Conditionally drop the discriminant field in quirk_rust_enum
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "regcache.h"
38 #include "user-regs.h"
39 #include "valprint.h"
40 #include "gdb_obstack.h"
41 #include "objfiles.h"
42 #include "typeprint.h"
43 #include <ctype.h>
44
45 /* This is defined in valops.c */
46 extern int overload_resolution;
47
48 /* Prototypes for local functions. */
49
50 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
51 enum noside);
52
53 static struct value *evaluate_subexp_for_address (struct expression *,
54 int *, enum noside);
55
56 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
57 enum noside noside,
58 struct type *type);
59
60 static struct value *evaluate_struct_tuple (struct value *,
61 struct expression *, int *,
62 enum noside, int);
63
64 static LONGEST init_array_element (struct value *, struct value *,
65 struct expression *, int *, enum noside,
66 LONGEST, LONGEST);
67
68 struct value *
69 evaluate_subexp (struct type *expect_type, struct expression *exp,
70 int *pos, enum noside noside)
71 {
72 struct value *retval;
73
74 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
75 if (*pos == 0 && target_has_execution
76 && exp->language_defn->la_language == language_cplus
77 && !thread_stack_temporaries_enabled_p (inferior_ptid))
78 stack_temporaries.emplace (inferior_ptid);
79
80 retval = (*exp->language_defn->la_exp_desc->evaluate_exp)
81 (expect_type, exp, pos, noside);
82
83 if (stack_temporaries.has_value ()
84 && value_in_thread_stack_temporaries (retval, inferior_ptid))
85 retval = value_non_lval (retval);
86
87 return retval;
88 }
89 \f
90 /* Parse the string EXP as a C expression, evaluate it,
91 and return the result as a number. */
92
93 CORE_ADDR
94 parse_and_eval_address (const char *exp)
95 {
96 expression_up expr = parse_expression (exp);
97
98 return value_as_address (evaluate_expression (expr.get ()));
99 }
100
101 /* Like parse_and_eval_address, but treats the value of the expression
102 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
103 LONGEST
104 parse_and_eval_long (const char *exp)
105 {
106 expression_up expr = parse_expression (exp);
107
108 return value_as_long (evaluate_expression (expr.get ()));
109 }
110
111 struct value *
112 parse_and_eval (const char *exp)
113 {
114 expression_up expr = parse_expression (exp);
115
116 return evaluate_expression (expr.get ());
117 }
118
119 /* Parse up to a comma (or to a closeparen)
120 in the string EXPP as an expression, evaluate it, and return the value.
121 EXPP is advanced to point to the comma. */
122
123 struct value *
124 parse_to_comma_and_eval (const char **expp)
125 {
126 expression_up expr = parse_exp_1 (expp, 0, (struct block *) 0, 1);
127
128 return evaluate_expression (expr.get ());
129 }
130 \f
131 /* Evaluate an expression in internal prefix form
132 such as is constructed by parse.y.
133
134 See expression.h for info on the format of an expression. */
135
136 struct value *
137 evaluate_expression (struct expression *exp)
138 {
139 int pc = 0;
140
141 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
142 }
143
144 /* Evaluate an expression, avoiding all memory references
145 and getting a value whose type alone is correct. */
146
147 struct value *
148 evaluate_type (struct expression *exp)
149 {
150 int pc = 0;
151
152 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
153 }
154
155 /* Evaluate a subexpression, avoiding all memory references and
156 getting a value whose type alone is correct. */
157
158 struct value *
159 evaluate_subexpression_type (struct expression *exp, int subexp)
160 {
161 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
162 }
163
164 /* Find the current value of a watchpoint on EXP. Return the value in
165 *VALP and *RESULTP and the chain of intermediate and final values
166 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
167 not need them.
168
169 If PRESERVE_ERRORS is true, then exceptions are passed through.
170 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
171 occurs while evaluating the expression, *RESULTP will be set to
172 NULL. *RESULTP may be a lazy value, if the result could not be
173 read from memory. It is used to determine whether a value is
174 user-specified (we should watch the whole value) or intermediate
175 (we should watch only the bit used to locate the final value).
176
177 If the final value, or any intermediate value, could not be read
178 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
179 set to any referenced values. *VALP will never be a lazy value.
180 This is the value which we store in struct breakpoint.
181
182 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
183 released from the value chain. If VAL_CHAIN is NULL, all generated
184 values will be left on the value chain. */
185
186 void
187 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
188 struct value **resultp,
189 std::vector<value_ref_ptr> *val_chain,
190 int preserve_errors)
191 {
192 struct value *mark, *new_mark, *result;
193
194 *valp = NULL;
195 if (resultp)
196 *resultp = NULL;
197 if (val_chain)
198 val_chain->clear ();
199
200 /* Evaluate the expression. */
201 mark = value_mark ();
202 result = NULL;
203
204 TRY
205 {
206 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
207 }
208 CATCH (ex, RETURN_MASK_ALL)
209 {
210 /* Ignore memory errors if we want watchpoints pointing at
211 inaccessible memory to still be created; otherwise, throw the
212 error to some higher catcher. */
213 switch (ex.error)
214 {
215 case MEMORY_ERROR:
216 if (!preserve_errors)
217 break;
218 default:
219 throw_exception (ex);
220 break;
221 }
222 }
223 END_CATCH
224
225 new_mark = value_mark ();
226 if (mark == new_mark)
227 return;
228 if (resultp)
229 *resultp = result;
230
231 /* Make sure it's not lazy, so that after the target stops again we
232 have a non-lazy previous value to compare with. */
233 if (result != NULL)
234 {
235 if (!value_lazy (result))
236 *valp = result;
237 else
238 {
239
240 TRY
241 {
242 value_fetch_lazy (result);
243 *valp = result;
244 }
245 CATCH (except, RETURN_MASK_ERROR)
246 {
247 }
248 END_CATCH
249 }
250 }
251
252 if (val_chain)
253 {
254 /* Return the chain of intermediate values. We use this to
255 decide which addresses to watch. */
256 *val_chain = value_release_to_mark (mark);
257 }
258 }
259
260 /* Extract a field operation from an expression. If the subexpression
261 of EXP starting at *SUBEXP is not a structure dereference
262 operation, return NULL. Otherwise, return the name of the
263 dereferenced field, and advance *SUBEXP to point to the
264 subexpression of the left-hand-side of the dereference. This is
265 used when completing field names. */
266
267 const char *
268 extract_field_op (struct expression *exp, int *subexp)
269 {
270 int tem;
271 char *result;
272
273 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
274 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
275 return NULL;
276 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
277 result = &exp->elts[*subexp + 2].string;
278 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
279 return result;
280 }
281
282 /* This function evaluates brace-initializers (in C/C++) for
283 structure types. */
284
285 static struct value *
286 evaluate_struct_tuple (struct value *struct_val,
287 struct expression *exp,
288 int *pos, enum noside noside, int nargs)
289 {
290 struct type *struct_type = check_typedef (value_type (struct_val));
291 struct type *field_type;
292 int fieldno = -1;
293
294 while (--nargs >= 0)
295 {
296 struct value *val = NULL;
297 int bitpos, bitsize;
298 bfd_byte *addr;
299
300 fieldno++;
301 /* Skip static fields. */
302 while (fieldno < TYPE_NFIELDS (struct_type)
303 && field_is_static (&TYPE_FIELD (struct_type,
304 fieldno)))
305 fieldno++;
306 if (fieldno >= TYPE_NFIELDS (struct_type))
307 error (_("too many initializers"));
308 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
309 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
310 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
311 error (_("don't know which variant you want to set"));
312
313 /* Here, struct_type is the type of the inner struct,
314 while substruct_type is the type of the inner struct.
315 These are the same for normal structures, but a variant struct
316 contains anonymous union fields that contain substruct fields.
317 The value fieldno is the index of the top-level (normal or
318 anonymous union) field in struct_field, while the value
319 subfieldno is the index of the actual real (named inner) field
320 in substruct_type. */
321
322 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
323 if (val == 0)
324 val = evaluate_subexp (field_type, exp, pos, noside);
325
326 /* Now actually set the field in struct_val. */
327
328 /* Assign val to field fieldno. */
329 if (value_type (val) != field_type)
330 val = value_cast (field_type, val);
331
332 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
333 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
334 addr = value_contents_writeable (struct_val) + bitpos / 8;
335 if (bitsize)
336 modify_field (struct_type, addr,
337 value_as_long (val), bitpos % 8, bitsize);
338 else
339 memcpy (addr, value_contents (val),
340 TYPE_LENGTH (value_type (val)));
341
342 }
343 return struct_val;
344 }
345
346 /* Recursive helper function for setting elements of array tuples.
347 The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND); the
348 element value is ELEMENT; EXP, POS and NOSIDE are as usual.
349 Evaluates index expresions and sets the specified element(s) of
350 ARRAY to ELEMENT. Returns last index value. */
351
352 static LONGEST
353 init_array_element (struct value *array, struct value *element,
354 struct expression *exp, int *pos,
355 enum noside noside, LONGEST low_bound, LONGEST high_bound)
356 {
357 LONGEST index;
358 int element_size = TYPE_LENGTH (value_type (element));
359
360 if (exp->elts[*pos].opcode == BINOP_COMMA)
361 {
362 (*pos)++;
363 init_array_element (array, element, exp, pos, noside,
364 low_bound, high_bound);
365 return init_array_element (array, element,
366 exp, pos, noside, low_bound, high_bound);
367 }
368 else
369 {
370 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
371 if (index < low_bound || index > high_bound)
372 error (_("tuple index out of range"));
373 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
374 value_contents (element), element_size);
375 }
376 return index;
377 }
378
379 static struct value *
380 value_f90_subarray (struct value *array,
381 struct expression *exp, int *pos, enum noside noside)
382 {
383 int pc = (*pos) + 1;
384 LONGEST low_bound, high_bound;
385 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
386 enum range_type range_type
387 = (enum range_type) longest_to_int (exp->elts[pc].longconst);
388
389 *pos += 3;
390
391 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
392 low_bound = TYPE_LOW_BOUND (range);
393 else
394 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
395
396 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
397 high_bound = TYPE_HIGH_BOUND (range);
398 else
399 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
400
401 return value_slice (array, low_bound, high_bound - low_bound + 1);
402 }
403
404
405 /* Promote value ARG1 as appropriate before performing a unary operation
406 on this argument.
407 If the result is not appropriate for any particular language then it
408 needs to patch this function. */
409
410 void
411 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
412 struct value **arg1)
413 {
414 struct type *type1;
415
416 *arg1 = coerce_ref (*arg1);
417 type1 = check_typedef (value_type (*arg1));
418
419 if (is_integral_type (type1))
420 {
421 switch (language->la_language)
422 {
423 default:
424 /* Perform integral promotion for ANSI C/C++.
425 If not appropropriate for any particular language
426 it needs to modify this function. */
427 {
428 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
429
430 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
431 *arg1 = value_cast (builtin_int, *arg1);
432 }
433 break;
434 }
435 }
436 }
437
438 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
439 operation on those two operands.
440 If the result is not appropriate for any particular language then it
441 needs to patch this function. */
442
443 void
444 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
445 struct value **arg1, struct value **arg2)
446 {
447 struct type *promoted_type = NULL;
448 struct type *type1;
449 struct type *type2;
450
451 *arg1 = coerce_ref (*arg1);
452 *arg2 = coerce_ref (*arg2);
453
454 type1 = check_typedef (value_type (*arg1));
455 type2 = check_typedef (value_type (*arg2));
456
457 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
458 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
459 && !is_integral_type (type1))
460 || (TYPE_CODE (type2) != TYPE_CODE_FLT
461 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
462 && !is_integral_type (type2)))
463 return;
464
465 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
466 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
467 {
468 /* No promotion required. */
469 }
470 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
471 || TYPE_CODE (type2) == TYPE_CODE_FLT)
472 {
473 switch (language->la_language)
474 {
475 case language_c:
476 case language_cplus:
477 case language_asm:
478 case language_objc:
479 case language_opencl:
480 /* No promotion required. */
481 break;
482
483 default:
484 /* For other languages the result type is unchanged from gdb
485 version 6.7 for backward compatibility.
486 If either arg was long double, make sure that value is also long
487 double. Otherwise use double. */
488 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
489 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
490 promoted_type = builtin_type (gdbarch)->builtin_long_double;
491 else
492 promoted_type = builtin_type (gdbarch)->builtin_double;
493 break;
494 }
495 }
496 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
497 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
498 {
499 /* No promotion required. */
500 }
501 else
502 /* Integral operations here. */
503 /* FIXME: Also mixed integral/booleans, with result an integer. */
504 {
505 const struct builtin_type *builtin = builtin_type (gdbarch);
506 unsigned int promoted_len1 = TYPE_LENGTH (type1);
507 unsigned int promoted_len2 = TYPE_LENGTH (type2);
508 int is_unsigned1 = TYPE_UNSIGNED (type1);
509 int is_unsigned2 = TYPE_UNSIGNED (type2);
510 unsigned int result_len;
511 int unsigned_operation;
512
513 /* Determine type length and signedness after promotion for
514 both operands. */
515 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
516 {
517 is_unsigned1 = 0;
518 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
519 }
520 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
521 {
522 is_unsigned2 = 0;
523 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
524 }
525
526 if (promoted_len1 > promoted_len2)
527 {
528 unsigned_operation = is_unsigned1;
529 result_len = promoted_len1;
530 }
531 else if (promoted_len2 > promoted_len1)
532 {
533 unsigned_operation = is_unsigned2;
534 result_len = promoted_len2;
535 }
536 else
537 {
538 unsigned_operation = is_unsigned1 || is_unsigned2;
539 result_len = promoted_len1;
540 }
541
542 switch (language->la_language)
543 {
544 case language_c:
545 case language_cplus:
546 case language_asm:
547 case language_objc:
548 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
549 {
550 promoted_type = (unsigned_operation
551 ? builtin->builtin_unsigned_int
552 : builtin->builtin_int);
553 }
554 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
555 {
556 promoted_type = (unsigned_operation
557 ? builtin->builtin_unsigned_long
558 : builtin->builtin_long);
559 }
560 else
561 {
562 promoted_type = (unsigned_operation
563 ? builtin->builtin_unsigned_long_long
564 : builtin->builtin_long_long);
565 }
566 break;
567 case language_opencl:
568 if (result_len <= TYPE_LENGTH (lookup_signed_typename
569 (language, gdbarch, "int")))
570 {
571 promoted_type =
572 (unsigned_operation
573 ? lookup_unsigned_typename (language, gdbarch, "int")
574 : lookup_signed_typename (language, gdbarch, "int"));
575 }
576 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
577 (language, gdbarch, "long")))
578 {
579 promoted_type =
580 (unsigned_operation
581 ? lookup_unsigned_typename (language, gdbarch, "long")
582 : lookup_signed_typename (language, gdbarch,"long"));
583 }
584 break;
585 default:
586 /* For other languages the result type is unchanged from gdb
587 version 6.7 for backward compatibility.
588 If either arg was long long, make sure that value is also long
589 long. Otherwise use long. */
590 if (unsigned_operation)
591 {
592 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
593 promoted_type = builtin->builtin_unsigned_long_long;
594 else
595 promoted_type = builtin->builtin_unsigned_long;
596 }
597 else
598 {
599 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
600 promoted_type = builtin->builtin_long_long;
601 else
602 promoted_type = builtin->builtin_long;
603 }
604 break;
605 }
606 }
607
608 if (promoted_type)
609 {
610 /* Promote both operands to common type. */
611 *arg1 = value_cast (promoted_type, *arg1);
612 *arg2 = value_cast (promoted_type, *arg2);
613 }
614 }
615
616 static int
617 ptrmath_type_p (const struct language_defn *lang, struct type *type)
618 {
619 type = check_typedef (type);
620 if (TYPE_IS_REFERENCE (type))
621 type = TYPE_TARGET_TYPE (type);
622
623 switch (TYPE_CODE (type))
624 {
625 case TYPE_CODE_PTR:
626 case TYPE_CODE_FUNC:
627 return 1;
628
629 case TYPE_CODE_ARRAY:
630 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
631
632 default:
633 return 0;
634 }
635 }
636
637 /* Represents a fake method with the given parameter types. This is
638 used by the parser to construct a temporary "expected" type for
639 method overload resolution. FLAGS is used as instance flags of the
640 new type, in order to be able to make the new type represent a
641 const/volatile overload. */
642
643 class fake_method
644 {
645 public:
646 fake_method (type_instance_flags flags,
647 int num_types, struct type **param_types);
648 ~fake_method ();
649
650 /* The constructed type. */
651 struct type *type () { return &m_type; }
652
653 private:
654 struct type m_type {};
655 main_type m_main_type {};
656 };
657
658 fake_method::fake_method (type_instance_flags flags,
659 int num_types, struct type **param_types)
660 {
661 struct type *type = &m_type;
662
663 TYPE_MAIN_TYPE (type) = &m_main_type;
664 TYPE_LENGTH (type) = 1;
665 TYPE_CODE (type) = TYPE_CODE_METHOD;
666 TYPE_CHAIN (type) = type;
667 TYPE_INSTANCE_FLAGS (type) = flags;
668 if (num_types > 0)
669 {
670 if (param_types[num_types - 1] == NULL)
671 {
672 --num_types;
673 TYPE_VARARGS (type) = 1;
674 }
675 else if (TYPE_CODE (check_typedef (param_types[num_types - 1]))
676 == TYPE_CODE_VOID)
677 {
678 --num_types;
679 /* Caller should have ensured this. */
680 gdb_assert (num_types == 0);
681 TYPE_PROTOTYPED (type) = 1;
682 }
683 }
684
685 TYPE_NFIELDS (type) = num_types;
686 TYPE_FIELDS (type) = (struct field *)
687 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
688
689 while (num_types-- > 0)
690 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
691 }
692
693 fake_method::~fake_method ()
694 {
695 xfree (TYPE_FIELDS (&m_type));
696 }
697
698 /* Helper for evaluating an OP_VAR_VALUE. */
699
700 value *
701 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
702 {
703 /* JYG: We used to just return value_zero of the symbol type if
704 we're asked to avoid side effects. Otherwise we return
705 value_of_variable (...). However I'm not sure if
706 value_of_variable () has any side effect. We need a full value
707 object returned here for whatis_exp () to call evaluate_type ()
708 and then pass the full value to value_rtti_target_type () if we
709 are dealing with a pointer or reference to a base class and print
710 object is on. */
711
712 struct value *ret = NULL;
713
714 TRY
715 {
716 ret = value_of_variable (var, blk);
717 }
718
719 CATCH (except, RETURN_MASK_ERROR)
720 {
721 if (noside != EVAL_AVOID_SIDE_EFFECTS)
722 throw_exception (except);
723
724 ret = value_zero (SYMBOL_TYPE (var), not_lval);
725 }
726 END_CATCH
727
728 return ret;
729 }
730
731 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
732
733 value *
734 evaluate_var_msym_value (enum noside noside,
735 struct objfile *objfile, minimal_symbol *msymbol)
736 {
737 if (noside == EVAL_AVOID_SIDE_EFFECTS)
738 {
739 type *the_type = find_minsym_type_and_address (msymbol, objfile, NULL);
740 return value_zero (the_type, not_lval);
741 }
742 else
743 {
744 CORE_ADDR address;
745 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
746 return value_at_lazy (the_type, address);
747 }
748 }
749
750 /* Helper for returning a value when handling EVAL_SKIP. */
751
752 value *
753 eval_skip_value (expression *exp)
754 {
755 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
756 }
757
758 /* Evaluate a function call. The function to be called is in
759 ARGVEC[0] and the arguments passed to the function are in
760 ARGVEC[1..NARGS]. FUNCTION_NAME is the name of the function, if
761 known. DEFAULT_RETURN_TYPE is used as the function's return type
762 if the return type is unknown. */
763
764 static value *
765 eval_call (expression *exp, enum noside noside,
766 int nargs, value **argvec,
767 const char *function_name,
768 type *default_return_type)
769 {
770 if (argvec[0] == NULL)
771 error (_("Cannot evaluate function -- may be inlined"));
772 if (noside == EVAL_AVOID_SIDE_EFFECTS)
773 {
774 /* If the return type doesn't look like a function type,
775 call an error. This can happen if somebody tries to turn
776 a variable into a function call. */
777
778 type *ftype = value_type (argvec[0]);
779
780 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
781 {
782 /* We don't know anything about what the internal
783 function might return, but we have to return
784 something. */
785 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
786 not_lval);
787 }
788 else if (TYPE_CODE (ftype) == TYPE_CODE_XMETHOD)
789 {
790 type *return_type
791 = result_type_of_xmethod (argvec[0], nargs, argvec + 1);
792
793 if (return_type == NULL)
794 error (_("Xmethod is missing return type."));
795 return value_zero (return_type, not_lval);
796 }
797 else if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
798 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
799 {
800 type *return_type = TYPE_TARGET_TYPE (ftype);
801
802 if (return_type == NULL)
803 return_type = default_return_type;
804
805 if (return_type == NULL)
806 error_call_unknown_return_type (function_name);
807
808 return allocate_value (return_type);
809 }
810 else
811 error (_("Expression of type other than "
812 "\"Function returning ...\" used as function"));
813 }
814 switch (TYPE_CODE (value_type (argvec[0])))
815 {
816 case TYPE_CODE_INTERNAL_FUNCTION:
817 return call_internal_function (exp->gdbarch, exp->language_defn,
818 argvec[0], nargs, argvec + 1);
819 case TYPE_CODE_XMETHOD:
820 return call_xmethod (argvec[0], nargs, argvec + 1);
821 default:
822 return call_function_by_hand (argvec[0], default_return_type,
823 nargs, argvec + 1);
824 }
825 }
826
827 /* Helper for evaluating an OP_FUNCALL. */
828
829 static value *
830 evaluate_funcall (type *expect_type, expression *exp, int *pos,
831 enum noside noside)
832 {
833 int tem;
834 int pc2 = 0;
835 value *arg1 = NULL;
836 value *arg2 = NULL;
837 int save_pos1;
838 symbol *function = NULL;
839 char *function_name = NULL;
840 const char *var_func_name = NULL;
841
842 int pc = (*pos);
843 (*pos) += 2;
844
845 exp_opcode op = exp->elts[*pos].opcode;
846 int nargs = longest_to_int (exp->elts[pc].longconst);
847 /* Allocate arg vector, including space for the function to be
848 called in argvec[0], a potential `this', and a terminating
849 NULL. */
850 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
851 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
852 {
853 /* First, evaluate the structure into arg2. */
854 pc2 = (*pos)++;
855
856 if (op == STRUCTOP_MEMBER)
857 {
858 arg2 = evaluate_subexp_for_address (exp, pos, noside);
859 }
860 else
861 {
862 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
863 }
864
865 /* If the function is a virtual function, then the aggregate
866 value (providing the structure) plays its part by providing
867 the vtable. Otherwise, it is just along for the ride: call
868 the function directly. */
869
870 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
871
872 type *a1_type = check_typedef (value_type (arg1));
873 if (noside == EVAL_SKIP)
874 tem = 1; /* Set it to the right arg index so that all
875 arguments can also be skipped. */
876 else if (TYPE_CODE (a1_type) == TYPE_CODE_METHODPTR)
877 {
878 if (noside == EVAL_AVOID_SIDE_EFFECTS)
879 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
880 else
881 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
882
883 /* Now, say which argument to start evaluating from. */
884 nargs++;
885 tem = 2;
886 argvec[1] = arg2;
887 }
888 else if (TYPE_CODE (a1_type) == TYPE_CODE_MEMBERPTR)
889 {
890 struct type *type_ptr
891 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
892 struct type *target_type_ptr
893 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
894
895 /* Now, convert these values to an address. */
896 arg2 = value_cast (type_ptr, arg2);
897
898 long mem_offset = value_as_long (arg1);
899
900 arg1 = value_from_pointer (target_type_ptr,
901 value_as_long (arg2) + mem_offset);
902 arg1 = value_ind (arg1);
903 tem = 1;
904 }
905 else
906 error (_("Non-pointer-to-member value used in pointer-to-member "
907 "construct"));
908 }
909 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
910 {
911 /* Hair for method invocations. */
912 int tem2;
913
914 nargs++;
915 /* First, evaluate the structure into arg2. */
916 pc2 = (*pos)++;
917 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
918 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
919
920 if (op == STRUCTOP_STRUCT)
921 {
922 /* If v is a variable in a register, and the user types
923 v.method (), this will produce an error, because v has no
924 address.
925
926 A possible way around this would be to allocate a copy of
927 the variable on the stack, copy in the contents, call the
928 function, and copy out the contents. I.e. convert this
929 from call by reference to call by copy-return (or
930 whatever it's called). However, this does not work
931 because it is not the same: the method being called could
932 stash a copy of the address, and then future uses through
933 that address (after the method returns) would be expected
934 to use the variable itself, not some copy of it. */
935 arg2 = evaluate_subexp_for_address (exp, pos, noside);
936 }
937 else
938 {
939 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
940
941 /* Check to see if the operator '->' has been overloaded.
942 If the operator has been overloaded replace arg2 with the
943 value returned by the custom operator and continue
944 evaluation. */
945 while (unop_user_defined_p (op, arg2))
946 {
947 struct value *value = NULL;
948 TRY
949 {
950 value = value_x_unop (arg2, op, noside);
951 }
952
953 CATCH (except, RETURN_MASK_ERROR)
954 {
955 if (except.error == NOT_FOUND_ERROR)
956 break;
957 else
958 throw_exception (except);
959 }
960 END_CATCH
961
962 arg2 = value;
963 }
964 }
965 /* Now, say which argument to start evaluating from. */
966 tem = 2;
967 }
968 else if (op == OP_SCOPE
969 && overload_resolution
970 && (exp->language_defn->la_language == language_cplus))
971 {
972 /* Unpack it locally so we can properly handle overload
973 resolution. */
974 char *name;
975 int local_tem;
976
977 pc2 = (*pos)++;
978 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
979 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
980 struct type *type = exp->elts[pc2 + 1].type;
981 name = &exp->elts[pc2 + 3].string;
982
983 function = NULL;
984 function_name = NULL;
985 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
986 {
987 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
988 name,
989 get_selected_block (0),
990 VAR_DOMAIN).symbol;
991 if (function == NULL)
992 error (_("No symbol \"%s\" in namespace \"%s\"."),
993 name, TYPE_TAG_NAME (type));
994
995 tem = 1;
996 /* arg2 is left as NULL on purpose. */
997 }
998 else
999 {
1000 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1001 || TYPE_CODE (type) == TYPE_CODE_UNION);
1002 function_name = name;
1003
1004 /* We need a properly typed value for method lookup. For
1005 static methods arg2 is otherwise unused. */
1006 arg2 = value_zero (type, lval_memory);
1007 ++nargs;
1008 tem = 2;
1009 }
1010 }
1011 else if (op == OP_ADL_FUNC)
1012 {
1013 /* Save the function position and move pos so that the arguments
1014 can be evaluated. */
1015 int func_name_len;
1016
1017 save_pos1 = *pos;
1018 tem = 1;
1019
1020 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1021 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1022 }
1023 else
1024 {
1025 /* Non-method function call. */
1026 save_pos1 = *pos;
1027 tem = 1;
1028
1029 /* If this is a C++ function wait until overload resolution. */
1030 if (op == OP_VAR_VALUE
1031 && overload_resolution
1032 && (exp->language_defn->la_language == language_cplus))
1033 {
1034 (*pos) += 4; /* Skip the evaluation of the symbol. */
1035 argvec[0] = NULL;
1036 }
1037 else
1038 {
1039 if (op == OP_VAR_MSYM_VALUE)
1040 {
1041 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
1042 var_func_name = MSYMBOL_PRINT_NAME (msym);
1043 }
1044 else if (op == OP_VAR_VALUE)
1045 {
1046 symbol *sym = exp->elts[*pos + 2].symbol;
1047 var_func_name = SYMBOL_PRINT_NAME (sym);
1048 }
1049
1050 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1051 type *type = value_type (argvec[0]);
1052 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1053 type = TYPE_TARGET_TYPE (type);
1054 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1055 {
1056 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1057 {
1058 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1059 tem - 1),
1060 exp, pos, noside);
1061 }
1062 }
1063 }
1064 }
1065
1066 /* Evaluate arguments (if not already done, e.g., namespace::func()
1067 and overload-resolution is off). */
1068 for (; tem <= nargs; tem++)
1069 {
1070 /* Ensure that array expressions are coerced into pointer
1071 objects. */
1072 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1073 }
1074
1075 /* Signal end of arglist. */
1076 argvec[tem] = 0;
1077
1078 if (noside == EVAL_SKIP)
1079 return eval_skip_value (exp);
1080
1081 if (op == OP_ADL_FUNC)
1082 {
1083 struct symbol *symp;
1084 char *func_name;
1085 int name_len;
1086 int string_pc = save_pos1 + 3;
1087
1088 /* Extract the function name. */
1089 name_len = longest_to_int (exp->elts[string_pc].longconst);
1090 func_name = (char *) alloca (name_len + 1);
1091 strcpy (func_name, &exp->elts[string_pc + 1].string);
1092
1093 find_overload_match (&argvec[1], nargs, func_name,
1094 NON_METHOD, /* not method */
1095 NULL, NULL, /* pass NULL symbol since
1096 symbol is unknown */
1097 NULL, &symp, NULL, 0, noside);
1098
1099 /* Now fix the expression being evaluated. */
1100 exp->elts[save_pos1 + 2].symbol = symp;
1101 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1102 }
1103
1104 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1105 || (op == OP_SCOPE && function_name != NULL))
1106 {
1107 int static_memfuncp;
1108 char *tstr;
1109
1110 /* Method invocation: stuff "this" as first parameter. If the
1111 method turns out to be static we undo this below. */
1112 argvec[1] = arg2;
1113
1114 if (op != OP_SCOPE)
1115 {
1116 /* Name of method from expression. */
1117 tstr = &exp->elts[pc2 + 2].string;
1118 }
1119 else
1120 tstr = function_name;
1121
1122 if (overload_resolution && (exp->language_defn->la_language
1123 == language_cplus))
1124 {
1125 /* Language is C++, do some overload resolution before
1126 evaluation. */
1127 struct value *valp = NULL;
1128
1129 (void) find_overload_match (&argvec[1], nargs, tstr,
1130 METHOD, /* method */
1131 &arg2, /* the object */
1132 NULL, &valp, NULL,
1133 &static_memfuncp, 0, noside);
1134
1135 if (op == OP_SCOPE && !static_memfuncp)
1136 {
1137 /* For the time being, we don't handle this. */
1138 error (_("Call to overloaded function %s requires "
1139 "`this' pointer"),
1140 function_name);
1141 }
1142 argvec[1] = arg2; /* the ``this'' pointer */
1143 argvec[0] = valp; /* Use the method found after overload
1144 resolution. */
1145 }
1146 else
1147 /* Non-C++ case -- or no overload resolution. */
1148 {
1149 struct value *temp = arg2;
1150
1151 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1152 &static_memfuncp,
1153 op == STRUCTOP_STRUCT
1154 ? "structure" : "structure pointer");
1155 /* value_struct_elt updates temp with the correct value of
1156 the ``this'' pointer if necessary, so modify argvec[1] to
1157 reflect any ``this'' changes. */
1158 arg2
1159 = value_from_longest (lookup_pointer_type(value_type (temp)),
1160 value_address (temp)
1161 + value_embedded_offset (temp));
1162 argvec[1] = arg2; /* the ``this'' pointer */
1163 }
1164
1165 /* Take out `this' if needed. */
1166 if (static_memfuncp)
1167 {
1168 argvec[1] = argvec[0];
1169 nargs--;
1170 argvec++;
1171 }
1172 }
1173 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1174 {
1175 /* Pointer to member. argvec[1] is already set up. */
1176 argvec[0] = arg1;
1177 }
1178 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1179 {
1180 /* Non-member function being called. */
1181 /* fn: This can only be done for C++ functions. A C-style
1182 function in a C++ program, for instance, does not have the
1183 fields that are expected here. */
1184
1185 if (overload_resolution && (exp->language_defn->la_language
1186 == language_cplus))
1187 {
1188 /* Language is C++, do some overload resolution before
1189 evaluation. */
1190 struct symbol *symp;
1191 int no_adl = 0;
1192
1193 /* If a scope has been specified disable ADL. */
1194 if (op == OP_SCOPE)
1195 no_adl = 1;
1196
1197 if (op == OP_VAR_VALUE)
1198 function = exp->elts[save_pos1+2].symbol;
1199
1200 (void) find_overload_match (&argvec[1], nargs,
1201 NULL, /* no need for name */
1202 NON_METHOD, /* not method */
1203 NULL, function, /* the function */
1204 NULL, &symp, NULL, no_adl, noside);
1205
1206 if (op == OP_VAR_VALUE)
1207 {
1208 /* Now fix the expression being evaluated. */
1209 exp->elts[save_pos1+2].symbol = symp;
1210 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1211 noside);
1212 }
1213 else
1214 argvec[0] = value_of_variable (symp, get_selected_block (0));
1215 }
1216 else
1217 {
1218 /* Not C++, or no overload resolution allowed. */
1219 /* Nothing to be done; argvec already correctly set up. */
1220 }
1221 }
1222 else
1223 {
1224 /* It is probably a C-style function. */
1225 /* Nothing to be done; argvec already correctly set up. */
1226 }
1227
1228 return eval_call (exp, noside, nargs, argvec, var_func_name, expect_type);
1229 }
1230
1231 struct value *
1232 evaluate_subexp_standard (struct type *expect_type,
1233 struct expression *exp, int *pos,
1234 enum noside noside)
1235 {
1236 enum exp_opcode op;
1237 int tem, tem2, tem3;
1238 int pc, oldpos;
1239 struct value *arg1 = NULL;
1240 struct value *arg2 = NULL;
1241 struct value *arg3;
1242 struct type *type;
1243 int nargs;
1244 struct value **argvec;
1245 int code;
1246 int ix;
1247 long mem_offset;
1248 struct type **arg_types;
1249
1250 pc = (*pos)++;
1251 op = exp->elts[pc].opcode;
1252
1253 switch (op)
1254 {
1255 case OP_SCOPE:
1256 tem = longest_to_int (exp->elts[pc + 2].longconst);
1257 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1258 if (noside == EVAL_SKIP)
1259 return eval_skip_value (exp);
1260 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
1261 &exp->elts[pc + 3].string,
1262 expect_type, 0, noside);
1263 if (arg1 == NULL)
1264 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
1265 return arg1;
1266
1267 case OP_LONG:
1268 (*pos) += 3;
1269 return value_from_longest (exp->elts[pc + 1].type,
1270 exp->elts[pc + 2].longconst);
1271
1272 case OP_FLOAT:
1273 (*pos) += 3;
1274 return value_from_contents (exp->elts[pc + 1].type,
1275 exp->elts[pc + 2].floatconst);
1276
1277 case OP_ADL_FUNC:
1278 case OP_VAR_VALUE:
1279 (*pos) += 3;
1280 if (noside == EVAL_SKIP)
1281 return eval_skip_value (exp);
1282
1283 {
1284 symbol *var = exp->elts[pc + 2].symbol;
1285 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_ERROR)
1286 error_unknown_type (SYMBOL_PRINT_NAME (var));
1287
1288 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1289 }
1290
1291 case OP_VAR_MSYM_VALUE:
1292 {
1293 (*pos) += 3;
1294
1295 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1296 value *val = evaluate_var_msym_value (noside,
1297 exp->elts[pc + 1].objfile,
1298 msymbol);
1299
1300 type = value_type (val);
1301 if (TYPE_CODE (type) == TYPE_CODE_ERROR
1302 && (noside != EVAL_AVOID_SIDE_EFFECTS || pc != 0))
1303 error_unknown_type (MSYMBOL_PRINT_NAME (msymbol));
1304 return val;
1305 }
1306
1307 case OP_VAR_ENTRY_VALUE:
1308 (*pos) += 2;
1309 if (noside == EVAL_SKIP)
1310 return eval_skip_value (exp);
1311
1312 {
1313 struct symbol *sym = exp->elts[pc + 1].symbol;
1314 struct frame_info *frame;
1315
1316 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1317 return value_zero (SYMBOL_TYPE (sym), not_lval);
1318
1319 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1320 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1321 error (_("Symbol \"%s\" does not have any specific entry value"),
1322 SYMBOL_PRINT_NAME (sym));
1323
1324 frame = get_selected_frame (NULL);
1325 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1326 }
1327
1328 case OP_FUNC_STATIC_VAR:
1329 tem = longest_to_int (exp->elts[pc + 1].longconst);
1330 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1331 if (noside == EVAL_SKIP)
1332 return eval_skip_value (exp);
1333
1334 {
1335 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1336 CORE_ADDR addr = value_address (func);
1337
1338 const block *blk = block_for_pc (addr);
1339 const char *var = &exp->elts[pc + 2].string;
1340
1341 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1342
1343 if (sym.symbol == NULL)
1344 error (_("No symbol \"%s\" in specified context."), var);
1345
1346 return evaluate_var_value (noside, sym.block, sym.symbol);
1347 }
1348
1349 case OP_LAST:
1350 (*pos) += 2;
1351 return
1352 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
1353
1354 case OP_REGISTER:
1355 {
1356 const char *name = &exp->elts[pc + 2].string;
1357 int regno;
1358 struct value *val;
1359
1360 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
1361 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1362 name, strlen (name));
1363 if (regno == -1)
1364 error (_("Register $%s not available."), name);
1365
1366 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1367 a value with the appropriate register type. Unfortunately,
1368 we don't have easy access to the type of user registers.
1369 So for these registers, we fetch the register value regardless
1370 of the evaluation mode. */
1371 if (noside == EVAL_AVOID_SIDE_EFFECTS
1372 && regno < gdbarch_num_regs (exp->gdbarch)
1373 + gdbarch_num_pseudo_regs (exp->gdbarch))
1374 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1375 else
1376 val = value_of_register (regno, get_selected_frame (NULL));
1377 if (val == NULL)
1378 error (_("Value of register %s not available."), name);
1379 else
1380 return val;
1381 }
1382 case OP_BOOL:
1383 (*pos) += 2;
1384 type = language_bool_type (exp->language_defn, exp->gdbarch);
1385 return value_from_longest (type, exp->elts[pc + 1].longconst);
1386
1387 case OP_INTERNALVAR:
1388 (*pos) += 2;
1389 return value_of_internalvar (exp->gdbarch,
1390 exp->elts[pc + 1].internalvar);
1391
1392 case OP_STRING:
1393 tem = longest_to_int (exp->elts[pc + 1].longconst);
1394 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1395 if (noside == EVAL_SKIP)
1396 return eval_skip_value (exp);
1397 type = language_string_char_type (exp->language_defn, exp->gdbarch);
1398 return value_string (&exp->elts[pc + 2].string, tem, type);
1399
1400 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
1401 NSString constant. */
1402 tem = longest_to_int (exp->elts[pc + 1].longconst);
1403 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1404 if (noside == EVAL_SKIP)
1405 return eval_skip_value (exp);
1406 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
1407
1408 case OP_ARRAY:
1409 (*pos) += 3;
1410 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
1411 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
1412 nargs = tem3 - tem2 + 1;
1413 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
1414
1415 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1416 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
1417 {
1418 struct value *rec = allocate_value (expect_type);
1419
1420 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
1421 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
1422 }
1423
1424 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1425 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
1426 {
1427 struct type *range_type = TYPE_INDEX_TYPE (type);
1428 struct type *element_type = TYPE_TARGET_TYPE (type);
1429 struct value *array = allocate_value (expect_type);
1430 int element_size = TYPE_LENGTH (check_typedef (element_type));
1431 LONGEST low_bound, high_bound, index;
1432
1433 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1434 {
1435 low_bound = 0;
1436 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1437 }
1438 index = low_bound;
1439 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1440 for (tem = nargs; --nargs >= 0;)
1441 {
1442 struct value *element;
1443 int index_pc = 0;
1444
1445 element = evaluate_subexp (element_type, exp, pos, noside);
1446 if (value_type (element) != element_type)
1447 element = value_cast (element_type, element);
1448 if (index_pc)
1449 {
1450 int continue_pc = *pos;
1451
1452 *pos = index_pc;
1453 index = init_array_element (array, element, exp, pos, noside,
1454 low_bound, high_bound);
1455 *pos = continue_pc;
1456 }
1457 else
1458 {
1459 if (index > high_bound)
1460 /* To avoid memory corruption. */
1461 error (_("Too many array elements"));
1462 memcpy (value_contents_raw (array)
1463 + (index - low_bound) * element_size,
1464 value_contents (element),
1465 element_size);
1466 }
1467 index++;
1468 }
1469 return array;
1470 }
1471
1472 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1473 && TYPE_CODE (type) == TYPE_CODE_SET)
1474 {
1475 struct value *set = allocate_value (expect_type);
1476 gdb_byte *valaddr = value_contents_raw (set);
1477 struct type *element_type = TYPE_INDEX_TYPE (type);
1478 struct type *check_type = element_type;
1479 LONGEST low_bound, high_bound;
1480
1481 /* Get targettype of elementtype. */
1482 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1483 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1484 check_type = TYPE_TARGET_TYPE (check_type);
1485
1486 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1487 error (_("(power)set type with unknown size"));
1488 memset (valaddr, '\0', TYPE_LENGTH (type));
1489 for (tem = 0; tem < nargs; tem++)
1490 {
1491 LONGEST range_low, range_high;
1492 struct type *range_low_type, *range_high_type;
1493 struct value *elem_val;
1494
1495 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1496 range_low_type = range_high_type = value_type (elem_val);
1497 range_low = range_high = value_as_long (elem_val);
1498
1499 /* Check types of elements to avoid mixture of elements from
1500 different types. Also check if type of element is "compatible"
1501 with element type of powerset. */
1502 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1503 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1504 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1505 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1506 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1507 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1508 && (range_low_type != range_high_type)))
1509 /* different element modes. */
1510 error (_("POWERSET tuple elements of different mode"));
1511 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1512 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1513 && range_low_type != check_type))
1514 error (_("incompatible POWERSET tuple elements"));
1515 if (range_low > range_high)
1516 {
1517 warning (_("empty POWERSET tuple range"));
1518 continue;
1519 }
1520 if (range_low < low_bound || range_high > high_bound)
1521 error (_("POWERSET tuple element out of range"));
1522 range_low -= low_bound;
1523 range_high -= low_bound;
1524 for (; range_low <= range_high; range_low++)
1525 {
1526 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1527
1528 if (gdbarch_bits_big_endian (exp->gdbarch))
1529 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1530 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1531 |= 1 << bit_index;
1532 }
1533 }
1534 return set;
1535 }
1536
1537 argvec = XALLOCAVEC (struct value *, nargs);
1538 for (tem = 0; tem < nargs; tem++)
1539 {
1540 /* Ensure that array expressions are coerced into pointer
1541 objects. */
1542 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1543 }
1544 if (noside == EVAL_SKIP)
1545 return eval_skip_value (exp);
1546 return value_array (tem2, tem3, argvec);
1547
1548 case TERNOP_SLICE:
1549 {
1550 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1551 int lowbound
1552 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1553 int upper
1554 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1555
1556 if (noside == EVAL_SKIP)
1557 return eval_skip_value (exp);
1558 return value_slice (array, lowbound, upper - lowbound + 1);
1559 }
1560
1561 case TERNOP_COND:
1562 /* Skip third and second args to evaluate the first one. */
1563 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1564 if (value_logical_not (arg1))
1565 {
1566 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1567 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1568 }
1569 else
1570 {
1571 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1572 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1573 return arg2;
1574 }
1575
1576 case OP_OBJC_SELECTOR:
1577 { /* Objective C @selector operator. */
1578 char *sel = &exp->elts[pc + 2].string;
1579 int len = longest_to_int (exp->elts[pc + 1].longconst);
1580 struct type *selector_type;
1581
1582 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1583 if (noside == EVAL_SKIP)
1584 return eval_skip_value (exp);
1585
1586 if (sel[len] != 0)
1587 sel[len] = 0; /* Make sure it's terminated. */
1588
1589 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1590 return value_from_longest (selector_type,
1591 lookup_child_selector (exp->gdbarch, sel));
1592 }
1593
1594 case OP_OBJC_MSGCALL:
1595 { /* Objective C message (method) call. */
1596
1597 CORE_ADDR responds_selector = 0;
1598 CORE_ADDR method_selector = 0;
1599
1600 CORE_ADDR selector = 0;
1601
1602 int struct_return = 0;
1603 enum noside sub_no_side = EVAL_NORMAL;
1604
1605 struct value *msg_send = NULL;
1606 struct value *msg_send_stret = NULL;
1607 int gnu_runtime = 0;
1608
1609 struct value *target = NULL;
1610 struct value *method = NULL;
1611 struct value *called_method = NULL;
1612
1613 struct type *selector_type = NULL;
1614 struct type *long_type;
1615
1616 struct value *ret = NULL;
1617 CORE_ADDR addr = 0;
1618
1619 selector = exp->elts[pc + 1].longconst;
1620 nargs = exp->elts[pc + 2].longconst;
1621 argvec = XALLOCAVEC (struct value *, nargs + 5);
1622
1623 (*pos) += 3;
1624
1625 long_type = builtin_type (exp->gdbarch)->builtin_long;
1626 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1627
1628 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1629 sub_no_side = EVAL_NORMAL;
1630 else
1631 sub_no_side = noside;
1632
1633 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1634
1635 if (value_as_long (target) == 0)
1636 return value_from_longest (long_type, 0);
1637
1638 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
1639 gnu_runtime = 1;
1640
1641 /* Find the method dispatch (Apple runtime) or method lookup
1642 (GNU runtime) function for Objective-C. These will be used
1643 to lookup the symbol information for the method. If we
1644 can't find any symbol information, then we'll use these to
1645 call the method, otherwise we can call the method
1646 directly. The msg_send_stret function is used in the special
1647 case of a method that returns a structure (Apple runtime
1648 only). */
1649 if (gnu_runtime)
1650 {
1651 struct type *type = selector_type;
1652
1653 type = lookup_function_type (type);
1654 type = lookup_pointer_type (type);
1655 type = lookup_function_type (type);
1656 type = lookup_pointer_type (type);
1657
1658 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1659 msg_send_stret
1660 = find_function_in_inferior ("objc_msg_lookup", NULL);
1661
1662 msg_send = value_from_pointer (type, value_as_address (msg_send));
1663 msg_send_stret = value_from_pointer (type,
1664 value_as_address (msg_send_stret));
1665 }
1666 else
1667 {
1668 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1669 /* Special dispatcher for methods returning structs. */
1670 msg_send_stret
1671 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1672 }
1673
1674 /* Verify the target object responds to this method. The
1675 standard top-level 'Object' class uses a different name for
1676 the verification method than the non-standard, but more
1677 often used, 'NSObject' class. Make sure we check for both. */
1678
1679 responds_selector
1680 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1681 if (responds_selector == 0)
1682 responds_selector
1683 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1684
1685 if (responds_selector == 0)
1686 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1687
1688 method_selector
1689 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1690 if (method_selector == 0)
1691 method_selector
1692 = lookup_child_selector (exp->gdbarch, "methodFor:");
1693
1694 if (method_selector == 0)
1695 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1696
1697 /* Call the verification method, to make sure that the target
1698 class implements the desired method. */
1699
1700 argvec[0] = msg_send;
1701 argvec[1] = target;
1702 argvec[2] = value_from_longest (long_type, responds_selector);
1703 argvec[3] = value_from_longest (long_type, selector);
1704 argvec[4] = 0;
1705
1706 ret = call_function_by_hand (argvec[0], NULL, 3, argvec + 1);
1707 if (gnu_runtime)
1708 {
1709 /* Function objc_msg_lookup returns a pointer. */
1710 argvec[0] = ret;
1711 ret = call_function_by_hand (argvec[0], NULL, 3, argvec + 1);
1712 }
1713 if (value_as_long (ret) == 0)
1714 error (_("Target does not respond to this message selector."));
1715
1716 /* Call "methodForSelector:" method, to get the address of a
1717 function method that implements this selector for this
1718 class. If we can find a symbol at that address, then we
1719 know the return type, parameter types etc. (that's a good
1720 thing). */
1721
1722 argvec[0] = msg_send;
1723 argvec[1] = target;
1724 argvec[2] = value_from_longest (long_type, method_selector);
1725 argvec[3] = value_from_longest (long_type, selector);
1726 argvec[4] = 0;
1727
1728 ret = call_function_by_hand (argvec[0], NULL, 3, argvec + 1);
1729 if (gnu_runtime)
1730 {
1731 argvec[0] = ret;
1732 ret = call_function_by_hand (argvec[0], NULL, 3, argvec + 1);
1733 }
1734
1735 /* ret should now be the selector. */
1736
1737 addr = value_as_long (ret);
1738 if (addr)
1739 {
1740 struct symbol *sym = NULL;
1741
1742 /* The address might point to a function descriptor;
1743 resolve it to the actual code address instead. */
1744 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1745 &current_target);
1746
1747 /* Is it a high_level symbol? */
1748 sym = find_pc_function (addr);
1749 if (sym != NULL)
1750 method = value_of_variable (sym, 0);
1751 }
1752
1753 /* If we found a method with symbol information, check to see
1754 if it returns a struct. Otherwise assume it doesn't. */
1755
1756 if (method)
1757 {
1758 CORE_ADDR funaddr;
1759 struct type *val_type;
1760
1761 funaddr = find_function_addr (method, &val_type);
1762
1763 block_for_pc (funaddr);
1764
1765 val_type = check_typedef (val_type);
1766
1767 if ((val_type == NULL)
1768 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1769 {
1770 if (expect_type != NULL)
1771 val_type = expect_type;
1772 }
1773
1774 struct_return = using_struct_return (exp->gdbarch, method,
1775 val_type);
1776 }
1777 else if (expect_type != NULL)
1778 {
1779 struct_return = using_struct_return (exp->gdbarch, NULL,
1780 check_typedef (expect_type));
1781 }
1782
1783 /* Found a function symbol. Now we will substitute its
1784 value in place of the message dispatcher (obj_msgSend),
1785 so that we call the method directly instead of thru
1786 the dispatcher. The main reason for doing this is that
1787 we can now evaluate the return value and parameter values
1788 according to their known data types, in case we need to
1789 do things like promotion, dereferencing, special handling
1790 of structs and doubles, etc.
1791
1792 We want to use the type signature of 'method', but still
1793 jump to objc_msgSend() or objc_msgSend_stret() to better
1794 mimic the behavior of the runtime. */
1795
1796 if (method)
1797 {
1798 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1799 error (_("method address has symbol information "
1800 "with non-function type; skipping"));
1801
1802 /* Create a function pointer of the appropriate type, and
1803 replace its value with the value of msg_send or
1804 msg_send_stret. We must use a pointer here, as
1805 msg_send and msg_send_stret are of pointer type, and
1806 the representation may be different on systems that use
1807 function descriptors. */
1808 if (struct_return)
1809 called_method
1810 = value_from_pointer (lookup_pointer_type (value_type (method)),
1811 value_as_address (msg_send_stret));
1812 else
1813 called_method
1814 = value_from_pointer (lookup_pointer_type (value_type (method)),
1815 value_as_address (msg_send));
1816 }
1817 else
1818 {
1819 if (struct_return)
1820 called_method = msg_send_stret;
1821 else
1822 called_method = msg_send;
1823 }
1824
1825 if (noside == EVAL_SKIP)
1826 return eval_skip_value (exp);
1827
1828 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1829 {
1830 /* If the return type doesn't look like a function type,
1831 call an error. This can happen if somebody tries to
1832 turn a variable into a function call. This is here
1833 because people often want to call, eg, strcmp, which
1834 gdb doesn't know is a function. If gdb isn't asked for
1835 it's opinion (ie. through "whatis"), it won't offer
1836 it. */
1837
1838 struct type *type = value_type (called_method);
1839
1840 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1841 type = TYPE_TARGET_TYPE (type);
1842 type = TYPE_TARGET_TYPE (type);
1843
1844 if (type)
1845 {
1846 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1847 return allocate_value (expect_type);
1848 else
1849 return allocate_value (type);
1850 }
1851 else
1852 error (_("Expression of type other than "
1853 "\"method returning ...\" used as a method"));
1854 }
1855
1856 /* Now depending on whether we found a symbol for the method,
1857 we will either call the runtime dispatcher or the method
1858 directly. */
1859
1860 argvec[0] = called_method;
1861 argvec[1] = target;
1862 argvec[2] = value_from_longest (long_type, selector);
1863 /* User-supplied arguments. */
1864 for (tem = 0; tem < nargs; tem++)
1865 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1866 argvec[tem + 3] = 0;
1867
1868 if (gnu_runtime && (method != NULL))
1869 {
1870 /* Function objc_msg_lookup returns a pointer. */
1871 deprecated_set_value_type (argvec[0],
1872 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1873 argvec[0]
1874 = call_function_by_hand (argvec[0], NULL, nargs + 2, argvec + 1);
1875 }
1876
1877 ret = call_function_by_hand (argvec[0], NULL, nargs + 2, argvec + 1);
1878 return ret;
1879 }
1880 break;
1881
1882 case OP_FUNCALL:
1883 return evaluate_funcall (expect_type, exp, pos, noside);
1884
1885 case OP_F77_UNDETERMINED_ARGLIST:
1886
1887 /* Remember that in F77, functions, substring ops and
1888 array subscript operations cannot be disambiguated
1889 at parse time. We have made all array subscript operations,
1890 substring operations as well as function calls come here
1891 and we now have to discover what the heck this thing actually was.
1892 If it is a function, we process just as if we got an OP_FUNCALL. */
1893
1894 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1895 (*pos) += 2;
1896
1897 /* First determine the type code we are dealing with. */
1898 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1899 type = check_typedef (value_type (arg1));
1900 code = TYPE_CODE (type);
1901
1902 if (code == TYPE_CODE_PTR)
1903 {
1904 /* Fortran always passes variable to subroutines as pointer.
1905 So we need to look into its target type to see if it is
1906 array, string or function. If it is, we need to switch
1907 to the target value the original one points to. */
1908 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1909
1910 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1911 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1912 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1913 {
1914 arg1 = value_ind (arg1);
1915 type = check_typedef (value_type (arg1));
1916 code = TYPE_CODE (type);
1917 }
1918 }
1919
1920 switch (code)
1921 {
1922 case TYPE_CODE_ARRAY:
1923 if (exp->elts[*pos].opcode == OP_RANGE)
1924 return value_f90_subarray (arg1, exp, pos, noside);
1925 else
1926 goto multi_f77_subscript;
1927
1928 case TYPE_CODE_STRING:
1929 if (exp->elts[*pos].opcode == OP_RANGE)
1930 return value_f90_subarray (arg1, exp, pos, noside);
1931 else
1932 {
1933 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1934 return value_subscript (arg1, value_as_long (arg2));
1935 }
1936
1937 case TYPE_CODE_PTR:
1938 case TYPE_CODE_FUNC:
1939 /* It's a function call. */
1940 /* Allocate arg vector, including space for the function to be
1941 called in argvec[0] and a terminating NULL. */
1942 argvec = (struct value **)
1943 alloca (sizeof (struct value *) * (nargs + 2));
1944 argvec[0] = arg1;
1945 tem = 1;
1946 for (; tem <= nargs; tem++)
1947 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1948 argvec[tem] = 0; /* signal end of arglist */
1949 if (noside == EVAL_SKIP)
1950 return eval_skip_value (exp);
1951 return eval_call (exp, noside, nargs, argvec, NULL, expect_type);
1952
1953 default:
1954 error (_("Cannot perform substring on this type"));
1955 }
1956
1957 case OP_COMPLEX:
1958 /* We have a complex number, There should be 2 floating
1959 point numbers that compose it. */
1960 (*pos) += 2;
1961 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1962 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1963
1964 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1965
1966 case STRUCTOP_STRUCT:
1967 tem = longest_to_int (exp->elts[pc + 1].longconst);
1968 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1969 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1970 if (noside == EVAL_SKIP)
1971 return eval_skip_value (exp);
1972 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1973 NULL, "structure");
1974 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1975 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1976 return arg3;
1977
1978 case STRUCTOP_PTR:
1979 tem = longest_to_int (exp->elts[pc + 1].longconst);
1980 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1981 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1982 if (noside == EVAL_SKIP)
1983 return eval_skip_value (exp);
1984
1985 /* Check to see if operator '->' has been overloaded. If so replace
1986 arg1 with the value returned by evaluating operator->(). */
1987 while (unop_user_defined_p (op, arg1))
1988 {
1989 struct value *value = NULL;
1990 TRY
1991 {
1992 value = value_x_unop (arg1, op, noside);
1993 }
1994
1995 CATCH (except, RETURN_MASK_ERROR)
1996 {
1997 if (except.error == NOT_FOUND_ERROR)
1998 break;
1999 else
2000 throw_exception (except);
2001 }
2002 END_CATCH
2003
2004 arg1 = value;
2005 }
2006
2007 /* JYG: if print object is on we need to replace the base type
2008 with rtti type in order to continue on with successful
2009 lookup of member / method only available in the rtti type. */
2010 {
2011 struct type *type = value_type (arg1);
2012 struct type *real_type;
2013 int full, using_enc;
2014 LONGEST top;
2015 struct value_print_options opts;
2016
2017 get_user_print_options (&opts);
2018 if (opts.objectprint && TYPE_TARGET_TYPE(type)
2019 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT))
2020 {
2021 real_type = value_rtti_indirect_type (arg1, &full, &top,
2022 &using_enc);
2023 if (real_type)
2024 arg1 = value_cast (real_type, arg1);
2025 }
2026 }
2027
2028 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
2029 NULL, "structure pointer");
2030 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2031 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
2032 return arg3;
2033
2034 case STRUCTOP_MEMBER:
2035 case STRUCTOP_MPTR:
2036 if (op == STRUCTOP_MEMBER)
2037 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2038 else
2039 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2040
2041 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2042
2043 if (noside == EVAL_SKIP)
2044 return eval_skip_value (exp);
2045
2046 type = check_typedef (value_type (arg2));
2047 switch (TYPE_CODE (type))
2048 {
2049 case TYPE_CODE_METHODPTR:
2050 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2051 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2052 else
2053 {
2054 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2055 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2056 return value_ind (arg2);
2057 }
2058
2059 case TYPE_CODE_MEMBERPTR:
2060 /* Now, convert these values to an address. */
2061 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
2062 arg1, 1);
2063
2064 mem_offset = value_as_long (arg2);
2065
2066 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2067 value_as_long (arg1) + mem_offset);
2068 return value_ind (arg3);
2069
2070 default:
2071 error (_("non-pointer-to-member value used "
2072 "in pointer-to-member construct"));
2073 }
2074
2075 case TYPE_INSTANCE:
2076 {
2077 type_instance_flags flags
2078 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2079 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2080 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2081 for (ix = 0; ix < nargs; ++ix)
2082 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2083
2084 fake_method expect_type (flags, nargs, arg_types);
2085 *(pos) += 4 + nargs;
2086 return evaluate_subexp_standard (expect_type.type (), exp, pos, noside);
2087 }
2088
2089 case BINOP_CONCAT:
2090 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2091 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2092 if (noside == EVAL_SKIP)
2093 return eval_skip_value (exp);
2094 if (binop_user_defined_p (op, arg1, arg2))
2095 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2096 else
2097 return value_concat (arg1, arg2);
2098
2099 case BINOP_ASSIGN:
2100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2101 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2102
2103 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2104 return arg1;
2105 if (binop_user_defined_p (op, arg1, arg2))
2106 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2107 else
2108 return value_assign (arg1, arg2);
2109
2110 case BINOP_ASSIGN_MODIFY:
2111 (*pos) += 2;
2112 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2113 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2114 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2115 return arg1;
2116 op = exp->elts[pc + 1].opcode;
2117 if (binop_user_defined_p (op, arg1, arg2))
2118 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2119 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2120 value_type (arg1))
2121 && is_integral_type (value_type (arg2)))
2122 arg2 = value_ptradd (arg1, value_as_long (arg2));
2123 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2124 value_type (arg1))
2125 && is_integral_type (value_type (arg2)))
2126 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2127 else
2128 {
2129 struct value *tmp = arg1;
2130
2131 /* For shift and integer exponentiation operations,
2132 only promote the first argument. */
2133 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2134 && is_integral_type (value_type (arg2)))
2135 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2136 else
2137 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2138
2139 arg2 = value_binop (tmp, arg2, op);
2140 }
2141 return value_assign (arg1, arg2);
2142
2143 case BINOP_ADD:
2144 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2145 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2146 if (noside == EVAL_SKIP)
2147 return eval_skip_value (exp);
2148 if (binop_user_defined_p (op, arg1, arg2))
2149 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2150 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2151 && is_integral_type (value_type (arg2)))
2152 return value_ptradd (arg1, value_as_long (arg2));
2153 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2154 && is_integral_type (value_type (arg1)))
2155 return value_ptradd (arg2, value_as_long (arg1));
2156 else
2157 {
2158 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2159 return value_binop (arg1, arg2, BINOP_ADD);
2160 }
2161
2162 case BINOP_SUB:
2163 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2164 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2165 if (noside == EVAL_SKIP)
2166 return eval_skip_value (exp);
2167 if (binop_user_defined_p (op, arg1, arg2))
2168 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2169 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2170 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2171 {
2172 /* FIXME -- should be ptrdiff_t */
2173 type = builtin_type (exp->gdbarch)->builtin_long;
2174 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2175 }
2176 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2177 && is_integral_type (value_type (arg2)))
2178 return value_ptradd (arg1, - value_as_long (arg2));
2179 else
2180 {
2181 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2182 return value_binop (arg1, arg2, BINOP_SUB);
2183 }
2184
2185 case BINOP_EXP:
2186 case BINOP_MUL:
2187 case BINOP_DIV:
2188 case BINOP_INTDIV:
2189 case BINOP_REM:
2190 case BINOP_MOD:
2191 case BINOP_LSH:
2192 case BINOP_RSH:
2193 case BINOP_BITWISE_AND:
2194 case BINOP_BITWISE_IOR:
2195 case BINOP_BITWISE_XOR:
2196 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2197 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2198 if (noside == EVAL_SKIP)
2199 return eval_skip_value (exp);
2200 if (binop_user_defined_p (op, arg1, arg2))
2201 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2202 else
2203 {
2204 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2205 fudge arg2 to avoid division-by-zero, the caller is
2206 (theoretically) only looking for the type of the result. */
2207 if (noside == EVAL_AVOID_SIDE_EFFECTS
2208 /* ??? Do we really want to test for BINOP_MOD here?
2209 The implementation of value_binop gives it a well-defined
2210 value. */
2211 && (op == BINOP_DIV
2212 || op == BINOP_INTDIV
2213 || op == BINOP_REM
2214 || op == BINOP_MOD)
2215 && value_logical_not (arg2))
2216 {
2217 struct value *v_one, *retval;
2218
2219 v_one = value_one (value_type (arg2));
2220 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2221 retval = value_binop (arg1, v_one, op);
2222 return retval;
2223 }
2224 else
2225 {
2226 /* For shift and integer exponentiation operations,
2227 only promote the first argument. */
2228 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2229 && is_integral_type (value_type (arg2)))
2230 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2231 else
2232 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2233
2234 return value_binop (arg1, arg2, op);
2235 }
2236 }
2237
2238 case BINOP_SUBSCRIPT:
2239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2240 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2241 if (noside == EVAL_SKIP)
2242 return eval_skip_value (exp);
2243 if (binop_user_defined_p (op, arg1, arg2))
2244 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2245 else
2246 {
2247 /* If the user attempts to subscript something that is not an
2248 array or pointer type (like a plain int variable for example),
2249 then report this as an error. */
2250
2251 arg1 = coerce_ref (arg1);
2252 type = check_typedef (value_type (arg1));
2253 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2254 && TYPE_CODE (type) != TYPE_CODE_PTR)
2255 {
2256 if (TYPE_NAME (type))
2257 error (_("cannot subscript something of type `%s'"),
2258 TYPE_NAME (type));
2259 else
2260 error (_("cannot subscript requested type"));
2261 }
2262
2263 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2264 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2265 else
2266 return value_subscript (arg1, value_as_long (arg2));
2267 }
2268 case MULTI_SUBSCRIPT:
2269 (*pos) += 2;
2270 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2271 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2272 while (nargs-- > 0)
2273 {
2274 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2275 /* FIXME: EVAL_SKIP handling may not be correct. */
2276 if (noside == EVAL_SKIP)
2277 {
2278 if (nargs > 0)
2279 continue;
2280 return eval_skip_value (exp);
2281 }
2282 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2283 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2284 {
2285 /* If the user attempts to subscript something that has no target
2286 type (like a plain int variable for example), then report this
2287 as an error. */
2288
2289 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2290 if (type != NULL)
2291 {
2292 arg1 = value_zero (type, VALUE_LVAL (arg1));
2293 noside = EVAL_SKIP;
2294 continue;
2295 }
2296 else
2297 {
2298 error (_("cannot subscript something of type `%s'"),
2299 TYPE_NAME (value_type (arg1)));
2300 }
2301 }
2302
2303 if (binop_user_defined_p (op, arg1, arg2))
2304 {
2305 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2306 }
2307 else
2308 {
2309 arg1 = coerce_ref (arg1);
2310 type = check_typedef (value_type (arg1));
2311
2312 switch (TYPE_CODE (type))
2313 {
2314 case TYPE_CODE_PTR:
2315 case TYPE_CODE_ARRAY:
2316 case TYPE_CODE_STRING:
2317 arg1 = value_subscript (arg1, value_as_long (arg2));
2318 break;
2319
2320 default:
2321 if (TYPE_NAME (type))
2322 error (_("cannot subscript something of type `%s'"),
2323 TYPE_NAME (type));
2324 else
2325 error (_("cannot subscript requested type"));
2326 }
2327 }
2328 }
2329 return (arg1);
2330
2331 multi_f77_subscript:
2332 {
2333 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2334 int ndimensions = 1, i;
2335 struct value *array = arg1;
2336
2337 if (nargs > MAX_FORTRAN_DIMS)
2338 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2339
2340 ndimensions = calc_f77_array_dims (type);
2341
2342 if (nargs != ndimensions)
2343 error (_("Wrong number of subscripts"));
2344
2345 gdb_assert (nargs > 0);
2346
2347 /* Now that we know we have a legal array subscript expression
2348 let us actually find out where this element exists in the array. */
2349
2350 /* Take array indices left to right. */
2351 for (i = 0; i < nargs; i++)
2352 {
2353 /* Evaluate each subscript; it must be a legal integer in F77. */
2354 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2355
2356 /* Fill in the subscript array. */
2357
2358 subscript_array[i] = value_as_long (arg2);
2359 }
2360
2361 /* Internal type of array is arranged right to left. */
2362 for (i = nargs; i > 0; i--)
2363 {
2364 struct type *array_type = check_typedef (value_type (array));
2365 LONGEST index = subscript_array[i - 1];
2366
2367 array = value_subscripted_rvalue (array, index,
2368 f77_get_lowerbound (array_type));
2369 }
2370
2371 return array;
2372 }
2373
2374 case BINOP_LOGICAL_AND:
2375 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2376 if (noside == EVAL_SKIP)
2377 {
2378 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2379 return eval_skip_value (exp);
2380 }
2381
2382 oldpos = *pos;
2383 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2384 *pos = oldpos;
2385
2386 if (binop_user_defined_p (op, arg1, arg2))
2387 {
2388 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2389 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2390 }
2391 else
2392 {
2393 tem = value_logical_not (arg1);
2394 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2395 (tem ? EVAL_SKIP : noside));
2396 type = language_bool_type (exp->language_defn, exp->gdbarch);
2397 return value_from_longest (type,
2398 (LONGEST) (!tem && !value_logical_not (arg2)));
2399 }
2400
2401 case BINOP_LOGICAL_OR:
2402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2403 if (noside == EVAL_SKIP)
2404 {
2405 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2406 return eval_skip_value (exp);
2407 }
2408
2409 oldpos = *pos;
2410 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2411 *pos = oldpos;
2412
2413 if (binop_user_defined_p (op, arg1, arg2))
2414 {
2415 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2416 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2417 }
2418 else
2419 {
2420 tem = value_logical_not (arg1);
2421 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2422 (!tem ? EVAL_SKIP : noside));
2423 type = language_bool_type (exp->language_defn, exp->gdbarch);
2424 return value_from_longest (type,
2425 (LONGEST) (!tem || !value_logical_not (arg2)));
2426 }
2427
2428 case BINOP_EQUAL:
2429 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2430 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2431 if (noside == EVAL_SKIP)
2432 return eval_skip_value (exp);
2433 if (binop_user_defined_p (op, arg1, arg2))
2434 {
2435 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2436 }
2437 else
2438 {
2439 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2440 tem = value_equal (arg1, arg2);
2441 type = language_bool_type (exp->language_defn, exp->gdbarch);
2442 return value_from_longest (type, (LONGEST) tem);
2443 }
2444
2445 case BINOP_NOTEQUAL:
2446 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2447 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2448 if (noside == EVAL_SKIP)
2449 return eval_skip_value (exp);
2450 if (binop_user_defined_p (op, arg1, arg2))
2451 {
2452 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2453 }
2454 else
2455 {
2456 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2457 tem = value_equal (arg1, arg2);
2458 type = language_bool_type (exp->language_defn, exp->gdbarch);
2459 return value_from_longest (type, (LONGEST) ! tem);
2460 }
2461
2462 case BINOP_LESS:
2463 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2464 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2465 if (noside == EVAL_SKIP)
2466 return eval_skip_value (exp);
2467 if (binop_user_defined_p (op, arg1, arg2))
2468 {
2469 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2470 }
2471 else
2472 {
2473 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2474 tem = value_less (arg1, arg2);
2475 type = language_bool_type (exp->language_defn, exp->gdbarch);
2476 return value_from_longest (type, (LONGEST) tem);
2477 }
2478
2479 case BINOP_GTR:
2480 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2481 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2482 if (noside == EVAL_SKIP)
2483 return eval_skip_value (exp);
2484 if (binop_user_defined_p (op, arg1, arg2))
2485 {
2486 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2487 }
2488 else
2489 {
2490 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2491 tem = value_less (arg2, arg1);
2492 type = language_bool_type (exp->language_defn, exp->gdbarch);
2493 return value_from_longest (type, (LONGEST) tem);
2494 }
2495
2496 case BINOP_GEQ:
2497 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2498 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2499 if (noside == EVAL_SKIP)
2500 return eval_skip_value (exp);
2501 if (binop_user_defined_p (op, arg1, arg2))
2502 {
2503 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2504 }
2505 else
2506 {
2507 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2508 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2509 type = language_bool_type (exp->language_defn, exp->gdbarch);
2510 return value_from_longest (type, (LONGEST) tem);
2511 }
2512
2513 case BINOP_LEQ:
2514 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2515 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2516 if (noside == EVAL_SKIP)
2517 return eval_skip_value (exp);
2518 if (binop_user_defined_p (op, arg1, arg2))
2519 {
2520 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2521 }
2522 else
2523 {
2524 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2525 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2526 type = language_bool_type (exp->language_defn, exp->gdbarch);
2527 return value_from_longest (type, (LONGEST) tem);
2528 }
2529
2530 case BINOP_REPEAT:
2531 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2532 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2533 if (noside == EVAL_SKIP)
2534 return eval_skip_value (exp);
2535 type = check_typedef (value_type (arg2));
2536 if (TYPE_CODE (type) != TYPE_CODE_INT
2537 && TYPE_CODE (type) != TYPE_CODE_ENUM)
2538 error (_("Non-integral right operand for \"@\" operator."));
2539 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2540 {
2541 return allocate_repeat_value (value_type (arg1),
2542 longest_to_int (value_as_long (arg2)));
2543 }
2544 else
2545 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2546
2547 case BINOP_COMMA:
2548 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2549 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2550
2551 case UNOP_PLUS:
2552 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2553 if (noside == EVAL_SKIP)
2554 return eval_skip_value (exp);
2555 if (unop_user_defined_p (op, arg1))
2556 return value_x_unop (arg1, op, noside);
2557 else
2558 {
2559 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2560 return value_pos (arg1);
2561 }
2562
2563 case UNOP_NEG:
2564 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2565 if (noside == EVAL_SKIP)
2566 return eval_skip_value (exp);
2567 if (unop_user_defined_p (op, arg1))
2568 return value_x_unop (arg1, op, noside);
2569 else
2570 {
2571 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2572 return value_neg (arg1);
2573 }
2574
2575 case UNOP_COMPLEMENT:
2576 /* C++: check for and handle destructor names. */
2577
2578 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2579 if (noside == EVAL_SKIP)
2580 return eval_skip_value (exp);
2581 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2582 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2583 else
2584 {
2585 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2586 return value_complement (arg1);
2587 }
2588
2589 case UNOP_LOGICAL_NOT:
2590 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2591 if (noside == EVAL_SKIP)
2592 return eval_skip_value (exp);
2593 if (unop_user_defined_p (op, arg1))
2594 return value_x_unop (arg1, op, noside);
2595 else
2596 {
2597 type = language_bool_type (exp->language_defn, exp->gdbarch);
2598 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2599 }
2600
2601 case UNOP_IND:
2602 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2603 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2604 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2605 type = check_typedef (value_type (arg1));
2606 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2607 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2608 error (_("Attempt to dereference pointer "
2609 "to member without an object"));
2610 if (noside == EVAL_SKIP)
2611 return eval_skip_value (exp);
2612 if (unop_user_defined_p (op, arg1))
2613 return value_x_unop (arg1, op, noside);
2614 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2615 {
2616 type = check_typedef (value_type (arg1));
2617 if (TYPE_CODE (type) == TYPE_CODE_PTR
2618 || TYPE_IS_REFERENCE (type)
2619 /* In C you can dereference an array to get the 1st elt. */
2620 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2621 )
2622 return value_zero (TYPE_TARGET_TYPE (type),
2623 lval_memory);
2624 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2625 /* GDB allows dereferencing an int. */
2626 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2627 lval_memory);
2628 else
2629 error (_("Attempt to take contents of a non-pointer value."));
2630 }
2631
2632 /* Allow * on an integer so we can cast it to whatever we want.
2633 This returns an int, which seems like the most C-like thing to
2634 do. "long long" variables are rare enough that
2635 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2636 if (TYPE_CODE (type) == TYPE_CODE_INT)
2637 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2638 (CORE_ADDR) value_as_address (arg1));
2639 return value_ind (arg1);
2640
2641 case UNOP_ADDR:
2642 /* C++: check for and handle pointer to members. */
2643
2644 if (noside == EVAL_SKIP)
2645 {
2646 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2647 return eval_skip_value (exp);
2648 }
2649 else
2650 {
2651 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2652 noside);
2653
2654 return retvalp;
2655 }
2656
2657 case UNOP_SIZEOF:
2658 if (noside == EVAL_SKIP)
2659 {
2660 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2661 return eval_skip_value (exp);
2662 }
2663 return evaluate_subexp_for_sizeof (exp, pos, noside);
2664
2665 case UNOP_CAST:
2666 (*pos) += 2;
2667 type = exp->elts[pc + 1].type;
2668 return evaluate_subexp_for_cast (exp, pos, noside, type);
2669
2670 case UNOP_CAST_TYPE:
2671 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2672 type = value_type (arg1);
2673 return evaluate_subexp_for_cast (exp, pos, noside, type);
2674
2675 case UNOP_DYNAMIC_CAST:
2676 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2677 type = value_type (arg1);
2678 arg1 = evaluate_subexp (type, exp, pos, noside);
2679 if (noside == EVAL_SKIP)
2680 return eval_skip_value (exp);
2681 return value_dynamic_cast (type, arg1);
2682
2683 case UNOP_REINTERPRET_CAST:
2684 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2685 type = value_type (arg1);
2686 arg1 = evaluate_subexp (type, exp, pos, noside);
2687 if (noside == EVAL_SKIP)
2688 return eval_skip_value (exp);
2689 return value_reinterpret_cast (type, arg1);
2690
2691 case UNOP_MEMVAL:
2692 (*pos) += 2;
2693 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2694 if (noside == EVAL_SKIP)
2695 return eval_skip_value (exp);
2696 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2697 return value_zero (exp->elts[pc + 1].type, lval_memory);
2698 else
2699 return value_at_lazy (exp->elts[pc + 1].type,
2700 value_as_address (arg1));
2701
2702 case UNOP_MEMVAL_TYPE:
2703 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2704 type = value_type (arg1);
2705 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2706 if (noside == EVAL_SKIP)
2707 return eval_skip_value (exp);
2708 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2709 return value_zero (type, lval_memory);
2710 else
2711 return value_at_lazy (type, value_as_address (arg1));
2712
2713 case UNOP_PREINCREMENT:
2714 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2715 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2716 return arg1;
2717 else if (unop_user_defined_p (op, arg1))
2718 {
2719 return value_x_unop (arg1, op, noside);
2720 }
2721 else
2722 {
2723 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2724 arg2 = value_ptradd (arg1, 1);
2725 else
2726 {
2727 struct value *tmp = arg1;
2728
2729 arg2 = value_one (value_type (arg1));
2730 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2731 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2732 }
2733
2734 return value_assign (arg1, arg2);
2735 }
2736
2737 case UNOP_PREDECREMENT:
2738 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2739 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2740 return arg1;
2741 else if (unop_user_defined_p (op, arg1))
2742 {
2743 return value_x_unop (arg1, op, noside);
2744 }
2745 else
2746 {
2747 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2748 arg2 = value_ptradd (arg1, -1);
2749 else
2750 {
2751 struct value *tmp = arg1;
2752
2753 arg2 = value_one (value_type (arg1));
2754 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2755 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2756 }
2757
2758 return value_assign (arg1, arg2);
2759 }
2760
2761 case UNOP_POSTINCREMENT:
2762 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2763 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2764 return arg1;
2765 else if (unop_user_defined_p (op, arg1))
2766 {
2767 return value_x_unop (arg1, op, noside);
2768 }
2769 else
2770 {
2771 arg3 = value_non_lval (arg1);
2772
2773 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2774 arg2 = value_ptradd (arg1, 1);
2775 else
2776 {
2777 struct value *tmp = arg1;
2778
2779 arg2 = value_one (value_type (arg1));
2780 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2781 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2782 }
2783
2784 value_assign (arg1, arg2);
2785 return arg3;
2786 }
2787
2788 case UNOP_POSTDECREMENT:
2789 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2790 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2791 return arg1;
2792 else if (unop_user_defined_p (op, arg1))
2793 {
2794 return value_x_unop (arg1, op, noside);
2795 }
2796 else
2797 {
2798 arg3 = value_non_lval (arg1);
2799
2800 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2801 arg2 = value_ptradd (arg1, -1);
2802 else
2803 {
2804 struct value *tmp = arg1;
2805
2806 arg2 = value_one (value_type (arg1));
2807 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2808 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2809 }
2810
2811 value_assign (arg1, arg2);
2812 return arg3;
2813 }
2814
2815 case OP_THIS:
2816 (*pos) += 1;
2817 return value_of_this (exp->language_defn);
2818
2819 case OP_TYPE:
2820 /* The value is not supposed to be used. This is here to make it
2821 easier to accommodate expressions that contain types. */
2822 (*pos) += 2;
2823 if (noside == EVAL_SKIP)
2824 return eval_skip_value (exp);
2825 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2826 return allocate_value (exp->elts[pc + 1].type);
2827 else
2828 error (_("Attempt to use a type name as an expression"));
2829
2830 case OP_TYPEOF:
2831 case OP_DECLTYPE:
2832 if (noside == EVAL_SKIP)
2833 {
2834 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2835 return eval_skip_value (exp);
2836 }
2837 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2838 {
2839 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2840 struct value *result;
2841
2842 result = evaluate_subexp (NULL_TYPE, exp, pos,
2843 EVAL_AVOID_SIDE_EFFECTS);
2844
2845 /* 'decltype' has special semantics for lvalues. */
2846 if (op == OP_DECLTYPE
2847 && (sub_op == BINOP_SUBSCRIPT
2848 || sub_op == STRUCTOP_MEMBER
2849 || sub_op == STRUCTOP_MPTR
2850 || sub_op == UNOP_IND
2851 || sub_op == STRUCTOP_STRUCT
2852 || sub_op == STRUCTOP_PTR
2853 || sub_op == OP_SCOPE))
2854 {
2855 struct type *type = value_type (result);
2856
2857 if (!TYPE_IS_REFERENCE (type))
2858 {
2859 type = lookup_lvalue_reference_type (type);
2860 result = allocate_value (type);
2861 }
2862 }
2863
2864 return result;
2865 }
2866 else
2867 error (_("Attempt to use a type as an expression"));
2868
2869 case OP_TYPEID:
2870 {
2871 struct value *result;
2872 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2873
2874 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2875 result = evaluate_subexp (NULL_TYPE, exp, pos,
2876 EVAL_AVOID_SIDE_EFFECTS);
2877 else
2878 result = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2879
2880 if (noside != EVAL_NORMAL)
2881 return allocate_value (cplus_typeid_type (exp->gdbarch));
2882
2883 return cplus_typeid (result);
2884 }
2885
2886 default:
2887 /* Removing this case and compiling with gcc -Wall reveals that
2888 a lot of cases are hitting this case. Some of these should
2889 probably be removed from expression.h; others are legitimate
2890 expressions which are (apparently) not fully implemented.
2891
2892 If there are any cases landing here which mean a user error,
2893 then they should be separate cases, with more descriptive
2894 error messages. */
2895
2896 error (_("GDB does not (yet) know how to "
2897 "evaluate that kind of expression"));
2898 }
2899
2900 gdb_assert_not_reached ("missed return?");
2901 }
2902 \f
2903 /* Evaluate a subexpression of EXP, at index *POS,
2904 and return the address of that subexpression.
2905 Advance *POS over the subexpression.
2906 If the subexpression isn't an lvalue, get an error.
2907 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2908 then only the type of the result need be correct. */
2909
2910 static struct value *
2911 evaluate_subexp_for_address (struct expression *exp, int *pos,
2912 enum noside noside)
2913 {
2914 enum exp_opcode op;
2915 int pc;
2916 struct symbol *var;
2917 struct value *x;
2918 int tem;
2919
2920 pc = (*pos);
2921 op = exp->elts[pc].opcode;
2922
2923 switch (op)
2924 {
2925 case UNOP_IND:
2926 (*pos)++;
2927 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2928
2929 /* We can't optimize out "&*" if there's a user-defined operator*. */
2930 if (unop_user_defined_p (op, x))
2931 {
2932 x = value_x_unop (x, op, noside);
2933 goto default_case_after_eval;
2934 }
2935
2936 return coerce_array (x);
2937
2938 case UNOP_MEMVAL:
2939 (*pos) += 3;
2940 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2941 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2942
2943 case UNOP_MEMVAL_TYPE:
2944 {
2945 struct type *type;
2946
2947 (*pos) += 1;
2948 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2949 type = value_type (x);
2950 return value_cast (lookup_pointer_type (type),
2951 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2952 }
2953
2954 case OP_VAR_VALUE:
2955 var = exp->elts[pc + 2].symbol;
2956
2957 /* C++: The "address" of a reference should yield the address
2958 * of the object pointed to. Let value_addr() deal with it. */
2959 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
2960 goto default_case;
2961
2962 (*pos) += 4;
2963 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2964 {
2965 struct type *type =
2966 lookup_pointer_type (SYMBOL_TYPE (var));
2967 enum address_class sym_class = SYMBOL_CLASS (var);
2968
2969 if (sym_class == LOC_CONST
2970 || sym_class == LOC_CONST_BYTES
2971 || sym_class == LOC_REGISTER)
2972 error (_("Attempt to take address of register or constant."));
2973
2974 return
2975 value_zero (type, not_lval);
2976 }
2977 else
2978 return address_of_variable (var, exp->elts[pc + 1].block);
2979
2980 case OP_VAR_MSYM_VALUE:
2981 {
2982 (*pos) += 4;
2983
2984 value *val = evaluate_var_msym_value (noside,
2985 exp->elts[pc + 1].objfile,
2986 exp->elts[pc + 2].msymbol);
2987 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2988 {
2989 struct type *type = lookup_pointer_type (value_type (val));
2990 return value_zero (type, not_lval);
2991 }
2992 else
2993 return value_addr (val);
2994 }
2995
2996 case OP_SCOPE:
2997 tem = longest_to_int (exp->elts[pc + 2].longconst);
2998 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2999 x = value_aggregate_elt (exp->elts[pc + 1].type,
3000 &exp->elts[pc + 3].string,
3001 NULL, 1, noside);
3002 if (x == NULL)
3003 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3004 return x;
3005
3006 default:
3007 default_case:
3008 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
3009 default_case_after_eval:
3010 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3011 {
3012 struct type *type = check_typedef (value_type (x));
3013
3014 if (TYPE_IS_REFERENCE (type))
3015 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3016 not_lval);
3017 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3018 return value_zero (lookup_pointer_type (value_type (x)),
3019 not_lval);
3020 else
3021 error (_("Attempt to take address of "
3022 "value not located in memory."));
3023 }
3024 return value_addr (x);
3025 }
3026 }
3027
3028 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3029 When used in contexts where arrays will be coerced anyway, this is
3030 equivalent to `evaluate_subexp' but much faster because it avoids
3031 actually fetching array contents (perhaps obsolete now that we have
3032 value_lazy()).
3033
3034 Note that we currently only do the coercion for C expressions, where
3035 arrays are zero based and the coercion is correct. For other languages,
3036 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3037 to decide if coercion is appropriate. */
3038
3039 struct value *
3040 evaluate_subexp_with_coercion (struct expression *exp,
3041 int *pos, enum noside noside)
3042 {
3043 enum exp_opcode op;
3044 int pc;
3045 struct value *val;
3046 struct symbol *var;
3047 struct type *type;
3048
3049 pc = (*pos);
3050 op = exp->elts[pc].opcode;
3051
3052 switch (op)
3053 {
3054 case OP_VAR_VALUE:
3055 var = exp->elts[pc + 2].symbol;
3056 type = check_typedef (SYMBOL_TYPE (var));
3057 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3058 && !TYPE_VECTOR (type)
3059 && CAST_IS_CONVERSION (exp->language_defn))
3060 {
3061 (*pos) += 4;
3062 val = address_of_variable (var, exp->elts[pc + 1].block);
3063 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3064 val);
3065 }
3066 /* FALLTHROUGH */
3067
3068 default:
3069 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3070 }
3071 }
3072
3073 /* Evaluate a subexpression of EXP, at index *POS,
3074 and return a value for the size of that subexpression.
3075 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3076 we allow side-effects on the operand if its type is a variable
3077 length array. */
3078
3079 static struct value *
3080 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3081 enum noside noside)
3082 {
3083 /* FIXME: This should be size_t. */
3084 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3085 enum exp_opcode op;
3086 int pc;
3087 struct type *type;
3088 struct value *val;
3089
3090 pc = (*pos);
3091 op = exp->elts[pc].opcode;
3092
3093 switch (op)
3094 {
3095 /* This case is handled specially
3096 so that we avoid creating a value for the result type.
3097 If the result type is very big, it's desirable not to
3098 create a value unnecessarily. */
3099 case UNOP_IND:
3100 (*pos)++;
3101 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3102 type = check_typedef (value_type (val));
3103 if (TYPE_CODE (type) != TYPE_CODE_PTR
3104 && !TYPE_IS_REFERENCE (type)
3105 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3106 error (_("Attempt to take contents of a non-pointer value."));
3107 type = TYPE_TARGET_TYPE (type);
3108 if (is_dynamic_type (type))
3109 type = value_type (value_ind (val));
3110 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3111
3112 case UNOP_MEMVAL:
3113 (*pos) += 3;
3114 type = exp->elts[pc + 1].type;
3115 break;
3116
3117 case UNOP_MEMVAL_TYPE:
3118 (*pos) += 1;
3119 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3120 type = value_type (val);
3121 break;
3122
3123 case OP_VAR_VALUE:
3124 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3125 if (is_dynamic_type (type))
3126 {
3127 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3128 type = value_type (val);
3129 }
3130 else
3131 (*pos) += 4;
3132 break;
3133
3134 case OP_VAR_MSYM_VALUE:
3135 {
3136 (*pos) += 4;
3137
3138 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3139 value *val = evaluate_var_msym_value (noside,
3140 exp->elts[pc + 1].objfile,
3141 msymbol);
3142
3143 type = value_type (val);
3144 if (TYPE_CODE (type) == TYPE_CODE_ERROR)
3145 error_unknown_type (MSYMBOL_PRINT_NAME (msymbol));
3146
3147 return value_from_longest (size_type, TYPE_LENGTH (type));
3148 }
3149 break;
3150
3151 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3152 type of the subscript is a variable length array type. In this case we
3153 must re-evaluate the right hand side of the subcription to allow
3154 side-effects. */
3155 case BINOP_SUBSCRIPT:
3156 if (noside == EVAL_NORMAL)
3157 {
3158 int pc = (*pos) + 1;
3159
3160 val = evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
3161 type = check_typedef (value_type (val));
3162 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3163 {
3164 type = check_typedef (TYPE_TARGET_TYPE (type));
3165 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3166 {
3167 type = TYPE_INDEX_TYPE (type);
3168 /* Only re-evaluate the right hand side if the resulting type
3169 is a variable length type. */
3170 if (TYPE_RANGE_DATA (type)->flag_bound_evaluated)
3171 {
3172 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3173 return value_from_longest
3174 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3175 }
3176 }
3177 }
3178 }
3179
3180 /* Fall through. */
3181
3182 default:
3183 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3184 type = value_type (val);
3185 break;
3186 }
3187
3188 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3189 "When applied to a reference or a reference type, the result is
3190 the size of the referenced type." */
3191 type = check_typedef (type);
3192 if (exp->language_defn->la_language == language_cplus
3193 && (TYPE_IS_REFERENCE (type)))
3194 type = check_typedef (TYPE_TARGET_TYPE (type));
3195 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3196 }
3197
3198 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3199 for that subexpression cast to TO_TYPE. Advance *POS over the
3200 subexpression. */
3201
3202 static value *
3203 evaluate_subexp_for_cast (expression *exp, int *pos,
3204 enum noside noside,
3205 struct type *to_type)
3206 {
3207 int pc = *pos;
3208
3209 /* Don't let symbols be evaluated with evaluate_subexp because that
3210 throws an "unknown type" error for no-debug data symbols.
3211 Instead, we want the cast to reinterpret the symbol. */
3212 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3213 || exp->elts[pc].opcode == OP_VAR_VALUE)
3214 {
3215 (*pos) += 4;
3216
3217 value *val;
3218 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3219 {
3220 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3221 return value_zero (to_type, not_lval);
3222
3223 val = evaluate_var_msym_value (noside,
3224 exp->elts[pc + 1].objfile,
3225 exp->elts[pc + 2].msymbol);
3226 }
3227 else
3228 val = evaluate_var_value (noside,
3229 exp->elts[pc + 1].block,
3230 exp->elts[pc + 2].symbol);
3231
3232 if (noside == EVAL_SKIP)
3233 return eval_skip_value (exp);
3234
3235 val = value_cast (to_type, val);
3236
3237 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3238 if (VALUE_LVAL (val) == lval_memory)
3239 {
3240 if (value_lazy (val))
3241 value_fetch_lazy (val);
3242 VALUE_LVAL (val) = not_lval;
3243 }
3244 return val;
3245 }
3246
3247 value *val = evaluate_subexp (to_type, exp, pos, noside);
3248 if (noside == EVAL_SKIP)
3249 return eval_skip_value (exp);
3250 return value_cast (to_type, val);
3251 }
3252
3253 /* Parse a type expression in the string [P..P+LENGTH). */
3254
3255 struct type *
3256 parse_and_eval_type (char *p, int length)
3257 {
3258 char *tmp = (char *) alloca (length + 4);
3259
3260 tmp[0] = '(';
3261 memcpy (tmp + 1, p, length);
3262 tmp[length + 1] = ')';
3263 tmp[length + 2] = '0';
3264 tmp[length + 3] = '\0';
3265 expression_up expr = parse_expression (tmp);
3266 if (expr->elts[0].opcode != UNOP_CAST)
3267 error (_("Internal error in eval_type."));
3268 return expr->elts[1].type;
3269 }
3270
3271 int
3272 calc_f77_array_dims (struct type *array_type)
3273 {
3274 int ndimen = 1;
3275 struct type *tmp_type;
3276
3277 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3278 error (_("Can't get dimensions for a non-array type"));
3279
3280 tmp_type = array_type;
3281
3282 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3283 {
3284 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3285 ++ndimen;
3286 }
3287 return ndimen;
3288 }
This page took 0.10811 seconds and 4 git commands to generate.