[gdb/testsuite] Rewrite gdb_test_lines
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include "typeprint.h"
42 #include <ctype.h>
43 #include "expop.h"
44 #include "c-exp.h"
45 #include "inferior.h"
46
47 \f
48 /* Parse the string EXP as a C expression, evaluate it,
49 and return the result as a number. */
50
51 CORE_ADDR
52 parse_and_eval_address (const char *exp)
53 {
54 expression_up expr = parse_expression (exp);
55
56 return value_as_address (evaluate_expression (expr.get ()));
57 }
58
59 /* Like parse_and_eval_address, but treats the value of the expression
60 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
61 LONGEST
62 parse_and_eval_long (const char *exp)
63 {
64 expression_up expr = parse_expression (exp);
65
66 return value_as_long (evaluate_expression (expr.get ()));
67 }
68
69 struct value *
70 parse_and_eval (const char *exp)
71 {
72 expression_up expr = parse_expression (exp);
73
74 return evaluate_expression (expr.get ());
75 }
76
77 /* Parse up to a comma (or to a closeparen)
78 in the string EXPP as an expression, evaluate it, and return the value.
79 EXPP is advanced to point to the comma. */
80
81 struct value *
82 parse_to_comma_and_eval (const char **expp)
83 {
84 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
85
86 return evaluate_expression (expr.get ());
87 }
88 \f
89
90 /* See expression.h. */
91
92 struct value *
93 expression::evaluate (struct type *expect_type, enum noside noside)
94 {
95 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
96 if (target_has_execution () && inferior_ptid != null_ptid
97 && language_defn->la_language == language_cplus
98 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
99 stack_temporaries.emplace (inferior_thread ());
100
101 struct value *retval = op->evaluate (expect_type, this, noside);
102
103 if (stack_temporaries.has_value ()
104 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
105 retval = value_non_lval (retval);
106
107 return retval;
108 }
109
110 /* See value.h. */
111
112 struct value *
113 evaluate_expression (struct expression *exp, struct type *expect_type)
114 {
115 return exp->evaluate (expect_type, EVAL_NORMAL);
116 }
117
118 /* Evaluate an expression, avoiding all memory references
119 and getting a value whose type alone is correct. */
120
121 struct value *
122 evaluate_type (struct expression *exp)
123 {
124 return exp->evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS);
125 }
126
127 /* Find the current value of a watchpoint on EXP. Return the value in
128 *VALP and *RESULTP and the chain of intermediate and final values
129 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
130 not need them.
131
132 If PRESERVE_ERRORS is true, then exceptions are passed through.
133 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
134 occurs while evaluating the expression, *RESULTP will be set to
135 NULL. *RESULTP may be a lazy value, if the result could not be
136 read from memory. It is used to determine whether a value is
137 user-specified (we should watch the whole value) or intermediate
138 (we should watch only the bit used to locate the final value).
139
140 If the final value, or any intermediate value, could not be read
141 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
142 set to any referenced values. *VALP will never be a lazy value.
143 This is the value which we store in struct breakpoint.
144
145 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
146 released from the value chain. If VAL_CHAIN is NULL, all generated
147 values will be left on the value chain. */
148
149 void
150 fetch_subexp_value (struct expression *exp,
151 expr::operation *op,
152 struct value **valp, struct value **resultp,
153 std::vector<value_ref_ptr> *val_chain,
154 bool preserve_errors)
155 {
156 struct value *mark, *new_mark, *result;
157
158 *valp = NULL;
159 if (resultp)
160 *resultp = NULL;
161 if (val_chain)
162 val_chain->clear ();
163
164 /* Evaluate the expression. */
165 mark = value_mark ();
166 result = NULL;
167
168 try
169 {
170 result = op->evaluate (nullptr, exp, EVAL_NORMAL);
171 }
172 catch (const gdb_exception &ex)
173 {
174 /* Ignore memory errors if we want watchpoints pointing at
175 inaccessible memory to still be created; otherwise, throw the
176 error to some higher catcher. */
177 switch (ex.error)
178 {
179 case MEMORY_ERROR:
180 if (!preserve_errors)
181 break;
182 /* Fall through. */
183 default:
184 throw;
185 break;
186 }
187 }
188
189 new_mark = value_mark ();
190 if (mark == new_mark)
191 return;
192 if (resultp)
193 *resultp = result;
194
195 /* Make sure it's not lazy, so that after the target stops again we
196 have a non-lazy previous value to compare with. */
197 if (result != NULL)
198 {
199 if (!value_lazy (result))
200 *valp = result;
201 else
202 {
203
204 try
205 {
206 value_fetch_lazy (result);
207 *valp = result;
208 }
209 catch (const gdb_exception_error &except)
210 {
211 }
212 }
213 }
214
215 if (val_chain)
216 {
217 /* Return the chain of intermediate values. We use this to
218 decide which addresses to watch. */
219 *val_chain = value_release_to_mark (mark);
220 }
221 }
222
223 /* Promote value ARG1 as appropriate before performing a unary operation
224 on this argument.
225 If the result is not appropriate for any particular language then it
226 needs to patch this function. */
227
228 void
229 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
230 struct value **arg1)
231 {
232 struct type *type1;
233
234 *arg1 = coerce_ref (*arg1);
235 type1 = check_typedef (value_type (*arg1));
236
237 if (is_integral_type (type1))
238 {
239 switch (language->la_language)
240 {
241 default:
242 /* Perform integral promotion for ANSI C/C++.
243 If not appropriate for any particular language
244 it needs to modify this function. */
245 {
246 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
247
248 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
249 *arg1 = value_cast (builtin_int, *arg1);
250 }
251 break;
252 }
253 }
254 }
255
256 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
257 operation on those two operands.
258 If the result is not appropriate for any particular language then it
259 needs to patch this function. */
260
261 void
262 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
263 struct value **arg1, struct value **arg2)
264 {
265 struct type *promoted_type = NULL;
266 struct type *type1;
267 struct type *type2;
268
269 *arg1 = coerce_ref (*arg1);
270 *arg2 = coerce_ref (*arg2);
271
272 type1 = check_typedef (value_type (*arg1));
273 type2 = check_typedef (value_type (*arg2));
274
275 if ((type1->code () != TYPE_CODE_FLT
276 && type1->code () != TYPE_CODE_DECFLOAT
277 && !is_integral_type (type1))
278 || (type2->code () != TYPE_CODE_FLT
279 && type2->code () != TYPE_CODE_DECFLOAT
280 && !is_integral_type (type2)))
281 return;
282
283 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
284 return;
285
286 if (type1->code () == TYPE_CODE_DECFLOAT
287 || type2->code () == TYPE_CODE_DECFLOAT)
288 {
289 /* No promotion required. */
290 }
291 else if (type1->code () == TYPE_CODE_FLT
292 || type2->code () == TYPE_CODE_FLT)
293 {
294 switch (language->la_language)
295 {
296 case language_c:
297 case language_cplus:
298 case language_asm:
299 case language_objc:
300 case language_opencl:
301 /* No promotion required. */
302 break;
303
304 default:
305 /* For other languages the result type is unchanged from gdb
306 version 6.7 for backward compatibility.
307 If either arg was long double, make sure that value is also long
308 double. Otherwise use double. */
309 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
310 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
311 promoted_type = builtin_type (gdbarch)->builtin_long_double;
312 else
313 promoted_type = builtin_type (gdbarch)->builtin_double;
314 break;
315 }
316 }
317 else if (type1->code () == TYPE_CODE_BOOL
318 && type2->code () == TYPE_CODE_BOOL)
319 {
320 /* No promotion required. */
321 }
322 else
323 /* Integral operations here. */
324 /* FIXME: Also mixed integral/booleans, with result an integer. */
325 {
326 const struct builtin_type *builtin = builtin_type (gdbarch);
327 unsigned int promoted_len1 = TYPE_LENGTH (type1);
328 unsigned int promoted_len2 = TYPE_LENGTH (type2);
329 int is_unsigned1 = type1->is_unsigned ();
330 int is_unsigned2 = type2->is_unsigned ();
331 unsigned int result_len;
332 int unsigned_operation;
333
334 /* Determine type length and signedness after promotion for
335 both operands. */
336 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
337 {
338 is_unsigned1 = 0;
339 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
340 }
341 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
342 {
343 is_unsigned2 = 0;
344 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
345 }
346
347 if (promoted_len1 > promoted_len2)
348 {
349 unsigned_operation = is_unsigned1;
350 result_len = promoted_len1;
351 }
352 else if (promoted_len2 > promoted_len1)
353 {
354 unsigned_operation = is_unsigned2;
355 result_len = promoted_len2;
356 }
357 else
358 {
359 unsigned_operation = is_unsigned1 || is_unsigned2;
360 result_len = promoted_len1;
361 }
362
363 switch (language->la_language)
364 {
365 case language_c:
366 case language_cplus:
367 case language_asm:
368 case language_objc:
369 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
370 {
371 promoted_type = (unsigned_operation
372 ? builtin->builtin_unsigned_int
373 : builtin->builtin_int);
374 }
375 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
376 {
377 promoted_type = (unsigned_operation
378 ? builtin->builtin_unsigned_long
379 : builtin->builtin_long);
380 }
381 else
382 {
383 promoted_type = (unsigned_operation
384 ? builtin->builtin_unsigned_long_long
385 : builtin->builtin_long_long);
386 }
387 break;
388 case language_opencl:
389 if (result_len <= TYPE_LENGTH (lookup_signed_typename
390 (language, "int")))
391 {
392 promoted_type =
393 (unsigned_operation
394 ? lookup_unsigned_typename (language, "int")
395 : lookup_signed_typename (language, "int"));
396 }
397 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
398 (language, "long")))
399 {
400 promoted_type =
401 (unsigned_operation
402 ? lookup_unsigned_typename (language, "long")
403 : lookup_signed_typename (language,"long"));
404 }
405 break;
406 default:
407 /* For other languages the result type is unchanged from gdb
408 version 6.7 for backward compatibility.
409 If either arg was long long, make sure that value is also long
410 long. Otherwise use long. */
411 if (unsigned_operation)
412 {
413 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
414 promoted_type = builtin->builtin_unsigned_long_long;
415 else
416 promoted_type = builtin->builtin_unsigned_long;
417 }
418 else
419 {
420 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
421 promoted_type = builtin->builtin_long_long;
422 else
423 promoted_type = builtin->builtin_long;
424 }
425 break;
426 }
427 }
428
429 if (promoted_type)
430 {
431 /* Promote both operands to common type. */
432 *arg1 = value_cast (promoted_type, *arg1);
433 *arg2 = value_cast (promoted_type, *arg2);
434 }
435 }
436
437 static int
438 ptrmath_type_p (const struct language_defn *lang, struct type *type)
439 {
440 type = check_typedef (type);
441 if (TYPE_IS_REFERENCE (type))
442 type = TYPE_TARGET_TYPE (type);
443
444 switch (type->code ())
445 {
446 case TYPE_CODE_PTR:
447 case TYPE_CODE_FUNC:
448 return 1;
449
450 case TYPE_CODE_ARRAY:
451 return type->is_vector () ? 0 : lang->c_style_arrays_p ();
452
453 default:
454 return 0;
455 }
456 }
457
458 /* Represents a fake method with the given parameter types. This is
459 used by the parser to construct a temporary "expected" type for
460 method overload resolution. FLAGS is used as instance flags of the
461 new type, in order to be able to make the new type represent a
462 const/volatile overload. */
463
464 class fake_method
465 {
466 public:
467 fake_method (type_instance_flags flags,
468 int num_types, struct type **param_types);
469 ~fake_method ();
470
471 /* The constructed type. */
472 struct type *type () { return &m_type; }
473
474 private:
475 struct type m_type {};
476 main_type m_main_type {};
477 };
478
479 fake_method::fake_method (type_instance_flags flags,
480 int num_types, struct type **param_types)
481 {
482 struct type *type = &m_type;
483
484 TYPE_MAIN_TYPE (type) = &m_main_type;
485 TYPE_LENGTH (type) = 1;
486 type->set_code (TYPE_CODE_METHOD);
487 TYPE_CHAIN (type) = type;
488 type->set_instance_flags (flags);
489 if (num_types > 0)
490 {
491 if (param_types[num_types - 1] == NULL)
492 {
493 --num_types;
494 type->set_has_varargs (true);
495 }
496 else if (check_typedef (param_types[num_types - 1])->code ()
497 == TYPE_CODE_VOID)
498 {
499 --num_types;
500 /* Caller should have ensured this. */
501 gdb_assert (num_types == 0);
502 type->set_is_prototyped (true);
503 }
504 }
505
506 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
507 neither an objfile nor a gdbarch. As a result we must manually
508 allocate memory for auxiliary fields, and free the memory ourselves
509 when we are done with it. */
510 type->set_num_fields (num_types);
511 type->set_fields
512 ((struct field *) xzalloc (sizeof (struct field) * num_types));
513
514 while (num_types-- > 0)
515 type->field (num_types).set_type (param_types[num_types]);
516 }
517
518 fake_method::~fake_method ()
519 {
520 xfree (m_type.fields ());
521 }
522
523 namespace expr
524 {
525
526 value *
527 type_instance_operation::evaluate (struct type *expect_type,
528 struct expression *exp,
529 enum noside noside)
530 {
531 type_instance_flags flags = std::get<0> (m_storage);
532 std::vector<type *> &types = std::get<1> (m_storage);
533
534 fake_method fake_expect_type (flags, types.size (), types.data ());
535 return std::get<2> (m_storage)->evaluate (fake_expect_type.type (),
536 exp, noside);
537 }
538
539 }
540
541 /* Helper for evaluating an OP_VAR_VALUE. */
542
543 value *
544 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
545 {
546 /* JYG: We used to just return value_zero of the symbol type if
547 we're asked to avoid side effects. Otherwise we return
548 value_of_variable (...). However I'm not sure if
549 value_of_variable () has any side effect. We need a full value
550 object returned here for whatis_exp () to call evaluate_type ()
551 and then pass the full value to value_rtti_target_type () if we
552 are dealing with a pointer or reference to a base class and print
553 object is on. */
554
555 struct value *ret = NULL;
556
557 try
558 {
559 ret = value_of_variable (var, blk);
560 }
561
562 catch (const gdb_exception_error &except)
563 {
564 if (noside != EVAL_AVOID_SIDE_EFFECTS)
565 throw;
566
567 ret = value_zero (SYMBOL_TYPE (var), not_lval);
568 }
569
570 return ret;
571 }
572
573 namespace expr
574
575 {
576
577 value *
578 var_value_operation::evaluate (struct type *expect_type,
579 struct expression *exp,
580 enum noside noside)
581 {
582 symbol *var = std::get<0> (m_storage).symbol;
583 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
584 error_unknown_type (var->print_name ());
585 return evaluate_var_value (noside, std::get<0> (m_storage).block, var);
586 }
587
588 } /* namespace expr */
589
590 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
591
592 value *
593 evaluate_var_msym_value (enum noside noside,
594 struct objfile *objfile, minimal_symbol *msymbol)
595 {
596 CORE_ADDR address;
597 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
598
599 if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
600 return value_zero (the_type, not_lval);
601 else
602 return value_at_lazy (the_type, address);
603 }
604
605 /* See expression.h. */
606
607 value *
608 evaluate_subexp_do_call (expression *exp, enum noside noside,
609 value *callee,
610 gdb::array_view<value *> argvec,
611 const char *function_name,
612 type *default_return_type)
613 {
614 if (callee == NULL)
615 error (_("Cannot evaluate function -- may be inlined"));
616 if (noside == EVAL_AVOID_SIDE_EFFECTS)
617 {
618 /* If the return type doesn't look like a function type,
619 call an error. This can happen if somebody tries to turn
620 a variable into a function call. */
621
622 type *ftype = value_type (callee);
623
624 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
625 {
626 /* We don't know anything about what the internal
627 function might return, but we have to return
628 something. */
629 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
630 not_lval);
631 }
632 else if (ftype->code () == TYPE_CODE_XMETHOD)
633 {
634 type *return_type = result_type_of_xmethod (callee, argvec);
635
636 if (return_type == NULL)
637 error (_("Xmethod is missing return type."));
638 return value_zero (return_type, not_lval);
639 }
640 else if (ftype->code () == TYPE_CODE_FUNC
641 || ftype->code () == TYPE_CODE_METHOD)
642 {
643 if (ftype->is_gnu_ifunc ())
644 {
645 CORE_ADDR address = value_address (callee);
646 type *resolved_type = find_gnu_ifunc_target_type (address);
647
648 if (resolved_type != NULL)
649 ftype = resolved_type;
650 }
651
652 type *return_type = TYPE_TARGET_TYPE (ftype);
653
654 if (return_type == NULL)
655 return_type = default_return_type;
656
657 if (return_type == NULL)
658 error_call_unknown_return_type (function_name);
659
660 return allocate_value (return_type);
661 }
662 else
663 error (_("Expression of type other than "
664 "\"Function returning ...\" used as function"));
665 }
666 switch (value_type (callee)->code ())
667 {
668 case TYPE_CODE_INTERNAL_FUNCTION:
669 return call_internal_function (exp->gdbarch, exp->language_defn,
670 callee, argvec.size (), argvec.data ());
671 case TYPE_CODE_XMETHOD:
672 return call_xmethod (callee, argvec);
673 default:
674 return call_function_by_hand (callee, default_return_type, argvec);
675 }
676 }
677
678 namespace expr
679 {
680
681 value *
682 operation::evaluate_funcall (struct type *expect_type,
683 struct expression *exp,
684 enum noside noside,
685 const char *function_name,
686 const std::vector<operation_up> &args)
687 {
688 std::vector<value *> vals (args.size ());
689
690 value *callee = evaluate_with_coercion (exp, noside);
691 struct type *type = value_type (callee);
692 if (type->code () == TYPE_CODE_PTR)
693 type = TYPE_TARGET_TYPE (type);
694 for (int i = 0; i < args.size (); ++i)
695 {
696 if (i < type->num_fields ())
697 vals[i] = args[i]->evaluate (type->field (i).type (), exp, noside);
698 else
699 vals[i] = args[i]->evaluate_with_coercion (exp, noside);
700 }
701
702 return evaluate_subexp_do_call (exp, noside, callee, vals,
703 function_name, expect_type);
704 }
705
706 value *
707 var_value_operation::evaluate_funcall (struct type *expect_type,
708 struct expression *exp,
709 enum noside noside,
710 const std::vector<operation_up> &args)
711 {
712 if (!overload_resolution
713 || exp->language_defn->la_language != language_cplus)
714 return operation::evaluate_funcall (expect_type, exp, noside, args);
715
716 std::vector<value *> argvec (args.size ());
717 for (int i = 0; i < args.size (); ++i)
718 argvec[i] = args[i]->evaluate_with_coercion (exp, noside);
719
720 struct symbol *symp;
721 find_overload_match (argvec, NULL, NON_METHOD,
722 NULL, std::get<0> (m_storage).symbol,
723 NULL, &symp, NULL, 0, noside);
724
725 if (SYMBOL_TYPE (symp)->code () == TYPE_CODE_ERROR)
726 error_unknown_type (symp->print_name ());
727 value *callee = evaluate_var_value (noside, std::get<0> (m_storage).block,
728 symp);
729
730 return evaluate_subexp_do_call (exp, noside, callee, argvec,
731 nullptr, expect_type);
732 }
733
734 value *
735 scope_operation::evaluate_funcall (struct type *expect_type,
736 struct expression *exp,
737 enum noside noside,
738 const std::vector<operation_up> &args)
739 {
740 if (!overload_resolution
741 || exp->language_defn->la_language != language_cplus)
742 return operation::evaluate_funcall (expect_type, exp, noside, args);
743
744 /* Unpack it locally so we can properly handle overload
745 resolution. */
746 const std::string &name = std::get<1> (m_storage);
747 struct type *type = std::get<0> (m_storage);
748
749 symbol *function = NULL;
750 const char *function_name = NULL;
751 std::vector<value *> argvec (1 + args.size ());
752 if (type->code () == TYPE_CODE_NAMESPACE)
753 {
754 function = cp_lookup_symbol_namespace (type->name (),
755 name.c_str (),
756 get_selected_block (0),
757 VAR_DOMAIN).symbol;
758 if (function == NULL)
759 error (_("No symbol \"%s\" in namespace \"%s\"."),
760 name.c_str (), type->name ());
761 }
762 else
763 {
764 gdb_assert (type->code () == TYPE_CODE_STRUCT
765 || type->code () == TYPE_CODE_UNION);
766 function_name = name.c_str ();
767
768 /* We need a properly typed value for method lookup. */
769 argvec[0] = value_zero (type, lval_memory);
770 }
771
772 for (int i = 0; i < args.size (); ++i)
773 argvec[i + 1] = args[i]->evaluate_with_coercion (exp, noside);
774 gdb::array_view<value *> arg_view = argvec;
775
776 value *callee = nullptr;
777 if (function_name != nullptr)
778 {
779 int static_memfuncp;
780
781 find_overload_match (arg_view, function_name, METHOD,
782 &argvec[0], nullptr, &callee, nullptr,
783 &static_memfuncp, 0, noside);
784 if (!static_memfuncp)
785 {
786 /* For the time being, we don't handle this. */
787 error (_("Call to overloaded function %s requires "
788 "`this' pointer"),
789 function_name);
790 }
791
792 arg_view = arg_view.slice (1);
793 }
794 else
795 {
796 symbol *symp;
797 arg_view = arg_view.slice (1);
798 find_overload_match (arg_view, nullptr,
799 NON_METHOD, nullptr, function,
800 nullptr, &symp, nullptr, 1, noside);
801 callee = value_of_variable (symp, get_selected_block (0));
802 }
803
804 return evaluate_subexp_do_call (exp, noside, callee, arg_view,
805 nullptr, expect_type);
806 }
807
808 value *
809 structop_member_base::evaluate_funcall (struct type *expect_type,
810 struct expression *exp,
811 enum noside noside,
812 const std::vector<operation_up> &args)
813 {
814 /* First, evaluate the structure into lhs. */
815 value *lhs;
816 if (opcode () == STRUCTOP_MEMBER)
817 lhs = std::get<0> (m_storage)->evaluate_for_address (exp, noside);
818 else
819 lhs = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
820
821 std::vector<value *> vals (args.size () + 1);
822 gdb::array_view<value *> val_view = vals;
823 /* If the function is a virtual function, then the aggregate
824 value (providing the structure) plays its part by providing
825 the vtable. Otherwise, it is just along for the ride: call
826 the function directly. */
827 value *rhs = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
828 value *callee;
829
830 type *a1_type = check_typedef (value_type (rhs));
831 if (a1_type->code () == TYPE_CODE_METHODPTR)
832 {
833 if (noside == EVAL_AVOID_SIDE_EFFECTS)
834 callee = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
835 else
836 callee = cplus_method_ptr_to_value (&lhs, rhs);
837
838 vals[0] = lhs;
839 }
840 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
841 {
842 struct type *type_ptr
843 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
844 struct type *target_type_ptr
845 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
846
847 /* Now, convert this value to an address. */
848 lhs = value_cast (type_ptr, lhs);
849
850 long mem_offset = value_as_long (rhs);
851
852 callee = value_from_pointer (target_type_ptr,
853 value_as_long (lhs) + mem_offset);
854 callee = value_ind (callee);
855
856 val_view = val_view.slice (1);
857 }
858 else
859 error (_("Non-pointer-to-member value used in pointer-to-member "
860 "construct"));
861
862 for (int i = 0; i < args.size (); ++i)
863 vals[i + 1] = args[i]->evaluate_with_coercion (exp, noside);
864
865 return evaluate_subexp_do_call (exp, noside, callee, val_view,
866 nullptr, expect_type);
867
868 }
869
870 value *
871 structop_base_operation::evaluate_funcall
872 (struct type *expect_type, struct expression *exp, enum noside noside,
873 const std::vector<operation_up> &args)
874 {
875 std::vector<value *> vals (args.size () + 1);
876 /* First, evaluate the structure into vals[0]. */
877 enum exp_opcode op = opcode ();
878 if (op == STRUCTOP_STRUCT)
879 {
880 /* If v is a variable in a register, and the user types
881 v.method (), this will produce an error, because v has no
882 address.
883
884 A possible way around this would be to allocate a copy of
885 the variable on the stack, copy in the contents, call the
886 function, and copy out the contents. I.e. convert this
887 from call by reference to call by copy-return (or
888 whatever it's called). However, this does not work
889 because it is not the same: the method being called could
890 stash a copy of the address, and then future uses through
891 that address (after the method returns) would be expected
892 to use the variable itself, not some copy of it. */
893 vals[0] = std::get<0> (m_storage)->evaluate_for_address (exp, noside);
894 }
895 else
896 {
897 vals[0] = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
898 /* Check to see if the operator '->' has been overloaded.
899 If the operator has been overloaded replace vals[0] with the
900 value returned by the custom operator and continue
901 evaluation. */
902 while (unop_user_defined_p (op, vals[0]))
903 {
904 struct value *value = nullptr;
905 try
906 {
907 value = value_x_unop (vals[0], op, noside);
908 }
909 catch (const gdb_exception_error &except)
910 {
911 if (except.error == NOT_FOUND_ERROR)
912 break;
913 else
914 throw;
915 }
916
917 vals[0] = value;
918 }
919 }
920
921 for (int i = 0; i < args.size (); ++i)
922 vals[i + 1] = args[i]->evaluate_with_coercion (exp, noside);
923 gdb::array_view<value *> arg_view = vals;
924
925 int static_memfuncp;
926 value *callee;
927 const char *tstr = std::get<1> (m_storage).c_str ();
928 if (overload_resolution
929 && exp->language_defn->la_language == language_cplus)
930 {
931 /* Language is C++, do some overload resolution before
932 evaluation. */
933 value *val0 = vals[0];
934 find_overload_match (arg_view, tstr, METHOD,
935 &val0, nullptr, &callee, nullptr,
936 &static_memfuncp, 0, noside);
937 vals[0] = val0;
938 }
939 else
940 /* Non-C++ case -- or no overload resolution. */
941 {
942 struct value *temp = vals[0];
943
944 callee = value_struct_elt (&temp, &vals[1], tstr,
945 &static_memfuncp,
946 op == STRUCTOP_STRUCT
947 ? "structure" : "structure pointer");
948 /* value_struct_elt updates temp with the correct value of the
949 ``this'' pointer if necessary, so modify it to reflect any
950 ``this'' changes. */
951 vals[0] = value_from_longest (lookup_pointer_type (value_type (temp)),
952 value_address (temp)
953 + value_embedded_offset (temp));
954 }
955
956 /* Take out `this' if needed. */
957 if (static_memfuncp)
958 arg_view = arg_view.slice (1);
959
960 return evaluate_subexp_do_call (exp, noside, callee, arg_view,
961 nullptr, expect_type);
962 }
963
964
965 } /* namespace expr */
966
967 /* Return true if type is integral or reference to integral */
968
969 static bool
970 is_integral_or_integral_reference (struct type *type)
971 {
972 if (is_integral_type (type))
973 return true;
974
975 type = check_typedef (type);
976 return (type != nullptr
977 && TYPE_IS_REFERENCE (type)
978 && is_integral_type (TYPE_TARGET_TYPE (type)));
979 }
980
981 /* Helper function that implements the body of OP_SCOPE. */
982
983 struct value *
984 eval_op_scope (struct type *expect_type, struct expression *exp,
985 enum noside noside,
986 struct type *type, const char *string)
987 {
988 struct value *arg1 = value_aggregate_elt (type, string, expect_type,
989 0, noside);
990 if (arg1 == NULL)
991 error (_("There is no field named %s"), string);
992 return arg1;
993 }
994
995 /* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
996
997 struct value *
998 eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
999 enum noside noside, symbol *sym)
1000 {
1001 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1002 return value_zero (SYMBOL_TYPE (sym), not_lval);
1003
1004 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1005 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1006 error (_("Symbol \"%s\" does not have any specific entry value"),
1007 sym->print_name ());
1008
1009 struct frame_info *frame = get_selected_frame (NULL);
1010 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1011 }
1012
1013 /* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
1014
1015 struct value *
1016 eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
1017 enum noside noside, bool outermost_p,
1018 bound_minimal_symbol msymbol)
1019 {
1020 value *val = evaluate_var_msym_value (noside, msymbol.objfile,
1021 msymbol.minsym);
1022
1023 struct type *type = value_type (val);
1024 if (type->code () == TYPE_CODE_ERROR
1025 && (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
1026 error_unknown_type (msymbol.minsym->print_name ());
1027 return val;
1028 }
1029
1030 /* Helper function that implements the body of OP_FUNC_STATIC_VAR. */
1031
1032 struct value *
1033 eval_op_func_static_var (struct type *expect_type, struct expression *exp,
1034 enum noside noside,
1035 value *func, const char *var)
1036 {
1037 CORE_ADDR addr = value_address (func);
1038 const block *blk = block_for_pc (addr);
1039 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1040 if (sym.symbol == NULL)
1041 error (_("No symbol \"%s\" in specified context."), var);
1042 return evaluate_var_value (noside, sym.block, sym.symbol);
1043 }
1044
1045 /* Helper function that implements the body of OP_REGISTER. */
1046
1047 struct value *
1048 eval_op_register (struct type *expect_type, struct expression *exp,
1049 enum noside noside, const char *name)
1050 {
1051 int regno;
1052 struct value *val;
1053
1054 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1055 name, strlen (name));
1056 if (regno == -1)
1057 error (_("Register $%s not available."), name);
1058
1059 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1060 a value with the appropriate register type. Unfortunately,
1061 we don't have easy access to the type of user registers.
1062 So for these registers, we fetch the register value regardless
1063 of the evaluation mode. */
1064 if (noside == EVAL_AVOID_SIDE_EFFECTS
1065 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1066 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1067 else
1068 val = value_of_register (regno, get_selected_frame (NULL));
1069 if (val == NULL)
1070 error (_("Value of register %s not available."), name);
1071 else
1072 return val;
1073 }
1074
1075 /* Helper function that implements the body of OP_STRING. */
1076
1077 struct value *
1078 eval_op_string (struct type *expect_type, struct expression *exp,
1079 enum noside noside, int len, const char *string)
1080 {
1081 struct type *type = language_string_char_type (exp->language_defn,
1082 exp->gdbarch);
1083 return value_string (string, len, type);
1084 }
1085
1086 /* Helper function that implements the body of OP_OBJC_SELECTOR. */
1087
1088 struct value *
1089 eval_op_objc_selector (struct type *expect_type, struct expression *exp,
1090 enum noside noside,
1091 const char *sel)
1092 {
1093 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1094 return value_from_longest (selector_type,
1095 lookup_child_selector (exp->gdbarch, sel));
1096 }
1097
1098 /* Helper function that implements the body of BINOP_CONCAT. */
1099
1100 struct value *
1101 eval_op_concat (struct type *expect_type, struct expression *exp,
1102 enum noside noside, struct value *arg1, struct value *arg2)
1103 {
1104 if (binop_user_defined_p (BINOP_CONCAT, arg1, arg2))
1105 return value_x_binop (arg1, arg2, BINOP_CONCAT, OP_NULL, noside);
1106 else
1107 return value_concat (arg1, arg2);
1108 }
1109
1110 /* A helper function for TERNOP_SLICE. */
1111
1112 struct value *
1113 eval_op_ternop (struct type *expect_type, struct expression *exp,
1114 enum noside noside,
1115 struct value *array, struct value *low, struct value *upper)
1116 {
1117 int lowbound = value_as_long (low);
1118 int upperbound = value_as_long (upper);
1119 return value_slice (array, lowbound, upperbound - lowbound + 1);
1120 }
1121
1122 /* A helper function for STRUCTOP_STRUCT. */
1123
1124 struct value *
1125 eval_op_structop_struct (struct type *expect_type, struct expression *exp,
1126 enum noside noside,
1127 struct value *arg1, const char *string)
1128 {
1129 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1130 NULL, "structure");
1131 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1132 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1133 return arg3;
1134 }
1135
1136 /* A helper function for STRUCTOP_PTR. */
1137
1138 struct value *
1139 eval_op_structop_ptr (struct type *expect_type, struct expression *exp,
1140 enum noside noside,
1141 struct value *arg1, const char *string)
1142 {
1143 /* Check to see if operator '->' has been overloaded. If so replace
1144 arg1 with the value returned by evaluating operator->(). */
1145 while (unop_user_defined_p (STRUCTOP_PTR, arg1))
1146 {
1147 struct value *value = NULL;
1148 try
1149 {
1150 value = value_x_unop (arg1, STRUCTOP_PTR, noside);
1151 }
1152
1153 catch (const gdb_exception_error &except)
1154 {
1155 if (except.error == NOT_FOUND_ERROR)
1156 break;
1157 else
1158 throw;
1159 }
1160
1161 arg1 = value;
1162 }
1163
1164 /* JYG: if print object is on we need to replace the base type
1165 with rtti type in order to continue on with successful
1166 lookup of member / method only available in the rtti type. */
1167 {
1168 struct type *arg_type = value_type (arg1);
1169 struct type *real_type;
1170 int full, using_enc;
1171 LONGEST top;
1172 struct value_print_options opts;
1173
1174 get_user_print_options (&opts);
1175 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
1176 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
1177 {
1178 real_type = value_rtti_indirect_type (arg1, &full, &top,
1179 &using_enc);
1180 if (real_type)
1181 arg1 = value_cast (real_type, arg1);
1182 }
1183 }
1184
1185 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1186 NULL, "structure pointer");
1187 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1188 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1189 return arg3;
1190 }
1191
1192 /* A helper function for STRUCTOP_MEMBER. */
1193
1194 struct value *
1195 eval_op_member (struct type *expect_type, struct expression *exp,
1196 enum noside noside,
1197 struct value *arg1, struct value *arg2)
1198 {
1199 long mem_offset;
1200
1201 struct value *arg3;
1202 struct type *type = check_typedef (value_type (arg2));
1203 switch (type->code ())
1204 {
1205 case TYPE_CODE_METHODPTR:
1206 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1207 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1208 else
1209 {
1210 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1211 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
1212 return value_ind (arg2);
1213 }
1214
1215 case TYPE_CODE_MEMBERPTR:
1216 /* Now, convert these values to an address. */
1217 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1218 arg1, 1);
1219
1220 mem_offset = value_as_long (arg2);
1221
1222 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1223 value_as_long (arg1) + mem_offset);
1224 return value_ind (arg3);
1225
1226 default:
1227 error (_("non-pointer-to-member value used "
1228 "in pointer-to-member construct"));
1229 }
1230 }
1231
1232 /* A helper function for BINOP_ADD. */
1233
1234 struct value *
1235 eval_op_add (struct type *expect_type, struct expression *exp,
1236 enum noside noside,
1237 struct value *arg1, struct value *arg2)
1238 {
1239 if (binop_user_defined_p (BINOP_ADD, arg1, arg2))
1240 return value_x_binop (arg1, arg2, BINOP_ADD, OP_NULL, noside);
1241 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1242 && is_integral_or_integral_reference (value_type (arg2)))
1243 return value_ptradd (arg1, value_as_long (arg2));
1244 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
1245 && is_integral_or_integral_reference (value_type (arg1)))
1246 return value_ptradd (arg2, value_as_long (arg1));
1247 else
1248 {
1249 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1250 return value_binop (arg1, arg2, BINOP_ADD);
1251 }
1252 }
1253
1254 /* A helper function for BINOP_SUB. */
1255
1256 struct value *
1257 eval_op_sub (struct type *expect_type, struct expression *exp,
1258 enum noside noside,
1259 struct value *arg1, struct value *arg2)
1260 {
1261 if (binop_user_defined_p (BINOP_SUB, arg1, arg2))
1262 return value_x_binop (arg1, arg2, BINOP_SUB, OP_NULL, noside);
1263 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1264 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
1265 {
1266 /* FIXME -- should be ptrdiff_t */
1267 struct type *type = builtin_type (exp->gdbarch)->builtin_long;
1268 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1269 }
1270 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1271 && is_integral_or_integral_reference (value_type (arg2)))
1272 return value_ptradd (arg1, - value_as_long (arg2));
1273 else
1274 {
1275 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1276 return value_binop (arg1, arg2, BINOP_SUB);
1277 }
1278 }
1279
1280 /* Helper function for several different binary operations. */
1281
1282 struct value *
1283 eval_op_binary (struct type *expect_type, struct expression *exp,
1284 enum noside noside, enum exp_opcode op,
1285 struct value *arg1, struct value *arg2)
1286 {
1287 if (binop_user_defined_p (op, arg1, arg2))
1288 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1289 else
1290 {
1291 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1292 fudge arg2 to avoid division-by-zero, the caller is
1293 (theoretically) only looking for the type of the result. */
1294 if (noside == EVAL_AVOID_SIDE_EFFECTS
1295 /* ??? Do we really want to test for BINOP_MOD here?
1296 The implementation of value_binop gives it a well-defined
1297 value. */
1298 && (op == BINOP_DIV
1299 || op == BINOP_INTDIV
1300 || op == BINOP_REM
1301 || op == BINOP_MOD)
1302 && value_logical_not (arg2))
1303 {
1304 struct value *v_one;
1305
1306 v_one = value_one (value_type (arg2));
1307 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1308 return value_binop (arg1, v_one, op);
1309 }
1310 else
1311 {
1312 /* For shift and integer exponentiation operations,
1313 only promote the first argument. */
1314 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1315 && is_integral_type (value_type (arg2)))
1316 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1317 else
1318 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1319
1320 return value_binop (arg1, arg2, op);
1321 }
1322 }
1323 }
1324
1325 /* A helper function for BINOP_SUBSCRIPT. */
1326
1327 struct value *
1328 eval_op_subscript (struct type *expect_type, struct expression *exp,
1329 enum noside noside, enum exp_opcode op,
1330 struct value *arg1, struct value *arg2)
1331 {
1332 if (binop_user_defined_p (op, arg1, arg2))
1333 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1334 else
1335 {
1336 /* If the user attempts to subscript something that is not an
1337 array or pointer type (like a plain int variable for example),
1338 then report this as an error. */
1339
1340 arg1 = coerce_ref (arg1);
1341 struct type *type = check_typedef (value_type (arg1));
1342 if (type->code () != TYPE_CODE_ARRAY
1343 && type->code () != TYPE_CODE_PTR)
1344 {
1345 if (type->name ())
1346 error (_("cannot subscript something of type `%s'"),
1347 type->name ());
1348 else
1349 error (_("cannot subscript requested type"));
1350 }
1351
1352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1353 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1354 else
1355 return value_subscript (arg1, value_as_long (arg2));
1356 }
1357 }
1358
1359 /* A helper function for BINOP_EQUAL. */
1360
1361 struct value *
1362 eval_op_equal (struct type *expect_type, struct expression *exp,
1363 enum noside noside, enum exp_opcode op,
1364 struct value *arg1, struct value *arg2)
1365 {
1366 if (binop_user_defined_p (op, arg1, arg2))
1367 {
1368 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1369 }
1370 else
1371 {
1372 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1373 int tem = value_equal (arg1, arg2);
1374 struct type *type = language_bool_type (exp->language_defn,
1375 exp->gdbarch);
1376 return value_from_longest (type, (LONGEST) tem);
1377 }
1378 }
1379
1380 /* A helper function for BINOP_NOTEQUAL. */
1381
1382 struct value *
1383 eval_op_notequal (struct type *expect_type, struct expression *exp,
1384 enum noside noside, enum exp_opcode op,
1385 struct value *arg1, struct value *arg2)
1386 {
1387 if (binop_user_defined_p (op, arg1, arg2))
1388 {
1389 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1390 }
1391 else
1392 {
1393 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1394 int tem = value_equal (arg1, arg2);
1395 struct type *type = language_bool_type (exp->language_defn,
1396 exp->gdbarch);
1397 return value_from_longest (type, (LONGEST) ! tem);
1398 }
1399 }
1400
1401 /* A helper function for BINOP_LESS. */
1402
1403 struct value *
1404 eval_op_less (struct type *expect_type, struct expression *exp,
1405 enum noside noside, enum exp_opcode op,
1406 struct value *arg1, struct value *arg2)
1407 {
1408 if (binop_user_defined_p (op, arg1, arg2))
1409 {
1410 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1411 }
1412 else
1413 {
1414 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1415 int tem = value_less (arg1, arg2);
1416 struct type *type = language_bool_type (exp->language_defn,
1417 exp->gdbarch);
1418 return value_from_longest (type, (LONGEST) tem);
1419 }
1420 }
1421
1422 /* A helper function for BINOP_GTR. */
1423
1424 struct value *
1425 eval_op_gtr (struct type *expect_type, struct expression *exp,
1426 enum noside noside, enum exp_opcode op,
1427 struct value *arg1, struct value *arg2)
1428 {
1429 if (binop_user_defined_p (op, arg1, arg2))
1430 {
1431 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1432 }
1433 else
1434 {
1435 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1436 int tem = value_less (arg2, arg1);
1437 struct type *type = language_bool_type (exp->language_defn,
1438 exp->gdbarch);
1439 return value_from_longest (type, (LONGEST) tem);
1440 }
1441 }
1442
1443 /* A helper function for BINOP_GEQ. */
1444
1445 struct value *
1446 eval_op_geq (struct type *expect_type, struct expression *exp,
1447 enum noside noside, enum exp_opcode op,
1448 struct value *arg1, struct value *arg2)
1449 {
1450 if (binop_user_defined_p (op, arg1, arg2))
1451 {
1452 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1453 }
1454 else
1455 {
1456 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1457 int tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1458 struct type *type = language_bool_type (exp->language_defn,
1459 exp->gdbarch);
1460 return value_from_longest (type, (LONGEST) tem);
1461 }
1462 }
1463
1464 /* A helper function for BINOP_LEQ. */
1465
1466 struct value *
1467 eval_op_leq (struct type *expect_type, struct expression *exp,
1468 enum noside noside, enum exp_opcode op,
1469 struct value *arg1, struct value *arg2)
1470 {
1471 if (binop_user_defined_p (op, arg1, arg2))
1472 {
1473 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1474 }
1475 else
1476 {
1477 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1478 int tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
1479 struct type *type = language_bool_type (exp->language_defn,
1480 exp->gdbarch);
1481 return value_from_longest (type, (LONGEST) tem);
1482 }
1483 }
1484
1485 /* A helper function for BINOP_REPEAT. */
1486
1487 struct value *
1488 eval_op_repeat (struct type *expect_type, struct expression *exp,
1489 enum noside noside, enum exp_opcode op,
1490 struct value *arg1, struct value *arg2)
1491 {
1492 struct type *type = check_typedef (value_type (arg2));
1493 if (type->code () != TYPE_CODE_INT
1494 && type->code () != TYPE_CODE_ENUM)
1495 error (_("Non-integral right operand for \"@\" operator."));
1496 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1497 {
1498 return allocate_repeat_value (value_type (arg1),
1499 longest_to_int (value_as_long (arg2)));
1500 }
1501 else
1502 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
1503 }
1504
1505 /* A helper function for UNOP_PLUS. */
1506
1507 struct value *
1508 eval_op_plus (struct type *expect_type, struct expression *exp,
1509 enum noside noside, enum exp_opcode op,
1510 struct value *arg1)
1511 {
1512 if (unop_user_defined_p (op, arg1))
1513 return value_x_unop (arg1, op, noside);
1514 else
1515 {
1516 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1517 return value_pos (arg1);
1518 }
1519 }
1520
1521 /* A helper function for UNOP_NEG. */
1522
1523 struct value *
1524 eval_op_neg (struct type *expect_type, struct expression *exp,
1525 enum noside noside, enum exp_opcode op,
1526 struct value *arg1)
1527 {
1528 if (unop_user_defined_p (op, arg1))
1529 return value_x_unop (arg1, op, noside);
1530 else
1531 {
1532 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1533 return value_neg (arg1);
1534 }
1535 }
1536
1537 /* A helper function for UNOP_COMPLEMENT. */
1538
1539 struct value *
1540 eval_op_complement (struct type *expect_type, struct expression *exp,
1541 enum noside noside, enum exp_opcode op,
1542 struct value *arg1)
1543 {
1544 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
1545 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
1546 else
1547 {
1548 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1549 return value_complement (arg1);
1550 }
1551 }
1552
1553 /* A helper function for UNOP_LOGICAL_NOT. */
1554
1555 struct value *
1556 eval_op_lognot (struct type *expect_type, struct expression *exp,
1557 enum noside noside, enum exp_opcode op,
1558 struct value *arg1)
1559 {
1560 if (unop_user_defined_p (op, arg1))
1561 return value_x_unop (arg1, op, noside);
1562 else
1563 {
1564 struct type *type = language_bool_type (exp->language_defn,
1565 exp->gdbarch);
1566 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
1567 }
1568 }
1569
1570 /* A helper function for UNOP_IND. */
1571
1572 struct value *
1573 eval_op_ind (struct type *expect_type, struct expression *exp,
1574 enum noside noside,
1575 struct value *arg1)
1576 {
1577 struct type *type = check_typedef (value_type (arg1));
1578 if (type->code () == TYPE_CODE_METHODPTR
1579 || type->code () == TYPE_CODE_MEMBERPTR)
1580 error (_("Attempt to dereference pointer "
1581 "to member without an object"));
1582 if (unop_user_defined_p (UNOP_IND, arg1))
1583 return value_x_unop (arg1, UNOP_IND, noside);
1584 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
1585 {
1586 type = check_typedef (value_type (arg1));
1587
1588 /* If the type pointed to is dynamic then in order to resolve the
1589 dynamic properties we must actually dereference the pointer.
1590 There is a risk that this dereference will have side-effects
1591 in the inferior, but being able to print accurate type
1592 information seems worth the risk. */
1593 if ((type->code () != TYPE_CODE_PTR
1594 && !TYPE_IS_REFERENCE (type))
1595 || !is_dynamic_type (TYPE_TARGET_TYPE (type)))
1596 {
1597 if (type->code () == TYPE_CODE_PTR
1598 || TYPE_IS_REFERENCE (type)
1599 /* In C you can dereference an array to get the 1st elt. */
1600 || type->code () == TYPE_CODE_ARRAY)
1601 return value_zero (TYPE_TARGET_TYPE (type),
1602 lval_memory);
1603 else if (type->code () == TYPE_CODE_INT)
1604 /* GDB allows dereferencing an int. */
1605 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1606 lval_memory);
1607 else
1608 error (_("Attempt to take contents of a non-pointer value."));
1609 }
1610 }
1611
1612 /* Allow * on an integer so we can cast it to whatever we want.
1613 This returns an int, which seems like the most C-like thing to
1614 do. "long long" variables are rare enough that
1615 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
1616 if (type->code () == TYPE_CODE_INT)
1617 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
1618 (CORE_ADDR) value_as_address (arg1));
1619 return value_ind (arg1);
1620 }
1621
1622 /* A helper function for UNOP_ALIGNOF. */
1623
1624 struct value *
1625 eval_op_alignof (struct type *expect_type, struct expression *exp,
1626 enum noside noside,
1627 struct value *arg1)
1628 {
1629 struct type *type = value_type (arg1);
1630 /* FIXME: This should be size_t. */
1631 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
1632 ULONGEST align = type_align (type);
1633 if (align == 0)
1634 error (_("could not determine alignment of type"));
1635 return value_from_longest (size_type, align);
1636 }
1637
1638 /* A helper function for UNOP_MEMVAL. */
1639
1640 struct value *
1641 eval_op_memval (struct type *expect_type, struct expression *exp,
1642 enum noside noside,
1643 struct value *arg1, struct type *type)
1644 {
1645 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1646 return value_zero (type, lval_memory);
1647 else
1648 return value_at_lazy (type, value_as_address (arg1));
1649 }
1650
1651 /* A helper function for UNOP_PREINCREMENT. */
1652
1653 struct value *
1654 eval_op_preinc (struct type *expect_type, struct expression *exp,
1655 enum noside noside, enum exp_opcode op,
1656 struct value *arg1)
1657 {
1658 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1659 return arg1;
1660 else if (unop_user_defined_p (op, arg1))
1661 {
1662 return value_x_unop (arg1, op, noside);
1663 }
1664 else
1665 {
1666 struct value *arg2;
1667 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
1668 arg2 = value_ptradd (arg1, 1);
1669 else
1670 {
1671 struct value *tmp = arg1;
1672
1673 arg2 = value_one (value_type (arg1));
1674 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1675 arg2 = value_binop (tmp, arg2, BINOP_ADD);
1676 }
1677
1678 return value_assign (arg1, arg2);
1679 }
1680 }
1681
1682 /* A helper function for UNOP_PREDECREMENT. */
1683
1684 struct value *
1685 eval_op_predec (struct type *expect_type, struct expression *exp,
1686 enum noside noside, enum exp_opcode op,
1687 struct value *arg1)
1688 {
1689 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1690 return arg1;
1691 else if (unop_user_defined_p (op, arg1))
1692 {
1693 return value_x_unop (arg1, op, noside);
1694 }
1695 else
1696 {
1697 struct value *arg2;
1698 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
1699 arg2 = value_ptradd (arg1, -1);
1700 else
1701 {
1702 struct value *tmp = arg1;
1703
1704 arg2 = value_one (value_type (arg1));
1705 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1706 arg2 = value_binop (tmp, arg2, BINOP_SUB);
1707 }
1708
1709 return value_assign (arg1, arg2);
1710 }
1711 }
1712
1713 /* A helper function for UNOP_POSTINCREMENT. */
1714
1715 struct value *
1716 eval_op_postinc (struct type *expect_type, struct expression *exp,
1717 enum noside noside, enum exp_opcode op,
1718 struct value *arg1)
1719 {
1720 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1721 return arg1;
1722 else if (unop_user_defined_p (op, arg1))
1723 {
1724 return value_x_unop (arg1, op, noside);
1725 }
1726 else
1727 {
1728 struct value *arg3 = value_non_lval (arg1);
1729 struct value *arg2;
1730
1731 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
1732 arg2 = value_ptradd (arg1, 1);
1733 else
1734 {
1735 struct value *tmp = arg1;
1736
1737 arg2 = value_one (value_type (arg1));
1738 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1739 arg2 = value_binop (tmp, arg2, BINOP_ADD);
1740 }
1741
1742 value_assign (arg1, arg2);
1743 return arg3;
1744 }
1745 }
1746
1747 /* A helper function for UNOP_POSTDECREMENT. */
1748
1749 struct value *
1750 eval_op_postdec (struct type *expect_type, struct expression *exp,
1751 enum noside noside, enum exp_opcode op,
1752 struct value *arg1)
1753 {
1754 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1755 return arg1;
1756 else if (unop_user_defined_p (op, arg1))
1757 {
1758 return value_x_unop (arg1, op, noside);
1759 }
1760 else
1761 {
1762 struct value *arg3 = value_non_lval (arg1);
1763 struct value *arg2;
1764
1765 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
1766 arg2 = value_ptradd (arg1, -1);
1767 else
1768 {
1769 struct value *tmp = arg1;
1770
1771 arg2 = value_one (value_type (arg1));
1772 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1773 arg2 = value_binop (tmp, arg2, BINOP_SUB);
1774 }
1775
1776 value_assign (arg1, arg2);
1777 return arg3;
1778 }
1779 }
1780
1781 /* A helper function for OP_TYPE. */
1782
1783 struct value *
1784 eval_op_type (struct type *expect_type, struct expression *exp,
1785 enum noside noside, struct type *type)
1786 {
1787 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1788 return allocate_value (type);
1789 else
1790 error (_("Attempt to use a type name as an expression"));
1791 }
1792
1793 /* A helper function for BINOP_ASSIGN_MODIFY. */
1794
1795 struct value *
1796 eval_binop_assign_modify (struct type *expect_type, struct expression *exp,
1797 enum noside noside, enum exp_opcode op,
1798 struct value *arg1, struct value *arg2)
1799 {
1800 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1801 return arg1;
1802 if (binop_user_defined_p (op, arg1, arg2))
1803 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1804 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
1805 value_type (arg1))
1806 && is_integral_type (value_type (arg2)))
1807 arg2 = value_ptradd (arg1, value_as_long (arg2));
1808 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
1809 value_type (arg1))
1810 && is_integral_type (value_type (arg2)))
1811 arg2 = value_ptradd (arg1, - value_as_long (arg2));
1812 else
1813 {
1814 struct value *tmp = arg1;
1815
1816 /* For shift and integer exponentiation operations,
1817 only promote the first argument. */
1818 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1819 && is_integral_type (value_type (arg2)))
1820 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
1821 else
1822 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1823
1824 arg2 = value_binop (tmp, arg2, op);
1825 }
1826 return value_assign (arg1, arg2);
1827 }
1828
1829 /* Note that ARGS needs 2 empty slots up front and must end with a
1830 null pointer. */
1831 static struct value *
1832 eval_op_objc_msgcall (struct type *expect_type, struct expression *exp,
1833 enum noside noside, CORE_ADDR selector,
1834 value *target, gdb::array_view<value *> args)
1835 {
1836 CORE_ADDR responds_selector = 0;
1837 CORE_ADDR method_selector = 0;
1838
1839 int struct_return = 0;
1840
1841 struct value *msg_send = NULL;
1842 struct value *msg_send_stret = NULL;
1843 int gnu_runtime = 0;
1844
1845 struct value *method = NULL;
1846 struct value *called_method = NULL;
1847
1848 struct type *selector_type = NULL;
1849 struct type *long_type;
1850 struct type *type;
1851
1852 struct value *ret = NULL;
1853 CORE_ADDR addr = 0;
1854
1855 value *argvec[5];
1856
1857 long_type = builtin_type (exp->gdbarch)->builtin_long;
1858 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1859
1860 if (value_as_long (target) == 0)
1861 return value_from_longest (long_type, 0);
1862
1863 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
1864 gnu_runtime = 1;
1865
1866 /* Find the method dispatch (Apple runtime) or method lookup
1867 (GNU runtime) function for Objective-C. These will be used
1868 to lookup the symbol information for the method. If we
1869 can't find any symbol information, then we'll use these to
1870 call the method, otherwise we can call the method
1871 directly. The msg_send_stret function is used in the special
1872 case of a method that returns a structure (Apple runtime
1873 only). */
1874 if (gnu_runtime)
1875 {
1876 type = selector_type;
1877
1878 type = lookup_function_type (type);
1879 type = lookup_pointer_type (type);
1880 type = lookup_function_type (type);
1881 type = lookup_pointer_type (type);
1882
1883 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1884 msg_send_stret
1885 = find_function_in_inferior ("objc_msg_lookup", NULL);
1886
1887 msg_send = value_from_pointer (type, value_as_address (msg_send));
1888 msg_send_stret = value_from_pointer (type,
1889 value_as_address (msg_send_stret));
1890 }
1891 else
1892 {
1893 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1894 /* Special dispatcher for methods returning structs. */
1895 msg_send_stret
1896 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1897 }
1898
1899 /* Verify the target object responds to this method. The
1900 standard top-level 'Object' class uses a different name for
1901 the verification method than the non-standard, but more
1902 often used, 'NSObject' class. Make sure we check for both. */
1903
1904 responds_selector
1905 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1906 if (responds_selector == 0)
1907 responds_selector
1908 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1909
1910 if (responds_selector == 0)
1911 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1912
1913 method_selector
1914 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1915 if (method_selector == 0)
1916 method_selector
1917 = lookup_child_selector (exp->gdbarch, "methodFor:");
1918
1919 if (method_selector == 0)
1920 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1921
1922 /* Call the verification method, to make sure that the target
1923 class implements the desired method. */
1924
1925 argvec[0] = msg_send;
1926 argvec[1] = target;
1927 argvec[2] = value_from_longest (long_type, responds_selector);
1928 argvec[3] = value_from_longest (long_type, selector);
1929 argvec[4] = 0;
1930
1931 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1932 if (gnu_runtime)
1933 {
1934 /* Function objc_msg_lookup returns a pointer. */
1935 argvec[0] = ret;
1936 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1937 }
1938 if (value_as_long (ret) == 0)
1939 error (_("Target does not respond to this message selector."));
1940
1941 /* Call "methodForSelector:" method, to get the address of a
1942 function method that implements this selector for this
1943 class. If we can find a symbol at that address, then we
1944 know the return type, parameter types etc. (that's a good
1945 thing). */
1946
1947 argvec[0] = msg_send;
1948 argvec[1] = target;
1949 argvec[2] = value_from_longest (long_type, method_selector);
1950 argvec[3] = value_from_longest (long_type, selector);
1951 argvec[4] = 0;
1952
1953 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1954 if (gnu_runtime)
1955 {
1956 argvec[0] = ret;
1957 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1958 }
1959
1960 /* ret should now be the selector. */
1961
1962 addr = value_as_long (ret);
1963 if (addr)
1964 {
1965 struct symbol *sym = NULL;
1966
1967 /* The address might point to a function descriptor;
1968 resolve it to the actual code address instead. */
1969 addr = gdbarch_convert_from_func_ptr_addr
1970 (exp->gdbarch, addr, current_inferior ()->top_target ());
1971
1972 /* Is it a high_level symbol? */
1973 sym = find_pc_function (addr);
1974 if (sym != NULL)
1975 method = value_of_variable (sym, 0);
1976 }
1977
1978 /* If we found a method with symbol information, check to see
1979 if it returns a struct. Otherwise assume it doesn't. */
1980
1981 if (method)
1982 {
1983 CORE_ADDR funaddr;
1984 struct type *val_type;
1985
1986 funaddr = find_function_addr (method, &val_type);
1987
1988 block_for_pc (funaddr);
1989
1990 val_type = check_typedef (val_type);
1991
1992 if ((val_type == NULL)
1993 || (val_type->code () == TYPE_CODE_ERROR))
1994 {
1995 if (expect_type != NULL)
1996 val_type = expect_type;
1997 }
1998
1999 struct_return = using_struct_return (exp->gdbarch, method,
2000 val_type);
2001 }
2002 else if (expect_type != NULL)
2003 {
2004 struct_return = using_struct_return (exp->gdbarch, NULL,
2005 check_typedef (expect_type));
2006 }
2007
2008 /* Found a function symbol. Now we will substitute its
2009 value in place of the message dispatcher (obj_msgSend),
2010 so that we call the method directly instead of thru
2011 the dispatcher. The main reason for doing this is that
2012 we can now evaluate the return value and parameter values
2013 according to their known data types, in case we need to
2014 do things like promotion, dereferencing, special handling
2015 of structs and doubles, etc.
2016
2017 We want to use the type signature of 'method', but still
2018 jump to objc_msgSend() or objc_msgSend_stret() to better
2019 mimic the behavior of the runtime. */
2020
2021 if (method)
2022 {
2023 if (value_type (method)->code () != TYPE_CODE_FUNC)
2024 error (_("method address has symbol information "
2025 "with non-function type; skipping"));
2026
2027 /* Create a function pointer of the appropriate type, and
2028 replace its value with the value of msg_send or
2029 msg_send_stret. We must use a pointer here, as
2030 msg_send and msg_send_stret are of pointer type, and
2031 the representation may be different on systems that use
2032 function descriptors. */
2033 if (struct_return)
2034 called_method
2035 = value_from_pointer (lookup_pointer_type (value_type (method)),
2036 value_as_address (msg_send_stret));
2037 else
2038 called_method
2039 = value_from_pointer (lookup_pointer_type (value_type (method)),
2040 value_as_address (msg_send));
2041 }
2042 else
2043 {
2044 if (struct_return)
2045 called_method = msg_send_stret;
2046 else
2047 called_method = msg_send;
2048 }
2049
2050
2051 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2052 {
2053 /* If the return type doesn't look like a function type,
2054 call an error. This can happen if somebody tries to
2055 turn a variable into a function call. This is here
2056 because people often want to call, eg, strcmp, which
2057 gdb doesn't know is a function. If gdb isn't asked for
2058 it's opinion (ie. through "whatis"), it won't offer
2059 it. */
2060
2061 struct type *callee_type = value_type (called_method);
2062
2063 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
2064 callee_type = TYPE_TARGET_TYPE (callee_type);
2065 callee_type = TYPE_TARGET_TYPE (callee_type);
2066
2067 if (callee_type)
2068 {
2069 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
2070 return allocate_value (expect_type);
2071 else
2072 return allocate_value (callee_type);
2073 }
2074 else
2075 error (_("Expression of type other than "
2076 "\"method returning ...\" used as a method"));
2077 }
2078
2079 /* Now depending on whether we found a symbol for the method,
2080 we will either call the runtime dispatcher or the method
2081 directly. */
2082
2083 args[0] = target;
2084 args[1] = value_from_longest (long_type, selector);
2085
2086 if (gnu_runtime && (method != NULL))
2087 {
2088 /* Function objc_msg_lookup returns a pointer. */
2089 struct type *tem_type = value_type (called_method);
2090 tem_type = lookup_pointer_type (lookup_function_type (tem_type));
2091 deprecated_set_value_type (called_method, tem_type);
2092 called_method = call_function_by_hand (called_method, NULL, args);
2093 }
2094
2095 return call_function_by_hand (called_method, NULL, args);
2096 }
2097
2098 /* Helper function for MULTI_SUBSCRIPT. */
2099
2100 static struct value *
2101 eval_multi_subscript (struct type *expect_type, struct expression *exp,
2102 enum noside noside, value *arg1,
2103 gdb::array_view<value *> args)
2104 {
2105 for (value *arg2 : args)
2106 {
2107 if (binop_user_defined_p (MULTI_SUBSCRIPT, arg1, arg2))
2108 {
2109 arg1 = value_x_binop (arg1, arg2, MULTI_SUBSCRIPT, OP_NULL, noside);
2110 }
2111 else
2112 {
2113 arg1 = coerce_ref (arg1);
2114 struct type *type = check_typedef (value_type (arg1));
2115
2116 switch (type->code ())
2117 {
2118 case TYPE_CODE_PTR:
2119 case TYPE_CODE_ARRAY:
2120 case TYPE_CODE_STRING:
2121 arg1 = value_subscript (arg1, value_as_long (arg2));
2122 break;
2123
2124 default:
2125 if (type->name ())
2126 error (_("cannot subscript something of type `%s'"),
2127 type->name ());
2128 else
2129 error (_("cannot subscript requested type"));
2130 }
2131 }
2132 }
2133 return (arg1);
2134 }
2135
2136 namespace expr
2137 {
2138
2139 value *
2140 objc_msgcall_operation::evaluate (struct type *expect_type,
2141 struct expression *exp,
2142 enum noside noside)
2143 {
2144 enum noside sub_no_side = EVAL_NORMAL;
2145 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
2146
2147 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2148 sub_no_side = EVAL_NORMAL;
2149 else
2150 sub_no_side = noside;
2151 value *target
2152 = std::get<1> (m_storage)->evaluate (selector_type, exp, sub_no_side);
2153
2154 if (value_as_long (target) == 0)
2155 sub_no_side = EVAL_AVOID_SIDE_EFFECTS;
2156 else
2157 sub_no_side = noside;
2158 std::vector<operation_up> &args = std::get<2> (m_storage);
2159 value **argvec = XALLOCAVEC (struct value *, args.size () + 3);
2160 argvec[0] = nullptr;
2161 argvec[1] = nullptr;
2162 for (int i = 0; i < args.size (); ++i)
2163 argvec[i + 2] = args[i]->evaluate_with_coercion (exp, sub_no_side);
2164 argvec[args.size () + 2] = nullptr;
2165
2166 return eval_op_objc_msgcall (expect_type, exp, noside, std::
2167 get<0> (m_storage), target,
2168 gdb::make_array_view (argvec,
2169 args.size () + 3));
2170 }
2171
2172 value *
2173 multi_subscript_operation::evaluate (struct type *expect_type,
2174 struct expression *exp,
2175 enum noside noside)
2176 {
2177 value *arg1 = std::get<0> (m_storage)->evaluate_with_coercion (exp, noside);
2178 std::vector<operation_up> &values = std::get<1> (m_storage);
2179 value **argvec = XALLOCAVEC (struct value *, values.size ());
2180 for (int ix = 0; ix < values.size (); ++ix)
2181 argvec[ix] = values[ix]->evaluate_with_coercion (exp, noside);
2182 return eval_multi_subscript (expect_type, exp, noside, arg1,
2183 gdb::make_array_view (argvec, values.size ()));
2184 }
2185
2186 value *
2187 logical_and_operation::evaluate (struct type *expect_type,
2188 struct expression *exp,
2189 enum noside noside)
2190 {
2191 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
2192
2193 value *arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp,
2194 EVAL_AVOID_SIDE_EFFECTS);
2195
2196 if (binop_user_defined_p (BINOP_LOGICAL_AND, arg1, arg2))
2197 {
2198 arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
2199 return value_x_binop (arg1, arg2, BINOP_LOGICAL_AND, OP_NULL, noside);
2200 }
2201 else
2202 {
2203 int tem = value_logical_not (arg1);
2204 if (!tem)
2205 {
2206 arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
2207 tem = value_logical_not (arg2);
2208 }
2209 struct type *type = language_bool_type (exp->language_defn,
2210 exp->gdbarch);
2211 return value_from_longest (type, !tem);
2212 }
2213 }
2214
2215 value *
2216 logical_or_operation::evaluate (struct type *expect_type,
2217 struct expression *exp,
2218 enum noside noside)
2219 {
2220 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
2221
2222 value *arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp,
2223 EVAL_AVOID_SIDE_EFFECTS);
2224
2225 if (binop_user_defined_p (BINOP_LOGICAL_OR, arg1, arg2))
2226 {
2227 arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
2228 return value_x_binop (arg1, arg2, BINOP_LOGICAL_OR, OP_NULL, noside);
2229 }
2230 else
2231 {
2232 int tem = value_logical_not (arg1);
2233 if (tem)
2234 {
2235 arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
2236 tem = value_logical_not (arg2);
2237 }
2238
2239 struct type *type = language_bool_type (exp->language_defn,
2240 exp->gdbarch);
2241 return value_from_longest (type, !tem);
2242 }
2243 }
2244
2245 value *
2246 adl_func_operation::evaluate (struct type *expect_type,
2247 struct expression *exp,
2248 enum noside noside)
2249 {
2250 std::vector<operation_up> &arg_ops = std::get<2> (m_storage);
2251 std::vector<value *> args (arg_ops.size ());
2252 for (int i = 0; i < arg_ops.size (); ++i)
2253 args[i] = arg_ops[i]->evaluate_with_coercion (exp, noside);
2254
2255 struct symbol *symp;
2256 find_overload_match (args, std::get<0> (m_storage).c_str (),
2257 NON_METHOD,
2258 nullptr, nullptr,
2259 nullptr, &symp, nullptr, 0, noside);
2260 if (SYMBOL_TYPE (symp)->code () == TYPE_CODE_ERROR)
2261 error_unknown_type (symp->print_name ());
2262 value *callee = evaluate_var_value (noside, std::get<1> (m_storage), symp);
2263 return evaluate_subexp_do_call (exp, noside, callee, args,
2264 nullptr, expect_type);
2265
2266 }
2267
2268 /* This function evaluates brace-initializers (in C/C++) for
2269 structure types. */
2270
2271 struct value *
2272 array_operation::evaluate_struct_tuple (struct value *struct_val,
2273 struct expression *exp,
2274 enum noside noside, int nargs)
2275 {
2276 const std::vector<operation_up> &in_args = std::get<2> (m_storage);
2277 struct type *struct_type = check_typedef (value_type (struct_val));
2278 struct type *field_type;
2279 int fieldno = -1;
2280
2281 int idx = 0;
2282 while (--nargs >= 0)
2283 {
2284 struct value *val = NULL;
2285 int bitpos, bitsize;
2286 bfd_byte *addr;
2287
2288 fieldno++;
2289 /* Skip static fields. */
2290 while (fieldno < struct_type->num_fields ()
2291 && field_is_static (&struct_type->field (fieldno)))
2292 fieldno++;
2293 if (fieldno >= struct_type->num_fields ())
2294 error (_("too many initializers"));
2295 field_type = struct_type->field (fieldno).type ();
2296 if (field_type->code () == TYPE_CODE_UNION
2297 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
2298 error (_("don't know which variant you want to set"));
2299
2300 /* Here, struct_type is the type of the inner struct,
2301 while substruct_type is the type of the inner struct.
2302 These are the same for normal structures, but a variant struct
2303 contains anonymous union fields that contain substruct fields.
2304 The value fieldno is the index of the top-level (normal or
2305 anonymous union) field in struct_field, while the value
2306 subfieldno is the index of the actual real (named inner) field
2307 in substruct_type. */
2308
2309 field_type = struct_type->field (fieldno).type ();
2310 if (val == 0)
2311 val = in_args[idx++]->evaluate (field_type, exp, noside);
2312
2313 /* Now actually set the field in struct_val. */
2314
2315 /* Assign val to field fieldno. */
2316 if (value_type (val) != field_type)
2317 val = value_cast (field_type, val);
2318
2319 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
2320 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
2321 addr = value_contents_writeable (struct_val) + bitpos / 8;
2322 if (bitsize)
2323 modify_field (struct_type, addr,
2324 value_as_long (val), bitpos % 8, bitsize);
2325 else
2326 memcpy (addr, value_contents (val),
2327 TYPE_LENGTH (value_type (val)));
2328
2329 }
2330 return struct_val;
2331 }
2332
2333 value *
2334 array_operation::evaluate (struct type *expect_type,
2335 struct expression *exp,
2336 enum noside noside)
2337 {
2338 int tem;
2339 int tem2 = std::get<0> (m_storage);
2340 int tem3 = std::get<1> (m_storage);
2341 const std::vector<operation_up> &in_args = std::get<2> (m_storage);
2342 int nargs = tem3 - tem2 + 1;
2343 struct type *type = expect_type ? check_typedef (expect_type) : nullptr;
2344
2345 if (expect_type != nullptr
2346 && type->code () == TYPE_CODE_STRUCT)
2347 {
2348 struct value *rec = allocate_value (expect_type);
2349
2350 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
2351 return evaluate_struct_tuple (rec, exp, noside, nargs);
2352 }
2353
2354 if (expect_type != nullptr
2355 && type->code () == TYPE_CODE_ARRAY)
2356 {
2357 struct type *range_type = type->index_type ();
2358 struct type *element_type = TYPE_TARGET_TYPE (type);
2359 struct value *array = allocate_value (expect_type);
2360 int element_size = TYPE_LENGTH (check_typedef (element_type));
2361 LONGEST low_bound, high_bound, index;
2362
2363 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
2364 {
2365 low_bound = 0;
2366 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
2367 }
2368 index = low_bound;
2369 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
2370 for (tem = nargs; --nargs >= 0;)
2371 {
2372 struct value *element;
2373
2374 element = in_args[index - low_bound]->evaluate (element_type,
2375 exp, noside);
2376 if (value_type (element) != element_type)
2377 element = value_cast (element_type, element);
2378 if (index > high_bound)
2379 /* To avoid memory corruption. */
2380 error (_("Too many array elements"));
2381 memcpy (value_contents_raw (array)
2382 + (index - low_bound) * element_size,
2383 value_contents (element),
2384 element_size);
2385 index++;
2386 }
2387 return array;
2388 }
2389
2390 if (expect_type != nullptr
2391 && type->code () == TYPE_CODE_SET)
2392 {
2393 struct value *set = allocate_value (expect_type);
2394 gdb_byte *valaddr = value_contents_raw (set);
2395 struct type *element_type = type->index_type ();
2396 struct type *check_type = element_type;
2397 LONGEST low_bound, high_bound;
2398
2399 /* Get targettype of elementtype. */
2400 while (check_type->code () == TYPE_CODE_RANGE
2401 || check_type->code () == TYPE_CODE_TYPEDEF)
2402 check_type = TYPE_TARGET_TYPE (check_type);
2403
2404 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
2405 error (_("(power)set type with unknown size"));
2406 memset (valaddr, '\0', TYPE_LENGTH (type));
2407 int idx = 0;
2408 for (tem = 0; tem < nargs; tem++)
2409 {
2410 LONGEST range_low, range_high;
2411 struct type *range_low_type, *range_high_type;
2412 struct value *elem_val;
2413
2414 elem_val = in_args[idx++]->evaluate (element_type, exp, noside);
2415 range_low_type = range_high_type = value_type (elem_val);
2416 range_low = range_high = value_as_long (elem_val);
2417
2418 /* Check types of elements to avoid mixture of elements from
2419 different types. Also check if type of element is "compatible"
2420 with element type of powerset. */
2421 if (range_low_type->code () == TYPE_CODE_RANGE)
2422 range_low_type = TYPE_TARGET_TYPE (range_low_type);
2423 if (range_high_type->code () == TYPE_CODE_RANGE)
2424 range_high_type = TYPE_TARGET_TYPE (range_high_type);
2425 if ((range_low_type->code () != range_high_type->code ())
2426 || (range_low_type->code () == TYPE_CODE_ENUM
2427 && (range_low_type != range_high_type)))
2428 /* different element modes. */
2429 error (_("POWERSET tuple elements of different mode"));
2430 if ((check_type->code () != range_low_type->code ())
2431 || (check_type->code () == TYPE_CODE_ENUM
2432 && range_low_type != check_type))
2433 error (_("incompatible POWERSET tuple elements"));
2434 if (range_low > range_high)
2435 {
2436 warning (_("empty POWERSET tuple range"));
2437 continue;
2438 }
2439 if (range_low < low_bound || range_high > high_bound)
2440 error (_("POWERSET tuple element out of range"));
2441 range_low -= low_bound;
2442 range_high -= low_bound;
2443 for (; range_low <= range_high; range_low++)
2444 {
2445 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
2446
2447 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
2448 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
2449 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
2450 |= 1 << bit_index;
2451 }
2452 }
2453 return set;
2454 }
2455
2456 value **argvec = XALLOCAVEC (struct value *, nargs);
2457 for (tem = 0; tem < nargs; tem++)
2458 {
2459 /* Ensure that array expressions are coerced into pointer
2460 objects. */
2461 argvec[tem] = in_args[tem]->evaluate_with_coercion (exp, noside);
2462 }
2463 return value_array (tem2, tem3, argvec);
2464 }
2465
2466 }
2467
2468 \f
2469 /* Helper for evaluate_subexp_for_address. */
2470
2471 static value *
2472 evaluate_subexp_for_address_base (struct expression *exp, enum noside noside,
2473 value *x)
2474 {
2475 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2476 {
2477 struct type *type = check_typedef (value_type (x));
2478
2479 if (TYPE_IS_REFERENCE (type))
2480 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2481 not_lval);
2482 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2483 return value_zero (lookup_pointer_type (value_type (x)),
2484 not_lval);
2485 else
2486 error (_("Attempt to take address of "
2487 "value not located in memory."));
2488 }
2489 return value_addr (x);
2490 }
2491
2492 namespace expr
2493 {
2494
2495 value *
2496 operation::evaluate_for_cast (struct type *expect_type,
2497 struct expression *exp,
2498 enum noside noside)
2499 {
2500 value *val = evaluate (expect_type, exp, noside);
2501 return value_cast (expect_type, val);
2502 }
2503
2504 value *
2505 operation::evaluate_for_address (struct expression *exp, enum noside noside)
2506 {
2507 value *val = evaluate (nullptr, exp, noside);
2508 return evaluate_subexp_for_address_base (exp, noside, val);
2509 }
2510
2511 value *
2512 scope_operation::evaluate_for_address (struct expression *exp,
2513 enum noside noside)
2514 {
2515 value *x = value_aggregate_elt (std::get<0> (m_storage),
2516 std::get<1> (m_storage).c_str (),
2517 NULL, 1, noside);
2518 if (x == NULL)
2519 error (_("There is no field named %s"), std::get<1> (m_storage).c_str ());
2520 return x;
2521 }
2522
2523 value *
2524 unop_ind_base_operation::evaluate_for_address (struct expression *exp,
2525 enum noside noside)
2526 {
2527 value *x = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
2528
2529 /* We can't optimize out "&*" if there's a user-defined operator*. */
2530 if (unop_user_defined_p (UNOP_IND, x))
2531 {
2532 x = value_x_unop (x, UNOP_IND, noside);
2533 return evaluate_subexp_for_address_base (exp, noside, x);
2534 }
2535
2536 return coerce_array (x);
2537 }
2538
2539 value *
2540 var_msym_value_operation::evaluate_for_address (struct expression *exp,
2541 enum noside noside)
2542 {
2543 const bound_minimal_symbol &b = std::get<0> (m_storage);
2544 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
2545 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2546 {
2547 struct type *type = lookup_pointer_type (value_type (val));
2548 return value_zero (type, not_lval);
2549 }
2550 else
2551 return value_addr (val);
2552 }
2553
2554 value *
2555 unop_memval_operation::evaluate_for_address (struct expression *exp,
2556 enum noside noside)
2557 {
2558 return value_cast (lookup_pointer_type (std::get<1> (m_storage)),
2559 std::get<0> (m_storage)->evaluate (nullptr, exp, noside));
2560 }
2561
2562 value *
2563 unop_memval_type_operation::evaluate_for_address (struct expression *exp,
2564 enum noside noside)
2565 {
2566 value *typeval = std::get<0> (m_storage)->evaluate (nullptr, exp,
2567 EVAL_AVOID_SIDE_EFFECTS);
2568 struct type *type = value_type (typeval);
2569 return value_cast (lookup_pointer_type (type),
2570 std::get<1> (m_storage)->evaluate (nullptr, exp, noside));
2571 }
2572
2573 value *
2574 var_value_operation::evaluate_for_address (struct expression *exp,
2575 enum noside noside)
2576 {
2577 symbol *var = std::get<0> (m_storage).symbol;
2578
2579 /* C++: The "address" of a reference should yield the address
2580 * of the object pointed to. Let value_addr() deal with it. */
2581 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
2582 return operation::evaluate_for_address (exp, noside);
2583
2584 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2585 {
2586 struct type *type = lookup_pointer_type (SYMBOL_TYPE (var));
2587 enum address_class sym_class = SYMBOL_CLASS (var);
2588
2589 if (sym_class == LOC_CONST
2590 || sym_class == LOC_CONST_BYTES
2591 || sym_class == LOC_REGISTER)
2592 error (_("Attempt to take address of register or constant."));
2593
2594 return value_zero (type, not_lval);
2595 }
2596 else
2597 return address_of_variable (var, std::get<0> (m_storage).block);
2598 }
2599
2600 value *
2601 var_value_operation::evaluate_with_coercion (struct expression *exp,
2602 enum noside noside)
2603 {
2604 struct symbol *var = std::get<0> (m_storage).symbol;
2605 struct type *type = check_typedef (SYMBOL_TYPE (var));
2606 if (type->code () == TYPE_CODE_ARRAY
2607 && !type->is_vector ()
2608 && CAST_IS_CONVERSION (exp->language_defn))
2609 {
2610 struct value *val = address_of_variable (var,
2611 std::get<0> (m_storage).block);
2612 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), val);
2613 }
2614 return evaluate (nullptr, exp, noside);
2615 }
2616
2617 }
2618
2619 /* Helper function for evaluating the size of a type. */
2620
2621 static value *
2622 evaluate_subexp_for_sizeof_base (struct expression *exp, struct type *type)
2623 {
2624 /* FIXME: This should be size_t. */
2625 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2626 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
2627 "When applied to a reference or a reference type, the result is
2628 the size of the referenced type." */
2629 type = check_typedef (type);
2630 if (exp->language_defn->la_language == language_cplus
2631 && (TYPE_IS_REFERENCE (type)))
2632 type = check_typedef (TYPE_TARGET_TYPE (type));
2633 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2634 }
2635
2636 namespace expr
2637 {
2638
2639 value *
2640 operation::evaluate_for_sizeof (struct expression *exp, enum noside noside)
2641 {
2642 value *val = evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
2643 return evaluate_subexp_for_sizeof_base (exp, value_type (val));
2644 }
2645
2646 value *
2647 var_msym_value_operation::evaluate_for_sizeof (struct expression *exp,
2648 enum noside noside)
2649
2650 {
2651 const bound_minimal_symbol &b = std::get<0> (m_storage);
2652 value *mval = evaluate_var_msym_value (noside, b.objfile, b.minsym);
2653
2654 struct type *type = value_type (mval);
2655 if (type->code () == TYPE_CODE_ERROR)
2656 error_unknown_type (b.minsym->print_name ());
2657
2658 /* FIXME: This should be size_t. */
2659 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2660 return value_from_longest (size_type, TYPE_LENGTH (type));
2661 }
2662
2663 value *
2664 subscript_operation::evaluate_for_sizeof (struct expression *exp,
2665 enum noside noside)
2666 {
2667 if (noside == EVAL_NORMAL)
2668 {
2669 value *val = std::get<0> (m_storage)->evaluate (nullptr, exp,
2670 EVAL_AVOID_SIDE_EFFECTS);
2671 struct type *type = check_typedef (value_type (val));
2672 if (type->code () == TYPE_CODE_ARRAY)
2673 {
2674 type = check_typedef (TYPE_TARGET_TYPE (type));
2675 if (type->code () == TYPE_CODE_ARRAY)
2676 {
2677 type = type->index_type ();
2678 /* Only re-evaluate the right hand side if the resulting type
2679 is a variable length type. */
2680 if (type->bounds ()->flag_bound_evaluated)
2681 {
2682 val = evaluate (nullptr, exp, EVAL_NORMAL);
2683 /* FIXME: This should be size_t. */
2684 struct type *size_type
2685 = builtin_type (exp->gdbarch)->builtin_int;
2686 return value_from_longest
2687 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
2688 }
2689 }
2690 }
2691 }
2692
2693 return operation::evaluate_for_sizeof (exp, noside);
2694 }
2695
2696 value *
2697 unop_ind_base_operation::evaluate_for_sizeof (struct expression *exp,
2698 enum noside noside)
2699 {
2700 value *val = std::get<0> (m_storage)->evaluate (nullptr, exp,
2701 EVAL_AVOID_SIDE_EFFECTS);
2702 struct type *type = check_typedef (value_type (val));
2703 if (type->code () != TYPE_CODE_PTR
2704 && !TYPE_IS_REFERENCE (type)
2705 && type->code () != TYPE_CODE_ARRAY)
2706 error (_("Attempt to take contents of a non-pointer value."));
2707 type = TYPE_TARGET_TYPE (type);
2708 if (is_dynamic_type (type))
2709 type = value_type (value_ind (val));
2710 /* FIXME: This should be size_t. */
2711 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2712 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2713 }
2714
2715 value *
2716 unop_memval_operation::evaluate_for_sizeof (struct expression *exp,
2717 enum noside noside)
2718 {
2719 return evaluate_subexp_for_sizeof_base (exp, std::get<1> (m_storage));
2720 }
2721
2722 value *
2723 unop_memval_type_operation::evaluate_for_sizeof (struct expression *exp,
2724 enum noside noside)
2725 {
2726 value *typeval = std::get<0> (m_storage)->evaluate (nullptr, exp,
2727 EVAL_AVOID_SIDE_EFFECTS);
2728 return evaluate_subexp_for_sizeof_base (exp, value_type (typeval));
2729 }
2730
2731 value *
2732 var_value_operation::evaluate_for_sizeof (struct expression *exp,
2733 enum noside noside)
2734 {
2735 struct type *type = SYMBOL_TYPE (std::get<0> (m_storage).symbol);
2736 if (is_dynamic_type (type))
2737 {
2738 value *val = evaluate (nullptr, exp, EVAL_NORMAL);
2739 type = value_type (val);
2740 if (type->code () == TYPE_CODE_ARRAY)
2741 {
2742 /* FIXME: This should be size_t. */
2743 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2744 if (type_not_allocated (type) || type_not_associated (type))
2745 return value_zero (size_type, not_lval);
2746 else if (is_dynamic_type (type->index_type ())
2747 && type->bounds ()->high.kind () == PROP_UNDEFINED)
2748 return allocate_optimized_out_value (size_type);
2749 }
2750 }
2751 return evaluate_subexp_for_sizeof_base (exp, type);
2752 }
2753
2754 value *
2755 var_msym_value_operation::evaluate_for_cast (struct type *to_type,
2756 struct expression *exp,
2757 enum noside noside)
2758 {
2759 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2760 return value_zero (to_type, not_lval);
2761
2762 const bound_minimal_symbol &b = std::get<0> (m_storage);
2763 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
2764
2765 val = value_cast (to_type, val);
2766
2767 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
2768 if (VALUE_LVAL (val) == lval_memory)
2769 {
2770 if (value_lazy (val))
2771 value_fetch_lazy (val);
2772 VALUE_LVAL (val) = not_lval;
2773 }
2774 return val;
2775 }
2776
2777 value *
2778 var_value_operation::evaluate_for_cast (struct type *to_type,
2779 struct expression *exp,
2780 enum noside noside)
2781 {
2782 value *val = evaluate_var_value (noside,
2783 std::get<0> (m_storage).block,
2784 std::get<0> (m_storage).symbol);
2785
2786 val = value_cast (to_type, val);
2787
2788 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
2789 if (VALUE_LVAL (val) == lval_memory)
2790 {
2791 if (value_lazy (val))
2792 value_fetch_lazy (val);
2793 VALUE_LVAL (val) = not_lval;
2794 }
2795 return val;
2796 }
2797
2798 }
2799
2800 /* Parse a type expression in the string [P..P+LENGTH). */
2801
2802 struct type *
2803 parse_and_eval_type (const char *p, int length)
2804 {
2805 char *tmp = (char *) alloca (length + 4);
2806
2807 tmp[0] = '(';
2808 memcpy (tmp + 1, p, length);
2809 tmp[length + 1] = ')';
2810 tmp[length + 2] = '0';
2811 tmp[length + 3] = '\0';
2812 expression_up expr = parse_expression (tmp);
2813 expr::unop_cast_operation *op
2814 = dynamic_cast<expr::unop_cast_operation *> (expr->op.get ());
2815 if (op == nullptr)
2816 error (_("Internal error in eval_type."));
2817 return op->get_type ();
2818 }
This page took 0.141093 seconds and 4 git commands to generate.