2beea10dbb2324f3a266064a2f1f7a7b82b7a667
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "regcache.h"
38 #include "user-regs.h"
39 #include "valprint.h"
40 #include "gdb_obstack.h"
41 #include "objfiles.h"
42 #include <ctype.h>
43
44 /* This is defined in valops.c */
45 extern int overload_resolution;
46
47 /* Prototypes for local functions. */
48
49 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
50 enum noside);
51
52 static struct value *evaluate_subexp_for_address (struct expression *,
53 int *, enum noside);
54
55 static struct value *evaluate_struct_tuple (struct value *,
56 struct expression *, int *,
57 enum noside, int);
58
59 static LONGEST init_array_element (struct value *, struct value *,
60 struct expression *, int *, enum noside,
61 LONGEST, LONGEST);
62
63 struct value *
64 evaluate_subexp (struct type *expect_type, struct expression *exp,
65 int *pos, enum noside noside)
66 {
67 struct cleanup *cleanups;
68 struct value *retval;
69 int cleanup_temps = 0;
70
71 if (*pos == 0 && target_has_execution
72 && exp->language_defn->la_language == language_cplus
73 && !thread_stack_temporaries_enabled_p (inferior_ptid))
74 {
75 cleanups = enable_thread_stack_temporaries (inferior_ptid);
76 cleanup_temps = 1;
77 }
78
79 retval = (*exp->language_defn->la_exp_desc->evaluate_exp)
80 (expect_type, exp, pos, noside);
81
82 if (cleanup_temps)
83 {
84 if (value_in_thread_stack_temporaries (retval, inferior_ptid))
85 retval = value_non_lval (retval);
86 do_cleanups (cleanups);
87 }
88
89 return retval;
90 }
91 \f
92 /* Parse the string EXP as a C expression, evaluate it,
93 and return the result as a number. */
94
95 CORE_ADDR
96 parse_and_eval_address (const char *exp)
97 {
98 struct expression *expr = parse_expression (exp);
99 CORE_ADDR addr;
100 struct cleanup *old_chain =
101 make_cleanup (free_current_contents, &expr);
102
103 addr = value_as_address (evaluate_expression (expr));
104 do_cleanups (old_chain);
105 return addr;
106 }
107
108 /* Like parse_and_eval_address, but treats the value of the expression
109 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
110 LONGEST
111 parse_and_eval_long (const char *exp)
112 {
113 struct expression *expr = parse_expression (exp);
114 LONGEST retval;
115 struct cleanup *old_chain =
116 make_cleanup (free_current_contents, &expr);
117
118 retval = value_as_long (evaluate_expression (expr));
119 do_cleanups (old_chain);
120 return (retval);
121 }
122
123 struct value *
124 parse_and_eval (const char *exp)
125 {
126 struct expression *expr = parse_expression (exp);
127 struct value *val;
128 struct cleanup *old_chain =
129 make_cleanup (free_current_contents, &expr);
130
131 val = evaluate_expression (expr);
132 do_cleanups (old_chain);
133 return val;
134 }
135
136 /* Parse up to a comma (or to a closeparen)
137 in the string EXPP as an expression, evaluate it, and return the value.
138 EXPP is advanced to point to the comma. */
139
140 struct value *
141 parse_to_comma_and_eval (const char **expp)
142 {
143 struct expression *expr = parse_exp_1 (expp, 0, (struct block *) 0, 1);
144 struct value *val;
145 struct cleanup *old_chain =
146 make_cleanup (free_current_contents, &expr);
147
148 val = evaluate_expression (expr);
149 do_cleanups (old_chain);
150 return val;
151 }
152 \f
153 /* Evaluate an expression in internal prefix form
154 such as is constructed by parse.y.
155
156 See expression.h for info on the format of an expression. */
157
158 struct value *
159 evaluate_expression (struct expression *exp)
160 {
161 int pc = 0;
162
163 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
164 }
165
166 /* Evaluate an expression, avoiding all memory references
167 and getting a value whose type alone is correct. */
168
169 struct value *
170 evaluate_type (struct expression *exp)
171 {
172 int pc = 0;
173
174 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
175 }
176
177 /* Evaluate a subexpression, avoiding all memory references and
178 getting a value whose type alone is correct. */
179
180 struct value *
181 evaluate_subexpression_type (struct expression *exp, int subexp)
182 {
183 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
184 }
185
186 /* Find the current value of a watchpoint on EXP. Return the value in
187 *VALP and *RESULTP and the chain of intermediate and final values
188 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
189 not need them.
190
191 If PRESERVE_ERRORS is true, then exceptions are passed through.
192 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
193 occurs while evaluating the expression, *RESULTP will be set to
194 NULL. *RESULTP may be a lazy value, if the result could not be
195 read from memory. It is used to determine whether a value is
196 user-specified (we should watch the whole value) or intermediate
197 (we should watch only the bit used to locate the final value).
198
199 If the final value, or any intermediate value, could not be read
200 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
201 set to any referenced values. *VALP will never be a lazy value.
202 This is the value which we store in struct breakpoint.
203
204 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
205 value chain. The caller must free the values individually. If
206 VAL_CHAIN is NULL, all generated values will be left on the value
207 chain. */
208
209 void
210 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
211 struct value **resultp, struct value **val_chain,
212 int preserve_errors)
213 {
214 struct value *mark, *new_mark, *result;
215
216 *valp = NULL;
217 if (resultp)
218 *resultp = NULL;
219 if (val_chain)
220 *val_chain = NULL;
221
222 /* Evaluate the expression. */
223 mark = value_mark ();
224 result = NULL;
225
226 TRY
227 {
228 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
229 }
230 CATCH (ex, RETURN_MASK_ALL)
231 {
232 /* Ignore memory errors if we want watchpoints pointing at
233 inaccessible memory to still be created; otherwise, throw the
234 error to some higher catcher. */
235 switch (ex.error)
236 {
237 case MEMORY_ERROR:
238 if (!preserve_errors)
239 break;
240 default:
241 throw_exception (ex);
242 break;
243 }
244 }
245 END_CATCH
246
247 new_mark = value_mark ();
248 if (mark == new_mark)
249 return;
250 if (resultp)
251 *resultp = result;
252
253 /* Make sure it's not lazy, so that after the target stops again we
254 have a non-lazy previous value to compare with. */
255 if (result != NULL)
256 {
257 if (!value_lazy (result))
258 *valp = result;
259 else
260 {
261
262 TRY
263 {
264 value_fetch_lazy (result);
265 *valp = result;
266 }
267 CATCH (except, RETURN_MASK_ERROR)
268 {
269 }
270 END_CATCH
271 }
272 }
273
274 if (val_chain)
275 {
276 /* Return the chain of intermediate values. We use this to
277 decide which addresses to watch. */
278 *val_chain = new_mark;
279 value_release_to_mark (mark);
280 }
281 }
282
283 /* Extract a field operation from an expression. If the subexpression
284 of EXP starting at *SUBEXP is not a structure dereference
285 operation, return NULL. Otherwise, return the name of the
286 dereferenced field, and advance *SUBEXP to point to the
287 subexpression of the left-hand-side of the dereference. This is
288 used when completing field names. */
289
290 char *
291 extract_field_op (struct expression *exp, int *subexp)
292 {
293 int tem;
294 char *result;
295
296 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
297 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
298 return NULL;
299 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
300 result = &exp->elts[*subexp + 2].string;
301 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
302 return result;
303 }
304
305 /* This function evaluates brace-initializers (in C/C++) for
306 structure types. */
307
308 static struct value *
309 evaluate_struct_tuple (struct value *struct_val,
310 struct expression *exp,
311 int *pos, enum noside noside, int nargs)
312 {
313 struct type *struct_type = check_typedef (value_type (struct_val));
314 struct type *field_type;
315 int fieldno = -1;
316
317 while (--nargs >= 0)
318 {
319 struct value *val = NULL;
320 int bitpos, bitsize;
321 bfd_byte *addr;
322
323 fieldno++;
324 /* Skip static fields. */
325 while (fieldno < TYPE_NFIELDS (struct_type)
326 && field_is_static (&TYPE_FIELD (struct_type,
327 fieldno)))
328 fieldno++;
329 if (fieldno >= TYPE_NFIELDS (struct_type))
330 error (_("too many initializers"));
331 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
332 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
333 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
334 error (_("don't know which variant you want to set"));
335
336 /* Here, struct_type is the type of the inner struct,
337 while substruct_type is the type of the inner struct.
338 These are the same for normal structures, but a variant struct
339 contains anonymous union fields that contain substruct fields.
340 The value fieldno is the index of the top-level (normal or
341 anonymous union) field in struct_field, while the value
342 subfieldno is the index of the actual real (named inner) field
343 in substruct_type. */
344
345 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
346 if (val == 0)
347 val = evaluate_subexp (field_type, exp, pos, noside);
348
349 /* Now actually set the field in struct_val. */
350
351 /* Assign val to field fieldno. */
352 if (value_type (val) != field_type)
353 val = value_cast (field_type, val);
354
355 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
356 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
357 addr = value_contents_writeable (struct_val) + bitpos / 8;
358 if (bitsize)
359 modify_field (struct_type, addr,
360 value_as_long (val), bitpos % 8, bitsize);
361 else
362 memcpy (addr, value_contents (val),
363 TYPE_LENGTH (value_type (val)));
364
365 }
366 return struct_val;
367 }
368
369 /* Recursive helper function for setting elements of array tuples.
370 The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND); the
371 element value is ELEMENT; EXP, POS and NOSIDE are as usual.
372 Evaluates index expresions and sets the specified element(s) of
373 ARRAY to ELEMENT. Returns last index value. */
374
375 static LONGEST
376 init_array_element (struct value *array, struct value *element,
377 struct expression *exp, int *pos,
378 enum noside noside, LONGEST low_bound, LONGEST high_bound)
379 {
380 LONGEST index;
381 int element_size = TYPE_LENGTH (value_type (element));
382
383 if (exp->elts[*pos].opcode == BINOP_COMMA)
384 {
385 (*pos)++;
386 init_array_element (array, element, exp, pos, noside,
387 low_bound, high_bound);
388 return init_array_element (array, element,
389 exp, pos, noside, low_bound, high_bound);
390 }
391 else
392 {
393 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
394 if (index < low_bound || index > high_bound)
395 error (_("tuple index out of range"));
396 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
397 value_contents (element), element_size);
398 }
399 return index;
400 }
401
402 static struct value *
403 value_f90_subarray (struct value *array,
404 struct expression *exp, int *pos, enum noside noside)
405 {
406 int pc = (*pos) + 1;
407 LONGEST low_bound, high_bound;
408 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
409 enum f90_range_type range_type
410 = (enum f90_range_type) longest_to_int (exp->elts[pc].longconst);
411
412 *pos += 3;
413
414 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
415 low_bound = TYPE_LOW_BOUND (range);
416 else
417 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
418
419 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
420 high_bound = TYPE_HIGH_BOUND (range);
421 else
422 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
423
424 return value_slice (array, low_bound, high_bound - low_bound + 1);
425 }
426
427
428 /* Promote value ARG1 as appropriate before performing a unary operation
429 on this argument.
430 If the result is not appropriate for any particular language then it
431 needs to patch this function. */
432
433 void
434 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
435 struct value **arg1)
436 {
437 struct type *type1;
438
439 *arg1 = coerce_ref (*arg1);
440 type1 = check_typedef (value_type (*arg1));
441
442 if (is_integral_type (type1))
443 {
444 switch (language->la_language)
445 {
446 default:
447 /* Perform integral promotion for ANSI C/C++.
448 If not appropropriate for any particular language
449 it needs to modify this function. */
450 {
451 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
452
453 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
454 *arg1 = value_cast (builtin_int, *arg1);
455 }
456 break;
457 }
458 }
459 }
460
461 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
462 operation on those two operands.
463 If the result is not appropriate for any particular language then it
464 needs to patch this function. */
465
466 void
467 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
468 struct value **arg1, struct value **arg2)
469 {
470 struct type *promoted_type = NULL;
471 struct type *type1;
472 struct type *type2;
473
474 *arg1 = coerce_ref (*arg1);
475 *arg2 = coerce_ref (*arg2);
476
477 type1 = check_typedef (value_type (*arg1));
478 type2 = check_typedef (value_type (*arg2));
479
480 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
481 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
482 && !is_integral_type (type1))
483 || (TYPE_CODE (type2) != TYPE_CODE_FLT
484 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
485 && !is_integral_type (type2)))
486 return;
487
488 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
489 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
490 {
491 /* No promotion required. */
492 }
493 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
494 || TYPE_CODE (type2) == TYPE_CODE_FLT)
495 {
496 switch (language->la_language)
497 {
498 case language_c:
499 case language_cplus:
500 case language_asm:
501 case language_objc:
502 case language_opencl:
503 /* No promotion required. */
504 break;
505
506 default:
507 /* For other languages the result type is unchanged from gdb
508 version 6.7 for backward compatibility.
509 If either arg was long double, make sure that value is also long
510 double. Otherwise use double. */
511 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
512 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
513 promoted_type = builtin_type (gdbarch)->builtin_long_double;
514 else
515 promoted_type = builtin_type (gdbarch)->builtin_double;
516 break;
517 }
518 }
519 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
520 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
521 {
522 /* No promotion required. */
523 }
524 else
525 /* Integral operations here. */
526 /* FIXME: Also mixed integral/booleans, with result an integer. */
527 {
528 const struct builtin_type *builtin = builtin_type (gdbarch);
529 unsigned int promoted_len1 = TYPE_LENGTH (type1);
530 unsigned int promoted_len2 = TYPE_LENGTH (type2);
531 int is_unsigned1 = TYPE_UNSIGNED (type1);
532 int is_unsigned2 = TYPE_UNSIGNED (type2);
533 unsigned int result_len;
534 int unsigned_operation;
535
536 /* Determine type length and signedness after promotion for
537 both operands. */
538 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
539 {
540 is_unsigned1 = 0;
541 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
542 }
543 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
544 {
545 is_unsigned2 = 0;
546 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
547 }
548
549 if (promoted_len1 > promoted_len2)
550 {
551 unsigned_operation = is_unsigned1;
552 result_len = promoted_len1;
553 }
554 else if (promoted_len2 > promoted_len1)
555 {
556 unsigned_operation = is_unsigned2;
557 result_len = promoted_len2;
558 }
559 else
560 {
561 unsigned_operation = is_unsigned1 || is_unsigned2;
562 result_len = promoted_len1;
563 }
564
565 switch (language->la_language)
566 {
567 case language_c:
568 case language_cplus:
569 case language_asm:
570 case language_objc:
571 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
572 {
573 promoted_type = (unsigned_operation
574 ? builtin->builtin_unsigned_int
575 : builtin->builtin_int);
576 }
577 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
578 {
579 promoted_type = (unsigned_operation
580 ? builtin->builtin_unsigned_long
581 : builtin->builtin_long);
582 }
583 else
584 {
585 promoted_type = (unsigned_operation
586 ? builtin->builtin_unsigned_long_long
587 : builtin->builtin_long_long);
588 }
589 break;
590 case language_opencl:
591 if (result_len <= TYPE_LENGTH (lookup_signed_typename
592 (language, gdbarch, "int")))
593 {
594 promoted_type =
595 (unsigned_operation
596 ? lookup_unsigned_typename (language, gdbarch, "int")
597 : lookup_signed_typename (language, gdbarch, "int"));
598 }
599 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
600 (language, gdbarch, "long")))
601 {
602 promoted_type =
603 (unsigned_operation
604 ? lookup_unsigned_typename (language, gdbarch, "long")
605 : lookup_signed_typename (language, gdbarch,"long"));
606 }
607 break;
608 default:
609 /* For other languages the result type is unchanged from gdb
610 version 6.7 for backward compatibility.
611 If either arg was long long, make sure that value is also long
612 long. Otherwise use long. */
613 if (unsigned_operation)
614 {
615 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
616 promoted_type = builtin->builtin_unsigned_long_long;
617 else
618 promoted_type = builtin->builtin_unsigned_long;
619 }
620 else
621 {
622 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
623 promoted_type = builtin->builtin_long_long;
624 else
625 promoted_type = builtin->builtin_long;
626 }
627 break;
628 }
629 }
630
631 if (promoted_type)
632 {
633 /* Promote both operands to common type. */
634 *arg1 = value_cast (promoted_type, *arg1);
635 *arg2 = value_cast (promoted_type, *arg2);
636 }
637 }
638
639 static int
640 ptrmath_type_p (const struct language_defn *lang, struct type *type)
641 {
642 type = check_typedef (type);
643 if (TYPE_CODE (type) == TYPE_CODE_REF)
644 type = TYPE_TARGET_TYPE (type);
645
646 switch (TYPE_CODE (type))
647 {
648 case TYPE_CODE_PTR:
649 case TYPE_CODE_FUNC:
650 return 1;
651
652 case TYPE_CODE_ARRAY:
653 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
654
655 default:
656 return 0;
657 }
658 }
659
660 /* Constructs a fake method with the given parameter types.
661 This function is used by the parser to construct an "expected"
662 type for method overload resolution. */
663
664 static struct type *
665 make_params (int num_types, struct type **param_types)
666 {
667 struct type *type = XCNEW (struct type);
668 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
669 TYPE_LENGTH (type) = 1;
670 TYPE_CODE (type) = TYPE_CODE_METHOD;
671 TYPE_CHAIN (type) = type;
672 if (num_types > 0)
673 {
674 if (param_types[num_types - 1] == NULL)
675 {
676 --num_types;
677 TYPE_VARARGS (type) = 1;
678 }
679 else if (TYPE_CODE (check_typedef (param_types[num_types - 1]))
680 == TYPE_CODE_VOID)
681 {
682 --num_types;
683 /* Caller should have ensured this. */
684 gdb_assert (num_types == 0);
685 TYPE_PROTOTYPED (type) = 1;
686 }
687 }
688
689 TYPE_NFIELDS (type) = num_types;
690 TYPE_FIELDS (type) = (struct field *)
691 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
692
693 while (num_types-- > 0)
694 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
695
696 return type;
697 }
698
699 struct value *
700 evaluate_subexp_standard (struct type *expect_type,
701 struct expression *exp, int *pos,
702 enum noside noside)
703 {
704 enum exp_opcode op;
705 int tem, tem2, tem3;
706 int pc, pc2 = 0, oldpos;
707 struct value *arg1 = NULL;
708 struct value *arg2 = NULL;
709 struct value *arg3;
710 struct type *type;
711 int nargs;
712 struct value **argvec;
713 int code;
714 int ix;
715 long mem_offset;
716 struct type **arg_types;
717 int save_pos1;
718 struct symbol *function = NULL;
719 char *function_name = NULL;
720
721 pc = (*pos)++;
722 op = exp->elts[pc].opcode;
723
724 switch (op)
725 {
726 case OP_SCOPE:
727 tem = longest_to_int (exp->elts[pc + 2].longconst);
728 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
729 if (noside == EVAL_SKIP)
730 goto nosideret;
731 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
732 &exp->elts[pc + 3].string,
733 expect_type, 0, noside);
734 if (arg1 == NULL)
735 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
736 return arg1;
737
738 case OP_LONG:
739 (*pos) += 3;
740 return value_from_longest (exp->elts[pc + 1].type,
741 exp->elts[pc + 2].longconst);
742
743 case OP_DOUBLE:
744 (*pos) += 3;
745 return value_from_double (exp->elts[pc + 1].type,
746 exp->elts[pc + 2].doubleconst);
747
748 case OP_DECFLOAT:
749 (*pos) += 3;
750 return value_from_decfloat (exp->elts[pc + 1].type,
751 exp->elts[pc + 2].decfloatconst);
752
753 case OP_ADL_FUNC:
754 case OP_VAR_VALUE:
755 (*pos) += 3;
756 if (noside == EVAL_SKIP)
757 goto nosideret;
758
759 /* JYG: We used to just return value_zero of the symbol type
760 if we're asked to avoid side effects. Otherwise we return
761 value_of_variable (...). However I'm not sure if
762 value_of_variable () has any side effect.
763 We need a full value object returned here for whatis_exp ()
764 to call evaluate_type () and then pass the full value to
765 value_rtti_target_type () if we are dealing with a pointer
766 or reference to a base class and print object is on. */
767
768 {
769 struct value *ret = NULL;
770
771 TRY
772 {
773 ret = value_of_variable (exp->elts[pc + 2].symbol,
774 exp->elts[pc + 1].block);
775 }
776
777 CATCH (except, RETURN_MASK_ERROR)
778 {
779 if (noside == EVAL_AVOID_SIDE_EFFECTS)
780 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
781 not_lval);
782 else
783 throw_exception (except);
784 }
785 END_CATCH
786
787 return ret;
788 }
789
790 case OP_VAR_ENTRY_VALUE:
791 (*pos) += 2;
792 if (noside == EVAL_SKIP)
793 goto nosideret;
794
795 {
796 struct symbol *sym = exp->elts[pc + 1].symbol;
797 struct frame_info *frame;
798
799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
800 return value_zero (SYMBOL_TYPE (sym), not_lval);
801
802 if (SYMBOL_COMPUTED_OPS (sym) == NULL
803 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
804 error (_("Symbol \"%s\" does not have any specific entry value"),
805 SYMBOL_PRINT_NAME (sym));
806
807 frame = get_selected_frame (NULL);
808 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
809 }
810
811 case OP_LAST:
812 (*pos) += 2;
813 return
814 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
815
816 case OP_REGISTER:
817 {
818 const char *name = &exp->elts[pc + 2].string;
819 int regno;
820 struct value *val;
821
822 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
823 regno = user_reg_map_name_to_regnum (exp->gdbarch,
824 name, strlen (name));
825 if (regno == -1)
826 error (_("Register $%s not available."), name);
827
828 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
829 a value with the appropriate register type. Unfortunately,
830 we don't have easy access to the type of user registers.
831 So for these registers, we fetch the register value regardless
832 of the evaluation mode. */
833 if (noside == EVAL_AVOID_SIDE_EFFECTS
834 && regno < gdbarch_num_regs (exp->gdbarch)
835 + gdbarch_num_pseudo_regs (exp->gdbarch))
836 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
837 else
838 val = value_of_register (regno, get_selected_frame (NULL));
839 if (val == NULL)
840 error (_("Value of register %s not available."), name);
841 else
842 return val;
843 }
844 case OP_BOOL:
845 (*pos) += 2;
846 type = language_bool_type (exp->language_defn, exp->gdbarch);
847 return value_from_longest (type, exp->elts[pc + 1].longconst);
848
849 case OP_INTERNALVAR:
850 (*pos) += 2;
851 return value_of_internalvar (exp->gdbarch,
852 exp->elts[pc + 1].internalvar);
853
854 case OP_STRING:
855 tem = longest_to_int (exp->elts[pc + 1].longconst);
856 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
857 if (noside == EVAL_SKIP)
858 goto nosideret;
859 type = language_string_char_type (exp->language_defn, exp->gdbarch);
860 return value_string (&exp->elts[pc + 2].string, tem, type);
861
862 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
863 NSString constant. */
864 tem = longest_to_int (exp->elts[pc + 1].longconst);
865 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
866 if (noside == EVAL_SKIP)
867 {
868 goto nosideret;
869 }
870 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
871
872 case OP_ARRAY:
873 (*pos) += 3;
874 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
875 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
876 nargs = tem3 - tem2 + 1;
877 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
878
879 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
880 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
881 {
882 struct value *rec = allocate_value (expect_type);
883
884 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
885 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
886 }
887
888 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
889 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
890 {
891 struct type *range_type = TYPE_INDEX_TYPE (type);
892 struct type *element_type = TYPE_TARGET_TYPE (type);
893 struct value *array = allocate_value (expect_type);
894 int element_size = TYPE_LENGTH (check_typedef (element_type));
895 LONGEST low_bound, high_bound, index;
896
897 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
898 {
899 low_bound = 0;
900 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
901 }
902 index = low_bound;
903 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
904 for (tem = nargs; --nargs >= 0;)
905 {
906 struct value *element;
907 int index_pc = 0;
908
909 element = evaluate_subexp (element_type, exp, pos, noside);
910 if (value_type (element) != element_type)
911 element = value_cast (element_type, element);
912 if (index_pc)
913 {
914 int continue_pc = *pos;
915
916 *pos = index_pc;
917 index = init_array_element (array, element, exp, pos, noside,
918 low_bound, high_bound);
919 *pos = continue_pc;
920 }
921 else
922 {
923 if (index > high_bound)
924 /* To avoid memory corruption. */
925 error (_("Too many array elements"));
926 memcpy (value_contents_raw (array)
927 + (index - low_bound) * element_size,
928 value_contents (element),
929 element_size);
930 }
931 index++;
932 }
933 return array;
934 }
935
936 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
937 && TYPE_CODE (type) == TYPE_CODE_SET)
938 {
939 struct value *set = allocate_value (expect_type);
940 gdb_byte *valaddr = value_contents_raw (set);
941 struct type *element_type = TYPE_INDEX_TYPE (type);
942 struct type *check_type = element_type;
943 LONGEST low_bound, high_bound;
944
945 /* Get targettype of elementtype. */
946 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
947 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
948 check_type = TYPE_TARGET_TYPE (check_type);
949
950 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
951 error (_("(power)set type with unknown size"));
952 memset (valaddr, '\0', TYPE_LENGTH (type));
953 for (tem = 0; tem < nargs; tem++)
954 {
955 LONGEST range_low, range_high;
956 struct type *range_low_type, *range_high_type;
957 struct value *elem_val;
958
959 elem_val = evaluate_subexp (element_type, exp, pos, noside);
960 range_low_type = range_high_type = value_type (elem_val);
961 range_low = range_high = value_as_long (elem_val);
962
963 /* Check types of elements to avoid mixture of elements from
964 different types. Also check if type of element is "compatible"
965 with element type of powerset. */
966 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
967 range_low_type = TYPE_TARGET_TYPE (range_low_type);
968 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
969 range_high_type = TYPE_TARGET_TYPE (range_high_type);
970 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
971 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
972 && (range_low_type != range_high_type)))
973 /* different element modes. */
974 error (_("POWERSET tuple elements of different mode"));
975 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
976 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
977 && range_low_type != check_type))
978 error (_("incompatible POWERSET tuple elements"));
979 if (range_low > range_high)
980 {
981 warning (_("empty POWERSET tuple range"));
982 continue;
983 }
984 if (range_low < low_bound || range_high > high_bound)
985 error (_("POWERSET tuple element out of range"));
986 range_low -= low_bound;
987 range_high -= low_bound;
988 for (; range_low <= range_high; range_low++)
989 {
990 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
991
992 if (gdbarch_bits_big_endian (exp->gdbarch))
993 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
994 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
995 |= 1 << bit_index;
996 }
997 }
998 return set;
999 }
1000
1001 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1002 for (tem = 0; tem < nargs; tem++)
1003 {
1004 /* Ensure that array expressions are coerced into pointer
1005 objects. */
1006 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1007 }
1008 if (noside == EVAL_SKIP)
1009 goto nosideret;
1010 return value_array (tem2, tem3, argvec);
1011
1012 case TERNOP_SLICE:
1013 {
1014 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1015 int lowbound
1016 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1017 int upper
1018 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1019
1020 if (noside == EVAL_SKIP)
1021 goto nosideret;
1022 return value_slice (array, lowbound, upper - lowbound + 1);
1023 }
1024
1025 case TERNOP_COND:
1026 /* Skip third and second args to evaluate the first one. */
1027 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1028 if (value_logical_not (arg1))
1029 {
1030 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1031 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1032 }
1033 else
1034 {
1035 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1036 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1037 return arg2;
1038 }
1039
1040 case OP_OBJC_SELECTOR:
1041 { /* Objective C @selector operator. */
1042 char *sel = &exp->elts[pc + 2].string;
1043 int len = longest_to_int (exp->elts[pc + 1].longconst);
1044 struct type *selector_type;
1045
1046 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1047 if (noside == EVAL_SKIP)
1048 goto nosideret;
1049
1050 if (sel[len] != 0)
1051 sel[len] = 0; /* Make sure it's terminated. */
1052
1053 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1054 return value_from_longest (selector_type,
1055 lookup_child_selector (exp->gdbarch, sel));
1056 }
1057
1058 case OP_OBJC_MSGCALL:
1059 { /* Objective C message (method) call. */
1060
1061 CORE_ADDR responds_selector = 0;
1062 CORE_ADDR method_selector = 0;
1063
1064 CORE_ADDR selector = 0;
1065
1066 int struct_return = 0;
1067 enum noside sub_no_side = EVAL_NORMAL;
1068
1069 struct value *msg_send = NULL;
1070 struct value *msg_send_stret = NULL;
1071 int gnu_runtime = 0;
1072
1073 struct value *target = NULL;
1074 struct value *method = NULL;
1075 struct value *called_method = NULL;
1076
1077 struct type *selector_type = NULL;
1078 struct type *long_type;
1079
1080 struct value *ret = NULL;
1081 CORE_ADDR addr = 0;
1082
1083 selector = exp->elts[pc + 1].longconst;
1084 nargs = exp->elts[pc + 2].longconst;
1085 argvec = (struct value **) alloca (sizeof (struct value *)
1086 * (nargs + 5));
1087
1088 (*pos) += 3;
1089
1090 long_type = builtin_type (exp->gdbarch)->builtin_long;
1091 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1092
1093 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1094 sub_no_side = EVAL_NORMAL;
1095 else
1096 sub_no_side = noside;
1097
1098 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1099
1100 if (value_as_long (target) == 0)
1101 return value_from_longest (long_type, 0);
1102
1103 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
1104 gnu_runtime = 1;
1105
1106 /* Find the method dispatch (Apple runtime) or method lookup
1107 (GNU runtime) function for Objective-C. These will be used
1108 to lookup the symbol information for the method. If we
1109 can't find any symbol information, then we'll use these to
1110 call the method, otherwise we can call the method
1111 directly. The msg_send_stret function is used in the special
1112 case of a method that returns a structure (Apple runtime
1113 only). */
1114 if (gnu_runtime)
1115 {
1116 struct type *type = selector_type;
1117
1118 type = lookup_function_type (type);
1119 type = lookup_pointer_type (type);
1120 type = lookup_function_type (type);
1121 type = lookup_pointer_type (type);
1122
1123 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1124 msg_send_stret
1125 = find_function_in_inferior ("objc_msg_lookup", NULL);
1126
1127 msg_send = value_from_pointer (type, value_as_address (msg_send));
1128 msg_send_stret = value_from_pointer (type,
1129 value_as_address (msg_send_stret));
1130 }
1131 else
1132 {
1133 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1134 /* Special dispatcher for methods returning structs. */
1135 msg_send_stret
1136 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1137 }
1138
1139 /* Verify the target object responds to this method. The
1140 standard top-level 'Object' class uses a different name for
1141 the verification method than the non-standard, but more
1142 often used, 'NSObject' class. Make sure we check for both. */
1143
1144 responds_selector
1145 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1146 if (responds_selector == 0)
1147 responds_selector
1148 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1149
1150 if (responds_selector == 0)
1151 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1152
1153 method_selector
1154 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1155 if (method_selector == 0)
1156 method_selector
1157 = lookup_child_selector (exp->gdbarch, "methodFor:");
1158
1159 if (method_selector == 0)
1160 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1161
1162 /* Call the verification method, to make sure that the target
1163 class implements the desired method. */
1164
1165 argvec[0] = msg_send;
1166 argvec[1] = target;
1167 argvec[2] = value_from_longest (long_type, responds_selector);
1168 argvec[3] = value_from_longest (long_type, selector);
1169 argvec[4] = 0;
1170
1171 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1172 if (gnu_runtime)
1173 {
1174 /* Function objc_msg_lookup returns a pointer. */
1175 argvec[0] = ret;
1176 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1177 }
1178 if (value_as_long (ret) == 0)
1179 error (_("Target does not respond to this message selector."));
1180
1181 /* Call "methodForSelector:" method, to get the address of a
1182 function method that implements this selector for this
1183 class. If we can find a symbol at that address, then we
1184 know the return type, parameter types etc. (that's a good
1185 thing). */
1186
1187 argvec[0] = msg_send;
1188 argvec[1] = target;
1189 argvec[2] = value_from_longest (long_type, method_selector);
1190 argvec[3] = value_from_longest (long_type, selector);
1191 argvec[4] = 0;
1192
1193 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1194 if (gnu_runtime)
1195 {
1196 argvec[0] = ret;
1197 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1198 }
1199
1200 /* ret should now be the selector. */
1201
1202 addr = value_as_long (ret);
1203 if (addr)
1204 {
1205 struct symbol *sym = NULL;
1206
1207 /* The address might point to a function descriptor;
1208 resolve it to the actual code address instead. */
1209 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1210 &current_target);
1211
1212 /* Is it a high_level symbol? */
1213 sym = find_pc_function (addr);
1214 if (sym != NULL)
1215 method = value_of_variable (sym, 0);
1216 }
1217
1218 /* If we found a method with symbol information, check to see
1219 if it returns a struct. Otherwise assume it doesn't. */
1220
1221 if (method)
1222 {
1223 CORE_ADDR funaddr;
1224 struct type *val_type;
1225
1226 funaddr = find_function_addr (method, &val_type);
1227
1228 block_for_pc (funaddr);
1229
1230 val_type = check_typedef (val_type);
1231
1232 if ((val_type == NULL)
1233 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1234 {
1235 if (expect_type != NULL)
1236 val_type = expect_type;
1237 }
1238
1239 struct_return = using_struct_return (exp->gdbarch, method,
1240 val_type);
1241 }
1242 else if (expect_type != NULL)
1243 {
1244 struct_return = using_struct_return (exp->gdbarch, NULL,
1245 check_typedef (expect_type));
1246 }
1247
1248 /* Found a function symbol. Now we will substitute its
1249 value in place of the message dispatcher (obj_msgSend),
1250 so that we call the method directly instead of thru
1251 the dispatcher. The main reason for doing this is that
1252 we can now evaluate the return value and parameter values
1253 according to their known data types, in case we need to
1254 do things like promotion, dereferencing, special handling
1255 of structs and doubles, etc.
1256
1257 We want to use the type signature of 'method', but still
1258 jump to objc_msgSend() or objc_msgSend_stret() to better
1259 mimic the behavior of the runtime. */
1260
1261 if (method)
1262 {
1263 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1264 error (_("method address has symbol information "
1265 "with non-function type; skipping"));
1266
1267 /* Create a function pointer of the appropriate type, and
1268 replace its value with the value of msg_send or
1269 msg_send_stret. We must use a pointer here, as
1270 msg_send and msg_send_stret are of pointer type, and
1271 the representation may be different on systems that use
1272 function descriptors. */
1273 if (struct_return)
1274 called_method
1275 = value_from_pointer (lookup_pointer_type (value_type (method)),
1276 value_as_address (msg_send_stret));
1277 else
1278 called_method
1279 = value_from_pointer (lookup_pointer_type (value_type (method)),
1280 value_as_address (msg_send));
1281 }
1282 else
1283 {
1284 if (struct_return)
1285 called_method = msg_send_stret;
1286 else
1287 called_method = msg_send;
1288 }
1289
1290 if (noside == EVAL_SKIP)
1291 goto nosideret;
1292
1293 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1294 {
1295 /* If the return type doesn't look like a function type,
1296 call an error. This can happen if somebody tries to
1297 turn a variable into a function call. This is here
1298 because people often want to call, eg, strcmp, which
1299 gdb doesn't know is a function. If gdb isn't asked for
1300 it's opinion (ie. through "whatis"), it won't offer
1301 it. */
1302
1303 struct type *type = value_type (called_method);
1304
1305 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1306 type = TYPE_TARGET_TYPE (type);
1307 type = TYPE_TARGET_TYPE (type);
1308
1309 if (type)
1310 {
1311 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1312 return allocate_value (expect_type);
1313 else
1314 return allocate_value (type);
1315 }
1316 else
1317 error (_("Expression of type other than "
1318 "\"method returning ...\" used as a method"));
1319 }
1320
1321 /* Now depending on whether we found a symbol for the method,
1322 we will either call the runtime dispatcher or the method
1323 directly. */
1324
1325 argvec[0] = called_method;
1326 argvec[1] = target;
1327 argvec[2] = value_from_longest (long_type, selector);
1328 /* User-supplied arguments. */
1329 for (tem = 0; tem < nargs; tem++)
1330 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1331 argvec[tem + 3] = 0;
1332
1333 if (gnu_runtime && (method != NULL))
1334 {
1335 /* Function objc_msg_lookup returns a pointer. */
1336 deprecated_set_value_type (argvec[0],
1337 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1338 argvec[0]
1339 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1340 }
1341
1342 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1343 return ret;
1344 }
1345 break;
1346
1347 case OP_FUNCALL:
1348 (*pos) += 2;
1349 op = exp->elts[*pos].opcode;
1350 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1351 /* Allocate arg vector, including space for the function to be
1352 called in argvec[0], a potential `this', and a terminating NULL. */
1353 argvec = (struct value **)
1354 alloca (sizeof (struct value *) * (nargs + 3));
1355 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1356 {
1357 /* First, evaluate the structure into arg2. */
1358 pc2 = (*pos)++;
1359
1360 if (op == STRUCTOP_MEMBER)
1361 {
1362 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1363 }
1364 else
1365 {
1366 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1367 }
1368
1369 /* If the function is a virtual function, then the
1370 aggregate value (providing the structure) plays
1371 its part by providing the vtable. Otherwise,
1372 it is just along for the ride: call the function
1373 directly. */
1374
1375 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1376
1377 type = check_typedef (value_type (arg1));
1378 if (noside == EVAL_SKIP)
1379 tem = 1; /* Set it to the right arg index so that all arguments
1380 can also be skipped. */
1381 else if (TYPE_CODE (type) == TYPE_CODE_METHODPTR)
1382 {
1383 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1384 arg1 = value_zero (TYPE_TARGET_TYPE (type), not_lval);
1385 else
1386 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1387
1388 /* Now, say which argument to start evaluating from. */
1389 nargs++;
1390 tem = 2;
1391 argvec[1] = arg2;
1392 }
1393 else if (TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
1394 {
1395 struct type *type_ptr
1396 = lookup_pointer_type (TYPE_SELF_TYPE (type));
1397 struct type *target_type_ptr
1398 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1399
1400 /* Now, convert these values to an address. */
1401 arg2 = value_cast (type_ptr, arg2);
1402
1403 mem_offset = value_as_long (arg1);
1404
1405 arg1 = value_from_pointer (target_type_ptr,
1406 value_as_long (arg2) + mem_offset);
1407 arg1 = value_ind (arg1);
1408 tem = 1;
1409 }
1410 else
1411 error (_("Non-pointer-to-member value used in pointer-to-member "
1412 "construct"));
1413 }
1414 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1415 {
1416 /* Hair for method invocations. */
1417 int tem2;
1418
1419 nargs++;
1420 /* First, evaluate the structure into arg2. */
1421 pc2 = (*pos)++;
1422 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1423 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1424
1425 if (op == STRUCTOP_STRUCT)
1426 {
1427 /* If v is a variable in a register, and the user types
1428 v.method (), this will produce an error, because v has
1429 no address.
1430
1431 A possible way around this would be to allocate a
1432 copy of the variable on the stack, copy in the
1433 contents, call the function, and copy out the
1434 contents. I.e. convert this from call by reference
1435 to call by copy-return (or whatever it's called).
1436 However, this does not work because it is not the
1437 same: the method being called could stash a copy of
1438 the address, and then future uses through that address
1439 (after the method returns) would be expected to
1440 use the variable itself, not some copy of it. */
1441 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1442 }
1443 else
1444 {
1445 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1446
1447 /* Check to see if the operator '->' has been
1448 overloaded. If the operator has been overloaded
1449 replace arg2 with the value returned by the custom
1450 operator and continue evaluation. */
1451 while (unop_user_defined_p (op, arg2))
1452 {
1453 struct value *value = NULL;
1454 TRY
1455 {
1456 value = value_x_unop (arg2, op, noside);
1457 }
1458
1459 CATCH (except, RETURN_MASK_ERROR)
1460 {
1461 if (except.error == NOT_FOUND_ERROR)
1462 break;
1463 else
1464 throw_exception (except);
1465 }
1466 END_CATCH
1467
1468 arg2 = value;
1469 }
1470 }
1471 /* Now, say which argument to start evaluating from. */
1472 tem = 2;
1473 }
1474 else if (op == OP_SCOPE
1475 && overload_resolution
1476 && (exp->language_defn->la_language == language_cplus))
1477 {
1478 /* Unpack it locally so we can properly handle overload
1479 resolution. */
1480 char *name;
1481 int local_tem;
1482
1483 pc2 = (*pos)++;
1484 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1485 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1486 type = exp->elts[pc2 + 1].type;
1487 name = &exp->elts[pc2 + 3].string;
1488
1489 function = NULL;
1490 function_name = NULL;
1491 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1492 {
1493 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1494 name,
1495 get_selected_block (0),
1496 VAR_DOMAIN).symbol;
1497 if (function == NULL)
1498 error (_("No symbol \"%s\" in namespace \"%s\"."),
1499 name, TYPE_TAG_NAME (type));
1500
1501 tem = 1;
1502 /* arg2 is left as NULL on purpose. */
1503 }
1504 else
1505 {
1506 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1507 || TYPE_CODE (type) == TYPE_CODE_UNION);
1508 function_name = name;
1509
1510 /* We need a properly typed value for method lookup. For
1511 static methods arg2 is otherwise unused. */
1512 arg2 = value_zero (type, lval_memory);
1513 ++nargs;
1514 tem = 2;
1515 }
1516 }
1517 else if (op == OP_ADL_FUNC)
1518 {
1519 /* Save the function position and move pos so that the arguments
1520 can be evaluated. */
1521 int func_name_len;
1522
1523 save_pos1 = *pos;
1524 tem = 1;
1525
1526 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1527 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1528 }
1529 else
1530 {
1531 /* Non-method function call. */
1532 save_pos1 = *pos;
1533 tem = 1;
1534
1535 /* If this is a C++ function wait until overload resolution. */
1536 if (op == OP_VAR_VALUE
1537 && overload_resolution
1538 && (exp->language_defn->la_language == language_cplus))
1539 {
1540 (*pos) += 4; /* Skip the evaluation of the symbol. */
1541 argvec[0] = NULL;
1542 }
1543 else
1544 {
1545 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1546 type = value_type (argvec[0]);
1547 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1548 type = TYPE_TARGET_TYPE (type);
1549 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1550 {
1551 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1552 {
1553 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1554 tem - 1),
1555 exp, pos, noside);
1556 }
1557 }
1558 }
1559 }
1560
1561 /* Evaluate arguments (if not already done, e.g., namespace::func()
1562 and overload-resolution is off). */
1563 for (; tem <= nargs; tem++)
1564 {
1565 /* Ensure that array expressions are coerced into pointer
1566 objects. */
1567 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1568 }
1569
1570 /* Signal end of arglist. */
1571 argvec[tem] = 0;
1572
1573 if (noside == EVAL_SKIP)
1574 goto nosideret;
1575
1576 if (op == OP_ADL_FUNC)
1577 {
1578 struct symbol *symp;
1579 char *func_name;
1580 int name_len;
1581 int string_pc = save_pos1 + 3;
1582
1583 /* Extract the function name. */
1584 name_len = longest_to_int (exp->elts[string_pc].longconst);
1585 func_name = (char *) alloca (name_len + 1);
1586 strcpy (func_name, &exp->elts[string_pc + 1].string);
1587
1588 find_overload_match (&argvec[1], nargs, func_name,
1589 NON_METHOD, /* not method */
1590 NULL, NULL, /* pass NULL symbol since
1591 symbol is unknown */
1592 NULL, &symp, NULL, 0, noside);
1593
1594 /* Now fix the expression being evaluated. */
1595 exp->elts[save_pos1 + 2].symbol = symp;
1596 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1597 }
1598
1599 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1600 || (op == OP_SCOPE && function_name != NULL))
1601 {
1602 int static_memfuncp;
1603 char *tstr;
1604
1605 /* Method invocation: stuff "this" as first parameter.
1606 If the method turns out to be static we undo this below. */
1607 argvec[1] = arg2;
1608
1609 if (op != OP_SCOPE)
1610 {
1611 /* Name of method from expression. */
1612 tstr = &exp->elts[pc2 + 2].string;
1613 }
1614 else
1615 tstr = function_name;
1616
1617 if (overload_resolution && (exp->language_defn->la_language
1618 == language_cplus))
1619 {
1620 /* Language is C++, do some overload resolution before
1621 evaluation. */
1622 struct value *valp = NULL;
1623
1624 (void) find_overload_match (&argvec[1], nargs, tstr,
1625 METHOD, /* method */
1626 &arg2, /* the object */
1627 NULL, &valp, NULL,
1628 &static_memfuncp, 0, noside);
1629
1630 if (op == OP_SCOPE && !static_memfuncp)
1631 {
1632 /* For the time being, we don't handle this. */
1633 error (_("Call to overloaded function %s requires "
1634 "`this' pointer"),
1635 function_name);
1636 }
1637 argvec[1] = arg2; /* the ``this'' pointer */
1638 argvec[0] = valp; /* Use the method found after overload
1639 resolution. */
1640 }
1641 else
1642 /* Non-C++ case -- or no overload resolution. */
1643 {
1644 struct value *temp = arg2;
1645
1646 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1647 &static_memfuncp,
1648 op == STRUCTOP_STRUCT
1649 ? "structure" : "structure pointer");
1650 /* value_struct_elt updates temp with the correct value
1651 of the ``this'' pointer if necessary, so modify argvec[1] to
1652 reflect any ``this'' changes. */
1653 arg2
1654 = value_from_longest (lookup_pointer_type(value_type (temp)),
1655 value_address (temp)
1656 + value_embedded_offset (temp));
1657 argvec[1] = arg2; /* the ``this'' pointer */
1658 }
1659
1660 /* Take out `this' if needed. */
1661 if (static_memfuncp)
1662 {
1663 argvec[1] = argvec[0];
1664 nargs--;
1665 argvec++;
1666 }
1667 }
1668 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1669 {
1670 /* Pointer to member. argvec[1] is already set up. */
1671 argvec[0] = arg1;
1672 }
1673 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1674 {
1675 /* Non-member function being called. */
1676 /* fn: This can only be done for C++ functions. A C-style function
1677 in a C++ program, for instance, does not have the fields that
1678 are expected here. */
1679
1680 if (overload_resolution && (exp->language_defn->la_language
1681 == language_cplus))
1682 {
1683 /* Language is C++, do some overload resolution before
1684 evaluation. */
1685 struct symbol *symp;
1686 int no_adl = 0;
1687
1688 /* If a scope has been specified disable ADL. */
1689 if (op == OP_SCOPE)
1690 no_adl = 1;
1691
1692 if (op == OP_VAR_VALUE)
1693 function = exp->elts[save_pos1+2].symbol;
1694
1695 (void) find_overload_match (&argvec[1], nargs,
1696 NULL, /* no need for name */
1697 NON_METHOD, /* not method */
1698 NULL, function, /* the function */
1699 NULL, &symp, NULL, no_adl, noside);
1700
1701 if (op == OP_VAR_VALUE)
1702 {
1703 /* Now fix the expression being evaluated. */
1704 exp->elts[save_pos1+2].symbol = symp;
1705 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1706 noside);
1707 }
1708 else
1709 argvec[0] = value_of_variable (symp, get_selected_block (0));
1710 }
1711 else
1712 {
1713 /* Not C++, or no overload resolution allowed. */
1714 /* Nothing to be done; argvec already correctly set up. */
1715 }
1716 }
1717 else
1718 {
1719 /* It is probably a C-style function. */
1720 /* Nothing to be done; argvec already correctly set up. */
1721 }
1722
1723 do_call_it:
1724
1725 if (argvec[0] == NULL)
1726 error (_("Cannot evaluate function -- may be inlined"));
1727 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1728 {
1729 /* If the return type doesn't look like a function type, call an
1730 error. This can happen if somebody tries to turn a variable into
1731 a function call. This is here because people often want to
1732 call, eg, strcmp, which gdb doesn't know is a function. If
1733 gdb isn't asked for it's opinion (ie. through "whatis"),
1734 it won't offer it. */
1735
1736 struct type *ftype = value_type (argvec[0]);
1737
1738 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1739 {
1740 /* We don't know anything about what the internal
1741 function might return, but we have to return
1742 something. */
1743 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1744 not_lval);
1745 }
1746 else if (TYPE_CODE (ftype) == TYPE_CODE_XMETHOD)
1747 {
1748 struct type *return_type
1749 = result_type_of_xmethod (argvec[0], nargs, argvec + 1);
1750
1751 if (return_type == NULL)
1752 error (_("Xmethod is missing return type."));
1753 return value_zero (return_type, not_lval);
1754 }
1755 else if (TYPE_GNU_IFUNC (ftype))
1756 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1757 else if (TYPE_TARGET_TYPE (ftype))
1758 return allocate_value (TYPE_TARGET_TYPE (ftype));
1759 else
1760 error (_("Expression of type other than "
1761 "\"Function returning ...\" used as function"));
1762 }
1763 switch (TYPE_CODE (value_type (argvec[0])))
1764 {
1765 case TYPE_CODE_INTERNAL_FUNCTION:
1766 return call_internal_function (exp->gdbarch, exp->language_defn,
1767 argvec[0], nargs, argvec + 1);
1768 case TYPE_CODE_XMETHOD:
1769 return call_xmethod (argvec[0], nargs, argvec + 1);
1770 default:
1771 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1772 }
1773 /* pai: FIXME save value from call_function_by_hand, then adjust
1774 pc by adjust_fn_pc if +ve. */
1775
1776 case OP_F77_UNDETERMINED_ARGLIST:
1777
1778 /* Remember that in F77, functions, substring ops and
1779 array subscript operations cannot be disambiguated
1780 at parse time. We have made all array subscript operations,
1781 substring operations as well as function calls come here
1782 and we now have to discover what the heck this thing actually was.
1783 If it is a function, we process just as if we got an OP_FUNCALL. */
1784
1785 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1786 (*pos) += 2;
1787
1788 /* First determine the type code we are dealing with. */
1789 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1790 type = check_typedef (value_type (arg1));
1791 code = TYPE_CODE (type);
1792
1793 if (code == TYPE_CODE_PTR)
1794 {
1795 /* Fortran always passes variable to subroutines as pointer.
1796 So we need to look into its target type to see if it is
1797 array, string or function. If it is, we need to switch
1798 to the target value the original one points to. */
1799 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1800
1801 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1802 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1803 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1804 {
1805 arg1 = value_ind (arg1);
1806 type = check_typedef (value_type (arg1));
1807 code = TYPE_CODE (type);
1808 }
1809 }
1810
1811 switch (code)
1812 {
1813 case TYPE_CODE_ARRAY:
1814 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1815 return value_f90_subarray (arg1, exp, pos, noside);
1816 else
1817 goto multi_f77_subscript;
1818
1819 case TYPE_CODE_STRING:
1820 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1821 return value_f90_subarray (arg1, exp, pos, noside);
1822 else
1823 {
1824 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1825 return value_subscript (arg1, value_as_long (arg2));
1826 }
1827
1828 case TYPE_CODE_PTR:
1829 case TYPE_CODE_FUNC:
1830 /* It's a function call. */
1831 /* Allocate arg vector, including space for the function to be
1832 called in argvec[0] and a terminating NULL. */
1833 argvec = (struct value **)
1834 alloca (sizeof (struct value *) * (nargs + 2));
1835 argvec[0] = arg1;
1836 tem = 1;
1837 for (; tem <= nargs; tem++)
1838 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1839 argvec[tem] = 0; /* signal end of arglist */
1840 if (noside == EVAL_SKIP)
1841 goto nosideret;
1842 goto do_call_it;
1843
1844 default:
1845 error (_("Cannot perform substring on this type"));
1846 }
1847
1848 case OP_COMPLEX:
1849 /* We have a complex number, There should be 2 floating
1850 point numbers that compose it. */
1851 (*pos) += 2;
1852 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1853 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1854
1855 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1856
1857 case STRUCTOP_STRUCT:
1858 tem = longest_to_int (exp->elts[pc + 1].longconst);
1859 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1860 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1861 if (noside == EVAL_SKIP)
1862 goto nosideret;
1863 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1864 NULL, "structure");
1865 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1866 arg3 = value_zero (value_type (arg3), not_lval);
1867 return arg3;
1868
1869 case STRUCTOP_PTR:
1870 tem = longest_to_int (exp->elts[pc + 1].longconst);
1871 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1872 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1873 if (noside == EVAL_SKIP)
1874 goto nosideret;
1875
1876 /* Check to see if operator '->' has been overloaded. If so replace
1877 arg1 with the value returned by evaluating operator->(). */
1878 while (unop_user_defined_p (op, arg1))
1879 {
1880 struct value *value = NULL;
1881 TRY
1882 {
1883 value = value_x_unop (arg1, op, noside);
1884 }
1885
1886 CATCH (except, RETURN_MASK_ERROR)
1887 {
1888 if (except.error == NOT_FOUND_ERROR)
1889 break;
1890 else
1891 throw_exception (except);
1892 }
1893 END_CATCH
1894
1895 arg1 = value;
1896 }
1897
1898 /* JYG: if print object is on we need to replace the base type
1899 with rtti type in order to continue on with successful
1900 lookup of member / method only available in the rtti type. */
1901 {
1902 struct type *type = value_type (arg1);
1903 struct type *real_type;
1904 int full, top, using_enc;
1905 struct value_print_options opts;
1906
1907 get_user_print_options (&opts);
1908 if (opts.objectprint && TYPE_TARGET_TYPE(type)
1909 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT))
1910 {
1911 real_type = value_rtti_indirect_type (arg1, &full, &top,
1912 &using_enc);
1913 if (real_type)
1914 arg1 = value_cast (real_type, arg1);
1915 }
1916 }
1917
1918 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1919 NULL, "structure pointer");
1920 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1921 arg3 = value_zero (value_type (arg3), not_lval);
1922 return arg3;
1923
1924 case STRUCTOP_MEMBER:
1925 case STRUCTOP_MPTR:
1926 if (op == STRUCTOP_MEMBER)
1927 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1928 else
1929 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1930
1931 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1932
1933 if (noside == EVAL_SKIP)
1934 goto nosideret;
1935
1936 type = check_typedef (value_type (arg2));
1937 switch (TYPE_CODE (type))
1938 {
1939 case TYPE_CODE_METHODPTR:
1940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1941 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1942 else
1943 {
1944 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1945 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1946 return value_ind (arg2);
1947 }
1948
1949 case TYPE_CODE_MEMBERPTR:
1950 /* Now, convert these values to an address. */
1951 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1952 arg1, 1);
1953
1954 mem_offset = value_as_long (arg2);
1955
1956 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1957 value_as_long (arg1) + mem_offset);
1958 return value_ind (arg3);
1959
1960 default:
1961 error (_("non-pointer-to-member value used "
1962 "in pointer-to-member construct"));
1963 }
1964
1965 case TYPE_INSTANCE:
1966 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1967 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
1968 for (ix = 0; ix < nargs; ++ix)
1969 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
1970
1971 expect_type = make_params (nargs, arg_types);
1972 *(pos) += 3 + nargs;
1973 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
1974 xfree (TYPE_FIELDS (expect_type));
1975 xfree (TYPE_MAIN_TYPE (expect_type));
1976 xfree (expect_type);
1977 return arg1;
1978
1979 case BINOP_CONCAT:
1980 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1981 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1982 if (noside == EVAL_SKIP)
1983 goto nosideret;
1984 if (binop_user_defined_p (op, arg1, arg2))
1985 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1986 else
1987 return value_concat (arg1, arg2);
1988
1989 case BINOP_ASSIGN:
1990 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1991 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1992
1993 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1994 return arg1;
1995 if (binop_user_defined_p (op, arg1, arg2))
1996 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1997 else
1998 return value_assign (arg1, arg2);
1999
2000 case BINOP_ASSIGN_MODIFY:
2001 (*pos) += 2;
2002 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2003 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2004 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2005 return arg1;
2006 op = exp->elts[pc + 1].opcode;
2007 if (binop_user_defined_p (op, arg1, arg2))
2008 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2009 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2010 value_type (arg1))
2011 && is_integral_type (value_type (arg2)))
2012 arg2 = value_ptradd (arg1, value_as_long (arg2));
2013 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2014 value_type (arg1))
2015 && is_integral_type (value_type (arg2)))
2016 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2017 else
2018 {
2019 struct value *tmp = arg1;
2020
2021 /* For shift and integer exponentiation operations,
2022 only promote the first argument. */
2023 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2024 && is_integral_type (value_type (arg2)))
2025 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2026 else
2027 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2028
2029 arg2 = value_binop (tmp, arg2, op);
2030 }
2031 return value_assign (arg1, arg2);
2032
2033 case BINOP_ADD:
2034 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2035 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2036 if (noside == EVAL_SKIP)
2037 goto nosideret;
2038 if (binop_user_defined_p (op, arg1, arg2))
2039 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2040 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2041 && is_integral_type (value_type (arg2)))
2042 return value_ptradd (arg1, value_as_long (arg2));
2043 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2044 && is_integral_type (value_type (arg1)))
2045 return value_ptradd (arg2, value_as_long (arg1));
2046 else
2047 {
2048 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2049 return value_binop (arg1, arg2, BINOP_ADD);
2050 }
2051
2052 case BINOP_SUB:
2053 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2054 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2055 if (noside == EVAL_SKIP)
2056 goto nosideret;
2057 if (binop_user_defined_p (op, arg1, arg2))
2058 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2059 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2060 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2061 {
2062 /* FIXME -- should be ptrdiff_t */
2063 type = builtin_type (exp->gdbarch)->builtin_long;
2064 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2065 }
2066 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2067 && is_integral_type (value_type (arg2)))
2068 return value_ptradd (arg1, - value_as_long (arg2));
2069 else
2070 {
2071 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2072 return value_binop (arg1, arg2, BINOP_SUB);
2073 }
2074
2075 case BINOP_EXP:
2076 case BINOP_MUL:
2077 case BINOP_DIV:
2078 case BINOP_INTDIV:
2079 case BINOP_REM:
2080 case BINOP_MOD:
2081 case BINOP_LSH:
2082 case BINOP_RSH:
2083 case BINOP_BITWISE_AND:
2084 case BINOP_BITWISE_IOR:
2085 case BINOP_BITWISE_XOR:
2086 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2087 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2088 if (noside == EVAL_SKIP)
2089 goto nosideret;
2090 if (binop_user_defined_p (op, arg1, arg2))
2091 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2092 else
2093 {
2094 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2095 fudge arg2 to avoid division-by-zero, the caller is
2096 (theoretically) only looking for the type of the result. */
2097 if (noside == EVAL_AVOID_SIDE_EFFECTS
2098 /* ??? Do we really want to test for BINOP_MOD here?
2099 The implementation of value_binop gives it a well-defined
2100 value. */
2101 && (op == BINOP_DIV
2102 || op == BINOP_INTDIV
2103 || op == BINOP_REM
2104 || op == BINOP_MOD)
2105 && value_logical_not (arg2))
2106 {
2107 struct value *v_one, *retval;
2108
2109 v_one = value_one (value_type (arg2));
2110 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2111 retval = value_binop (arg1, v_one, op);
2112 return retval;
2113 }
2114 else
2115 {
2116 /* For shift and integer exponentiation operations,
2117 only promote the first argument. */
2118 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2119 && is_integral_type (value_type (arg2)))
2120 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2121 else
2122 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2123
2124 return value_binop (arg1, arg2, op);
2125 }
2126 }
2127
2128 case BINOP_SUBSCRIPT:
2129 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2130 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2131 if (noside == EVAL_SKIP)
2132 goto nosideret;
2133 if (binop_user_defined_p (op, arg1, arg2))
2134 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2135 else
2136 {
2137 /* If the user attempts to subscript something that is not an
2138 array or pointer type (like a plain int variable for example),
2139 then report this as an error. */
2140
2141 arg1 = coerce_ref (arg1);
2142 type = check_typedef (value_type (arg1));
2143 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2144 && TYPE_CODE (type) != TYPE_CODE_PTR)
2145 {
2146 if (TYPE_NAME (type))
2147 error (_("cannot subscript something of type `%s'"),
2148 TYPE_NAME (type));
2149 else
2150 error (_("cannot subscript requested type"));
2151 }
2152
2153 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2154 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2155 else
2156 return value_subscript (arg1, value_as_long (arg2));
2157 }
2158 case MULTI_SUBSCRIPT:
2159 (*pos) += 2;
2160 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2161 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2162 while (nargs-- > 0)
2163 {
2164 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2165 /* FIXME: EVAL_SKIP handling may not be correct. */
2166 if (noside == EVAL_SKIP)
2167 {
2168 if (nargs > 0)
2169 {
2170 continue;
2171 }
2172 else
2173 {
2174 goto nosideret;
2175 }
2176 }
2177 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2178 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2179 {
2180 /* If the user attempts to subscript something that has no target
2181 type (like a plain int variable for example), then report this
2182 as an error. */
2183
2184 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2185 if (type != NULL)
2186 {
2187 arg1 = value_zero (type, VALUE_LVAL (arg1));
2188 noside = EVAL_SKIP;
2189 continue;
2190 }
2191 else
2192 {
2193 error (_("cannot subscript something of type `%s'"),
2194 TYPE_NAME (value_type (arg1)));
2195 }
2196 }
2197
2198 if (binop_user_defined_p (op, arg1, arg2))
2199 {
2200 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2201 }
2202 else
2203 {
2204 arg1 = coerce_ref (arg1);
2205 type = check_typedef (value_type (arg1));
2206
2207 switch (TYPE_CODE (type))
2208 {
2209 case TYPE_CODE_PTR:
2210 case TYPE_CODE_ARRAY:
2211 case TYPE_CODE_STRING:
2212 arg1 = value_subscript (arg1, value_as_long (arg2));
2213 break;
2214
2215 default:
2216 if (TYPE_NAME (type))
2217 error (_("cannot subscript something of type `%s'"),
2218 TYPE_NAME (type));
2219 else
2220 error (_("cannot subscript requested type"));
2221 }
2222 }
2223 }
2224 return (arg1);
2225
2226 multi_f77_subscript:
2227 {
2228 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2229 int ndimensions = 1, i;
2230 struct value *array = arg1;
2231
2232 if (nargs > MAX_FORTRAN_DIMS)
2233 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2234
2235 ndimensions = calc_f77_array_dims (type);
2236
2237 if (nargs != ndimensions)
2238 error (_("Wrong number of subscripts"));
2239
2240 gdb_assert (nargs > 0);
2241
2242 /* Now that we know we have a legal array subscript expression
2243 let us actually find out where this element exists in the array. */
2244
2245 /* Take array indices left to right. */
2246 for (i = 0; i < nargs; i++)
2247 {
2248 /* Evaluate each subscript; it must be a legal integer in F77. */
2249 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2250
2251 /* Fill in the subscript array. */
2252
2253 subscript_array[i] = value_as_long (arg2);
2254 }
2255
2256 /* Internal type of array is arranged right to left. */
2257 for (i = nargs; i > 0; i--)
2258 {
2259 struct type *array_type = check_typedef (value_type (array));
2260 LONGEST index = subscript_array[i - 1];
2261
2262 array = value_subscripted_rvalue (array, index,
2263 f77_get_lowerbound (array_type));
2264 }
2265
2266 return array;
2267 }
2268
2269 case BINOP_LOGICAL_AND:
2270 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2271 if (noside == EVAL_SKIP)
2272 {
2273 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2274 goto nosideret;
2275 }
2276
2277 oldpos = *pos;
2278 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2279 *pos = oldpos;
2280
2281 if (binop_user_defined_p (op, arg1, arg2))
2282 {
2283 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2284 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2285 }
2286 else
2287 {
2288 tem = value_logical_not (arg1);
2289 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2290 (tem ? EVAL_SKIP : noside));
2291 type = language_bool_type (exp->language_defn, exp->gdbarch);
2292 return value_from_longest (type,
2293 (LONGEST) (!tem && !value_logical_not (arg2)));
2294 }
2295
2296 case BINOP_LOGICAL_OR:
2297 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2298 if (noside == EVAL_SKIP)
2299 {
2300 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2301 goto nosideret;
2302 }
2303
2304 oldpos = *pos;
2305 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2306 *pos = oldpos;
2307
2308 if (binop_user_defined_p (op, arg1, arg2))
2309 {
2310 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2311 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2312 }
2313 else
2314 {
2315 tem = value_logical_not (arg1);
2316 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2317 (!tem ? EVAL_SKIP : noside));
2318 type = language_bool_type (exp->language_defn, exp->gdbarch);
2319 return value_from_longest (type,
2320 (LONGEST) (!tem || !value_logical_not (arg2)));
2321 }
2322
2323 case BINOP_EQUAL:
2324 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2325 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2326 if (noside == EVAL_SKIP)
2327 goto nosideret;
2328 if (binop_user_defined_p (op, arg1, arg2))
2329 {
2330 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2331 }
2332 else
2333 {
2334 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2335 tem = value_equal (arg1, arg2);
2336 type = language_bool_type (exp->language_defn, exp->gdbarch);
2337 return value_from_longest (type, (LONGEST) tem);
2338 }
2339
2340 case BINOP_NOTEQUAL:
2341 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2342 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2343 if (noside == EVAL_SKIP)
2344 goto nosideret;
2345 if (binop_user_defined_p (op, arg1, arg2))
2346 {
2347 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2348 }
2349 else
2350 {
2351 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2352 tem = value_equal (arg1, arg2);
2353 type = language_bool_type (exp->language_defn, exp->gdbarch);
2354 return value_from_longest (type, (LONGEST) ! tem);
2355 }
2356
2357 case BINOP_LESS:
2358 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2359 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2360 if (noside == EVAL_SKIP)
2361 goto nosideret;
2362 if (binop_user_defined_p (op, arg1, arg2))
2363 {
2364 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2365 }
2366 else
2367 {
2368 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2369 tem = value_less (arg1, arg2);
2370 type = language_bool_type (exp->language_defn, exp->gdbarch);
2371 return value_from_longest (type, (LONGEST) tem);
2372 }
2373
2374 case BINOP_GTR:
2375 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2376 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2377 if (noside == EVAL_SKIP)
2378 goto nosideret;
2379 if (binop_user_defined_p (op, arg1, arg2))
2380 {
2381 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2382 }
2383 else
2384 {
2385 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2386 tem = value_less (arg2, arg1);
2387 type = language_bool_type (exp->language_defn, exp->gdbarch);
2388 return value_from_longest (type, (LONGEST) tem);
2389 }
2390
2391 case BINOP_GEQ:
2392 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2393 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2394 if (noside == EVAL_SKIP)
2395 goto nosideret;
2396 if (binop_user_defined_p (op, arg1, arg2))
2397 {
2398 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2399 }
2400 else
2401 {
2402 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2403 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2404 type = language_bool_type (exp->language_defn, exp->gdbarch);
2405 return value_from_longest (type, (LONGEST) tem);
2406 }
2407
2408 case BINOP_LEQ:
2409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2410 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2411 if (noside == EVAL_SKIP)
2412 goto nosideret;
2413 if (binop_user_defined_p (op, arg1, arg2))
2414 {
2415 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2416 }
2417 else
2418 {
2419 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2420 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2421 type = language_bool_type (exp->language_defn, exp->gdbarch);
2422 return value_from_longest (type, (LONGEST) tem);
2423 }
2424
2425 case BINOP_REPEAT:
2426 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2427 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2428 if (noside == EVAL_SKIP)
2429 goto nosideret;
2430 type = check_typedef (value_type (arg2));
2431 if (TYPE_CODE (type) != TYPE_CODE_INT)
2432 error (_("Non-integral right operand for \"@\" operator."));
2433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2434 {
2435 return allocate_repeat_value (value_type (arg1),
2436 longest_to_int (value_as_long (arg2)));
2437 }
2438 else
2439 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2440
2441 case BINOP_COMMA:
2442 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2443 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2444
2445 case UNOP_PLUS:
2446 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2447 if (noside == EVAL_SKIP)
2448 goto nosideret;
2449 if (unop_user_defined_p (op, arg1))
2450 return value_x_unop (arg1, op, noside);
2451 else
2452 {
2453 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2454 return value_pos (arg1);
2455 }
2456
2457 case UNOP_NEG:
2458 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2459 if (noside == EVAL_SKIP)
2460 goto nosideret;
2461 if (unop_user_defined_p (op, arg1))
2462 return value_x_unop (arg1, op, noside);
2463 else
2464 {
2465 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2466 return value_neg (arg1);
2467 }
2468
2469 case UNOP_COMPLEMENT:
2470 /* C++: check for and handle destructor names. */
2471 op = exp->elts[*pos].opcode;
2472
2473 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2474 if (noside == EVAL_SKIP)
2475 goto nosideret;
2476 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2477 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2478 else
2479 {
2480 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2481 return value_complement (arg1);
2482 }
2483
2484 case UNOP_LOGICAL_NOT:
2485 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2486 if (noside == EVAL_SKIP)
2487 goto nosideret;
2488 if (unop_user_defined_p (op, arg1))
2489 return value_x_unop (arg1, op, noside);
2490 else
2491 {
2492 type = language_bool_type (exp->language_defn, exp->gdbarch);
2493 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2494 }
2495
2496 case UNOP_IND:
2497 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2498 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2499 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2500 type = check_typedef (value_type (arg1));
2501 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2502 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2503 error (_("Attempt to dereference pointer "
2504 "to member without an object"));
2505 if (noside == EVAL_SKIP)
2506 goto nosideret;
2507 if (unop_user_defined_p (op, arg1))
2508 return value_x_unop (arg1, op, noside);
2509 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2510 {
2511 type = check_typedef (value_type (arg1));
2512 if (TYPE_CODE (type) == TYPE_CODE_PTR
2513 || TYPE_CODE (type) == TYPE_CODE_REF
2514 /* In C you can dereference an array to get the 1st elt. */
2515 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2516 )
2517 return value_zero (TYPE_TARGET_TYPE (type),
2518 lval_memory);
2519 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2520 /* GDB allows dereferencing an int. */
2521 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2522 lval_memory);
2523 else
2524 error (_("Attempt to take contents of a non-pointer value."));
2525 }
2526
2527 /* Allow * on an integer so we can cast it to whatever we want.
2528 This returns an int, which seems like the most C-like thing to
2529 do. "long long" variables are rare enough that
2530 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2531 if (TYPE_CODE (type) == TYPE_CODE_INT)
2532 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2533 (CORE_ADDR) value_as_address (arg1));
2534 return value_ind (arg1);
2535
2536 case UNOP_ADDR:
2537 /* C++: check for and handle pointer to members. */
2538
2539 op = exp->elts[*pos].opcode;
2540
2541 if (noside == EVAL_SKIP)
2542 {
2543 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2544 goto nosideret;
2545 }
2546 else
2547 {
2548 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2549 noside);
2550
2551 return retvalp;
2552 }
2553
2554 case UNOP_SIZEOF:
2555 if (noside == EVAL_SKIP)
2556 {
2557 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2558 goto nosideret;
2559 }
2560 return evaluate_subexp_for_sizeof (exp, pos, noside);
2561
2562 case UNOP_CAST:
2563 (*pos) += 2;
2564 type = exp->elts[pc + 1].type;
2565 arg1 = evaluate_subexp (type, exp, pos, noside);
2566 if (noside == EVAL_SKIP)
2567 goto nosideret;
2568 if (type != value_type (arg1))
2569 arg1 = value_cast (type, arg1);
2570 return arg1;
2571
2572 case UNOP_CAST_TYPE:
2573 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2574 type = value_type (arg1);
2575 arg1 = evaluate_subexp (type, exp, pos, noside);
2576 if (noside == EVAL_SKIP)
2577 goto nosideret;
2578 if (type != value_type (arg1))
2579 arg1 = value_cast (type, arg1);
2580 return arg1;
2581
2582 case UNOP_DYNAMIC_CAST:
2583 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2584 type = value_type (arg1);
2585 arg1 = evaluate_subexp (type, exp, pos, noside);
2586 if (noside == EVAL_SKIP)
2587 goto nosideret;
2588 return value_dynamic_cast (type, arg1);
2589
2590 case UNOP_REINTERPRET_CAST:
2591 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2592 type = value_type (arg1);
2593 arg1 = evaluate_subexp (type, exp, pos, noside);
2594 if (noside == EVAL_SKIP)
2595 goto nosideret;
2596 return value_reinterpret_cast (type, arg1);
2597
2598 case UNOP_MEMVAL:
2599 (*pos) += 2;
2600 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2601 if (noside == EVAL_SKIP)
2602 goto nosideret;
2603 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2604 return value_zero (exp->elts[pc + 1].type, lval_memory);
2605 else
2606 return value_at_lazy (exp->elts[pc + 1].type,
2607 value_as_address (arg1));
2608
2609 case UNOP_MEMVAL_TYPE:
2610 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2611 type = value_type (arg1);
2612 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2613 if (noside == EVAL_SKIP)
2614 goto nosideret;
2615 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2616 return value_zero (type, lval_memory);
2617 else
2618 return value_at_lazy (type, value_as_address (arg1));
2619
2620 case UNOP_MEMVAL_TLS:
2621 (*pos) += 3;
2622 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2623 if (noside == EVAL_SKIP)
2624 goto nosideret;
2625 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2626 return value_zero (exp->elts[pc + 2].type, lval_memory);
2627 else
2628 {
2629 CORE_ADDR tls_addr;
2630
2631 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2632 value_as_address (arg1));
2633 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2634 }
2635
2636 case UNOP_PREINCREMENT:
2637 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2638 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2639 return arg1;
2640 else if (unop_user_defined_p (op, arg1))
2641 {
2642 return value_x_unop (arg1, op, noside);
2643 }
2644 else
2645 {
2646 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2647 arg2 = value_ptradd (arg1, 1);
2648 else
2649 {
2650 struct value *tmp = arg1;
2651
2652 arg2 = value_one (value_type (arg1));
2653 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2654 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2655 }
2656
2657 return value_assign (arg1, arg2);
2658 }
2659
2660 case UNOP_PREDECREMENT:
2661 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2662 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2663 return arg1;
2664 else if (unop_user_defined_p (op, arg1))
2665 {
2666 return value_x_unop (arg1, op, noside);
2667 }
2668 else
2669 {
2670 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2671 arg2 = value_ptradd (arg1, -1);
2672 else
2673 {
2674 struct value *tmp = arg1;
2675
2676 arg2 = value_one (value_type (arg1));
2677 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2678 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2679 }
2680
2681 return value_assign (arg1, arg2);
2682 }
2683
2684 case UNOP_POSTINCREMENT:
2685 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2686 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2687 return arg1;
2688 else if (unop_user_defined_p (op, arg1))
2689 {
2690 return value_x_unop (arg1, op, noside);
2691 }
2692 else
2693 {
2694 arg3 = value_non_lval (arg1);
2695
2696 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2697 arg2 = value_ptradd (arg1, 1);
2698 else
2699 {
2700 struct value *tmp = arg1;
2701
2702 arg2 = value_one (value_type (arg1));
2703 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2704 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2705 }
2706
2707 value_assign (arg1, arg2);
2708 return arg3;
2709 }
2710
2711 case UNOP_POSTDECREMENT:
2712 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2713 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2714 return arg1;
2715 else if (unop_user_defined_p (op, arg1))
2716 {
2717 return value_x_unop (arg1, op, noside);
2718 }
2719 else
2720 {
2721 arg3 = value_non_lval (arg1);
2722
2723 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2724 arg2 = value_ptradd (arg1, -1);
2725 else
2726 {
2727 struct value *tmp = arg1;
2728
2729 arg2 = value_one (value_type (arg1));
2730 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2731 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2732 }
2733
2734 value_assign (arg1, arg2);
2735 return arg3;
2736 }
2737
2738 case OP_THIS:
2739 (*pos) += 1;
2740 return value_of_this (exp->language_defn);
2741
2742 case OP_TYPE:
2743 /* The value is not supposed to be used. This is here to make it
2744 easier to accommodate expressions that contain types. */
2745 (*pos) += 2;
2746 if (noside == EVAL_SKIP)
2747 goto nosideret;
2748 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2749 {
2750 struct type *type = exp->elts[pc + 1].type;
2751
2752 /* If this is a typedef, then find its immediate target. We
2753 use check_typedef to resolve stubs, but we ignore its
2754 result because we do not want to dig past all
2755 typedefs. */
2756 check_typedef (type);
2757 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2758 type = TYPE_TARGET_TYPE (type);
2759 return allocate_value (type);
2760 }
2761 else
2762 error (_("Attempt to use a type name as an expression"));
2763
2764 case OP_TYPEOF:
2765 case OP_DECLTYPE:
2766 if (noside == EVAL_SKIP)
2767 {
2768 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2769 goto nosideret;
2770 }
2771 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2772 {
2773 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2774 struct value *result;
2775
2776 result = evaluate_subexp (NULL_TYPE, exp, pos,
2777 EVAL_AVOID_SIDE_EFFECTS);
2778
2779 /* 'decltype' has special semantics for lvalues. */
2780 if (op == OP_DECLTYPE
2781 && (sub_op == BINOP_SUBSCRIPT
2782 || sub_op == STRUCTOP_MEMBER
2783 || sub_op == STRUCTOP_MPTR
2784 || sub_op == UNOP_IND
2785 || sub_op == STRUCTOP_STRUCT
2786 || sub_op == STRUCTOP_PTR
2787 || sub_op == OP_SCOPE))
2788 {
2789 struct type *type = value_type (result);
2790
2791 if (TYPE_CODE (check_typedef (type)) != TYPE_CODE_REF)
2792 {
2793 type = lookup_reference_type (type);
2794 result = allocate_value (type);
2795 }
2796 }
2797
2798 return result;
2799 }
2800 else
2801 error (_("Attempt to use a type as an expression"));
2802
2803 case OP_TYPEID:
2804 {
2805 struct value *result;
2806 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2807
2808 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2809 result = evaluate_subexp (NULL_TYPE, exp, pos,
2810 EVAL_AVOID_SIDE_EFFECTS);
2811 else
2812 result = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2813
2814 if (noside != EVAL_NORMAL)
2815 return allocate_value (cplus_typeid_type (exp->gdbarch));
2816
2817 return cplus_typeid (result);
2818 }
2819
2820 default:
2821 /* Removing this case and compiling with gcc -Wall reveals that
2822 a lot of cases are hitting this case. Some of these should
2823 probably be removed from expression.h; others are legitimate
2824 expressions which are (apparently) not fully implemented.
2825
2826 If there are any cases landing here which mean a user error,
2827 then they should be separate cases, with more descriptive
2828 error messages. */
2829
2830 error (_("GDB does not (yet) know how to "
2831 "evaluate that kind of expression"));
2832 }
2833
2834 nosideret:
2835 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2836 }
2837 \f
2838 /* Evaluate a subexpression of EXP, at index *POS,
2839 and return the address of that subexpression.
2840 Advance *POS over the subexpression.
2841 If the subexpression isn't an lvalue, get an error.
2842 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2843 then only the type of the result need be correct. */
2844
2845 static struct value *
2846 evaluate_subexp_for_address (struct expression *exp, int *pos,
2847 enum noside noside)
2848 {
2849 enum exp_opcode op;
2850 int pc;
2851 struct symbol *var;
2852 struct value *x;
2853 int tem;
2854
2855 pc = (*pos);
2856 op = exp->elts[pc].opcode;
2857
2858 switch (op)
2859 {
2860 case UNOP_IND:
2861 (*pos)++;
2862 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2863
2864 /* We can't optimize out "&*" if there's a user-defined operator*. */
2865 if (unop_user_defined_p (op, x))
2866 {
2867 x = value_x_unop (x, op, noside);
2868 goto default_case_after_eval;
2869 }
2870
2871 return coerce_array (x);
2872
2873 case UNOP_MEMVAL:
2874 (*pos) += 3;
2875 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2876 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2877
2878 case UNOP_MEMVAL_TYPE:
2879 {
2880 struct type *type;
2881
2882 (*pos) += 1;
2883 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2884 type = value_type (x);
2885 return value_cast (lookup_pointer_type (type),
2886 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2887 }
2888
2889 case OP_VAR_VALUE:
2890 var = exp->elts[pc + 2].symbol;
2891
2892 /* C++: The "address" of a reference should yield the address
2893 * of the object pointed to. Let value_addr() deal with it. */
2894 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2895 goto default_case;
2896
2897 (*pos) += 4;
2898 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2899 {
2900 struct type *type =
2901 lookup_pointer_type (SYMBOL_TYPE (var));
2902 enum address_class sym_class = SYMBOL_CLASS (var);
2903
2904 if (sym_class == LOC_CONST
2905 || sym_class == LOC_CONST_BYTES
2906 || sym_class == LOC_REGISTER)
2907 error (_("Attempt to take address of register or constant."));
2908
2909 return
2910 value_zero (type, not_lval);
2911 }
2912 else
2913 return address_of_variable (var, exp->elts[pc + 1].block);
2914
2915 case OP_SCOPE:
2916 tem = longest_to_int (exp->elts[pc + 2].longconst);
2917 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2918 x = value_aggregate_elt (exp->elts[pc + 1].type,
2919 &exp->elts[pc + 3].string,
2920 NULL, 1, noside);
2921 if (x == NULL)
2922 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2923 return x;
2924
2925 default:
2926 default_case:
2927 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2928 default_case_after_eval:
2929 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2930 {
2931 struct type *type = check_typedef (value_type (x));
2932
2933 if (TYPE_CODE (type) == TYPE_CODE_REF)
2934 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2935 not_lval);
2936 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2937 return value_zero (lookup_pointer_type (value_type (x)),
2938 not_lval);
2939 else
2940 error (_("Attempt to take address of "
2941 "value not located in memory."));
2942 }
2943 return value_addr (x);
2944 }
2945 }
2946
2947 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2948 When used in contexts where arrays will be coerced anyway, this is
2949 equivalent to `evaluate_subexp' but much faster because it avoids
2950 actually fetching array contents (perhaps obsolete now that we have
2951 value_lazy()).
2952
2953 Note that we currently only do the coercion for C expressions, where
2954 arrays are zero based and the coercion is correct. For other languages,
2955 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2956 to decide if coercion is appropriate. */
2957
2958 struct value *
2959 evaluate_subexp_with_coercion (struct expression *exp,
2960 int *pos, enum noside noside)
2961 {
2962 enum exp_opcode op;
2963 int pc;
2964 struct value *val;
2965 struct symbol *var;
2966 struct type *type;
2967
2968 pc = (*pos);
2969 op = exp->elts[pc].opcode;
2970
2971 switch (op)
2972 {
2973 case OP_VAR_VALUE:
2974 var = exp->elts[pc + 2].symbol;
2975 type = check_typedef (SYMBOL_TYPE (var));
2976 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2977 && !TYPE_VECTOR (type)
2978 && CAST_IS_CONVERSION (exp->language_defn))
2979 {
2980 (*pos) += 4;
2981 val = address_of_variable (var, exp->elts[pc + 1].block);
2982 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2983 val);
2984 }
2985 /* FALLTHROUGH */
2986
2987 default:
2988 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2989 }
2990 }
2991
2992 /* Evaluate a subexpression of EXP, at index *POS,
2993 and return a value for the size of that subexpression.
2994 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
2995 we allow side-effects on the operand if its type is a variable
2996 length array. */
2997
2998 static struct value *
2999 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3000 enum noside noside)
3001 {
3002 /* FIXME: This should be size_t. */
3003 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3004 enum exp_opcode op;
3005 int pc;
3006 struct type *type;
3007 struct value *val;
3008
3009 pc = (*pos);
3010 op = exp->elts[pc].opcode;
3011
3012 switch (op)
3013 {
3014 /* This case is handled specially
3015 so that we avoid creating a value for the result type.
3016 If the result type is very big, it's desirable not to
3017 create a value unnecessarily. */
3018 case UNOP_IND:
3019 (*pos)++;
3020 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3021 type = check_typedef (value_type (val));
3022 if (TYPE_CODE (type) != TYPE_CODE_PTR
3023 && TYPE_CODE (type) != TYPE_CODE_REF
3024 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3025 error (_("Attempt to take contents of a non-pointer value."));
3026 type = TYPE_TARGET_TYPE (type);
3027 if (is_dynamic_type (type))
3028 type = value_type (value_ind (val));
3029 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3030
3031 case UNOP_MEMVAL:
3032 (*pos) += 3;
3033 type = exp->elts[pc + 1].type;
3034 break;
3035
3036 case UNOP_MEMVAL_TYPE:
3037 (*pos) += 1;
3038 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3039 type = value_type (val);
3040 break;
3041
3042 case OP_VAR_VALUE:
3043 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3044 if (is_dynamic_type (type))
3045 {
3046 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3047 type = value_type (val);
3048 }
3049 else
3050 (*pos) += 4;
3051 break;
3052
3053 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3054 type of the subscript is a variable length array type. In this case we
3055 must re-evaluate the right hand side of the subcription to allow
3056 side-effects. */
3057 case BINOP_SUBSCRIPT:
3058 if (noside == EVAL_NORMAL)
3059 {
3060 int pc = (*pos) + 1;
3061
3062 val = evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
3063 type = check_typedef (value_type (val));
3064 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3065 {
3066 type = check_typedef (TYPE_TARGET_TYPE (type));
3067 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3068 {
3069 type = TYPE_INDEX_TYPE (type);
3070 /* Only re-evaluate the right hand side if the resulting type
3071 is a variable length type. */
3072 if (TYPE_RANGE_DATA (type)->flag_bound_evaluated)
3073 {
3074 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3075 return value_from_longest
3076 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3077 }
3078 }
3079 }
3080 }
3081
3082 /* Fall through. */
3083
3084 default:
3085 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3086 type = value_type (val);
3087 break;
3088 }
3089
3090 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3091 "When applied to a reference or a reference type, the result is
3092 the size of the referenced type." */
3093 type = check_typedef (type);
3094 if (exp->language_defn->la_language == language_cplus
3095 && TYPE_CODE (type) == TYPE_CODE_REF)
3096 type = check_typedef (TYPE_TARGET_TYPE (type));
3097 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3098 }
3099
3100 /* Parse a type expression in the string [P..P+LENGTH). */
3101
3102 struct type *
3103 parse_and_eval_type (char *p, int length)
3104 {
3105 char *tmp = (char *) alloca (length + 4);
3106 struct expression *expr;
3107
3108 tmp[0] = '(';
3109 memcpy (tmp + 1, p, length);
3110 tmp[length + 1] = ')';
3111 tmp[length + 2] = '0';
3112 tmp[length + 3] = '\0';
3113 expr = parse_expression (tmp);
3114 if (expr->elts[0].opcode != UNOP_CAST)
3115 error (_("Internal error in eval_type."));
3116 return expr->elts[1].type;
3117 }
3118
3119 int
3120 calc_f77_array_dims (struct type *array_type)
3121 {
3122 int ndimen = 1;
3123 struct type *tmp_type;
3124
3125 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3126 error (_("Can't get dimensions for a non-array type"));
3127
3128 tmp_type = array_type;
3129
3130 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3131 {
3132 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3133 ++ndimen;
3134 }
3135 return ndimen;
3136 }
This page took 0.127635 seconds and 4 git commands to generate.