9bf5401d6783a74a237e68a295d990748c425392
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2003, 2005-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "expression.h"
26 #include "target.h"
27 #include "frame.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "exceptions.h"
38 #include "regcache.h"
39 #include "user-regs.h"
40 #include "valprint.h"
41 #include "gdb_obstack.h"
42 #include "objfiles.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static char *get_label (struct expression *, int *);
60
61 static struct value *evaluate_struct_tuple (struct value *,
62 struct expression *, int *,
63 enum noside, int);
64
65 static LONGEST init_array_element (struct value *, struct value *,
66 struct expression *, int *, enum noside,
67 LONGEST, LONGEST);
68
69 struct value *
70 evaluate_subexp (struct type *expect_type, struct expression *exp,
71 int *pos, enum noside noside)
72 {
73 return (*exp->language_defn->la_exp_desc->evaluate_exp)
74 (expect_type, exp, pos, noside);
75 }
76 \f
77 /* Parse the string EXP as a C expression, evaluate it,
78 and return the result as a number. */
79
80 CORE_ADDR
81 parse_and_eval_address (char *exp)
82 {
83 struct expression *expr = parse_expression (exp);
84 CORE_ADDR addr;
85 struct cleanup *old_chain =
86 make_cleanup (free_current_contents, &expr);
87
88 addr = value_as_address (evaluate_expression (expr));
89 do_cleanups (old_chain);
90 return addr;
91 }
92
93 /* Like parse_and_eval_address, but treats the value of the expression
94 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
95 LONGEST
96 parse_and_eval_long (char *exp)
97 {
98 struct expression *expr = parse_expression (exp);
99 LONGEST retval;
100 struct cleanup *old_chain =
101 make_cleanup (free_current_contents, &expr);
102
103 retval = value_as_long (evaluate_expression (expr));
104 do_cleanups (old_chain);
105 return (retval);
106 }
107
108 struct value *
109 parse_and_eval (char *exp)
110 {
111 struct expression *expr = parse_expression (exp);
112 struct value *val;
113 struct cleanup *old_chain =
114 make_cleanup (free_current_contents, &expr);
115
116 val = evaluate_expression (expr);
117 do_cleanups (old_chain);
118 return val;
119 }
120
121 /* Parse up to a comma (or to a closeparen)
122 in the string EXPP as an expression, evaluate it, and return the value.
123 EXPP is advanced to point to the comma. */
124
125 struct value *
126 parse_to_comma_and_eval (char **expp)
127 {
128 struct expression *expr = parse_exp_1 (expp, 0, (struct block *) 0, 1);
129 struct value *val;
130 struct cleanup *old_chain =
131 make_cleanup (free_current_contents, &expr);
132
133 val = evaluate_expression (expr);
134 do_cleanups (old_chain);
135 return val;
136 }
137 \f
138 /* Evaluate an expression in internal prefix form
139 such as is constructed by parse.y.
140
141 See expression.h for info on the format of an expression. */
142
143 struct value *
144 evaluate_expression (struct expression *exp)
145 {
146 int pc = 0;
147
148 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
149 }
150
151 /* Evaluate an expression, avoiding all memory references
152 and getting a value whose type alone is correct. */
153
154 struct value *
155 evaluate_type (struct expression *exp)
156 {
157 int pc = 0;
158
159 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
160 }
161
162 /* Evaluate a subexpression, avoiding all memory references and
163 getting a value whose type alone is correct. */
164
165 struct value *
166 evaluate_subexpression_type (struct expression *exp, int subexp)
167 {
168 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
169 }
170
171 /* Find the current value of a watchpoint on EXP. Return the value in
172 *VALP and *RESULTP and the chain of intermediate and final values
173 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
174 not need them.
175
176 If a memory error occurs while evaluating the expression, *RESULTP will
177 be set to NULL. *RESULTP may be a lazy value, if the result could
178 not be read from memory. It is used to determine whether a value
179 is user-specified (we should watch the whole value) or intermediate
180 (we should watch only the bit used to locate the final value).
181
182 If the final value, or any intermediate value, could not be read
183 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
184 set to any referenced values. *VALP will never be a lazy value.
185 This is the value which we store in struct breakpoint.
186
187 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
188 value chain. The caller must free the values individually. If
189 VAL_CHAIN is NULL, all generated values will be left on the value
190 chain. */
191
192 void
193 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
194 struct value **resultp, struct value **val_chain)
195 {
196 struct value *mark, *new_mark, *result;
197 volatile struct gdb_exception ex;
198
199 *valp = NULL;
200 if (resultp)
201 *resultp = NULL;
202 if (val_chain)
203 *val_chain = NULL;
204
205 /* Evaluate the expression. */
206 mark = value_mark ();
207 result = NULL;
208
209 TRY_CATCH (ex, RETURN_MASK_ALL)
210 {
211 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
212 }
213 if (ex.reason < 0)
214 {
215 /* Ignore memory errors, we want watchpoints pointing at
216 inaccessible memory to still be created; otherwise, throw the
217 error to some higher catcher. */
218 switch (ex.error)
219 {
220 case MEMORY_ERROR:
221 break;
222 default:
223 throw_exception (ex);
224 break;
225 }
226 }
227
228 new_mark = value_mark ();
229 if (mark == new_mark)
230 return;
231 if (resultp)
232 *resultp = result;
233
234 /* Make sure it's not lazy, so that after the target stops again we
235 have a non-lazy previous value to compare with. */
236 if (result != NULL)
237 {
238 if (!value_lazy (result))
239 *valp = result;
240 else
241 {
242 volatile struct gdb_exception except;
243
244 TRY_CATCH (except, RETURN_MASK_ERROR)
245 {
246 value_fetch_lazy (result);
247 *valp = result;
248 }
249 }
250 }
251
252 if (val_chain)
253 {
254 /* Return the chain of intermediate values. We use this to
255 decide which addresses to watch. */
256 *val_chain = new_mark;
257 value_release_to_mark (mark);
258 }
259 }
260
261 /* Extract a field operation from an expression. If the subexpression
262 of EXP starting at *SUBEXP is not a structure dereference
263 operation, return NULL. Otherwise, return the name of the
264 dereferenced field, and advance *SUBEXP to point to the
265 subexpression of the left-hand-side of the dereference. This is
266 used when completing field names. */
267
268 char *
269 extract_field_op (struct expression *exp, int *subexp)
270 {
271 int tem;
272 char *result;
273
274 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
275 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
276 return NULL;
277 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
278 result = &exp->elts[*subexp + 2].string;
279 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
280 return result;
281 }
282
283 /* If the next expression is an OP_LABELED, skips past it,
284 returning the label. Otherwise, does nothing and returns NULL. */
285
286 static char *
287 get_label (struct expression *exp, int *pos)
288 {
289 if (exp->elts[*pos].opcode == OP_LABELED)
290 {
291 int pc = (*pos)++;
292 char *name = &exp->elts[pc + 2].string;
293 int tem = longest_to_int (exp->elts[pc + 1].longconst);
294
295 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
296 return name;
297 }
298 else
299 return NULL;
300 }
301
302 /* This function evaluates tuples (in (the deleted) Chill) or
303 brace-initializers (in C/C++) for structure types. */
304
305 static struct value *
306 evaluate_struct_tuple (struct value *struct_val,
307 struct expression *exp,
308 int *pos, enum noside noside, int nargs)
309 {
310 struct type *struct_type = check_typedef (value_type (struct_val));
311 struct type *substruct_type = struct_type;
312 struct type *field_type;
313 int fieldno = -1;
314 int variantno = -1;
315 int subfieldno = -1;
316
317 while (--nargs >= 0)
318 {
319 int pc = *pos;
320 struct value *val = NULL;
321 int nlabels = 0;
322 int bitpos, bitsize;
323 bfd_byte *addr;
324
325 /* Skip past the labels, and count them. */
326 while (get_label (exp, pos) != NULL)
327 nlabels++;
328
329 do
330 {
331 char *label = get_label (exp, &pc);
332
333 if (label)
334 {
335 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
336 fieldno++)
337 {
338 const char *field_name =
339 TYPE_FIELD_NAME (struct_type, fieldno);
340
341 if (field_name != NULL && strcmp (field_name, label) == 0)
342 {
343 variantno = -1;
344 subfieldno = fieldno;
345 substruct_type = struct_type;
346 goto found;
347 }
348 }
349 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
350 fieldno++)
351 {
352 const char *field_name =
353 TYPE_FIELD_NAME (struct_type, fieldno);
354
355 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
356 if ((field_name == 0 || *field_name == '\0')
357 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
358 {
359 variantno = 0;
360 for (; variantno < TYPE_NFIELDS (field_type);
361 variantno++)
362 {
363 substruct_type
364 = TYPE_FIELD_TYPE (field_type, variantno);
365 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
366 {
367 for (subfieldno = 0;
368 subfieldno < TYPE_NFIELDS (substruct_type);
369 subfieldno++)
370 {
371 if (strcmp(TYPE_FIELD_NAME (substruct_type,
372 subfieldno),
373 label) == 0)
374 {
375 goto found;
376 }
377 }
378 }
379 }
380 }
381 }
382 error (_("there is no field named %s"), label);
383 found:
384 ;
385 }
386 else
387 {
388 /* Unlabelled tuple element - go to next field. */
389 if (variantno >= 0)
390 {
391 subfieldno++;
392 if (subfieldno >= TYPE_NFIELDS (substruct_type))
393 {
394 variantno = -1;
395 substruct_type = struct_type;
396 }
397 }
398 if (variantno < 0)
399 {
400 fieldno++;
401 /* Skip static fields. */
402 while (fieldno < TYPE_NFIELDS (struct_type)
403 && field_is_static (&TYPE_FIELD (struct_type,
404 fieldno)))
405 fieldno++;
406 subfieldno = fieldno;
407 if (fieldno >= TYPE_NFIELDS (struct_type))
408 error (_("too many initializers"));
409 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
410 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
411 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
412 error (_("don't know which variant you want to set"));
413 }
414 }
415
416 /* Here, struct_type is the type of the inner struct,
417 while substruct_type is the type of the inner struct.
418 These are the same for normal structures, but a variant struct
419 contains anonymous union fields that contain substruct fields.
420 The value fieldno is the index of the top-level (normal or
421 anonymous union) field in struct_field, while the value
422 subfieldno is the index of the actual real (named inner) field
423 in substruct_type. */
424
425 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
426 if (val == 0)
427 val = evaluate_subexp (field_type, exp, pos, noside);
428
429 /* Now actually set the field in struct_val. */
430
431 /* Assign val to field fieldno. */
432 if (value_type (val) != field_type)
433 val = value_cast (field_type, val);
434
435 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
436 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
437 if (variantno >= 0)
438 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
439 addr = value_contents_writeable (struct_val) + bitpos / 8;
440 if (bitsize)
441 modify_field (struct_type, addr,
442 value_as_long (val), bitpos % 8, bitsize);
443 else
444 memcpy (addr, value_contents (val),
445 TYPE_LENGTH (value_type (val)));
446 }
447 while (--nlabels > 0);
448 }
449 return struct_val;
450 }
451
452 /* Recursive helper function for setting elements of array tuples for
453 (the deleted) Chill. The target is ARRAY (which has bounds
454 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
455 and NOSIDE are as usual. Evaluates index expresions and sets the
456 specified element(s) of ARRAY to ELEMENT. Returns last index
457 value. */
458
459 static LONGEST
460 init_array_element (struct value *array, struct value *element,
461 struct expression *exp, int *pos,
462 enum noside noside, LONGEST low_bound, LONGEST high_bound)
463 {
464 LONGEST index;
465 int element_size = TYPE_LENGTH (value_type (element));
466
467 if (exp->elts[*pos].opcode == BINOP_COMMA)
468 {
469 (*pos)++;
470 init_array_element (array, element, exp, pos, noside,
471 low_bound, high_bound);
472 return init_array_element (array, element,
473 exp, pos, noside, low_bound, high_bound);
474 }
475 else if (exp->elts[*pos].opcode == BINOP_RANGE)
476 {
477 LONGEST low, high;
478
479 (*pos)++;
480 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
481 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
482 if (low < low_bound || high > high_bound)
483 error (_("tuple range index out of range"));
484 for (index = low; index <= high; index++)
485 {
486 memcpy (value_contents_raw (array)
487 + (index - low_bound) * element_size,
488 value_contents (element), element_size);
489 }
490 }
491 else
492 {
493 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
494 if (index < low_bound || index > high_bound)
495 error (_("tuple index out of range"));
496 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
497 value_contents (element), element_size);
498 }
499 return index;
500 }
501
502 static struct value *
503 value_f90_subarray (struct value *array,
504 struct expression *exp, int *pos, enum noside noside)
505 {
506 int pc = (*pos) + 1;
507 LONGEST low_bound, high_bound;
508 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
509 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
510
511 *pos += 3;
512
513 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
514 low_bound = TYPE_LOW_BOUND (range);
515 else
516 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
517
518 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
519 high_bound = TYPE_HIGH_BOUND (range);
520 else
521 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
522
523 return value_slice (array, low_bound, high_bound - low_bound + 1);
524 }
525
526
527 /* Promote value ARG1 as appropriate before performing a unary operation
528 on this argument.
529 If the result is not appropriate for any particular language then it
530 needs to patch this function. */
531
532 void
533 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
534 struct value **arg1)
535 {
536 struct type *type1;
537
538 *arg1 = coerce_ref (*arg1);
539 type1 = check_typedef (value_type (*arg1));
540
541 if (is_integral_type (type1))
542 {
543 switch (language->la_language)
544 {
545 default:
546 /* Perform integral promotion for ANSI C/C++.
547 If not appropropriate for any particular language
548 it needs to modify this function. */
549 {
550 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
551
552 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
553 *arg1 = value_cast (builtin_int, *arg1);
554 }
555 break;
556 }
557 }
558 }
559
560 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
561 operation on those two operands.
562 If the result is not appropriate for any particular language then it
563 needs to patch this function. */
564
565 void
566 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
567 struct value **arg1, struct value **arg2)
568 {
569 struct type *promoted_type = NULL;
570 struct type *type1;
571 struct type *type2;
572
573 *arg1 = coerce_ref (*arg1);
574 *arg2 = coerce_ref (*arg2);
575
576 type1 = check_typedef (value_type (*arg1));
577 type2 = check_typedef (value_type (*arg2));
578
579 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
580 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
581 && !is_integral_type (type1))
582 || (TYPE_CODE (type2) != TYPE_CODE_FLT
583 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
584 && !is_integral_type (type2)))
585 return;
586
587 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
588 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
589 {
590 /* No promotion required. */
591 }
592 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
593 || TYPE_CODE (type2) == TYPE_CODE_FLT)
594 {
595 switch (language->la_language)
596 {
597 case language_c:
598 case language_cplus:
599 case language_asm:
600 case language_objc:
601 case language_opencl:
602 /* No promotion required. */
603 break;
604
605 default:
606 /* For other languages the result type is unchanged from gdb
607 version 6.7 for backward compatibility.
608 If either arg was long double, make sure that value is also long
609 double. Otherwise use double. */
610 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
611 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
612 promoted_type = builtin_type (gdbarch)->builtin_long_double;
613 else
614 promoted_type = builtin_type (gdbarch)->builtin_double;
615 break;
616 }
617 }
618 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
619 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
620 {
621 /* No promotion required. */
622 }
623 else
624 /* Integral operations here. */
625 /* FIXME: Also mixed integral/booleans, with result an integer. */
626 {
627 const struct builtin_type *builtin = builtin_type (gdbarch);
628 unsigned int promoted_len1 = TYPE_LENGTH (type1);
629 unsigned int promoted_len2 = TYPE_LENGTH (type2);
630 int is_unsigned1 = TYPE_UNSIGNED (type1);
631 int is_unsigned2 = TYPE_UNSIGNED (type2);
632 unsigned int result_len;
633 int unsigned_operation;
634
635 /* Determine type length and signedness after promotion for
636 both operands. */
637 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
638 {
639 is_unsigned1 = 0;
640 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
641 }
642 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
643 {
644 is_unsigned2 = 0;
645 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
646 }
647
648 if (promoted_len1 > promoted_len2)
649 {
650 unsigned_operation = is_unsigned1;
651 result_len = promoted_len1;
652 }
653 else if (promoted_len2 > promoted_len1)
654 {
655 unsigned_operation = is_unsigned2;
656 result_len = promoted_len2;
657 }
658 else
659 {
660 unsigned_operation = is_unsigned1 || is_unsigned2;
661 result_len = promoted_len1;
662 }
663
664 switch (language->la_language)
665 {
666 case language_c:
667 case language_cplus:
668 case language_asm:
669 case language_objc:
670 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
671 {
672 promoted_type = (unsigned_operation
673 ? builtin->builtin_unsigned_int
674 : builtin->builtin_int);
675 }
676 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
677 {
678 promoted_type = (unsigned_operation
679 ? builtin->builtin_unsigned_long
680 : builtin->builtin_long);
681 }
682 else
683 {
684 promoted_type = (unsigned_operation
685 ? builtin->builtin_unsigned_long_long
686 : builtin->builtin_long_long);
687 }
688 break;
689 case language_opencl:
690 if (result_len <= TYPE_LENGTH (lookup_signed_typename
691 (language, gdbarch, "int")))
692 {
693 promoted_type =
694 (unsigned_operation
695 ? lookup_unsigned_typename (language, gdbarch, "int")
696 : lookup_signed_typename (language, gdbarch, "int"));
697 }
698 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
699 (language, gdbarch, "long")))
700 {
701 promoted_type =
702 (unsigned_operation
703 ? lookup_unsigned_typename (language, gdbarch, "long")
704 : lookup_signed_typename (language, gdbarch,"long"));
705 }
706 break;
707 default:
708 /* For other languages the result type is unchanged from gdb
709 version 6.7 for backward compatibility.
710 If either arg was long long, make sure that value is also long
711 long. Otherwise use long. */
712 if (unsigned_operation)
713 {
714 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
715 promoted_type = builtin->builtin_unsigned_long_long;
716 else
717 promoted_type = builtin->builtin_unsigned_long;
718 }
719 else
720 {
721 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
722 promoted_type = builtin->builtin_long_long;
723 else
724 promoted_type = builtin->builtin_long;
725 }
726 break;
727 }
728 }
729
730 if (promoted_type)
731 {
732 /* Promote both operands to common type. */
733 *arg1 = value_cast (promoted_type, *arg1);
734 *arg2 = value_cast (promoted_type, *arg2);
735 }
736 }
737
738 static int
739 ptrmath_type_p (const struct language_defn *lang, struct type *type)
740 {
741 type = check_typedef (type);
742 if (TYPE_CODE (type) == TYPE_CODE_REF)
743 type = TYPE_TARGET_TYPE (type);
744
745 switch (TYPE_CODE (type))
746 {
747 case TYPE_CODE_PTR:
748 case TYPE_CODE_FUNC:
749 return 1;
750
751 case TYPE_CODE_ARRAY:
752 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
753
754 default:
755 return 0;
756 }
757 }
758
759 /* Constructs a fake method with the given parameter types.
760 This function is used by the parser to construct an "expected"
761 type for method overload resolution. */
762
763 static struct type *
764 make_params (int num_types, struct type **param_types)
765 {
766 struct type *type = XZALLOC (struct type);
767 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
768 TYPE_LENGTH (type) = 1;
769 TYPE_CODE (type) = TYPE_CODE_METHOD;
770 TYPE_VPTR_FIELDNO (type) = -1;
771 TYPE_CHAIN (type) = type;
772 if (num_types > 0)
773 {
774 if (param_types[num_types - 1] == NULL)
775 {
776 --num_types;
777 TYPE_VARARGS (type) = 1;
778 }
779 else if (TYPE_CODE (check_typedef (param_types[num_types - 1]))
780 == TYPE_CODE_VOID)
781 {
782 --num_types;
783 /* Caller should have ensured this. */
784 gdb_assert (num_types == 0);
785 TYPE_PROTOTYPED (type) = 1;
786 }
787 }
788
789 TYPE_NFIELDS (type) = num_types;
790 TYPE_FIELDS (type) = (struct field *)
791 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
792
793 while (num_types-- > 0)
794 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
795
796 return type;
797 }
798
799 struct value *
800 evaluate_subexp_standard (struct type *expect_type,
801 struct expression *exp, int *pos,
802 enum noside noside)
803 {
804 enum exp_opcode op;
805 int tem, tem2, tem3;
806 int pc, pc2 = 0, oldpos;
807 struct value *arg1 = NULL;
808 struct value *arg2 = NULL;
809 struct value *arg3;
810 struct type *type;
811 int nargs;
812 struct value **argvec;
813 int lower;
814 int code;
815 int ix;
816 long mem_offset;
817 struct type **arg_types;
818 int save_pos1;
819 struct symbol *function = NULL;
820 char *function_name = NULL;
821
822 pc = (*pos)++;
823 op = exp->elts[pc].opcode;
824
825 switch (op)
826 {
827 case OP_SCOPE:
828 tem = longest_to_int (exp->elts[pc + 2].longconst);
829 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
830 if (noside == EVAL_SKIP)
831 goto nosideret;
832 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
833 &exp->elts[pc + 3].string,
834 expect_type, 0, noside);
835 if (arg1 == NULL)
836 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
837 return arg1;
838
839 case OP_LONG:
840 (*pos) += 3;
841 return value_from_longest (exp->elts[pc + 1].type,
842 exp->elts[pc + 2].longconst);
843
844 case OP_DOUBLE:
845 (*pos) += 3;
846 return value_from_double (exp->elts[pc + 1].type,
847 exp->elts[pc + 2].doubleconst);
848
849 case OP_DECFLOAT:
850 (*pos) += 3;
851 return value_from_decfloat (exp->elts[pc + 1].type,
852 exp->elts[pc + 2].decfloatconst);
853
854 case OP_ADL_FUNC:
855 case OP_VAR_VALUE:
856 (*pos) += 3;
857 if (noside == EVAL_SKIP)
858 goto nosideret;
859
860 /* JYG: We used to just return value_zero of the symbol type
861 if we're asked to avoid side effects. Otherwise we return
862 value_of_variable (...). However I'm not sure if
863 value_of_variable () has any side effect.
864 We need a full value object returned here for whatis_exp ()
865 to call evaluate_type () and then pass the full value to
866 value_rtti_target_type () if we are dealing with a pointer
867 or reference to a base class and print object is on. */
868
869 {
870 volatile struct gdb_exception except;
871 struct value *ret = NULL;
872
873 TRY_CATCH (except, RETURN_MASK_ERROR)
874 {
875 ret = value_of_variable (exp->elts[pc + 2].symbol,
876 exp->elts[pc + 1].block);
877 }
878
879 if (except.reason < 0)
880 {
881 if (noside == EVAL_AVOID_SIDE_EFFECTS)
882 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
883 not_lval);
884 else
885 throw_exception (except);
886 }
887
888 return ret;
889 }
890
891 case OP_VAR_ENTRY_VALUE:
892 (*pos) += 2;
893 if (noside == EVAL_SKIP)
894 goto nosideret;
895
896 {
897 struct symbol *sym = exp->elts[pc + 1].symbol;
898 struct frame_info *frame;
899
900 if (noside == EVAL_AVOID_SIDE_EFFECTS)
901 return value_zero (SYMBOL_TYPE (sym), not_lval);
902
903 if (SYMBOL_CLASS (sym) != LOC_COMPUTED
904 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
905 error (_("Symbol \"%s\" does not have any specific entry value"),
906 SYMBOL_PRINT_NAME (sym));
907
908 frame = get_selected_frame (NULL);
909 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
910 }
911
912 case OP_LAST:
913 (*pos) += 2;
914 return
915 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
916
917 case OP_REGISTER:
918 {
919 const char *name = &exp->elts[pc + 2].string;
920 int regno;
921 struct value *val;
922
923 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
924 regno = user_reg_map_name_to_regnum (exp->gdbarch,
925 name, strlen (name));
926 if (regno == -1)
927 error (_("Register $%s not available."), name);
928
929 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
930 a value with the appropriate register type. Unfortunately,
931 we don't have easy access to the type of user registers.
932 So for these registers, we fetch the register value regardless
933 of the evaluation mode. */
934 if (noside == EVAL_AVOID_SIDE_EFFECTS
935 && regno < gdbarch_num_regs (exp->gdbarch)
936 + gdbarch_num_pseudo_regs (exp->gdbarch))
937 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
938 else
939 val = value_of_register (regno, get_selected_frame (NULL));
940 if (val == NULL)
941 error (_("Value of register %s not available."), name);
942 else
943 return val;
944 }
945 case OP_BOOL:
946 (*pos) += 2;
947 type = language_bool_type (exp->language_defn, exp->gdbarch);
948 return value_from_longest (type, exp->elts[pc + 1].longconst);
949
950 case OP_INTERNALVAR:
951 (*pos) += 2;
952 return value_of_internalvar (exp->gdbarch,
953 exp->elts[pc + 1].internalvar);
954
955 case OP_STRING:
956 tem = longest_to_int (exp->elts[pc + 1].longconst);
957 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
958 if (noside == EVAL_SKIP)
959 goto nosideret;
960 type = language_string_char_type (exp->language_defn, exp->gdbarch);
961 return value_string (&exp->elts[pc + 2].string, tem, type);
962
963 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
964 NSString constant. */
965 tem = longest_to_int (exp->elts[pc + 1].longconst);
966 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
967 if (noside == EVAL_SKIP)
968 {
969 goto nosideret;
970 }
971 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
972
973 case OP_ARRAY:
974 (*pos) += 3;
975 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
976 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
977 nargs = tem3 - tem2 + 1;
978 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
979
980 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
981 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
982 {
983 struct value *rec = allocate_value (expect_type);
984
985 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
986 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
987 }
988
989 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
990 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
991 {
992 struct type *range_type = TYPE_INDEX_TYPE (type);
993 struct type *element_type = TYPE_TARGET_TYPE (type);
994 struct value *array = allocate_value (expect_type);
995 int element_size = TYPE_LENGTH (check_typedef (element_type));
996 LONGEST low_bound, high_bound, index;
997
998 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
999 {
1000 low_bound = 0;
1001 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1002 }
1003 index = low_bound;
1004 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1005 for (tem = nargs; --nargs >= 0;)
1006 {
1007 struct value *element;
1008 int index_pc = 0;
1009
1010 if (exp->elts[*pos].opcode == BINOP_RANGE)
1011 {
1012 index_pc = ++(*pos);
1013 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1014 }
1015 element = evaluate_subexp (element_type, exp, pos, noside);
1016 if (value_type (element) != element_type)
1017 element = value_cast (element_type, element);
1018 if (index_pc)
1019 {
1020 int continue_pc = *pos;
1021
1022 *pos = index_pc;
1023 index = init_array_element (array, element, exp, pos, noside,
1024 low_bound, high_bound);
1025 *pos = continue_pc;
1026 }
1027 else
1028 {
1029 if (index > high_bound)
1030 /* To avoid memory corruption. */
1031 error (_("Too many array elements"));
1032 memcpy (value_contents_raw (array)
1033 + (index - low_bound) * element_size,
1034 value_contents (element),
1035 element_size);
1036 }
1037 index++;
1038 }
1039 return array;
1040 }
1041
1042 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1043 && TYPE_CODE (type) == TYPE_CODE_SET)
1044 {
1045 struct value *set = allocate_value (expect_type);
1046 gdb_byte *valaddr = value_contents_raw (set);
1047 struct type *element_type = TYPE_INDEX_TYPE (type);
1048 struct type *check_type = element_type;
1049 LONGEST low_bound, high_bound;
1050
1051 /* Get targettype of elementtype. */
1052 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1053 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1054 check_type = TYPE_TARGET_TYPE (check_type);
1055
1056 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1057 error (_("(power)set type with unknown size"));
1058 memset (valaddr, '\0', TYPE_LENGTH (type));
1059 for (tem = 0; tem < nargs; tem++)
1060 {
1061 LONGEST range_low, range_high;
1062 struct type *range_low_type, *range_high_type;
1063 struct value *elem_val;
1064
1065 if (exp->elts[*pos].opcode == BINOP_RANGE)
1066 {
1067 (*pos)++;
1068 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1069 range_low_type = value_type (elem_val);
1070 range_low = value_as_long (elem_val);
1071 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1072 range_high_type = value_type (elem_val);
1073 range_high = value_as_long (elem_val);
1074 }
1075 else
1076 {
1077 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1078 range_low_type = range_high_type = value_type (elem_val);
1079 range_low = range_high = value_as_long (elem_val);
1080 }
1081 /* Check types of elements to avoid mixture of elements from
1082 different types. Also check if type of element is "compatible"
1083 with element type of powerset. */
1084 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1085 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1086 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1087 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1088 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1089 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1090 && (range_low_type != range_high_type)))
1091 /* different element modes. */
1092 error (_("POWERSET tuple elements of different mode"));
1093 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1094 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1095 && range_low_type != check_type))
1096 error (_("incompatible POWERSET tuple elements"));
1097 if (range_low > range_high)
1098 {
1099 warning (_("empty POWERSET tuple range"));
1100 continue;
1101 }
1102 if (range_low < low_bound || range_high > high_bound)
1103 error (_("POWERSET tuple element out of range"));
1104 range_low -= low_bound;
1105 range_high -= low_bound;
1106 for (; range_low <= range_high; range_low++)
1107 {
1108 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1109
1110 if (gdbarch_bits_big_endian (exp->gdbarch))
1111 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1112 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1113 |= 1 << bit_index;
1114 }
1115 }
1116 return set;
1117 }
1118
1119 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1120 for (tem = 0; tem < nargs; tem++)
1121 {
1122 /* Ensure that array expressions are coerced into pointer
1123 objects. */
1124 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1125 }
1126 if (noside == EVAL_SKIP)
1127 goto nosideret;
1128 return value_array (tem2, tem3, argvec);
1129
1130 case TERNOP_SLICE:
1131 {
1132 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1133 int lowbound
1134 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1135 int upper
1136 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1137
1138 if (noside == EVAL_SKIP)
1139 goto nosideret;
1140 return value_slice (array, lowbound, upper - lowbound + 1);
1141 }
1142
1143 case TERNOP_SLICE_COUNT:
1144 {
1145 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1146 int lowbound
1147 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1148 int length
1149 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1150
1151 return value_slice (array, lowbound, length);
1152 }
1153
1154 case TERNOP_COND:
1155 /* Skip third and second args to evaluate the first one. */
1156 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1157 if (value_logical_not (arg1))
1158 {
1159 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1160 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1161 }
1162 else
1163 {
1164 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1165 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1166 return arg2;
1167 }
1168
1169 case OP_OBJC_SELECTOR:
1170 { /* Objective C @selector operator. */
1171 char *sel = &exp->elts[pc + 2].string;
1172 int len = longest_to_int (exp->elts[pc + 1].longconst);
1173 struct type *selector_type;
1174
1175 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1176 if (noside == EVAL_SKIP)
1177 goto nosideret;
1178
1179 if (sel[len] != 0)
1180 sel[len] = 0; /* Make sure it's terminated. */
1181
1182 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1183 return value_from_longest (selector_type,
1184 lookup_child_selector (exp->gdbarch, sel));
1185 }
1186
1187 case OP_OBJC_MSGCALL:
1188 { /* Objective C message (method) call. */
1189
1190 CORE_ADDR responds_selector = 0;
1191 CORE_ADDR method_selector = 0;
1192
1193 CORE_ADDR selector = 0;
1194
1195 int struct_return = 0;
1196 int sub_no_side = 0;
1197
1198 struct value *msg_send = NULL;
1199 struct value *msg_send_stret = NULL;
1200 int gnu_runtime = 0;
1201
1202 struct value *target = NULL;
1203 struct value *method = NULL;
1204 struct value *called_method = NULL;
1205
1206 struct type *selector_type = NULL;
1207 struct type *long_type;
1208
1209 struct value *ret = NULL;
1210 CORE_ADDR addr = 0;
1211
1212 selector = exp->elts[pc + 1].longconst;
1213 nargs = exp->elts[pc + 2].longconst;
1214 argvec = (struct value **) alloca (sizeof (struct value *)
1215 * (nargs + 5));
1216
1217 (*pos) += 3;
1218
1219 long_type = builtin_type (exp->gdbarch)->builtin_long;
1220 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1221
1222 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1223 sub_no_side = EVAL_NORMAL;
1224 else
1225 sub_no_side = noside;
1226
1227 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1228
1229 if (value_as_long (target) == 0)
1230 return value_from_longest (long_type, 0);
1231
1232 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1233 gnu_runtime = 1;
1234
1235 /* Find the method dispatch (Apple runtime) or method lookup
1236 (GNU runtime) function for Objective-C. These will be used
1237 to lookup the symbol information for the method. If we
1238 can't find any symbol information, then we'll use these to
1239 call the method, otherwise we can call the method
1240 directly. The msg_send_stret function is used in the special
1241 case of a method that returns a structure (Apple runtime
1242 only). */
1243 if (gnu_runtime)
1244 {
1245 struct type *type = selector_type;
1246
1247 type = lookup_function_type (type);
1248 type = lookup_pointer_type (type);
1249 type = lookup_function_type (type);
1250 type = lookup_pointer_type (type);
1251
1252 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1253 msg_send_stret
1254 = find_function_in_inferior ("objc_msg_lookup", NULL);
1255
1256 msg_send = value_from_pointer (type, value_as_address (msg_send));
1257 msg_send_stret = value_from_pointer (type,
1258 value_as_address (msg_send_stret));
1259 }
1260 else
1261 {
1262 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1263 /* Special dispatcher for methods returning structs. */
1264 msg_send_stret
1265 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1266 }
1267
1268 /* Verify the target object responds to this method. The
1269 standard top-level 'Object' class uses a different name for
1270 the verification method than the non-standard, but more
1271 often used, 'NSObject' class. Make sure we check for both. */
1272
1273 responds_selector
1274 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1275 if (responds_selector == 0)
1276 responds_selector
1277 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1278
1279 if (responds_selector == 0)
1280 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1281
1282 method_selector
1283 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1284 if (method_selector == 0)
1285 method_selector
1286 = lookup_child_selector (exp->gdbarch, "methodFor:");
1287
1288 if (method_selector == 0)
1289 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1290
1291 /* Call the verification method, to make sure that the target
1292 class implements the desired method. */
1293
1294 argvec[0] = msg_send;
1295 argvec[1] = target;
1296 argvec[2] = value_from_longest (long_type, responds_selector);
1297 argvec[3] = value_from_longest (long_type, selector);
1298 argvec[4] = 0;
1299
1300 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1301 if (gnu_runtime)
1302 {
1303 /* Function objc_msg_lookup returns a pointer. */
1304 argvec[0] = ret;
1305 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1306 }
1307 if (value_as_long (ret) == 0)
1308 error (_("Target does not respond to this message selector."));
1309
1310 /* Call "methodForSelector:" method, to get the address of a
1311 function method that implements this selector for this
1312 class. If we can find a symbol at that address, then we
1313 know the return type, parameter types etc. (that's a good
1314 thing). */
1315
1316 argvec[0] = msg_send;
1317 argvec[1] = target;
1318 argvec[2] = value_from_longest (long_type, method_selector);
1319 argvec[3] = value_from_longest (long_type, selector);
1320 argvec[4] = 0;
1321
1322 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1323 if (gnu_runtime)
1324 {
1325 argvec[0] = ret;
1326 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1327 }
1328
1329 /* ret should now be the selector. */
1330
1331 addr = value_as_long (ret);
1332 if (addr)
1333 {
1334 struct symbol *sym = NULL;
1335
1336 /* The address might point to a function descriptor;
1337 resolve it to the actual code address instead. */
1338 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1339 &current_target);
1340
1341 /* Is it a high_level symbol? */
1342 sym = find_pc_function (addr);
1343 if (sym != NULL)
1344 method = value_of_variable (sym, 0);
1345 }
1346
1347 /* If we found a method with symbol information, check to see
1348 if it returns a struct. Otherwise assume it doesn't. */
1349
1350 if (method)
1351 {
1352 CORE_ADDR funaddr;
1353 struct type *val_type;
1354
1355 funaddr = find_function_addr (method, &val_type);
1356
1357 block_for_pc (funaddr);
1358
1359 CHECK_TYPEDEF (val_type);
1360
1361 if ((val_type == NULL)
1362 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1363 {
1364 if (expect_type != NULL)
1365 val_type = expect_type;
1366 }
1367
1368 struct_return = using_struct_return (exp->gdbarch, method,
1369 val_type);
1370 }
1371 else if (expect_type != NULL)
1372 {
1373 struct_return = using_struct_return (exp->gdbarch, NULL,
1374 check_typedef (expect_type));
1375 }
1376
1377 /* Found a function symbol. Now we will substitute its
1378 value in place of the message dispatcher (obj_msgSend),
1379 so that we call the method directly instead of thru
1380 the dispatcher. The main reason for doing this is that
1381 we can now evaluate the return value and parameter values
1382 according to their known data types, in case we need to
1383 do things like promotion, dereferencing, special handling
1384 of structs and doubles, etc.
1385
1386 We want to use the type signature of 'method', but still
1387 jump to objc_msgSend() or objc_msgSend_stret() to better
1388 mimic the behavior of the runtime. */
1389
1390 if (method)
1391 {
1392 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1393 error (_("method address has symbol information "
1394 "with non-function type; skipping"));
1395
1396 /* Create a function pointer of the appropriate type, and
1397 replace its value with the value of msg_send or
1398 msg_send_stret. We must use a pointer here, as
1399 msg_send and msg_send_stret are of pointer type, and
1400 the representation may be different on systems that use
1401 function descriptors. */
1402 if (struct_return)
1403 called_method
1404 = value_from_pointer (lookup_pointer_type (value_type (method)),
1405 value_as_address (msg_send_stret));
1406 else
1407 called_method
1408 = value_from_pointer (lookup_pointer_type (value_type (method)),
1409 value_as_address (msg_send));
1410 }
1411 else
1412 {
1413 if (struct_return)
1414 called_method = msg_send_stret;
1415 else
1416 called_method = msg_send;
1417 }
1418
1419 if (noside == EVAL_SKIP)
1420 goto nosideret;
1421
1422 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1423 {
1424 /* If the return type doesn't look like a function type,
1425 call an error. This can happen if somebody tries to
1426 turn a variable into a function call. This is here
1427 because people often want to call, eg, strcmp, which
1428 gdb doesn't know is a function. If gdb isn't asked for
1429 it's opinion (ie. through "whatis"), it won't offer
1430 it. */
1431
1432 struct type *type = value_type (called_method);
1433
1434 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1435 type = TYPE_TARGET_TYPE (type);
1436 type = TYPE_TARGET_TYPE (type);
1437
1438 if (type)
1439 {
1440 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1441 return allocate_value (expect_type);
1442 else
1443 return allocate_value (type);
1444 }
1445 else
1446 error (_("Expression of type other than "
1447 "\"method returning ...\" used as a method"));
1448 }
1449
1450 /* Now depending on whether we found a symbol for the method,
1451 we will either call the runtime dispatcher or the method
1452 directly. */
1453
1454 argvec[0] = called_method;
1455 argvec[1] = target;
1456 argvec[2] = value_from_longest (long_type, selector);
1457 /* User-supplied arguments. */
1458 for (tem = 0; tem < nargs; tem++)
1459 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1460 argvec[tem + 3] = 0;
1461
1462 if (gnu_runtime && (method != NULL))
1463 {
1464 /* Function objc_msg_lookup returns a pointer. */
1465 deprecated_set_value_type (argvec[0],
1466 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1467 argvec[0]
1468 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1469 }
1470
1471 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1472 return ret;
1473 }
1474 break;
1475
1476 case OP_FUNCALL:
1477 (*pos) += 2;
1478 op = exp->elts[*pos].opcode;
1479 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1480 /* Allocate arg vector, including space for the function to be
1481 called in argvec[0] and a terminating NULL. */
1482 argvec = (struct value **)
1483 alloca (sizeof (struct value *) * (nargs + 3));
1484 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1485 {
1486 nargs++;
1487 /* First, evaluate the structure into arg2. */
1488 pc2 = (*pos)++;
1489
1490 if (noside == EVAL_SKIP)
1491 goto nosideret;
1492
1493 if (op == STRUCTOP_MEMBER)
1494 {
1495 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1496 }
1497 else
1498 {
1499 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1500 }
1501
1502 /* If the function is a virtual function, then the
1503 aggregate value (providing the structure) plays
1504 its part by providing the vtable. Otherwise,
1505 it is just along for the ride: call the function
1506 directly. */
1507
1508 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1509
1510 if (TYPE_CODE (check_typedef (value_type (arg1)))
1511 != TYPE_CODE_METHODPTR)
1512 error (_("Non-pointer-to-member value used in pointer-to-member "
1513 "construct"));
1514
1515 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1516 {
1517 struct type *method_type = check_typedef (value_type (arg1));
1518
1519 arg1 = value_zero (method_type, not_lval);
1520 }
1521 else
1522 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1523
1524 /* Now, say which argument to start evaluating from. */
1525 tem = 2;
1526 }
1527 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1528 {
1529 /* Hair for method invocations. */
1530 int tem2;
1531
1532 nargs++;
1533 /* First, evaluate the structure into arg2. */
1534 pc2 = (*pos)++;
1535 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1536 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1537 if (noside == EVAL_SKIP)
1538 goto nosideret;
1539
1540 if (op == STRUCTOP_STRUCT)
1541 {
1542 /* If v is a variable in a register, and the user types
1543 v.method (), this will produce an error, because v has
1544 no address.
1545
1546 A possible way around this would be to allocate a
1547 copy of the variable on the stack, copy in the
1548 contents, call the function, and copy out the
1549 contents. I.e. convert this from call by reference
1550 to call by copy-return (or whatever it's called).
1551 However, this does not work because it is not the
1552 same: the method being called could stash a copy of
1553 the address, and then future uses through that address
1554 (after the method returns) would be expected to
1555 use the variable itself, not some copy of it. */
1556 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1557 }
1558 else
1559 {
1560 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1561
1562 /* Check to see if the operator '->' has been
1563 overloaded. If the operator has been overloaded
1564 replace arg2 with the value returned by the custom
1565 operator and continue evaluation. */
1566 while (unop_user_defined_p (op, arg2))
1567 {
1568 volatile struct gdb_exception except;
1569 struct value *value = NULL;
1570 TRY_CATCH (except, RETURN_MASK_ERROR)
1571 {
1572 value = value_x_unop (arg2, op, noside);
1573 }
1574
1575 if (except.reason < 0)
1576 {
1577 if (except.error == NOT_FOUND_ERROR)
1578 break;
1579 else
1580 throw_exception (except);
1581 }
1582 arg2 = value;
1583 }
1584 }
1585 /* Now, say which argument to start evaluating from. */
1586 tem = 2;
1587 }
1588 else if (op == OP_SCOPE
1589 && overload_resolution
1590 && (exp->language_defn->la_language == language_cplus))
1591 {
1592 /* Unpack it locally so we can properly handle overload
1593 resolution. */
1594 char *name;
1595 int local_tem;
1596
1597 pc2 = (*pos)++;
1598 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1599 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1600 type = exp->elts[pc2 + 1].type;
1601 name = &exp->elts[pc2 + 3].string;
1602
1603 function = NULL;
1604 function_name = NULL;
1605 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1606 {
1607 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1608 name,
1609 get_selected_block (0),
1610 VAR_DOMAIN);
1611 if (function == NULL)
1612 error (_("No symbol \"%s\" in namespace \"%s\"."),
1613 name, TYPE_TAG_NAME (type));
1614
1615 tem = 1;
1616 }
1617 else
1618 {
1619 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1620 || TYPE_CODE (type) == TYPE_CODE_UNION);
1621 function_name = name;
1622
1623 arg2 = value_zero (type, lval_memory);
1624 ++nargs;
1625 tem = 2;
1626 }
1627 }
1628 else if (op == OP_ADL_FUNC)
1629 {
1630 /* Save the function position and move pos so that the arguments
1631 can be evaluated. */
1632 int func_name_len;
1633
1634 save_pos1 = *pos;
1635 tem = 1;
1636
1637 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1638 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1639 }
1640 else
1641 {
1642 /* Non-method function call. */
1643 save_pos1 = *pos;
1644 tem = 1;
1645
1646 /* If this is a C++ function wait until overload resolution. */
1647 if (op == OP_VAR_VALUE
1648 && overload_resolution
1649 && (exp->language_defn->la_language == language_cplus))
1650 {
1651 (*pos) += 4; /* Skip the evaluation of the symbol. */
1652 argvec[0] = NULL;
1653 }
1654 else
1655 {
1656 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1657 type = value_type (argvec[0]);
1658 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1659 type = TYPE_TARGET_TYPE (type);
1660 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1661 {
1662 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1663 {
1664 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1665 tem - 1),
1666 exp, pos, noside);
1667 }
1668 }
1669 }
1670 }
1671
1672 /* Evaluate arguments. */
1673 for (; tem <= nargs; tem++)
1674 {
1675 /* Ensure that array expressions are coerced into pointer
1676 objects. */
1677 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1678 }
1679
1680 /* Signal end of arglist. */
1681 argvec[tem] = 0;
1682 if (op == OP_ADL_FUNC)
1683 {
1684 struct symbol *symp;
1685 char *func_name;
1686 int name_len;
1687 int string_pc = save_pos1 + 3;
1688
1689 /* Extract the function name. */
1690 name_len = longest_to_int (exp->elts[string_pc].longconst);
1691 func_name = (char *) alloca (name_len + 1);
1692 strcpy (func_name, &exp->elts[string_pc + 1].string);
1693
1694 find_overload_match (&argvec[1], nargs, func_name,
1695 NON_METHOD, /* not method */
1696 0, /* strict match */
1697 NULL, NULL, /* pass NULL symbol since
1698 symbol is unknown */
1699 NULL, &symp, NULL, 0);
1700
1701 /* Now fix the expression being evaluated. */
1702 exp->elts[save_pos1 + 2].symbol = symp;
1703 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1704 }
1705
1706 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1707 || (op == OP_SCOPE && function_name != NULL))
1708 {
1709 int static_memfuncp;
1710 char *tstr;
1711
1712 /* Method invocation : stuff "this" as first parameter. */
1713 argvec[1] = arg2;
1714
1715 if (op != OP_SCOPE)
1716 {
1717 /* Name of method from expression. */
1718 tstr = &exp->elts[pc2 + 2].string;
1719 }
1720 else
1721 tstr = function_name;
1722
1723 if (overload_resolution && (exp->language_defn->la_language
1724 == language_cplus))
1725 {
1726 /* Language is C++, do some overload resolution before
1727 evaluation. */
1728 struct value *valp = NULL;
1729
1730 (void) find_overload_match (&argvec[1], nargs, tstr,
1731 METHOD, /* method */
1732 0, /* strict match */
1733 &arg2, /* the object */
1734 NULL, &valp, NULL,
1735 &static_memfuncp, 0);
1736
1737 if (op == OP_SCOPE && !static_memfuncp)
1738 {
1739 /* For the time being, we don't handle this. */
1740 error (_("Call to overloaded function %s requires "
1741 "`this' pointer"),
1742 function_name);
1743 }
1744 argvec[1] = arg2; /* the ``this'' pointer */
1745 argvec[0] = valp; /* Use the method found after overload
1746 resolution. */
1747 }
1748 else
1749 /* Non-C++ case -- or no overload resolution. */
1750 {
1751 struct value *temp = arg2;
1752
1753 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1754 &static_memfuncp,
1755 op == STRUCTOP_STRUCT
1756 ? "structure" : "structure pointer");
1757 /* value_struct_elt updates temp with the correct value
1758 of the ``this'' pointer if necessary, so modify argvec[1] to
1759 reflect any ``this'' changes. */
1760 arg2
1761 = value_from_longest (lookup_pointer_type(value_type (temp)),
1762 value_address (temp)
1763 + value_embedded_offset (temp));
1764 argvec[1] = arg2; /* the ``this'' pointer */
1765 }
1766
1767 if (static_memfuncp)
1768 {
1769 argvec[1] = argvec[0];
1770 nargs--;
1771 argvec++;
1772 }
1773 }
1774 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1775 {
1776 argvec[1] = arg2;
1777 argvec[0] = arg1;
1778 }
1779 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1780 {
1781 /* Non-member function being called. */
1782 /* fn: This can only be done for C++ functions. A C-style function
1783 in a C++ program, for instance, does not have the fields that
1784 are expected here. */
1785
1786 if (overload_resolution && (exp->language_defn->la_language
1787 == language_cplus))
1788 {
1789 /* Language is C++, do some overload resolution before
1790 evaluation. */
1791 struct symbol *symp;
1792 int no_adl = 0;
1793
1794 /* If a scope has been specified disable ADL. */
1795 if (op == OP_SCOPE)
1796 no_adl = 1;
1797
1798 if (op == OP_VAR_VALUE)
1799 function = exp->elts[save_pos1+2].symbol;
1800
1801 (void) find_overload_match (&argvec[1], nargs,
1802 NULL, /* no need for name */
1803 NON_METHOD, /* not method */
1804 0, /* strict match */
1805 NULL, function, /* the function */
1806 NULL, &symp, NULL, no_adl);
1807
1808 if (op == OP_VAR_VALUE)
1809 {
1810 /* Now fix the expression being evaluated. */
1811 exp->elts[save_pos1+2].symbol = symp;
1812 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1813 noside);
1814 }
1815 else
1816 argvec[0] = value_of_variable (symp, get_selected_block (0));
1817 }
1818 else
1819 {
1820 /* Not C++, or no overload resolution allowed. */
1821 /* Nothing to be done; argvec already correctly set up. */
1822 }
1823 }
1824 else
1825 {
1826 /* It is probably a C-style function. */
1827 /* Nothing to be done; argvec already correctly set up. */
1828 }
1829
1830 do_call_it:
1831
1832 if (noside == EVAL_SKIP)
1833 goto nosideret;
1834 if (argvec[0] == NULL)
1835 error (_("Cannot evaluate function -- may be inlined"));
1836 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1837 {
1838 /* If the return type doesn't look like a function type, call an
1839 error. This can happen if somebody tries to turn a variable into
1840 a function call. This is here because people often want to
1841 call, eg, strcmp, which gdb doesn't know is a function. If
1842 gdb isn't asked for it's opinion (ie. through "whatis"),
1843 it won't offer it. */
1844
1845 struct type *ftype = value_type (argvec[0]);
1846
1847 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1848 {
1849 /* We don't know anything about what the internal
1850 function might return, but we have to return
1851 something. */
1852 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1853 not_lval);
1854 }
1855 else if (TYPE_GNU_IFUNC (ftype))
1856 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1857 else if (TYPE_TARGET_TYPE (ftype))
1858 return allocate_value (TYPE_TARGET_TYPE (ftype));
1859 else
1860 error (_("Expression of type other than "
1861 "\"Function returning ...\" used as function"));
1862 }
1863 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1864 return call_internal_function (exp->gdbarch, exp->language_defn,
1865 argvec[0], nargs, argvec + 1);
1866
1867 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1868 /* pai: FIXME save value from call_function_by_hand, then adjust
1869 pc by adjust_fn_pc if +ve. */
1870
1871 case OP_F77_UNDETERMINED_ARGLIST:
1872
1873 /* Remember that in F77, functions, substring ops and
1874 array subscript operations cannot be disambiguated
1875 at parse time. We have made all array subscript operations,
1876 substring operations as well as function calls come here
1877 and we now have to discover what the heck this thing actually was.
1878 If it is a function, we process just as if we got an OP_FUNCALL. */
1879
1880 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1881 (*pos) += 2;
1882
1883 /* First determine the type code we are dealing with. */
1884 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1885 type = check_typedef (value_type (arg1));
1886 code = TYPE_CODE (type);
1887
1888 if (code == TYPE_CODE_PTR)
1889 {
1890 /* Fortran always passes variable to subroutines as pointer.
1891 So we need to look into its target type to see if it is
1892 array, string or function. If it is, we need to switch
1893 to the target value the original one points to. */
1894 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1895
1896 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1897 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1898 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1899 {
1900 arg1 = value_ind (arg1);
1901 type = check_typedef (value_type (arg1));
1902 code = TYPE_CODE (type);
1903 }
1904 }
1905
1906 switch (code)
1907 {
1908 case TYPE_CODE_ARRAY:
1909 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1910 return value_f90_subarray (arg1, exp, pos, noside);
1911 else
1912 goto multi_f77_subscript;
1913
1914 case TYPE_CODE_STRING:
1915 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1916 return value_f90_subarray (arg1, exp, pos, noside);
1917 else
1918 {
1919 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1920 return value_subscript (arg1, value_as_long (arg2));
1921 }
1922
1923 case TYPE_CODE_PTR:
1924 case TYPE_CODE_FUNC:
1925 /* It's a function call. */
1926 /* Allocate arg vector, including space for the function to be
1927 called in argvec[0] and a terminating NULL. */
1928 argvec = (struct value **)
1929 alloca (sizeof (struct value *) * (nargs + 2));
1930 argvec[0] = arg1;
1931 tem = 1;
1932 for (; tem <= nargs; tem++)
1933 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1934 argvec[tem] = 0; /* signal end of arglist */
1935 goto do_call_it;
1936
1937 default:
1938 error (_("Cannot perform substring on this type"));
1939 }
1940
1941 case OP_COMPLEX:
1942 /* We have a complex number, There should be 2 floating
1943 point numbers that compose it. */
1944 (*pos) += 2;
1945 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1946 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1947
1948 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1949
1950 case STRUCTOP_STRUCT:
1951 tem = longest_to_int (exp->elts[pc + 1].longconst);
1952 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1953 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1954 if (noside == EVAL_SKIP)
1955 goto nosideret;
1956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1957 return value_zero (lookup_struct_elt_type (value_type (arg1),
1958 &exp->elts[pc + 2].string,
1959 0),
1960 lval_memory);
1961 else
1962 {
1963 struct value *temp = arg1;
1964
1965 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1966 NULL, "structure");
1967 }
1968
1969 case STRUCTOP_PTR:
1970 tem = longest_to_int (exp->elts[pc + 1].longconst);
1971 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1972 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1973 if (noside == EVAL_SKIP)
1974 goto nosideret;
1975
1976 /* Check to see if operator '->' has been overloaded. If so replace
1977 arg1 with the value returned by evaluating operator->(). */
1978 while (unop_user_defined_p (op, arg1))
1979 {
1980 volatile struct gdb_exception except;
1981 struct value *value = NULL;
1982 TRY_CATCH (except, RETURN_MASK_ERROR)
1983 {
1984 value = value_x_unop (arg1, op, noside);
1985 }
1986
1987 if (except.reason < 0)
1988 {
1989 if (except.error == NOT_FOUND_ERROR)
1990 break;
1991 else
1992 throw_exception (except);
1993 }
1994 arg1 = value;
1995 }
1996
1997 /* JYG: if print object is on we need to replace the base type
1998 with rtti type in order to continue on with successful
1999 lookup of member / method only available in the rtti type. */
2000 {
2001 struct type *type = value_type (arg1);
2002 struct type *real_type;
2003 int full, top, using_enc;
2004 struct value_print_options opts;
2005
2006 get_user_print_options (&opts);
2007 if (opts.objectprint && TYPE_TARGET_TYPE(type)
2008 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
2009 {
2010 real_type = value_rtti_indirect_type (arg1, &full, &top,
2011 &using_enc);
2012 if (real_type)
2013 arg1 = value_cast (real_type, arg1);
2014 }
2015 }
2016
2017 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2018 return value_zero (lookup_struct_elt_type (value_type (arg1),
2019 &exp->elts[pc + 2].string,
2020 0),
2021 lval_memory);
2022 else
2023 {
2024 struct value *temp = arg1;
2025
2026 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
2027 NULL, "structure pointer");
2028 }
2029
2030 case STRUCTOP_MEMBER:
2031 case STRUCTOP_MPTR:
2032 if (op == STRUCTOP_MEMBER)
2033 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2034 else
2035 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2036
2037 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2038
2039 if (noside == EVAL_SKIP)
2040 goto nosideret;
2041
2042 type = check_typedef (value_type (arg2));
2043 switch (TYPE_CODE (type))
2044 {
2045 case TYPE_CODE_METHODPTR:
2046 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2047 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2048 else
2049 {
2050 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2051 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2052 return value_ind (arg2);
2053 }
2054
2055 case TYPE_CODE_MEMBERPTR:
2056 /* Now, convert these values to an address. */
2057 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
2058 arg1, 1);
2059
2060 mem_offset = value_as_long (arg2);
2061
2062 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2063 value_as_long (arg1) + mem_offset);
2064 return value_ind (arg3);
2065
2066 default:
2067 error (_("non-pointer-to-member value used "
2068 "in pointer-to-member construct"));
2069 }
2070
2071 case TYPE_INSTANCE:
2072 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2073 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2074 for (ix = 0; ix < nargs; ++ix)
2075 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
2076
2077 expect_type = make_params (nargs, arg_types);
2078 *(pos) += 3 + nargs;
2079 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2080 xfree (TYPE_FIELDS (expect_type));
2081 xfree (TYPE_MAIN_TYPE (expect_type));
2082 xfree (expect_type);
2083 return arg1;
2084
2085 case BINOP_CONCAT:
2086 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2087 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2088 if (noside == EVAL_SKIP)
2089 goto nosideret;
2090 if (binop_user_defined_p (op, arg1, arg2))
2091 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2092 else
2093 return value_concat (arg1, arg2);
2094
2095 case BINOP_ASSIGN:
2096 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2097 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2098
2099 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2100 return arg1;
2101 if (binop_user_defined_p (op, arg1, arg2))
2102 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2103 else
2104 return value_assign (arg1, arg2);
2105
2106 case BINOP_ASSIGN_MODIFY:
2107 (*pos) += 2;
2108 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2109 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2110 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2111 return arg1;
2112 op = exp->elts[pc + 1].opcode;
2113 if (binop_user_defined_p (op, arg1, arg2))
2114 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2115 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2116 value_type (arg1))
2117 && is_integral_type (value_type (arg2)))
2118 arg2 = value_ptradd (arg1, value_as_long (arg2));
2119 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2120 value_type (arg1))
2121 && is_integral_type (value_type (arg2)))
2122 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2123 else
2124 {
2125 struct value *tmp = arg1;
2126
2127 /* For shift and integer exponentiation operations,
2128 only promote the first argument. */
2129 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2130 && is_integral_type (value_type (arg2)))
2131 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2132 else
2133 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2134
2135 arg2 = value_binop (tmp, arg2, op);
2136 }
2137 return value_assign (arg1, arg2);
2138
2139 case BINOP_ADD:
2140 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2141 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2142 if (noside == EVAL_SKIP)
2143 goto nosideret;
2144 if (binop_user_defined_p (op, arg1, arg2))
2145 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2146 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2147 && is_integral_type (value_type (arg2)))
2148 return value_ptradd (arg1, value_as_long (arg2));
2149 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2150 && is_integral_type (value_type (arg1)))
2151 return value_ptradd (arg2, value_as_long (arg1));
2152 else
2153 {
2154 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2155 return value_binop (arg1, arg2, BINOP_ADD);
2156 }
2157
2158 case BINOP_SUB:
2159 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2160 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2161 if (noside == EVAL_SKIP)
2162 goto nosideret;
2163 if (binop_user_defined_p (op, arg1, arg2))
2164 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2165 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2166 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2167 {
2168 /* FIXME -- should be ptrdiff_t */
2169 type = builtin_type (exp->gdbarch)->builtin_long;
2170 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2171 }
2172 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2173 && is_integral_type (value_type (arg2)))
2174 return value_ptradd (arg1, - value_as_long (arg2));
2175 else
2176 {
2177 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2178 return value_binop (arg1, arg2, BINOP_SUB);
2179 }
2180
2181 case BINOP_EXP:
2182 case BINOP_MUL:
2183 case BINOP_DIV:
2184 case BINOP_INTDIV:
2185 case BINOP_REM:
2186 case BINOP_MOD:
2187 case BINOP_LSH:
2188 case BINOP_RSH:
2189 case BINOP_BITWISE_AND:
2190 case BINOP_BITWISE_IOR:
2191 case BINOP_BITWISE_XOR:
2192 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2193 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2194 if (noside == EVAL_SKIP)
2195 goto nosideret;
2196 if (binop_user_defined_p (op, arg1, arg2))
2197 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2198 else
2199 {
2200 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2201 fudge arg2 to avoid division-by-zero, the caller is
2202 (theoretically) only looking for the type of the result. */
2203 if (noside == EVAL_AVOID_SIDE_EFFECTS
2204 /* ??? Do we really want to test for BINOP_MOD here?
2205 The implementation of value_binop gives it a well-defined
2206 value. */
2207 && (op == BINOP_DIV
2208 || op == BINOP_INTDIV
2209 || op == BINOP_REM
2210 || op == BINOP_MOD)
2211 && value_logical_not (arg2))
2212 {
2213 struct value *v_one, *retval;
2214
2215 v_one = value_one (value_type (arg2));
2216 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2217 retval = value_binop (arg1, v_one, op);
2218 return retval;
2219 }
2220 else
2221 {
2222 /* For shift and integer exponentiation operations,
2223 only promote the first argument. */
2224 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2225 && is_integral_type (value_type (arg2)))
2226 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2227 else
2228 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2229
2230 return value_binop (arg1, arg2, op);
2231 }
2232 }
2233
2234 case BINOP_RANGE:
2235 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2236 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2237 if (noside == EVAL_SKIP)
2238 goto nosideret;
2239 error (_("':' operator used in invalid context"));
2240
2241 case BINOP_SUBSCRIPT:
2242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2243 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2244 if (noside == EVAL_SKIP)
2245 goto nosideret;
2246 if (binop_user_defined_p (op, arg1, arg2))
2247 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2248 else
2249 {
2250 /* If the user attempts to subscript something that is not an
2251 array or pointer type (like a plain int variable for example),
2252 then report this as an error. */
2253
2254 arg1 = coerce_ref (arg1);
2255 type = check_typedef (value_type (arg1));
2256 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2257 && TYPE_CODE (type) != TYPE_CODE_PTR)
2258 {
2259 if (TYPE_NAME (type))
2260 error (_("cannot subscript something of type `%s'"),
2261 TYPE_NAME (type));
2262 else
2263 error (_("cannot subscript requested type"));
2264 }
2265
2266 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2267 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2268 else
2269 return value_subscript (arg1, value_as_long (arg2));
2270 }
2271
2272 case BINOP_IN:
2273 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2274 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2275 if (noside == EVAL_SKIP)
2276 goto nosideret;
2277 type = language_bool_type (exp->language_defn, exp->gdbarch);
2278 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2279
2280 case MULTI_SUBSCRIPT:
2281 (*pos) += 2;
2282 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2283 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2284 while (nargs-- > 0)
2285 {
2286 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2287 /* FIXME: EVAL_SKIP handling may not be correct. */
2288 if (noside == EVAL_SKIP)
2289 {
2290 if (nargs > 0)
2291 {
2292 continue;
2293 }
2294 else
2295 {
2296 goto nosideret;
2297 }
2298 }
2299 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2300 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2301 {
2302 /* If the user attempts to subscript something that has no target
2303 type (like a plain int variable for example), then report this
2304 as an error. */
2305
2306 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2307 if (type != NULL)
2308 {
2309 arg1 = value_zero (type, VALUE_LVAL (arg1));
2310 noside = EVAL_SKIP;
2311 continue;
2312 }
2313 else
2314 {
2315 error (_("cannot subscript something of type `%s'"),
2316 TYPE_NAME (value_type (arg1)));
2317 }
2318 }
2319
2320 if (binop_user_defined_p (op, arg1, arg2))
2321 {
2322 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2323 }
2324 else
2325 {
2326 arg1 = coerce_ref (arg1);
2327 type = check_typedef (value_type (arg1));
2328
2329 switch (TYPE_CODE (type))
2330 {
2331 case TYPE_CODE_PTR:
2332 case TYPE_CODE_ARRAY:
2333 case TYPE_CODE_STRING:
2334 arg1 = value_subscript (arg1, value_as_long (arg2));
2335 break;
2336
2337 case TYPE_CODE_BITSTRING:
2338 type = language_bool_type (exp->language_defn, exp->gdbarch);
2339 arg1 = value_bitstring_subscript (type, arg1,
2340 value_as_long (arg2));
2341 break;
2342
2343 default:
2344 if (TYPE_NAME (type))
2345 error (_("cannot subscript something of type `%s'"),
2346 TYPE_NAME (type));
2347 else
2348 error (_("cannot subscript requested type"));
2349 }
2350 }
2351 }
2352 return (arg1);
2353
2354 multi_f77_subscript:
2355 {
2356 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2357 int ndimensions = 1, i;
2358 struct value *array = arg1;
2359
2360 if (nargs > MAX_FORTRAN_DIMS)
2361 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2362
2363 ndimensions = calc_f77_array_dims (type);
2364
2365 if (nargs != ndimensions)
2366 error (_("Wrong number of subscripts"));
2367
2368 gdb_assert (nargs > 0);
2369
2370 /* Now that we know we have a legal array subscript expression
2371 let us actually find out where this element exists in the array. */
2372
2373 /* Take array indices left to right. */
2374 for (i = 0; i < nargs; i++)
2375 {
2376 /* Evaluate each subscript; it must be a legal integer in F77. */
2377 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2378
2379 /* Fill in the subscript array. */
2380
2381 subscript_array[i] = value_as_long (arg2);
2382 }
2383
2384 /* Internal type of array is arranged right to left. */
2385 for (i = nargs; i > 0; i--)
2386 {
2387 struct type *array_type = check_typedef (value_type (array));
2388 LONGEST index = subscript_array[i - 1];
2389
2390 lower = f77_get_lowerbound (array_type);
2391 array = value_subscripted_rvalue (array, index, lower);
2392 }
2393
2394 return array;
2395 }
2396
2397 case BINOP_LOGICAL_AND:
2398 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2399 if (noside == EVAL_SKIP)
2400 {
2401 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2402 goto nosideret;
2403 }
2404
2405 oldpos = *pos;
2406 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2407 *pos = oldpos;
2408
2409 if (binop_user_defined_p (op, arg1, arg2))
2410 {
2411 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2412 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2413 }
2414 else
2415 {
2416 tem = value_logical_not (arg1);
2417 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2418 (tem ? EVAL_SKIP : noside));
2419 type = language_bool_type (exp->language_defn, exp->gdbarch);
2420 return value_from_longest (type,
2421 (LONGEST) (!tem && !value_logical_not (arg2)));
2422 }
2423
2424 case BINOP_LOGICAL_OR:
2425 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2426 if (noside == EVAL_SKIP)
2427 {
2428 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2429 goto nosideret;
2430 }
2431
2432 oldpos = *pos;
2433 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2434 *pos = oldpos;
2435
2436 if (binop_user_defined_p (op, arg1, arg2))
2437 {
2438 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2439 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2440 }
2441 else
2442 {
2443 tem = value_logical_not (arg1);
2444 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2445 (!tem ? EVAL_SKIP : noside));
2446 type = language_bool_type (exp->language_defn, exp->gdbarch);
2447 return value_from_longest (type,
2448 (LONGEST) (!tem || !value_logical_not (arg2)));
2449 }
2450
2451 case BINOP_EQUAL:
2452 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2453 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2454 if (noside == EVAL_SKIP)
2455 goto nosideret;
2456 if (binop_user_defined_p (op, arg1, arg2))
2457 {
2458 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2459 }
2460 else
2461 {
2462 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2463 tem = value_equal (arg1, arg2);
2464 type = language_bool_type (exp->language_defn, exp->gdbarch);
2465 return value_from_longest (type, (LONGEST) tem);
2466 }
2467
2468 case BINOP_NOTEQUAL:
2469 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2470 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2471 if (noside == EVAL_SKIP)
2472 goto nosideret;
2473 if (binop_user_defined_p (op, arg1, arg2))
2474 {
2475 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2476 }
2477 else
2478 {
2479 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2480 tem = value_equal (arg1, arg2);
2481 type = language_bool_type (exp->language_defn, exp->gdbarch);
2482 return value_from_longest (type, (LONGEST) ! tem);
2483 }
2484
2485 case BINOP_LESS:
2486 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2487 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2488 if (noside == EVAL_SKIP)
2489 goto nosideret;
2490 if (binop_user_defined_p (op, arg1, arg2))
2491 {
2492 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2493 }
2494 else
2495 {
2496 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2497 tem = value_less (arg1, arg2);
2498 type = language_bool_type (exp->language_defn, exp->gdbarch);
2499 return value_from_longest (type, (LONGEST) tem);
2500 }
2501
2502 case BINOP_GTR:
2503 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2504 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2505 if (noside == EVAL_SKIP)
2506 goto nosideret;
2507 if (binop_user_defined_p (op, arg1, arg2))
2508 {
2509 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2510 }
2511 else
2512 {
2513 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2514 tem = value_less (arg2, arg1);
2515 type = language_bool_type (exp->language_defn, exp->gdbarch);
2516 return value_from_longest (type, (LONGEST) tem);
2517 }
2518
2519 case BINOP_GEQ:
2520 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2521 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2522 if (noside == EVAL_SKIP)
2523 goto nosideret;
2524 if (binop_user_defined_p (op, arg1, arg2))
2525 {
2526 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2527 }
2528 else
2529 {
2530 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2531 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2532 type = language_bool_type (exp->language_defn, exp->gdbarch);
2533 return value_from_longest (type, (LONGEST) tem);
2534 }
2535
2536 case BINOP_LEQ:
2537 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2538 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2539 if (noside == EVAL_SKIP)
2540 goto nosideret;
2541 if (binop_user_defined_p (op, arg1, arg2))
2542 {
2543 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2544 }
2545 else
2546 {
2547 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2548 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2549 type = language_bool_type (exp->language_defn, exp->gdbarch);
2550 return value_from_longest (type, (LONGEST) tem);
2551 }
2552
2553 case BINOP_REPEAT:
2554 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2555 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2556 if (noside == EVAL_SKIP)
2557 goto nosideret;
2558 type = check_typedef (value_type (arg2));
2559 if (TYPE_CODE (type) != TYPE_CODE_INT)
2560 error (_("Non-integral right operand for \"@\" operator."));
2561 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2562 {
2563 return allocate_repeat_value (value_type (arg1),
2564 longest_to_int (value_as_long (arg2)));
2565 }
2566 else
2567 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2568
2569 case BINOP_COMMA:
2570 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2571 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2572
2573 case UNOP_PLUS:
2574 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2575 if (noside == EVAL_SKIP)
2576 goto nosideret;
2577 if (unop_user_defined_p (op, arg1))
2578 return value_x_unop (arg1, op, noside);
2579 else
2580 {
2581 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2582 return value_pos (arg1);
2583 }
2584
2585 case UNOP_NEG:
2586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2587 if (noside == EVAL_SKIP)
2588 goto nosideret;
2589 if (unop_user_defined_p (op, arg1))
2590 return value_x_unop (arg1, op, noside);
2591 else
2592 {
2593 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2594 return value_neg (arg1);
2595 }
2596
2597 case UNOP_COMPLEMENT:
2598 /* C++: check for and handle destructor names. */
2599 op = exp->elts[*pos].opcode;
2600
2601 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2602 if (noside == EVAL_SKIP)
2603 goto nosideret;
2604 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2605 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2606 else
2607 {
2608 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2609 return value_complement (arg1);
2610 }
2611
2612 case UNOP_LOGICAL_NOT:
2613 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2614 if (noside == EVAL_SKIP)
2615 goto nosideret;
2616 if (unop_user_defined_p (op, arg1))
2617 return value_x_unop (arg1, op, noside);
2618 else
2619 {
2620 type = language_bool_type (exp->language_defn, exp->gdbarch);
2621 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2622 }
2623
2624 case UNOP_IND:
2625 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2626 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2627 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2628 type = check_typedef (value_type (arg1));
2629 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2630 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2631 error (_("Attempt to dereference pointer "
2632 "to member without an object"));
2633 if (noside == EVAL_SKIP)
2634 goto nosideret;
2635 if (unop_user_defined_p (op, arg1))
2636 return value_x_unop (arg1, op, noside);
2637 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2638 {
2639 type = check_typedef (value_type (arg1));
2640 if (TYPE_CODE (type) == TYPE_CODE_PTR
2641 || TYPE_CODE (type) == TYPE_CODE_REF
2642 /* In C you can dereference an array to get the 1st elt. */
2643 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2644 )
2645 return value_zero (TYPE_TARGET_TYPE (type),
2646 lval_memory);
2647 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2648 /* GDB allows dereferencing an int. */
2649 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2650 lval_memory);
2651 else
2652 error (_("Attempt to take contents of a non-pointer value."));
2653 }
2654
2655 /* Allow * on an integer so we can cast it to whatever we want.
2656 This returns an int, which seems like the most C-like thing to
2657 do. "long long" variables are rare enough that
2658 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2659 if (TYPE_CODE (type) == TYPE_CODE_INT)
2660 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2661 (CORE_ADDR) value_as_address (arg1));
2662 return value_ind (arg1);
2663
2664 case UNOP_ADDR:
2665 /* C++: check for and handle pointer to members. */
2666
2667 op = exp->elts[*pos].opcode;
2668
2669 if (noside == EVAL_SKIP)
2670 {
2671 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2672 goto nosideret;
2673 }
2674 else
2675 {
2676 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2677 noside);
2678
2679 return retvalp;
2680 }
2681
2682 case UNOP_SIZEOF:
2683 if (noside == EVAL_SKIP)
2684 {
2685 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2686 goto nosideret;
2687 }
2688 return evaluate_subexp_for_sizeof (exp, pos);
2689
2690 case UNOP_CAST:
2691 (*pos) += 2;
2692 type = exp->elts[pc + 1].type;
2693 arg1 = evaluate_subexp (type, exp, pos, noside);
2694 if (noside == EVAL_SKIP)
2695 goto nosideret;
2696 if (type != value_type (arg1))
2697 arg1 = value_cast (type, arg1);
2698 return arg1;
2699
2700 case UNOP_CAST_TYPE:
2701 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2702 type = value_type (arg1);
2703 arg1 = evaluate_subexp (type, exp, pos, noside);
2704 if (noside == EVAL_SKIP)
2705 goto nosideret;
2706 if (type != value_type (arg1))
2707 arg1 = value_cast (type, arg1);
2708 return arg1;
2709
2710 case UNOP_DYNAMIC_CAST:
2711 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2712 type = value_type (arg1);
2713 arg1 = evaluate_subexp (type, exp, pos, noside);
2714 if (noside == EVAL_SKIP)
2715 goto nosideret;
2716 return value_dynamic_cast (type, arg1);
2717
2718 case UNOP_REINTERPRET_CAST:
2719 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2720 type = value_type (arg1);
2721 arg1 = evaluate_subexp (type, exp, pos, noside);
2722 if (noside == EVAL_SKIP)
2723 goto nosideret;
2724 return value_reinterpret_cast (type, arg1);
2725
2726 case UNOP_MEMVAL:
2727 (*pos) += 2;
2728 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2729 if (noside == EVAL_SKIP)
2730 goto nosideret;
2731 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2732 return value_zero (exp->elts[pc + 1].type, lval_memory);
2733 else
2734 return value_at_lazy (exp->elts[pc + 1].type,
2735 value_as_address (arg1));
2736
2737 case UNOP_MEMVAL_TYPE:
2738 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2739 type = value_type (arg1);
2740 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2741 if (noside == EVAL_SKIP)
2742 goto nosideret;
2743 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2744 return value_zero (type, lval_memory);
2745 else
2746 return value_at_lazy (type, value_as_address (arg1));
2747
2748 case UNOP_MEMVAL_TLS:
2749 (*pos) += 3;
2750 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2751 if (noside == EVAL_SKIP)
2752 goto nosideret;
2753 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2754 return value_zero (exp->elts[pc + 2].type, lval_memory);
2755 else
2756 {
2757 CORE_ADDR tls_addr;
2758
2759 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2760 value_as_address (arg1));
2761 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2762 }
2763
2764 case UNOP_PREINCREMENT:
2765 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2766 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2767 return arg1;
2768 else if (unop_user_defined_p (op, arg1))
2769 {
2770 return value_x_unop (arg1, op, noside);
2771 }
2772 else
2773 {
2774 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2775 arg2 = value_ptradd (arg1, 1);
2776 else
2777 {
2778 struct value *tmp = arg1;
2779
2780 arg2 = value_one (value_type (arg1));
2781 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2782 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2783 }
2784
2785 return value_assign (arg1, arg2);
2786 }
2787
2788 case UNOP_PREDECREMENT:
2789 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2790 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2791 return arg1;
2792 else if (unop_user_defined_p (op, arg1))
2793 {
2794 return value_x_unop (arg1, op, noside);
2795 }
2796 else
2797 {
2798 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2799 arg2 = value_ptradd (arg1, -1);
2800 else
2801 {
2802 struct value *tmp = arg1;
2803
2804 arg2 = value_one (value_type (arg1));
2805 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2806 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2807 }
2808
2809 return value_assign (arg1, arg2);
2810 }
2811
2812 case UNOP_POSTINCREMENT:
2813 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2814 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2815 return arg1;
2816 else if (unop_user_defined_p (op, arg1))
2817 {
2818 return value_x_unop (arg1, op, noside);
2819 }
2820 else
2821 {
2822 arg3 = value_non_lval (arg1);
2823
2824 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2825 arg2 = value_ptradd (arg1, 1);
2826 else
2827 {
2828 struct value *tmp = arg1;
2829
2830 arg2 = value_one (value_type (arg1));
2831 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2832 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2833 }
2834
2835 value_assign (arg1, arg2);
2836 return arg3;
2837 }
2838
2839 case UNOP_POSTDECREMENT:
2840 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2841 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2842 return arg1;
2843 else if (unop_user_defined_p (op, arg1))
2844 {
2845 return value_x_unop (arg1, op, noside);
2846 }
2847 else
2848 {
2849 arg3 = value_non_lval (arg1);
2850
2851 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2852 arg2 = value_ptradd (arg1, -1);
2853 else
2854 {
2855 struct value *tmp = arg1;
2856
2857 arg2 = value_one (value_type (arg1));
2858 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2859 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2860 }
2861
2862 value_assign (arg1, arg2);
2863 return arg3;
2864 }
2865
2866 case OP_THIS:
2867 (*pos) += 1;
2868 return value_of_this (exp->language_defn);
2869
2870 case OP_TYPE:
2871 /* The value is not supposed to be used. This is here to make it
2872 easier to accommodate expressions that contain types. */
2873 (*pos) += 2;
2874 if (noside == EVAL_SKIP)
2875 goto nosideret;
2876 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2877 {
2878 struct type *type = exp->elts[pc + 1].type;
2879
2880 /* If this is a typedef, then find its immediate target. We
2881 use check_typedef to resolve stubs, but we ignore its
2882 result because we do not want to dig past all
2883 typedefs. */
2884 check_typedef (type);
2885 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2886 type = TYPE_TARGET_TYPE (type);
2887 return allocate_value (type);
2888 }
2889 else
2890 error (_("Attempt to use a type name as an expression"));
2891
2892 case OP_TYPEOF:
2893 case OP_DECLTYPE:
2894 if (noside == EVAL_SKIP)
2895 {
2896 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2897 goto nosideret;
2898 }
2899 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2900 {
2901 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2902 struct value *result;
2903
2904 result = evaluate_subexp (NULL_TYPE, exp, pos,
2905 EVAL_AVOID_SIDE_EFFECTS);
2906
2907 /* 'decltype' has special semantics for lvalues. */
2908 if (op == OP_DECLTYPE
2909 && (sub_op == BINOP_SUBSCRIPT
2910 || sub_op == STRUCTOP_MEMBER
2911 || sub_op == STRUCTOP_MPTR
2912 || sub_op == UNOP_IND
2913 || sub_op == STRUCTOP_STRUCT
2914 || sub_op == STRUCTOP_PTR
2915 || sub_op == OP_SCOPE))
2916 {
2917 struct type *type = value_type (result);
2918
2919 if (TYPE_CODE (check_typedef (type)) != TYPE_CODE_REF)
2920 {
2921 type = lookup_reference_type (type);
2922 result = allocate_value (type);
2923 }
2924 }
2925
2926 return result;
2927 }
2928 else
2929 error (_("Attempt to use a type as an expression"));
2930
2931 default:
2932 /* Removing this case and compiling with gcc -Wall reveals that
2933 a lot of cases are hitting this case. Some of these should
2934 probably be removed from expression.h; others are legitimate
2935 expressions which are (apparently) not fully implemented.
2936
2937 If there are any cases landing here which mean a user error,
2938 then they should be separate cases, with more descriptive
2939 error messages. */
2940
2941 error (_("GDB does not (yet) know how to "
2942 "evaluate that kind of expression"));
2943 }
2944
2945 nosideret:
2946 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2947 }
2948 \f
2949 /* Evaluate a subexpression of EXP, at index *POS,
2950 and return the address of that subexpression.
2951 Advance *POS over the subexpression.
2952 If the subexpression isn't an lvalue, get an error.
2953 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2954 then only the type of the result need be correct. */
2955
2956 static struct value *
2957 evaluate_subexp_for_address (struct expression *exp, int *pos,
2958 enum noside noside)
2959 {
2960 enum exp_opcode op;
2961 int pc;
2962 struct symbol *var;
2963 struct value *x;
2964 int tem;
2965
2966 pc = (*pos);
2967 op = exp->elts[pc].opcode;
2968
2969 switch (op)
2970 {
2971 case UNOP_IND:
2972 (*pos)++;
2973 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2974
2975 /* We can't optimize out "&*" if there's a user-defined operator*. */
2976 if (unop_user_defined_p (op, x))
2977 {
2978 x = value_x_unop (x, op, noside);
2979 goto default_case_after_eval;
2980 }
2981
2982 return coerce_array (x);
2983
2984 case UNOP_MEMVAL:
2985 (*pos) += 3;
2986 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2987 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2988
2989 case UNOP_MEMVAL_TYPE:
2990 {
2991 struct type *type;
2992
2993 (*pos) += 1;
2994 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2995 type = value_type (x);
2996 return value_cast (lookup_pointer_type (type),
2997 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2998 }
2999
3000 case OP_VAR_VALUE:
3001 var = exp->elts[pc + 2].symbol;
3002
3003 /* C++: The "address" of a reference should yield the address
3004 * of the object pointed to. Let value_addr() deal with it. */
3005 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
3006 goto default_case;
3007
3008 (*pos) += 4;
3009 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3010 {
3011 struct type *type =
3012 lookup_pointer_type (SYMBOL_TYPE (var));
3013 enum address_class sym_class = SYMBOL_CLASS (var);
3014
3015 if (sym_class == LOC_CONST
3016 || sym_class == LOC_CONST_BYTES
3017 || sym_class == LOC_REGISTER)
3018 error (_("Attempt to take address of register or constant."));
3019
3020 return
3021 value_zero (type, not_lval);
3022 }
3023 else
3024 return address_of_variable (var, exp->elts[pc + 1].block);
3025
3026 case OP_SCOPE:
3027 tem = longest_to_int (exp->elts[pc + 2].longconst);
3028 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3029 x = value_aggregate_elt (exp->elts[pc + 1].type,
3030 &exp->elts[pc + 3].string,
3031 NULL, 1, noside);
3032 if (x == NULL)
3033 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3034 return x;
3035
3036 default:
3037 default_case:
3038 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
3039 default_case_after_eval:
3040 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3041 {
3042 struct type *type = check_typedef (value_type (x));
3043
3044 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3045 return value_zero (lookup_pointer_type (value_type (x)),
3046 not_lval);
3047 else if (TYPE_CODE (type) == TYPE_CODE_REF)
3048 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3049 not_lval);
3050 else
3051 error (_("Attempt to take address of "
3052 "value not located in memory."));
3053 }
3054 return value_addr (x);
3055 }
3056 }
3057
3058 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3059 When used in contexts where arrays will be coerced anyway, this is
3060 equivalent to `evaluate_subexp' but much faster because it avoids
3061 actually fetching array contents (perhaps obsolete now that we have
3062 value_lazy()).
3063
3064 Note that we currently only do the coercion for C expressions, where
3065 arrays are zero based and the coercion is correct. For other languages,
3066 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3067 to decide if coercion is appropriate. */
3068
3069 struct value *
3070 evaluate_subexp_with_coercion (struct expression *exp,
3071 int *pos, enum noside noside)
3072 {
3073 enum exp_opcode op;
3074 int pc;
3075 struct value *val;
3076 struct symbol *var;
3077 struct type *type;
3078
3079 pc = (*pos);
3080 op = exp->elts[pc].opcode;
3081
3082 switch (op)
3083 {
3084 case OP_VAR_VALUE:
3085 var = exp->elts[pc + 2].symbol;
3086 type = check_typedef (SYMBOL_TYPE (var));
3087 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3088 && !TYPE_VECTOR (type)
3089 && CAST_IS_CONVERSION (exp->language_defn))
3090 {
3091 (*pos) += 4;
3092 val = address_of_variable (var, exp->elts[pc + 1].block);
3093 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3094 val);
3095 }
3096 /* FALLTHROUGH */
3097
3098 default:
3099 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3100 }
3101 }
3102
3103 /* Evaluate a subexpression of EXP, at index *POS,
3104 and return a value for the size of that subexpression.
3105 Advance *POS over the subexpression. */
3106
3107 static struct value *
3108 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3109 {
3110 /* FIXME: This should be size_t. */
3111 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3112 enum exp_opcode op;
3113 int pc;
3114 struct type *type;
3115 struct value *val;
3116
3117 pc = (*pos);
3118 op = exp->elts[pc].opcode;
3119
3120 switch (op)
3121 {
3122 /* This case is handled specially
3123 so that we avoid creating a value for the result type.
3124 If the result type is very big, it's desirable not to
3125 create a value unnecessarily. */
3126 case UNOP_IND:
3127 (*pos)++;
3128 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3129 type = check_typedef (value_type (val));
3130 if (TYPE_CODE (type) != TYPE_CODE_PTR
3131 && TYPE_CODE (type) != TYPE_CODE_REF
3132 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3133 error (_("Attempt to take contents of a non-pointer value."));
3134 type = check_typedef (TYPE_TARGET_TYPE (type));
3135 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3136
3137 case UNOP_MEMVAL:
3138 (*pos) += 3;
3139 type = check_typedef (exp->elts[pc + 1].type);
3140 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3141
3142 case UNOP_MEMVAL_TYPE:
3143 (*pos) += 1;
3144 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3145 type = check_typedef (value_type (val));
3146 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3147
3148 case OP_VAR_VALUE:
3149 (*pos) += 4;
3150 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3151 return
3152 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3153
3154 default:
3155 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3156 return value_from_longest (size_type,
3157 (LONGEST) TYPE_LENGTH (value_type (val)));
3158 }
3159 }
3160
3161 /* Parse a type expression in the string [P..P+LENGTH). */
3162
3163 struct type *
3164 parse_and_eval_type (char *p, int length)
3165 {
3166 char *tmp = (char *) alloca (length + 4);
3167 struct expression *expr;
3168
3169 tmp[0] = '(';
3170 memcpy (tmp + 1, p, length);
3171 tmp[length + 1] = ')';
3172 tmp[length + 2] = '0';
3173 tmp[length + 3] = '\0';
3174 expr = parse_expression (tmp);
3175 if (expr->elts[0].opcode != UNOP_CAST)
3176 error (_("Internal error in eval_type."));
3177 return expr->elts[1].type;
3178 }
3179
3180 int
3181 calc_f77_array_dims (struct type *array_type)
3182 {
3183 int ndimen = 1;
3184 struct type *tmp_type;
3185
3186 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3187 error (_("Can't get dimensions for a non-array type"));
3188
3189 tmp_type = array_type;
3190
3191 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3192 {
3193 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3194 ++ndimen;
3195 }
3196 return ndimen;
3197 }
This page took 0.0973 seconds and 4 git commands to generate.