* arm-tdep.c: Include "observer.h".
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION. */
31 #include "f-lang.h" /* For array bound stuff. */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "gdb_obstack.h"
44 #include "objfiles.h"
45 #include "python/python.h"
46 #include "wrapper.h"
47
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* This is defined in valops.c */
53 extern int overload_resolution;
54
55 /* Prototypes for local functions. */
56
57 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
58
59 static struct value *evaluate_subexp_for_address (struct expression *,
60 int *, enum noside);
61
62 static char *get_label (struct expression *, int *);
63
64 static struct value *evaluate_struct_tuple (struct value *,
65 struct expression *, int *,
66 enum noside, int);
67
68 static LONGEST init_array_element (struct value *, struct value *,
69 struct expression *, int *, enum noside,
70 LONGEST, LONGEST);
71
72 struct value *
73 evaluate_subexp (struct type *expect_type, struct expression *exp,
74 int *pos, enum noside noside)
75 {
76 return (*exp->language_defn->la_exp_desc->evaluate_exp)
77 (expect_type, exp, pos, noside);
78 }
79 \f
80 /* Parse the string EXP as a C expression, evaluate it,
81 and return the result as a number. */
82
83 CORE_ADDR
84 parse_and_eval_address (char *exp)
85 {
86 struct expression *expr = parse_expression (exp);
87 CORE_ADDR addr;
88 struct cleanup *old_chain =
89 make_cleanup (free_current_contents, &expr);
90
91 addr = value_as_address (evaluate_expression (expr));
92 do_cleanups (old_chain);
93 return addr;
94 }
95
96 /* Like parse_and_eval_address but takes a pointer to a char * variable
97 and advanced that variable across the characters parsed. */
98
99 CORE_ADDR
100 parse_and_eval_address_1 (char **expptr)
101 {
102 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
103 CORE_ADDR addr;
104 struct cleanup *old_chain =
105 make_cleanup (free_current_contents, &expr);
106
107 addr = value_as_address (evaluate_expression (expr));
108 do_cleanups (old_chain);
109 return addr;
110 }
111
112 /* Like parse_and_eval_address, but treats the value of the expression
113 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
114 LONGEST
115 parse_and_eval_long (char *exp)
116 {
117 struct expression *expr = parse_expression (exp);
118 LONGEST retval;
119 struct cleanup *old_chain =
120 make_cleanup (free_current_contents, &expr);
121
122 retval = value_as_long (evaluate_expression (expr));
123 do_cleanups (old_chain);
124 return (retval);
125 }
126
127 struct value *
128 parse_and_eval (char *exp)
129 {
130 struct expression *expr = parse_expression (exp);
131 struct value *val;
132 struct cleanup *old_chain =
133 make_cleanup (free_current_contents, &expr);
134
135 val = evaluate_expression (expr);
136 do_cleanups (old_chain);
137 return val;
138 }
139
140 /* Parse up to a comma (or to a closeparen)
141 in the string EXPP as an expression, evaluate it, and return the value.
142 EXPP is advanced to point to the comma. */
143
144 struct value *
145 parse_to_comma_and_eval (char **expp)
146 {
147 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
148 struct value *val;
149 struct cleanup *old_chain =
150 make_cleanup (free_current_contents, &expr);
151
152 val = evaluate_expression (expr);
153 do_cleanups (old_chain);
154 return val;
155 }
156 \f
157 /* Evaluate an expression in internal prefix form
158 such as is constructed by parse.y.
159
160 See expression.h for info on the format of an expression. */
161
162 struct value *
163 evaluate_expression (struct expression *exp)
164 {
165 int pc = 0;
166
167 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
168 }
169
170 /* Evaluate an expression, avoiding all memory references
171 and getting a value whose type alone is correct. */
172
173 struct value *
174 evaluate_type (struct expression *exp)
175 {
176 int pc = 0;
177
178 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
179 }
180
181 /* Evaluate a subexpression, avoiding all memory references and
182 getting a value whose type alone is correct. */
183
184 struct value *
185 evaluate_subexpression_type (struct expression *exp, int subexp)
186 {
187 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
188 }
189
190 /* Find the current value of a watchpoint on EXP. Return the value in
191 *VALP and *RESULTP and the chain of intermediate and final values
192 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
193 not need them.
194
195 If a memory error occurs while evaluating the expression, *RESULTP will
196 be set to NULL. *RESULTP may be a lazy value, if the result could
197 not be read from memory. It is used to determine whether a value
198 is user-specified (we should watch the whole value) or intermediate
199 (we should watch only the bit used to locate the final value).
200
201 If the final value, or any intermediate value, could not be read
202 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
203 set to any referenced values. *VALP will never be a lazy value.
204 This is the value which we store in struct breakpoint.
205
206 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
207 value chain. The caller must free the values individually. If
208 VAL_CHAIN is NULL, all generated values will be left on the value
209 chain. */
210
211 void
212 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
213 struct value **resultp, struct value **val_chain)
214 {
215 struct value *mark, *new_mark, *result;
216 volatile struct gdb_exception ex;
217
218 *valp = NULL;
219 if (resultp)
220 *resultp = NULL;
221 if (val_chain)
222 *val_chain = NULL;
223
224 /* Evaluate the expression. */
225 mark = value_mark ();
226 result = NULL;
227
228 TRY_CATCH (ex, RETURN_MASK_ALL)
229 {
230 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
231 }
232 if (ex.reason < 0)
233 {
234 /* Ignore memory errors, we want watchpoints pointing at
235 inaccessible memory to still be created; otherwise, throw the
236 error to some higher catcher. */
237 switch (ex.error)
238 {
239 case MEMORY_ERROR:
240 break;
241 default:
242 throw_exception (ex);
243 break;
244 }
245 }
246
247 new_mark = value_mark ();
248 if (mark == new_mark)
249 return;
250 if (resultp)
251 *resultp = result;
252
253 /* Make sure it's not lazy, so that after the target stops again we
254 have a non-lazy previous value to compare with. */
255 if (result != NULL
256 && (!value_lazy (result) || gdb_value_fetch_lazy (result)))
257 *valp = result;
258
259 if (val_chain)
260 {
261 /* Return the chain of intermediate values. We use this to
262 decide which addresses to watch. */
263 *val_chain = new_mark;
264 value_release_to_mark (mark);
265 }
266 }
267
268 /* Extract a field operation from an expression. If the subexpression
269 of EXP starting at *SUBEXP is not a structure dereference
270 operation, return NULL. Otherwise, return the name of the
271 dereferenced field, and advance *SUBEXP to point to the
272 subexpression of the left-hand-side of the dereference. This is
273 used when completing field names. */
274
275 char *
276 extract_field_op (struct expression *exp, int *subexp)
277 {
278 int tem;
279 char *result;
280
281 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
282 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
283 return NULL;
284 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
285 result = &exp->elts[*subexp + 2].string;
286 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
287 return result;
288 }
289
290 /* If the next expression is an OP_LABELED, skips past it,
291 returning the label. Otherwise, does nothing and returns NULL. */
292
293 static char *
294 get_label (struct expression *exp, int *pos)
295 {
296 if (exp->elts[*pos].opcode == OP_LABELED)
297 {
298 int pc = (*pos)++;
299 char *name = &exp->elts[pc + 2].string;
300 int tem = longest_to_int (exp->elts[pc + 1].longconst);
301
302 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
303 return name;
304 }
305 else
306 return NULL;
307 }
308
309 /* This function evaluates tuples (in (the deleted) Chill) or
310 brace-initializers (in C/C++) for structure types. */
311
312 static struct value *
313 evaluate_struct_tuple (struct value *struct_val,
314 struct expression *exp,
315 int *pos, enum noside noside, int nargs)
316 {
317 struct type *struct_type = check_typedef (value_type (struct_val));
318 struct type *substruct_type = struct_type;
319 struct type *field_type;
320 int fieldno = -1;
321 int variantno = -1;
322 int subfieldno = -1;
323
324 while (--nargs >= 0)
325 {
326 int pc = *pos;
327 struct value *val = NULL;
328 int nlabels = 0;
329 int bitpos, bitsize;
330 bfd_byte *addr;
331
332 /* Skip past the labels, and count them. */
333 while (get_label (exp, pos) != NULL)
334 nlabels++;
335
336 do
337 {
338 char *label = get_label (exp, &pc);
339
340 if (label)
341 {
342 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
343 fieldno++)
344 {
345 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
346
347 if (field_name != NULL && strcmp (field_name, label) == 0)
348 {
349 variantno = -1;
350 subfieldno = fieldno;
351 substruct_type = struct_type;
352 goto found;
353 }
354 }
355 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
356 fieldno++)
357 {
358 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
359
360 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
361 if ((field_name == 0 || *field_name == '\0')
362 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
363 {
364 variantno = 0;
365 for (; variantno < TYPE_NFIELDS (field_type);
366 variantno++)
367 {
368 substruct_type
369 = TYPE_FIELD_TYPE (field_type, variantno);
370 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
371 {
372 for (subfieldno = 0;
373 subfieldno < TYPE_NFIELDS (substruct_type);
374 subfieldno++)
375 {
376 if (strcmp(TYPE_FIELD_NAME (substruct_type,
377 subfieldno),
378 label) == 0)
379 {
380 goto found;
381 }
382 }
383 }
384 }
385 }
386 }
387 error (_("there is no field named %s"), label);
388 found:
389 ;
390 }
391 else
392 {
393 /* Unlabelled tuple element - go to next field. */
394 if (variantno >= 0)
395 {
396 subfieldno++;
397 if (subfieldno >= TYPE_NFIELDS (substruct_type))
398 {
399 variantno = -1;
400 substruct_type = struct_type;
401 }
402 }
403 if (variantno < 0)
404 {
405 fieldno++;
406 /* Skip static fields. */
407 while (fieldno < TYPE_NFIELDS (struct_type)
408 && field_is_static (&TYPE_FIELD (struct_type,
409 fieldno)))
410 fieldno++;
411 subfieldno = fieldno;
412 if (fieldno >= TYPE_NFIELDS (struct_type))
413 error (_("too many initializers"));
414 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
415 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
416 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
417 error (_("don't know which variant you want to set"));
418 }
419 }
420
421 /* Here, struct_type is the type of the inner struct,
422 while substruct_type is the type of the inner struct.
423 These are the same for normal structures, but a variant struct
424 contains anonymous union fields that contain substruct fields.
425 The value fieldno is the index of the top-level (normal or
426 anonymous union) field in struct_field, while the value
427 subfieldno is the index of the actual real (named inner) field
428 in substruct_type. */
429
430 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
431 if (val == 0)
432 val = evaluate_subexp (field_type, exp, pos, noside);
433
434 /* Now actually set the field in struct_val. */
435
436 /* Assign val to field fieldno. */
437 if (value_type (val) != field_type)
438 val = value_cast (field_type, val);
439
440 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
441 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
442 if (variantno >= 0)
443 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
444 addr = value_contents_writeable (struct_val) + bitpos / 8;
445 if (bitsize)
446 modify_field (struct_type, addr,
447 value_as_long (val), bitpos % 8, bitsize);
448 else
449 memcpy (addr, value_contents (val),
450 TYPE_LENGTH (value_type (val)));
451 }
452 while (--nlabels > 0);
453 }
454 return struct_val;
455 }
456
457 /* Recursive helper function for setting elements of array tuples for
458 (the deleted) Chill. The target is ARRAY (which has bounds
459 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
460 and NOSIDE are as usual. Evaluates index expresions and sets the
461 specified element(s) of ARRAY to ELEMENT. Returns last index
462 value. */
463
464 static LONGEST
465 init_array_element (struct value *array, struct value *element,
466 struct expression *exp, int *pos,
467 enum noside noside, LONGEST low_bound, LONGEST high_bound)
468 {
469 LONGEST index;
470 int element_size = TYPE_LENGTH (value_type (element));
471
472 if (exp->elts[*pos].opcode == BINOP_COMMA)
473 {
474 (*pos)++;
475 init_array_element (array, element, exp, pos, noside,
476 low_bound, high_bound);
477 return init_array_element (array, element,
478 exp, pos, noside, low_bound, high_bound);
479 }
480 else if (exp->elts[*pos].opcode == BINOP_RANGE)
481 {
482 LONGEST low, high;
483
484 (*pos)++;
485 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
486 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
487 if (low < low_bound || high > high_bound)
488 error (_("tuple range index out of range"));
489 for (index = low; index <= high; index++)
490 {
491 memcpy (value_contents_raw (array)
492 + (index - low_bound) * element_size,
493 value_contents (element), element_size);
494 }
495 }
496 else
497 {
498 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
499 if (index < low_bound || index > high_bound)
500 error (_("tuple index out of range"));
501 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
502 value_contents (element), element_size);
503 }
504 return index;
505 }
506
507 static struct value *
508 value_f90_subarray (struct value *array,
509 struct expression *exp, int *pos, enum noside noside)
510 {
511 int pc = (*pos) + 1;
512 LONGEST low_bound, high_bound;
513 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
514 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
515
516 *pos += 3;
517
518 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
519 low_bound = TYPE_LOW_BOUND (range);
520 else
521 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
522
523 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
524 high_bound = TYPE_HIGH_BOUND (range);
525 else
526 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
527
528 return value_slice (array, low_bound, high_bound - low_bound + 1);
529 }
530
531
532 /* Promote value ARG1 as appropriate before performing a unary operation
533 on this argument.
534 If the result is not appropriate for any particular language then it
535 needs to patch this function. */
536
537 void
538 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
539 struct value **arg1)
540 {
541 struct type *type1;
542
543 *arg1 = coerce_ref (*arg1);
544 type1 = check_typedef (value_type (*arg1));
545
546 if (is_integral_type (type1))
547 {
548 switch (language->la_language)
549 {
550 default:
551 /* Perform integral promotion for ANSI C/C++.
552 If not appropropriate for any particular language
553 it needs to modify this function. */
554 {
555 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
556
557 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
558 *arg1 = value_cast (builtin_int, *arg1);
559 }
560 break;
561 }
562 }
563 }
564
565 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
566 operation on those two operands.
567 If the result is not appropriate for any particular language then it
568 needs to patch this function. */
569
570 void
571 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
572 struct value **arg1, struct value **arg2)
573 {
574 struct type *promoted_type = NULL;
575 struct type *type1;
576 struct type *type2;
577
578 *arg1 = coerce_ref (*arg1);
579 *arg2 = coerce_ref (*arg2);
580
581 type1 = check_typedef (value_type (*arg1));
582 type2 = check_typedef (value_type (*arg2));
583
584 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
585 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
586 && !is_integral_type (type1))
587 || (TYPE_CODE (type2) != TYPE_CODE_FLT
588 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
589 && !is_integral_type (type2)))
590 return;
591
592 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
593 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
594 {
595 /* No promotion required. */
596 }
597 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
598 || TYPE_CODE (type2) == TYPE_CODE_FLT)
599 {
600 switch (language->la_language)
601 {
602 case language_c:
603 case language_cplus:
604 case language_asm:
605 case language_objc:
606 case language_opencl:
607 /* No promotion required. */
608 break;
609
610 default:
611 /* For other languages the result type is unchanged from gdb
612 version 6.7 for backward compatibility.
613 If either arg was long double, make sure that value is also long
614 double. Otherwise use double. */
615 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
616 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
617 promoted_type = builtin_type (gdbarch)->builtin_long_double;
618 else
619 promoted_type = builtin_type (gdbarch)->builtin_double;
620 break;
621 }
622 }
623 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
624 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
625 {
626 /* No promotion required. */
627 }
628 else
629 /* Integral operations here. */
630 /* FIXME: Also mixed integral/booleans, with result an integer. */
631 {
632 const struct builtin_type *builtin = builtin_type (gdbarch);
633 unsigned int promoted_len1 = TYPE_LENGTH (type1);
634 unsigned int promoted_len2 = TYPE_LENGTH (type2);
635 int is_unsigned1 = TYPE_UNSIGNED (type1);
636 int is_unsigned2 = TYPE_UNSIGNED (type2);
637 unsigned int result_len;
638 int unsigned_operation;
639
640 /* Determine type length and signedness after promotion for
641 both operands. */
642 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
643 {
644 is_unsigned1 = 0;
645 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
646 }
647 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
648 {
649 is_unsigned2 = 0;
650 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
651 }
652
653 if (promoted_len1 > promoted_len2)
654 {
655 unsigned_operation = is_unsigned1;
656 result_len = promoted_len1;
657 }
658 else if (promoted_len2 > promoted_len1)
659 {
660 unsigned_operation = is_unsigned2;
661 result_len = promoted_len2;
662 }
663 else
664 {
665 unsigned_operation = is_unsigned1 || is_unsigned2;
666 result_len = promoted_len1;
667 }
668
669 switch (language->la_language)
670 {
671 case language_c:
672 case language_cplus:
673 case language_asm:
674 case language_objc:
675 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
676 {
677 promoted_type = (unsigned_operation
678 ? builtin->builtin_unsigned_int
679 : builtin->builtin_int);
680 }
681 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
682 {
683 promoted_type = (unsigned_operation
684 ? builtin->builtin_unsigned_long
685 : builtin->builtin_long);
686 }
687 else
688 {
689 promoted_type = (unsigned_operation
690 ? builtin->builtin_unsigned_long_long
691 : builtin->builtin_long_long);
692 }
693 break;
694 case language_opencl:
695 if (result_len <= TYPE_LENGTH (lookup_signed_typename
696 (language, gdbarch, "int")))
697 {
698 promoted_type =
699 (unsigned_operation
700 ? lookup_unsigned_typename (language, gdbarch, "int")
701 : lookup_signed_typename (language, gdbarch, "int"));
702 }
703 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
704 (language, gdbarch, "long")))
705 {
706 promoted_type =
707 (unsigned_operation
708 ? lookup_unsigned_typename (language, gdbarch, "long")
709 : lookup_signed_typename (language, gdbarch,"long"));
710 }
711 break;
712 default:
713 /* For other languages the result type is unchanged from gdb
714 version 6.7 for backward compatibility.
715 If either arg was long long, make sure that value is also long
716 long. Otherwise use long. */
717 if (unsigned_operation)
718 {
719 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
720 promoted_type = builtin->builtin_unsigned_long_long;
721 else
722 promoted_type = builtin->builtin_unsigned_long;
723 }
724 else
725 {
726 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
727 promoted_type = builtin->builtin_long_long;
728 else
729 promoted_type = builtin->builtin_long;
730 }
731 break;
732 }
733 }
734
735 if (promoted_type)
736 {
737 /* Promote both operands to common type. */
738 *arg1 = value_cast (promoted_type, *arg1);
739 *arg2 = value_cast (promoted_type, *arg2);
740 }
741 }
742
743 static int
744 ptrmath_type_p (const struct language_defn *lang, struct type *type)
745 {
746 type = check_typedef (type);
747 if (TYPE_CODE (type) == TYPE_CODE_REF)
748 type = TYPE_TARGET_TYPE (type);
749
750 switch (TYPE_CODE (type))
751 {
752 case TYPE_CODE_PTR:
753 case TYPE_CODE_FUNC:
754 return 1;
755
756 case TYPE_CODE_ARRAY:
757 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
758
759 default:
760 return 0;
761 }
762 }
763
764 /* Constructs a fake method with the given parameter types.
765 This function is used by the parser to construct an "expected"
766 type for method overload resolution. */
767
768 static struct type *
769 make_params (int num_types, struct type **param_types)
770 {
771 struct type *type = XZALLOC (struct type);
772 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
773 TYPE_LENGTH (type) = 1;
774 TYPE_CODE (type) = TYPE_CODE_METHOD;
775 TYPE_VPTR_FIELDNO (type) = -1;
776 TYPE_CHAIN (type) = type;
777 TYPE_NFIELDS (type) = num_types;
778 TYPE_FIELDS (type) = (struct field *)
779 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
780
781 while (num_types-- > 0)
782 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
783
784 return type;
785 }
786
787 struct value *
788 evaluate_subexp_standard (struct type *expect_type,
789 struct expression *exp, int *pos,
790 enum noside noside)
791 {
792 enum exp_opcode op;
793 int tem, tem2, tem3;
794 int pc, pc2 = 0, oldpos;
795 struct value *arg1 = NULL;
796 struct value *arg2 = NULL;
797 struct value *arg3;
798 struct type *type;
799 int nargs;
800 struct value **argvec;
801 int upper, lower;
802 int code;
803 int ix;
804 long mem_offset;
805 struct type **arg_types;
806 int save_pos1;
807 struct symbol *function = NULL;
808 char *function_name = NULL;
809
810 pc = (*pos)++;
811 op = exp->elts[pc].opcode;
812
813 switch (op)
814 {
815 case OP_SCOPE:
816 tem = longest_to_int (exp->elts[pc + 2].longconst);
817 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
818 if (noside == EVAL_SKIP)
819 goto nosideret;
820 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
821 &exp->elts[pc + 3].string,
822 expect_type, 0, noside);
823 if (arg1 == NULL)
824 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
825 return arg1;
826
827 case OP_LONG:
828 (*pos) += 3;
829 return value_from_longest (exp->elts[pc + 1].type,
830 exp->elts[pc + 2].longconst);
831
832 case OP_DOUBLE:
833 (*pos) += 3;
834 return value_from_double (exp->elts[pc + 1].type,
835 exp->elts[pc + 2].doubleconst);
836
837 case OP_DECFLOAT:
838 (*pos) += 3;
839 return value_from_decfloat (exp->elts[pc + 1].type,
840 exp->elts[pc + 2].decfloatconst);
841
842 case OP_ADL_FUNC:
843 case OP_VAR_VALUE:
844 (*pos) += 3;
845 if (noside == EVAL_SKIP)
846 goto nosideret;
847
848 /* JYG: We used to just return value_zero of the symbol type
849 if we're asked to avoid side effects. Otherwise we return
850 value_of_variable (...). However I'm not sure if
851 value_of_variable () has any side effect.
852 We need a full value object returned here for whatis_exp ()
853 to call evaluate_type () and then pass the full value to
854 value_rtti_target_type () if we are dealing with a pointer
855 or reference to a base class and print object is on. */
856
857 {
858 volatile struct gdb_exception except;
859 struct value *ret = NULL;
860
861 TRY_CATCH (except, RETURN_MASK_ERROR)
862 {
863 ret = value_of_variable (exp->elts[pc + 2].symbol,
864 exp->elts[pc + 1].block);
865 }
866
867 if (except.reason < 0)
868 {
869 if (noside == EVAL_AVOID_SIDE_EFFECTS)
870 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
871 not_lval);
872 else
873 throw_exception (except);
874 }
875
876 return ret;
877 }
878
879 case OP_LAST:
880 (*pos) += 2;
881 return
882 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
883
884 case OP_REGISTER:
885 {
886 const char *name = &exp->elts[pc + 2].string;
887 int regno;
888 struct value *val;
889
890 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
891 regno = user_reg_map_name_to_regnum (exp->gdbarch,
892 name, strlen (name));
893 if (regno == -1)
894 error (_("Register $%s not available."), name);
895
896 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
897 a value with the appropriate register type. Unfortunately,
898 we don't have easy access to the type of user registers.
899 So for these registers, we fetch the register value regardless
900 of the evaluation mode. */
901 if (noside == EVAL_AVOID_SIDE_EFFECTS
902 && regno < gdbarch_num_regs (exp->gdbarch)
903 + gdbarch_num_pseudo_regs (exp->gdbarch))
904 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
905 else
906 val = value_of_register (regno, get_selected_frame (NULL));
907 if (val == NULL)
908 error (_("Value of register %s not available."), name);
909 else
910 return val;
911 }
912 case OP_BOOL:
913 (*pos) += 2;
914 type = language_bool_type (exp->language_defn, exp->gdbarch);
915 return value_from_longest (type, exp->elts[pc + 1].longconst);
916
917 case OP_INTERNALVAR:
918 (*pos) += 2;
919 return value_of_internalvar (exp->gdbarch,
920 exp->elts[pc + 1].internalvar);
921
922 case OP_STRING:
923 tem = longest_to_int (exp->elts[pc + 1].longconst);
924 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
925 if (noside == EVAL_SKIP)
926 goto nosideret;
927 type = language_string_char_type (exp->language_defn, exp->gdbarch);
928 return value_string (&exp->elts[pc + 2].string, tem, type);
929
930 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
931 NSString constant. */
932 tem = longest_to_int (exp->elts[pc + 1].longconst);
933 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
934 if (noside == EVAL_SKIP)
935 {
936 goto nosideret;
937 }
938 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
939
940 case OP_BITSTRING:
941 tem = longest_to_int (exp->elts[pc + 1].longconst);
942 (*pos)
943 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
944 if (noside == EVAL_SKIP)
945 goto nosideret;
946 return value_bitstring (&exp->elts[pc + 2].string, tem,
947 builtin_type (exp->gdbarch)->builtin_int);
948 break;
949
950 case OP_ARRAY:
951 (*pos) += 3;
952 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
953 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
954 nargs = tem3 - tem2 + 1;
955 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
956
957 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
958 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
959 {
960 struct value *rec = allocate_value (expect_type);
961
962 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
963 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
964 }
965
966 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
967 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
968 {
969 struct type *range_type = TYPE_INDEX_TYPE (type);
970 struct type *element_type = TYPE_TARGET_TYPE (type);
971 struct value *array = allocate_value (expect_type);
972 int element_size = TYPE_LENGTH (check_typedef (element_type));
973 LONGEST low_bound, high_bound, index;
974
975 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
976 {
977 low_bound = 0;
978 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
979 }
980 index = low_bound;
981 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
982 for (tem = nargs; --nargs >= 0;)
983 {
984 struct value *element;
985 int index_pc = 0;
986
987 if (exp->elts[*pos].opcode == BINOP_RANGE)
988 {
989 index_pc = ++(*pos);
990 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
991 }
992 element = evaluate_subexp (element_type, exp, pos, noside);
993 if (value_type (element) != element_type)
994 element = value_cast (element_type, element);
995 if (index_pc)
996 {
997 int continue_pc = *pos;
998
999 *pos = index_pc;
1000 index = init_array_element (array, element, exp, pos, noside,
1001 low_bound, high_bound);
1002 *pos = continue_pc;
1003 }
1004 else
1005 {
1006 if (index > high_bound)
1007 /* To avoid memory corruption. */
1008 error (_("Too many array elements"));
1009 memcpy (value_contents_raw (array)
1010 + (index - low_bound) * element_size,
1011 value_contents (element),
1012 element_size);
1013 }
1014 index++;
1015 }
1016 return array;
1017 }
1018
1019 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1020 && TYPE_CODE (type) == TYPE_CODE_SET)
1021 {
1022 struct value *set = allocate_value (expect_type);
1023 gdb_byte *valaddr = value_contents_raw (set);
1024 struct type *element_type = TYPE_INDEX_TYPE (type);
1025 struct type *check_type = element_type;
1026 LONGEST low_bound, high_bound;
1027
1028 /* Get targettype of elementtype. */
1029 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1030 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1031 check_type = TYPE_TARGET_TYPE (check_type);
1032
1033 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1034 error (_("(power)set type with unknown size"));
1035 memset (valaddr, '\0', TYPE_LENGTH (type));
1036 for (tem = 0; tem < nargs; tem++)
1037 {
1038 LONGEST range_low, range_high;
1039 struct type *range_low_type, *range_high_type;
1040 struct value *elem_val;
1041
1042 if (exp->elts[*pos].opcode == BINOP_RANGE)
1043 {
1044 (*pos)++;
1045 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1046 range_low_type = value_type (elem_val);
1047 range_low = value_as_long (elem_val);
1048 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1049 range_high_type = value_type (elem_val);
1050 range_high = value_as_long (elem_val);
1051 }
1052 else
1053 {
1054 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1055 range_low_type = range_high_type = value_type (elem_val);
1056 range_low = range_high = value_as_long (elem_val);
1057 }
1058 /* Check types of elements to avoid mixture of elements from
1059 different types. Also check if type of element is "compatible"
1060 with element type of powerset. */
1061 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1062 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1063 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1064 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1065 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1066 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1067 && (range_low_type != range_high_type)))
1068 /* different element modes. */
1069 error (_("POWERSET tuple elements of different mode"));
1070 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1071 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1072 && range_low_type != check_type))
1073 error (_("incompatible POWERSET tuple elements"));
1074 if (range_low > range_high)
1075 {
1076 warning (_("empty POWERSET tuple range"));
1077 continue;
1078 }
1079 if (range_low < low_bound || range_high > high_bound)
1080 error (_("POWERSET tuple element out of range"));
1081 range_low -= low_bound;
1082 range_high -= low_bound;
1083 for (; range_low <= range_high; range_low++)
1084 {
1085 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1086
1087 if (gdbarch_bits_big_endian (exp->gdbarch))
1088 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1089 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1090 |= 1 << bit_index;
1091 }
1092 }
1093 return set;
1094 }
1095
1096 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1097 for (tem = 0; tem < nargs; tem++)
1098 {
1099 /* Ensure that array expressions are coerced into pointer
1100 objects. */
1101 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1102 }
1103 if (noside == EVAL_SKIP)
1104 goto nosideret;
1105 return value_array (tem2, tem3, argvec);
1106
1107 case TERNOP_SLICE:
1108 {
1109 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1110 int lowbound
1111 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1112 int upper
1113 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1114
1115 if (noside == EVAL_SKIP)
1116 goto nosideret;
1117 return value_slice (array, lowbound, upper - lowbound + 1);
1118 }
1119
1120 case TERNOP_SLICE_COUNT:
1121 {
1122 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1123 int lowbound
1124 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1125 int length
1126 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1127
1128 return value_slice (array, lowbound, length);
1129 }
1130
1131 case TERNOP_COND:
1132 /* Skip third and second args to evaluate the first one. */
1133 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1134 if (value_logical_not (arg1))
1135 {
1136 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1137 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1138 }
1139 else
1140 {
1141 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1142 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1143 return arg2;
1144 }
1145
1146 case OP_OBJC_SELECTOR:
1147 { /* Objective C @selector operator. */
1148 char *sel = &exp->elts[pc + 2].string;
1149 int len = longest_to_int (exp->elts[pc + 1].longconst);
1150 struct type *selector_type;
1151
1152 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1153 if (noside == EVAL_SKIP)
1154 goto nosideret;
1155
1156 if (sel[len] != 0)
1157 sel[len] = 0; /* Make sure it's terminated. */
1158
1159 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1160 return value_from_longest (selector_type,
1161 lookup_child_selector (exp->gdbarch, sel));
1162 }
1163
1164 case OP_OBJC_MSGCALL:
1165 { /* Objective C message (method) call. */
1166
1167 CORE_ADDR responds_selector = 0;
1168 CORE_ADDR method_selector = 0;
1169
1170 CORE_ADDR selector = 0;
1171
1172 int struct_return = 0;
1173 int sub_no_side = 0;
1174
1175 struct value *msg_send = NULL;
1176 struct value *msg_send_stret = NULL;
1177 int gnu_runtime = 0;
1178
1179 struct value *target = NULL;
1180 struct value *method = NULL;
1181 struct value *called_method = NULL;
1182
1183 struct type *selector_type = NULL;
1184 struct type *long_type;
1185
1186 struct value *ret = NULL;
1187 CORE_ADDR addr = 0;
1188
1189 selector = exp->elts[pc + 1].longconst;
1190 nargs = exp->elts[pc + 2].longconst;
1191 argvec = (struct value **) alloca (sizeof (struct value *)
1192 * (nargs + 5));
1193
1194 (*pos) += 3;
1195
1196 long_type = builtin_type (exp->gdbarch)->builtin_long;
1197 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1198
1199 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1200 sub_no_side = EVAL_NORMAL;
1201 else
1202 sub_no_side = noside;
1203
1204 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1205
1206 if (value_as_long (target) == 0)
1207 return value_from_longest (long_type, 0);
1208
1209 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1210 gnu_runtime = 1;
1211
1212 /* Find the method dispatch (Apple runtime) or method lookup
1213 (GNU runtime) function for Objective-C. These will be used
1214 to lookup the symbol information for the method. If we
1215 can't find any symbol information, then we'll use these to
1216 call the method, otherwise we can call the method
1217 directly. The msg_send_stret function is used in the special
1218 case of a method that returns a structure (Apple runtime
1219 only). */
1220 if (gnu_runtime)
1221 {
1222 struct type *type = selector_type;
1223
1224 type = lookup_function_type (type);
1225 type = lookup_pointer_type (type);
1226 type = lookup_function_type (type);
1227 type = lookup_pointer_type (type);
1228
1229 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1230 msg_send_stret
1231 = find_function_in_inferior ("objc_msg_lookup", NULL);
1232
1233 msg_send = value_from_pointer (type, value_as_address (msg_send));
1234 msg_send_stret = value_from_pointer (type,
1235 value_as_address (msg_send_stret));
1236 }
1237 else
1238 {
1239 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1240 /* Special dispatcher for methods returning structs. */
1241 msg_send_stret
1242 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1243 }
1244
1245 /* Verify the target object responds to this method. The
1246 standard top-level 'Object' class uses a different name for
1247 the verification method than the non-standard, but more
1248 often used, 'NSObject' class. Make sure we check for both. */
1249
1250 responds_selector
1251 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1252 if (responds_selector == 0)
1253 responds_selector
1254 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1255
1256 if (responds_selector == 0)
1257 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1258
1259 method_selector
1260 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1261 if (method_selector == 0)
1262 method_selector
1263 = lookup_child_selector (exp->gdbarch, "methodFor:");
1264
1265 if (method_selector == 0)
1266 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1267
1268 /* Call the verification method, to make sure that the target
1269 class implements the desired method. */
1270
1271 argvec[0] = msg_send;
1272 argvec[1] = target;
1273 argvec[2] = value_from_longest (long_type, responds_selector);
1274 argvec[3] = value_from_longest (long_type, selector);
1275 argvec[4] = 0;
1276
1277 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1278 if (gnu_runtime)
1279 {
1280 /* Function objc_msg_lookup returns a pointer. */
1281 argvec[0] = ret;
1282 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1283 }
1284 if (value_as_long (ret) == 0)
1285 error (_("Target does not respond to this message selector."));
1286
1287 /* Call "methodForSelector:" method, to get the address of a
1288 function method that implements this selector for this
1289 class. If we can find a symbol at that address, then we
1290 know the return type, parameter types etc. (that's a good
1291 thing). */
1292
1293 argvec[0] = msg_send;
1294 argvec[1] = target;
1295 argvec[2] = value_from_longest (long_type, method_selector);
1296 argvec[3] = value_from_longest (long_type, selector);
1297 argvec[4] = 0;
1298
1299 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1300 if (gnu_runtime)
1301 {
1302 argvec[0] = ret;
1303 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1304 }
1305
1306 /* ret should now be the selector. */
1307
1308 addr = value_as_long (ret);
1309 if (addr)
1310 {
1311 struct symbol *sym = NULL;
1312
1313 /* The address might point to a function descriptor;
1314 resolve it to the actual code address instead. */
1315 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1316 &current_target);
1317
1318 /* Is it a high_level symbol? */
1319 sym = find_pc_function (addr);
1320 if (sym != NULL)
1321 method = value_of_variable (sym, 0);
1322 }
1323
1324 /* If we found a method with symbol information, check to see
1325 if it returns a struct. Otherwise assume it doesn't. */
1326
1327 if (method)
1328 {
1329 struct block *b;
1330 CORE_ADDR funaddr;
1331 struct type *val_type;
1332
1333 funaddr = find_function_addr (method, &val_type);
1334
1335 b = block_for_pc (funaddr);
1336
1337 CHECK_TYPEDEF (val_type);
1338
1339 if ((val_type == NULL)
1340 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1341 {
1342 if (expect_type != NULL)
1343 val_type = expect_type;
1344 }
1345
1346 struct_return = using_struct_return (exp->gdbarch,
1347 value_type (method),
1348 val_type);
1349 }
1350 else if (expect_type != NULL)
1351 {
1352 struct_return = using_struct_return (exp->gdbarch, NULL,
1353 check_typedef (expect_type));
1354 }
1355
1356 /* Found a function symbol. Now we will substitute its
1357 value in place of the message dispatcher (obj_msgSend),
1358 so that we call the method directly instead of thru
1359 the dispatcher. The main reason for doing this is that
1360 we can now evaluate the return value and parameter values
1361 according to their known data types, in case we need to
1362 do things like promotion, dereferencing, special handling
1363 of structs and doubles, etc.
1364
1365 We want to use the type signature of 'method', but still
1366 jump to objc_msgSend() or objc_msgSend_stret() to better
1367 mimic the behavior of the runtime. */
1368
1369 if (method)
1370 {
1371 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1372 error (_("method address has symbol information "
1373 "with non-function type; skipping"));
1374
1375 /* Create a function pointer of the appropriate type, and
1376 replace its value with the value of msg_send or
1377 msg_send_stret. We must use a pointer here, as
1378 msg_send and msg_send_stret are of pointer type, and
1379 the representation may be different on systems that use
1380 function descriptors. */
1381 if (struct_return)
1382 called_method
1383 = value_from_pointer (lookup_pointer_type (value_type (method)),
1384 value_as_address (msg_send_stret));
1385 else
1386 called_method
1387 = value_from_pointer (lookup_pointer_type (value_type (method)),
1388 value_as_address (msg_send));
1389 }
1390 else
1391 {
1392 if (struct_return)
1393 called_method = msg_send_stret;
1394 else
1395 called_method = msg_send;
1396 }
1397
1398 if (noside == EVAL_SKIP)
1399 goto nosideret;
1400
1401 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1402 {
1403 /* If the return type doesn't look like a function type,
1404 call an error. This can happen if somebody tries to
1405 turn a variable into a function call. This is here
1406 because people often want to call, eg, strcmp, which
1407 gdb doesn't know is a function. If gdb isn't asked for
1408 it's opinion (ie. through "whatis"), it won't offer
1409 it. */
1410
1411 struct type *type = value_type (called_method);
1412
1413 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1414 type = TYPE_TARGET_TYPE (type);
1415 type = TYPE_TARGET_TYPE (type);
1416
1417 if (type)
1418 {
1419 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1420 return allocate_value (expect_type);
1421 else
1422 return allocate_value (type);
1423 }
1424 else
1425 error (_("Expression of type other than "
1426 "\"method returning ...\" used as a method"));
1427 }
1428
1429 /* Now depending on whether we found a symbol for the method,
1430 we will either call the runtime dispatcher or the method
1431 directly. */
1432
1433 argvec[0] = called_method;
1434 argvec[1] = target;
1435 argvec[2] = value_from_longest (long_type, selector);
1436 /* User-supplied arguments. */
1437 for (tem = 0; tem < nargs; tem++)
1438 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1439 argvec[tem + 3] = 0;
1440
1441 if (gnu_runtime && (method != NULL))
1442 {
1443 /* Function objc_msg_lookup returns a pointer. */
1444 deprecated_set_value_type (argvec[0],
1445 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1446 argvec[0]
1447 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1448 }
1449
1450 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1451 return ret;
1452 }
1453 break;
1454
1455 case OP_FUNCALL:
1456 (*pos) += 2;
1457 op = exp->elts[*pos].opcode;
1458 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1459 /* Allocate arg vector, including space for the function to be
1460 called in argvec[0] and a terminating NULL. */
1461 argvec = (struct value **)
1462 alloca (sizeof (struct value *) * (nargs + 3));
1463 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1464 {
1465 nargs++;
1466 /* First, evaluate the structure into arg2. */
1467 pc2 = (*pos)++;
1468
1469 if (noside == EVAL_SKIP)
1470 goto nosideret;
1471
1472 if (op == STRUCTOP_MEMBER)
1473 {
1474 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1475 }
1476 else
1477 {
1478 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1479 }
1480
1481 /* If the function is a virtual function, then the
1482 aggregate value (providing the structure) plays
1483 its part by providing the vtable. Otherwise,
1484 it is just along for the ride: call the function
1485 directly. */
1486
1487 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1488
1489 if (TYPE_CODE (check_typedef (value_type (arg1)))
1490 != TYPE_CODE_METHODPTR)
1491 error (_("Non-pointer-to-member value used in pointer-to-member "
1492 "construct"));
1493
1494 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1495 {
1496 struct type *method_type = check_typedef (value_type (arg1));
1497
1498 arg1 = value_zero (method_type, not_lval);
1499 }
1500 else
1501 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1502
1503 /* Now, say which argument to start evaluating from. */
1504 tem = 2;
1505 }
1506 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1507 {
1508 /* Hair for method invocations. */
1509 int tem2;
1510
1511 nargs++;
1512 /* First, evaluate the structure into arg2. */
1513 pc2 = (*pos)++;
1514 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1515 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1516 if (noside == EVAL_SKIP)
1517 goto nosideret;
1518
1519 if (op == STRUCTOP_STRUCT)
1520 {
1521 /* If v is a variable in a register, and the user types
1522 v.method (), this will produce an error, because v has
1523 no address.
1524
1525 A possible way around this would be to allocate a
1526 copy of the variable on the stack, copy in the
1527 contents, call the function, and copy out the
1528 contents. I.e. convert this from call by reference
1529 to call by copy-return (or whatever it's called).
1530 However, this does not work because it is not the
1531 same: the method being called could stash a copy of
1532 the address, and then future uses through that address
1533 (after the method returns) would be expected to
1534 use the variable itself, not some copy of it. */
1535 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1536 }
1537 else
1538 {
1539 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1540
1541 /* Check to see if the operator '->' has been
1542 overloaded. If the operator has been overloaded
1543 replace arg2 with the value returned by the custom
1544 operator and continue evaluation. */
1545 while (unop_user_defined_p (op, arg2))
1546 {
1547 volatile struct gdb_exception except;
1548 struct value *value = NULL;
1549 TRY_CATCH (except, RETURN_MASK_ERROR)
1550 {
1551 value = value_x_unop (arg2, op, noside);
1552 }
1553
1554 if (except.reason < 0)
1555 {
1556 if (except.error == NOT_FOUND_ERROR)
1557 break;
1558 else
1559 throw_exception (except);
1560 }
1561 arg2 = value;
1562 }
1563 }
1564 /* Now, say which argument to start evaluating from. */
1565 tem = 2;
1566 }
1567 else if (op == OP_SCOPE
1568 && overload_resolution
1569 && (exp->language_defn->la_language == language_cplus))
1570 {
1571 /* Unpack it locally so we can properly handle overload
1572 resolution. */
1573 char *name;
1574 int local_tem;
1575
1576 pc2 = (*pos)++;
1577 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1578 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1579 type = exp->elts[pc2 + 1].type;
1580 name = &exp->elts[pc2 + 3].string;
1581
1582 function = NULL;
1583 function_name = NULL;
1584 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1585 {
1586 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1587 name,
1588 get_selected_block (0),
1589 VAR_DOMAIN);
1590 if (function == NULL)
1591 error (_("No symbol \"%s\" in namespace \"%s\"."),
1592 name, TYPE_TAG_NAME (type));
1593
1594 tem = 1;
1595 }
1596 else
1597 {
1598 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1599 || TYPE_CODE (type) == TYPE_CODE_UNION);
1600 function_name = name;
1601
1602 arg2 = value_zero (type, lval_memory);
1603 ++nargs;
1604 tem = 2;
1605 }
1606 }
1607 else if (op == OP_ADL_FUNC)
1608 {
1609 /* Save the function position and move pos so that the arguments
1610 can be evaluated. */
1611 int func_name_len;
1612
1613 save_pos1 = *pos;
1614 tem = 1;
1615
1616 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1617 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1618 }
1619 else
1620 {
1621 /* Non-method function call. */
1622 save_pos1 = *pos;
1623 tem = 1;
1624
1625 /* If this is a C++ function wait until overload resolution. */
1626 if (op == OP_VAR_VALUE
1627 && overload_resolution
1628 && (exp->language_defn->la_language == language_cplus))
1629 {
1630 (*pos) += 4; /* Skip the evaluation of the symbol. */
1631 argvec[0] = NULL;
1632 }
1633 else
1634 {
1635 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1636 type = value_type (argvec[0]);
1637 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1638 type = TYPE_TARGET_TYPE (type);
1639 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1640 {
1641 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1642 {
1643 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1644 tem - 1),
1645 exp, pos, noside);
1646 }
1647 }
1648 }
1649 }
1650
1651 /* Evaluate arguments. */
1652 for (; tem <= nargs; tem++)
1653 {
1654 /* Ensure that array expressions are coerced into pointer
1655 objects. */
1656 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1657 }
1658
1659 /* Signal end of arglist. */
1660 argvec[tem] = 0;
1661 if (op == OP_ADL_FUNC)
1662 {
1663 struct symbol *symp;
1664 char *func_name;
1665 int name_len;
1666 int string_pc = save_pos1 + 3;
1667
1668 /* Extract the function name. */
1669 name_len = longest_to_int (exp->elts[string_pc].longconst);
1670 func_name = (char *) alloca (name_len + 1);
1671 strcpy (func_name, &exp->elts[string_pc + 1].string);
1672
1673 /* Prepare list of argument types for overload resolution. */
1674 arg_types = (struct type **)
1675 alloca (nargs * (sizeof (struct type *)));
1676 for (ix = 1; ix <= nargs; ix++)
1677 arg_types[ix - 1] = value_type (argvec[ix]);
1678
1679 find_overload_match (arg_types, nargs, func_name,
1680 NON_METHOD, /* not method */
1681 0, /* strict match */
1682 NULL, NULL, /* pass NULL symbol since
1683 symbol is unknown */
1684 NULL, &symp, NULL, 0);
1685
1686 /* Now fix the expression being evaluated. */
1687 exp->elts[save_pos1 + 2].symbol = symp;
1688 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1689 }
1690
1691 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1692 || (op == OP_SCOPE && function_name != NULL))
1693 {
1694 int static_memfuncp;
1695 char *tstr;
1696
1697 /* Method invocation : stuff "this" as first parameter. */
1698 argvec[1] = arg2;
1699
1700 if (op != OP_SCOPE)
1701 {
1702 /* Name of method from expression. */
1703 tstr = &exp->elts[pc2 + 2].string;
1704 }
1705 else
1706 tstr = function_name;
1707
1708 if (overload_resolution && (exp->language_defn->la_language
1709 == language_cplus))
1710 {
1711 /* Language is C++, do some overload resolution before
1712 evaluation. */
1713 struct value *valp = NULL;
1714
1715 /* Prepare list of argument types for overload resolution. */
1716 arg_types = (struct type **)
1717 alloca (nargs * (sizeof (struct type *)));
1718 for (ix = 1; ix <= nargs; ix++)
1719 arg_types[ix - 1] = value_type (argvec[ix]);
1720
1721 (void) find_overload_match (arg_types, nargs, tstr,
1722 METHOD, /* method */
1723 0, /* strict match */
1724 &arg2, /* the object */
1725 NULL, &valp, NULL,
1726 &static_memfuncp, 0);
1727
1728 if (op == OP_SCOPE && !static_memfuncp)
1729 {
1730 /* For the time being, we don't handle this. */
1731 error (_("Call to overloaded function %s requires "
1732 "`this' pointer"),
1733 function_name);
1734 }
1735 argvec[1] = arg2; /* the ``this'' pointer */
1736 argvec[0] = valp; /* Use the method found after overload
1737 resolution. */
1738 }
1739 else
1740 /* Non-C++ case -- or no overload resolution. */
1741 {
1742 struct value *temp = arg2;
1743
1744 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1745 &static_memfuncp,
1746 op == STRUCTOP_STRUCT
1747 ? "structure" : "structure pointer");
1748 /* value_struct_elt updates temp with the correct value
1749 of the ``this'' pointer if necessary, so modify argvec[1] to
1750 reflect any ``this'' changes. */
1751 arg2
1752 = value_from_longest (lookup_pointer_type(value_type (temp)),
1753 value_address (temp)
1754 + value_embedded_offset (temp));
1755 argvec[1] = arg2; /* the ``this'' pointer */
1756 }
1757
1758 if (static_memfuncp)
1759 {
1760 argvec[1] = argvec[0];
1761 nargs--;
1762 argvec++;
1763 }
1764 }
1765 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1766 {
1767 argvec[1] = arg2;
1768 argvec[0] = arg1;
1769 }
1770 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1771 {
1772 /* Non-member function being called. */
1773 /* fn: This can only be done for C++ functions. A C-style function
1774 in a C++ program, for instance, does not have the fields that
1775 are expected here. */
1776
1777 if (overload_resolution && (exp->language_defn->la_language
1778 == language_cplus))
1779 {
1780 /* Language is C++, do some overload resolution before
1781 evaluation. */
1782 struct symbol *symp;
1783 int no_adl = 0;
1784
1785 /* If a scope has been specified disable ADL. */
1786 if (op == OP_SCOPE)
1787 no_adl = 1;
1788
1789 if (op == OP_VAR_VALUE)
1790 function = exp->elts[save_pos1+2].symbol;
1791
1792 /* Prepare list of argument types for overload resolution. */
1793 arg_types = (struct type **)
1794 alloca (nargs * (sizeof (struct type *)));
1795 for (ix = 1; ix <= nargs; ix++)
1796 arg_types[ix - 1] = value_type (argvec[ix]);
1797
1798 (void) find_overload_match (arg_types, nargs,
1799 NULL, /* no need for name */
1800 NON_METHOD, /* not method */
1801 0, /* strict match */
1802 NULL, function, /* the function */
1803 NULL, &symp, NULL, no_adl);
1804
1805 if (op == OP_VAR_VALUE)
1806 {
1807 /* Now fix the expression being evaluated. */
1808 exp->elts[save_pos1+2].symbol = symp;
1809 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1810 noside);
1811 }
1812 else
1813 argvec[0] = value_of_variable (symp, get_selected_block (0));
1814 }
1815 else
1816 {
1817 /* Not C++, or no overload resolution allowed. */
1818 /* Nothing to be done; argvec already correctly set up. */
1819 }
1820 }
1821 else
1822 {
1823 /* It is probably a C-style function. */
1824 /* Nothing to be done; argvec already correctly set up. */
1825 }
1826
1827 do_call_it:
1828
1829 if (noside == EVAL_SKIP)
1830 goto nosideret;
1831 if (argvec[0] == NULL)
1832 error (_("Cannot evaluate function -- may be inlined"));
1833 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1834 {
1835 /* If the return type doesn't look like a function type, call an
1836 error. This can happen if somebody tries to turn a variable into
1837 a function call. This is here because people often want to
1838 call, eg, strcmp, which gdb doesn't know is a function. If
1839 gdb isn't asked for it's opinion (ie. through "whatis"),
1840 it won't offer it. */
1841
1842 struct type *ftype = value_type (argvec[0]);
1843
1844 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1845 {
1846 /* We don't know anything about what the internal
1847 function might return, but we have to return
1848 something. */
1849 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1850 not_lval);
1851 }
1852 else if (TYPE_TARGET_TYPE (ftype))
1853 return allocate_value (TYPE_TARGET_TYPE (ftype));
1854 else
1855 error (_("Expression of type other than "
1856 "\"Function returning ...\" used as function"));
1857 }
1858 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1859 return call_internal_function (exp->gdbarch, exp->language_defn,
1860 argvec[0], nargs, argvec + 1);
1861
1862 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1863 /* pai: FIXME save value from call_function_by_hand, then adjust
1864 pc by adjust_fn_pc if +ve. */
1865
1866 case OP_F77_UNDETERMINED_ARGLIST:
1867
1868 /* Remember that in F77, functions, substring ops and
1869 array subscript operations cannot be disambiguated
1870 at parse time. We have made all array subscript operations,
1871 substring operations as well as function calls come here
1872 and we now have to discover what the heck this thing actually was.
1873 If it is a function, we process just as if we got an OP_FUNCALL. */
1874
1875 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1876 (*pos) += 2;
1877
1878 /* First determine the type code we are dealing with. */
1879 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1880 type = check_typedef (value_type (arg1));
1881 code = TYPE_CODE (type);
1882
1883 if (code == TYPE_CODE_PTR)
1884 {
1885 /* Fortran always passes variable to subroutines as pointer.
1886 So we need to look into its target type to see if it is
1887 array, string or function. If it is, we need to switch
1888 to the target value the original one points to. */
1889 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1890
1891 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1892 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1893 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1894 {
1895 arg1 = value_ind (arg1);
1896 type = check_typedef (value_type (arg1));
1897 code = TYPE_CODE (type);
1898 }
1899 }
1900
1901 switch (code)
1902 {
1903 case TYPE_CODE_ARRAY:
1904 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1905 return value_f90_subarray (arg1, exp, pos, noside);
1906 else
1907 goto multi_f77_subscript;
1908
1909 case TYPE_CODE_STRING:
1910 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1911 return value_f90_subarray (arg1, exp, pos, noside);
1912 else
1913 {
1914 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1915 return value_subscript (arg1, value_as_long (arg2));
1916 }
1917
1918 case TYPE_CODE_PTR:
1919 case TYPE_CODE_FUNC:
1920 /* It's a function call. */
1921 /* Allocate arg vector, including space for the function to be
1922 called in argvec[0] and a terminating NULL. */
1923 argvec = (struct value **)
1924 alloca (sizeof (struct value *) * (nargs + 2));
1925 argvec[0] = arg1;
1926 tem = 1;
1927 for (; tem <= nargs; tem++)
1928 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1929 argvec[tem] = 0; /* signal end of arglist */
1930 goto do_call_it;
1931
1932 default:
1933 error (_("Cannot perform substring on this type"));
1934 }
1935
1936 case OP_COMPLEX:
1937 /* We have a complex number, There should be 2 floating
1938 point numbers that compose it. */
1939 (*pos) += 2;
1940 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1941 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1942
1943 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1944
1945 case STRUCTOP_STRUCT:
1946 tem = longest_to_int (exp->elts[pc + 1].longconst);
1947 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1948 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1949 if (noside == EVAL_SKIP)
1950 goto nosideret;
1951 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1952 return value_zero (lookup_struct_elt_type (value_type (arg1),
1953 &exp->elts[pc + 2].string,
1954 0),
1955 lval_memory);
1956 else
1957 {
1958 struct value *temp = arg1;
1959
1960 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1961 NULL, "structure");
1962 }
1963
1964 case STRUCTOP_PTR:
1965 tem = longest_to_int (exp->elts[pc + 1].longconst);
1966 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1967 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1968 if (noside == EVAL_SKIP)
1969 goto nosideret;
1970
1971 /* Check to see if operator '->' has been overloaded. If so replace
1972 arg1 with the value returned by evaluating operator->(). */
1973 while (unop_user_defined_p (op, arg1))
1974 {
1975 volatile struct gdb_exception except;
1976 struct value *value = NULL;
1977 TRY_CATCH (except, RETURN_MASK_ERROR)
1978 {
1979 value = value_x_unop (arg1, op, noside);
1980 }
1981
1982 if (except.reason < 0)
1983 {
1984 if (except.error == NOT_FOUND_ERROR)
1985 break;
1986 else
1987 throw_exception (except);
1988 }
1989 arg1 = value;
1990 }
1991
1992 /* JYG: if print object is on we need to replace the base type
1993 with rtti type in order to continue on with successful
1994 lookup of member / method only available in the rtti type. */
1995 {
1996 struct type *type = value_type (arg1);
1997 struct type *real_type;
1998 int full, top, using_enc;
1999 struct value_print_options opts;
2000
2001 get_user_print_options (&opts);
2002 if (opts.objectprint && TYPE_TARGET_TYPE(type)
2003 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
2004 {
2005 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
2006 if (real_type)
2007 {
2008 if (TYPE_CODE (type) == TYPE_CODE_PTR)
2009 real_type = lookup_pointer_type (real_type);
2010 else
2011 real_type = lookup_reference_type (real_type);
2012
2013 arg1 = value_cast (real_type, arg1);
2014 }
2015 }
2016 }
2017
2018 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2019 return value_zero (lookup_struct_elt_type (value_type (arg1),
2020 &exp->elts[pc + 2].string,
2021 0),
2022 lval_memory);
2023 else
2024 {
2025 struct value *temp = arg1;
2026
2027 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
2028 NULL, "structure pointer");
2029 }
2030
2031 case STRUCTOP_MEMBER:
2032 case STRUCTOP_MPTR:
2033 if (op == STRUCTOP_MEMBER)
2034 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2035 else
2036 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2037
2038 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2039
2040 if (noside == EVAL_SKIP)
2041 goto nosideret;
2042
2043 type = check_typedef (value_type (arg2));
2044 switch (TYPE_CODE (type))
2045 {
2046 case TYPE_CODE_METHODPTR:
2047 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2048 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2049 else
2050 {
2051 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2052 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2053 return value_ind (arg2);
2054 }
2055
2056 case TYPE_CODE_MEMBERPTR:
2057 /* Now, convert these values to an address. */
2058 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
2059 arg1);
2060
2061 mem_offset = value_as_long (arg2);
2062
2063 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2064 value_as_long (arg1) + mem_offset);
2065 return value_ind (arg3);
2066
2067 default:
2068 error (_("non-pointer-to-member value used "
2069 "in pointer-to-member construct"));
2070 }
2071
2072 case TYPE_INSTANCE:
2073 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2074 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2075 for (ix = 0; ix < nargs; ++ix)
2076 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
2077
2078 expect_type = make_params (nargs, arg_types);
2079 *(pos) += 3 + nargs;
2080 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2081 xfree (TYPE_FIELDS (expect_type));
2082 xfree (TYPE_MAIN_TYPE (expect_type));
2083 xfree (expect_type);
2084 return arg1;
2085
2086 case BINOP_CONCAT:
2087 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2088 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2089 if (noside == EVAL_SKIP)
2090 goto nosideret;
2091 if (binop_user_defined_p (op, arg1, arg2))
2092 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2093 else
2094 return value_concat (arg1, arg2);
2095
2096 case BINOP_ASSIGN:
2097 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2098 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2099
2100 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2101 return arg1;
2102 if (binop_user_defined_p (op, arg1, arg2))
2103 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2104 else
2105 return value_assign (arg1, arg2);
2106
2107 case BINOP_ASSIGN_MODIFY:
2108 (*pos) += 2;
2109 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2110 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2111 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2112 return arg1;
2113 op = exp->elts[pc + 1].opcode;
2114 if (binop_user_defined_p (op, arg1, arg2))
2115 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2116 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2117 value_type (arg1))
2118 && is_integral_type (value_type (arg2)))
2119 arg2 = value_ptradd (arg1, value_as_long (arg2));
2120 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2121 value_type (arg1))
2122 && is_integral_type (value_type (arg2)))
2123 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2124 else
2125 {
2126 struct value *tmp = arg1;
2127
2128 /* For shift and integer exponentiation operations,
2129 only promote the first argument. */
2130 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2131 && is_integral_type (value_type (arg2)))
2132 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2133 else
2134 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2135
2136 arg2 = value_binop (tmp, arg2, op);
2137 }
2138 return value_assign (arg1, arg2);
2139
2140 case BINOP_ADD:
2141 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2142 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2143 if (noside == EVAL_SKIP)
2144 goto nosideret;
2145 if (binop_user_defined_p (op, arg1, arg2))
2146 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2147 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2148 && is_integral_type (value_type (arg2)))
2149 return value_ptradd (arg1, value_as_long (arg2));
2150 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2151 && is_integral_type (value_type (arg1)))
2152 return value_ptradd (arg2, value_as_long (arg1));
2153 else
2154 {
2155 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2156 return value_binop (arg1, arg2, BINOP_ADD);
2157 }
2158
2159 case BINOP_SUB:
2160 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2161 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2162 if (noside == EVAL_SKIP)
2163 goto nosideret;
2164 if (binop_user_defined_p (op, arg1, arg2))
2165 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2166 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2167 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2168 {
2169 /* FIXME -- should be ptrdiff_t */
2170 type = builtin_type (exp->gdbarch)->builtin_long;
2171 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2172 }
2173 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2174 && is_integral_type (value_type (arg2)))
2175 return value_ptradd (arg1, - value_as_long (arg2));
2176 else
2177 {
2178 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2179 return value_binop (arg1, arg2, BINOP_SUB);
2180 }
2181
2182 case BINOP_EXP:
2183 case BINOP_MUL:
2184 case BINOP_DIV:
2185 case BINOP_INTDIV:
2186 case BINOP_REM:
2187 case BINOP_MOD:
2188 case BINOP_LSH:
2189 case BINOP_RSH:
2190 case BINOP_BITWISE_AND:
2191 case BINOP_BITWISE_IOR:
2192 case BINOP_BITWISE_XOR:
2193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2194 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2195 if (noside == EVAL_SKIP)
2196 goto nosideret;
2197 if (binop_user_defined_p (op, arg1, arg2))
2198 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2199 else
2200 {
2201 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2202 fudge arg2 to avoid division-by-zero, the caller is
2203 (theoretically) only looking for the type of the result. */
2204 if (noside == EVAL_AVOID_SIDE_EFFECTS
2205 /* ??? Do we really want to test for BINOP_MOD here?
2206 The implementation of value_binop gives it a well-defined
2207 value. */
2208 && (op == BINOP_DIV
2209 || op == BINOP_INTDIV
2210 || op == BINOP_REM
2211 || op == BINOP_MOD)
2212 && value_logical_not (arg2))
2213 {
2214 struct value *v_one, *retval;
2215
2216 v_one = value_one (value_type (arg2), not_lval);
2217 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2218 retval = value_binop (arg1, v_one, op);
2219 return retval;
2220 }
2221 else
2222 {
2223 /* For shift and integer exponentiation operations,
2224 only promote the first argument. */
2225 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2226 && is_integral_type (value_type (arg2)))
2227 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2228 else
2229 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2230
2231 return value_binop (arg1, arg2, op);
2232 }
2233 }
2234
2235 case BINOP_RANGE:
2236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2237 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2238 if (noside == EVAL_SKIP)
2239 goto nosideret;
2240 error (_("':' operator used in invalid context"));
2241
2242 case BINOP_SUBSCRIPT:
2243 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2244 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2245 if (noside == EVAL_SKIP)
2246 goto nosideret;
2247 if (binop_user_defined_p (op, arg1, arg2))
2248 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2249 else
2250 {
2251 /* If the user attempts to subscript something that is not an
2252 array or pointer type (like a plain int variable for example),
2253 then report this as an error. */
2254
2255 arg1 = coerce_ref (arg1);
2256 type = check_typedef (value_type (arg1));
2257 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2258 && TYPE_CODE (type) != TYPE_CODE_PTR)
2259 {
2260 if (TYPE_NAME (type))
2261 error (_("cannot subscript something of type `%s'"),
2262 TYPE_NAME (type));
2263 else
2264 error (_("cannot subscript requested type"));
2265 }
2266
2267 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2268 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2269 else
2270 return value_subscript (arg1, value_as_long (arg2));
2271 }
2272
2273 case BINOP_IN:
2274 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2275 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2276 if (noside == EVAL_SKIP)
2277 goto nosideret;
2278 type = language_bool_type (exp->language_defn, exp->gdbarch);
2279 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2280
2281 case MULTI_SUBSCRIPT:
2282 (*pos) += 2;
2283 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2284 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2285 while (nargs-- > 0)
2286 {
2287 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2288 /* FIXME: EVAL_SKIP handling may not be correct. */
2289 if (noside == EVAL_SKIP)
2290 {
2291 if (nargs > 0)
2292 {
2293 continue;
2294 }
2295 else
2296 {
2297 goto nosideret;
2298 }
2299 }
2300 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2301 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2302 {
2303 /* If the user attempts to subscript something that has no target
2304 type (like a plain int variable for example), then report this
2305 as an error. */
2306
2307 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2308 if (type != NULL)
2309 {
2310 arg1 = value_zero (type, VALUE_LVAL (arg1));
2311 noside = EVAL_SKIP;
2312 continue;
2313 }
2314 else
2315 {
2316 error (_("cannot subscript something of type `%s'"),
2317 TYPE_NAME (value_type (arg1)));
2318 }
2319 }
2320
2321 if (binop_user_defined_p (op, arg1, arg2))
2322 {
2323 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2324 }
2325 else
2326 {
2327 arg1 = coerce_ref (arg1);
2328 type = check_typedef (value_type (arg1));
2329
2330 switch (TYPE_CODE (type))
2331 {
2332 case TYPE_CODE_PTR:
2333 case TYPE_CODE_ARRAY:
2334 case TYPE_CODE_STRING:
2335 arg1 = value_subscript (arg1, value_as_long (arg2));
2336 break;
2337
2338 case TYPE_CODE_BITSTRING:
2339 type = language_bool_type (exp->language_defn, exp->gdbarch);
2340 arg1 = value_bitstring_subscript (type, arg1,
2341 value_as_long (arg2));
2342 break;
2343
2344 default:
2345 if (TYPE_NAME (type))
2346 error (_("cannot subscript something of type `%s'"),
2347 TYPE_NAME (type));
2348 else
2349 error (_("cannot subscript requested type"));
2350 }
2351 }
2352 }
2353 return (arg1);
2354
2355 multi_f77_subscript:
2356 {
2357 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2358 int ndimensions = 1, i;
2359 struct value *array = arg1;
2360
2361 if (nargs > MAX_FORTRAN_DIMS)
2362 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2363
2364 ndimensions = calc_f77_array_dims (type);
2365
2366 if (nargs != ndimensions)
2367 error (_("Wrong number of subscripts"));
2368
2369 gdb_assert (nargs > 0);
2370
2371 /* Now that we know we have a legal array subscript expression
2372 let us actually find out where this element exists in the array. */
2373
2374 /* Take array indices left to right. */
2375 for (i = 0; i < nargs; i++)
2376 {
2377 /* Evaluate each subscript; it must be a legal integer in F77. */
2378 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2379
2380 /* Fill in the subscript array. */
2381
2382 subscript_array[i] = value_as_long (arg2);
2383 }
2384
2385 /* Internal type of array is arranged right to left. */
2386 for (i = nargs; i > 0; i--)
2387 {
2388 struct type *array_type = check_typedef (value_type (array));
2389 LONGEST index = subscript_array[i - 1];
2390
2391 lower = f77_get_lowerbound (array_type);
2392 array = value_subscripted_rvalue (array, index, lower);
2393 }
2394
2395 return array;
2396 }
2397
2398 case BINOP_LOGICAL_AND:
2399 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2400 if (noside == EVAL_SKIP)
2401 {
2402 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2403 goto nosideret;
2404 }
2405
2406 oldpos = *pos;
2407 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2408 *pos = oldpos;
2409
2410 if (binop_user_defined_p (op, arg1, arg2))
2411 {
2412 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2413 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2414 }
2415 else
2416 {
2417 tem = value_logical_not (arg1);
2418 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2419 (tem ? EVAL_SKIP : noside));
2420 type = language_bool_type (exp->language_defn, exp->gdbarch);
2421 return value_from_longest (type,
2422 (LONGEST) (!tem && !value_logical_not (arg2)));
2423 }
2424
2425 case BINOP_LOGICAL_OR:
2426 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2427 if (noside == EVAL_SKIP)
2428 {
2429 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2430 goto nosideret;
2431 }
2432
2433 oldpos = *pos;
2434 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2435 *pos = oldpos;
2436
2437 if (binop_user_defined_p (op, arg1, arg2))
2438 {
2439 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2440 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2441 }
2442 else
2443 {
2444 tem = value_logical_not (arg1);
2445 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2446 (!tem ? EVAL_SKIP : noside));
2447 type = language_bool_type (exp->language_defn, exp->gdbarch);
2448 return value_from_longest (type,
2449 (LONGEST) (!tem || !value_logical_not (arg2)));
2450 }
2451
2452 case BINOP_EQUAL:
2453 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2454 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2455 if (noside == EVAL_SKIP)
2456 goto nosideret;
2457 if (binop_user_defined_p (op, arg1, arg2))
2458 {
2459 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2460 }
2461 else
2462 {
2463 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2464 tem = value_equal (arg1, arg2);
2465 type = language_bool_type (exp->language_defn, exp->gdbarch);
2466 return value_from_longest (type, (LONGEST) tem);
2467 }
2468
2469 case BINOP_NOTEQUAL:
2470 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2471 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2472 if (noside == EVAL_SKIP)
2473 goto nosideret;
2474 if (binop_user_defined_p (op, arg1, arg2))
2475 {
2476 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2477 }
2478 else
2479 {
2480 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2481 tem = value_equal (arg1, arg2);
2482 type = language_bool_type (exp->language_defn, exp->gdbarch);
2483 return value_from_longest (type, (LONGEST) ! tem);
2484 }
2485
2486 case BINOP_LESS:
2487 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2488 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2489 if (noside == EVAL_SKIP)
2490 goto nosideret;
2491 if (binop_user_defined_p (op, arg1, arg2))
2492 {
2493 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2494 }
2495 else
2496 {
2497 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2498 tem = value_less (arg1, arg2);
2499 type = language_bool_type (exp->language_defn, exp->gdbarch);
2500 return value_from_longest (type, (LONGEST) tem);
2501 }
2502
2503 case BINOP_GTR:
2504 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2505 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2506 if (noside == EVAL_SKIP)
2507 goto nosideret;
2508 if (binop_user_defined_p (op, arg1, arg2))
2509 {
2510 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2511 }
2512 else
2513 {
2514 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2515 tem = value_less (arg2, arg1);
2516 type = language_bool_type (exp->language_defn, exp->gdbarch);
2517 return value_from_longest (type, (LONGEST) tem);
2518 }
2519
2520 case BINOP_GEQ:
2521 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2522 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2523 if (noside == EVAL_SKIP)
2524 goto nosideret;
2525 if (binop_user_defined_p (op, arg1, arg2))
2526 {
2527 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2528 }
2529 else
2530 {
2531 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2532 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2533 type = language_bool_type (exp->language_defn, exp->gdbarch);
2534 return value_from_longest (type, (LONGEST) tem);
2535 }
2536
2537 case BINOP_LEQ:
2538 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2539 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2540 if (noside == EVAL_SKIP)
2541 goto nosideret;
2542 if (binop_user_defined_p (op, arg1, arg2))
2543 {
2544 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2545 }
2546 else
2547 {
2548 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2549 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2550 type = language_bool_type (exp->language_defn, exp->gdbarch);
2551 return value_from_longest (type, (LONGEST) tem);
2552 }
2553
2554 case BINOP_REPEAT:
2555 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2556 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2557 if (noside == EVAL_SKIP)
2558 goto nosideret;
2559 type = check_typedef (value_type (arg2));
2560 if (TYPE_CODE (type) != TYPE_CODE_INT)
2561 error (_("Non-integral right operand for \"@\" operator."));
2562 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2563 {
2564 return allocate_repeat_value (value_type (arg1),
2565 longest_to_int (value_as_long (arg2)));
2566 }
2567 else
2568 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2569
2570 case BINOP_COMMA:
2571 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2572 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2573
2574 case UNOP_PLUS:
2575 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2576 if (noside == EVAL_SKIP)
2577 goto nosideret;
2578 if (unop_user_defined_p (op, arg1))
2579 return value_x_unop (arg1, op, noside);
2580 else
2581 {
2582 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2583 return value_pos (arg1);
2584 }
2585
2586 case UNOP_NEG:
2587 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2588 if (noside == EVAL_SKIP)
2589 goto nosideret;
2590 if (unop_user_defined_p (op, arg1))
2591 return value_x_unop (arg1, op, noside);
2592 else
2593 {
2594 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2595 return value_neg (arg1);
2596 }
2597
2598 case UNOP_COMPLEMENT:
2599 /* C++: check for and handle destructor names. */
2600 op = exp->elts[*pos].opcode;
2601
2602 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2603 if (noside == EVAL_SKIP)
2604 goto nosideret;
2605 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2606 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2607 else
2608 {
2609 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2610 return value_complement (arg1);
2611 }
2612
2613 case UNOP_LOGICAL_NOT:
2614 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2615 if (noside == EVAL_SKIP)
2616 goto nosideret;
2617 if (unop_user_defined_p (op, arg1))
2618 return value_x_unop (arg1, op, noside);
2619 else
2620 {
2621 type = language_bool_type (exp->language_defn, exp->gdbarch);
2622 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2623 }
2624
2625 case UNOP_IND:
2626 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2627 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2628 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2629 type = check_typedef (value_type (arg1));
2630 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2631 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2632 error (_("Attempt to dereference pointer "
2633 "to member without an object"));
2634 if (noside == EVAL_SKIP)
2635 goto nosideret;
2636 if (unop_user_defined_p (op, arg1))
2637 return value_x_unop (arg1, op, noside);
2638 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2639 {
2640 type = check_typedef (value_type (arg1));
2641 if (TYPE_CODE (type) == TYPE_CODE_PTR
2642 || TYPE_CODE (type) == TYPE_CODE_REF
2643 /* In C you can dereference an array to get the 1st elt. */
2644 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2645 )
2646 return value_zero (TYPE_TARGET_TYPE (type),
2647 lval_memory);
2648 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2649 /* GDB allows dereferencing an int. */
2650 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2651 lval_memory);
2652 else
2653 error (_("Attempt to take contents of a non-pointer value."));
2654 }
2655
2656 /* Allow * on an integer so we can cast it to whatever we want.
2657 This returns an int, which seems like the most C-like thing to
2658 do. "long long" variables are rare enough that
2659 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2660 if (TYPE_CODE (type) == TYPE_CODE_INT)
2661 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2662 (CORE_ADDR) value_as_address (arg1));
2663 return value_ind (arg1);
2664
2665 case UNOP_ADDR:
2666 /* C++: check for and handle pointer to members. */
2667
2668 op = exp->elts[*pos].opcode;
2669
2670 if (noside == EVAL_SKIP)
2671 {
2672 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2673 goto nosideret;
2674 }
2675 else
2676 {
2677 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2678 noside);
2679
2680 return retvalp;
2681 }
2682
2683 case UNOP_SIZEOF:
2684 if (noside == EVAL_SKIP)
2685 {
2686 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2687 goto nosideret;
2688 }
2689 return evaluate_subexp_for_sizeof (exp, pos);
2690
2691 case UNOP_CAST:
2692 (*pos) += 2;
2693 type = exp->elts[pc + 1].type;
2694 arg1 = evaluate_subexp (type, exp, pos, noside);
2695 if (noside == EVAL_SKIP)
2696 goto nosideret;
2697 if (type != value_type (arg1))
2698 arg1 = value_cast (type, arg1);
2699 return arg1;
2700
2701 case UNOP_DYNAMIC_CAST:
2702 (*pos) += 2;
2703 type = exp->elts[pc + 1].type;
2704 arg1 = evaluate_subexp (type, exp, pos, noside);
2705 if (noside == EVAL_SKIP)
2706 goto nosideret;
2707 return value_dynamic_cast (type, arg1);
2708
2709 case UNOP_REINTERPRET_CAST:
2710 (*pos) += 2;
2711 type = exp->elts[pc + 1].type;
2712 arg1 = evaluate_subexp (type, exp, pos, noside);
2713 if (noside == EVAL_SKIP)
2714 goto nosideret;
2715 return value_reinterpret_cast (type, arg1);
2716
2717 case UNOP_MEMVAL:
2718 (*pos) += 2;
2719 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2720 if (noside == EVAL_SKIP)
2721 goto nosideret;
2722 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2723 return value_zero (exp->elts[pc + 1].type, lval_memory);
2724 else
2725 return value_at_lazy (exp->elts[pc + 1].type,
2726 value_as_address (arg1));
2727
2728 case UNOP_MEMVAL_TLS:
2729 (*pos) += 3;
2730 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2731 if (noside == EVAL_SKIP)
2732 goto nosideret;
2733 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2734 return value_zero (exp->elts[pc + 2].type, lval_memory);
2735 else
2736 {
2737 CORE_ADDR tls_addr;
2738
2739 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2740 value_as_address (arg1));
2741 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2742 }
2743
2744 case UNOP_PREINCREMENT:
2745 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2746 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2747 return arg1;
2748 else if (unop_user_defined_p (op, arg1))
2749 {
2750 return value_x_unop (arg1, op, noside);
2751 }
2752 else
2753 {
2754 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2755 arg2 = value_ptradd (arg1, 1);
2756 else
2757 {
2758 struct value *tmp = arg1;
2759
2760 arg2 = value_one (value_type (arg1), not_lval);
2761 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2762 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2763 }
2764
2765 return value_assign (arg1, arg2);
2766 }
2767
2768 case UNOP_PREDECREMENT:
2769 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2770 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2771 return arg1;
2772 else if (unop_user_defined_p (op, arg1))
2773 {
2774 return value_x_unop (arg1, op, noside);
2775 }
2776 else
2777 {
2778 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2779 arg2 = value_ptradd (arg1, -1);
2780 else
2781 {
2782 struct value *tmp = arg1;
2783
2784 arg2 = value_one (value_type (arg1), not_lval);
2785 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2786 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2787 }
2788
2789 return value_assign (arg1, arg2);
2790 }
2791
2792 case UNOP_POSTINCREMENT:
2793 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2794 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2795 return arg1;
2796 else if (unop_user_defined_p (op, arg1))
2797 {
2798 return value_x_unop (arg1, op, noside);
2799 }
2800 else
2801 {
2802 arg3 = value_non_lval (arg1);
2803
2804 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2805 arg2 = value_ptradd (arg1, 1);
2806 else
2807 {
2808 struct value *tmp = arg1;
2809
2810 arg2 = value_one (value_type (arg1), not_lval);
2811 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2812 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2813 }
2814
2815 value_assign (arg1, arg2);
2816 return arg3;
2817 }
2818
2819 case UNOP_POSTDECREMENT:
2820 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2821 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2822 return arg1;
2823 else if (unop_user_defined_p (op, arg1))
2824 {
2825 return value_x_unop (arg1, op, noside);
2826 }
2827 else
2828 {
2829 arg3 = value_non_lval (arg1);
2830
2831 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2832 arg2 = value_ptradd (arg1, -1);
2833 else
2834 {
2835 struct value *tmp = arg1;
2836
2837 arg2 = value_one (value_type (arg1), not_lval);
2838 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2839 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2840 }
2841
2842 value_assign (arg1, arg2);
2843 return arg3;
2844 }
2845
2846 case OP_THIS:
2847 (*pos) += 1;
2848 return value_of_this (1);
2849
2850 case OP_OBJC_SELF:
2851 (*pos) += 1;
2852 return value_of_local ("self", 1);
2853
2854 case OP_TYPE:
2855 /* The value is not supposed to be used. This is here to make it
2856 easier to accommodate expressions that contain types. */
2857 (*pos) += 2;
2858 if (noside == EVAL_SKIP)
2859 goto nosideret;
2860 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2861 {
2862 struct type *type = exp->elts[pc + 1].type;
2863
2864 /* If this is a typedef, then find its immediate target. We
2865 use check_typedef to resolve stubs, but we ignore its
2866 result because we do not want to dig past all
2867 typedefs. */
2868 check_typedef (type);
2869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2870 type = TYPE_TARGET_TYPE (type);
2871 return allocate_value (type);
2872 }
2873 else
2874 error (_("Attempt to use a type name as an expression"));
2875
2876 default:
2877 /* Removing this case and compiling with gcc -Wall reveals that
2878 a lot of cases are hitting this case. Some of these should
2879 probably be removed from expression.h; others are legitimate
2880 expressions which are (apparently) not fully implemented.
2881
2882 If there are any cases landing here which mean a user error,
2883 then they should be separate cases, with more descriptive
2884 error messages. */
2885
2886 error (_("GDB does not (yet) know how to "
2887 "evaluate that kind of expression"));
2888 }
2889
2890 nosideret:
2891 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2892 }
2893 \f
2894 /* Evaluate a subexpression of EXP, at index *POS,
2895 and return the address of that subexpression.
2896 Advance *POS over the subexpression.
2897 If the subexpression isn't an lvalue, get an error.
2898 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2899 then only the type of the result need be correct. */
2900
2901 static struct value *
2902 evaluate_subexp_for_address (struct expression *exp, int *pos,
2903 enum noside noside)
2904 {
2905 enum exp_opcode op;
2906 int pc;
2907 struct symbol *var;
2908 struct value *x;
2909 int tem;
2910
2911 pc = (*pos);
2912 op = exp->elts[pc].opcode;
2913
2914 switch (op)
2915 {
2916 case UNOP_IND:
2917 (*pos)++;
2918 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2919
2920 /* We can't optimize out "&*" if there's a user-defined operator*. */
2921 if (unop_user_defined_p (op, x))
2922 {
2923 x = value_x_unop (x, op, noside);
2924 goto default_case_after_eval;
2925 }
2926
2927 return coerce_array (x);
2928
2929 case UNOP_MEMVAL:
2930 (*pos) += 3;
2931 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2932 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2933
2934 case OP_VAR_VALUE:
2935 var = exp->elts[pc + 2].symbol;
2936
2937 /* C++: The "address" of a reference should yield the address
2938 * of the object pointed to. Let value_addr() deal with it. */
2939 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2940 goto default_case;
2941
2942 (*pos) += 4;
2943 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2944 {
2945 struct type *type =
2946 lookup_pointer_type (SYMBOL_TYPE (var));
2947 enum address_class sym_class = SYMBOL_CLASS (var);
2948
2949 if (sym_class == LOC_CONST
2950 || sym_class == LOC_CONST_BYTES
2951 || sym_class == LOC_REGISTER)
2952 error (_("Attempt to take address of register or constant."));
2953
2954 return
2955 value_zero (type, not_lval);
2956 }
2957 else
2958 return address_of_variable (var, exp->elts[pc + 1].block);
2959
2960 case OP_SCOPE:
2961 tem = longest_to_int (exp->elts[pc + 2].longconst);
2962 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2963 x = value_aggregate_elt (exp->elts[pc + 1].type,
2964 &exp->elts[pc + 3].string,
2965 NULL, 1, noside);
2966 if (x == NULL)
2967 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2968 return x;
2969
2970 default:
2971 default_case:
2972 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2973 default_case_after_eval:
2974 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2975 {
2976 struct type *type = check_typedef (value_type (x));
2977
2978 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2979 return value_zero (lookup_pointer_type (value_type (x)),
2980 not_lval);
2981 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2982 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2983 not_lval);
2984 else
2985 error (_("Attempt to take address of "
2986 "value not located in memory."));
2987 }
2988 return value_addr (x);
2989 }
2990 }
2991
2992 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2993 When used in contexts where arrays will be coerced anyway, this is
2994 equivalent to `evaluate_subexp' but much faster because it avoids
2995 actually fetching array contents (perhaps obsolete now that we have
2996 value_lazy()).
2997
2998 Note that we currently only do the coercion for C expressions, where
2999 arrays are zero based and the coercion is correct. For other languages,
3000 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3001 to decide if coercion is appropriate. */
3002
3003 struct value *
3004 evaluate_subexp_with_coercion (struct expression *exp,
3005 int *pos, enum noside noside)
3006 {
3007 enum exp_opcode op;
3008 int pc;
3009 struct value *val;
3010 struct symbol *var;
3011 struct type *type;
3012
3013 pc = (*pos);
3014 op = exp->elts[pc].opcode;
3015
3016 switch (op)
3017 {
3018 case OP_VAR_VALUE:
3019 var = exp->elts[pc + 2].symbol;
3020 type = check_typedef (SYMBOL_TYPE (var));
3021 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3022 && !TYPE_VECTOR (type)
3023 && CAST_IS_CONVERSION (exp->language_defn))
3024 {
3025 (*pos) += 4;
3026 val = address_of_variable (var, exp->elts[pc + 1].block);
3027 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3028 val);
3029 }
3030 /* FALLTHROUGH */
3031
3032 default:
3033 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3034 }
3035 }
3036
3037 /* Evaluate a subexpression of EXP, at index *POS,
3038 and return a value for the size of that subexpression.
3039 Advance *POS over the subexpression. */
3040
3041 static struct value *
3042 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3043 {
3044 /* FIXME: This should be size_t. */
3045 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3046 enum exp_opcode op;
3047 int pc;
3048 struct type *type;
3049 struct value *val;
3050
3051 pc = (*pos);
3052 op = exp->elts[pc].opcode;
3053
3054 switch (op)
3055 {
3056 /* This case is handled specially
3057 so that we avoid creating a value for the result type.
3058 If the result type is very big, it's desirable not to
3059 create a value unnecessarily. */
3060 case UNOP_IND:
3061 (*pos)++;
3062 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3063 type = check_typedef (value_type (val));
3064 if (TYPE_CODE (type) != TYPE_CODE_PTR
3065 && TYPE_CODE (type) != TYPE_CODE_REF
3066 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3067 error (_("Attempt to take contents of a non-pointer value."));
3068 type = check_typedef (TYPE_TARGET_TYPE (type));
3069 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3070
3071 case UNOP_MEMVAL:
3072 (*pos) += 3;
3073 type = check_typedef (exp->elts[pc + 1].type);
3074 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3075
3076 case OP_VAR_VALUE:
3077 (*pos) += 4;
3078 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3079 return
3080 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3081
3082 default:
3083 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3084 return value_from_longest (size_type,
3085 (LONGEST) TYPE_LENGTH (value_type (val)));
3086 }
3087 }
3088
3089 /* Parse a type expression in the string [P..P+LENGTH). */
3090
3091 struct type *
3092 parse_and_eval_type (char *p, int length)
3093 {
3094 char *tmp = (char *) alloca (length + 4);
3095 struct expression *expr;
3096
3097 tmp[0] = '(';
3098 memcpy (tmp + 1, p, length);
3099 tmp[length + 1] = ')';
3100 tmp[length + 2] = '0';
3101 tmp[length + 3] = '\0';
3102 expr = parse_expression (tmp);
3103 if (expr->elts[0].opcode != UNOP_CAST)
3104 error (_("Internal error in eval_type."));
3105 return expr->elts[1].type;
3106 }
3107
3108 int
3109 calc_f77_array_dims (struct type *array_type)
3110 {
3111 int ndimen = 1;
3112 struct type *tmp_type;
3113
3114 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3115 error (_("Can't get dimensions for a non-array type"));
3116
3117 tmp_type = array_type;
3118
3119 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3120 {
3121 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3122 ++ndimen;
3123 }
3124 return ndimen;
3125 }
This page took 0.114794 seconds and 4 git commands to generate.