cf3e8765d38b11d16ec930c4dce59c5c7dabb764
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42
43 #include "gdb_assert.h"
44
45 /* This is defined in valops.c */
46 extern int overload_resolution;
47
48 /* JYG: lookup rtti type of STRUCTOP_PTR when this is set to continue
49 on with successful lookup for member/method of the rtti type. */
50 extern int objectprint;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static struct value *evaluate_subexp (struct type *, struct expression *,
60 int *, enum noside);
61
62 static char *get_label (struct expression *, int *);
63
64 static struct value *evaluate_struct_tuple (struct value *,
65 struct expression *, int *,
66 enum noside, int);
67
68 static LONGEST init_array_element (struct value *, struct value *,
69 struct expression *, int *, enum noside,
70 LONGEST, LONGEST);
71
72 static struct value *
73 evaluate_subexp (struct type *expect_type, struct expression *exp,
74 int *pos, enum noside noside)
75 {
76 return (*exp->language_defn->la_exp_desc->evaluate_exp)
77 (expect_type, exp, pos, noside);
78 }
79 \f
80 /* Parse the string EXP as a C expression, evaluate it,
81 and return the result as a number. */
82
83 CORE_ADDR
84 parse_and_eval_address (char *exp)
85 {
86 struct expression *expr = parse_expression (exp);
87 CORE_ADDR addr;
88 struct cleanup *old_chain =
89 make_cleanup (free_current_contents, &expr);
90
91 addr = value_as_address (evaluate_expression (expr));
92 do_cleanups (old_chain);
93 return addr;
94 }
95
96 /* Like parse_and_eval_address but takes a pointer to a char * variable
97 and advanced that variable across the characters parsed. */
98
99 CORE_ADDR
100 parse_and_eval_address_1 (char **expptr)
101 {
102 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
103 CORE_ADDR addr;
104 struct cleanup *old_chain =
105 make_cleanup (free_current_contents, &expr);
106
107 addr = value_as_address (evaluate_expression (expr));
108 do_cleanups (old_chain);
109 return addr;
110 }
111
112 /* Like parse_and_eval_address, but treats the value of the expression
113 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
114 LONGEST
115 parse_and_eval_long (char *exp)
116 {
117 struct expression *expr = parse_expression (exp);
118 LONGEST retval;
119 struct cleanup *old_chain =
120 make_cleanup (free_current_contents, &expr);
121
122 retval = value_as_long (evaluate_expression (expr));
123 do_cleanups (old_chain);
124 return (retval);
125 }
126
127 struct value *
128 parse_and_eval (char *exp)
129 {
130 struct expression *expr = parse_expression (exp);
131 struct value *val;
132 struct cleanup *old_chain =
133 make_cleanup (free_current_contents, &expr);
134
135 val = evaluate_expression (expr);
136 do_cleanups (old_chain);
137 return val;
138 }
139
140 /* Parse up to a comma (or to a closeparen)
141 in the string EXPP as an expression, evaluate it, and return the value.
142 EXPP is advanced to point to the comma. */
143
144 struct value *
145 parse_to_comma_and_eval (char **expp)
146 {
147 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
148 struct value *val;
149 struct cleanup *old_chain =
150 make_cleanup (free_current_contents, &expr);
151
152 val = evaluate_expression (expr);
153 do_cleanups (old_chain);
154 return val;
155 }
156 \f
157 /* Evaluate an expression in internal prefix form
158 such as is constructed by parse.y.
159
160 See expression.h for info on the format of an expression. */
161
162 struct value *
163 evaluate_expression (struct expression *exp)
164 {
165 int pc = 0;
166 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
167 }
168
169 /* Evaluate an expression, avoiding all memory references
170 and getting a value whose type alone is correct. */
171
172 struct value *
173 evaluate_type (struct expression *exp)
174 {
175 int pc = 0;
176 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
177 }
178
179 /* Evaluate a subexpression, avoiding all memory references and
180 getting a value whose type alone is correct. */
181
182 struct value *
183 evaluate_subexpression_type (struct expression *exp, int subexp)
184 {
185 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
186 }
187
188 /* Extract a field operation from an expression. If the subexpression
189 of EXP starting at *SUBEXP is not a structure dereference
190 operation, return NULL. Otherwise, return the name of the
191 dereferenced field, and advance *SUBEXP to point to the
192 subexpression of the left-hand-side of the dereference. This is
193 used when completing field names. */
194
195 char *
196 extract_field_op (struct expression *exp, int *subexp)
197 {
198 int tem;
199 char *result;
200 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
201 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
202 return NULL;
203 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
204 result = &exp->elts[*subexp + 2].string;
205 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
206 return result;
207 }
208
209 /* If the next expression is an OP_LABELED, skips past it,
210 returning the label. Otherwise, does nothing and returns NULL. */
211
212 static char *
213 get_label (struct expression *exp, int *pos)
214 {
215 if (exp->elts[*pos].opcode == OP_LABELED)
216 {
217 int pc = (*pos)++;
218 char *name = &exp->elts[pc + 2].string;
219 int tem = longest_to_int (exp->elts[pc + 1].longconst);
220 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
221 return name;
222 }
223 else
224 return NULL;
225 }
226
227 /* This function evaluates tuples (in (the deleted) Chill) or
228 brace-initializers (in C/C++) for structure types. */
229
230 static struct value *
231 evaluate_struct_tuple (struct value *struct_val,
232 struct expression *exp,
233 int *pos, enum noside noside, int nargs)
234 {
235 struct type *struct_type = check_typedef (value_type (struct_val));
236 struct type *substruct_type = struct_type;
237 struct type *field_type;
238 int fieldno = -1;
239 int variantno = -1;
240 int subfieldno = -1;
241 while (--nargs >= 0)
242 {
243 int pc = *pos;
244 struct value *val = NULL;
245 int nlabels = 0;
246 int bitpos, bitsize;
247 bfd_byte *addr;
248
249 /* Skip past the labels, and count them. */
250 while (get_label (exp, pos) != NULL)
251 nlabels++;
252
253 do
254 {
255 char *label = get_label (exp, &pc);
256 if (label)
257 {
258 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
259 fieldno++)
260 {
261 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
262 if (field_name != NULL && strcmp (field_name, label) == 0)
263 {
264 variantno = -1;
265 subfieldno = fieldno;
266 substruct_type = struct_type;
267 goto found;
268 }
269 }
270 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
271 fieldno++)
272 {
273 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
274 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
275 if ((field_name == 0 || *field_name == '\0')
276 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
277 {
278 variantno = 0;
279 for (; variantno < TYPE_NFIELDS (field_type);
280 variantno++)
281 {
282 substruct_type
283 = TYPE_FIELD_TYPE (field_type, variantno);
284 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
285 {
286 for (subfieldno = 0;
287 subfieldno < TYPE_NFIELDS (substruct_type);
288 subfieldno++)
289 {
290 if (strcmp(TYPE_FIELD_NAME (substruct_type,
291 subfieldno),
292 label) == 0)
293 {
294 goto found;
295 }
296 }
297 }
298 }
299 }
300 }
301 error (_("there is no field named %s"), label);
302 found:
303 ;
304 }
305 else
306 {
307 /* Unlabelled tuple element - go to next field. */
308 if (variantno >= 0)
309 {
310 subfieldno++;
311 if (subfieldno >= TYPE_NFIELDS (substruct_type))
312 {
313 variantno = -1;
314 substruct_type = struct_type;
315 }
316 }
317 if (variantno < 0)
318 {
319 fieldno++;
320 /* Skip static fields. */
321 while (fieldno < TYPE_NFIELDS (struct_type)
322 && field_is_static (&TYPE_FIELD (struct_type,
323 fieldno)))
324 fieldno++;
325 subfieldno = fieldno;
326 if (fieldno >= TYPE_NFIELDS (struct_type))
327 error (_("too many initializers"));
328 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
329 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
330 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
331 error (_("don't know which variant you want to set"));
332 }
333 }
334
335 /* Here, struct_type is the type of the inner struct,
336 while substruct_type is the type of the inner struct.
337 These are the same for normal structures, but a variant struct
338 contains anonymous union fields that contain substruct fields.
339 The value fieldno is the index of the top-level (normal or
340 anonymous union) field in struct_field, while the value
341 subfieldno is the index of the actual real (named inner) field
342 in substruct_type. */
343
344 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
345 if (val == 0)
346 val = evaluate_subexp (field_type, exp, pos, noside);
347
348 /* Now actually set the field in struct_val. */
349
350 /* Assign val to field fieldno. */
351 if (value_type (val) != field_type)
352 val = value_cast (field_type, val);
353
354 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
355 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
356 if (variantno >= 0)
357 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
358 addr = value_contents_writeable (struct_val) + bitpos / 8;
359 if (bitsize)
360 modify_field (addr, value_as_long (val),
361 bitpos % 8, bitsize);
362 else
363 memcpy (addr, value_contents (val),
364 TYPE_LENGTH (value_type (val)));
365 }
366 while (--nlabels > 0);
367 }
368 return struct_val;
369 }
370
371 /* Recursive helper function for setting elements of array tuples for
372 (the deleted) Chill. The target is ARRAY (which has bounds
373 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
374 and NOSIDE are as usual. Evaluates index expresions and sets the
375 specified element(s) of ARRAY to ELEMENT. Returns last index
376 value. */
377
378 static LONGEST
379 init_array_element (struct value *array, struct value *element,
380 struct expression *exp, int *pos,
381 enum noside noside, LONGEST low_bound, LONGEST high_bound)
382 {
383 LONGEST index;
384 int element_size = TYPE_LENGTH (value_type (element));
385 if (exp->elts[*pos].opcode == BINOP_COMMA)
386 {
387 (*pos)++;
388 init_array_element (array, element, exp, pos, noside,
389 low_bound, high_bound);
390 return init_array_element (array, element,
391 exp, pos, noside, low_bound, high_bound);
392 }
393 else if (exp->elts[*pos].opcode == BINOP_RANGE)
394 {
395 LONGEST low, high;
396 (*pos)++;
397 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
398 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
399 if (low < low_bound || high > high_bound)
400 error (_("tuple range index out of range"));
401 for (index = low; index <= high; index++)
402 {
403 memcpy (value_contents_raw (array)
404 + (index - low_bound) * element_size,
405 value_contents (element), element_size);
406 }
407 }
408 else
409 {
410 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
411 if (index < low_bound || index > high_bound)
412 error (_("tuple index out of range"));
413 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
414 value_contents (element), element_size);
415 }
416 return index;
417 }
418
419 struct value *
420 value_f90_subarray (struct value *array,
421 struct expression *exp, int *pos, enum noside noside)
422 {
423 int pc = (*pos) + 1;
424 LONGEST low_bound, high_bound;
425 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
426 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
427
428 *pos += 3;
429
430 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
431 low_bound = TYPE_LOW_BOUND (range);
432 else
433 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
434
435 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
436 high_bound = TYPE_HIGH_BOUND (range);
437 else
438 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
439
440 return value_slice (array, low_bound, high_bound - low_bound + 1);
441 }
442
443
444 /* Promote value ARG1 as appropriate before performing a unary operation
445 on this argument.
446 If the result is not appropriate for any particular language then it
447 needs to patch this function. */
448
449 void
450 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
451 struct value **arg1)
452 {
453 struct type *type1;
454
455 *arg1 = coerce_ref (*arg1);
456 type1 = check_typedef (value_type (*arg1));
457
458 if (is_integral_type (type1))
459 {
460 switch (language->la_language)
461 {
462 default:
463 /* Perform integral promotion for ANSI C/C++.
464 If not appropropriate for any particular language
465 it needs to modify this function. */
466 {
467 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
468 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
469 *arg1 = value_cast (builtin_int, *arg1);
470 }
471 break;
472 }
473 }
474 }
475
476 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
477 operation on those two operands.
478 If the result is not appropriate for any particular language then it
479 needs to patch this function. */
480
481 void
482 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
483 struct value **arg1, struct value **arg2)
484 {
485 struct type *promoted_type = NULL;
486 struct type *type1;
487 struct type *type2;
488
489 *arg1 = coerce_ref (*arg1);
490 *arg2 = coerce_ref (*arg2);
491
492 type1 = check_typedef (value_type (*arg1));
493 type2 = check_typedef (value_type (*arg2));
494
495 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
496 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
497 && !is_integral_type (type1))
498 || (TYPE_CODE (type2) != TYPE_CODE_FLT
499 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
500 && !is_integral_type (type2)))
501 return;
502
503 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
504 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
505 {
506 /* No promotion required. */
507 }
508 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
509 || TYPE_CODE (type2) == TYPE_CODE_FLT)
510 {
511 switch (language->la_language)
512 {
513 case language_c:
514 case language_cplus:
515 case language_asm:
516 case language_objc:
517 /* No promotion required. */
518 break;
519
520 default:
521 /* For other languages the result type is unchanged from gdb
522 version 6.7 for backward compatibility.
523 If either arg was long double, make sure that value is also long
524 double. Otherwise use double. */
525 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
526 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
527 promoted_type = builtin_type (gdbarch)->builtin_long_double;
528 else
529 promoted_type = builtin_type (gdbarch)->builtin_double;
530 break;
531 }
532 }
533 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
534 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
535 {
536 /* No promotion required. */
537 }
538 else
539 /* Integral operations here. */
540 /* FIXME: Also mixed integral/booleans, with result an integer. */
541 {
542 const struct builtin_type *builtin = builtin_type (gdbarch);
543 unsigned int promoted_len1 = TYPE_LENGTH (type1);
544 unsigned int promoted_len2 = TYPE_LENGTH (type2);
545 int is_unsigned1 = TYPE_UNSIGNED (type1);
546 int is_unsigned2 = TYPE_UNSIGNED (type2);
547 unsigned int result_len;
548 int unsigned_operation;
549
550 /* Determine type length and signedness after promotion for
551 both operands. */
552 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
553 {
554 is_unsigned1 = 0;
555 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
556 }
557 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
558 {
559 is_unsigned2 = 0;
560 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
561 }
562
563 if (promoted_len1 > promoted_len2)
564 {
565 unsigned_operation = is_unsigned1;
566 result_len = promoted_len1;
567 }
568 else if (promoted_len2 > promoted_len1)
569 {
570 unsigned_operation = is_unsigned2;
571 result_len = promoted_len2;
572 }
573 else
574 {
575 unsigned_operation = is_unsigned1 || is_unsigned2;
576 result_len = promoted_len1;
577 }
578
579 switch (language->la_language)
580 {
581 case language_c:
582 case language_cplus:
583 case language_asm:
584 case language_objc:
585 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
586 {
587 promoted_type = (unsigned_operation
588 ? builtin->builtin_unsigned_int
589 : builtin->builtin_int);
590 }
591 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
592 {
593 promoted_type = (unsigned_operation
594 ? builtin->builtin_unsigned_long
595 : builtin->builtin_long);
596 }
597 else
598 {
599 promoted_type = (unsigned_operation
600 ? builtin->builtin_unsigned_long_long
601 : builtin->builtin_long_long);
602 }
603 break;
604
605 default:
606 /* For other languages the result type is unchanged from gdb
607 version 6.7 for backward compatibility.
608 If either arg was long long, make sure that value is also long
609 long. Otherwise use long. */
610 if (unsigned_operation)
611 {
612 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
613 promoted_type = builtin->builtin_unsigned_long_long;
614 else
615 promoted_type = builtin->builtin_unsigned_long;
616 }
617 else
618 {
619 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
620 promoted_type = builtin->builtin_long_long;
621 else
622 promoted_type = builtin->builtin_long;
623 }
624 break;
625 }
626 }
627
628 if (promoted_type)
629 {
630 /* Promote both operands to common type. */
631 *arg1 = value_cast (promoted_type, *arg1);
632 *arg2 = value_cast (promoted_type, *arg2);
633 }
634 }
635
636 static int
637 ptrmath_type_p (struct type *type)
638 {
639 type = check_typedef (type);
640 if (TYPE_CODE (type) == TYPE_CODE_REF)
641 type = TYPE_TARGET_TYPE (type);
642
643 switch (TYPE_CODE (type))
644 {
645 case TYPE_CODE_PTR:
646 case TYPE_CODE_FUNC:
647 return 1;
648
649 case TYPE_CODE_ARRAY:
650 return current_language->c_style_arrays;
651
652 default:
653 return 0;
654 }
655 }
656
657 struct value *
658 evaluate_subexp_standard (struct type *expect_type,
659 struct expression *exp, int *pos,
660 enum noside noside)
661 {
662 enum exp_opcode op;
663 int tem, tem2, tem3;
664 int pc, pc2 = 0, oldpos;
665 struct value *arg1 = NULL;
666 struct value *arg2 = NULL;
667 struct value *arg3;
668 struct type *type;
669 int nargs;
670 struct value **argvec;
671 int upper, lower, retcode;
672 int code;
673 int ix;
674 long mem_offset;
675 struct type **arg_types;
676 int save_pos1;
677
678 pc = (*pos)++;
679 op = exp->elts[pc].opcode;
680
681 switch (op)
682 {
683 case OP_SCOPE:
684 tem = longest_to_int (exp->elts[pc + 2].longconst);
685 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
686 if (noside == EVAL_SKIP)
687 goto nosideret;
688 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
689 &exp->elts[pc + 3].string,
690 0, noside);
691 if (arg1 == NULL)
692 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
693 return arg1;
694
695 case OP_LONG:
696 (*pos) += 3;
697 return value_from_longest (exp->elts[pc + 1].type,
698 exp->elts[pc + 2].longconst);
699
700 case OP_DOUBLE:
701 (*pos) += 3;
702 return value_from_double (exp->elts[pc + 1].type,
703 exp->elts[pc + 2].doubleconst);
704
705 case OP_DECFLOAT:
706 (*pos) += 3;
707 return value_from_decfloat (exp->elts[pc + 1].type,
708 exp->elts[pc + 2].decfloatconst);
709
710 case OP_VAR_VALUE:
711 (*pos) += 3;
712 if (noside == EVAL_SKIP)
713 goto nosideret;
714
715 /* JYG: We used to just return value_zero of the symbol type
716 if we're asked to avoid side effects. Otherwise we return
717 value_of_variable (...). However I'm not sure if
718 value_of_variable () has any side effect.
719 We need a full value object returned here for whatis_exp ()
720 to call evaluate_type () and then pass the full value to
721 value_rtti_target_type () if we are dealing with a pointer
722 or reference to a base class and print object is on. */
723
724 {
725 volatile struct gdb_exception except;
726 struct value *ret = NULL;
727
728 TRY_CATCH (except, RETURN_MASK_ERROR)
729 {
730 ret = value_of_variable (exp->elts[pc + 2].symbol,
731 exp->elts[pc + 1].block);
732 }
733
734 if (except.reason < 0)
735 {
736 if (noside == EVAL_AVOID_SIDE_EFFECTS)
737 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
738 else
739 throw_exception (except);
740 }
741
742 return ret;
743 }
744
745 case OP_LAST:
746 (*pos) += 2;
747 return
748 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
749
750 case OP_REGISTER:
751 {
752 const char *name = &exp->elts[pc + 2].string;
753 int regno;
754 struct value *val;
755
756 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
757 regno = user_reg_map_name_to_regnum (current_gdbarch,
758 name, strlen (name));
759 if (regno == -1)
760 error (_("Register $%s not available."), name);
761
762 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
763 a value with the appropriate register type. Unfortunately,
764 we don't have easy access to the type of user registers.
765 So for these registers, we fetch the register value regardless
766 of the evaluation mode. */
767 if (noside == EVAL_AVOID_SIDE_EFFECTS
768 && regno < gdbarch_num_regs (current_gdbarch)
769 + gdbarch_num_pseudo_regs (current_gdbarch))
770 val = value_zero (register_type (current_gdbarch, regno), not_lval);
771 else
772 val = value_of_register (regno, get_selected_frame (NULL));
773 if (val == NULL)
774 error (_("Value of register %s not available."), name);
775 else
776 return val;
777 }
778 case OP_BOOL:
779 (*pos) += 2;
780 type = language_bool_type (exp->language_defn, exp->gdbarch);
781 return value_from_longest (type, exp->elts[pc + 1].longconst);
782
783 case OP_INTERNALVAR:
784 (*pos) += 2;
785 return value_of_internalvar (exp->elts[pc + 1].internalvar);
786
787 case OP_STRING:
788 tem = longest_to_int (exp->elts[pc + 1].longconst);
789 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
790 if (noside == EVAL_SKIP)
791 goto nosideret;
792 return value_string (&exp->elts[pc + 2].string, tem);
793
794 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
795 tem = longest_to_int (exp->elts[pc + 1].longconst);
796 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
797 if (noside == EVAL_SKIP)
798 {
799 goto nosideret;
800 }
801 return (struct value *) value_nsstring (&exp->elts[pc + 2].string, tem + 1);
802
803 case OP_BITSTRING:
804 tem = longest_to_int (exp->elts[pc + 1].longconst);
805 (*pos)
806 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
807 if (noside == EVAL_SKIP)
808 goto nosideret;
809 return value_bitstring (&exp->elts[pc + 2].string, tem);
810 break;
811
812 case OP_ARRAY:
813 (*pos) += 3;
814 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
815 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
816 nargs = tem3 - tem2 + 1;
817 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
818
819 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
820 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
821 {
822 struct value *rec = allocate_value (expect_type);
823 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
824 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
825 }
826
827 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
828 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
829 {
830 struct type *range_type = TYPE_FIELD_TYPE (type, 0);
831 struct type *element_type = TYPE_TARGET_TYPE (type);
832 struct value *array = allocate_value (expect_type);
833 int element_size = TYPE_LENGTH (check_typedef (element_type));
834 LONGEST low_bound, high_bound, index;
835 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
836 {
837 low_bound = 0;
838 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
839 }
840 index = low_bound;
841 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
842 for (tem = nargs; --nargs >= 0;)
843 {
844 struct value *element;
845 int index_pc = 0;
846 if (exp->elts[*pos].opcode == BINOP_RANGE)
847 {
848 index_pc = ++(*pos);
849 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
850 }
851 element = evaluate_subexp (element_type, exp, pos, noside);
852 if (value_type (element) != element_type)
853 element = value_cast (element_type, element);
854 if (index_pc)
855 {
856 int continue_pc = *pos;
857 *pos = index_pc;
858 index = init_array_element (array, element, exp, pos, noside,
859 low_bound, high_bound);
860 *pos = continue_pc;
861 }
862 else
863 {
864 if (index > high_bound)
865 /* to avoid memory corruption */
866 error (_("Too many array elements"));
867 memcpy (value_contents_raw (array)
868 + (index - low_bound) * element_size,
869 value_contents (element),
870 element_size);
871 }
872 index++;
873 }
874 return array;
875 }
876
877 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
878 && TYPE_CODE (type) == TYPE_CODE_SET)
879 {
880 struct value *set = allocate_value (expect_type);
881 gdb_byte *valaddr = value_contents_raw (set);
882 struct type *element_type = TYPE_INDEX_TYPE (type);
883 struct type *check_type = element_type;
884 LONGEST low_bound, high_bound;
885
886 /* get targettype of elementtype */
887 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE ||
888 TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
889 check_type = TYPE_TARGET_TYPE (check_type);
890
891 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
892 error (_("(power)set type with unknown size"));
893 memset (valaddr, '\0', TYPE_LENGTH (type));
894 for (tem = 0; tem < nargs; tem++)
895 {
896 LONGEST range_low, range_high;
897 struct type *range_low_type, *range_high_type;
898 struct value *elem_val;
899 if (exp->elts[*pos].opcode == BINOP_RANGE)
900 {
901 (*pos)++;
902 elem_val = evaluate_subexp (element_type, exp, pos, noside);
903 range_low_type = value_type (elem_val);
904 range_low = value_as_long (elem_val);
905 elem_val = evaluate_subexp (element_type, exp, pos, noside);
906 range_high_type = value_type (elem_val);
907 range_high = value_as_long (elem_val);
908 }
909 else
910 {
911 elem_val = evaluate_subexp (element_type, exp, pos, noside);
912 range_low_type = range_high_type = value_type (elem_val);
913 range_low = range_high = value_as_long (elem_val);
914 }
915 /* check types of elements to avoid mixture of elements from
916 different types. Also check if type of element is "compatible"
917 with element type of powerset */
918 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
919 range_low_type = TYPE_TARGET_TYPE (range_low_type);
920 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
921 range_high_type = TYPE_TARGET_TYPE (range_high_type);
922 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) ||
923 (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM &&
924 (range_low_type != range_high_type)))
925 /* different element modes */
926 error (_("POWERSET tuple elements of different mode"));
927 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) ||
928 (TYPE_CODE (check_type) == TYPE_CODE_ENUM &&
929 range_low_type != check_type))
930 error (_("incompatible POWERSET tuple elements"));
931 if (range_low > range_high)
932 {
933 warning (_("empty POWERSET tuple range"));
934 continue;
935 }
936 if (range_low < low_bound || range_high > high_bound)
937 error (_("POWERSET tuple element out of range"));
938 range_low -= low_bound;
939 range_high -= low_bound;
940 for (; range_low <= range_high; range_low++)
941 {
942 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
943 if (gdbarch_bits_big_endian (current_gdbarch))
944 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
945 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
946 |= 1 << bit_index;
947 }
948 }
949 return set;
950 }
951
952 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
953 for (tem = 0; tem < nargs; tem++)
954 {
955 /* Ensure that array expressions are coerced into pointer objects. */
956 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
957 }
958 if (noside == EVAL_SKIP)
959 goto nosideret;
960 return value_array (tem2, tem3, argvec);
961
962 case TERNOP_SLICE:
963 {
964 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
965 int lowbound
966 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
967 int upper
968 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
969 if (noside == EVAL_SKIP)
970 goto nosideret;
971 return value_slice (array, lowbound, upper - lowbound + 1);
972 }
973
974 case TERNOP_SLICE_COUNT:
975 {
976 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
977 int lowbound
978 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
979 int length
980 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
981 return value_slice (array, lowbound, length);
982 }
983
984 case TERNOP_COND:
985 /* Skip third and second args to evaluate the first one. */
986 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
987 if (value_logical_not (arg1))
988 {
989 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
990 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
991 }
992 else
993 {
994 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
995 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
996 return arg2;
997 }
998
999 case OP_OBJC_SELECTOR:
1000 { /* Objective C @selector operator. */
1001 char *sel = &exp->elts[pc + 2].string;
1002 int len = longest_to_int (exp->elts[pc + 1].longconst);
1003 struct type *selector_type;
1004
1005 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1006 if (noside == EVAL_SKIP)
1007 goto nosideret;
1008
1009 if (sel[len] != 0)
1010 sel[len] = 0; /* Make sure it's terminated. */
1011
1012 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1013 return value_from_longest (selector_type, lookup_child_selector (sel));
1014 }
1015
1016 case OP_OBJC_MSGCALL:
1017 { /* Objective C message (method) call. */
1018
1019 static CORE_ADDR responds_selector = 0;
1020 static CORE_ADDR method_selector = 0;
1021
1022 CORE_ADDR selector = 0;
1023
1024 int struct_return = 0;
1025 int sub_no_side = 0;
1026
1027 static struct value *msg_send = NULL;
1028 static struct value *msg_send_stret = NULL;
1029 static int gnu_runtime = 0;
1030
1031 struct value *target = NULL;
1032 struct value *method = NULL;
1033 struct value *called_method = NULL;
1034
1035 struct type *selector_type = NULL;
1036 struct type *long_type;
1037
1038 struct value *ret = NULL;
1039 CORE_ADDR addr = 0;
1040
1041 selector = exp->elts[pc + 1].longconst;
1042 nargs = exp->elts[pc + 2].longconst;
1043 argvec = (struct value **) alloca (sizeof (struct value *)
1044 * (nargs + 5));
1045
1046 (*pos) += 3;
1047
1048 long_type = builtin_type (exp->gdbarch)->builtin_long;
1049 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1050
1051 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1052 sub_no_side = EVAL_NORMAL;
1053 else
1054 sub_no_side = noside;
1055
1056 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1057
1058 if (value_as_long (target) == 0)
1059 return value_from_longest (long_type, 0);
1060
1061 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1062 gnu_runtime = 1;
1063
1064 /* Find the method dispatch (Apple runtime) or method lookup
1065 (GNU runtime) function for Objective-C. These will be used
1066 to lookup the symbol information for the method. If we
1067 can't find any symbol information, then we'll use these to
1068 call the method, otherwise we can call the method
1069 directly. The msg_send_stret function is used in the special
1070 case of a method that returns a structure (Apple runtime
1071 only). */
1072 if (gnu_runtime)
1073 {
1074 struct type *type = selector_type;
1075 type = lookup_function_type (type);
1076 type = lookup_pointer_type (type);
1077 type = lookup_function_type (type);
1078 type = lookup_pointer_type (type);
1079
1080 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1081 msg_send_stret
1082 = find_function_in_inferior ("objc_msg_lookup", NULL);
1083
1084 msg_send = value_from_pointer (type, value_as_address (msg_send));
1085 msg_send_stret = value_from_pointer (type,
1086 value_as_address (msg_send_stret));
1087 }
1088 else
1089 {
1090 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1091 /* Special dispatcher for methods returning structs */
1092 msg_send_stret
1093 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1094 }
1095
1096 /* Verify the target object responds to this method. The
1097 standard top-level 'Object' class uses a different name for
1098 the verification method than the non-standard, but more
1099 often used, 'NSObject' class. Make sure we check for both. */
1100
1101 responds_selector = lookup_child_selector ("respondsToSelector:");
1102 if (responds_selector == 0)
1103 responds_selector = lookup_child_selector ("respondsTo:");
1104
1105 if (responds_selector == 0)
1106 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1107
1108 method_selector = lookup_child_selector ("methodForSelector:");
1109 if (method_selector == 0)
1110 method_selector = lookup_child_selector ("methodFor:");
1111
1112 if (method_selector == 0)
1113 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1114
1115 /* Call the verification method, to make sure that the target
1116 class implements the desired method. */
1117
1118 argvec[0] = msg_send;
1119 argvec[1] = target;
1120 argvec[2] = value_from_longest (long_type, responds_selector);
1121 argvec[3] = value_from_longest (long_type, selector);
1122 argvec[4] = 0;
1123
1124 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1125 if (gnu_runtime)
1126 {
1127 /* Function objc_msg_lookup returns a pointer. */
1128 argvec[0] = ret;
1129 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1130 }
1131 if (value_as_long (ret) == 0)
1132 error (_("Target does not respond to this message selector."));
1133
1134 /* Call "methodForSelector:" method, to get the address of a
1135 function method that implements this selector for this
1136 class. If we can find a symbol at that address, then we
1137 know the return type, parameter types etc. (that's a good
1138 thing). */
1139
1140 argvec[0] = msg_send;
1141 argvec[1] = target;
1142 argvec[2] = value_from_longest (long_type, method_selector);
1143 argvec[3] = value_from_longest (long_type, selector);
1144 argvec[4] = 0;
1145
1146 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1147 if (gnu_runtime)
1148 {
1149 argvec[0] = ret;
1150 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1151 }
1152
1153 /* ret should now be the selector. */
1154
1155 addr = value_as_long (ret);
1156 if (addr)
1157 {
1158 struct symbol *sym = NULL;
1159 /* Is it a high_level symbol? */
1160
1161 sym = find_pc_function (addr);
1162 if (sym != NULL)
1163 method = value_of_variable (sym, 0);
1164 }
1165
1166 /* If we found a method with symbol information, check to see
1167 if it returns a struct. Otherwise assume it doesn't. */
1168
1169 if (method)
1170 {
1171 struct block *b;
1172 CORE_ADDR funaddr;
1173 struct type *val_type;
1174
1175 funaddr = find_function_addr (method, &val_type);
1176
1177 b = block_for_pc (funaddr);
1178
1179 CHECK_TYPEDEF (val_type);
1180
1181 if ((val_type == NULL)
1182 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1183 {
1184 if (expect_type != NULL)
1185 val_type = expect_type;
1186 }
1187
1188 struct_return = using_struct_return (value_type (method), val_type);
1189 }
1190 else if (expect_type != NULL)
1191 {
1192 struct_return = using_struct_return (NULL,
1193 check_typedef (expect_type));
1194 }
1195
1196 /* Found a function symbol. Now we will substitute its
1197 value in place of the message dispatcher (obj_msgSend),
1198 so that we call the method directly instead of thru
1199 the dispatcher. The main reason for doing this is that
1200 we can now evaluate the return value and parameter values
1201 according to their known data types, in case we need to
1202 do things like promotion, dereferencing, special handling
1203 of structs and doubles, etc.
1204
1205 We want to use the type signature of 'method', but still
1206 jump to objc_msgSend() or objc_msgSend_stret() to better
1207 mimic the behavior of the runtime. */
1208
1209 if (method)
1210 {
1211 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1212 error (_("method address has symbol information with non-function type; skipping"));
1213 if (struct_return)
1214 VALUE_ADDRESS (method) = value_as_address (msg_send_stret);
1215 else
1216 VALUE_ADDRESS (method) = value_as_address (msg_send);
1217 called_method = method;
1218 }
1219 else
1220 {
1221 if (struct_return)
1222 called_method = msg_send_stret;
1223 else
1224 called_method = msg_send;
1225 }
1226
1227 if (noside == EVAL_SKIP)
1228 goto nosideret;
1229
1230 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1231 {
1232 /* If the return type doesn't look like a function type,
1233 call an error. This can happen if somebody tries to
1234 turn a variable into a function call. This is here
1235 because people often want to call, eg, strcmp, which
1236 gdb doesn't know is a function. If gdb isn't asked for
1237 it's opinion (ie. through "whatis"), it won't offer
1238 it. */
1239
1240 struct type *type = value_type (called_method);
1241 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1242 type = TYPE_TARGET_TYPE (type);
1243 type = TYPE_TARGET_TYPE (type);
1244
1245 if (type)
1246 {
1247 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1248 return allocate_value (expect_type);
1249 else
1250 return allocate_value (type);
1251 }
1252 else
1253 error (_("Expression of type other than \"method returning ...\" used as a method"));
1254 }
1255
1256 /* Now depending on whether we found a symbol for the method,
1257 we will either call the runtime dispatcher or the method
1258 directly. */
1259
1260 argvec[0] = called_method;
1261 argvec[1] = target;
1262 argvec[2] = value_from_longest (long_type, selector);
1263 /* User-supplied arguments. */
1264 for (tem = 0; tem < nargs; tem++)
1265 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1266 argvec[tem + 3] = 0;
1267
1268 if (gnu_runtime && (method != NULL))
1269 {
1270 /* Function objc_msg_lookup returns a pointer. */
1271 deprecated_set_value_type (argvec[0],
1272 lookup_function_type (lookup_pointer_type (value_type (argvec[0]))));
1273 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1274 }
1275
1276 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1277 return ret;
1278 }
1279 break;
1280
1281 case OP_FUNCALL:
1282 (*pos) += 2;
1283 op = exp->elts[*pos].opcode;
1284 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1285 /* Allocate arg vector, including space for the function to be
1286 called in argvec[0] and a terminating NULL */
1287 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1288 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1289 {
1290 nargs++;
1291 /* First, evaluate the structure into arg2 */
1292 pc2 = (*pos)++;
1293
1294 if (noside == EVAL_SKIP)
1295 goto nosideret;
1296
1297 if (op == STRUCTOP_MEMBER)
1298 {
1299 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1300 }
1301 else
1302 {
1303 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1304 }
1305
1306 /* If the function is a virtual function, then the
1307 aggregate value (providing the structure) plays
1308 its part by providing the vtable. Otherwise,
1309 it is just along for the ride: call the function
1310 directly. */
1311
1312 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1313
1314 if (TYPE_CODE (check_typedef (value_type (arg1)))
1315 != TYPE_CODE_METHODPTR)
1316 error (_("Non-pointer-to-member value used in pointer-to-member "
1317 "construct"));
1318
1319 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1320 {
1321 struct type *method_type = check_typedef (value_type (arg1));
1322 arg1 = value_zero (method_type, not_lval);
1323 }
1324 else
1325 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1326
1327 /* Now, say which argument to start evaluating from */
1328 tem = 2;
1329 }
1330 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1331 {
1332 /* Hair for method invocations */
1333 int tem2;
1334
1335 nargs++;
1336 /* First, evaluate the structure into arg2 */
1337 pc2 = (*pos)++;
1338 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1339 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1340 if (noside == EVAL_SKIP)
1341 goto nosideret;
1342
1343 if (op == STRUCTOP_STRUCT)
1344 {
1345 /* If v is a variable in a register, and the user types
1346 v.method (), this will produce an error, because v has
1347 no address.
1348
1349 A possible way around this would be to allocate a
1350 copy of the variable on the stack, copy in the
1351 contents, call the function, and copy out the
1352 contents. I.e. convert this from call by reference
1353 to call by copy-return (or whatever it's called).
1354 However, this does not work because it is not the
1355 same: the method being called could stash a copy of
1356 the address, and then future uses through that address
1357 (after the method returns) would be expected to
1358 use the variable itself, not some copy of it. */
1359 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1360 }
1361 else
1362 {
1363 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1364 }
1365 /* Now, say which argument to start evaluating from */
1366 tem = 2;
1367 }
1368 else
1369 {
1370 /* Non-method function call */
1371 save_pos1 = *pos;
1372 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1373 tem = 1;
1374 type = value_type (argvec[0]);
1375 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1376 type = TYPE_TARGET_TYPE (type);
1377 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1378 {
1379 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1380 {
1381 /* pai: FIXME This seems to be coercing arguments before
1382 * overload resolution has been done! */
1383 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1384 exp, pos, noside);
1385 }
1386 }
1387 }
1388
1389 /* Evaluate arguments */
1390 for (; tem <= nargs; tem++)
1391 {
1392 /* Ensure that array expressions are coerced into pointer objects. */
1393 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1394 }
1395
1396 /* signal end of arglist */
1397 argvec[tem] = 0;
1398
1399 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1400 {
1401 int static_memfuncp;
1402 char tstr[256];
1403
1404 /* Method invocation : stuff "this" as first parameter */
1405 argvec[1] = arg2;
1406 /* Name of method from expression */
1407 strcpy (tstr, &exp->elts[pc2 + 2].string);
1408
1409 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1410 {
1411 /* Language is C++, do some overload resolution before evaluation */
1412 struct value *valp = NULL;
1413
1414 /* Prepare list of argument types for overload resolution */
1415 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1416 for (ix = 1; ix <= nargs; ix++)
1417 arg_types[ix - 1] = value_type (argvec[ix]);
1418
1419 (void) find_overload_match (arg_types, nargs, tstr,
1420 1 /* method */ , 0 /* strict match */ ,
1421 &arg2 /* the object */ , NULL,
1422 &valp, NULL, &static_memfuncp);
1423
1424
1425 argvec[1] = arg2; /* the ``this'' pointer */
1426 argvec[0] = valp; /* use the method found after overload resolution */
1427 }
1428 else
1429 /* Non-C++ case -- or no overload resolution */
1430 {
1431 struct value *temp = arg2;
1432 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1433 &static_memfuncp,
1434 op == STRUCTOP_STRUCT
1435 ? "structure" : "structure pointer");
1436 /* value_struct_elt updates temp with the correct value
1437 of the ``this'' pointer if necessary, so modify argvec[1] to
1438 reflect any ``this'' changes. */
1439 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1440 VALUE_ADDRESS (temp) + value_offset (temp)
1441 + value_embedded_offset (temp));
1442 argvec[1] = arg2; /* the ``this'' pointer */
1443 }
1444
1445 if (static_memfuncp)
1446 {
1447 argvec[1] = argvec[0];
1448 nargs--;
1449 argvec++;
1450 }
1451 }
1452 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1453 {
1454 argvec[1] = arg2;
1455 argvec[0] = arg1;
1456 }
1457 else if (op == OP_VAR_VALUE)
1458 {
1459 /* Non-member function being called */
1460 /* fn: This can only be done for C++ functions. A C-style function
1461 in a C++ program, for instance, does not have the fields that
1462 are expected here */
1463
1464 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1465 {
1466 /* Language is C++, do some overload resolution before evaluation */
1467 struct symbol *symp;
1468
1469 /* Prepare list of argument types for overload resolution */
1470 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1471 for (ix = 1; ix <= nargs; ix++)
1472 arg_types[ix - 1] = value_type (argvec[ix]);
1473
1474 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1475 0 /* not method */ , 0 /* strict match */ ,
1476 NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
1477 NULL, &symp, NULL);
1478
1479 /* Now fix the expression being evaluated */
1480 exp->elts[save_pos1+2].symbol = symp;
1481 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1482 }
1483 else
1484 {
1485 /* Not C++, or no overload resolution allowed */
1486 /* nothing to be done; argvec already correctly set up */
1487 }
1488 }
1489 else
1490 {
1491 /* It is probably a C-style function */
1492 /* nothing to be done; argvec already correctly set up */
1493 }
1494
1495 do_call_it:
1496
1497 if (noside == EVAL_SKIP)
1498 goto nosideret;
1499 if (argvec[0] == NULL)
1500 error (_("Cannot evaluate function -- may be inlined"));
1501 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1502 {
1503 /* If the return type doesn't look like a function type, call an
1504 error. This can happen if somebody tries to turn a variable into
1505 a function call. This is here because people often want to
1506 call, eg, strcmp, which gdb doesn't know is a function. If
1507 gdb isn't asked for it's opinion (ie. through "whatis"),
1508 it won't offer it. */
1509
1510 struct type *ftype =
1511 TYPE_TARGET_TYPE (value_type (argvec[0]));
1512
1513 if (ftype)
1514 return allocate_value (TYPE_TARGET_TYPE (value_type (argvec[0])));
1515 else
1516 error (_("Expression of type other than \"Function returning ...\" used as function"));
1517 }
1518 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1519 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1520
1521 case OP_F77_UNDETERMINED_ARGLIST:
1522
1523 /* Remember that in F77, functions, substring ops and
1524 array subscript operations cannot be disambiguated
1525 at parse time. We have made all array subscript operations,
1526 substring operations as well as function calls come here
1527 and we now have to discover what the heck this thing actually was.
1528 If it is a function, we process just as if we got an OP_FUNCALL. */
1529
1530 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1531 (*pos) += 2;
1532
1533 /* First determine the type code we are dealing with. */
1534 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1535 type = check_typedef (value_type (arg1));
1536 code = TYPE_CODE (type);
1537
1538 if (code == TYPE_CODE_PTR)
1539 {
1540 /* Fortran always passes variable to subroutines as pointer.
1541 So we need to look into its target type to see if it is
1542 array, string or function. If it is, we need to switch
1543 to the target value the original one points to. */
1544 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1545
1546 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1547 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1548 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1549 {
1550 arg1 = value_ind (arg1);
1551 type = check_typedef (value_type (arg1));
1552 code = TYPE_CODE (type);
1553 }
1554 }
1555
1556 switch (code)
1557 {
1558 case TYPE_CODE_ARRAY:
1559 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1560 return value_f90_subarray (arg1, exp, pos, noside);
1561 else
1562 goto multi_f77_subscript;
1563
1564 case TYPE_CODE_STRING:
1565 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1566 return value_f90_subarray (arg1, exp, pos, noside);
1567 else
1568 {
1569 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1570 return value_subscript (arg1, arg2);
1571 }
1572
1573 case TYPE_CODE_PTR:
1574 case TYPE_CODE_FUNC:
1575 /* It's a function call. */
1576 /* Allocate arg vector, including space for the function to be
1577 called in argvec[0] and a terminating NULL */
1578 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1579 argvec[0] = arg1;
1580 tem = 1;
1581 for (; tem <= nargs; tem++)
1582 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1583 argvec[tem] = 0; /* signal end of arglist */
1584 goto do_call_it;
1585
1586 default:
1587 error (_("Cannot perform substring on this type"));
1588 }
1589
1590 case OP_COMPLEX:
1591 /* We have a complex number, There should be 2 floating
1592 point numbers that compose it */
1593 (*pos) += 2;
1594 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1595 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1596
1597 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1598
1599 case STRUCTOP_STRUCT:
1600 tem = longest_to_int (exp->elts[pc + 1].longconst);
1601 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1602 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1603 if (noside == EVAL_SKIP)
1604 goto nosideret;
1605 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1606 return value_zero (lookup_struct_elt_type (value_type (arg1),
1607 &exp->elts[pc + 2].string,
1608 0),
1609 lval_memory);
1610 else
1611 {
1612 struct value *temp = arg1;
1613 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1614 NULL, "structure");
1615 }
1616
1617 case STRUCTOP_PTR:
1618 tem = longest_to_int (exp->elts[pc + 1].longconst);
1619 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1620 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1621 if (noside == EVAL_SKIP)
1622 goto nosideret;
1623
1624 /* JYG: if print object is on we need to replace the base type
1625 with rtti type in order to continue on with successful
1626 lookup of member / method only available in the rtti type. */
1627 {
1628 struct type *type = value_type (arg1);
1629 struct type *real_type;
1630 int full, top, using_enc;
1631
1632 if (objectprint && TYPE_TARGET_TYPE(type) &&
1633 (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1634 {
1635 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1636 if (real_type)
1637 {
1638 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1639 real_type = lookup_pointer_type (real_type);
1640 else
1641 real_type = lookup_reference_type (real_type);
1642
1643 arg1 = value_cast (real_type, arg1);
1644 }
1645 }
1646 }
1647
1648 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1649 return value_zero (lookup_struct_elt_type (value_type (arg1),
1650 &exp->elts[pc + 2].string,
1651 0),
1652 lval_memory);
1653 else
1654 {
1655 struct value *temp = arg1;
1656 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1657 NULL, "structure pointer");
1658 }
1659
1660 case STRUCTOP_MEMBER:
1661 case STRUCTOP_MPTR:
1662 if (op == STRUCTOP_MEMBER)
1663 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1664 else
1665 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1666
1667 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1668
1669 if (noside == EVAL_SKIP)
1670 goto nosideret;
1671
1672 type = check_typedef (value_type (arg2));
1673 switch (TYPE_CODE (type))
1674 {
1675 case TYPE_CODE_METHODPTR:
1676 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1677 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1678 else
1679 {
1680 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1681 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1682 return value_ind (arg2);
1683 }
1684
1685 case TYPE_CODE_MEMBERPTR:
1686 /* Now, convert these values to an address. */
1687 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1688 arg1);
1689
1690 mem_offset = value_as_long (arg2);
1691
1692 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1693 value_as_long (arg1) + mem_offset);
1694 return value_ind (arg3);
1695
1696 default:
1697 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1698 }
1699
1700 case BINOP_CONCAT:
1701 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1702 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1703 if (noside == EVAL_SKIP)
1704 goto nosideret;
1705 if (binop_user_defined_p (op, arg1, arg2))
1706 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1707 else
1708 return value_concat (arg1, arg2);
1709
1710 case BINOP_ASSIGN:
1711 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1712 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1713
1714 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1715 return arg1;
1716 if (binop_user_defined_p (op, arg1, arg2))
1717 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1718 else
1719 return value_assign (arg1, arg2);
1720
1721 case BINOP_ASSIGN_MODIFY:
1722 (*pos) += 2;
1723 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1724 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1725 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1726 return arg1;
1727 op = exp->elts[pc + 1].opcode;
1728 if (binop_user_defined_p (op, arg1, arg2))
1729 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1730 else if (op == BINOP_ADD && ptrmath_type_p (value_type (arg1)))
1731 arg2 = value_ptradd (arg1, arg2);
1732 else if (op == BINOP_SUB && ptrmath_type_p (value_type (arg1)))
1733 arg2 = value_ptrsub (arg1, arg2);
1734 else
1735 {
1736 struct value *tmp = arg1;
1737
1738 /* For shift and integer exponentiation operations,
1739 only promote the first argument. */
1740 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1741 && is_integral_type (value_type (arg2)))
1742 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
1743 else
1744 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1745
1746 arg2 = value_binop (tmp, arg2, op);
1747 }
1748 return value_assign (arg1, arg2);
1749
1750 case BINOP_ADD:
1751 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1752 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1753 if (noside == EVAL_SKIP)
1754 goto nosideret;
1755 if (binop_user_defined_p (op, arg1, arg2))
1756 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1757 else if (ptrmath_type_p (value_type (arg1)))
1758 return value_ptradd (arg1, arg2);
1759 else if (ptrmath_type_p (value_type (arg2)))
1760 return value_ptradd (arg2, arg1);
1761 else
1762 {
1763 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1764 return value_binop (arg1, arg2, BINOP_ADD);
1765 }
1766
1767 case BINOP_SUB:
1768 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1769 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1770 if (noside == EVAL_SKIP)
1771 goto nosideret;
1772 if (binop_user_defined_p (op, arg1, arg2))
1773 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1774 else if (ptrmath_type_p (value_type (arg1)))
1775 {
1776 if (ptrmath_type_p (value_type (arg2)))
1777 {
1778 /* FIXME -- should be ptrdiff_t */
1779 type = builtin_type (exp->gdbarch)->builtin_long;
1780 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1781 }
1782 else
1783 return value_ptrsub (arg1, arg2);
1784 }
1785 else
1786 {
1787 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1788 return value_binop (arg1, arg2, BINOP_SUB);
1789 }
1790
1791 case BINOP_EXP:
1792 case BINOP_MUL:
1793 case BINOP_DIV:
1794 case BINOP_INTDIV:
1795 case BINOP_REM:
1796 case BINOP_MOD:
1797 case BINOP_LSH:
1798 case BINOP_RSH:
1799 case BINOP_BITWISE_AND:
1800 case BINOP_BITWISE_IOR:
1801 case BINOP_BITWISE_XOR:
1802 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1803 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1804 if (noside == EVAL_SKIP)
1805 goto nosideret;
1806 if (binop_user_defined_p (op, arg1, arg2))
1807 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1808 else
1809 {
1810 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1811 fudge arg2 to avoid division-by-zero, the caller is
1812 (theoretically) only looking for the type of the result. */
1813 if (noside == EVAL_AVOID_SIDE_EFFECTS
1814 /* ??? Do we really want to test for BINOP_MOD here?
1815 The implementation of value_binop gives it a well-defined
1816 value. */
1817 && (op == BINOP_DIV
1818 || op == BINOP_INTDIV
1819 || op == BINOP_REM
1820 || op == BINOP_MOD)
1821 && value_logical_not (arg2))
1822 {
1823 struct value *v_one, *retval;
1824
1825 v_one = value_one (value_type (arg2), not_lval);
1826 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1827 retval = value_binop (arg1, v_one, op);
1828 return retval;
1829 }
1830 else
1831 {
1832 /* For shift and integer exponentiation operations,
1833 only promote the first argument. */
1834 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1835 && is_integral_type (value_type (arg2)))
1836 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1837 else
1838 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1839
1840 return value_binop (arg1, arg2, op);
1841 }
1842 }
1843
1844 case BINOP_RANGE:
1845 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1846 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1847 if (noside == EVAL_SKIP)
1848 goto nosideret;
1849 error (_("':' operator used in invalid context"));
1850
1851 case BINOP_SUBSCRIPT:
1852 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1853 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1854 if (noside == EVAL_SKIP)
1855 goto nosideret;
1856 if (binop_user_defined_p (op, arg1, arg2))
1857 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1858 else
1859 {
1860 /* If the user attempts to subscript something that is not an
1861 array or pointer type (like a plain int variable for example),
1862 then report this as an error. */
1863
1864 arg1 = coerce_ref (arg1);
1865 type = check_typedef (value_type (arg1));
1866 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
1867 && TYPE_CODE (type) != TYPE_CODE_PTR)
1868 {
1869 if (TYPE_NAME (type))
1870 error (_("cannot subscript something of type `%s'"),
1871 TYPE_NAME (type));
1872 else
1873 error (_("cannot subscript requested type"));
1874 }
1875
1876 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1877 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1878 else
1879 return value_subscript (arg1, arg2);
1880 }
1881
1882 case BINOP_IN:
1883 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1884 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1885 if (noside == EVAL_SKIP)
1886 goto nosideret;
1887 type = language_bool_type (exp->language_defn, exp->gdbarch);
1888 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
1889
1890 case MULTI_SUBSCRIPT:
1891 (*pos) += 2;
1892 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1893 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1894 while (nargs-- > 0)
1895 {
1896 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1897 /* FIXME: EVAL_SKIP handling may not be correct. */
1898 if (noside == EVAL_SKIP)
1899 {
1900 if (nargs > 0)
1901 {
1902 continue;
1903 }
1904 else
1905 {
1906 goto nosideret;
1907 }
1908 }
1909 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
1910 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1911 {
1912 /* If the user attempts to subscript something that has no target
1913 type (like a plain int variable for example), then report this
1914 as an error. */
1915
1916 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
1917 if (type != NULL)
1918 {
1919 arg1 = value_zero (type, VALUE_LVAL (arg1));
1920 noside = EVAL_SKIP;
1921 continue;
1922 }
1923 else
1924 {
1925 error (_("cannot subscript something of type `%s'"),
1926 TYPE_NAME (value_type (arg1)));
1927 }
1928 }
1929
1930 if (binop_user_defined_p (op, arg1, arg2))
1931 {
1932 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
1933 }
1934 else
1935 {
1936 arg1 = coerce_ref (arg1);
1937 type = check_typedef (value_type (arg1));
1938
1939 switch (TYPE_CODE (type))
1940 {
1941 case TYPE_CODE_PTR:
1942 case TYPE_CODE_ARRAY:
1943 case TYPE_CODE_STRING:
1944 arg1 = value_subscript (arg1, arg2);
1945 break;
1946
1947 case TYPE_CODE_BITSTRING:
1948 type = language_bool_type (exp->language_defn, exp->gdbarch);
1949 arg1 = value_bitstring_subscript (type, arg1, arg2);
1950 break;
1951
1952 default:
1953 if (TYPE_NAME (type))
1954 error (_("cannot subscript something of type `%s'"),
1955 TYPE_NAME (type));
1956 else
1957 error (_("cannot subscript requested type"));
1958 }
1959 }
1960 }
1961 return (arg1);
1962
1963 multi_f77_subscript:
1964 {
1965 int subscript_array[MAX_FORTRAN_DIMS];
1966 int array_size_array[MAX_FORTRAN_DIMS];
1967 int ndimensions = 1, i;
1968 struct type *tmp_type;
1969 int offset_item; /* The array offset where the item lives */
1970
1971 if (nargs > MAX_FORTRAN_DIMS)
1972 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
1973
1974 tmp_type = check_typedef (value_type (arg1));
1975 ndimensions = calc_f77_array_dims (type);
1976
1977 if (nargs != ndimensions)
1978 error (_("Wrong number of subscripts"));
1979
1980 /* Now that we know we have a legal array subscript expression
1981 let us actually find out where this element exists in the array. */
1982
1983 offset_item = 0;
1984 /* Take array indices left to right */
1985 for (i = 0; i < nargs; i++)
1986 {
1987 /* Evaluate each subscript, It must be a legal integer in F77 */
1988 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1989
1990 /* Fill in the subscript and array size arrays */
1991
1992 subscript_array[i] = value_as_long (arg2);
1993 }
1994
1995 /* Internal type of array is arranged right to left */
1996 for (i = 0; i < nargs; i++)
1997 {
1998 upper = f77_get_upperbound (tmp_type);
1999 lower = f77_get_lowerbound (tmp_type);
2000
2001 array_size_array[nargs - i - 1] = upper - lower + 1;
2002
2003 /* Zero-normalize subscripts so that offsetting will work. */
2004
2005 subscript_array[nargs - i - 1] -= lower;
2006
2007 /* If we are at the bottom of a multidimensional
2008 array type then keep a ptr to the last ARRAY
2009 type around for use when calling value_subscript()
2010 below. This is done because we pretend to value_subscript
2011 that we actually have a one-dimensional array
2012 of base element type that we apply a simple
2013 offset to. */
2014
2015 if (i < nargs - 1)
2016 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
2017 }
2018
2019 /* Now let us calculate the offset for this item */
2020
2021 offset_item = subscript_array[ndimensions - 1];
2022
2023 for (i = ndimensions - 1; i > 0; --i)
2024 offset_item =
2025 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
2026
2027 /* Construct a value node with the value of the offset */
2028
2029 arg2 = value_from_longest (builtin_type_int32, offset_item);
2030
2031 /* Let us now play a dirty trick: we will take arg1
2032 which is a value node pointing to the topmost level
2033 of the multidimensional array-set and pretend
2034 that it is actually a array of the final element
2035 type, this will ensure that value_subscript()
2036 returns the correct type value */
2037
2038 deprecated_set_value_type (arg1, tmp_type);
2039 return value_subscripted_rvalue (arg1, arg2, 0);
2040 }
2041
2042 case BINOP_LOGICAL_AND:
2043 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2044 if (noside == EVAL_SKIP)
2045 {
2046 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2047 goto nosideret;
2048 }
2049
2050 oldpos = *pos;
2051 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2052 *pos = oldpos;
2053
2054 if (binop_user_defined_p (op, arg1, arg2))
2055 {
2056 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2057 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2058 }
2059 else
2060 {
2061 tem = value_logical_not (arg1);
2062 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2063 (tem ? EVAL_SKIP : noside));
2064 type = language_bool_type (exp->language_defn, exp->gdbarch);
2065 return value_from_longest (type,
2066 (LONGEST) (!tem && !value_logical_not (arg2)));
2067 }
2068
2069 case BINOP_LOGICAL_OR:
2070 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2071 if (noside == EVAL_SKIP)
2072 {
2073 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2074 goto nosideret;
2075 }
2076
2077 oldpos = *pos;
2078 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2079 *pos = oldpos;
2080
2081 if (binop_user_defined_p (op, arg1, arg2))
2082 {
2083 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2084 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2085 }
2086 else
2087 {
2088 tem = value_logical_not (arg1);
2089 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2090 (!tem ? EVAL_SKIP : noside));
2091 type = language_bool_type (exp->language_defn, exp->gdbarch);
2092 return value_from_longest (type,
2093 (LONGEST) (!tem || !value_logical_not (arg2)));
2094 }
2095
2096 case BINOP_EQUAL:
2097 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2098 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2099 if (noside == EVAL_SKIP)
2100 goto nosideret;
2101 if (binop_user_defined_p (op, arg1, arg2))
2102 {
2103 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2104 }
2105 else
2106 {
2107 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2108 tem = value_equal (arg1, arg2);
2109 type = language_bool_type (exp->language_defn, exp->gdbarch);
2110 return value_from_longest (type, (LONGEST) tem);
2111 }
2112
2113 case BINOP_NOTEQUAL:
2114 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2115 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2116 if (noside == EVAL_SKIP)
2117 goto nosideret;
2118 if (binop_user_defined_p (op, arg1, arg2))
2119 {
2120 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2121 }
2122 else
2123 {
2124 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2125 tem = value_equal (arg1, arg2);
2126 type = language_bool_type (exp->language_defn, exp->gdbarch);
2127 return value_from_longest (type, (LONGEST) ! tem);
2128 }
2129
2130 case BINOP_LESS:
2131 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2132 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2133 if (noside == EVAL_SKIP)
2134 goto nosideret;
2135 if (binop_user_defined_p (op, arg1, arg2))
2136 {
2137 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2138 }
2139 else
2140 {
2141 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2142 tem = value_less (arg1, arg2);
2143 type = language_bool_type (exp->language_defn, exp->gdbarch);
2144 return value_from_longest (type, (LONGEST) tem);
2145 }
2146
2147 case BINOP_GTR:
2148 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2149 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2150 if (noside == EVAL_SKIP)
2151 goto nosideret;
2152 if (binop_user_defined_p (op, arg1, arg2))
2153 {
2154 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2155 }
2156 else
2157 {
2158 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2159 tem = value_less (arg2, arg1);
2160 type = language_bool_type (exp->language_defn, exp->gdbarch);
2161 return value_from_longest (type, (LONGEST) tem);
2162 }
2163
2164 case BINOP_GEQ:
2165 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2166 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2167 if (noside == EVAL_SKIP)
2168 goto nosideret;
2169 if (binop_user_defined_p (op, arg1, arg2))
2170 {
2171 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2172 }
2173 else
2174 {
2175 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2176 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2177 type = language_bool_type (exp->language_defn, exp->gdbarch);
2178 return value_from_longest (type, (LONGEST) tem);
2179 }
2180
2181 case BINOP_LEQ:
2182 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2183 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2184 if (noside == EVAL_SKIP)
2185 goto nosideret;
2186 if (binop_user_defined_p (op, arg1, arg2))
2187 {
2188 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2189 }
2190 else
2191 {
2192 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2193 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2194 type = language_bool_type (exp->language_defn, exp->gdbarch);
2195 return value_from_longest (type, (LONGEST) tem);
2196 }
2197
2198 case BINOP_REPEAT:
2199 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2200 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2201 if (noside == EVAL_SKIP)
2202 goto nosideret;
2203 type = check_typedef (value_type (arg2));
2204 if (TYPE_CODE (type) != TYPE_CODE_INT)
2205 error (_("Non-integral right operand for \"@\" operator."));
2206 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2207 {
2208 return allocate_repeat_value (value_type (arg1),
2209 longest_to_int (value_as_long (arg2)));
2210 }
2211 else
2212 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2213
2214 case BINOP_COMMA:
2215 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2216 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2217
2218 case UNOP_PLUS:
2219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2220 if (noside == EVAL_SKIP)
2221 goto nosideret;
2222 if (unop_user_defined_p (op, arg1))
2223 return value_x_unop (arg1, op, noside);
2224 else
2225 {
2226 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2227 return value_pos (arg1);
2228 }
2229
2230 case UNOP_NEG:
2231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2232 if (noside == EVAL_SKIP)
2233 goto nosideret;
2234 if (unop_user_defined_p (op, arg1))
2235 return value_x_unop (arg1, op, noside);
2236 else
2237 {
2238 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2239 return value_neg (arg1);
2240 }
2241
2242 case UNOP_COMPLEMENT:
2243 /* C++: check for and handle destructor names. */
2244 op = exp->elts[*pos].opcode;
2245
2246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2247 if (noside == EVAL_SKIP)
2248 goto nosideret;
2249 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2250 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2251 else
2252 {
2253 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2254 return value_complement (arg1);
2255 }
2256
2257 case UNOP_LOGICAL_NOT:
2258 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2259 if (noside == EVAL_SKIP)
2260 goto nosideret;
2261 if (unop_user_defined_p (op, arg1))
2262 return value_x_unop (arg1, op, noside);
2263 else
2264 {
2265 type = language_bool_type (exp->language_defn, exp->gdbarch);
2266 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2267 }
2268
2269 case UNOP_IND:
2270 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2271 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2272 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2273 type = check_typedef (value_type (arg1));
2274 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2275 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2276 error (_("Attempt to dereference pointer to member without an object"));
2277 if (noside == EVAL_SKIP)
2278 goto nosideret;
2279 if (unop_user_defined_p (op, arg1))
2280 return value_x_unop (arg1, op, noside);
2281 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2282 {
2283 type = check_typedef (value_type (arg1));
2284 if (TYPE_CODE (type) == TYPE_CODE_PTR
2285 || TYPE_CODE (type) == TYPE_CODE_REF
2286 /* In C you can dereference an array to get the 1st elt. */
2287 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2288 )
2289 return value_zero (TYPE_TARGET_TYPE (type),
2290 lval_memory);
2291 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2292 /* GDB allows dereferencing an int. */
2293 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2294 lval_memory);
2295 else
2296 error (_("Attempt to take contents of a non-pointer value."));
2297 }
2298
2299 /* Allow * on an integer so we can cast it to whatever we want.
2300 This returns an int, which seems like the most C-like thing to
2301 do. "long long" variables are rare enough that
2302 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2303 if (TYPE_CODE (type) == TYPE_CODE_INT)
2304 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2305 (CORE_ADDR) value_as_address (arg1));
2306 return value_ind (arg1);
2307
2308 case UNOP_ADDR:
2309 /* C++: check for and handle pointer to members. */
2310
2311 op = exp->elts[*pos].opcode;
2312
2313 if (noside == EVAL_SKIP)
2314 {
2315 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2316 goto nosideret;
2317 }
2318 else
2319 {
2320 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
2321 return retvalp;
2322 }
2323
2324 case UNOP_SIZEOF:
2325 if (noside == EVAL_SKIP)
2326 {
2327 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2328 goto nosideret;
2329 }
2330 return evaluate_subexp_for_sizeof (exp, pos);
2331
2332 case UNOP_CAST:
2333 (*pos) += 2;
2334 type = exp->elts[pc + 1].type;
2335 arg1 = evaluate_subexp (type, exp, pos, noside);
2336 if (noside == EVAL_SKIP)
2337 goto nosideret;
2338 if (type != value_type (arg1))
2339 arg1 = value_cast (type, arg1);
2340 return arg1;
2341
2342 case UNOP_MEMVAL:
2343 (*pos) += 2;
2344 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2345 if (noside == EVAL_SKIP)
2346 goto nosideret;
2347 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2348 return value_zero (exp->elts[pc + 1].type, lval_memory);
2349 else
2350 return value_at_lazy (exp->elts[pc + 1].type,
2351 value_as_address (arg1));
2352
2353 case UNOP_MEMVAL_TLS:
2354 (*pos) += 3;
2355 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2356 if (noside == EVAL_SKIP)
2357 goto nosideret;
2358 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2359 return value_zero (exp->elts[pc + 2].type, lval_memory);
2360 else
2361 {
2362 CORE_ADDR tls_addr;
2363 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2364 value_as_address (arg1));
2365 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2366 }
2367
2368 case UNOP_PREINCREMENT:
2369 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2370 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2371 return arg1;
2372 else if (unop_user_defined_p (op, arg1))
2373 {
2374 return value_x_unop (arg1, op, noside);
2375 }
2376 else
2377 {
2378 arg2 = value_from_longest (builtin_type_uint8, (LONGEST) 1);
2379 if (ptrmath_type_p (value_type (arg1)))
2380 arg2 = value_ptradd (arg1, arg2);
2381 else
2382 {
2383 struct value *tmp = arg1;
2384 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2385 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2386 }
2387
2388 return value_assign (arg1, arg2);
2389 }
2390
2391 case UNOP_PREDECREMENT:
2392 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2393 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2394 return arg1;
2395 else if (unop_user_defined_p (op, arg1))
2396 {
2397 return value_x_unop (arg1, op, noside);
2398 }
2399 else
2400 {
2401 arg2 = value_from_longest (builtin_type_uint8, (LONGEST) 1);
2402 if (ptrmath_type_p (value_type (arg1)))
2403 arg2 = value_ptrsub (arg1, arg2);
2404 else
2405 {
2406 struct value *tmp = arg1;
2407 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2408 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2409 }
2410
2411 return value_assign (arg1, arg2);
2412 }
2413
2414 case UNOP_POSTINCREMENT:
2415 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2416 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2417 return arg1;
2418 else if (unop_user_defined_p (op, arg1))
2419 {
2420 return value_x_unop (arg1, op, noside);
2421 }
2422 else
2423 {
2424 arg2 = value_from_longest (builtin_type_uint8, (LONGEST) 1);
2425 if (ptrmath_type_p (value_type (arg1)))
2426 arg2 = value_ptradd (arg1, arg2);
2427 else
2428 {
2429 struct value *tmp = arg1;
2430 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2431 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2432 }
2433
2434 value_assign (arg1, arg2);
2435 return arg1;
2436 }
2437
2438 case UNOP_POSTDECREMENT:
2439 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2440 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2441 return arg1;
2442 else if (unop_user_defined_p (op, arg1))
2443 {
2444 return value_x_unop (arg1, op, noside);
2445 }
2446 else
2447 {
2448 arg2 = value_from_longest (builtin_type_uint8, (LONGEST) 1);
2449 if (ptrmath_type_p (value_type (arg1)))
2450 arg2 = value_ptrsub (arg1, arg2);
2451 else
2452 {
2453 struct value *tmp = arg1;
2454 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2455 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2456 }
2457
2458 value_assign (arg1, arg2);
2459 return arg1;
2460 }
2461
2462 case OP_THIS:
2463 (*pos) += 1;
2464 return value_of_this (1);
2465
2466 case OP_OBJC_SELF:
2467 (*pos) += 1;
2468 return value_of_local ("self", 1);
2469
2470 case OP_TYPE:
2471 /* The value is not supposed to be used. This is here to make it
2472 easier to accommodate expressions that contain types. */
2473 (*pos) += 2;
2474 if (noside == EVAL_SKIP)
2475 goto nosideret;
2476 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2477 return allocate_value (exp->elts[pc + 1].type);
2478 else
2479 error (_("Attempt to use a type name as an expression"));
2480
2481 default:
2482 /* Removing this case and compiling with gcc -Wall reveals that
2483 a lot of cases are hitting this case. Some of these should
2484 probably be removed from expression.h; others are legitimate
2485 expressions which are (apparently) not fully implemented.
2486
2487 If there are any cases landing here which mean a user error,
2488 then they should be separate cases, with more descriptive
2489 error messages. */
2490
2491 error (_("\
2492 GDB does not (yet) know how to evaluate that kind of expression"));
2493 }
2494
2495 nosideret:
2496 return value_from_longest (builtin_type_int8, (LONGEST) 1);
2497 }
2498 \f
2499 /* Evaluate a subexpression of EXP, at index *POS,
2500 and return the address of that subexpression.
2501 Advance *POS over the subexpression.
2502 If the subexpression isn't an lvalue, get an error.
2503 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2504 then only the type of the result need be correct. */
2505
2506 static struct value *
2507 evaluate_subexp_for_address (struct expression *exp, int *pos,
2508 enum noside noside)
2509 {
2510 enum exp_opcode op;
2511 int pc;
2512 struct symbol *var;
2513 struct value *x;
2514 int tem;
2515
2516 pc = (*pos);
2517 op = exp->elts[pc].opcode;
2518
2519 switch (op)
2520 {
2521 case UNOP_IND:
2522 (*pos)++;
2523 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2524
2525 /* We can't optimize out "&*" if there's a user-defined operator*. */
2526 if (unop_user_defined_p (op, x))
2527 {
2528 x = value_x_unop (x, op, noside);
2529 goto default_case_after_eval;
2530 }
2531
2532 return x;
2533
2534 case UNOP_MEMVAL:
2535 (*pos) += 3;
2536 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2537 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2538
2539 case OP_VAR_VALUE:
2540 var = exp->elts[pc + 2].symbol;
2541
2542 /* C++: The "address" of a reference should yield the address
2543 * of the object pointed to. Let value_addr() deal with it. */
2544 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2545 goto default_case;
2546
2547 (*pos) += 4;
2548 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2549 {
2550 struct type *type =
2551 lookup_pointer_type (SYMBOL_TYPE (var));
2552 enum address_class sym_class = SYMBOL_CLASS (var);
2553
2554 if (sym_class == LOC_CONST
2555 || sym_class == LOC_CONST_BYTES
2556 || sym_class == LOC_REGISTER)
2557 error (_("Attempt to take address of register or constant."));
2558
2559 return
2560 value_zero (type, not_lval);
2561 }
2562 else if (symbol_read_needs_frame (var))
2563 return
2564 locate_var_value
2565 (var,
2566 block_innermost_frame (exp->elts[pc + 1].block));
2567 else
2568 return locate_var_value (var, NULL);
2569
2570 case OP_SCOPE:
2571 tem = longest_to_int (exp->elts[pc + 2].longconst);
2572 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2573 x = value_aggregate_elt (exp->elts[pc + 1].type,
2574 &exp->elts[pc + 3].string,
2575 1, noside);
2576 if (x == NULL)
2577 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2578 return x;
2579
2580 default:
2581 default_case:
2582 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2583 default_case_after_eval:
2584 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2585 {
2586 struct type *type = check_typedef (value_type (x));
2587
2588 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2589 return value_zero (lookup_pointer_type (value_type (x)),
2590 not_lval);
2591 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2592 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2593 not_lval);
2594 else
2595 error (_("Attempt to take address of value not located in memory."));
2596 }
2597 return value_addr (x);
2598 }
2599 }
2600
2601 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2602 When used in contexts where arrays will be coerced anyway, this is
2603 equivalent to `evaluate_subexp' but much faster because it avoids
2604 actually fetching array contents (perhaps obsolete now that we have
2605 value_lazy()).
2606
2607 Note that we currently only do the coercion for C expressions, where
2608 arrays are zero based and the coercion is correct. For other languages,
2609 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2610 to decide if coercion is appropriate.
2611
2612 */
2613
2614 struct value *
2615 evaluate_subexp_with_coercion (struct expression *exp,
2616 int *pos, enum noside noside)
2617 {
2618 enum exp_opcode op;
2619 int pc;
2620 struct value *val;
2621 struct symbol *var;
2622
2623 pc = (*pos);
2624 op = exp->elts[pc].opcode;
2625
2626 switch (op)
2627 {
2628 case OP_VAR_VALUE:
2629 var = exp->elts[pc + 2].symbol;
2630 if (TYPE_CODE (check_typedef (SYMBOL_TYPE (var))) == TYPE_CODE_ARRAY
2631 && CAST_IS_CONVERSION)
2632 {
2633 (*pos) += 4;
2634 val =
2635 locate_var_value
2636 (var, block_innermost_frame (exp->elts[pc + 1].block));
2637 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (check_typedef (SYMBOL_TYPE (var)))),
2638 val);
2639 }
2640 /* FALLTHROUGH */
2641
2642 default:
2643 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2644 }
2645 }
2646
2647 /* Evaluate a subexpression of EXP, at index *POS,
2648 and return a value for the size of that subexpression.
2649 Advance *POS over the subexpression. */
2650
2651 static struct value *
2652 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2653 {
2654 /* FIXME: This should be size_t. */
2655 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2656 enum exp_opcode op;
2657 int pc;
2658 struct type *type;
2659 struct value *val;
2660
2661 pc = (*pos);
2662 op = exp->elts[pc].opcode;
2663
2664 switch (op)
2665 {
2666 /* This case is handled specially
2667 so that we avoid creating a value for the result type.
2668 If the result type is very big, it's desirable not to
2669 create a value unnecessarily. */
2670 case UNOP_IND:
2671 (*pos)++;
2672 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2673 type = check_typedef (value_type (val));
2674 if (TYPE_CODE (type) != TYPE_CODE_PTR
2675 && TYPE_CODE (type) != TYPE_CODE_REF
2676 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2677 error (_("Attempt to take contents of a non-pointer value."));
2678 type = check_typedef (TYPE_TARGET_TYPE (type));
2679 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2680
2681 case UNOP_MEMVAL:
2682 (*pos) += 3;
2683 type = check_typedef (exp->elts[pc + 1].type);
2684 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2685
2686 case OP_VAR_VALUE:
2687 (*pos) += 4;
2688 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2689 return
2690 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2691
2692 default:
2693 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2694 return value_from_longest (size_type,
2695 (LONGEST) TYPE_LENGTH (value_type (val)));
2696 }
2697 }
2698
2699 /* Parse a type expression in the string [P..P+LENGTH). */
2700
2701 struct type *
2702 parse_and_eval_type (char *p, int length)
2703 {
2704 char *tmp = (char *) alloca (length + 4);
2705 struct expression *expr;
2706 tmp[0] = '(';
2707 memcpy (tmp + 1, p, length);
2708 tmp[length + 1] = ')';
2709 tmp[length + 2] = '0';
2710 tmp[length + 3] = '\0';
2711 expr = parse_expression (tmp);
2712 if (expr->elts[0].opcode != UNOP_CAST)
2713 error (_("Internal error in eval_type."));
2714 return expr->elts[1].type;
2715 }
2716
2717 int
2718 calc_f77_array_dims (struct type *array_type)
2719 {
2720 int ndimen = 1;
2721 struct type *tmp_type;
2722
2723 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2724 error (_("Can't get dimensions for a non-array type"));
2725
2726 tmp_type = array_type;
2727
2728 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2729 {
2730 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2731 ++ndimen;
2732 }
2733 return ndimen;
2734 }
This page took 0.140149 seconds and 4 git commands to generate.