg2));
1902 }
1903
1904 case BINOP_IN:
1905 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1906 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1907 if (noside == EVAL_SKIP)
1908 goto nosideret;
1909 type = language_bool_type (exp->language_defn, exp->gdbarch);
1910 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
1911
1912 case MULTI_SUBSCRIPT:
1913 (*pos) += 2;
1914 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1915 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1916 while (nargs-- > 0)
1917 {
1918 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1919 /* FIXME: EVAL_SKIP handling may not be correct. */
1920 if (noside == EVAL_SKIP)
1921 {
1922 if (nargs > 0)
1923 {
1924 continue;
1925 }
1926 else
1927 {
1928 goto nosideret;
1929 }
1930 }
1931 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
1932 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1933 {
1934 /* If the user attempts to subscript something that has no target
1935 type (like a plain int variable for example), then report this
1936 as an error. */
1937
1938 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
1939 if (type != NULL)
1940 {
1941 arg1 = value_zero (type, VALUE_LVAL (arg1));
1942 noside = EVAL_SKIP;
1943 continue;
1944 }
1945 else
1946 {
1947 error (_("cannot subscript something of type `%s'"),
1948 TYPE_NAME (value_type (arg1)));
1949 }
1950 }
1951
1952 if (binop_user_defined_p (op, arg1, arg2))
1953 {
1954 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
1955 }
1956 else
1957 {
1958 arg1 = coerce_ref (arg1);
1959 type = check_typedef (value_type (arg1));
1960
1961 switch (TYPE_CODE (type))
1962 {
1963 case TYPE_CODE_PTR:
1964 case TYPE_CODE_ARRAY:
1965 case TYPE_CODE_STRING:
1966 arg1 = value_subscript (arg1, value_as_long (arg2));
1967 break;
1968
1969 case TYPE_CODE_BITSTRING:
1970 type = language_bool_type (exp->language_defn, exp->gdbarch);
1971 arg1 = value_bitstring_subscript (type, arg1,
1972 value_as_long (arg2));
1973 break;
1974
1975 default:
1976 if (TYPE_NAME (type))
1977 error (_("cannot subscript something of type `%s'"),
1978 TYPE_NAME (type));
1979 else
1980 error (_("cannot subscript requested type"));
1981 }
1982 }
1983 }
1984 return (arg1);
1985
1986 multi_f77_subscript:
1987 {
1988 int subscript_array[MAX_FORTRAN_DIMS];
1989 int array_size_array[MAX_FORTRAN_DIMS];
1990 int ndimensions = 1, i;
1991 struct type *tmp_type;
1992 int offset_item; /* The array offset where the item lives */
1993
1994 if (nargs > MAX_FORTRAN_DIMS)
1995 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
1996
1997 tmp_type = check_typedef (value_type (arg1));
1998 ndimensions = calc_f77_array_dims (type);
1999
2000 if (nargs != ndimensions)
2001 error (_("Wrong number of subscripts"));
2002
2003 gdb_assert (nargs > 0);
2004
2005 /* Now that we know we have a legal array subscript expression
2006 let us actually find out where this element exists in the array. */
2007
2008 offset_item = 0;
2009 /* Take array indices left to right */
2010 for (i = 0; i < nargs; i++)
2011 {
2012 /* Evaluate each subscript, It must be a legal integer in F77 */
2013 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2014
2015 /* Fill in the subscript and array size arrays */
2016
2017 subscript_array[i] = value_as_long (arg2);
2018 }
2019
2020 /* Internal type of array is arranged right to left */
2021 for (i = 0; i < nargs; i++)
2022 {
2023 upper = f77_get_upperbound (tmp_type);
2024 lower = f77_get_lowerbound (tmp_type);
2025
2026 array_size_array[nargs - i - 1] = upper - lower + 1;
2027
2028 /* Zero-normalize subscripts so that offsetting will work. */
2029
2030 subscript_array[nargs - i - 1] -= lower;
2031
2032 /* If we are at the bottom of a multidimensional
2033 array type then keep a ptr to the last ARRAY
2034 type around for use when calling value_subscript()
2035 below. This is done because we pretend to value_subscript
2036 that we actually have a one-dimensional array
2037 of base element type that we apply a simple
2038 offset to. */
2039
2040 if (i < nargs - 1)
2041 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
2042 }
2043
2044 /* Now let us calculate the offset for this item */
2045
2046 offset_item = subscript_array[ndimensions - 1];
2047
2048 for (i = ndimensions - 1; i > 0; --i)
2049 offset_item =
2050 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
2051
2052 /* Let us now play a dirty trick: we will take arg1
2053 which is a value node pointing to the topmost level
2054 of the multidimensional array-set and pretend
2055 that it is actually a array of the final element
2056 type, this will ensure that value_subscript()
2057 returns the correct type value */
2058
2059 deprecated_set_value_type (arg1, tmp_type);
2060 return value_subscripted_rvalue (arg1, offset_item, 0);
2061 }
2062
2063 case BINOP_LOGICAL_AND:
2064 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2065 if (noside == EVAL_SKIP)
2066 {
2067 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2068 goto nosideret;
2069 }
2070
2071 oldpos = *pos;
2072 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2073 *pos = oldpos;
2074
2075 if (binop_user_defined_p (op, arg1, arg2))
2076 {
2077 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2078 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2079 }
2080 else
2081 {
2082 tem = value_logical_not (arg1);
2083 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2084 (tem ? EVAL_SKIP : noside));
2085 type = language_bool_type (exp->language_defn, exp->gdbarch);
2086 return value_from_longest (type,
2087 (LONGEST) (!tem && !value_logical_not (arg2)));
2088 }
2089
2090 case BINOP_LOGICAL_OR:
2091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2092 if (noside == EVAL_SKIP)
2093 {
2094 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2095 goto nosideret;
2096 }
2097
2098 oldpos = *pos;
2099 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2100 *pos = oldpos;
2101
2102 if (binop_user_defined_p (op, arg1, arg2))
2103 {
2104 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2105 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2106 }
2107 else
2108 {
2109 tem = value_logical_not (arg1);
2110 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2111 (!tem ? EVAL_SKIP : noside));
2112 type = language_bool_type (exp->language_defn, exp->gdbarch);
2113 return value_from_longest (type,
2114 (LONGEST) (!tem || !value_logical_not (arg2)));
2115 }
2116
2117 case BINOP_EQUAL:
2118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2119 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2120 if (noside == EVAL_SKIP)
2121 goto nosideret;
2122 if (binop_user_defined_p (op, arg1, arg2))
2123 {
2124 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2125 }
2126 else
2127 {
2128 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2129 tem = value_equal (arg1, arg2);
2130 type = language_bool_type (exp->language_defn, exp->gdbarch);
2131 return value_from_longest (type, (LONGEST) tem);
2132 }
2133
2134 case BINOP_NOTEQUAL:
2135 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2136 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2137 if (noside == EVAL_SKIP)
2138 goto nosideret;
2139 if (binop_user_defined_p (op, arg1, arg2))
2140 {
2141 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2142 }
2143 else
2144 {
2145 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2146 tem = value_equal (arg1, arg2);
2147 type = language_bool_type (exp->language_defn, exp->gdbarch);
2148 return value_from_longest (type, (LONGEST) ! tem);
2149 }
2150
2151 case BINOP_LESS:
2152 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2153 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2154 if (noside == EVAL_SKIP)
2155 goto nosideret;
2156 if (binop_user_defined_p (op, arg1, arg2))
2157 {
2158 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2159 }
2160 else
2161 {
2162 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2163 tem = value_less (arg1, arg2);
2164 type = language_bool_type (exp->language_defn, exp->gdbarch);
2165 return value_from_longest (type, (LONGEST) tem);
2166 }
2167
2168 case BINOP_GTR:
2169 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2170 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2171 if (noside == EVAL_SKIP)
2172 goto nosideret;
2173 if (binop_user_defined_p (op, arg1, arg2))
2174 {
2175 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2176 }
2177 else
2178 {
2179 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2180 tem = value_less (arg2, arg1);
2181 type = language_bool_type (exp->language_defn, exp->gdbarch);
2182 return value_from_longest (type, (LONGEST) tem);
2183 }
2184
2185 case BINOP_GEQ:
2186 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2187 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2188 if (noside == EVAL_SKIP)
2189 goto nosideret;
2190 if (binop_user_defined_p (op, arg1, arg2))
2191 {
2192 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2193 }
2194 else
2195 {
2196 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2197 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2198 type = language_bool_type (exp->language_defn, exp->gdbarch);
2199 return value_from_longest (type, (LONGEST) tem);
2200 }
2201
2202 case BINOP_LEQ:
2203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2204 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2205 if (noside == EVAL_SKIP)
2206 goto nosideret;
2207 if (binop_user_defined_p (op, arg1, arg2))
2208 {
2209 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2210 }
2211 else
2212 {
2213 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2214 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2215 type = language_bool_type (exp->language_defn, exp->gdbarch);
2216 return value_from_longest (type, (LONGEST) tem);
2217 }
2218
2219 case BINOP_REPEAT:
2220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2221 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2222 if (noside == EVAL_SKIP)
2223 goto nosideret;
2224 type = check_typedef (value_type (arg2));
2225 if (TYPE_CODE (type) != TYPE_CODE_INT)
2226 error (_("Non-integral right operand for \"@\" operator."));
2227 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2228 {
2229 return allocate_repeat_value (value_type (arg1),
2230 longest_to_int (value_as_long (arg2)));
2231 }
2232 else
2233 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2234
2235 case BINOP_COMMA:
2236 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2237 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2238
2239 case UNOP_PLUS:
2240 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2241 if (noside == EVAL_SKIP)
2242 goto nosideret;
2243 if (unop_user_defined_p (op, arg1))
2244 return value_x_unop (arg1, op, noside);
2245 else
2246 {
2247 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2248 return value_pos (arg1);
2249 }
2250
2251 case UNOP_NEG:
2252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2253 if (noside == EVAL_SKIP)
2254 goto nosideret;
2255 if (unop_user_defined_p (op, arg1))
2256 return value_x_unop (arg1, op, noside);
2257 else
2258 {
2259 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2260 return value_neg (arg1);
2261 }
2262
2263 case UNOP_COMPLEMENT:
2264 /* C++: check for and handle destructor names. */
2265 op = exp->elts[*pos].opcode;
2266
2267 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2268 if (noside == EVAL_SKIP)
2269 goto nosideret;
2270 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2271 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2272 else
2273 {
2274 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2275 return value_complement (arg1);
2276 }
2277
2278 case UNOP_LOGICAL_NOT:
2279 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2280 if (noside == EVAL_SKIP)
2281 goto nosideret;
2282 if (unop_user_defined_p (op, arg1))
2283 return value_x_unop (arg1, op, noside);
2284 else
2285 {
2286 type = language_bool_type (exp->language_defn, exp->gdbarch);
2287 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2288 }
2289
2290 case UNOP_IND:
2291 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2292 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2293 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2294 type = check_typedef (value_type (arg1));
2295 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2296 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2297 error (_("Attempt to dereference pointer to member without an object"));
2298 if (noside == EVAL_SKIP)
2299 goto nosideret;
2300 if (unop_user_defined_p (op, arg1))
2301 return value_x_unop (arg1, op, noside);
2302 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2303 {
2304 type = check_typedef (value_type (arg1));
2305 if (TYPE_CODE (type) == TYPE_CODE_PTR
2306 || TYPE_CODE (type) == TYPE_CODE_REF
2307 /* In C you can dereference an array to get the 1st elt. */
2308 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2309 )
2310 return value_zero (TYPE_TARGET_TYPE (type),
2311 lval_memory);
2312 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2313 /* GDB allows dereferencing an int. */
2314 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2315 lval_memory);
2316 else
2317 error (_("Attempt to take contents of a non-pointer value."));
2318 }
2319
2320 /* Allow * on an integer so we can cast it to whatever we want.
2321 This returns an int, which seems like the most C-like thing to
2322 do. "long long" variables are rare enough that
2323 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2324 if (TYPE_CODE (type) == TYPE_CODE_INT)
2325 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2326 (CORE_ADDR) value_as_address (arg1));
2327 return value_ind (arg1);
2328
2329 case UNOP_ADDR:
2330 /* C++: check for and handle pointer to members. */
2331
2332 op = exp->elts[*pos].opcode;
2333
2334 if (noside == EVAL_SKIP)
2335 {
2336 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2337 goto nosideret;
2338 }
2339 else
2340 {
2341 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
2342 return retvalp;
2343 }
2344
2345 case UNOP_SIZEOF:
2346 if (noside == EVAL_SKIP)
2347 {
2348 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2349 goto nosideret;
2350 }
2351 return evaluate_subexp_for_sizeof (exp, pos);
2352
2353 case UNOP_CAST:
2354 (*pos) += 2;
2355 type = exp->elts[pc + 1].type;
2356 arg1 = evaluate_subexp (type, exp, pos, noside);
2357 if (noside == EVAL_SKIP)
2358 goto nosideret;
2359 if (type != value_type (arg1))
2360 arg1 = value_cast (type, arg1);
2361 return arg1;
2362
2363 case UNOP_MEMVAL:
2364 (*pos) += 2;
2365 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2366 if (noside == EVAL_SKIP)
2367 goto nosideret;
2368 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2369 return value_zero (exp->elts[pc + 1].type, lval_memory);
2370 else
2371 return value_at_lazy (exp->elts[pc + 1].type,
2372 value_as_address (arg1));
2373
2374 case UNOP_MEMVAL_TLS:
2375 (*pos) += 3;
2376 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2377 if (noside == EVAL_SKIP)
2378 goto nosideret;
2379 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2380 return value_zero (exp->elts[pc + 2].type, lval_memory);
2381 else
2382 {
2383 CORE_ADDR tls_addr;
2384 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2385 value_as_address (arg1));
2386 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2387 }
2388
2389 case UNOP_PREINCREMENT:
2390 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2391 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2392 return arg1;
2393 else if (unop_user_defined_p (op, arg1))
2394 {
2395 return value_x_unop (arg1, op, noside);
2396 }
2397 else
2398 {
2399 if (ptrmath_type_p (value_type (arg1)))
2400 arg2 = value_ptradd (arg1, 1);
2401 else
2402 {
2403 struct value *tmp = arg1;
2404 arg2 = value_one (value_type (arg1), not_lval);
2405 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2406 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2407 }
2408
2409 return value_assign (arg1, arg2);
2410 }
2411
2412 case UNOP_PREDECREMENT:
2413 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2414 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2415 return arg1;
2416 else if (unop_user_defined_p (op, arg1))
2417 {
2418 return value_x_unop (arg1, op, noside);
2419 }
2420 else
2421 {
2422 if (ptrmath_type_p (value_type (arg1)))
2423 arg2 = value_ptradd (arg1, -1);
2424 else
2425 {
2426 struct value *tmp = arg1;
2427 arg2 = value_one (value_type (arg1), not_lval);
2428 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2429 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2430 }
2431
2432 return value_assign (arg1, arg2);
2433 }
2434
2435 case UNOP_POSTINCREMENT:
2436 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2437 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2438 return arg1;
2439 else if (unop_user_defined_p (op, arg1))
2440 {
2441 return value_x_unop (arg1, op, noside);
2442 }
2443 else
2444 {
2445 if (ptrmath_type_p (value_type (arg1)))
2446 arg2 = value_ptradd (arg1, 1);
2447 else
2448 {
2449 struct value *tmp = arg1;
2450 arg2 = value_one (value_type (arg1), not_lval);
2451 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2452 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2453 }
2454
2455 value_assign (arg1, arg2);
2456 return arg1;
2457 }
2458
2459 case UNOP_POSTDECREMENT:
2460 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2461 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2462 return arg1;
2463 else if (unop_user_defined_p (op, arg1))
2464 {
2465 return value_x_unop (arg1, op, noside);
2466 }
2467 else
2468 {
2469 if (ptrmath_type_p (value_type (arg1)))
2470 arg2 = value_ptradd (arg1, -1);
2471 else
2472 {
2473 struct value *tmp = arg1;
2474 arg2 = value_one (value_type (arg1), not_lval);
2475 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2476 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2477 }
2478
2479 value_assign (arg1, arg2);
2480 return arg1;
2481 }
2482
2483 case OP_THIS:
2484 (*pos) += 1;
2485 return value_of_this (1);
2486
2487 case OP_OBJC_SELF:
2488 (*pos) += 1;
2489 return value_of_local ("self", 1);
2490
2491 case OP_TYPE:
2492 /* The value is not supposed to be used. This is here to make it
2493 easier to accommodate expressions that contain types. */
2494 (*pos) += 2;
2495 if (noside == EVAL_SKIP)
2496 goto nosideret;
2497 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2498 {
2499 struct type *type = exp->elts[pc + 1].type;
2500 /* If this is a typedef, then find its immediate target. We
2501 use check_typedef to resolve stubs, but we ignore its
2502 result because we do not want to dig past all
2503 typedefs. */
2504 check_typedef (type);
2505 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2506 type = TYPE_TARGET_TYPE (type);
2507 return allocate_value (type);
2508 }
2509 else
2510 error (_("Attempt to use a type name as an expression"));
2511
2512 default:
2513 /* Removing this case and compiling with gcc -Wall reveals that
2514 a lot of cases are hitting this case. Some of these should
2515 probably be removed from expression.h; others are legitimate
2516 expressions which are (apparently) not fully implemented.
2517
2518 If there are any cases landing here which mean a user error,
2519 then they should be separate cases, with more descriptive
2520 error messages. */
2521
2522 error (_("\
2523 GDB does not (yet) know how to evaluate that kind of expression"));
2524 }
2525
2526 nosideret:
2527 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2528 }
2529 \f
2530 /* Evaluate a subexpression of EXP, at index *POS,
2531 and return the address of that subexpression.
2532 Advance *POS over the subexpression.
2533 If the subexpression isn't an lvalue, get an error.
2534 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2535 then only the type of the result need be correct. */
2536
2537 static struct value *
2538 evaluate_subexp_for_address (struct expression *exp, int *pos,
2539 enum noside noside)
2540 {
2541 enum exp_opcode op;
2542 int pc;
2543 struct symbol *var;
2544 struct value *x;
2545 int tem;
2546
2547 pc = (*pos);
2548 op = exp->elts[pc].opcode;
2549
2550 switch (op)
2551 {
2552 case UNOP_IND:
2553 (*pos)++;
2554 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2555
2556 /* We can't optimize out "&*" if there's a user-defined operator*. */
2557 if (unop_user_defined_p (op, x))
2558 {
2559 x = value_x_unop (x, op, noside);
2560 goto default_case_after_eval;
2561 }
2562
2563 return x;
2564
2565 case UNOP_MEMVAL:
2566 (*pos) += 3;
2567 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2568 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2569
2570 case OP_VAR_VALUE:
2571 var = exp->elts[pc + 2].symbol;
2572
2573 /* C++: The "address" of a reference should yield the address
2574 * of the object pointed to. Let value_addr() deal with it. */
2575 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2576 goto default_case;
2577
2578 (*pos) += 4;
2579 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2580 {
2581 struct type *type =
2582 lookup_pointer_type (SYMBOL_TYPE (var));
2583 enum address_class sym_class = SYMBOL_CLASS (var);
2584
2585 if (sym_class == LOC_CONST
2586 || sym_class == LOC_CONST_BYTES
2587 || sym_class == LOC_REGISTER)
2588 error (_("Attempt to take address of register or constant."));
2589
2590 return
2591 value_zero (type, not_lval);
2592 }
2593 else
2594 return address_of_variable (var, exp->elts[pc + 1].block);
2595
2596 case OP_SCOPE:
2597 tem = longest_to_int (exp->elts[pc + 2].longconst);
2598 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2599 x = value_aggregate_elt (exp->elts[pc + 1].type,
2600 &exp->elts[pc + 3].string,
2601 1, noside);
2602 if (x == NULL)
2603 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2604 return x;
2605
2606 default:
2607 default_case:
2608 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2609 default_case_after_eval:
2610 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2611 {
2612 struct type *type = check_typedef (value_type (x));
2613
2614 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2615 return value_zero (lookup_pointer_type (value_type (x)),
2616 not_lval);
2617 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2618 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2619 not_lval);
2620 else
2621 error (_("Attempt to take address of value not located in memory."));
2622 }
2623 return value_addr (x);
2624 }
2625 }
2626
2627 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2628 When used in contexts where arrays will be coerced anyway, this is
2629 equivalent to `evaluate_subexp' but much faster because it avoids
2630 actually fetching array contents (perhaps obsolete now that we have
2631 value_lazy()).
2632
2633 Note that we currently only do the coercion for C expressions, where
2634 arrays are zero based and the coercion is correct. For other languages,
2635 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2636 to decide if coercion is appropriate.
2637
2638 */
2639
2640 struct value *
2641 evaluate_subexp_with_coercion (struct expression *exp,
2642 int *pos, enum noside noside)
2643 {
2644 enum exp_opcode op;
2645 int pc;
2646 struct value *val;
2647 struct symbol *var;
2648 struct type *type;
2649
2650 pc = (*pos);
2651 op = exp->elts[pc].opcode;
2652
2653 switch (op)
2654 {
2655 case OP_VAR_VALUE:
2656 var = exp->elts[pc + 2].symbol;
2657 type = check_typedef (SYMBOL_TYPE (var));
2658 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2659 && CAST_IS_CONVERSION)
2660 {
2661 (*pos) += 4;
2662 val = address_of_variable (var, exp->elts[pc + 1].block);
2663 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2664 val);
2665 }
2666 /* FALLTHROUGH */
2667
2668 default:
2669 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2670 }
2671 }
2672
2673 /* Evaluate a subexpression of EXP, at index *POS,
2674 and return a value for the size of that subexpression.
2675 Advance *POS over the subexpression. */
2676
2677 static struct value *
2678 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2679 {
2680 /* FIXME: This should be size_t. */
2681 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2682 enum exp_opcode op;
2683 int pc;
2684 struct type *type;
2685 struct value *val;
2686
2687 pc = (*pos);
2688 op = exp->elts[pc].opcode;
2689
2690 switch (op)
2691 {
2692 /* This case is handled specially
2693 so that we avoid creating a value for the result type.
2694 If the result type is very big, it's desirable not to
2695 create a value unnecessarily. */
2696 case UNOP_IND:
2697 (*pos)++;
2698 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2699 type = check_typedef (value_type (val));
2700 if (TYPE_CODE (type) != TYPE_CODE_PTR
2701 && TYPE_CODE (type) != TYPE_CODE_REF
2702 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2703 error (_("Attempt to take contents of a non-pointer value."));
2704 type = check_typedef (TYPE_TARGET_TYPE (type));
2705 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2706
2707 case UNOP_MEMVAL:
2708 (*pos) += 3;
2709 type = check_typedef (exp->elts[pc + 1].type);
2710 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2711
2712 case OP_VAR_VALUE:
2713 (*pos) += 4;
2714 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2715 return
2716 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2717
2718 default:
2719 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2720 return value_from_longest (size_type,
2721 (LONGEST) TYPE_LENGTH (value_type (val)));
2722 }
2723 }
2724
2725 /* Parse a type expression in the string [P..P+LENGTH). */
2726
2727 struct type *
2728 parse_and_eval_type (char *p, int length)
2729 {
2730 char *tmp = (char *) alloca (length + 4);
2731 struct expression *expr;
2732 tmp[0] = '(';
2733 memcpy (tmp + 1, p, length);
2734 tmp[length + 1] = ')';
2735 tmp[length + 2] = '0';
2736 tmp[length + 3] = '\0';
2737 expr = parse_expression (tmp);
2738 if (expr->elts[0].opcode != UNOP_CAST)
2739 error (_("Internal error in eval_type."));
2740 return expr->elts[1].type;
2741 }
2742
2743 int
2744 calc_f77_array_dims (struct type *array_type)
2745 {
2746 int ndimen = 1;
2747 struct type *tmp_type;
2748
2749 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2750 error (_("Can't get dimensions for a non-array type"));
2751
2752 tmp_type = array_type;
2753
2754 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2755 {
2756 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2757 ++ndimen;
2758 }
2759 return ndimen;
2760 }
This page took 0.135713 seconds and 4 git commands to generate.