75cea6b5bbd13278a3662dc2f310b122084ea4f9
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "expression.h"
30 #include "target.h"
31 #include "frame.h"
32 #include "language.h" /* For CAST_IS_CONVERSION */
33 #include "f-lang.h" /* for array bound stuff */
34 #include "cp-abi.h"
35 #include "infcall.h"
36 #include "objc-lang.h"
37 #include "block.h"
38 #include "parser-defs.h"
39 #include "cp-support.h"
40 #include "ui-out.h"
41 #include "exceptions.h"
42 #include "regcache.h"
43
44 #include "gdb_assert.h"
45
46 /* This is defined in valops.c */
47 extern int overload_resolution;
48
49 /* JYG: lookup rtti type of STRUCTOP_PTR when this is set to continue
50 on with successful lookup for member/method of the rtti type. */
51 extern int objectprint;
52
53 /* Prototypes for local functions. */
54
55 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
56
57 static struct value *evaluate_subexp_for_address (struct expression *,
58 int *, enum noside);
59
60 static struct value *evaluate_subexp (struct type *, struct expression *,
61 int *, enum noside);
62
63 static char *get_label (struct expression *, int *);
64
65 static struct value *evaluate_struct_tuple (struct value *,
66 struct expression *, int *,
67 enum noside, int);
68
69 static LONGEST init_array_element (struct value *, struct value *,
70 struct expression *, int *, enum noside,
71 LONGEST, LONGEST);
72
73 static struct value *
74 evaluate_subexp (struct type *expect_type, struct expression *exp,
75 int *pos, enum noside noside)
76 {
77 return (*exp->language_defn->la_exp_desc->evaluate_exp)
78 (expect_type, exp, pos, noside);
79 }
80 \f
81 /* Parse the string EXP as a C expression, evaluate it,
82 and return the result as a number. */
83
84 CORE_ADDR
85 parse_and_eval_address (char *exp)
86 {
87 struct expression *expr = parse_expression (exp);
88 CORE_ADDR addr;
89 struct cleanup *old_chain =
90 make_cleanup (free_current_contents, &expr);
91
92 addr = value_as_address (evaluate_expression (expr));
93 do_cleanups (old_chain);
94 return addr;
95 }
96
97 /* Like parse_and_eval_address but takes a pointer to a char * variable
98 and advanced that variable across the characters parsed. */
99
100 CORE_ADDR
101 parse_and_eval_address_1 (char **expptr)
102 {
103 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
104 CORE_ADDR addr;
105 struct cleanup *old_chain =
106 make_cleanup (free_current_contents, &expr);
107
108 addr = value_as_address (evaluate_expression (expr));
109 do_cleanups (old_chain);
110 return addr;
111 }
112
113 /* Like parse_and_eval_address, but treats the value of the expression
114 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
115 LONGEST
116 parse_and_eval_long (char *exp)
117 {
118 struct expression *expr = parse_expression (exp);
119 LONGEST retval;
120 struct cleanup *old_chain =
121 make_cleanup (free_current_contents, &expr);
122
123 retval = value_as_long (evaluate_expression (expr));
124 do_cleanups (old_chain);
125 return (retval);
126 }
127
128 struct value *
129 parse_and_eval (char *exp)
130 {
131 struct expression *expr = parse_expression (exp);
132 struct value *val;
133 struct cleanup *old_chain =
134 make_cleanup (free_current_contents, &expr);
135
136 val = evaluate_expression (expr);
137 do_cleanups (old_chain);
138 return val;
139 }
140
141 /* Parse up to a comma (or to a closeparen)
142 in the string EXPP as an expression, evaluate it, and return the value.
143 EXPP is advanced to point to the comma. */
144
145 struct value *
146 parse_to_comma_and_eval (char **expp)
147 {
148 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
149 struct value *val;
150 struct cleanup *old_chain =
151 make_cleanup (free_current_contents, &expr);
152
153 val = evaluate_expression (expr);
154 do_cleanups (old_chain);
155 return val;
156 }
157 \f
158 /* Evaluate an expression in internal prefix form
159 such as is constructed by parse.y.
160
161 See expression.h for info on the format of an expression. */
162
163 struct value *
164 evaluate_expression (struct expression *exp)
165 {
166 int pc = 0;
167 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
168 }
169
170 /* Evaluate an expression, avoiding all memory references
171 and getting a value whose type alone is correct. */
172
173 struct value *
174 evaluate_type (struct expression *exp)
175 {
176 int pc = 0;
177 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
178 }
179
180 /* If the next expression is an OP_LABELED, skips past it,
181 returning the label. Otherwise, does nothing and returns NULL. */
182
183 static char *
184 get_label (struct expression *exp, int *pos)
185 {
186 if (exp->elts[*pos].opcode == OP_LABELED)
187 {
188 int pc = (*pos)++;
189 char *name = &exp->elts[pc + 2].string;
190 int tem = longest_to_int (exp->elts[pc + 1].longconst);
191 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
192 return name;
193 }
194 else
195 return NULL;
196 }
197
198 /* This function evaluates tuples (in (the deleted) Chill) or
199 brace-initializers (in C/C++) for structure types. */
200
201 static struct value *
202 evaluate_struct_tuple (struct value *struct_val,
203 struct expression *exp,
204 int *pos, enum noside noside, int nargs)
205 {
206 struct type *struct_type = check_typedef (value_type (struct_val));
207 struct type *substruct_type = struct_type;
208 struct type *field_type;
209 int fieldno = -1;
210 int variantno = -1;
211 int subfieldno = -1;
212 while (--nargs >= 0)
213 {
214 int pc = *pos;
215 struct value *val = NULL;
216 int nlabels = 0;
217 int bitpos, bitsize;
218 bfd_byte *addr;
219
220 /* Skip past the labels, and count them. */
221 while (get_label (exp, pos) != NULL)
222 nlabels++;
223
224 do
225 {
226 char *label = get_label (exp, &pc);
227 if (label)
228 {
229 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
230 fieldno++)
231 {
232 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
233 if (field_name != NULL && strcmp (field_name, label) == 0)
234 {
235 variantno = -1;
236 subfieldno = fieldno;
237 substruct_type = struct_type;
238 goto found;
239 }
240 }
241 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
242 fieldno++)
243 {
244 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
245 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
246 if ((field_name == 0 || *field_name == '\0')
247 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
248 {
249 variantno = 0;
250 for (; variantno < TYPE_NFIELDS (field_type);
251 variantno++)
252 {
253 substruct_type
254 = TYPE_FIELD_TYPE (field_type, variantno);
255 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
256 {
257 for (subfieldno = 0;
258 subfieldno < TYPE_NFIELDS (substruct_type);
259 subfieldno++)
260 {
261 if (strcmp(TYPE_FIELD_NAME (substruct_type,
262 subfieldno),
263 label) == 0)
264 {
265 goto found;
266 }
267 }
268 }
269 }
270 }
271 }
272 error (_("there is no field named %s"), label);
273 found:
274 ;
275 }
276 else
277 {
278 /* Unlabelled tuple element - go to next field. */
279 if (variantno >= 0)
280 {
281 subfieldno++;
282 if (subfieldno >= TYPE_NFIELDS (substruct_type))
283 {
284 variantno = -1;
285 substruct_type = struct_type;
286 }
287 }
288 if (variantno < 0)
289 {
290 fieldno++;
291 /* Skip static fields. */
292 while (fieldno < TYPE_NFIELDS (struct_type)
293 && TYPE_FIELD_STATIC_KIND (struct_type, fieldno))
294 fieldno++;
295 subfieldno = fieldno;
296 if (fieldno >= TYPE_NFIELDS (struct_type))
297 error (_("too many initializers"));
298 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
299 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
300 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
301 error (_("don't know which variant you want to set"));
302 }
303 }
304
305 /* Here, struct_type is the type of the inner struct,
306 while substruct_type is the type of the inner struct.
307 These are the same for normal structures, but a variant struct
308 contains anonymous union fields that contain substruct fields.
309 The value fieldno is the index of the top-level (normal or
310 anonymous union) field in struct_field, while the value
311 subfieldno is the index of the actual real (named inner) field
312 in substruct_type. */
313
314 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
315 if (val == 0)
316 val = evaluate_subexp (field_type, exp, pos, noside);
317
318 /* Now actually set the field in struct_val. */
319
320 /* Assign val to field fieldno. */
321 if (value_type (val) != field_type)
322 val = value_cast (field_type, val);
323
324 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
325 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
326 if (variantno >= 0)
327 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
328 addr = value_contents_writeable (struct_val) + bitpos / 8;
329 if (bitsize)
330 modify_field (addr, value_as_long (val),
331 bitpos % 8, bitsize);
332 else
333 memcpy (addr, value_contents (val),
334 TYPE_LENGTH (value_type (val)));
335 }
336 while (--nlabels > 0);
337 }
338 return struct_val;
339 }
340
341 /* Recursive helper function for setting elements of array tuples for
342 (the deleted) Chill. The target is ARRAY (which has bounds
343 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
344 and NOSIDE are as usual. Evaluates index expresions and sets the
345 specified element(s) of ARRAY to ELEMENT. Returns last index
346 value. */
347
348 static LONGEST
349 init_array_element (struct value *array, struct value *element,
350 struct expression *exp, int *pos,
351 enum noside noside, LONGEST low_bound, LONGEST high_bound)
352 {
353 LONGEST index;
354 int element_size = TYPE_LENGTH (value_type (element));
355 if (exp->elts[*pos].opcode == BINOP_COMMA)
356 {
357 (*pos)++;
358 init_array_element (array, element, exp, pos, noside,
359 low_bound, high_bound);
360 return init_array_element (array, element,
361 exp, pos, noside, low_bound, high_bound);
362 }
363 else if (exp->elts[*pos].opcode == BINOP_RANGE)
364 {
365 LONGEST low, high;
366 (*pos)++;
367 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
368 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
369 if (low < low_bound || high > high_bound)
370 error (_("tuple range index out of range"));
371 for (index = low; index <= high; index++)
372 {
373 memcpy (value_contents_raw (array)
374 + (index - low_bound) * element_size,
375 value_contents (element), element_size);
376 }
377 }
378 else
379 {
380 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
381 if (index < low_bound || index > high_bound)
382 error (_("tuple index out of range"));
383 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
384 value_contents (element), element_size);
385 }
386 return index;
387 }
388
389 struct value *
390 value_f90_subarray (struct value *array,
391 struct expression *exp, int *pos, enum noside noside)
392 {
393 int pc = (*pos) + 1;
394 LONGEST low_bound, high_bound;
395 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
396 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
397
398 *pos += 3;
399
400 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
401 low_bound = TYPE_LOW_BOUND (range);
402 else
403 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
404
405 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
406 high_bound = TYPE_HIGH_BOUND (range);
407 else
408 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
409
410 return value_slice (array, low_bound, high_bound - low_bound + 1);
411 }
412
413 struct value *
414 evaluate_subexp_standard (struct type *expect_type,
415 struct expression *exp, int *pos,
416 enum noside noside)
417 {
418 enum exp_opcode op;
419 int tem, tem2, tem3;
420 int pc, pc2 = 0, oldpos;
421 struct value *arg1 = NULL;
422 struct value *arg2 = NULL;
423 struct value *arg3;
424 struct type *type;
425 int nargs;
426 struct value **argvec;
427 int upper, lower, retcode;
428 int code;
429 int ix;
430 long mem_offset;
431 struct type **arg_types;
432 int save_pos1;
433
434 pc = (*pos)++;
435 op = exp->elts[pc].opcode;
436
437 switch (op)
438 {
439 case OP_SCOPE:
440 tem = longest_to_int (exp->elts[pc + 2].longconst);
441 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
442 if (noside == EVAL_SKIP)
443 goto nosideret;
444 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
445 &exp->elts[pc + 3].string,
446 0, noside);
447 if (arg1 == NULL)
448 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
449 return arg1;
450
451 case OP_LONG:
452 (*pos) += 3;
453 return value_from_longest (exp->elts[pc + 1].type,
454 exp->elts[pc + 2].longconst);
455
456 case OP_DOUBLE:
457 (*pos) += 3;
458 return value_from_double (exp->elts[pc + 1].type,
459 exp->elts[pc + 2].doubleconst);
460
461 case OP_VAR_VALUE:
462 (*pos) += 3;
463 if (noside == EVAL_SKIP)
464 goto nosideret;
465
466 /* JYG: We used to just return value_zero of the symbol type
467 if we're asked to avoid side effects. Otherwise we return
468 value_of_variable (...). However I'm not sure if
469 value_of_variable () has any side effect.
470 We need a full value object returned here for whatis_exp ()
471 to call evaluate_type () and then pass the full value to
472 value_rtti_target_type () if we are dealing with a pointer
473 or reference to a base class and print object is on. */
474
475 {
476 volatile struct gdb_exception except;
477 struct value *ret = NULL;
478
479 TRY_CATCH (except, RETURN_MASK_ERROR)
480 {
481 ret = value_of_variable (exp->elts[pc + 2].symbol,
482 exp->elts[pc + 1].block);
483 }
484
485 if (except.reason < 0)
486 {
487 if (noside == EVAL_AVOID_SIDE_EFFECTS)
488 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
489 else
490 throw_exception (except);
491 }
492
493 return ret;
494 }
495
496 case OP_LAST:
497 (*pos) += 2;
498 return
499 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
500
501 case OP_REGISTER:
502 {
503 int regno = longest_to_int (exp->elts[pc + 1].longconst);
504 struct value *val;
505 (*pos) += 2;
506 if (noside == EVAL_AVOID_SIDE_EFFECTS)
507 val = value_zero (register_type (current_gdbarch, regno), not_lval);
508 else
509 val = value_of_register (regno, get_selected_frame (NULL));
510 if (val == NULL)
511 error (_("Value of register %s not available."),
512 frame_map_regnum_to_name (get_selected_frame (NULL), regno));
513 else
514 return val;
515 }
516 case OP_BOOL:
517 (*pos) += 2;
518 return value_from_longest (LA_BOOL_TYPE,
519 exp->elts[pc + 1].longconst);
520
521 case OP_INTERNALVAR:
522 (*pos) += 2;
523 return value_of_internalvar (exp->elts[pc + 1].internalvar);
524
525 case OP_STRING:
526 tem = longest_to_int (exp->elts[pc + 1].longconst);
527 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
528 if (noside == EVAL_SKIP)
529 goto nosideret;
530 return value_string (&exp->elts[pc + 2].string, tem);
531
532 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
533 tem = longest_to_int (exp->elts[pc + 1].longconst);
534 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
535 if (noside == EVAL_SKIP)
536 {
537 goto nosideret;
538 }
539 return (struct value *) value_nsstring (&exp->elts[pc + 2].string, tem + 1);
540
541 case OP_BITSTRING:
542 tem = longest_to_int (exp->elts[pc + 1].longconst);
543 (*pos)
544 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
545 if (noside == EVAL_SKIP)
546 goto nosideret;
547 return value_bitstring (&exp->elts[pc + 2].string, tem);
548 break;
549
550 case OP_ARRAY:
551 (*pos) += 3;
552 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
553 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
554 nargs = tem3 - tem2 + 1;
555 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
556
557 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
558 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
559 {
560 struct value *rec = allocate_value (expect_type);
561 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
562 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
563 }
564
565 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
566 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
567 {
568 struct type *range_type = TYPE_FIELD_TYPE (type, 0);
569 struct type *element_type = TYPE_TARGET_TYPE (type);
570 struct value *array = allocate_value (expect_type);
571 int element_size = TYPE_LENGTH (check_typedef (element_type));
572 LONGEST low_bound, high_bound, index;
573 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
574 {
575 low_bound = 0;
576 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
577 }
578 index = low_bound;
579 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
580 for (tem = nargs; --nargs >= 0;)
581 {
582 struct value *element;
583 int index_pc = 0;
584 if (exp->elts[*pos].opcode == BINOP_RANGE)
585 {
586 index_pc = ++(*pos);
587 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
588 }
589 element = evaluate_subexp (element_type, exp, pos, noside);
590 if (value_type (element) != element_type)
591 element = value_cast (element_type, element);
592 if (index_pc)
593 {
594 int continue_pc = *pos;
595 *pos = index_pc;
596 index = init_array_element (array, element, exp, pos, noside,
597 low_bound, high_bound);
598 *pos = continue_pc;
599 }
600 else
601 {
602 if (index > high_bound)
603 /* to avoid memory corruption */
604 error (_("Too many array elements"));
605 memcpy (value_contents_raw (array)
606 + (index - low_bound) * element_size,
607 value_contents (element),
608 element_size);
609 }
610 index++;
611 }
612 return array;
613 }
614
615 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
616 && TYPE_CODE (type) == TYPE_CODE_SET)
617 {
618 struct value *set = allocate_value (expect_type);
619 gdb_byte *valaddr = value_contents_raw (set);
620 struct type *element_type = TYPE_INDEX_TYPE (type);
621 struct type *check_type = element_type;
622 LONGEST low_bound, high_bound;
623
624 /* get targettype of elementtype */
625 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE ||
626 TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
627 check_type = TYPE_TARGET_TYPE (check_type);
628
629 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
630 error (_("(power)set type with unknown size"));
631 memset (valaddr, '\0', TYPE_LENGTH (type));
632 for (tem = 0; tem < nargs; tem++)
633 {
634 LONGEST range_low, range_high;
635 struct type *range_low_type, *range_high_type;
636 struct value *elem_val;
637 if (exp->elts[*pos].opcode == BINOP_RANGE)
638 {
639 (*pos)++;
640 elem_val = evaluate_subexp (element_type, exp, pos, noside);
641 range_low_type = value_type (elem_val);
642 range_low = value_as_long (elem_val);
643 elem_val = evaluate_subexp (element_type, exp, pos, noside);
644 range_high_type = value_type (elem_val);
645 range_high = value_as_long (elem_val);
646 }
647 else
648 {
649 elem_val = evaluate_subexp (element_type, exp, pos, noside);
650 range_low_type = range_high_type = value_type (elem_val);
651 range_low = range_high = value_as_long (elem_val);
652 }
653 /* check types of elements to avoid mixture of elements from
654 different types. Also check if type of element is "compatible"
655 with element type of powerset */
656 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
657 range_low_type = TYPE_TARGET_TYPE (range_low_type);
658 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
659 range_high_type = TYPE_TARGET_TYPE (range_high_type);
660 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) ||
661 (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM &&
662 (range_low_type != range_high_type)))
663 /* different element modes */
664 error (_("POWERSET tuple elements of different mode"));
665 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) ||
666 (TYPE_CODE (check_type) == TYPE_CODE_ENUM &&
667 range_low_type != check_type))
668 error (_("incompatible POWERSET tuple elements"));
669 if (range_low > range_high)
670 {
671 warning (_("empty POWERSET tuple range"));
672 continue;
673 }
674 if (range_low < low_bound || range_high > high_bound)
675 error (_("POWERSET tuple element out of range"));
676 range_low -= low_bound;
677 range_high -= low_bound;
678 for (; range_low <= range_high; range_low++)
679 {
680 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
681 if (BITS_BIG_ENDIAN)
682 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
683 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
684 |= 1 << bit_index;
685 }
686 }
687 return set;
688 }
689
690 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
691 for (tem = 0; tem < nargs; tem++)
692 {
693 /* Ensure that array expressions are coerced into pointer objects. */
694 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
695 }
696 if (noside == EVAL_SKIP)
697 goto nosideret;
698 return value_array (tem2, tem3, argvec);
699
700 case TERNOP_SLICE:
701 {
702 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
703 int lowbound
704 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
705 int upper
706 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
707 if (noside == EVAL_SKIP)
708 goto nosideret;
709 return value_slice (array, lowbound, upper - lowbound + 1);
710 }
711
712 case TERNOP_SLICE_COUNT:
713 {
714 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
715 int lowbound
716 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
717 int length
718 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
719 return value_slice (array, lowbound, length);
720 }
721
722 case TERNOP_COND:
723 /* Skip third and second args to evaluate the first one. */
724 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
725 if (value_logical_not (arg1))
726 {
727 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
728 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
729 }
730 else
731 {
732 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
733 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
734 return arg2;
735 }
736
737 case OP_OBJC_SELECTOR:
738 { /* Objective C @selector operator. */
739 char *sel = &exp->elts[pc + 2].string;
740 int len = longest_to_int (exp->elts[pc + 1].longconst);
741
742 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
743 if (noside == EVAL_SKIP)
744 goto nosideret;
745
746 if (sel[len] != 0)
747 sel[len] = 0; /* Make sure it's terminated. */
748 return value_from_longest (lookup_pointer_type (builtin_type_void),
749 lookup_child_selector (sel));
750 }
751
752 case OP_OBJC_MSGCALL:
753 { /* Objective C message (method) call. */
754
755 static CORE_ADDR responds_selector = 0;
756 static CORE_ADDR method_selector = 0;
757
758 CORE_ADDR selector = 0;
759
760 int using_gcc = 0;
761 int struct_return = 0;
762 int sub_no_side = 0;
763
764 static struct value *msg_send = NULL;
765 static struct value *msg_send_stret = NULL;
766 static int gnu_runtime = 0;
767
768 struct value *target = NULL;
769 struct value *method = NULL;
770 struct value *called_method = NULL;
771
772 struct type *selector_type = NULL;
773
774 struct value *ret = NULL;
775 CORE_ADDR addr = 0;
776
777 selector = exp->elts[pc + 1].longconst;
778 nargs = exp->elts[pc + 2].longconst;
779 argvec = (struct value **) alloca (sizeof (struct value *)
780 * (nargs + 5));
781
782 (*pos) += 3;
783
784 selector_type = lookup_pointer_type (builtin_type_void);
785 if (noside == EVAL_AVOID_SIDE_EFFECTS)
786 sub_no_side = EVAL_NORMAL;
787 else
788 sub_no_side = noside;
789
790 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
791
792 if (value_as_long (target) == 0)
793 return value_from_longest (builtin_type_long, 0);
794
795 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
796 gnu_runtime = 1;
797
798 /* Find the method dispatch (Apple runtime) or method lookup
799 (GNU runtime) function for Objective-C. These will be used
800 to lookup the symbol information for the method. If we
801 can't find any symbol information, then we'll use these to
802 call the method, otherwise we can call the method
803 directly. The msg_send_stret function is used in the special
804 case of a method that returns a structure (Apple runtime
805 only). */
806 if (gnu_runtime)
807 {
808 struct type *type;
809 type = lookup_pointer_type (builtin_type_void);
810 type = lookup_function_type (type);
811 type = lookup_pointer_type (type);
812 type = lookup_function_type (type);
813 type = lookup_pointer_type (type);
814
815 msg_send = find_function_in_inferior ("objc_msg_lookup");
816 msg_send_stret = find_function_in_inferior ("objc_msg_lookup");
817
818 msg_send = value_from_pointer (type, value_as_address (msg_send));
819 msg_send_stret = value_from_pointer (type,
820 value_as_address (msg_send_stret));
821 }
822 else
823 {
824 msg_send = find_function_in_inferior ("objc_msgSend");
825 /* Special dispatcher for methods returning structs */
826 msg_send_stret = find_function_in_inferior ("objc_msgSend_stret");
827 }
828
829 /* Verify the target object responds to this method. The
830 standard top-level 'Object' class uses a different name for
831 the verification method than the non-standard, but more
832 often used, 'NSObject' class. Make sure we check for both. */
833
834 responds_selector = lookup_child_selector ("respondsToSelector:");
835 if (responds_selector == 0)
836 responds_selector = lookup_child_selector ("respondsTo:");
837
838 if (responds_selector == 0)
839 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
840
841 method_selector = lookup_child_selector ("methodForSelector:");
842 if (method_selector == 0)
843 method_selector = lookup_child_selector ("methodFor:");
844
845 if (method_selector == 0)
846 error (_("no 'methodFor:' or 'methodForSelector:' method"));
847
848 /* Call the verification method, to make sure that the target
849 class implements the desired method. */
850
851 argvec[0] = msg_send;
852 argvec[1] = target;
853 argvec[2] = value_from_longest (builtin_type_long, responds_selector);
854 argvec[3] = value_from_longest (builtin_type_long, selector);
855 argvec[4] = 0;
856
857 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
858 if (gnu_runtime)
859 {
860 /* Function objc_msg_lookup returns a pointer. */
861 argvec[0] = ret;
862 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
863 }
864 if (value_as_long (ret) == 0)
865 error (_("Target does not respond to this message selector."));
866
867 /* Call "methodForSelector:" method, to get the address of a
868 function method that implements this selector for this
869 class. If we can find a symbol at that address, then we
870 know the return type, parameter types etc. (that's a good
871 thing). */
872
873 argvec[0] = msg_send;
874 argvec[1] = target;
875 argvec[2] = value_from_longest (builtin_type_long, method_selector);
876 argvec[3] = value_from_longest (builtin_type_long, selector);
877 argvec[4] = 0;
878
879 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
880 if (gnu_runtime)
881 {
882 argvec[0] = ret;
883 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
884 }
885
886 /* ret should now be the selector. */
887
888 addr = value_as_long (ret);
889 if (addr)
890 {
891 struct symbol *sym = NULL;
892 /* Is it a high_level symbol? */
893
894 sym = find_pc_function (addr);
895 if (sym != NULL)
896 method = value_of_variable (sym, 0);
897 }
898
899 /* If we found a method with symbol information, check to see
900 if it returns a struct. Otherwise assume it doesn't. */
901
902 if (method)
903 {
904 struct block *b;
905 CORE_ADDR funaddr;
906 struct type *value_type;
907
908 funaddr = find_function_addr (method, &value_type);
909
910 b = block_for_pc (funaddr);
911
912 /* If compiled without -g, assume GCC 2. */
913 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
914
915 CHECK_TYPEDEF (value_type);
916
917 if ((value_type == NULL)
918 || (TYPE_CODE(value_type) == TYPE_CODE_ERROR))
919 {
920 if (expect_type != NULL)
921 value_type = expect_type;
922 }
923
924 struct_return = using_struct_return (value_type, using_gcc);
925 }
926 else if (expect_type != NULL)
927 {
928 struct_return = using_struct_return (check_typedef (expect_type), using_gcc);
929 }
930
931 /* Found a function symbol. Now we will substitute its
932 value in place of the message dispatcher (obj_msgSend),
933 so that we call the method directly instead of thru
934 the dispatcher. The main reason for doing this is that
935 we can now evaluate the return value and parameter values
936 according to their known data types, in case we need to
937 do things like promotion, dereferencing, special handling
938 of structs and doubles, etc.
939
940 We want to use the type signature of 'method', but still
941 jump to objc_msgSend() or objc_msgSend_stret() to better
942 mimic the behavior of the runtime. */
943
944 if (method)
945 {
946 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
947 error (_("method address has symbol information with non-function type; skipping"));
948 if (struct_return)
949 VALUE_ADDRESS (method) = value_as_address (msg_send_stret);
950 else
951 VALUE_ADDRESS (method) = value_as_address (msg_send);
952 called_method = method;
953 }
954 else
955 {
956 if (struct_return)
957 called_method = msg_send_stret;
958 else
959 called_method = msg_send;
960 }
961
962 if (noside == EVAL_SKIP)
963 goto nosideret;
964
965 if (noside == EVAL_AVOID_SIDE_EFFECTS)
966 {
967 /* If the return type doesn't look like a function type,
968 call an error. This can happen if somebody tries to
969 turn a variable into a function call. This is here
970 because people often want to call, eg, strcmp, which
971 gdb doesn't know is a function. If gdb isn't asked for
972 it's opinion (ie. through "whatis"), it won't offer
973 it. */
974
975 struct type *type = value_type (called_method);
976 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
977 type = TYPE_TARGET_TYPE (type);
978 type = TYPE_TARGET_TYPE (type);
979
980 if (type)
981 {
982 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
983 return allocate_value (expect_type);
984 else
985 return allocate_value (type);
986 }
987 else
988 error (_("Expression of type other than \"method returning ...\" used as a method"));
989 }
990
991 /* Now depending on whether we found a symbol for the method,
992 we will either call the runtime dispatcher or the method
993 directly. */
994
995 argvec[0] = called_method;
996 argvec[1] = target;
997 argvec[2] = value_from_longest (builtin_type_long, selector);
998 /* User-supplied arguments. */
999 for (tem = 0; tem < nargs; tem++)
1000 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1001 argvec[tem + 3] = 0;
1002
1003 if (gnu_runtime && (method != NULL))
1004 {
1005 /* Function objc_msg_lookup returns a pointer. */
1006 deprecated_set_value_type (argvec[0],
1007 lookup_function_type (lookup_pointer_type (value_type (argvec[0]))));
1008 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1009 }
1010
1011 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1012 return ret;
1013 }
1014 break;
1015
1016 case OP_FUNCALL:
1017 (*pos) += 2;
1018 op = exp->elts[*pos].opcode;
1019 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1020 /* Allocate arg vector, including space for the function to be
1021 called in argvec[0] and a terminating NULL */
1022 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1023 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1024 {
1025 nargs++;
1026 /* First, evaluate the structure into arg2 */
1027 pc2 = (*pos)++;
1028
1029 if (noside == EVAL_SKIP)
1030 goto nosideret;
1031
1032 if (op == STRUCTOP_MEMBER)
1033 {
1034 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1035 }
1036 else
1037 {
1038 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1039 }
1040
1041 /* If the function is a virtual function, then the
1042 aggregate value (providing the structure) plays
1043 its part by providing the vtable. Otherwise,
1044 it is just along for the ride: call the function
1045 directly. */
1046
1047 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1048
1049 if (TYPE_CODE (check_typedef (value_type (arg1)))
1050 != TYPE_CODE_METHODPTR)
1051 error (_("Non-pointer-to-member value used in pointer-to-member "
1052 "construct"));
1053
1054 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1055 {
1056 struct type *method_type = check_typedef (value_type (arg1));
1057 arg1 = value_zero (method_type, not_lval);
1058 }
1059 else
1060 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1061
1062 /* Now, say which argument to start evaluating from */
1063 tem = 2;
1064 }
1065 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1066 {
1067 /* Hair for method invocations */
1068 int tem2;
1069
1070 nargs++;
1071 /* First, evaluate the structure into arg2 */
1072 pc2 = (*pos)++;
1073 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1074 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1075 if (noside == EVAL_SKIP)
1076 goto nosideret;
1077
1078 if (op == STRUCTOP_STRUCT)
1079 {
1080 /* If v is a variable in a register, and the user types
1081 v.method (), this will produce an error, because v has
1082 no address.
1083
1084 A possible way around this would be to allocate a
1085 copy of the variable on the stack, copy in the
1086 contents, call the function, and copy out the
1087 contents. I.e. convert this from call by reference
1088 to call by copy-return (or whatever it's called).
1089 However, this does not work because it is not the
1090 same: the method being called could stash a copy of
1091 the address, and then future uses through that address
1092 (after the method returns) would be expected to
1093 use the variable itself, not some copy of it. */
1094 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1095 }
1096 else
1097 {
1098 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1099 }
1100 /* Now, say which argument to start evaluating from */
1101 tem = 2;
1102 }
1103 else
1104 {
1105 /* Non-method function call */
1106 save_pos1 = *pos;
1107 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1108 tem = 1;
1109 type = value_type (argvec[0]);
1110 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1111 type = TYPE_TARGET_TYPE (type);
1112 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1113 {
1114 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1115 {
1116 /* pai: FIXME This seems to be coercing arguments before
1117 * overload resolution has been done! */
1118 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1119 exp, pos, noside);
1120 }
1121 }
1122 }
1123
1124 /* Evaluate arguments */
1125 for (; tem <= nargs; tem++)
1126 {
1127 /* Ensure that array expressions are coerced into pointer objects. */
1128 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1129 }
1130
1131 /* signal end of arglist */
1132 argvec[tem] = 0;
1133
1134 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1135 {
1136 int static_memfuncp;
1137 char tstr[256];
1138
1139 /* Method invocation : stuff "this" as first parameter */
1140 argvec[1] = arg2;
1141 /* Name of method from expression */
1142 strcpy (tstr, &exp->elts[pc2 + 2].string);
1143
1144 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1145 {
1146 /* Language is C++, do some overload resolution before evaluation */
1147 struct value *valp = NULL;
1148
1149 /* Prepare list of argument types for overload resolution */
1150 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1151 for (ix = 1; ix <= nargs; ix++)
1152 arg_types[ix - 1] = value_type (argvec[ix]);
1153
1154 (void) find_overload_match (arg_types, nargs, tstr,
1155 1 /* method */ , 0 /* strict match */ ,
1156 &arg2 /* the object */ , NULL,
1157 &valp, NULL, &static_memfuncp);
1158
1159
1160 argvec[1] = arg2; /* the ``this'' pointer */
1161 argvec[0] = valp; /* use the method found after overload resolution */
1162 }
1163 else
1164 /* Non-C++ case -- or no overload resolution */
1165 {
1166 struct value *temp = arg2;
1167 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1168 &static_memfuncp,
1169 op == STRUCTOP_STRUCT
1170 ? "structure" : "structure pointer");
1171 /* value_struct_elt updates temp with the correct value
1172 of the ``this'' pointer if necessary, so modify argvec[1] to
1173 reflect any ``this'' changes. */
1174 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1175 VALUE_ADDRESS (temp) + value_offset (temp)
1176 + value_embedded_offset (temp));
1177 argvec[1] = arg2; /* the ``this'' pointer */
1178 }
1179
1180 if (static_memfuncp)
1181 {
1182 argvec[1] = argvec[0];
1183 nargs--;
1184 argvec++;
1185 }
1186 }
1187 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1188 {
1189 argvec[1] = arg2;
1190 argvec[0] = arg1;
1191 }
1192 else if (op == OP_VAR_VALUE)
1193 {
1194 /* Non-member function being called */
1195 /* fn: This can only be done for C++ functions. A C-style function
1196 in a C++ program, for instance, does not have the fields that
1197 are expected here */
1198
1199 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1200 {
1201 /* Language is C++, do some overload resolution before evaluation */
1202 struct symbol *symp;
1203
1204 /* Prepare list of argument types for overload resolution */
1205 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1206 for (ix = 1; ix <= nargs; ix++)
1207 arg_types[ix - 1] = value_type (argvec[ix]);
1208
1209 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1210 0 /* not method */ , 0 /* strict match */ ,
1211 NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
1212 NULL, &symp, NULL);
1213
1214 /* Now fix the expression being evaluated */
1215 exp->elts[save_pos1+2].symbol = symp;
1216 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1217 }
1218 else
1219 {
1220 /* Not C++, or no overload resolution allowed */
1221 /* nothing to be done; argvec already correctly set up */
1222 }
1223 }
1224 else
1225 {
1226 /* It is probably a C-style function */
1227 /* nothing to be done; argvec already correctly set up */
1228 }
1229
1230 do_call_it:
1231
1232 if (noside == EVAL_SKIP)
1233 goto nosideret;
1234 if (argvec[0] == NULL)
1235 error (_("Cannot evaluate function -- may be inlined"));
1236 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1237 {
1238 /* If the return type doesn't look like a function type, call an
1239 error. This can happen if somebody tries to turn a variable into
1240 a function call. This is here because people often want to
1241 call, eg, strcmp, which gdb doesn't know is a function. If
1242 gdb isn't asked for it's opinion (ie. through "whatis"),
1243 it won't offer it. */
1244
1245 struct type *ftype =
1246 TYPE_TARGET_TYPE (value_type (argvec[0]));
1247
1248 if (ftype)
1249 return allocate_value (TYPE_TARGET_TYPE (value_type (argvec[0])));
1250 else
1251 error (_("Expression of type other than \"Function returning ...\" used as function"));
1252 }
1253 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1254 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1255
1256 case OP_F77_UNDETERMINED_ARGLIST:
1257
1258 /* Remember that in F77, functions, substring ops and
1259 array subscript operations cannot be disambiguated
1260 at parse time. We have made all array subscript operations,
1261 substring operations as well as function calls come here
1262 and we now have to discover what the heck this thing actually was.
1263 If it is a function, we process just as if we got an OP_FUNCALL. */
1264
1265 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1266 (*pos) += 2;
1267
1268 /* First determine the type code we are dealing with. */
1269 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1270 type = check_typedef (value_type (arg1));
1271 code = TYPE_CODE (type);
1272
1273 if (code == TYPE_CODE_PTR)
1274 {
1275 /* Fortran always passes variable to subroutines as pointer.
1276 So we need to look into its target type to see if it is
1277 array, string or function. If it is, we need to switch
1278 to the target value the original one points to. */
1279 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1280
1281 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1282 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1283 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1284 {
1285 arg1 = value_ind (arg1);
1286 type = check_typedef (value_type (arg1));
1287 code = TYPE_CODE (type);
1288 }
1289 }
1290
1291 switch (code)
1292 {
1293 case TYPE_CODE_ARRAY:
1294 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1295 return value_f90_subarray (arg1, exp, pos, noside);
1296 else
1297 goto multi_f77_subscript;
1298
1299 case TYPE_CODE_STRING:
1300 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1301 return value_f90_subarray (arg1, exp, pos, noside);
1302 else
1303 {
1304 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1305 return value_subscript (arg1, arg2);
1306 }
1307
1308 case TYPE_CODE_PTR:
1309 case TYPE_CODE_FUNC:
1310 /* It's a function call. */
1311 /* Allocate arg vector, including space for the function to be
1312 called in argvec[0] and a terminating NULL */
1313 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1314 argvec[0] = arg1;
1315 tem = 1;
1316 for (; tem <= nargs; tem++)
1317 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1318 argvec[tem] = 0; /* signal end of arglist */
1319 goto do_call_it;
1320
1321 default:
1322 error (_("Cannot perform substring on this type"));
1323 }
1324
1325 case OP_COMPLEX:
1326 /* We have a complex number, There should be 2 floating
1327 point numbers that compose it */
1328 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1329 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1330
1331 return value_literal_complex (arg1, arg2, builtin_type_f_complex_s16);
1332
1333 case STRUCTOP_STRUCT:
1334 tem = longest_to_int (exp->elts[pc + 1].longconst);
1335 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1336 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1337 if (noside == EVAL_SKIP)
1338 goto nosideret;
1339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1340 return value_zero (lookup_struct_elt_type (value_type (arg1),
1341 &exp->elts[pc + 2].string,
1342 0),
1343 lval_memory);
1344 else
1345 {
1346 struct value *temp = arg1;
1347 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1348 NULL, "structure");
1349 }
1350
1351 case STRUCTOP_PTR:
1352 tem = longest_to_int (exp->elts[pc + 1].longconst);
1353 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1354 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1355 if (noside == EVAL_SKIP)
1356 goto nosideret;
1357
1358 /* JYG: if print object is on we need to replace the base type
1359 with rtti type in order to continue on with successful
1360 lookup of member / method only available in the rtti type. */
1361 {
1362 struct type *type = value_type (arg1);
1363 struct type *real_type;
1364 int full, top, using_enc;
1365
1366 if (objectprint && TYPE_TARGET_TYPE(type) &&
1367 (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1368 {
1369 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1370 if (real_type)
1371 {
1372 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1373 real_type = lookup_pointer_type (real_type);
1374 else
1375 real_type = lookup_reference_type (real_type);
1376
1377 arg1 = value_cast (real_type, arg1);
1378 }
1379 }
1380 }
1381
1382 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1383 return value_zero (lookup_struct_elt_type (value_type (arg1),
1384 &exp->elts[pc + 2].string,
1385 0),
1386 lval_memory);
1387 else
1388 {
1389 struct value *temp = arg1;
1390 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1391 NULL, "structure pointer");
1392 }
1393
1394 case STRUCTOP_MEMBER:
1395 case STRUCTOP_MPTR:
1396 if (op == STRUCTOP_MEMBER)
1397 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1398 else
1399 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1400
1401 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1402
1403 if (noside == EVAL_SKIP)
1404 goto nosideret;
1405
1406 type = check_typedef (value_type (arg2));
1407 switch (TYPE_CODE (type))
1408 {
1409 case TYPE_CODE_METHODPTR:
1410 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1411 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1412 else
1413 {
1414 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1415 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1416 return value_ind (arg2);
1417 }
1418
1419 case TYPE_CODE_MEMBERPTR:
1420 /* Now, convert these values to an address. */
1421 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1422 arg1);
1423
1424 mem_offset = value_as_long (arg2);
1425
1426 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1427 value_as_long (arg1) + mem_offset);
1428 return value_ind (arg3);
1429
1430 default:
1431 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1432 }
1433
1434 case BINOP_CONCAT:
1435 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1436 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1437 if (noside == EVAL_SKIP)
1438 goto nosideret;
1439 if (binop_user_defined_p (op, arg1, arg2))
1440 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1441 else
1442 return value_concat (arg1, arg2);
1443
1444 case BINOP_ASSIGN:
1445 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1446 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1447
1448 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1449 return arg1;
1450 if (binop_user_defined_p (op, arg1, arg2))
1451 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1452 else
1453 return value_assign (arg1, arg2);
1454
1455 case BINOP_ASSIGN_MODIFY:
1456 (*pos) += 2;
1457 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1458 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1459 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1460 return arg1;
1461 op = exp->elts[pc + 1].opcode;
1462 if (binop_user_defined_p (op, arg1, arg2))
1463 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1464 else if (op == BINOP_ADD)
1465 arg2 = value_add (arg1, arg2);
1466 else if (op == BINOP_SUB)
1467 arg2 = value_sub (arg1, arg2);
1468 else
1469 arg2 = value_binop (arg1, arg2, op);
1470 return value_assign (arg1, arg2);
1471
1472 case BINOP_ADD:
1473 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1474 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1475 if (noside == EVAL_SKIP)
1476 goto nosideret;
1477 if (binop_user_defined_p (op, arg1, arg2))
1478 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1479 else
1480 return value_add (arg1, arg2);
1481
1482 case BINOP_SUB:
1483 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1484 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1485 if (noside == EVAL_SKIP)
1486 goto nosideret;
1487 if (binop_user_defined_p (op, arg1, arg2))
1488 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1489 else
1490 return value_sub (arg1, arg2);
1491
1492 case BINOP_EXP:
1493 case BINOP_MUL:
1494 case BINOP_DIV:
1495 case BINOP_REM:
1496 case BINOP_MOD:
1497 case BINOP_LSH:
1498 case BINOP_RSH:
1499 case BINOP_BITWISE_AND:
1500 case BINOP_BITWISE_IOR:
1501 case BINOP_BITWISE_XOR:
1502 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1503 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1504 if (noside == EVAL_SKIP)
1505 goto nosideret;
1506 if (binop_user_defined_p (op, arg1, arg2))
1507 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1508 else if (noside == EVAL_AVOID_SIDE_EFFECTS
1509 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
1510 return value_zero (value_type (arg1), not_lval);
1511 else
1512 return value_binop (arg1, arg2, op);
1513
1514 case BINOP_RANGE:
1515 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1516 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1517 if (noside == EVAL_SKIP)
1518 goto nosideret;
1519 error (_("':' operator used in invalid context"));
1520
1521 case BINOP_SUBSCRIPT:
1522 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1523 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1524 if (noside == EVAL_SKIP)
1525 goto nosideret;
1526 if (binop_user_defined_p (op, arg1, arg2))
1527 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1528 else
1529 {
1530 /* If the user attempts to subscript something that is not an
1531 array or pointer type (like a plain int variable for example),
1532 then report this as an error. */
1533
1534 arg1 = coerce_ref (arg1);
1535 type = check_typedef (value_type (arg1));
1536 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
1537 && TYPE_CODE (type) != TYPE_CODE_PTR)
1538 {
1539 if (TYPE_NAME (type))
1540 error (_("cannot subscript something of type `%s'"),
1541 TYPE_NAME (type));
1542 else
1543 error (_("cannot subscript requested type"));
1544 }
1545
1546 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1547 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1548 else
1549 return value_subscript (arg1, arg2);
1550 }
1551
1552 case BINOP_IN:
1553 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1554 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1555 if (noside == EVAL_SKIP)
1556 goto nosideret;
1557 return value_in (arg1, arg2);
1558
1559 case MULTI_SUBSCRIPT:
1560 (*pos) += 2;
1561 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1562 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1563 while (nargs-- > 0)
1564 {
1565 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1566 /* FIXME: EVAL_SKIP handling may not be correct. */
1567 if (noside == EVAL_SKIP)
1568 {
1569 if (nargs > 0)
1570 {
1571 continue;
1572 }
1573 else
1574 {
1575 goto nosideret;
1576 }
1577 }
1578 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
1579 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1580 {
1581 /* If the user attempts to subscript something that has no target
1582 type (like a plain int variable for example), then report this
1583 as an error. */
1584
1585 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
1586 if (type != NULL)
1587 {
1588 arg1 = value_zero (type, VALUE_LVAL (arg1));
1589 noside = EVAL_SKIP;
1590 continue;
1591 }
1592 else
1593 {
1594 error (_("cannot subscript something of type `%s'"),
1595 TYPE_NAME (value_type (arg1)));
1596 }
1597 }
1598
1599 if (binop_user_defined_p (op, arg1, arg2))
1600 {
1601 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
1602 }
1603 else
1604 {
1605 arg1 = value_subscript (arg1, arg2);
1606 }
1607 }
1608 return (arg1);
1609
1610 multi_f77_subscript:
1611 {
1612 int subscript_array[MAX_FORTRAN_DIMS];
1613 int array_size_array[MAX_FORTRAN_DIMS];
1614 int ndimensions = 1, i;
1615 struct type *tmp_type;
1616 int offset_item; /* The array offset where the item lives */
1617
1618 if (nargs > MAX_FORTRAN_DIMS)
1619 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
1620
1621 tmp_type = check_typedef (value_type (arg1));
1622 ndimensions = calc_f77_array_dims (type);
1623
1624 if (nargs != ndimensions)
1625 error (_("Wrong number of subscripts"));
1626
1627 /* Now that we know we have a legal array subscript expression
1628 let us actually find out where this element exists in the array. */
1629
1630 offset_item = 0;
1631 /* Take array indices left to right */
1632 for (i = 0; i < nargs; i++)
1633 {
1634 /* Evaluate each subscript, It must be a legal integer in F77 */
1635 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1636
1637 /* Fill in the subscript and array size arrays */
1638
1639 subscript_array[i] = value_as_long (arg2);
1640 }
1641
1642 /* Internal type of array is arranged right to left */
1643 for (i = 0; i < nargs; i++)
1644 {
1645 retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
1646 if (retcode == BOUND_FETCH_ERROR)
1647 error (_("Cannot obtain dynamic upper bound"));
1648
1649 retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
1650 if (retcode == BOUND_FETCH_ERROR)
1651 error (_("Cannot obtain dynamic lower bound"));
1652
1653 array_size_array[nargs - i - 1] = upper - lower + 1;
1654
1655 /* Zero-normalize subscripts so that offsetting will work. */
1656
1657 subscript_array[nargs - i - 1] -= lower;
1658
1659 /* If we are at the bottom of a multidimensional
1660 array type then keep a ptr to the last ARRAY
1661 type around for use when calling value_subscript()
1662 below. This is done because we pretend to value_subscript
1663 that we actually have a one-dimensional array
1664 of base element type that we apply a simple
1665 offset to. */
1666
1667 if (i < nargs - 1)
1668 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
1669 }
1670
1671 /* Now let us calculate the offset for this item */
1672
1673 offset_item = subscript_array[ndimensions - 1];
1674
1675 for (i = ndimensions - 1; i > 0; --i)
1676 offset_item =
1677 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
1678
1679 /* Construct a value node with the value of the offset */
1680
1681 arg2 = value_from_longest (builtin_type_f_integer, offset_item);
1682
1683 /* Let us now play a dirty trick: we will take arg1
1684 which is a value node pointing to the topmost level
1685 of the multidimensional array-set and pretend
1686 that it is actually a array of the final element
1687 type, this will ensure that value_subscript()
1688 returns the correct type value */
1689
1690 deprecated_set_value_type (arg1, tmp_type);
1691 return value_ind (value_add (value_coerce_array (arg1), arg2));
1692 }
1693
1694 case BINOP_LOGICAL_AND:
1695 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1696 if (noside == EVAL_SKIP)
1697 {
1698 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1699 goto nosideret;
1700 }
1701
1702 oldpos = *pos;
1703 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
1704 *pos = oldpos;
1705
1706 if (binop_user_defined_p (op, arg1, arg2))
1707 {
1708 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1709 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1710 }
1711 else
1712 {
1713 tem = value_logical_not (arg1);
1714 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
1715 (tem ? EVAL_SKIP : noside));
1716 return value_from_longest (LA_BOOL_TYPE,
1717 (LONGEST) (!tem && !value_logical_not (arg2)));
1718 }
1719
1720 case BINOP_LOGICAL_OR:
1721 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1722 if (noside == EVAL_SKIP)
1723 {
1724 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1725 goto nosideret;
1726 }
1727
1728 oldpos = *pos;
1729 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
1730 *pos = oldpos;
1731
1732 if (binop_user_defined_p (op, arg1, arg2))
1733 {
1734 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1735 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1736 }
1737 else
1738 {
1739 tem = value_logical_not (arg1);
1740 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
1741 (!tem ? EVAL_SKIP : noside));
1742 return value_from_longest (LA_BOOL_TYPE,
1743 (LONGEST) (!tem || !value_logical_not (arg2)));
1744 }
1745
1746 case BINOP_EQUAL:
1747 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1748 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1749 if (noside == EVAL_SKIP)
1750 goto nosideret;
1751 if (binop_user_defined_p (op, arg1, arg2))
1752 {
1753 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1754 }
1755 else
1756 {
1757 tem = value_equal (arg1, arg2);
1758 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1759 }
1760
1761 case BINOP_NOTEQUAL:
1762 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1763 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1764 if (noside == EVAL_SKIP)
1765 goto nosideret;
1766 if (binop_user_defined_p (op, arg1, arg2))
1767 {
1768 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1769 }
1770 else
1771 {
1772 tem = value_equal (arg1, arg2);
1773 return value_from_longest (LA_BOOL_TYPE, (LONGEST) ! tem);
1774 }
1775
1776 case BINOP_LESS:
1777 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1778 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1779 if (noside == EVAL_SKIP)
1780 goto nosideret;
1781 if (binop_user_defined_p (op, arg1, arg2))
1782 {
1783 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1784 }
1785 else
1786 {
1787 tem = value_less (arg1, arg2);
1788 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1789 }
1790
1791 case BINOP_GTR:
1792 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1793 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1794 if (noside == EVAL_SKIP)
1795 goto nosideret;
1796 if (binop_user_defined_p (op, arg1, arg2))
1797 {
1798 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1799 }
1800 else
1801 {
1802 tem = value_less (arg2, arg1);
1803 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1804 }
1805
1806 case BINOP_GEQ:
1807 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1808 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1809 if (noside == EVAL_SKIP)
1810 goto nosideret;
1811 if (binop_user_defined_p (op, arg1, arg2))
1812 {
1813 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1814 }
1815 else
1816 {
1817 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1818 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1819 }
1820
1821 case BINOP_LEQ:
1822 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1823 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1824 if (noside == EVAL_SKIP)
1825 goto nosideret;
1826 if (binop_user_defined_p (op, arg1, arg2))
1827 {
1828 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1829 }
1830 else
1831 {
1832 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
1833 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
1834 }
1835
1836 case BINOP_REPEAT:
1837 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1838 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1839 if (noside == EVAL_SKIP)
1840 goto nosideret;
1841 type = check_typedef (value_type (arg2));
1842 if (TYPE_CODE (type) != TYPE_CODE_INT)
1843 error (_("Non-integral right operand for \"@\" operator."));
1844 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1845 {
1846 return allocate_repeat_value (value_type (arg1),
1847 longest_to_int (value_as_long (arg2)));
1848 }
1849 else
1850 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
1851
1852 case BINOP_COMMA:
1853 evaluate_subexp (NULL_TYPE, exp, pos, noside);
1854 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1855
1856 case UNOP_PLUS:
1857 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1858 if (noside == EVAL_SKIP)
1859 goto nosideret;
1860 if (unop_user_defined_p (op, arg1))
1861 return value_x_unop (arg1, op, noside);
1862 else
1863 return value_pos (arg1);
1864
1865 case UNOP_NEG:
1866 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1867 if (noside == EVAL_SKIP)
1868 goto nosideret;
1869 if (unop_user_defined_p (op, arg1))
1870 return value_x_unop (arg1, op, noside);
1871 else
1872 return value_neg (arg1);
1873
1874 case UNOP_COMPLEMENT:
1875 /* C++: check for and handle destructor names. */
1876 op = exp->elts[*pos].opcode;
1877
1878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1879 if (noside == EVAL_SKIP)
1880 goto nosideret;
1881 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
1882 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
1883 else
1884 return value_complement (arg1);
1885
1886 case UNOP_LOGICAL_NOT:
1887 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1888 if (noside == EVAL_SKIP)
1889 goto nosideret;
1890 if (unop_user_defined_p (op, arg1))
1891 return value_x_unop (arg1, op, noside);
1892 else
1893 return value_from_longest (LA_BOOL_TYPE,
1894 (LONGEST) value_logical_not (arg1));
1895
1896 case UNOP_IND:
1897 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
1898 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
1899 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
1900 type = check_typedef (value_type (arg1));
1901 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
1902 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
1903 error (_("Attempt to dereference pointer to member without an object"));
1904 if (noside == EVAL_SKIP)
1905 goto nosideret;
1906 if (unop_user_defined_p (op, arg1))
1907 return value_x_unop (arg1, op, noside);
1908 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
1909 {
1910 type = check_typedef (value_type (arg1));
1911 if (TYPE_CODE (type) == TYPE_CODE_PTR
1912 || TYPE_CODE (type) == TYPE_CODE_REF
1913 /* In C you can dereference an array to get the 1st elt. */
1914 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1915 )
1916 return value_zero (TYPE_TARGET_TYPE (type),
1917 lval_memory);
1918 else if (TYPE_CODE (type) == TYPE_CODE_INT)
1919 /* GDB allows dereferencing an int. */
1920 return value_zero (builtin_type_int, lval_memory);
1921 else
1922 error (_("Attempt to take contents of a non-pointer value."));
1923 }
1924 return value_ind (arg1);
1925
1926 case UNOP_ADDR:
1927 /* C++: check for and handle pointer to members. */
1928
1929 op = exp->elts[*pos].opcode;
1930
1931 if (noside == EVAL_SKIP)
1932 {
1933 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1934 goto nosideret;
1935 }
1936 else
1937 {
1938 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
1939 return retvalp;
1940 }
1941
1942 case UNOP_SIZEOF:
1943 if (noside == EVAL_SKIP)
1944 {
1945 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1946 goto nosideret;
1947 }
1948 return evaluate_subexp_for_sizeof (exp, pos);
1949
1950 case UNOP_CAST:
1951 (*pos) += 2;
1952 type = exp->elts[pc + 1].type;
1953 arg1 = evaluate_subexp (type, exp, pos, noside);
1954 if (noside == EVAL_SKIP)
1955 goto nosideret;
1956 if (type != value_type (arg1))
1957 arg1 = value_cast (type, arg1);
1958 return arg1;
1959
1960 case UNOP_MEMVAL:
1961 (*pos) += 2;
1962 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
1963 if (noside == EVAL_SKIP)
1964 goto nosideret;
1965 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1966 return value_zero (exp->elts[pc + 1].type, lval_memory);
1967 else
1968 return value_at_lazy (exp->elts[pc + 1].type,
1969 value_as_address (arg1));
1970
1971 case UNOP_MEMVAL_TLS:
1972 (*pos) += 3;
1973 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
1974 if (noside == EVAL_SKIP)
1975 goto nosideret;
1976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1977 return value_zero (exp->elts[pc + 2].type, lval_memory);
1978 else
1979 {
1980 CORE_ADDR tls_addr;
1981 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
1982 value_as_address (arg1));
1983 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
1984 }
1985
1986 case UNOP_PREINCREMENT:
1987 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
1988 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1989 return arg1;
1990 else if (unop_user_defined_p (op, arg1))
1991 {
1992 return value_x_unop (arg1, op, noside);
1993 }
1994 else
1995 {
1996 arg2 = value_add (arg1, value_from_longest (builtin_type_char,
1997 (LONGEST) 1));
1998 return value_assign (arg1, arg2);
1999 }
2000
2001 case UNOP_PREDECREMENT:
2002 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2003 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2004 return arg1;
2005 else if (unop_user_defined_p (op, arg1))
2006 {
2007 return value_x_unop (arg1, op, noside);
2008 }
2009 else
2010 {
2011 arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
2012 (LONGEST) 1));
2013 return value_assign (arg1, arg2);
2014 }
2015
2016 case UNOP_POSTINCREMENT:
2017 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2018 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2019 return arg1;
2020 else if (unop_user_defined_p (op, arg1))
2021 {
2022 return value_x_unop (arg1, op, noside);
2023 }
2024 else
2025 {
2026 arg2 = value_add (arg1, value_from_longest (builtin_type_char,
2027 (LONGEST) 1));
2028 value_assign (arg1, arg2);
2029 return arg1;
2030 }
2031
2032 case UNOP_POSTDECREMENT:
2033 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2034 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2035 return arg1;
2036 else if (unop_user_defined_p (op, arg1))
2037 {
2038 return value_x_unop (arg1, op, noside);
2039 }
2040 else
2041 {
2042 arg2 = value_sub (arg1, value_from_longest (builtin_type_char,
2043 (LONGEST) 1));
2044 value_assign (arg1, arg2);
2045 return arg1;
2046 }
2047
2048 case OP_THIS:
2049 (*pos) += 1;
2050 return value_of_this (1);
2051
2052 case OP_OBJC_SELF:
2053 (*pos) += 1;
2054 return value_of_local ("self", 1);
2055
2056 case OP_TYPE:
2057 /* The value is not supposed to be used. This is here to make it
2058 easier to accommodate expressions that contain types. */
2059 (*pos) += 2;
2060 if (noside == EVAL_SKIP)
2061 goto nosideret;
2062 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2063 return allocate_value (exp->elts[pc + 1].type);
2064 else
2065 error (_("Attempt to use a type name as an expression"));
2066
2067 default:
2068 /* Removing this case and compiling with gcc -Wall reveals that
2069 a lot of cases are hitting this case. Some of these should
2070 probably be removed from expression.h; others are legitimate
2071 expressions which are (apparently) not fully implemented.
2072
2073 If there are any cases landing here which mean a user error,
2074 then they should be separate cases, with more descriptive
2075 error messages. */
2076
2077 error (_("\
2078 GDB does not (yet) know how to evaluate that kind of expression"));
2079 }
2080
2081 nosideret:
2082 return value_from_longest (builtin_type_long, (LONGEST) 1);
2083 }
2084 \f
2085 /* Evaluate a subexpression of EXP, at index *POS,
2086 and return the address of that subexpression.
2087 Advance *POS over the subexpression.
2088 If the subexpression isn't an lvalue, get an error.
2089 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2090 then only the type of the result need be correct. */
2091
2092 static struct value *
2093 evaluate_subexp_for_address (struct expression *exp, int *pos,
2094 enum noside noside)
2095 {
2096 enum exp_opcode op;
2097 int pc;
2098 struct symbol *var;
2099 struct value *x;
2100 int tem;
2101
2102 pc = (*pos);
2103 op = exp->elts[pc].opcode;
2104
2105 switch (op)
2106 {
2107 case UNOP_IND:
2108 (*pos)++;
2109 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2110
2111 /* We can't optimize out "&*" if there's a user-defined operator*. */
2112 if (unop_user_defined_p (op, x))
2113 {
2114 x = value_x_unop (x, op, noside);
2115 goto default_case_after_eval;
2116 }
2117
2118 return x;
2119
2120 case UNOP_MEMVAL:
2121 (*pos) += 3;
2122 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2123 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2124
2125 case OP_VAR_VALUE:
2126 var = exp->elts[pc + 2].symbol;
2127
2128 /* C++: The "address" of a reference should yield the address
2129 * of the object pointed to. Let value_addr() deal with it. */
2130 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2131 goto default_case;
2132
2133 (*pos) += 4;
2134 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2135 {
2136 struct type *type =
2137 lookup_pointer_type (SYMBOL_TYPE (var));
2138 enum address_class sym_class = SYMBOL_CLASS (var);
2139
2140 if (sym_class == LOC_CONST
2141 || sym_class == LOC_CONST_BYTES
2142 || sym_class == LOC_REGISTER
2143 || sym_class == LOC_REGPARM)
2144 error (_("Attempt to take address of register or constant."));
2145
2146 return
2147 value_zero (type, not_lval);
2148 }
2149 else
2150 return
2151 locate_var_value
2152 (var,
2153 block_innermost_frame (exp->elts[pc + 1].block));
2154
2155 case OP_SCOPE:
2156 tem = longest_to_int (exp->elts[pc + 2].longconst);
2157 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2158 x = value_aggregate_elt (exp->elts[pc + 1].type,
2159 &exp->elts[pc + 3].string,
2160 1, noside);
2161 if (x == NULL)
2162 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2163 return x;
2164
2165 default:
2166 default_case:
2167 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2168 default_case_after_eval:
2169 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2170 {
2171 struct type *type = check_typedef (value_type (x));
2172
2173 if (VALUE_LVAL (x) == lval_memory)
2174 return value_zero (lookup_pointer_type (value_type (x)),
2175 not_lval);
2176 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2177 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2178 not_lval);
2179 else
2180 error (_("Attempt to take address of non-lval"));
2181 }
2182 return value_addr (x);
2183 }
2184 }
2185
2186 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2187 When used in contexts where arrays will be coerced anyway, this is
2188 equivalent to `evaluate_subexp' but much faster because it avoids
2189 actually fetching array contents (perhaps obsolete now that we have
2190 value_lazy()).
2191
2192 Note that we currently only do the coercion for C expressions, where
2193 arrays are zero based and the coercion is correct. For other languages,
2194 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2195 to decide if coercion is appropriate.
2196
2197 */
2198
2199 struct value *
2200 evaluate_subexp_with_coercion (struct expression *exp,
2201 int *pos, enum noside noside)
2202 {
2203 enum exp_opcode op;
2204 int pc;
2205 struct value *val;
2206 struct symbol *var;
2207
2208 pc = (*pos);
2209 op = exp->elts[pc].opcode;
2210
2211 switch (op)
2212 {
2213 case OP_VAR_VALUE:
2214 var = exp->elts[pc + 2].symbol;
2215 if (TYPE_CODE (check_typedef (SYMBOL_TYPE (var))) == TYPE_CODE_ARRAY
2216 && CAST_IS_CONVERSION)
2217 {
2218 (*pos) += 4;
2219 val =
2220 locate_var_value
2221 (var, block_innermost_frame (exp->elts[pc + 1].block));
2222 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (check_typedef (SYMBOL_TYPE (var)))),
2223 val);
2224 }
2225 /* FALLTHROUGH */
2226
2227 default:
2228 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2229 }
2230 }
2231
2232 /* Evaluate a subexpression of EXP, at index *POS,
2233 and return a value for the size of that subexpression.
2234 Advance *POS over the subexpression. */
2235
2236 static struct value *
2237 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2238 {
2239 enum exp_opcode op;
2240 int pc;
2241 struct type *type;
2242 struct value *val;
2243
2244 pc = (*pos);
2245 op = exp->elts[pc].opcode;
2246
2247 switch (op)
2248 {
2249 /* This case is handled specially
2250 so that we avoid creating a value for the result type.
2251 If the result type is very big, it's desirable not to
2252 create a value unnecessarily. */
2253 case UNOP_IND:
2254 (*pos)++;
2255 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2256 type = check_typedef (value_type (val));
2257 if (TYPE_CODE (type) != TYPE_CODE_PTR
2258 && TYPE_CODE (type) != TYPE_CODE_REF
2259 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2260 error (_("Attempt to take contents of a non-pointer value."));
2261 type = check_typedef (TYPE_TARGET_TYPE (type));
2262 return value_from_longest (builtin_type_int, (LONGEST)
2263 TYPE_LENGTH (type));
2264
2265 case UNOP_MEMVAL:
2266 (*pos) += 3;
2267 type = check_typedef (exp->elts[pc + 1].type);
2268 return value_from_longest (builtin_type_int,
2269 (LONGEST) TYPE_LENGTH (type));
2270
2271 case OP_VAR_VALUE:
2272 (*pos) += 4;
2273 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2274 return
2275 value_from_longest (builtin_type_int, (LONGEST) TYPE_LENGTH (type));
2276
2277 default:
2278 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2279 return value_from_longest (builtin_type_int,
2280 (LONGEST) TYPE_LENGTH (value_type (val)));
2281 }
2282 }
2283
2284 /* Parse a type expression in the string [P..P+LENGTH). */
2285
2286 struct type *
2287 parse_and_eval_type (char *p, int length)
2288 {
2289 char *tmp = (char *) alloca (length + 4);
2290 struct expression *expr;
2291 tmp[0] = '(';
2292 memcpy (tmp + 1, p, length);
2293 tmp[length + 1] = ')';
2294 tmp[length + 2] = '0';
2295 tmp[length + 3] = '\0';
2296 expr = parse_expression (tmp);
2297 if (expr->elts[0].opcode != UNOP_CAST)
2298 error (_("Internal error in eval_type."));
2299 return expr->elts[1].type;
2300 }
2301
2302 int
2303 calc_f77_array_dims (struct type *array_type)
2304 {
2305 int ndimen = 1;
2306 struct type *tmp_type;
2307
2308 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2309 error (_("Can't get dimensions for a non-array type"));
2310
2311 tmp_type = array_type;
2312
2313 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2314 {
2315 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2316 ++ndimen;
2317 }
2318 return ndimen;
2319 }
This page took 0.075547 seconds and 4 git commands to generate.