* gdbtypes.c (create_string_type): Receive character type as argument.
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static struct value *evaluate_subexp (struct type *, struct expression *,
60 int *, enum noside);
61
62 static char *get_label (struct expression *, int *);
63
64 static struct value *evaluate_struct_tuple (struct value *,
65 struct expression *, int *,
66 enum noside, int);
67
68 static LONGEST init_array_element (struct value *, struct value *,
69 struct expression *, int *, enum noside,
70 LONGEST, LONGEST);
71
72 static struct value *
73 evaluate_subexp (struct type *expect_type, struct expression *exp,
74 int *pos, enum noside noside)
75 {
76 return (*exp->language_defn->la_exp_desc->evaluate_exp)
77 (expect_type, exp, pos, noside);
78 }
79 \f
80 /* Parse the string EXP as a C expression, evaluate it,
81 and return the result as a number. */
82
83 CORE_ADDR
84 parse_and_eval_address (char *exp)
85 {
86 struct expression *expr = parse_expression (exp);
87 CORE_ADDR addr;
88 struct cleanup *old_chain =
89 make_cleanup (free_current_contents, &expr);
90
91 addr = value_as_address (evaluate_expression (expr));
92 do_cleanups (old_chain);
93 return addr;
94 }
95
96 /* Like parse_and_eval_address but takes a pointer to a char * variable
97 and advanced that variable across the characters parsed. */
98
99 CORE_ADDR
100 parse_and_eval_address_1 (char **expptr)
101 {
102 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
103 CORE_ADDR addr;
104 struct cleanup *old_chain =
105 make_cleanup (free_current_contents, &expr);
106
107 addr = value_as_address (evaluate_expression (expr));
108 do_cleanups (old_chain);
109 return addr;
110 }
111
112 /* Like parse_and_eval_address, but treats the value of the expression
113 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
114 LONGEST
115 parse_and_eval_long (char *exp)
116 {
117 struct expression *expr = parse_expression (exp);
118 LONGEST retval;
119 struct cleanup *old_chain =
120 make_cleanup (free_current_contents, &expr);
121
122 retval = value_as_long (evaluate_expression (expr));
123 do_cleanups (old_chain);
124 return (retval);
125 }
126
127 struct value *
128 parse_and_eval (char *exp)
129 {
130 struct expression *expr = parse_expression (exp);
131 struct value *val;
132 struct cleanup *old_chain =
133 make_cleanup (free_current_contents, &expr);
134
135 val = evaluate_expression (expr);
136 do_cleanups (old_chain);
137 return val;
138 }
139
140 /* Parse up to a comma (or to a closeparen)
141 in the string EXPP as an expression, evaluate it, and return the value.
142 EXPP is advanced to point to the comma. */
143
144 struct value *
145 parse_to_comma_and_eval (char **expp)
146 {
147 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
148 struct value *val;
149 struct cleanup *old_chain =
150 make_cleanup (free_current_contents, &expr);
151
152 val = evaluate_expression (expr);
153 do_cleanups (old_chain);
154 return val;
155 }
156 \f
157 /* Evaluate an expression in internal prefix form
158 such as is constructed by parse.y.
159
160 See expression.h for info on the format of an expression. */
161
162 struct value *
163 evaluate_expression (struct expression *exp)
164 {
165 int pc = 0;
166 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
167 }
168
169 /* Evaluate an expression, avoiding all memory references
170 and getting a value whose type alone is correct. */
171
172 struct value *
173 evaluate_type (struct expression *exp)
174 {
175 int pc = 0;
176 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
177 }
178
179 /* Evaluate a subexpression, avoiding all memory references and
180 getting a value whose type alone is correct. */
181
182 struct value *
183 evaluate_subexpression_type (struct expression *exp, int subexp)
184 {
185 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
186 }
187
188 /* Extract a field operation from an expression. If the subexpression
189 of EXP starting at *SUBEXP is not a structure dereference
190 operation, return NULL. Otherwise, return the name of the
191 dereferenced field, and advance *SUBEXP to point to the
192 subexpression of the left-hand-side of the dereference. This is
193 used when completing field names. */
194
195 char *
196 extract_field_op (struct expression *exp, int *subexp)
197 {
198 int tem;
199 char *result;
200 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
201 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
202 return NULL;
203 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
204 result = &exp->elts[*subexp + 2].string;
205 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
206 return result;
207 }
208
209 /* If the next expression is an OP_LABELED, skips past it,
210 returning the label. Otherwise, does nothing and returns NULL. */
211
212 static char *
213 get_label (struct expression *exp, int *pos)
214 {
215 if (exp->elts[*pos].opcode == OP_LABELED)
216 {
217 int pc = (*pos)++;
218 char *name = &exp->elts[pc + 2].string;
219 int tem = longest_to_int (exp->elts[pc + 1].longconst);
220 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
221 return name;
222 }
223 else
224 return NULL;
225 }
226
227 /* This function evaluates tuples (in (the deleted) Chill) or
228 brace-initializers (in C/C++) for structure types. */
229
230 static struct value *
231 evaluate_struct_tuple (struct value *struct_val,
232 struct expression *exp,
233 int *pos, enum noside noside, int nargs)
234 {
235 struct type *struct_type = check_typedef (value_type (struct_val));
236 struct type *substruct_type = struct_type;
237 struct type *field_type;
238 int fieldno = -1;
239 int variantno = -1;
240 int subfieldno = -1;
241 while (--nargs >= 0)
242 {
243 int pc = *pos;
244 struct value *val = NULL;
245 int nlabels = 0;
246 int bitpos, bitsize;
247 bfd_byte *addr;
248
249 /* Skip past the labels, and count them. */
250 while (get_label (exp, pos) != NULL)
251 nlabels++;
252
253 do
254 {
255 char *label = get_label (exp, &pc);
256 if (label)
257 {
258 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
259 fieldno++)
260 {
261 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
262 if (field_name != NULL && strcmp (field_name, label) == 0)
263 {
264 variantno = -1;
265 subfieldno = fieldno;
266 substruct_type = struct_type;
267 goto found;
268 }
269 }
270 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
271 fieldno++)
272 {
273 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
274 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
275 if ((field_name == 0 || *field_name == '\0')
276 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
277 {
278 variantno = 0;
279 for (; variantno < TYPE_NFIELDS (field_type);
280 variantno++)
281 {
282 substruct_type
283 = TYPE_FIELD_TYPE (field_type, variantno);
284 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
285 {
286 for (subfieldno = 0;
287 subfieldno < TYPE_NFIELDS (substruct_type);
288 subfieldno++)
289 {
290 if (strcmp(TYPE_FIELD_NAME (substruct_type,
291 subfieldno),
292 label) == 0)
293 {
294 goto found;
295 }
296 }
297 }
298 }
299 }
300 }
301 error (_("there is no field named %s"), label);
302 found:
303 ;
304 }
305 else
306 {
307 /* Unlabelled tuple element - go to next field. */
308 if (variantno >= 0)
309 {
310 subfieldno++;
311 if (subfieldno >= TYPE_NFIELDS (substruct_type))
312 {
313 variantno = -1;
314 substruct_type = struct_type;
315 }
316 }
317 if (variantno < 0)
318 {
319 fieldno++;
320 /* Skip static fields. */
321 while (fieldno < TYPE_NFIELDS (struct_type)
322 && field_is_static (&TYPE_FIELD (struct_type,
323 fieldno)))
324 fieldno++;
325 subfieldno = fieldno;
326 if (fieldno >= TYPE_NFIELDS (struct_type))
327 error (_("too many initializers"));
328 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
329 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
330 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
331 error (_("don't know which variant you want to set"));
332 }
333 }
334
335 /* Here, struct_type is the type of the inner struct,
336 while substruct_type is the type of the inner struct.
337 These are the same for normal structures, but a variant struct
338 contains anonymous union fields that contain substruct fields.
339 The value fieldno is the index of the top-level (normal or
340 anonymous union) field in struct_field, while the value
341 subfieldno is the index of the actual real (named inner) field
342 in substruct_type. */
343
344 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
345 if (val == 0)
346 val = evaluate_subexp (field_type, exp, pos, noside);
347
348 /* Now actually set the field in struct_val. */
349
350 /* Assign val to field fieldno. */
351 if (value_type (val) != field_type)
352 val = value_cast (field_type, val);
353
354 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
355 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
356 if (variantno >= 0)
357 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
358 addr = value_contents_writeable (struct_val) + bitpos / 8;
359 if (bitsize)
360 modify_field (addr, value_as_long (val),
361 bitpos % 8, bitsize);
362 else
363 memcpy (addr, value_contents (val),
364 TYPE_LENGTH (value_type (val)));
365 }
366 while (--nlabels > 0);
367 }
368 return struct_val;
369 }
370
371 /* Recursive helper function for setting elements of array tuples for
372 (the deleted) Chill. The target is ARRAY (which has bounds
373 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
374 and NOSIDE are as usual. Evaluates index expresions and sets the
375 specified element(s) of ARRAY to ELEMENT. Returns last index
376 value. */
377
378 static LONGEST
379 init_array_element (struct value *array, struct value *element,
380 struct expression *exp, int *pos,
381 enum noside noside, LONGEST low_bound, LONGEST high_bound)
382 {
383 LONGEST index;
384 int element_size = TYPE_LENGTH (value_type (element));
385 if (exp->elts[*pos].opcode == BINOP_COMMA)
386 {
387 (*pos)++;
388 init_array_element (array, element, exp, pos, noside,
389 low_bound, high_bound);
390 return init_array_element (array, element,
391 exp, pos, noside, low_bound, high_bound);
392 }
393 else if (exp->elts[*pos].opcode == BINOP_RANGE)
394 {
395 LONGEST low, high;
396 (*pos)++;
397 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
398 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
399 if (low < low_bound || high > high_bound)
400 error (_("tuple range index out of range"));
401 for (index = low; index <= high; index++)
402 {
403 memcpy (value_contents_raw (array)
404 + (index - low_bound) * element_size,
405 value_contents (element), element_size);
406 }
407 }
408 else
409 {
410 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
411 if (index < low_bound || index > high_bound)
412 error (_("tuple index out of range"));
413 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
414 value_contents (element), element_size);
415 }
416 return index;
417 }
418
419 static struct value *
420 value_f90_subarray (struct value *array,
421 struct expression *exp, int *pos, enum noside noside)
422 {
423 int pc = (*pos) + 1;
424 LONGEST low_bound, high_bound;
425 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
426 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
427
428 *pos += 3;
429
430 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
431 low_bound = TYPE_LOW_BOUND (range);
432 else
433 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
434
435 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
436 high_bound = TYPE_HIGH_BOUND (range);
437 else
438 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
439
440 return value_slice (array, low_bound, high_bound - low_bound + 1);
441 }
442
443
444 /* Promote value ARG1 as appropriate before performing a unary operation
445 on this argument.
446 If the result is not appropriate for any particular language then it
447 needs to patch this function. */
448
449 void
450 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
451 struct value **arg1)
452 {
453 struct type *type1;
454
455 *arg1 = coerce_ref (*arg1);
456 type1 = check_typedef (value_type (*arg1));
457
458 if (is_integral_type (type1))
459 {
460 switch (language->la_language)
461 {
462 default:
463 /* Perform integral promotion for ANSI C/C++.
464 If not appropropriate for any particular language
465 it needs to modify this function. */
466 {
467 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
468 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
469 *arg1 = value_cast (builtin_int, *arg1);
470 }
471 break;
472 }
473 }
474 }
475
476 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
477 operation on those two operands.
478 If the result is not appropriate for any particular language then it
479 needs to patch this function. */
480
481 void
482 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
483 struct value **arg1, struct value **arg2)
484 {
485 struct type *promoted_type = NULL;
486 struct type *type1;
487 struct type *type2;
488
489 *arg1 = coerce_ref (*arg1);
490 *arg2 = coerce_ref (*arg2);
491
492 type1 = check_typedef (value_type (*arg1));
493 type2 = check_typedef (value_type (*arg2));
494
495 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
496 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
497 && !is_integral_type (type1))
498 || (TYPE_CODE (type2) != TYPE_CODE_FLT
499 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
500 && !is_integral_type (type2)))
501 return;
502
503 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
504 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
505 {
506 /* No promotion required. */
507 }
508 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
509 || TYPE_CODE (type2) == TYPE_CODE_FLT)
510 {
511 switch (language->la_language)
512 {
513 case language_c:
514 case language_cplus:
515 case language_asm:
516 case language_objc:
517 /* No promotion required. */
518 break;
519
520 default:
521 /* For other languages the result type is unchanged from gdb
522 version 6.7 for backward compatibility.
523 If either arg was long double, make sure that value is also long
524 double. Otherwise use double. */
525 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
526 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
527 promoted_type = builtin_type (gdbarch)->builtin_long_double;
528 else
529 promoted_type = builtin_type (gdbarch)->builtin_double;
530 break;
531 }
532 }
533 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
534 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
535 {
536 /* No promotion required. */
537 }
538 else
539 /* Integral operations here. */
540 /* FIXME: Also mixed integral/booleans, with result an integer. */
541 {
542 const struct builtin_type *builtin = builtin_type (gdbarch);
543 unsigned int promoted_len1 = TYPE_LENGTH (type1);
544 unsigned int promoted_len2 = TYPE_LENGTH (type2);
545 int is_unsigned1 = TYPE_UNSIGNED (type1);
546 int is_unsigned2 = TYPE_UNSIGNED (type2);
547 unsigned int result_len;
548 int unsigned_operation;
549
550 /* Determine type length and signedness after promotion for
551 both operands. */
552 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
553 {
554 is_unsigned1 = 0;
555 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
556 }
557 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
558 {
559 is_unsigned2 = 0;
560 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
561 }
562
563 if (promoted_len1 > promoted_len2)
564 {
565 unsigned_operation = is_unsigned1;
566 result_len = promoted_len1;
567 }
568 else if (promoted_len2 > promoted_len1)
569 {
570 unsigned_operation = is_unsigned2;
571 result_len = promoted_len2;
572 }
573 else
574 {
575 unsigned_operation = is_unsigned1 || is_unsigned2;
576 result_len = promoted_len1;
577 }
578
579 switch (language->la_language)
580 {
581 case language_c:
582 case language_cplus:
583 case language_asm:
584 case language_objc:
585 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
586 {
587 promoted_type = (unsigned_operation
588 ? builtin->builtin_unsigned_int
589 : builtin->builtin_int);
590 }
591 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
592 {
593 promoted_type = (unsigned_operation
594 ? builtin->builtin_unsigned_long
595 : builtin->builtin_long);
596 }
597 else
598 {
599 promoted_type = (unsigned_operation
600 ? builtin->builtin_unsigned_long_long
601 : builtin->builtin_long_long);
602 }
603 break;
604
605 default:
606 /* For other languages the result type is unchanged from gdb
607 version 6.7 for backward compatibility.
608 If either arg was long long, make sure that value is also long
609 long. Otherwise use long. */
610 if (unsigned_operation)
611 {
612 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
613 promoted_type = builtin->builtin_unsigned_long_long;
614 else
615 promoted_type = builtin->builtin_unsigned_long;
616 }
617 else
618 {
619 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
620 promoted_type = builtin->builtin_long_long;
621 else
622 promoted_type = builtin->builtin_long;
623 }
624 break;
625 }
626 }
627
628 if (promoted_type)
629 {
630 /* Promote both operands to common type. */
631 *arg1 = value_cast (promoted_type, *arg1);
632 *arg2 = value_cast (promoted_type, *arg2);
633 }
634 }
635
636 static int
637 ptrmath_type_p (struct type *type)
638 {
639 type = check_typedef (type);
640 if (TYPE_CODE (type) == TYPE_CODE_REF)
641 type = TYPE_TARGET_TYPE (type);
642
643 switch (TYPE_CODE (type))
644 {
645 case TYPE_CODE_PTR:
646 case TYPE_CODE_FUNC:
647 return 1;
648
649 case TYPE_CODE_ARRAY:
650 return current_language->c_style_arrays;
651
652 default:
653 return 0;
654 }
655 }
656
657 struct value *
658 evaluate_subexp_standard (struct type *expect_type,
659 struct expression *exp, int *pos,
660 enum noside noside)
661 {
662 enum exp_opcode op;
663 int tem, tem2, tem3;
664 int pc, pc2 = 0, oldpos;
665 struct value *arg1 = NULL;
666 struct value *arg2 = NULL;
667 struct value *arg3;
668 struct type *type;
669 int nargs;
670 struct value **argvec;
671 int upper, lower, retcode;
672 int code;
673 int ix;
674 long mem_offset;
675 struct type **arg_types;
676 int save_pos1;
677
678 pc = (*pos)++;
679 op = exp->elts[pc].opcode;
680
681 switch (op)
682 {
683 case OP_SCOPE:
684 tem = longest_to_int (exp->elts[pc + 2].longconst);
685 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
686 if (noside == EVAL_SKIP)
687 goto nosideret;
688 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
689 &exp->elts[pc + 3].string,
690 0, noside);
691 if (arg1 == NULL)
692 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
693 return arg1;
694
695 case OP_LONG:
696 (*pos) += 3;
697 return value_from_longest (exp->elts[pc + 1].type,
698 exp->elts[pc + 2].longconst);
699
700 case OP_DOUBLE:
701 (*pos) += 3;
702 return value_from_double (exp->elts[pc + 1].type,
703 exp->elts[pc + 2].doubleconst);
704
705 case OP_DECFLOAT:
706 (*pos) += 3;
707 return value_from_decfloat (exp->elts[pc + 1].type,
708 exp->elts[pc + 2].decfloatconst);
709
710 case OP_VAR_VALUE:
711 (*pos) += 3;
712 if (noside == EVAL_SKIP)
713 goto nosideret;
714
715 /* JYG: We used to just return value_zero of the symbol type
716 if we're asked to avoid side effects. Otherwise we return
717 value_of_variable (...). However I'm not sure if
718 value_of_variable () has any side effect.
719 We need a full value object returned here for whatis_exp ()
720 to call evaluate_type () and then pass the full value to
721 value_rtti_target_type () if we are dealing with a pointer
722 or reference to a base class and print object is on. */
723
724 {
725 volatile struct gdb_exception except;
726 struct value *ret = NULL;
727
728 TRY_CATCH (except, RETURN_MASK_ERROR)
729 {
730 ret = value_of_variable (exp->elts[pc + 2].symbol,
731 exp->elts[pc + 1].block);
732 }
733
734 if (except.reason < 0)
735 {
736 if (noside == EVAL_AVOID_SIDE_EFFECTS)
737 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
738 else
739 throw_exception (except);
740 }
741
742 return ret;
743 }
744
745 case OP_LAST:
746 (*pos) += 2;
747 return
748 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
749
750 case OP_REGISTER:
751 {
752 const char *name = &exp->elts[pc + 2].string;
753 int regno;
754 struct value *val;
755
756 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
757 regno = user_reg_map_name_to_regnum (exp->gdbarch,
758 name, strlen (name));
759 if (regno == -1)
760 error (_("Register $%s not available."), name);
761
762 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
763 a value with the appropriate register type. Unfortunately,
764 we don't have easy access to the type of user registers.
765 So for these registers, we fetch the register value regardless
766 of the evaluation mode. */
767 if (noside == EVAL_AVOID_SIDE_EFFECTS
768 && regno < gdbarch_num_regs (exp->gdbarch)
769 + gdbarch_num_pseudo_regs (exp->gdbarch))
770 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
771 else
772 val = value_of_register (regno, get_selected_frame (NULL));
773 if (val == NULL)
774 error (_("Value of register %s not available."), name);
775 else
776 return val;
777 }
778 case OP_BOOL:
779 (*pos) += 2;
780 type = language_bool_type (exp->language_defn, exp->gdbarch);
781 return value_from_longest (type, exp->elts[pc + 1].longconst);
782
783 case OP_INTERNALVAR:
784 (*pos) += 2;
785 return value_of_internalvar (exp->elts[pc + 1].internalvar);
786
787 case OP_STRING:
788 tem = longest_to_int (exp->elts[pc + 1].longconst);
789 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
790 if (noside == EVAL_SKIP)
791 goto nosideret;
792 type = language_string_char_type (exp->language_defn, exp->gdbarch);
793 return value_string (&exp->elts[pc + 2].string, tem, type);
794
795 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
796 tem = longest_to_int (exp->elts[pc + 1].longconst);
797 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
798 if (noside == EVAL_SKIP)
799 {
800 goto nosideret;
801 }
802 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
803
804 case OP_BITSTRING:
805 tem = longest_to_int (exp->elts[pc + 1].longconst);
806 (*pos)
807 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
808 if (noside == EVAL_SKIP)
809 goto nosideret;
810 return value_bitstring (&exp->elts[pc + 2].string, tem);
811 break;
812
813 case OP_ARRAY:
814 (*pos) += 3;
815 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
816 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
817 nargs = tem3 - tem2 + 1;
818 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
819
820 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
821 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
822 {
823 struct value *rec = allocate_value (expect_type);
824 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
825 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
826 }
827
828 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
829 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
830 {
831 struct type *range_type = TYPE_INDEX_TYPE (type);
832 struct type *element_type = TYPE_TARGET_TYPE (type);
833 struct value *array = allocate_value (expect_type);
834 int element_size = TYPE_LENGTH (check_typedef (element_type));
835 LONGEST low_bound, high_bound, index;
836 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
837 {
838 low_bound = 0;
839 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
840 }
841 index = low_bound;
842 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
843 for (tem = nargs; --nargs >= 0;)
844 {
845 struct value *element;
846 int index_pc = 0;
847 if (exp->elts[*pos].opcode == BINOP_RANGE)
848 {
849 index_pc = ++(*pos);
850 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
851 }
852 element = evaluate_subexp (element_type, exp, pos, noside);
853 if (value_type (element) != element_type)
854 element = value_cast (element_type, element);
855 if (index_pc)
856 {
857 int continue_pc = *pos;
858 *pos = index_pc;
859 index = init_array_element (array, element, exp, pos, noside,
860 low_bound, high_bound);
861 *pos = continue_pc;
862 }
863 else
864 {
865 if (index > high_bound)
866 /* to avoid memory corruption */
867 error (_("Too many array elements"));
868 memcpy (value_contents_raw (array)
869 + (index - low_bound) * element_size,
870 value_contents (element),
871 element_size);
872 }
873 index++;
874 }
875 return array;
876 }
877
878 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
879 && TYPE_CODE (type) == TYPE_CODE_SET)
880 {
881 struct value *set = allocate_value (expect_type);
882 gdb_byte *valaddr = value_contents_raw (set);
883 struct type *element_type = TYPE_INDEX_TYPE (type);
884 struct type *check_type = element_type;
885 LONGEST low_bound, high_bound;
886
887 /* get targettype of elementtype */
888 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE ||
889 TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
890 check_type = TYPE_TARGET_TYPE (check_type);
891
892 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
893 error (_("(power)set type with unknown size"));
894 memset (valaddr, '\0', TYPE_LENGTH (type));
895 for (tem = 0; tem < nargs; tem++)
896 {
897 LONGEST range_low, range_high;
898 struct type *range_low_type, *range_high_type;
899 struct value *elem_val;
900 if (exp->elts[*pos].opcode == BINOP_RANGE)
901 {
902 (*pos)++;
903 elem_val = evaluate_subexp (element_type, exp, pos, noside);
904 range_low_type = value_type (elem_val);
905 range_low = value_as_long (elem_val);
906 elem_val = evaluate_subexp (element_type, exp, pos, noside);
907 range_high_type = value_type (elem_val);
908 range_high = value_as_long (elem_val);
909 }
910 else
911 {
912 elem_val = evaluate_subexp (element_type, exp, pos, noside);
913 range_low_type = range_high_type = value_type (elem_val);
914 range_low = range_high = value_as_long (elem_val);
915 }
916 /* check types of elements to avoid mixture of elements from
917 different types. Also check if type of element is "compatible"
918 with element type of powerset */
919 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
920 range_low_type = TYPE_TARGET_TYPE (range_low_type);
921 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
922 range_high_type = TYPE_TARGET_TYPE (range_high_type);
923 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) ||
924 (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM &&
925 (range_low_type != range_high_type)))
926 /* different element modes */
927 error (_("POWERSET tuple elements of different mode"));
928 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) ||
929 (TYPE_CODE (check_type) == TYPE_CODE_ENUM &&
930 range_low_type != check_type))
931 error (_("incompatible POWERSET tuple elements"));
932 if (range_low > range_high)
933 {
934 warning (_("empty POWERSET tuple range"));
935 continue;
936 }
937 if (range_low < low_bound || range_high > high_bound)
938 error (_("POWERSET tuple element out of range"));
939 range_low -= low_bound;
940 range_high -= low_bound;
941 for (; range_low <= range_high; range_low++)
942 {
943 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
944 if (gdbarch_bits_big_endian (current_gdbarch))
945 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
946 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
947 |= 1 << bit_index;
948 }
949 }
950 return set;
951 }
952
953 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
954 for (tem = 0; tem < nargs; tem++)
955 {
956 /* Ensure that array expressions are coerced into pointer objects. */
957 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
958 }
959 if (noside == EVAL_SKIP)
960 goto nosideret;
961 return value_array (tem2, tem3, argvec);
962
963 case TERNOP_SLICE:
964 {
965 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
966 int lowbound
967 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
968 int upper
969 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
970 if (noside == EVAL_SKIP)
971 goto nosideret;
972 return value_slice (array, lowbound, upper - lowbound + 1);
973 }
974
975 case TERNOP_SLICE_COUNT:
976 {
977 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
978 int lowbound
979 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
980 int length
981 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
982 return value_slice (array, lowbound, length);
983 }
984
985 case TERNOP_COND:
986 /* Skip third and second args to evaluate the first one. */
987 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
988 if (value_logical_not (arg1))
989 {
990 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
991 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
992 }
993 else
994 {
995 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
996 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
997 return arg2;
998 }
999
1000 case OP_OBJC_SELECTOR:
1001 { /* Objective C @selector operator. */
1002 char *sel = &exp->elts[pc + 2].string;
1003 int len = longest_to_int (exp->elts[pc + 1].longconst);
1004 struct type *selector_type;
1005
1006 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1007 if (noside == EVAL_SKIP)
1008 goto nosideret;
1009
1010 if (sel[len] != 0)
1011 sel[len] = 0; /* Make sure it's terminated. */
1012
1013 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1014 return value_from_longest (selector_type,
1015 lookup_child_selector (exp->gdbarch, sel));
1016 }
1017
1018 case OP_OBJC_MSGCALL:
1019 { /* Objective C message (method) call. */
1020
1021 CORE_ADDR responds_selector = 0;
1022 CORE_ADDR method_selector = 0;
1023
1024 CORE_ADDR selector = 0;
1025
1026 int struct_return = 0;
1027 int sub_no_side = 0;
1028
1029 struct value *msg_send = NULL;
1030 struct value *msg_send_stret = NULL;
1031 int gnu_runtime = 0;
1032
1033 struct value *target = NULL;
1034 struct value *method = NULL;
1035 struct value *called_method = NULL;
1036
1037 struct type *selector_type = NULL;
1038 struct type *long_type;
1039
1040 struct value *ret = NULL;
1041 CORE_ADDR addr = 0;
1042
1043 selector = exp->elts[pc + 1].longconst;
1044 nargs = exp->elts[pc + 2].longconst;
1045 argvec = (struct value **) alloca (sizeof (struct value *)
1046 * (nargs + 5));
1047
1048 (*pos) += 3;
1049
1050 long_type = builtin_type (exp->gdbarch)->builtin_long;
1051 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1052
1053 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1054 sub_no_side = EVAL_NORMAL;
1055 else
1056 sub_no_side = noside;
1057
1058 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1059
1060 if (value_as_long (target) == 0)
1061 return value_from_longest (long_type, 0);
1062
1063 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1064 gnu_runtime = 1;
1065
1066 /* Find the method dispatch (Apple runtime) or method lookup
1067 (GNU runtime) function for Objective-C. These will be used
1068 to lookup the symbol information for the method. If we
1069 can't find any symbol information, then we'll use these to
1070 call the method, otherwise we can call the method
1071 directly. The msg_send_stret function is used in the special
1072 case of a method that returns a structure (Apple runtime
1073 only). */
1074 if (gnu_runtime)
1075 {
1076 struct type *type = selector_type;
1077 type = lookup_function_type (type);
1078 type = lookup_pointer_type (type);
1079 type = lookup_function_type (type);
1080 type = lookup_pointer_type (type);
1081
1082 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1083 msg_send_stret
1084 = find_function_in_inferior ("objc_msg_lookup", NULL);
1085
1086 msg_send = value_from_pointer (type, value_as_address (msg_send));
1087 msg_send_stret = value_from_pointer (type,
1088 value_as_address (msg_send_stret));
1089 }
1090 else
1091 {
1092 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1093 /* Special dispatcher for methods returning structs */
1094 msg_send_stret
1095 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1096 }
1097
1098 /* Verify the target object responds to this method. The
1099 standard top-level 'Object' class uses a different name for
1100 the verification method than the non-standard, but more
1101 often used, 'NSObject' class. Make sure we check for both. */
1102
1103 responds_selector
1104 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1105 if (responds_selector == 0)
1106 responds_selector
1107 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1108
1109 if (responds_selector == 0)
1110 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1111
1112 method_selector
1113 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1114 if (method_selector == 0)
1115 method_selector
1116 = lookup_child_selector (exp->gdbarch, "methodFor:");
1117
1118 if (method_selector == 0)
1119 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1120
1121 /* Call the verification method, to make sure that the target
1122 class implements the desired method. */
1123
1124 argvec[0] = msg_send;
1125 argvec[1] = target;
1126 argvec[2] = value_from_longest (long_type, responds_selector);
1127 argvec[3] = value_from_longest (long_type, selector);
1128 argvec[4] = 0;
1129
1130 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1131 if (gnu_runtime)
1132 {
1133 /* Function objc_msg_lookup returns a pointer. */
1134 argvec[0] = ret;
1135 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1136 }
1137 if (value_as_long (ret) == 0)
1138 error (_("Target does not respond to this message selector."));
1139
1140 /* Call "methodForSelector:" method, to get the address of a
1141 function method that implements this selector for this
1142 class. If we can find a symbol at that address, then we
1143 know the return type, parameter types etc. (that's a good
1144 thing). */
1145
1146 argvec[0] = msg_send;
1147 argvec[1] = target;
1148 argvec[2] = value_from_longest (long_type, method_selector);
1149 argvec[3] = value_from_longest (long_type, selector);
1150 argvec[4] = 0;
1151
1152 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1153 if (gnu_runtime)
1154 {
1155 argvec[0] = ret;
1156 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1157 }
1158
1159 /* ret should now be the selector. */
1160
1161 addr = value_as_long (ret);
1162 if (addr)
1163 {
1164 struct symbol *sym = NULL;
1165 /* Is it a high_level symbol? */
1166
1167 sym = find_pc_function (addr);
1168 if (sym != NULL)
1169 method = value_of_variable (sym, 0);
1170 }
1171
1172 /* If we found a method with symbol information, check to see
1173 if it returns a struct. Otherwise assume it doesn't. */
1174
1175 if (method)
1176 {
1177 struct block *b;
1178 CORE_ADDR funaddr;
1179 struct type *val_type;
1180
1181 funaddr = find_function_addr (method, &val_type);
1182
1183 b = block_for_pc (funaddr);
1184
1185 CHECK_TYPEDEF (val_type);
1186
1187 if ((val_type == NULL)
1188 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1189 {
1190 if (expect_type != NULL)
1191 val_type = expect_type;
1192 }
1193
1194 struct_return = using_struct_return (exp->gdbarch,
1195 value_type (method), val_type);
1196 }
1197 else if (expect_type != NULL)
1198 {
1199 struct_return = using_struct_return (exp->gdbarch, NULL,
1200 check_typedef (expect_type));
1201 }
1202
1203 /* Found a function symbol. Now we will substitute its
1204 value in place of the message dispatcher (obj_msgSend),
1205 so that we call the method directly instead of thru
1206 the dispatcher. The main reason for doing this is that
1207 we can now evaluate the return value and parameter values
1208 according to their known data types, in case we need to
1209 do things like promotion, dereferencing, special handling
1210 of structs and doubles, etc.
1211
1212 We want to use the type signature of 'method', but still
1213 jump to objc_msgSend() or objc_msgSend_stret() to better
1214 mimic the behavior of the runtime. */
1215
1216 if (method)
1217 {
1218 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1219 error (_("method address has symbol information with non-function type; skipping"));
1220 if (struct_return)
1221 set_value_address (method, value_as_address (msg_send_stret));
1222 else
1223 set_value_address (method, value_as_address (msg_send));
1224 called_method = method;
1225 }
1226 else
1227 {
1228 if (struct_return)
1229 called_method = msg_send_stret;
1230 else
1231 called_method = msg_send;
1232 }
1233
1234 if (noside == EVAL_SKIP)
1235 goto nosideret;
1236
1237 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1238 {
1239 /* If the return type doesn't look like a function type,
1240 call an error. This can happen if somebody tries to
1241 turn a variable into a function call. This is here
1242 because people often want to call, eg, strcmp, which
1243 gdb doesn't know is a function. If gdb isn't asked for
1244 it's opinion (ie. through "whatis"), it won't offer
1245 it. */
1246
1247 struct type *type = value_type (called_method);
1248 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1249 type = TYPE_TARGET_TYPE (type);
1250 type = TYPE_TARGET_TYPE (type);
1251
1252 if (type)
1253 {
1254 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1255 return allocate_value (expect_type);
1256 else
1257 return allocate_value (type);
1258 }
1259 else
1260 error (_("Expression of type other than \"method returning ...\" used as a method"));
1261 }
1262
1263 /* Now depending on whether we found a symbol for the method,
1264 we will either call the runtime dispatcher or the method
1265 directly. */
1266
1267 argvec[0] = called_method;
1268 argvec[1] = target;
1269 argvec[2] = value_from_longest (long_type, selector);
1270 /* User-supplied arguments. */
1271 for (tem = 0; tem < nargs; tem++)
1272 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1273 argvec[tem + 3] = 0;
1274
1275 if (gnu_runtime && (method != NULL))
1276 {
1277 /* Function objc_msg_lookup returns a pointer. */
1278 deprecated_set_value_type (argvec[0],
1279 lookup_function_type (lookup_pointer_type (value_type (argvec[0]))));
1280 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1281 }
1282
1283 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1284 return ret;
1285 }
1286 break;
1287
1288 case OP_FUNCALL:
1289 (*pos) += 2;
1290 op = exp->elts[*pos].opcode;
1291 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1292 /* Allocate arg vector, including space for the function to be
1293 called in argvec[0] and a terminating NULL */
1294 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1295 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1296 {
1297 nargs++;
1298 /* First, evaluate the structure into arg2 */
1299 pc2 = (*pos)++;
1300
1301 if (noside == EVAL_SKIP)
1302 goto nosideret;
1303
1304 if (op == STRUCTOP_MEMBER)
1305 {
1306 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1307 }
1308 else
1309 {
1310 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1311 }
1312
1313 /* If the function is a virtual function, then the
1314 aggregate value (providing the structure) plays
1315 its part by providing the vtable. Otherwise,
1316 it is just along for the ride: call the function
1317 directly. */
1318
1319 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1320
1321 if (TYPE_CODE (check_typedef (value_type (arg1)))
1322 != TYPE_CODE_METHODPTR)
1323 error (_("Non-pointer-to-member value used in pointer-to-member "
1324 "construct"));
1325
1326 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1327 {
1328 struct type *method_type = check_typedef (value_type (arg1));
1329 arg1 = value_zero (method_type, not_lval);
1330 }
1331 else
1332 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1333
1334 /* Now, say which argument to start evaluating from */
1335 tem = 2;
1336 }
1337 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1338 {
1339 /* Hair for method invocations */
1340 int tem2;
1341
1342 nargs++;
1343 /* First, evaluate the structure into arg2 */
1344 pc2 = (*pos)++;
1345 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1346 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1347 if (noside == EVAL_SKIP)
1348 goto nosideret;
1349
1350 if (op == STRUCTOP_STRUCT)
1351 {
1352 /* If v is a variable in a register, and the user types
1353 v.method (), this will produce an error, because v has
1354 no address.
1355
1356 A possible way around this would be to allocate a
1357 copy of the variable on the stack, copy in the
1358 contents, call the function, and copy out the
1359 contents. I.e. convert this from call by reference
1360 to call by copy-return (or whatever it's called).
1361 However, this does not work because it is not the
1362 same: the method being called could stash a copy of
1363 the address, and then future uses through that address
1364 (after the method returns) would be expected to
1365 use the variable itself, not some copy of it. */
1366 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1367 }
1368 else
1369 {
1370 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1371 }
1372 /* Now, say which argument to start evaluating from */
1373 tem = 2;
1374 }
1375 else
1376 {
1377 /* Non-method function call */
1378 save_pos1 = *pos;
1379 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1380 tem = 1;
1381 type = value_type (argvec[0]);
1382 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1383 type = TYPE_TARGET_TYPE (type);
1384 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1385 {
1386 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1387 {
1388 /* pai: FIXME This seems to be coercing arguments before
1389 * overload resolution has been done! */
1390 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1391 exp, pos, noside);
1392 }
1393 }
1394 }
1395
1396 /* Evaluate arguments */
1397 for (; tem <= nargs; tem++)
1398 {
1399 /* Ensure that array expressions are coerced into pointer objects. */
1400 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1401 }
1402
1403 /* signal end of arglist */
1404 argvec[tem] = 0;
1405
1406 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1407 {
1408 int static_memfuncp;
1409 char tstr[256];
1410
1411 /* Method invocation : stuff "this" as first parameter */
1412 argvec[1] = arg2;
1413 /* Name of method from expression */
1414 strcpy (tstr, &exp->elts[pc2 + 2].string);
1415
1416 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1417 {
1418 /* Language is C++, do some overload resolution before evaluation */
1419 struct value *valp = NULL;
1420
1421 /* Prepare list of argument types for overload resolution */
1422 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1423 for (ix = 1; ix <= nargs; ix++)
1424 arg_types[ix - 1] = value_type (argvec[ix]);
1425
1426 (void) find_overload_match (arg_types, nargs, tstr,
1427 1 /* method */ , 0 /* strict match */ ,
1428 &arg2 /* the object */ , NULL,
1429 &valp, NULL, &static_memfuncp);
1430
1431
1432 argvec[1] = arg2; /* the ``this'' pointer */
1433 argvec[0] = valp; /* use the method found after overload resolution */
1434 }
1435 else
1436 /* Non-C++ case -- or no overload resolution */
1437 {
1438 struct value *temp = arg2;
1439 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1440 &static_memfuncp,
1441 op == STRUCTOP_STRUCT
1442 ? "structure" : "structure pointer");
1443 /* value_struct_elt updates temp with the correct value
1444 of the ``this'' pointer if necessary, so modify argvec[1] to
1445 reflect any ``this'' changes. */
1446 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1447 value_address (temp)
1448 + value_embedded_offset (temp));
1449 argvec[1] = arg2; /* the ``this'' pointer */
1450 }
1451
1452 if (static_memfuncp)
1453 {
1454 argvec[1] = argvec[0];
1455 nargs--;
1456 argvec++;
1457 }
1458 }
1459 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1460 {
1461 argvec[1] = arg2;
1462 argvec[0] = arg1;
1463 }
1464 else if (op == OP_VAR_VALUE)
1465 {
1466 /* Non-member function being called */
1467 /* fn: This can only be done for C++ functions. A C-style function
1468 in a C++ program, for instance, does not have the fields that
1469 are expected here */
1470
1471 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1472 {
1473 /* Language is C++, do some overload resolution before evaluation */
1474 struct symbol *symp;
1475
1476 /* Prepare list of argument types for overload resolution */
1477 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1478 for (ix = 1; ix <= nargs; ix++)
1479 arg_types[ix - 1] = value_type (argvec[ix]);
1480
1481 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1482 0 /* not method */ , 0 /* strict match */ ,
1483 NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
1484 NULL, &symp, NULL);
1485
1486 /* Now fix the expression being evaluated */
1487 exp->elts[save_pos1+2].symbol = symp;
1488 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1489 }
1490 else
1491 {
1492 /* Not C++, or no overload resolution allowed */
1493 /* nothing to be done; argvec already correctly set up */
1494 }
1495 }
1496 else
1497 {
1498 /* It is probably a C-style function */
1499 /* nothing to be done; argvec already correctly set up */
1500 }
1501
1502 do_call_it:
1503
1504 if (noside == EVAL_SKIP)
1505 goto nosideret;
1506 if (argvec[0] == NULL)
1507 error (_("Cannot evaluate function -- may be inlined"));
1508 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1509 {
1510 /* If the return type doesn't look like a function type, call an
1511 error. This can happen if somebody tries to turn a variable into
1512 a function call. This is here because people often want to
1513 call, eg, strcmp, which gdb doesn't know is a function. If
1514 gdb isn't asked for it's opinion (ie. through "whatis"),
1515 it won't offer it. */
1516
1517 struct type *ftype =
1518 TYPE_TARGET_TYPE (value_type (argvec[0]));
1519
1520 if (ftype)
1521 return allocate_value (TYPE_TARGET_TYPE (value_type (argvec[0])));
1522 else
1523 error (_("Expression of type other than \"Function returning ...\" used as function"));
1524 }
1525 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1526 return call_internal_function (argvec[0], nargs, argvec + 1);
1527
1528 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1529 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1530
1531 case OP_F77_UNDETERMINED_ARGLIST:
1532
1533 /* Remember that in F77, functions, substring ops and
1534 array subscript operations cannot be disambiguated
1535 at parse time. We have made all array subscript operations,
1536 substring operations as well as function calls come here
1537 and we now have to discover what the heck this thing actually was.
1538 If it is a function, we process just as if we got an OP_FUNCALL. */
1539
1540 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1541 (*pos) += 2;
1542
1543 /* First determine the type code we are dealing with. */
1544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1545 type = check_typedef (value_type (arg1));
1546 code = TYPE_CODE (type);
1547
1548 if (code == TYPE_CODE_PTR)
1549 {
1550 /* Fortran always passes variable to subroutines as pointer.
1551 So we need to look into its target type to see if it is
1552 array, string or function. If it is, we need to switch
1553 to the target value the original one points to. */
1554 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1555
1556 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1557 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1558 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1559 {
1560 arg1 = value_ind (arg1);
1561 type = check_typedef (value_type (arg1));
1562 code = TYPE_CODE (type);
1563 }
1564 }
1565
1566 switch (code)
1567 {
1568 case TYPE_CODE_ARRAY:
1569 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1570 return value_f90_subarray (arg1, exp, pos, noside);
1571 else
1572 goto multi_f77_subscript;
1573
1574 case TYPE_CODE_STRING:
1575 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1576 return value_f90_subarray (arg1, exp, pos, noside);
1577 else
1578 {
1579 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1580 return value_subscript (arg1, arg2);
1581 }
1582
1583 case TYPE_CODE_PTR:
1584 case TYPE_CODE_FUNC:
1585 /* It's a function call. */
1586 /* Allocate arg vector, including space for the function to be
1587 called in argvec[0] and a terminating NULL */
1588 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1589 argvec[0] = arg1;
1590 tem = 1;
1591 for (; tem <= nargs; tem++)
1592 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1593 argvec[tem] = 0; /* signal end of arglist */
1594 goto do_call_it;
1595
1596 default:
1597 error (_("Cannot perform substring on this type"));
1598 }
1599
1600 case OP_COMPLEX:
1601 /* We have a complex number, There should be 2 floating
1602 point numbers that compose it */
1603 (*pos) += 2;
1604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1605 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1606
1607 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1608
1609 case STRUCTOP_STRUCT:
1610 tem = longest_to_int (exp->elts[pc + 1].longconst);
1611 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1612 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1613 if (noside == EVAL_SKIP)
1614 goto nosideret;
1615 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1616 return value_zero (lookup_struct_elt_type (value_type (arg1),
1617 &exp->elts[pc + 2].string,
1618 0),
1619 lval_memory);
1620 else
1621 {
1622 struct value *temp = arg1;
1623 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1624 NULL, "structure");
1625 }
1626
1627 case STRUCTOP_PTR:
1628 tem = longest_to_int (exp->elts[pc + 1].longconst);
1629 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1630 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1631 if (noside == EVAL_SKIP)
1632 goto nosideret;
1633
1634 /* JYG: if print object is on we need to replace the base type
1635 with rtti type in order to continue on with successful
1636 lookup of member / method only available in the rtti type. */
1637 {
1638 struct type *type = value_type (arg1);
1639 struct type *real_type;
1640 int full, top, using_enc;
1641 struct value_print_options opts;
1642
1643 get_user_print_options (&opts);
1644 if (opts.objectprint && TYPE_TARGET_TYPE(type) &&
1645 (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1646 {
1647 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1648 if (real_type)
1649 {
1650 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1651 real_type = lookup_pointer_type (real_type);
1652 else
1653 real_type = lookup_reference_type (real_type);
1654
1655 arg1 = value_cast (real_type, arg1);
1656 }
1657 }
1658 }
1659
1660 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1661 return value_zero (lookup_struct_elt_type (value_type (arg1),
1662 &exp->elts[pc + 2].string,
1663 0),
1664 lval_memory);
1665 else
1666 {
1667 struct value *temp = arg1;
1668 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1669 NULL, "structure pointer");
1670 }
1671
1672 case STRUCTOP_MEMBER:
1673 case STRUCTOP_MPTR:
1674 if (op == STRUCTOP_MEMBER)
1675 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1676 else
1677 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1678
1679 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1680
1681 if (noside == EVAL_SKIP)
1682 goto nosideret;
1683
1684 type = check_typedef (value_type (arg2));
1685 switch (TYPE_CODE (type))
1686 {
1687 case TYPE_CODE_METHODPTR:
1688 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1689 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1690 else
1691 {
1692 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1693 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1694 return value_ind (arg2);
1695 }
1696
1697 case TYPE_CODE_MEMBERPTR:
1698 /* Now, convert these values to an address. */
1699 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1700 arg1);
1701
1702 mem_offset = value_as_long (arg2);
1703
1704 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1705 value_as_long (arg1) + mem_offset);
1706 return value_ind (arg3);
1707
1708 default:
1709 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1710 }
1711
1712 case BINOP_CONCAT:
1713 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1714 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1715 if (noside == EVAL_SKIP)
1716 goto nosideret;
1717 if (binop_user_defined_p (op, arg1, arg2))
1718 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1719 else
1720 return value_concat (arg1, arg2);
1721
1722 case BINOP_ASSIGN:
1723 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1724 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1725
1726 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1727 return arg1;
1728 if (binop_user_defined_p (op, arg1, arg2))
1729 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1730 else
1731 return value_assign (arg1, arg2);
1732
1733 case BINOP_ASSIGN_MODIFY:
1734 (*pos) += 2;
1735 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1736 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1737 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1738 return arg1;
1739 op = exp->elts[pc + 1].opcode;
1740 if (binop_user_defined_p (op, arg1, arg2))
1741 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1742 else if (op == BINOP_ADD && ptrmath_type_p (value_type (arg1)))
1743 arg2 = value_ptradd (arg1, arg2);
1744 else if (op == BINOP_SUB && ptrmath_type_p (value_type (arg1)))
1745 arg2 = value_ptrsub (arg1, arg2);
1746 else
1747 {
1748 struct value *tmp = arg1;
1749
1750 /* For shift and integer exponentiation operations,
1751 only promote the first argument. */
1752 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1753 && is_integral_type (value_type (arg2)))
1754 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
1755 else
1756 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1757
1758 arg2 = value_binop (tmp, arg2, op);
1759 }
1760 return value_assign (arg1, arg2);
1761
1762 case BINOP_ADD:
1763 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1764 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1765 if (noside == EVAL_SKIP)
1766 goto nosideret;
1767 if (binop_user_defined_p (op, arg1, arg2))
1768 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1769 else if (ptrmath_type_p (value_type (arg1)))
1770 return value_ptradd (arg1, arg2);
1771 else if (ptrmath_type_p (value_type (arg2)))
1772 return value_ptradd (arg2, arg1);
1773 else
1774 {
1775 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1776 return value_binop (arg1, arg2, BINOP_ADD);
1777 }
1778
1779 case BINOP_SUB:
1780 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1781 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1782 if (noside == EVAL_SKIP)
1783 goto nosideret;
1784 if (binop_user_defined_p (op, arg1, arg2))
1785 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1786 else if (ptrmath_type_p (value_type (arg1)))
1787 {
1788 if (ptrmath_type_p (value_type (arg2)))
1789 {
1790 /* FIXME -- should be ptrdiff_t */
1791 type = builtin_type (exp->gdbarch)->builtin_long;
1792 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1793 }
1794 else
1795 return value_ptrsub (arg1, arg2);
1796 }
1797 else
1798 {
1799 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1800 return value_binop (arg1, arg2, BINOP_SUB);
1801 }
1802
1803 case BINOP_EXP:
1804 case BINOP_MUL:
1805 case BINOP_DIV:
1806 case BINOP_INTDIV:
1807 case BINOP_REM:
1808 case BINOP_MOD:
1809 case BINOP_LSH:
1810 case BINOP_RSH:
1811 case BINOP_BITWISE_AND:
1812 case BINOP_BITWISE_IOR:
1813 case BINOP_BITWISE_XOR:
1814 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1815 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1816 if (noside == EVAL_SKIP)
1817 goto nosideret;
1818 if (binop_user_defined_p (op, arg1, arg2))
1819 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1820 else
1821 {
1822 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1823 fudge arg2 to avoid division-by-zero, the caller is
1824 (theoretically) only looking for the type of the result. */
1825 if (noside == EVAL_AVOID_SIDE_EFFECTS
1826 /* ??? Do we really want to test for BINOP_MOD here?
1827 The implementation of value_binop gives it a well-defined
1828 value. */
1829 && (op == BINOP_DIV
1830 || op == BINOP_INTDIV
1831 || op == BINOP_REM
1832 || op == BINOP_MOD)
1833 && value_logical_not (arg2))
1834 {
1835 struct value *v_one, *retval;
1836
1837 v_one = value_one (value_type (arg2), not_lval);
1838 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1839 retval = value_binop (arg1, v_one, op);
1840 return retval;
1841 }
1842 else
1843 {
1844 /* For shift and integer exponentiation operations,
1845 only promote the first argument. */
1846 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1847 && is_integral_type (value_type (arg2)))
1848 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1849 else
1850 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1851
1852 return value_binop (arg1, arg2, op);
1853 }
1854 }
1855
1856 case BINOP_RANGE:
1857 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1858 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1859 if (noside == EVAL_SKIP)
1860 goto nosideret;
1861 error (_("':' operator used in invalid context"));
1862
1863 case BINOP_SUBSCRIPT:
1864 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1865 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1866 if (noside == EVAL_SKIP)
1867 goto nosideret;
1868 if (binop_user_defined_p (op, arg1, arg2))
1869 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1870 else
1871 {
1872 /* If the user attempts to subscript something that is not an
1873 array or pointer type (like a plain int variable for example),
1874 then report this as an error. */
1875
1876 arg1 = coerce_ref (arg1);
1877 type = check_typedef (value_type (arg1));
1878 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
1879 && TYPE_CODE (type) != TYPE_CODE_PTR)
1880 {
1881 if (TYPE_NAME (type))
1882 error (_("cannot subscript something of type `%s'"),
1883 TYPE_NAME (type));
1884 else
1885 error (_("cannot subscript requested type"));
1886 }
1887
1888 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1889 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1890 else
1891 return value_subscript (arg1, arg2);
1892 }
1893
1894 case BINOP_IN:
1895 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1896 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1897 if (noside == EVAL_SKIP)
1898 goto nosideret;
1899 type = language_bool_type (exp->language_defn, exp->gdbarch);
1900 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
1901
1902 case MULTI_SUBSCRIPT:
1903 (*pos) += 2;
1904 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1905 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1906 while (nargs-- > 0)
1907 {
1908 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1909 /* FIXME: EVAL_SKIP handling may not be correct. */
1910 if (noside == EVAL_SKIP)
1911 {
1912 if (nargs > 0)
1913 {
1914 continue;
1915 }
1916 else
1917 {
1918 goto nosideret;
1919 }
1920 }
1921 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
1922 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1923 {
1924 /* If the user attempts to subscript something that has no target
1925 type (like a plain int variable for example), then report this
1926 as an error. */
1927
1928 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
1929 if (type != NULL)
1930 {
1931 arg1 = value_zero (type, VALUE_LVAL (arg1));
1932 noside = EVAL_SKIP;
1933 continue;
1934 }
1935 else
1936 {
1937 error (_("cannot subscript something of type `%s'"),
1938 TYPE_NAME (value_type (arg1)));
1939 }
1940 }
1941
1942 if (binop_user_defined_p (op, arg1, arg2))
1943 {
1944 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
1945 }
1946 else
1947 {
1948 arg1 = coerce_ref (arg1);
1949 type = check_typedef (value_type (arg1));
1950
1951 switch (TYPE_CODE (type))
1952 {
1953 case TYPE_CODE_PTR:
1954 case TYPE_CODE_ARRAY:
1955 case TYPE_CODE_STRING:
1956 arg1 = value_subscript (arg1, arg2);
1957 break;
1958
1959 case TYPE_CODE_BITSTRING:
1960 type = language_bool_type (exp->language_defn, exp->gdbarch);
1961 arg1 = value_bitstring_subscript (type, arg1, arg2);
1962 break;
1963
1964 default:
1965 if (TYPE_NAME (type))
1966 error (_("cannot subscript something of type `%s'"),
1967 TYPE_NAME (type));
1968 else
1969 error (_("cannot subscript requested type"));
1970 }
1971 }
1972 }
1973 return (arg1);
1974
1975 multi_f77_subscript:
1976 {
1977 int subscript_array[MAX_FORTRAN_DIMS];
1978 int array_size_array[MAX_FORTRAN_DIMS];
1979 int ndimensions = 1, i;
1980 struct type *tmp_type;
1981 int offset_item; /* The array offset where the item lives */
1982
1983 if (nargs > MAX_FORTRAN_DIMS)
1984 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
1985
1986 tmp_type = check_typedef (value_type (arg1));
1987 ndimensions = calc_f77_array_dims (type);
1988
1989 if (nargs != ndimensions)
1990 error (_("Wrong number of subscripts"));
1991
1992 gdb_assert (nargs > 0);
1993
1994 /* Now that we know we have a legal array subscript expression
1995 let us actually find out where this element exists in the array. */
1996
1997 offset_item = 0;
1998 /* Take array indices left to right */
1999 for (i = 0; i < nargs; i++)
2000 {
2001 /* Evaluate each subscript, It must be a legal integer in F77 */
2002 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2003
2004 /* Fill in the subscript and array size arrays */
2005
2006 subscript_array[i] = value_as_long (arg2);
2007 }
2008
2009 /* Internal type of array is arranged right to left */
2010 for (i = 0; i < nargs; i++)
2011 {
2012 upper = f77_get_upperbound (tmp_type);
2013 lower = f77_get_lowerbound (tmp_type);
2014
2015 array_size_array[nargs - i - 1] = upper - lower + 1;
2016
2017 /* Zero-normalize subscripts so that offsetting will work. */
2018
2019 subscript_array[nargs - i - 1] -= lower;
2020
2021 /* If we are at the bottom of a multidimensional
2022 array type then keep a ptr to the last ARRAY
2023 type around for use when calling value_subscript()
2024 below. This is done because we pretend to value_subscript
2025 that we actually have a one-dimensional array
2026 of base element type that we apply a simple
2027 offset to. */
2028
2029 if (i < nargs - 1)
2030 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
2031 }
2032
2033 /* Now let us calculate the offset for this item */
2034
2035 offset_item = subscript_array[ndimensions - 1];
2036
2037 for (i = ndimensions - 1; i > 0; --i)
2038 offset_item =
2039 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
2040
2041 /* Construct a value node with the value of the offset */
2042
2043 arg2 = value_from_longest (builtin_type_int32, offset_item);
2044
2045 /* Let us now play a dirty trick: we will take arg1
2046 which is a value node pointing to the topmost level
2047 of the multidimensional array-set and pretend
2048 that it is actually a array of the final element
2049 type, this will ensure that value_subscript()
2050 returns the correct type value */
2051
2052 deprecated_set_value_type (arg1, tmp_type);
2053 return value_subscripted_rvalue (arg1, arg2, 0);
2054 }
2055
2056 case BINOP_LOGICAL_AND:
2057 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2058 if (noside == EVAL_SKIP)
2059 {
2060 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2061 goto nosideret;
2062 }
2063
2064 oldpos = *pos;
2065 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2066 *pos = oldpos;
2067
2068 if (binop_user_defined_p (op, arg1, arg2))
2069 {
2070 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2071 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2072 }
2073 else
2074 {
2075 tem = value_logical_not (arg1);
2076 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2077 (tem ? EVAL_SKIP : noside));
2078 type = language_bool_type (exp->language_defn, exp->gdbarch);
2079 return value_from_longest (type,
2080 (LONGEST) (!tem && !value_logical_not (arg2)));
2081 }
2082
2083 case BINOP_LOGICAL_OR:
2084 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2085 if (noside == EVAL_SKIP)
2086 {
2087 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2088 goto nosideret;
2089 }
2090
2091 oldpos = *pos;
2092 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2093 *pos = oldpos;
2094
2095 if (binop_user_defined_p (op, arg1, arg2))
2096 {
2097 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2098 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2099 }
2100 else
2101 {
2102 tem = value_logical_not (arg1);
2103 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2104 (!tem ? EVAL_SKIP : noside));
2105 type = language_bool_type (exp->language_defn, exp->gdbarch);
2106 return value_from_longest (type,
2107 (LONGEST) (!tem || !value_logical_not (arg2)));
2108 }
2109
2110 case BINOP_EQUAL:
2111 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2112 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2113 if (noside == EVAL_SKIP)
2114 goto nosideret;
2115 if (binop_user_defined_p (op, arg1, arg2))
2116 {
2117 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2118 }
2119 else
2120 {
2121 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2122 tem = value_equal (arg1, arg2);
2123 type = language_bool_type (exp->language_defn, exp->gdbarch);
2124 return value_from_longest (type, (LONGEST) tem);
2125 }
2126
2127 case BINOP_NOTEQUAL:
2128 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2129 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2130 if (noside == EVAL_SKIP)
2131 goto nosideret;
2132 if (binop_user_defined_p (op, arg1, arg2))
2133 {
2134 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2135 }
2136 else
2137 {
2138 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2139 tem = value_equal (arg1, arg2);
2140 type = language_bool_type (exp->language_defn, exp->gdbarch);
2141 return value_from_longest (type, (LONGEST) ! tem);
2142 }
2143
2144 case BINOP_LESS:
2145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2146 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2147 if (noside == EVAL_SKIP)
2148 goto nosideret;
2149 if (binop_user_defined_p (op, arg1, arg2))
2150 {
2151 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2152 }
2153 else
2154 {
2155 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2156 tem = value_less (arg1, arg2);
2157 type = language_bool_type (exp->language_defn, exp->gdbarch);
2158 return value_from_longest (type, (LONGEST) tem);
2159 }
2160
2161 case BINOP_GTR:
2162 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2163 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2164 if (noside == EVAL_SKIP)
2165 goto nosideret;
2166 if (binop_user_defined_p (op, arg1, arg2))
2167 {
2168 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2169 }
2170 else
2171 {
2172 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2173 tem = value_less (arg2, arg1);
2174 type = language_bool_type (exp->language_defn, exp->gdbarch);
2175 return value_from_longest (type, (LONGEST) tem);
2176 }
2177
2178 case BINOP_GEQ:
2179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2180 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2181 if (noside == EVAL_SKIP)
2182 goto nosideret;
2183 if (binop_user_defined_p (op, arg1, arg2))
2184 {
2185 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2186 }
2187 else
2188 {
2189 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2190 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2191 type = language_bool_type (exp->language_defn, exp->gdbarch);
2192 return value_from_longest (type, (LONGEST) tem);
2193 }
2194
2195 case BINOP_LEQ:
2196 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2197 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2198 if (noside == EVAL_SKIP)
2199 goto nosideret;
2200 if (binop_user_defined_p (op, arg1, arg2))
2201 {
2202 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2203 }
2204 else
2205 {
2206 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2207 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2208 type = language_bool_type (exp->language_defn, exp->gdbarch);
2209 return value_from_longest (type, (LONGEST) tem);
2210 }
2211
2212 case BINOP_REPEAT:
2213 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2214 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2215 if (noside == EVAL_SKIP)
2216 goto nosideret;
2217 type = check_typedef (value_type (arg2));
2218 if (TYPE_CODE (type) != TYPE_CODE_INT)
2219 error (_("Non-integral right operand for \"@\" operator."));
2220 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2221 {
2222 return allocate_repeat_value (value_type (arg1),
2223 longest_to_int (value_as_long (arg2)));
2224 }
2225 else
2226 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2227
2228 case BINOP_COMMA:
2229 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2230 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2231
2232 case UNOP_PLUS:
2233 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2234 if (noside == EVAL_SKIP)
2235 goto nosideret;
2236 if (unop_user_defined_p (op, arg1))
2237 return value_x_unop (arg1, op, noside);
2238 else
2239 {
2240 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2241 return value_pos (arg1);
2242 }
2243
2244 case UNOP_NEG:
2245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2246 if (noside == EVAL_SKIP)
2247 goto nosideret;
2248 if (unop_user_defined_p (op, arg1))
2249 return value_x_unop (arg1, op, noside);
2250 else
2251 {
2252 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2253 return value_neg (arg1);
2254 }
2255
2256 case UNOP_COMPLEMENT:
2257 /* C++: check for and handle destructor names. */
2258 op = exp->elts[*pos].opcode;
2259
2260 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2261 if (noside == EVAL_SKIP)
2262 goto nosideret;
2263 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2264 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2265 else
2266 {
2267 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2268 return value_complement (arg1);
2269 }
2270
2271 case UNOP_LOGICAL_NOT:
2272 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2273 if (noside == EVAL_SKIP)
2274 goto nosideret;
2275 if (unop_user_defined_p (op, arg1))
2276 return value_x_unop (arg1, op, noside);
2277 else
2278 {
2279 type = language_bool_type (exp->language_defn, exp->gdbarch);
2280 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2281 }
2282
2283 case UNOP_IND:
2284 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2285 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2286 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2287 type = check_typedef (value_type (arg1));
2288 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2289 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2290 error (_("Attempt to dereference pointer to member without an object"));
2291 if (noside == EVAL_SKIP)
2292 goto nosideret;
2293 if (unop_user_defined_p (op, arg1))
2294 return value_x_unop (arg1, op, noside);
2295 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2296 {
2297 type = check_typedef (value_type (arg1));
2298 if (TYPE_CODE (type) == TYPE_CODE_PTR
2299 || TYPE_CODE (type) == TYPE_CODE_REF
2300 /* In C you can dereference an array to get the 1st elt. */
2301 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2302 )
2303 return value_zero (TYPE_TARGET_TYPE (type),
2304 lval_memory);
2305 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2306 /* GDB allows dereferencing an int. */
2307 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2308 lval_memory);
2309 else
2310 error (_("Attempt to take contents of a non-pointer value."));
2311 }
2312
2313 /* Allow * on an integer so we can cast it to whatever we want.
2314 This returns an int, which seems like the most C-like thing to
2315 do. "long long" variables are rare enough that
2316 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2317 if (TYPE_CODE (type) == TYPE_CODE_INT)
2318 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2319 (CORE_ADDR) value_as_address (arg1));
2320 return value_ind (arg1);
2321
2322 case UNOP_ADDR:
2323 /* C++: check for and handle pointer to members. */
2324
2325 op = exp->elts[*pos].opcode;
2326
2327 if (noside == EVAL_SKIP)
2328 {
2329 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2330 goto nosideret;
2331 }
2332 else
2333 {
2334 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
2335 return retvalp;
2336 }
2337
2338 case UNOP_SIZEOF:
2339 if (noside == EVAL_SKIP)
2340 {
2341 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2342 goto nosideret;
2343 }
2344 return evaluate_subexp_for_sizeof (exp, pos);
2345
2346 case UNOP_CAST:
2347 (*pos) += 2;
2348 type = exp->elts[pc + 1].type;
2349 arg1 = evaluate_subexp (type, exp, pos, noside);
2350 if (noside == EVAL_SKIP)
2351 goto nosideret;
2352 if (type != value_type (arg1))
2353 arg1 = value_cast (type, arg1);
2354 return arg1;
2355
2356 case UNOP_MEMVAL:
2357 (*pos) += 2;
2358 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2359 if (noside == EVAL_SKIP)
2360 goto nosideret;
2361 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2362 return value_zero (exp->elts[pc + 1].type, lval_memory);
2363 else
2364 return value_at_lazy (exp->elts[pc + 1].type,
2365 value_as_address (arg1));
2366
2367 case UNOP_MEMVAL_TLS:
2368 (*pos) += 3;
2369 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2370 if (noside == EVAL_SKIP)
2371 goto nosideret;
2372 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2373 return value_zero (exp->elts[pc + 2].type, lval_memory);
2374 else
2375 {
2376 CORE_ADDR tls_addr;
2377 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2378 value_as_address (arg1));
2379 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2380 }
2381
2382 case UNOP_PREINCREMENT:
2383 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2384 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2385 return arg1;
2386 else if (unop_user_defined_p (op, arg1))
2387 {
2388 return value_x_unop (arg1, op, noside);
2389 }
2390 else
2391 {
2392 arg2 = value_from_longest (builtin_type_uint8, (LONGEST) 1);
2393 if (ptrmath_type_p (value_type (arg1)))
2394 arg2 = value_ptradd (arg1, arg2);
2395 else
2396 {
2397 struct value *tmp = arg1;
2398 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2399 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2400 }
2401
2402 return value_assign (arg1, arg2);
2403 }
2404
2405 case UNOP_PREDECREMENT:
2406 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2407 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2408 return arg1;
2409 else if (unop_user_defined_p (op, arg1))
2410 {
2411 return value_x_unop (arg1, op, noside);
2412 }
2413 else
2414 {
2415 arg2 = value_from_longest (builtin_type_uint8, (LONGEST) 1);
2416 if (ptrmath_type_p (value_type (arg1)))
2417 arg2 = value_ptrsub (arg1, arg2);
2418 else
2419 {
2420 struct value *tmp = arg1;
2421 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2422 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2423 }
2424
2425 return value_assign (arg1, arg2);
2426 }
2427
2428 case UNOP_POSTINCREMENT:
2429 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2430 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2431 return arg1;
2432 else if (unop_user_defined_p (op, arg1))
2433 {
2434 return value_x_unop (arg1, op, noside);
2435 }
2436 else
2437 {
2438 arg2 = value_from_longest (builtin_type_uint8, (LONGEST) 1);
2439 if (ptrmath_type_p (value_type (arg1)))
2440 arg2 = value_ptradd (arg1, arg2);
2441 else
2442 {
2443 struct value *tmp = arg1;
2444 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2445 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2446 }
2447
2448 value_assign (arg1, arg2);
2449 return arg1;
2450 }
2451
2452 case UNOP_POSTDECREMENT:
2453 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2454 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2455 return arg1;
2456 else if (unop_user_defined_p (op, arg1))
2457 {
2458 return value_x_unop (arg1, op, noside);
2459 }
2460 else
2461 {
2462 arg2 = value_from_longest (builtin_type_uint8, (LONGEST) 1);
2463 if (ptrmath_type_p (value_type (arg1)))
2464 arg2 = value_ptrsub (arg1, arg2);
2465 else
2466 {
2467 struct value *tmp = arg1;
2468 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2469 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2470 }
2471
2472 value_assign (arg1, arg2);
2473 return arg1;
2474 }
2475
2476 case OP_THIS:
2477 (*pos) += 1;
2478 return value_of_this (1);
2479
2480 case OP_OBJC_SELF:
2481 (*pos) += 1;
2482 return value_of_local ("self", 1);
2483
2484 case OP_TYPE:
2485 /* The value is not supposed to be used. This is here to make it
2486 easier to accommodate expressions that contain types. */
2487 (*pos) += 2;
2488 if (noside == EVAL_SKIP)
2489 goto nosideret;
2490 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2491 {
2492 struct type *type = exp->elts[pc + 1].type;
2493 /* If this is a typedef, then find its immediate target. We
2494 use check_typedef to resolve stubs, but we ignore its
2495 result because we do not want to dig past all
2496 typedefs. */
2497 check_typedef (type);
2498 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2499 type = TYPE_TARGET_TYPE (type);
2500 return allocate_value (type);
2501 }
2502 else
2503 error (_("Attempt to use a type name as an expression"));
2504
2505 default:
2506 /* Removing this case and compiling with gcc -Wall reveals that
2507 a lot of cases are hitting this case. Some of these should
2508 probably be removed from expression.h; others are legitimate
2509 expressions which are (apparently) not fully implemented.
2510
2511 If there are any cases landing here which mean a user error,
2512 then they should be separate cases, with more descriptive
2513 error messages. */
2514
2515 error (_("\
2516 GDB does not (yet) know how to evaluate that kind of expression"));
2517 }
2518
2519 nosideret:
2520 return value_from_longest (builtin_type_int8, (LONGEST) 1);
2521 }
2522 \f
2523 /* Evaluate a subexpression of EXP, at index *POS,
2524 and return the address of that subexpression.
2525 Advance *POS over the subexpression.
2526 If the subexpression isn't an lvalue, get an error.
2527 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2528 then only the type of the result need be correct. */
2529
2530 static struct value *
2531 evaluate_subexp_for_address (struct expression *exp, int *pos,
2532 enum noside noside)
2533 {
2534 enum exp_opcode op;
2535 int pc;
2536 struct symbol *var;
2537 struct value *x;
2538 int tem;
2539
2540 pc = (*pos);
2541 op = exp->elts[pc].opcode;
2542
2543 switch (op)
2544 {
2545 case UNOP_IND:
2546 (*pos)++;
2547 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2548
2549 /* We can't optimize out "&*" if there's a user-defined operator*. */
2550 if (unop_user_defined_p (op, x))
2551 {
2552 x = value_x_unop (x, op, noside);
2553 goto default_case_after_eval;
2554 }
2555
2556 return x;
2557
2558 case UNOP_MEMVAL:
2559 (*pos) += 3;
2560 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2561 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2562
2563 case OP_VAR_VALUE:
2564 var = exp->elts[pc + 2].symbol;
2565
2566 /* C++: The "address" of a reference should yield the address
2567 * of the object pointed to. Let value_addr() deal with it. */
2568 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2569 goto default_case;
2570
2571 (*pos) += 4;
2572 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2573 {
2574 struct type *type =
2575 lookup_pointer_type (SYMBOL_TYPE (var));
2576 enum address_class sym_class = SYMBOL_CLASS (var);
2577
2578 if (sym_class == LOC_CONST
2579 || sym_class == LOC_CONST_BYTES
2580 || sym_class == LOC_REGISTER)
2581 error (_("Attempt to take address of register or constant."));
2582
2583 return
2584 value_zero (type, not_lval);
2585 }
2586 else
2587 return address_of_variable (var, exp->elts[pc + 1].block);
2588
2589 case OP_SCOPE:
2590 tem = longest_to_int (exp->elts[pc + 2].longconst);
2591 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2592 x = value_aggregate_elt (exp->elts[pc + 1].type,
2593 &exp->elts[pc + 3].string,
2594 1, noside);
2595 if (x == NULL)
2596 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2597 return x;
2598
2599 default:
2600 default_case:
2601 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2602 default_case_after_eval:
2603 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2604 {
2605 struct type *type = check_typedef (value_type (x));
2606
2607 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2608 return value_zero (lookup_pointer_type (value_type (x)),
2609 not_lval);
2610 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2611 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2612 not_lval);
2613 else
2614 error (_("Attempt to take address of value not located in memory."));
2615 }
2616 return value_addr (x);
2617 }
2618 }
2619
2620 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2621 When used in contexts where arrays will be coerced anyway, this is
2622 equivalent to `evaluate_subexp' but much faster because it avoids
2623 actually fetching array contents (perhaps obsolete now that we have
2624 value_lazy()).
2625
2626 Note that we currently only do the coercion for C expressions, where
2627 arrays are zero based and the coercion is correct. For other languages,
2628 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2629 to decide if coercion is appropriate.
2630
2631 */
2632
2633 struct value *
2634 evaluate_subexp_with_coercion (struct expression *exp,
2635 int *pos, enum noside noside)
2636 {
2637 enum exp_opcode op;
2638 int pc;
2639 struct value *val;
2640 struct symbol *var;
2641 struct type *type;
2642
2643 pc = (*pos);
2644 op = exp->elts[pc].opcode;
2645
2646 switch (op)
2647 {
2648 case OP_VAR_VALUE:
2649 var = exp->elts[pc + 2].symbol;
2650 type = check_typedef (SYMBOL_TYPE (var));
2651 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2652 && CAST_IS_CONVERSION)
2653 {
2654 (*pos) += 4;
2655 val = address_of_variable (var, exp->elts[pc + 1].block);
2656 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2657 val);
2658 }
2659 /* FALLTHROUGH */
2660
2661 default:
2662 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2663 }
2664 }
2665
2666 /* Evaluate a subexpression of EXP, at index *POS,
2667 and return a value for the size of that subexpression.
2668 Advance *POS over the subexpression. */
2669
2670 static struct value *
2671 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2672 {
2673 /* FIXME: This should be size_t. */
2674 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2675 enum exp_opcode op;
2676 int pc;
2677 struct type *type;
2678 struct value *val;
2679
2680 pc = (*pos);
2681 op = exp->elts[pc].opcode;
2682
2683 switch (op)
2684 {
2685 /* This case is handled specially
2686 so that we avoid creating a value for the result type.
2687 If the result type is very big, it's desirable not to
2688 create a value unnecessarily. */
2689 case UNOP_IND:
2690 (*pos)++;
2691 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2692 type = check_typedef (value_type (val));
2693 if (TYPE_CODE (type) != TYPE_CODE_PTR
2694 && TYPE_CODE (type) != TYPE_CODE_REF
2695 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2696 error (_("Attempt to take contents of a non-pointer value."));
2697 type = check_typedef (TYPE_TARGET_TYPE (type));
2698 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2699
2700 case UNOP_MEMVAL:
2701 (*pos) += 3;
2702 type = check_typedef (exp->elts[pc + 1].type);
2703 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2704
2705 case OP_VAR_VALUE:
2706 (*pos) += 4;
2707 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2708 return
2709 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2710
2711 default:
2712 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2713 return value_from_longest (size_type,
2714 (LONGEST) TYPE_LENGTH (value_type (val)));
2715 }
2716 }
2717
2718 /* Parse a type expression in the string [P..P+LENGTH). */
2719
2720 struct type *
2721 parse_and_eval_type (char *p, int length)
2722 {
2723 char *tmp = (char *) alloca (length + 4);
2724 struct expression *expr;
2725 tmp[0] = '(';
2726 memcpy (tmp + 1, p, length);
2727 tmp[length + 1] = ')';
2728 tmp[length + 2] = '0';
2729 tmp[length + 3] = '\0';
2730 expr = parse_expression (tmp);
2731 if (expr->elts[0].opcode != UNOP_CAST)
2732 error (_("Internal error in eval_type."));
2733 return expr->elts[1].type;
2734 }
2735
2736 int
2737 calc_f77_array_dims (struct type *array_type)
2738 {
2739 int ndimen = 1;
2740 struct type *tmp_type;
2741
2742 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2743 error (_("Can't get dimensions for a non-array type"));
2744
2745 tmp_type = array_type;
2746
2747 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2748 {
2749 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2750 ++ndimen;
2751 }
2752 return ndimen;
2753 }
This page took 0.094236 seconds and 4 git commands to generate.