Introduce structop_member_operation and structop_mptr_operation
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include "typeprint.h"
42 #include <ctype.h>
43 #include "expop.h"
44 #include "c-exp.h"
45
46 /* Prototypes for local functions. */
47
48 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
49 enum noside);
50
51 static struct value *evaluate_subexp_for_address (struct expression *,
52 int *, enum noside);
53
54 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
55 enum noside noside,
56 struct type *type);
57
58 static struct value *evaluate_struct_tuple (struct value *,
59 struct expression *, int *,
60 enum noside, int);
61
62 struct value *
63 evaluate_subexp (struct type *expect_type, struct expression *exp,
64 int *pos, enum noside noside)
65 {
66 return ((*exp->language_defn->expression_ops ()->evaluate_exp)
67 (expect_type, exp, pos, noside));
68 }
69 \f
70 /* Parse the string EXP as a C expression, evaluate it,
71 and return the result as a number. */
72
73 CORE_ADDR
74 parse_and_eval_address (const char *exp)
75 {
76 expression_up expr = parse_expression (exp);
77
78 return value_as_address (evaluate_expression (expr.get ()));
79 }
80
81 /* Like parse_and_eval_address, but treats the value of the expression
82 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
83 LONGEST
84 parse_and_eval_long (const char *exp)
85 {
86 expression_up expr = parse_expression (exp);
87
88 return value_as_long (evaluate_expression (expr.get ()));
89 }
90
91 struct value *
92 parse_and_eval (const char *exp)
93 {
94 expression_up expr = parse_expression (exp);
95
96 return evaluate_expression (expr.get ());
97 }
98
99 /* Parse up to a comma (or to a closeparen)
100 in the string EXPP as an expression, evaluate it, and return the value.
101 EXPP is advanced to point to the comma. */
102
103 struct value *
104 parse_to_comma_and_eval (const char **expp)
105 {
106 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
107
108 return evaluate_expression (expr.get ());
109 }
110 \f
111
112 /* See expression.h. */
113
114 struct value *
115 expression::evaluate (struct type *expect_type, enum noside noside)
116 {
117 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
118 if (target_has_execution ()
119 && language_defn->la_language == language_cplus
120 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
121 stack_temporaries.emplace (inferior_thread ());
122
123 int pos = 0;
124 struct value *retval = evaluate_subexp (expect_type, this, &pos, noside);
125
126 if (stack_temporaries.has_value ()
127 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
128 retval = value_non_lval (retval);
129
130 return retval;
131 }
132
133 /* See value.h. */
134
135 struct value *
136 evaluate_expression (struct expression *exp, struct type *expect_type)
137 {
138 return exp->evaluate (expect_type, EVAL_NORMAL);
139 }
140
141 /* Evaluate an expression, avoiding all memory references
142 and getting a value whose type alone is correct. */
143
144 struct value *
145 evaluate_type (struct expression *exp)
146 {
147 return exp->evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS);
148 }
149
150 /* Evaluate a subexpression, avoiding all memory references and
151 getting a value whose type alone is correct. */
152
153 struct value *
154 evaluate_subexpression_type (struct expression *exp, int subexp)
155 {
156 return evaluate_subexp (nullptr, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
157 }
158
159 /* Find the current value of a watchpoint on EXP. Return the value in
160 *VALP and *RESULTP and the chain of intermediate and final values
161 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
162 not need them.
163
164 If PRESERVE_ERRORS is true, then exceptions are passed through.
165 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
166 occurs while evaluating the expression, *RESULTP will be set to
167 NULL. *RESULTP may be a lazy value, if the result could not be
168 read from memory. It is used to determine whether a value is
169 user-specified (we should watch the whole value) or intermediate
170 (we should watch only the bit used to locate the final value).
171
172 If the final value, or any intermediate value, could not be read
173 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
174 set to any referenced values. *VALP will never be a lazy value.
175 This is the value which we store in struct breakpoint.
176
177 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
178 released from the value chain. If VAL_CHAIN is NULL, all generated
179 values will be left on the value chain. */
180
181 void
182 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
183 struct value **resultp,
184 std::vector<value_ref_ptr> *val_chain,
185 bool preserve_errors)
186 {
187 struct value *mark, *new_mark, *result;
188
189 *valp = NULL;
190 if (resultp)
191 *resultp = NULL;
192 if (val_chain)
193 val_chain->clear ();
194
195 /* Evaluate the expression. */
196 mark = value_mark ();
197 result = NULL;
198
199 try
200 {
201 result = evaluate_subexp (nullptr, exp, pc, EVAL_NORMAL);
202 }
203 catch (const gdb_exception &ex)
204 {
205 /* Ignore memory errors if we want watchpoints pointing at
206 inaccessible memory to still be created; otherwise, throw the
207 error to some higher catcher. */
208 switch (ex.error)
209 {
210 case MEMORY_ERROR:
211 if (!preserve_errors)
212 break;
213 /* Fall through. */
214 default:
215 throw;
216 break;
217 }
218 }
219
220 new_mark = value_mark ();
221 if (mark == new_mark)
222 return;
223 if (resultp)
224 *resultp = result;
225
226 /* Make sure it's not lazy, so that after the target stops again we
227 have a non-lazy previous value to compare with. */
228 if (result != NULL)
229 {
230 if (!value_lazy (result))
231 *valp = result;
232 else
233 {
234
235 try
236 {
237 value_fetch_lazy (result);
238 *valp = result;
239 }
240 catch (const gdb_exception_error &except)
241 {
242 }
243 }
244 }
245
246 if (val_chain)
247 {
248 /* Return the chain of intermediate values. We use this to
249 decide which addresses to watch. */
250 *val_chain = value_release_to_mark (mark);
251 }
252 }
253
254 /* Extract a field operation from an expression. If the subexpression
255 of EXP starting at *SUBEXP is not a structure dereference
256 operation, return NULL. Otherwise, return the name of the
257 dereferenced field, and advance *SUBEXP to point to the
258 subexpression of the left-hand-side of the dereference. This is
259 used when completing field names. */
260
261 const char *
262 extract_field_op (struct expression *exp, int *subexp)
263 {
264 int tem;
265 char *result;
266
267 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
268 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
269 return NULL;
270 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
271 result = &exp->elts[*subexp + 2].string;
272 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
273 return result;
274 }
275
276 /* This function evaluates brace-initializers (in C/C++) for
277 structure types. */
278
279 static struct value *
280 evaluate_struct_tuple (struct value *struct_val,
281 struct expression *exp,
282 int *pos, enum noside noside, int nargs)
283 {
284 struct type *struct_type = check_typedef (value_type (struct_val));
285 struct type *field_type;
286 int fieldno = -1;
287
288 while (--nargs >= 0)
289 {
290 struct value *val = NULL;
291 int bitpos, bitsize;
292 bfd_byte *addr;
293
294 fieldno++;
295 /* Skip static fields. */
296 while (fieldno < struct_type->num_fields ()
297 && field_is_static (&struct_type->field (fieldno)))
298 fieldno++;
299 if (fieldno >= struct_type->num_fields ())
300 error (_("too many initializers"));
301 field_type = struct_type->field (fieldno).type ();
302 if (field_type->code () == TYPE_CODE_UNION
303 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
304 error (_("don't know which variant you want to set"));
305
306 /* Here, struct_type is the type of the inner struct,
307 while substruct_type is the type of the inner struct.
308 These are the same for normal structures, but a variant struct
309 contains anonymous union fields that contain substruct fields.
310 The value fieldno is the index of the top-level (normal or
311 anonymous union) field in struct_field, while the value
312 subfieldno is the index of the actual real (named inner) field
313 in substruct_type. */
314
315 field_type = struct_type->field (fieldno).type ();
316 if (val == 0)
317 val = evaluate_subexp (field_type, exp, pos, noside);
318
319 /* Now actually set the field in struct_val. */
320
321 /* Assign val to field fieldno. */
322 if (value_type (val) != field_type)
323 val = value_cast (field_type, val);
324
325 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
326 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
327 addr = value_contents_writeable (struct_val) + bitpos / 8;
328 if (bitsize)
329 modify_field (struct_type, addr,
330 value_as_long (val), bitpos % 8, bitsize);
331 else
332 memcpy (addr, value_contents (val),
333 TYPE_LENGTH (value_type (val)));
334
335 }
336 return struct_val;
337 }
338
339 /* Promote value ARG1 as appropriate before performing a unary operation
340 on this argument.
341 If the result is not appropriate for any particular language then it
342 needs to patch this function. */
343
344 void
345 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
346 struct value **arg1)
347 {
348 struct type *type1;
349
350 *arg1 = coerce_ref (*arg1);
351 type1 = check_typedef (value_type (*arg1));
352
353 if (is_integral_type (type1))
354 {
355 switch (language->la_language)
356 {
357 default:
358 /* Perform integral promotion for ANSI C/C++.
359 If not appropriate for any particular language
360 it needs to modify this function. */
361 {
362 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
363
364 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
365 *arg1 = value_cast (builtin_int, *arg1);
366 }
367 break;
368 }
369 }
370 }
371
372 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
373 operation on those two operands.
374 If the result is not appropriate for any particular language then it
375 needs to patch this function. */
376
377 void
378 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
379 struct value **arg1, struct value **arg2)
380 {
381 struct type *promoted_type = NULL;
382 struct type *type1;
383 struct type *type2;
384
385 *arg1 = coerce_ref (*arg1);
386 *arg2 = coerce_ref (*arg2);
387
388 type1 = check_typedef (value_type (*arg1));
389 type2 = check_typedef (value_type (*arg2));
390
391 if ((type1->code () != TYPE_CODE_FLT
392 && type1->code () != TYPE_CODE_DECFLOAT
393 && !is_integral_type (type1))
394 || (type2->code () != TYPE_CODE_FLT
395 && type2->code () != TYPE_CODE_DECFLOAT
396 && !is_integral_type (type2)))
397 return;
398
399 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
400 return;
401
402 if (type1->code () == TYPE_CODE_DECFLOAT
403 || type2->code () == TYPE_CODE_DECFLOAT)
404 {
405 /* No promotion required. */
406 }
407 else if (type1->code () == TYPE_CODE_FLT
408 || type2->code () == TYPE_CODE_FLT)
409 {
410 switch (language->la_language)
411 {
412 case language_c:
413 case language_cplus:
414 case language_asm:
415 case language_objc:
416 case language_opencl:
417 /* No promotion required. */
418 break;
419
420 default:
421 /* For other languages the result type is unchanged from gdb
422 version 6.7 for backward compatibility.
423 If either arg was long double, make sure that value is also long
424 double. Otherwise use double. */
425 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
426 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
427 promoted_type = builtin_type (gdbarch)->builtin_long_double;
428 else
429 promoted_type = builtin_type (gdbarch)->builtin_double;
430 break;
431 }
432 }
433 else if (type1->code () == TYPE_CODE_BOOL
434 && type2->code () == TYPE_CODE_BOOL)
435 {
436 /* No promotion required. */
437 }
438 else
439 /* Integral operations here. */
440 /* FIXME: Also mixed integral/booleans, with result an integer. */
441 {
442 const struct builtin_type *builtin = builtin_type (gdbarch);
443 unsigned int promoted_len1 = TYPE_LENGTH (type1);
444 unsigned int promoted_len2 = TYPE_LENGTH (type2);
445 int is_unsigned1 = type1->is_unsigned ();
446 int is_unsigned2 = type2->is_unsigned ();
447 unsigned int result_len;
448 int unsigned_operation;
449
450 /* Determine type length and signedness after promotion for
451 both operands. */
452 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
453 {
454 is_unsigned1 = 0;
455 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
456 }
457 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
458 {
459 is_unsigned2 = 0;
460 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
461 }
462
463 if (promoted_len1 > promoted_len2)
464 {
465 unsigned_operation = is_unsigned1;
466 result_len = promoted_len1;
467 }
468 else if (promoted_len2 > promoted_len1)
469 {
470 unsigned_operation = is_unsigned2;
471 result_len = promoted_len2;
472 }
473 else
474 {
475 unsigned_operation = is_unsigned1 || is_unsigned2;
476 result_len = promoted_len1;
477 }
478
479 switch (language->la_language)
480 {
481 case language_c:
482 case language_cplus:
483 case language_asm:
484 case language_objc:
485 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
486 {
487 promoted_type = (unsigned_operation
488 ? builtin->builtin_unsigned_int
489 : builtin->builtin_int);
490 }
491 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
492 {
493 promoted_type = (unsigned_operation
494 ? builtin->builtin_unsigned_long
495 : builtin->builtin_long);
496 }
497 else
498 {
499 promoted_type = (unsigned_operation
500 ? builtin->builtin_unsigned_long_long
501 : builtin->builtin_long_long);
502 }
503 break;
504 case language_opencl:
505 if (result_len <= TYPE_LENGTH (lookup_signed_typename
506 (language, "int")))
507 {
508 promoted_type =
509 (unsigned_operation
510 ? lookup_unsigned_typename (language, "int")
511 : lookup_signed_typename (language, "int"));
512 }
513 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
514 (language, "long")))
515 {
516 promoted_type =
517 (unsigned_operation
518 ? lookup_unsigned_typename (language, "long")
519 : lookup_signed_typename (language,"long"));
520 }
521 break;
522 default:
523 /* For other languages the result type is unchanged from gdb
524 version 6.7 for backward compatibility.
525 If either arg was long long, make sure that value is also long
526 long. Otherwise use long. */
527 if (unsigned_operation)
528 {
529 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
530 promoted_type = builtin->builtin_unsigned_long_long;
531 else
532 promoted_type = builtin->builtin_unsigned_long;
533 }
534 else
535 {
536 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
537 promoted_type = builtin->builtin_long_long;
538 else
539 promoted_type = builtin->builtin_long;
540 }
541 break;
542 }
543 }
544
545 if (promoted_type)
546 {
547 /* Promote both operands to common type. */
548 *arg1 = value_cast (promoted_type, *arg1);
549 *arg2 = value_cast (promoted_type, *arg2);
550 }
551 }
552
553 static int
554 ptrmath_type_p (const struct language_defn *lang, struct type *type)
555 {
556 type = check_typedef (type);
557 if (TYPE_IS_REFERENCE (type))
558 type = TYPE_TARGET_TYPE (type);
559
560 switch (type->code ())
561 {
562 case TYPE_CODE_PTR:
563 case TYPE_CODE_FUNC:
564 return 1;
565
566 case TYPE_CODE_ARRAY:
567 return type->is_vector () ? 0 : lang->c_style_arrays_p ();
568
569 default:
570 return 0;
571 }
572 }
573
574 /* Represents a fake method with the given parameter types. This is
575 used by the parser to construct a temporary "expected" type for
576 method overload resolution. FLAGS is used as instance flags of the
577 new type, in order to be able to make the new type represent a
578 const/volatile overload. */
579
580 class fake_method
581 {
582 public:
583 fake_method (type_instance_flags flags,
584 int num_types, struct type **param_types);
585 ~fake_method ();
586
587 /* The constructed type. */
588 struct type *type () { return &m_type; }
589
590 private:
591 struct type m_type {};
592 main_type m_main_type {};
593 };
594
595 fake_method::fake_method (type_instance_flags flags,
596 int num_types, struct type **param_types)
597 {
598 struct type *type = &m_type;
599
600 TYPE_MAIN_TYPE (type) = &m_main_type;
601 TYPE_LENGTH (type) = 1;
602 type->set_code (TYPE_CODE_METHOD);
603 TYPE_CHAIN (type) = type;
604 type->set_instance_flags (flags);
605 if (num_types > 0)
606 {
607 if (param_types[num_types - 1] == NULL)
608 {
609 --num_types;
610 type->set_has_varargs (true);
611 }
612 else if (check_typedef (param_types[num_types - 1])->code ()
613 == TYPE_CODE_VOID)
614 {
615 --num_types;
616 /* Caller should have ensured this. */
617 gdb_assert (num_types == 0);
618 type->set_is_prototyped (true);
619 }
620 }
621
622 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
623 neither an objfile nor a gdbarch. As a result we must manually
624 allocate memory for auxiliary fields, and free the memory ourselves
625 when we are done with it. */
626 type->set_num_fields (num_types);
627 type->set_fields
628 ((struct field *) xzalloc (sizeof (struct field) * num_types));
629
630 while (num_types-- > 0)
631 type->field (num_types).set_type (param_types[num_types]);
632 }
633
634 fake_method::~fake_method ()
635 {
636 xfree (m_type.fields ());
637 }
638
639 /* Helper for evaluating an OP_VAR_VALUE. */
640
641 value *
642 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
643 {
644 /* JYG: We used to just return value_zero of the symbol type if
645 we're asked to avoid side effects. Otherwise we return
646 value_of_variable (...). However I'm not sure if
647 value_of_variable () has any side effect. We need a full value
648 object returned here for whatis_exp () to call evaluate_type ()
649 and then pass the full value to value_rtti_target_type () if we
650 are dealing with a pointer or reference to a base class and print
651 object is on. */
652
653 struct value *ret = NULL;
654
655 try
656 {
657 ret = value_of_variable (var, blk);
658 }
659
660 catch (const gdb_exception_error &except)
661 {
662 if (noside != EVAL_AVOID_SIDE_EFFECTS)
663 throw;
664
665 ret = value_zero (SYMBOL_TYPE (var), not_lval);
666 }
667
668 return ret;
669 }
670
671 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
672
673 value *
674 evaluate_var_msym_value (enum noside noside,
675 struct objfile *objfile, minimal_symbol *msymbol)
676 {
677 CORE_ADDR address;
678 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
679
680 if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
681 return value_zero (the_type, not_lval);
682 else
683 return value_at_lazy (the_type, address);
684 }
685
686 /* Helper for returning a value when handling EVAL_SKIP. */
687
688 value *
689 eval_skip_value (expression *exp)
690 {
691 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
692 }
693
694 /* See expression.h. */
695
696 value *
697 evaluate_subexp_do_call (expression *exp, enum noside noside,
698 value *callee,
699 gdb::array_view<value *> argvec,
700 const char *function_name,
701 type *default_return_type)
702 {
703 if (callee == NULL)
704 error (_("Cannot evaluate function -- may be inlined"));
705 if (noside == EVAL_AVOID_SIDE_EFFECTS)
706 {
707 /* If the return type doesn't look like a function type,
708 call an error. This can happen if somebody tries to turn
709 a variable into a function call. */
710
711 type *ftype = value_type (callee);
712
713 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
714 {
715 /* We don't know anything about what the internal
716 function might return, but we have to return
717 something. */
718 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
719 not_lval);
720 }
721 else if (ftype->code () == TYPE_CODE_XMETHOD)
722 {
723 type *return_type = result_type_of_xmethod (callee, argvec);
724
725 if (return_type == NULL)
726 error (_("Xmethod is missing return type."));
727 return value_zero (return_type, not_lval);
728 }
729 else if (ftype->code () == TYPE_CODE_FUNC
730 || ftype->code () == TYPE_CODE_METHOD)
731 {
732 if (ftype->is_gnu_ifunc ())
733 {
734 CORE_ADDR address = value_address (callee);
735 type *resolved_type = find_gnu_ifunc_target_type (address);
736
737 if (resolved_type != NULL)
738 ftype = resolved_type;
739 }
740
741 type *return_type = TYPE_TARGET_TYPE (ftype);
742
743 if (return_type == NULL)
744 return_type = default_return_type;
745
746 if (return_type == NULL)
747 error_call_unknown_return_type (function_name);
748
749 return allocate_value (return_type);
750 }
751 else
752 error (_("Expression of type other than "
753 "\"Function returning ...\" used as function"));
754 }
755 switch (value_type (callee)->code ())
756 {
757 case TYPE_CODE_INTERNAL_FUNCTION:
758 return call_internal_function (exp->gdbarch, exp->language_defn,
759 callee, argvec.size (), argvec.data ());
760 case TYPE_CODE_XMETHOD:
761 return call_xmethod (callee, argvec);
762 default:
763 return call_function_by_hand (callee, default_return_type, argvec);
764 }
765 }
766
767 /* Helper for evaluating an OP_FUNCALL. */
768
769 static value *
770 evaluate_funcall (type *expect_type, expression *exp, int *pos,
771 enum noside noside)
772 {
773 int tem;
774 int pc2 = 0;
775 value *arg1 = NULL;
776 value *arg2 = NULL;
777 int save_pos1;
778 symbol *function = NULL;
779 char *function_name = NULL;
780 const char *var_func_name = NULL;
781
782 int pc = (*pos);
783 (*pos) += 2;
784
785 exp_opcode op = exp->elts[*pos].opcode;
786 int nargs = longest_to_int (exp->elts[pc].longconst);
787 /* Allocate arg vector, including space for the function to be
788 called in argvec[0], a potential `this', and a terminating
789 NULL. */
790 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
791 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
792 {
793 /* First, evaluate the structure into arg2. */
794 pc2 = (*pos)++;
795
796 if (op == STRUCTOP_MEMBER)
797 {
798 arg2 = evaluate_subexp_for_address (exp, pos, noside);
799 }
800 else
801 {
802 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
803 }
804
805 /* If the function is a virtual function, then the aggregate
806 value (providing the structure) plays its part by providing
807 the vtable. Otherwise, it is just along for the ride: call
808 the function directly. */
809
810 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
811
812 type *a1_type = check_typedef (value_type (arg1));
813 if (noside == EVAL_SKIP)
814 tem = 1; /* Set it to the right arg index so that all
815 arguments can also be skipped. */
816 else if (a1_type->code () == TYPE_CODE_METHODPTR)
817 {
818 if (noside == EVAL_AVOID_SIDE_EFFECTS)
819 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
820 else
821 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
822
823 /* Now, say which argument to start evaluating from. */
824 nargs++;
825 tem = 2;
826 argvec[1] = arg2;
827 }
828 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
829 {
830 struct type *type_ptr
831 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
832 struct type *target_type_ptr
833 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
834
835 /* Now, convert these values to an address. */
836 arg2 = value_cast (type_ptr, arg2);
837
838 long mem_offset = value_as_long (arg1);
839
840 arg1 = value_from_pointer (target_type_ptr,
841 value_as_long (arg2) + mem_offset);
842 arg1 = value_ind (arg1);
843 tem = 1;
844 }
845 else
846 error (_("Non-pointer-to-member value used in pointer-to-member "
847 "construct"));
848 }
849 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
850 {
851 /* Hair for method invocations. */
852 int tem2;
853
854 nargs++;
855 /* First, evaluate the structure into arg2. */
856 pc2 = (*pos)++;
857 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
858 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
859
860 if (op == STRUCTOP_STRUCT)
861 {
862 /* If v is a variable in a register, and the user types
863 v.method (), this will produce an error, because v has no
864 address.
865
866 A possible way around this would be to allocate a copy of
867 the variable on the stack, copy in the contents, call the
868 function, and copy out the contents. I.e. convert this
869 from call by reference to call by copy-return (or
870 whatever it's called). However, this does not work
871 because it is not the same: the method being called could
872 stash a copy of the address, and then future uses through
873 that address (after the method returns) would be expected
874 to use the variable itself, not some copy of it. */
875 arg2 = evaluate_subexp_for_address (exp, pos, noside);
876 }
877 else
878 {
879 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
880
881 /* Check to see if the operator '->' has been overloaded.
882 If the operator has been overloaded replace arg2 with the
883 value returned by the custom operator and continue
884 evaluation. */
885 while (unop_user_defined_p (op, arg2))
886 {
887 struct value *value = NULL;
888 try
889 {
890 value = value_x_unop (arg2, op, noside);
891 }
892
893 catch (const gdb_exception_error &except)
894 {
895 if (except.error == NOT_FOUND_ERROR)
896 break;
897 else
898 throw;
899 }
900
901 arg2 = value;
902 }
903 }
904 /* Now, say which argument to start evaluating from. */
905 tem = 2;
906 }
907 else if (op == OP_SCOPE
908 && overload_resolution
909 && (exp->language_defn->la_language == language_cplus))
910 {
911 /* Unpack it locally so we can properly handle overload
912 resolution. */
913 char *name;
914 int local_tem;
915
916 pc2 = (*pos)++;
917 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
918 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
919 struct type *type = exp->elts[pc2 + 1].type;
920 name = &exp->elts[pc2 + 3].string;
921
922 function = NULL;
923 function_name = NULL;
924 if (type->code () == TYPE_CODE_NAMESPACE)
925 {
926 function = cp_lookup_symbol_namespace (type->name (),
927 name,
928 get_selected_block (0),
929 VAR_DOMAIN).symbol;
930 if (function == NULL)
931 error (_("No symbol \"%s\" in namespace \"%s\"."),
932 name, type->name ());
933
934 tem = 1;
935 /* arg2 is left as NULL on purpose. */
936 }
937 else
938 {
939 gdb_assert (type->code () == TYPE_CODE_STRUCT
940 || type->code () == TYPE_CODE_UNION);
941 function_name = name;
942
943 /* We need a properly typed value for method lookup. For
944 static methods arg2 is otherwise unused. */
945 arg2 = value_zero (type, lval_memory);
946 ++nargs;
947 tem = 2;
948 }
949 }
950 else if (op == OP_ADL_FUNC)
951 {
952 /* Save the function position and move pos so that the arguments
953 can be evaluated. */
954 int func_name_len;
955
956 save_pos1 = *pos;
957 tem = 1;
958
959 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
960 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
961 }
962 else
963 {
964 /* Non-method function call. */
965 save_pos1 = *pos;
966 tem = 1;
967
968 /* If this is a C++ function wait until overload resolution. */
969 if (op == OP_VAR_VALUE
970 && overload_resolution
971 && (exp->language_defn->la_language == language_cplus))
972 {
973 (*pos) += 4; /* Skip the evaluation of the symbol. */
974 argvec[0] = NULL;
975 }
976 else
977 {
978 if (op == OP_VAR_MSYM_VALUE)
979 {
980 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
981 var_func_name = msym->print_name ();
982 }
983 else if (op == OP_VAR_VALUE)
984 {
985 symbol *sym = exp->elts[*pos + 2].symbol;
986 var_func_name = sym->print_name ();
987 }
988
989 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
990 type *type = value_type (argvec[0]);
991 if (type && type->code () == TYPE_CODE_PTR)
992 type = TYPE_TARGET_TYPE (type);
993 if (type && type->code () == TYPE_CODE_FUNC)
994 {
995 for (; tem <= nargs && tem <= type->num_fields (); tem++)
996 {
997 argvec[tem] = evaluate_subexp (type->field (tem - 1).type (),
998 exp, pos, noside);
999 }
1000 }
1001 }
1002 }
1003
1004 /* Evaluate arguments (if not already done, e.g., namespace::func()
1005 and overload-resolution is off). */
1006 for (; tem <= nargs; tem++)
1007 {
1008 /* Ensure that array expressions are coerced into pointer
1009 objects. */
1010 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1011 }
1012
1013 /* Signal end of arglist. */
1014 argvec[tem] = 0;
1015
1016 if (noside == EVAL_SKIP)
1017 return eval_skip_value (exp);
1018
1019 if (op == OP_ADL_FUNC)
1020 {
1021 struct symbol *symp;
1022 char *func_name;
1023 int name_len;
1024 int string_pc = save_pos1 + 3;
1025
1026 /* Extract the function name. */
1027 name_len = longest_to_int (exp->elts[string_pc].longconst);
1028 func_name = (char *) alloca (name_len + 1);
1029 strcpy (func_name, &exp->elts[string_pc + 1].string);
1030
1031 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1032 func_name,
1033 NON_METHOD, /* not method */
1034 NULL, NULL, /* pass NULL symbol since
1035 symbol is unknown */
1036 NULL, &symp, NULL, 0, noside);
1037
1038 /* Now fix the expression being evaluated. */
1039 exp->elts[save_pos1 + 2].symbol = symp;
1040 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1041 }
1042
1043 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1044 || (op == OP_SCOPE && function_name != NULL))
1045 {
1046 int static_memfuncp;
1047 char *tstr;
1048
1049 /* Method invocation: stuff "this" as first parameter. If the
1050 method turns out to be static we undo this below. */
1051 argvec[1] = arg2;
1052
1053 if (op != OP_SCOPE)
1054 {
1055 /* Name of method from expression. */
1056 tstr = &exp->elts[pc2 + 2].string;
1057 }
1058 else
1059 tstr = function_name;
1060
1061 if (overload_resolution && (exp->language_defn->la_language
1062 == language_cplus))
1063 {
1064 /* Language is C++, do some overload resolution before
1065 evaluation. */
1066 struct value *valp = NULL;
1067
1068 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1069 tstr,
1070 METHOD, /* method */
1071 &arg2, /* the object */
1072 NULL, &valp, NULL,
1073 &static_memfuncp, 0, noside);
1074
1075 if (op == OP_SCOPE && !static_memfuncp)
1076 {
1077 /* For the time being, we don't handle this. */
1078 error (_("Call to overloaded function %s requires "
1079 "`this' pointer"),
1080 function_name);
1081 }
1082 argvec[1] = arg2; /* the ``this'' pointer */
1083 argvec[0] = valp; /* Use the method found after overload
1084 resolution. */
1085 }
1086 else
1087 /* Non-C++ case -- or no overload resolution. */
1088 {
1089 struct value *temp = arg2;
1090
1091 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1092 &static_memfuncp,
1093 op == STRUCTOP_STRUCT
1094 ? "structure" : "structure pointer");
1095 /* value_struct_elt updates temp with the correct value of
1096 the ``this'' pointer if necessary, so modify argvec[1] to
1097 reflect any ``this'' changes. */
1098 arg2
1099 = value_from_longest (lookup_pointer_type(value_type (temp)),
1100 value_address (temp)
1101 + value_embedded_offset (temp));
1102 argvec[1] = arg2; /* the ``this'' pointer */
1103 }
1104
1105 /* Take out `this' if needed. */
1106 if (static_memfuncp)
1107 {
1108 argvec[1] = argvec[0];
1109 nargs--;
1110 argvec++;
1111 }
1112 }
1113 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1114 {
1115 /* Pointer to member. argvec[1] is already set up. */
1116 argvec[0] = arg1;
1117 }
1118 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1119 {
1120 /* Non-member function being called. */
1121 /* fn: This can only be done for C++ functions. A C-style
1122 function in a C++ program, for instance, does not have the
1123 fields that are expected here. */
1124
1125 if (overload_resolution && (exp->language_defn->la_language
1126 == language_cplus))
1127 {
1128 /* Language is C++, do some overload resolution before
1129 evaluation. */
1130 struct symbol *symp;
1131 int no_adl = 0;
1132
1133 /* If a scope has been specified disable ADL. */
1134 if (op == OP_SCOPE)
1135 no_adl = 1;
1136
1137 if (op == OP_VAR_VALUE)
1138 function = exp->elts[save_pos1+2].symbol;
1139
1140 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1141 NULL, /* no need for name */
1142 NON_METHOD, /* not method */
1143 NULL, function, /* the function */
1144 NULL, &symp, NULL, no_adl, noside);
1145
1146 if (op == OP_VAR_VALUE)
1147 {
1148 /* Now fix the expression being evaluated. */
1149 exp->elts[save_pos1+2].symbol = symp;
1150 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1151 noside);
1152 }
1153 else
1154 argvec[0] = value_of_variable (symp, get_selected_block (0));
1155 }
1156 else
1157 {
1158 /* Not C++, or no overload resolution allowed. */
1159 /* Nothing to be done; argvec already correctly set up. */
1160 }
1161 }
1162 else
1163 {
1164 /* It is probably a C-style function. */
1165 /* Nothing to be done; argvec already correctly set up. */
1166 }
1167
1168 return evaluate_subexp_do_call (exp, noside, argvec[0],
1169 gdb::make_array_view (argvec + 1, nargs),
1170 var_func_name, expect_type);
1171 }
1172
1173 /* Return true if type is integral or reference to integral */
1174
1175 static bool
1176 is_integral_or_integral_reference (struct type *type)
1177 {
1178 if (is_integral_type (type))
1179 return true;
1180
1181 type = check_typedef (type);
1182 return (type != nullptr
1183 && TYPE_IS_REFERENCE (type)
1184 && is_integral_type (TYPE_TARGET_TYPE (type)));
1185 }
1186
1187 /* Helper function that implements the body of OP_SCOPE. */
1188
1189 struct value *
1190 eval_op_scope (struct type *expect_type, struct expression *exp,
1191 enum noside noside,
1192 struct type *type, const char *string)
1193 {
1194 if (noside == EVAL_SKIP)
1195 return eval_skip_value (exp);
1196 struct value *arg1 = value_aggregate_elt (type, string, expect_type,
1197 0, noside);
1198 if (arg1 == NULL)
1199 error (_("There is no field named %s"), string);
1200 return arg1;
1201 }
1202
1203 /* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
1204
1205 struct value *
1206 eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
1207 enum noside noside, symbol *sym)
1208 {
1209 if (noside == EVAL_SKIP)
1210 return eval_skip_value (exp);
1211 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1212 return value_zero (SYMBOL_TYPE (sym), not_lval);
1213
1214 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1215 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1216 error (_("Symbol \"%s\" does not have any specific entry value"),
1217 sym->print_name ());
1218
1219 struct frame_info *frame = get_selected_frame (NULL);
1220 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1221 }
1222
1223 /* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
1224
1225 struct value *
1226 eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
1227 enum noside noside, bool outermost_p,
1228 minimal_symbol *msymbol, struct objfile *objfile)
1229 {
1230 value *val = evaluate_var_msym_value (noside, objfile, msymbol);
1231
1232 struct type *type = value_type (val);
1233 if (type->code () == TYPE_CODE_ERROR
1234 && (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
1235 error_unknown_type (msymbol->print_name ());
1236 return val;
1237 }
1238
1239 /* Helper function that implements the body of OP_FUNC_STATIC_VAR. */
1240
1241 struct value *
1242 eval_op_func_static_var (struct type *expect_type, struct expression *exp,
1243 enum noside noside,
1244 value *func, const char *var)
1245 {
1246 if (noside == EVAL_SKIP)
1247 return eval_skip_value (exp);
1248 CORE_ADDR addr = value_address (func);
1249 const block *blk = block_for_pc (addr);
1250 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1251 if (sym.symbol == NULL)
1252 error (_("No symbol \"%s\" in specified context."), var);
1253 return evaluate_var_value (noside, sym.block, sym.symbol);
1254 }
1255
1256 /* Helper function that implements the body of OP_REGISTER. */
1257
1258 struct value *
1259 eval_op_register (struct type *expect_type, struct expression *exp,
1260 enum noside noside, const char *name)
1261 {
1262 int regno;
1263 struct value *val;
1264
1265 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1266 name, strlen (name));
1267 if (regno == -1)
1268 error (_("Register $%s not available."), name);
1269
1270 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1271 a value with the appropriate register type. Unfortunately,
1272 we don't have easy access to the type of user registers.
1273 So for these registers, we fetch the register value regardless
1274 of the evaluation mode. */
1275 if (noside == EVAL_AVOID_SIDE_EFFECTS
1276 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1277 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1278 else
1279 val = value_of_register (regno, get_selected_frame (NULL));
1280 if (val == NULL)
1281 error (_("Value of register %s not available."), name);
1282 else
1283 return val;
1284 }
1285
1286 /* Helper function that implements the body of OP_STRING. */
1287
1288 struct value *
1289 eval_op_string (struct type *expect_type, struct expression *exp,
1290 enum noside noside, int len, const char *string)
1291 {
1292 if (noside == EVAL_SKIP)
1293 return eval_skip_value (exp);
1294 struct type *type = language_string_char_type (exp->language_defn,
1295 exp->gdbarch);
1296 return value_string (string, len, type);
1297 }
1298
1299 /* Helper function that implements the body of OP_OBJC_SELECTOR. */
1300
1301 struct value *
1302 eval_op_objc_selector (struct type *expect_type, struct expression *exp,
1303 enum noside noside,
1304 const char *sel)
1305 {
1306 if (noside == EVAL_SKIP)
1307 return eval_skip_value (exp);
1308
1309 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1310 return value_from_longest (selector_type,
1311 lookup_child_selector (exp->gdbarch, sel));
1312 }
1313
1314 /* Helper function that implements the body of BINOP_CONCAT. */
1315
1316 static struct value *
1317 eval_op_concat (struct type *expect_type, struct expression *exp,
1318 enum noside noside,
1319 enum exp_opcode op, struct value *arg1, struct value *arg2)
1320 {
1321 if (noside == EVAL_SKIP)
1322 return eval_skip_value (exp);
1323 if (binop_user_defined_p (op, arg1, arg2))
1324 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1325 else
1326 return value_concat (arg1, arg2);
1327 }
1328
1329 /* A helper function for TERNOP_SLICE. */
1330
1331 struct value *
1332 eval_op_ternop (struct type *expect_type, struct expression *exp,
1333 enum noside noside,
1334 struct value *array, struct value *low, struct value *upper)
1335 {
1336 if (noside == EVAL_SKIP)
1337 return eval_skip_value (exp);
1338 int lowbound = value_as_long (low);
1339 int upperbound = value_as_long (upper);
1340 return value_slice (array, lowbound, upperbound - lowbound + 1);
1341 }
1342
1343 /* A helper function for STRUCTOP_STRUCT. */
1344
1345 struct value *
1346 eval_op_structop_struct (struct type *expect_type, struct expression *exp,
1347 enum noside noside,
1348 struct value *arg1, const char *string)
1349 {
1350 if (noside == EVAL_SKIP)
1351 return eval_skip_value (exp);
1352 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1353 NULL, "structure");
1354 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1355 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1356 return arg3;
1357 }
1358
1359 /* A helper function for STRUCTOP_PTR. */
1360
1361 struct value *
1362 eval_op_structop_ptr (struct type *expect_type, struct expression *exp,
1363 enum noside noside,
1364 struct value *arg1, const char *string)
1365 {
1366 if (noside == EVAL_SKIP)
1367 return eval_skip_value (exp);
1368
1369 /* Check to see if operator '->' has been overloaded. If so replace
1370 arg1 with the value returned by evaluating operator->(). */
1371 while (unop_user_defined_p (STRUCTOP_PTR, arg1))
1372 {
1373 struct value *value = NULL;
1374 try
1375 {
1376 value = value_x_unop (arg1, STRUCTOP_PTR, noside);
1377 }
1378
1379 catch (const gdb_exception_error &except)
1380 {
1381 if (except.error == NOT_FOUND_ERROR)
1382 break;
1383 else
1384 throw;
1385 }
1386
1387 arg1 = value;
1388 }
1389
1390 /* JYG: if print object is on we need to replace the base type
1391 with rtti type in order to continue on with successful
1392 lookup of member / method only available in the rtti type. */
1393 {
1394 struct type *arg_type = value_type (arg1);
1395 struct type *real_type;
1396 int full, using_enc;
1397 LONGEST top;
1398 struct value_print_options opts;
1399
1400 get_user_print_options (&opts);
1401 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
1402 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
1403 {
1404 real_type = value_rtti_indirect_type (arg1, &full, &top,
1405 &using_enc);
1406 if (real_type)
1407 arg1 = value_cast (real_type, arg1);
1408 }
1409 }
1410
1411 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1412 NULL, "structure pointer");
1413 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1414 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1415 return arg3;
1416 }
1417
1418 /* A helper function for STRUCTOP_MEMBER. */
1419
1420 struct value *
1421 eval_op_member (struct type *expect_type, struct expression *exp,
1422 enum noside noside,
1423 struct value *arg1, struct value *arg2)
1424 {
1425 long mem_offset;
1426
1427 if (noside == EVAL_SKIP)
1428 return eval_skip_value (exp);
1429
1430 struct value *arg3;
1431 struct type *type = check_typedef (value_type (arg2));
1432 switch (type->code ())
1433 {
1434 case TYPE_CODE_METHODPTR:
1435 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1436 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1437 else
1438 {
1439 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1440 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
1441 return value_ind (arg2);
1442 }
1443
1444 case TYPE_CODE_MEMBERPTR:
1445 /* Now, convert these values to an address. */
1446 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1447 arg1, 1);
1448
1449 mem_offset = value_as_long (arg2);
1450
1451 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1452 value_as_long (arg1) + mem_offset);
1453 return value_ind (arg3);
1454
1455 default:
1456 error (_("non-pointer-to-member value used "
1457 "in pointer-to-member construct"));
1458 }
1459 }
1460
1461 /* A helper function for BINOP_ADD. */
1462
1463 static struct value *
1464 eval_op_add (struct type *expect_type, struct expression *exp,
1465 enum noside noside, enum exp_opcode op,
1466 struct value *arg1, struct value *arg2)
1467 {
1468 if (noside == EVAL_SKIP)
1469 return eval_skip_value (exp);
1470 if (binop_user_defined_p (op, arg1, arg2))
1471 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1472 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1473 && is_integral_or_integral_reference (value_type (arg2)))
1474 return value_ptradd (arg1, value_as_long (arg2));
1475 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
1476 && is_integral_or_integral_reference (value_type (arg1)))
1477 return value_ptradd (arg2, value_as_long (arg1));
1478 else
1479 {
1480 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1481 return value_binop (arg1, arg2, BINOP_ADD);
1482 }
1483 }
1484
1485 /* A helper function for BINOP_SUB. */
1486
1487 static struct value *
1488 eval_op_sub (struct type *expect_type, struct expression *exp,
1489 enum noside noside, enum exp_opcode op,
1490 struct value *arg1, struct value *arg2)
1491 {
1492 if (noside == EVAL_SKIP)
1493 return eval_skip_value (exp);
1494 if (binop_user_defined_p (op, arg1, arg2))
1495 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1496 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1497 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
1498 {
1499 /* FIXME -- should be ptrdiff_t */
1500 struct type *type = builtin_type (exp->gdbarch)->builtin_long;
1501 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1502 }
1503 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1504 && is_integral_or_integral_reference (value_type (arg2)))
1505 return value_ptradd (arg1, - value_as_long (arg2));
1506 else
1507 {
1508 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1509 return value_binop (arg1, arg2, BINOP_SUB);
1510 }
1511 }
1512
1513 /* Helper function for several different binary operations. */
1514
1515 static struct value *
1516 eval_op_binary (struct type *expect_type, struct expression *exp,
1517 enum noside noside, enum exp_opcode op,
1518 struct value *arg1, struct value *arg2)
1519 {
1520 if (noside == EVAL_SKIP)
1521 return eval_skip_value (exp);
1522 if (binop_user_defined_p (op, arg1, arg2))
1523 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1524 else
1525 {
1526 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1527 fudge arg2 to avoid division-by-zero, the caller is
1528 (theoretically) only looking for the type of the result. */
1529 if (noside == EVAL_AVOID_SIDE_EFFECTS
1530 /* ??? Do we really want to test for BINOP_MOD here?
1531 The implementation of value_binop gives it a well-defined
1532 value. */
1533 && (op == BINOP_DIV
1534 || op == BINOP_INTDIV
1535 || op == BINOP_REM
1536 || op == BINOP_MOD)
1537 && value_logical_not (arg2))
1538 {
1539 struct value *v_one;
1540
1541 v_one = value_one (value_type (arg2));
1542 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1543 return value_binop (arg1, v_one, op);
1544 }
1545 else
1546 {
1547 /* For shift and integer exponentiation operations,
1548 only promote the first argument. */
1549 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1550 && is_integral_type (value_type (arg2)))
1551 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1552 else
1553 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1554
1555 return value_binop (arg1, arg2, op);
1556 }
1557 }
1558 }
1559
1560 /* A helper function for BINOP_SUBSCRIPT. */
1561
1562 static struct value *
1563 eval_op_subscript (struct type *expect_type, struct expression *exp,
1564 enum noside noside, enum exp_opcode op,
1565 struct value *arg1, struct value *arg2)
1566 {
1567 if (noside == EVAL_SKIP)
1568 return eval_skip_value (exp);
1569 if (binop_user_defined_p (op, arg1, arg2))
1570 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1571 else
1572 {
1573 /* If the user attempts to subscript something that is not an
1574 array or pointer type (like a plain int variable for example),
1575 then report this as an error. */
1576
1577 arg1 = coerce_ref (arg1);
1578 struct type *type = check_typedef (value_type (arg1));
1579 if (type->code () != TYPE_CODE_ARRAY
1580 && type->code () != TYPE_CODE_PTR)
1581 {
1582 if (type->name ())
1583 error (_("cannot subscript something of type `%s'"),
1584 type->name ());
1585 else
1586 error (_("cannot subscript requested type"));
1587 }
1588
1589 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1590 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1591 else
1592 return value_subscript (arg1, value_as_long (arg2));
1593 }
1594 }
1595
1596 /* A helper function for BINOP_EQUAL. */
1597
1598 static struct value *
1599 eval_op_equal (struct type *expect_type, struct expression *exp,
1600 enum noside noside, enum exp_opcode op,
1601 struct value *arg1, struct value *arg2)
1602 {
1603 if (noside == EVAL_SKIP)
1604 return eval_skip_value (exp);
1605 if (binop_user_defined_p (op, arg1, arg2))
1606 {
1607 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1608 }
1609 else
1610 {
1611 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1612 int tem = value_equal (arg1, arg2);
1613 struct type *type = language_bool_type (exp->language_defn,
1614 exp->gdbarch);
1615 return value_from_longest (type, (LONGEST) tem);
1616 }
1617 }
1618
1619 /* A helper function for BINOP_NOTEQUAL. */
1620
1621 static struct value *
1622 eval_op_notequal (struct type *expect_type, struct expression *exp,
1623 enum noside noside, enum exp_opcode op,
1624 struct value *arg1, struct value *arg2)
1625 {
1626 if (noside == EVAL_SKIP)
1627 return eval_skip_value (exp);
1628 if (binop_user_defined_p (op, arg1, arg2))
1629 {
1630 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1631 }
1632 else
1633 {
1634 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1635 int tem = value_equal (arg1, arg2);
1636 struct type *type = language_bool_type (exp->language_defn,
1637 exp->gdbarch);
1638 return value_from_longest (type, (LONGEST) ! tem);
1639 }
1640 }
1641
1642 /* A helper function for BINOP_LESS. */
1643
1644 static struct value *
1645 eval_op_less (struct type *expect_type, struct expression *exp,
1646 enum noside noside, enum exp_opcode op,
1647 struct value *arg1, struct value *arg2)
1648 {
1649 if (noside == EVAL_SKIP)
1650 return eval_skip_value (exp);
1651 if (binop_user_defined_p (op, arg1, arg2))
1652 {
1653 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1654 }
1655 else
1656 {
1657 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1658 int tem = value_less (arg1, arg2);
1659 struct type *type = language_bool_type (exp->language_defn,
1660 exp->gdbarch);
1661 return value_from_longest (type, (LONGEST) tem);
1662 }
1663 }
1664
1665 /* A helper function for BINOP_GTR. */
1666
1667 static struct value *
1668 eval_op_gtr (struct type *expect_type, struct expression *exp,
1669 enum noside noside, enum exp_opcode op,
1670 struct value *arg1, struct value *arg2)
1671 {
1672 if (noside == EVAL_SKIP)
1673 return eval_skip_value (exp);
1674 if (binop_user_defined_p (op, arg1, arg2))
1675 {
1676 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1677 }
1678 else
1679 {
1680 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1681 int tem = value_less (arg2, arg1);
1682 struct type *type = language_bool_type (exp->language_defn,
1683 exp->gdbarch);
1684 return value_from_longest (type, (LONGEST) tem);
1685 }
1686 }
1687
1688 /* A helper function for BINOP_GEQ. */
1689
1690 static struct value *
1691 eval_op_geq (struct type *expect_type, struct expression *exp,
1692 enum noside noside, enum exp_opcode op,
1693 struct value *arg1, struct value *arg2)
1694 {
1695 if (noside == EVAL_SKIP)
1696 return eval_skip_value (exp);
1697 if (binop_user_defined_p (op, arg1, arg2))
1698 {
1699 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1700 }
1701 else
1702 {
1703 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1704 int tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1705 struct type *type = language_bool_type (exp->language_defn,
1706 exp->gdbarch);
1707 return value_from_longest (type, (LONGEST) tem);
1708 }
1709 }
1710
1711 /* A helper function for BINOP_LEQ. */
1712
1713 static struct value *
1714 eval_op_leq (struct type *expect_type, struct expression *exp,
1715 enum noside noside, enum exp_opcode op,
1716 struct value *arg1, struct value *arg2)
1717 {
1718 if (noside == EVAL_SKIP)
1719 return eval_skip_value (exp);
1720 if (binop_user_defined_p (op, arg1, arg2))
1721 {
1722 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1723 }
1724 else
1725 {
1726 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1727 int tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
1728 struct type *type = language_bool_type (exp->language_defn,
1729 exp->gdbarch);
1730 return value_from_longest (type, (LONGEST) tem);
1731 }
1732 }
1733
1734 /* A helper function for BINOP_REPEAT. */
1735
1736 static struct value *
1737 eval_op_repeat (struct type *expect_type, struct expression *exp,
1738 enum noside noside,
1739 struct value *arg1, struct value *arg2)
1740 {
1741 if (noside == EVAL_SKIP)
1742 return eval_skip_value (exp);
1743 struct type *type = check_typedef (value_type (arg2));
1744 if (type->code () != TYPE_CODE_INT
1745 && type->code () != TYPE_CODE_ENUM)
1746 error (_("Non-integral right operand for \"@\" operator."));
1747 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1748 {
1749 return allocate_repeat_value (value_type (arg1),
1750 longest_to_int (value_as_long (arg2)));
1751 }
1752 else
1753 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
1754 }
1755
1756 /* A helper function for UNOP_PLUS. */
1757
1758 static struct value *
1759 eval_op_plus (struct type *expect_type, struct expression *exp,
1760 enum noside noside, enum exp_opcode op,
1761 struct value *arg1)
1762 {
1763 if (noside == EVAL_SKIP)
1764 return eval_skip_value (exp);
1765 if (unop_user_defined_p (op, arg1))
1766 return value_x_unop (arg1, op, noside);
1767 else
1768 {
1769 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1770 return value_pos (arg1);
1771 }
1772 }
1773
1774 /* A helper function for UNOP_NEG. */
1775
1776 static struct value *
1777 eval_op_neg (struct type *expect_type, struct expression *exp,
1778 enum noside noside, enum exp_opcode op,
1779 struct value *arg1)
1780 {
1781 if (noside == EVAL_SKIP)
1782 return eval_skip_value (exp);
1783 if (unop_user_defined_p (op, arg1))
1784 return value_x_unop (arg1, op, noside);
1785 else
1786 {
1787 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1788 return value_neg (arg1);
1789 }
1790 }
1791
1792 /* A helper function for UNOP_COMPLEMENT. */
1793
1794 static struct value *
1795 eval_op_complement (struct type *expect_type, struct expression *exp,
1796 enum noside noside, enum exp_opcode op,
1797 struct value *arg1)
1798 {
1799 if (noside == EVAL_SKIP)
1800 return eval_skip_value (exp);
1801 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
1802 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
1803 else
1804 {
1805 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1806 return value_complement (arg1);
1807 }
1808 }
1809
1810 /* A helper function for UNOP_LOGICAL_NOT. */
1811
1812 static struct value *
1813 eval_op_lognot (struct type *expect_type, struct expression *exp,
1814 enum noside noside, enum exp_opcode op,
1815 struct value *arg1)
1816 {
1817 if (noside == EVAL_SKIP)
1818 return eval_skip_value (exp);
1819 if (unop_user_defined_p (op, arg1))
1820 return value_x_unop (arg1, op, noside);
1821 else
1822 {
1823 struct type *type = language_bool_type (exp->language_defn,
1824 exp->gdbarch);
1825 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
1826 }
1827 }
1828
1829 /* A helper function for UNOP_IND. */
1830
1831 static struct value *
1832 eval_op_ind (struct type *expect_type, struct expression *exp,
1833 enum noside noside, enum exp_opcode op,
1834 struct value *arg1)
1835 {
1836 struct type *type = check_typedef (value_type (arg1));
1837 if (type->code () == TYPE_CODE_METHODPTR
1838 || type->code () == TYPE_CODE_MEMBERPTR)
1839 error (_("Attempt to dereference pointer "
1840 "to member without an object"));
1841 if (noside == EVAL_SKIP)
1842 return eval_skip_value (exp);
1843 if (unop_user_defined_p (op, arg1))
1844 return value_x_unop (arg1, op, noside);
1845 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
1846 {
1847 type = check_typedef (value_type (arg1));
1848
1849 /* If the type pointed to is dynamic then in order to resolve the
1850 dynamic properties we must actually dereference the pointer.
1851 There is a risk that this dereference will have side-effects
1852 in the inferior, but being able to print accurate type
1853 information seems worth the risk. */
1854 if ((type->code () != TYPE_CODE_PTR
1855 && !TYPE_IS_REFERENCE (type))
1856 || !is_dynamic_type (TYPE_TARGET_TYPE (type)))
1857 {
1858 if (type->code () == TYPE_CODE_PTR
1859 || TYPE_IS_REFERENCE (type)
1860 /* In C you can dereference an array to get the 1st elt. */
1861 || type->code () == TYPE_CODE_ARRAY)
1862 return value_zero (TYPE_TARGET_TYPE (type),
1863 lval_memory);
1864 else if (type->code () == TYPE_CODE_INT)
1865 /* GDB allows dereferencing an int. */
1866 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1867 lval_memory);
1868 else
1869 error (_("Attempt to take contents of a non-pointer value."));
1870 }
1871 }
1872
1873 /* Allow * on an integer so we can cast it to whatever we want.
1874 This returns an int, which seems like the most C-like thing to
1875 do. "long long" variables are rare enough that
1876 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
1877 if (type->code () == TYPE_CODE_INT)
1878 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
1879 (CORE_ADDR) value_as_address (arg1));
1880 return value_ind (arg1);
1881 }
1882
1883 /* A helper function for UNOP_ALIGNOF. */
1884
1885 static struct value *
1886 eval_op_alignof (struct type *expect_type, struct expression *exp,
1887 enum noside noside,
1888 struct value *arg1)
1889 {
1890 struct type *type = value_type (arg1);
1891 /* FIXME: This should be size_t. */
1892 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
1893 ULONGEST align = type_align (type);
1894 if (align == 0)
1895 error (_("could not determine alignment of type"));
1896 return value_from_longest (size_type, align);
1897 }
1898
1899 /* A helper function for UNOP_MEMVAL. */
1900
1901 static struct value *
1902 eval_op_memval (struct type *expect_type, struct expression *exp,
1903 enum noside noside,
1904 struct value *arg1, struct type *type)
1905 {
1906 if (noside == EVAL_SKIP)
1907 return eval_skip_value (exp);
1908 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1909 return value_zero (type, lval_memory);
1910 else
1911 return value_at_lazy (type, value_as_address (arg1));
1912 }
1913
1914 /* A helper function for UNOP_PREINCREMENT. */
1915
1916 static struct value *
1917 eval_op_preinc (struct type *expect_type, struct expression *exp,
1918 enum noside noside, enum exp_opcode op,
1919 struct value *arg1)
1920 {
1921 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1922 return arg1;
1923 else if (unop_user_defined_p (op, arg1))
1924 {
1925 return value_x_unop (arg1, op, noside);
1926 }
1927 else
1928 {
1929 struct value *arg2;
1930 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
1931 arg2 = value_ptradd (arg1, 1);
1932 else
1933 {
1934 struct value *tmp = arg1;
1935
1936 arg2 = value_one (value_type (arg1));
1937 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1938 arg2 = value_binop (tmp, arg2, BINOP_ADD);
1939 }
1940
1941 return value_assign (arg1, arg2);
1942 }
1943 }
1944
1945 /* A helper function for UNOP_PREDECREMENT. */
1946
1947 static struct value *
1948 eval_op_predec (struct type *expect_type, struct expression *exp,
1949 enum noside noside, enum exp_opcode op,
1950 struct value *arg1)
1951 {
1952 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1953 return arg1;
1954 else if (unop_user_defined_p (op, arg1))
1955 {
1956 return value_x_unop (arg1, op, noside);
1957 }
1958 else
1959 {
1960 struct value *arg2;
1961 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
1962 arg2 = value_ptradd (arg1, -1);
1963 else
1964 {
1965 struct value *tmp = arg1;
1966
1967 arg2 = value_one (value_type (arg1));
1968 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1969 arg2 = value_binop (tmp, arg2, BINOP_SUB);
1970 }
1971
1972 return value_assign (arg1, arg2);
1973 }
1974 }
1975
1976 /* A helper function for UNOP_POSTINCREMENT. */
1977
1978 static struct value *
1979 eval_op_postinc (struct type *expect_type, struct expression *exp,
1980 enum noside noside, enum exp_opcode op,
1981 struct value *arg1)
1982 {
1983 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1984 return arg1;
1985 else if (unop_user_defined_p (op, arg1))
1986 {
1987 return value_x_unop (arg1, op, noside);
1988 }
1989 else
1990 {
1991 struct value *arg3 = value_non_lval (arg1);
1992 struct value *arg2;
1993
1994 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
1995 arg2 = value_ptradd (arg1, 1);
1996 else
1997 {
1998 struct value *tmp = arg1;
1999
2000 arg2 = value_one (value_type (arg1));
2001 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2002 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2003 }
2004
2005 value_assign (arg1, arg2);
2006 return arg3;
2007 }
2008 }
2009
2010 /* A helper function for UNOP_POSTDECREMENT. */
2011
2012 static struct value *
2013 eval_op_postdec (struct type *expect_type, struct expression *exp,
2014 enum noside noside, enum exp_opcode op,
2015 struct value *arg1)
2016 {
2017 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2018 return arg1;
2019 else if (unop_user_defined_p (op, arg1))
2020 {
2021 return value_x_unop (arg1, op, noside);
2022 }
2023 else
2024 {
2025 struct value *arg3 = value_non_lval (arg1);
2026 struct value *arg2;
2027
2028 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2029 arg2 = value_ptradd (arg1, -1);
2030 else
2031 {
2032 struct value *tmp = arg1;
2033
2034 arg2 = value_one (value_type (arg1));
2035 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2036 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2037 }
2038
2039 value_assign (arg1, arg2);
2040 return arg3;
2041 }
2042 }
2043
2044 /* A helper function for OP_TYPE. */
2045
2046 static struct value *
2047 eval_op_type (struct type *expect_type, struct expression *exp,
2048 enum noside noside, struct type *type)
2049 {
2050 if (noside == EVAL_SKIP)
2051 return eval_skip_value (exp);
2052 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2053 return allocate_value (type);
2054 else
2055 error (_("Attempt to use a type name as an expression"));
2056 }
2057
2058 /* A helper function for BINOP_ASSIGN_MODIFY. */
2059
2060 static struct value *
2061 eval_binop_assign_modify (struct type *expect_type, struct expression *exp,
2062 enum noside noside, enum exp_opcode op,
2063 struct value *arg1, struct value *arg2)
2064 {
2065 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2066 return arg1;
2067 if (binop_user_defined_p (op, arg1, arg2))
2068 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2069 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2070 value_type (arg1))
2071 && is_integral_type (value_type (arg2)))
2072 arg2 = value_ptradd (arg1, value_as_long (arg2));
2073 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2074 value_type (arg1))
2075 && is_integral_type (value_type (arg2)))
2076 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2077 else
2078 {
2079 struct value *tmp = arg1;
2080
2081 /* For shift and integer exponentiation operations,
2082 only promote the first argument. */
2083 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2084 && is_integral_type (value_type (arg2)))
2085 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2086 else
2087 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2088
2089 arg2 = value_binop (tmp, arg2, op);
2090 }
2091 return value_assign (arg1, arg2);
2092 }
2093
2094 /* Note that ARGS needs 2 empty slots up front and must end with a
2095 null pointer. */
2096 static struct value *
2097 eval_op_objc_msgcall (struct type *expect_type, struct expression *exp,
2098 enum noside noside, CORE_ADDR selector,
2099 value *target, gdb::array_view<value *> args)
2100 {
2101 CORE_ADDR responds_selector = 0;
2102 CORE_ADDR method_selector = 0;
2103
2104 int struct_return = 0;
2105
2106 struct value *msg_send = NULL;
2107 struct value *msg_send_stret = NULL;
2108 int gnu_runtime = 0;
2109
2110 struct value *method = NULL;
2111 struct value *called_method = NULL;
2112
2113 struct type *selector_type = NULL;
2114 struct type *long_type;
2115 struct type *type;
2116
2117 struct value *ret = NULL;
2118 CORE_ADDR addr = 0;
2119
2120 value *argvec[5];
2121
2122 long_type = builtin_type (exp->gdbarch)->builtin_long;
2123 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
2124
2125 if (value_as_long (target) == 0)
2126 return value_from_longest (long_type, 0);
2127
2128 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
2129 gnu_runtime = 1;
2130
2131 /* Find the method dispatch (Apple runtime) or method lookup
2132 (GNU runtime) function for Objective-C. These will be used
2133 to lookup the symbol information for the method. If we
2134 can't find any symbol information, then we'll use these to
2135 call the method, otherwise we can call the method
2136 directly. The msg_send_stret function is used in the special
2137 case of a method that returns a structure (Apple runtime
2138 only). */
2139 if (gnu_runtime)
2140 {
2141 type = selector_type;
2142
2143 type = lookup_function_type (type);
2144 type = lookup_pointer_type (type);
2145 type = lookup_function_type (type);
2146 type = lookup_pointer_type (type);
2147
2148 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
2149 msg_send_stret
2150 = find_function_in_inferior ("objc_msg_lookup", NULL);
2151
2152 msg_send = value_from_pointer (type, value_as_address (msg_send));
2153 msg_send_stret = value_from_pointer (type,
2154 value_as_address (msg_send_stret));
2155 }
2156 else
2157 {
2158 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
2159 /* Special dispatcher for methods returning structs. */
2160 msg_send_stret
2161 = find_function_in_inferior ("objc_msgSend_stret", NULL);
2162 }
2163
2164 /* Verify the target object responds to this method. The
2165 standard top-level 'Object' class uses a different name for
2166 the verification method than the non-standard, but more
2167 often used, 'NSObject' class. Make sure we check for both. */
2168
2169 responds_selector
2170 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
2171 if (responds_selector == 0)
2172 responds_selector
2173 = lookup_child_selector (exp->gdbarch, "respondsTo:");
2174
2175 if (responds_selector == 0)
2176 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
2177
2178 method_selector
2179 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
2180 if (method_selector == 0)
2181 method_selector
2182 = lookup_child_selector (exp->gdbarch, "methodFor:");
2183
2184 if (method_selector == 0)
2185 error (_("no 'methodFor:' or 'methodForSelector:' method"));
2186
2187 /* Call the verification method, to make sure that the target
2188 class implements the desired method. */
2189
2190 argvec[0] = msg_send;
2191 argvec[1] = target;
2192 argvec[2] = value_from_longest (long_type, responds_selector);
2193 argvec[3] = value_from_longest (long_type, selector);
2194 argvec[4] = 0;
2195
2196 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2197 if (gnu_runtime)
2198 {
2199 /* Function objc_msg_lookup returns a pointer. */
2200 argvec[0] = ret;
2201 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2202 }
2203 if (value_as_long (ret) == 0)
2204 error (_("Target does not respond to this message selector."));
2205
2206 /* Call "methodForSelector:" method, to get the address of a
2207 function method that implements this selector for this
2208 class. If we can find a symbol at that address, then we
2209 know the return type, parameter types etc. (that's a good
2210 thing). */
2211
2212 argvec[0] = msg_send;
2213 argvec[1] = target;
2214 argvec[2] = value_from_longest (long_type, method_selector);
2215 argvec[3] = value_from_longest (long_type, selector);
2216 argvec[4] = 0;
2217
2218 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2219 if (gnu_runtime)
2220 {
2221 argvec[0] = ret;
2222 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2223 }
2224
2225 /* ret should now be the selector. */
2226
2227 addr = value_as_long (ret);
2228 if (addr)
2229 {
2230 struct symbol *sym = NULL;
2231
2232 /* The address might point to a function descriptor;
2233 resolve it to the actual code address instead. */
2234 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
2235 current_top_target ());
2236
2237 /* Is it a high_level symbol? */
2238 sym = find_pc_function (addr);
2239 if (sym != NULL)
2240 method = value_of_variable (sym, 0);
2241 }
2242
2243 /* If we found a method with symbol information, check to see
2244 if it returns a struct. Otherwise assume it doesn't. */
2245
2246 if (method)
2247 {
2248 CORE_ADDR funaddr;
2249 struct type *val_type;
2250
2251 funaddr = find_function_addr (method, &val_type);
2252
2253 block_for_pc (funaddr);
2254
2255 val_type = check_typedef (val_type);
2256
2257 if ((val_type == NULL)
2258 || (val_type->code () == TYPE_CODE_ERROR))
2259 {
2260 if (expect_type != NULL)
2261 val_type = expect_type;
2262 }
2263
2264 struct_return = using_struct_return (exp->gdbarch, method,
2265 val_type);
2266 }
2267 else if (expect_type != NULL)
2268 {
2269 struct_return = using_struct_return (exp->gdbarch, NULL,
2270 check_typedef (expect_type));
2271 }
2272
2273 /* Found a function symbol. Now we will substitute its
2274 value in place of the message dispatcher (obj_msgSend),
2275 so that we call the method directly instead of thru
2276 the dispatcher. The main reason for doing this is that
2277 we can now evaluate the return value and parameter values
2278 according to their known data types, in case we need to
2279 do things like promotion, dereferencing, special handling
2280 of structs and doubles, etc.
2281
2282 We want to use the type signature of 'method', but still
2283 jump to objc_msgSend() or objc_msgSend_stret() to better
2284 mimic the behavior of the runtime. */
2285
2286 if (method)
2287 {
2288 if (value_type (method)->code () != TYPE_CODE_FUNC)
2289 error (_("method address has symbol information "
2290 "with non-function type; skipping"));
2291
2292 /* Create a function pointer of the appropriate type, and
2293 replace its value with the value of msg_send or
2294 msg_send_stret. We must use a pointer here, as
2295 msg_send and msg_send_stret are of pointer type, and
2296 the representation may be different on systems that use
2297 function descriptors. */
2298 if (struct_return)
2299 called_method
2300 = value_from_pointer (lookup_pointer_type (value_type (method)),
2301 value_as_address (msg_send_stret));
2302 else
2303 called_method
2304 = value_from_pointer (lookup_pointer_type (value_type (method)),
2305 value_as_address (msg_send));
2306 }
2307 else
2308 {
2309 if (struct_return)
2310 called_method = msg_send_stret;
2311 else
2312 called_method = msg_send;
2313 }
2314
2315 if (noside == EVAL_SKIP)
2316 return eval_skip_value (exp);
2317
2318 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2319 {
2320 /* If the return type doesn't look like a function type,
2321 call an error. This can happen if somebody tries to
2322 turn a variable into a function call. This is here
2323 because people often want to call, eg, strcmp, which
2324 gdb doesn't know is a function. If gdb isn't asked for
2325 it's opinion (ie. through "whatis"), it won't offer
2326 it. */
2327
2328 struct type *callee_type = value_type (called_method);
2329
2330 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
2331 callee_type = TYPE_TARGET_TYPE (callee_type);
2332 callee_type = TYPE_TARGET_TYPE (callee_type);
2333
2334 if (callee_type)
2335 {
2336 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
2337 return allocate_value (expect_type);
2338 else
2339 return allocate_value (callee_type);
2340 }
2341 else
2342 error (_("Expression of type other than "
2343 "\"method returning ...\" used as a method"));
2344 }
2345
2346 /* Now depending on whether we found a symbol for the method,
2347 we will either call the runtime dispatcher or the method
2348 directly. */
2349
2350 args[0] = target;
2351 args[1] = value_from_longest (long_type, selector);
2352
2353 if (gnu_runtime && (method != NULL))
2354 {
2355 /* Function objc_msg_lookup returns a pointer. */
2356 struct type *tem_type = value_type (called_method);
2357 tem_type = lookup_pointer_type (lookup_function_type (tem_type));
2358 deprecated_set_value_type (called_method, tem_type);
2359 called_method = call_function_by_hand (called_method, NULL, args);
2360 }
2361
2362 return call_function_by_hand (called_method, NULL, args);
2363 }
2364
2365 /* Helper function for MULTI_SUBSCRIPT. */
2366
2367 static struct value *
2368 eval_multi_subscript (struct type *expect_type, struct expression *exp,
2369 enum noside noside, value *arg1,
2370 gdb::array_view<value *> args)
2371 {
2372 if (noside == EVAL_SKIP)
2373 return arg1;
2374 for (value *arg2 : args)
2375 {
2376 if (binop_user_defined_p (MULTI_SUBSCRIPT, arg1, arg2))
2377 {
2378 arg1 = value_x_binop (arg1, arg2, MULTI_SUBSCRIPT, OP_NULL, noside);
2379 }
2380 else
2381 {
2382 arg1 = coerce_ref (arg1);
2383 struct type *type = check_typedef (value_type (arg1));
2384
2385 switch (type->code ())
2386 {
2387 case TYPE_CODE_PTR:
2388 case TYPE_CODE_ARRAY:
2389 case TYPE_CODE_STRING:
2390 arg1 = value_subscript (arg1, value_as_long (arg2));
2391 break;
2392
2393 default:
2394 if (type->name ())
2395 error (_("cannot subscript something of type `%s'"),
2396 type->name ());
2397 else
2398 error (_("cannot subscript requested type"));
2399 }
2400 }
2401 }
2402 return (arg1);
2403 }
2404
2405 struct value *
2406 evaluate_subexp_standard (struct type *expect_type,
2407 struct expression *exp, int *pos,
2408 enum noside noside)
2409 {
2410 enum exp_opcode op;
2411 int tem, tem2, tem3;
2412 int pc, oldpos;
2413 struct value *arg1 = NULL;
2414 struct value *arg2 = NULL;
2415 struct type *type;
2416 int nargs;
2417 struct value **argvec;
2418 int ix;
2419 struct type **arg_types;
2420
2421 pc = (*pos)++;
2422 op = exp->elts[pc].opcode;
2423
2424 switch (op)
2425 {
2426 case OP_SCOPE:
2427 tem = longest_to_int (exp->elts[pc + 2].longconst);
2428 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
2429 return eval_op_scope (expect_type, exp, noside,
2430 exp->elts[pc + 1].type,
2431 &exp->elts[pc + 3].string);
2432
2433 case OP_LONG:
2434 (*pos) += 3;
2435 return value_from_longest (exp->elts[pc + 1].type,
2436 exp->elts[pc + 2].longconst);
2437
2438 case OP_FLOAT:
2439 (*pos) += 3;
2440 return value_from_contents (exp->elts[pc + 1].type,
2441 exp->elts[pc + 2].floatconst);
2442
2443 case OP_ADL_FUNC:
2444 case OP_VAR_VALUE:
2445 {
2446 (*pos) += 3;
2447 symbol *var = exp->elts[pc + 2].symbol;
2448 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
2449 error_unknown_type (var->print_name ());
2450 if (noside != EVAL_SKIP)
2451 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
2452 else
2453 {
2454 /* Return a dummy value of the correct type when skipping, so
2455 that parent functions know what is to be skipped. */
2456 return allocate_value (SYMBOL_TYPE (var));
2457 }
2458 }
2459
2460 case OP_VAR_MSYM_VALUE:
2461 {
2462 (*pos) += 3;
2463
2464 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
2465 return eval_op_var_msym_value (expect_type, exp, noside,
2466 pc == 0, msymbol,
2467 exp->elts[pc + 1].objfile);
2468 }
2469
2470 case OP_VAR_ENTRY_VALUE:
2471 (*pos) += 2;
2472
2473 {
2474 struct symbol *sym = exp->elts[pc + 1].symbol;
2475
2476 return eval_op_var_entry_value (expect_type, exp, noside, sym);
2477 }
2478
2479 case OP_FUNC_STATIC_VAR:
2480 tem = longest_to_int (exp->elts[pc + 1].longconst);
2481 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2482 if (noside == EVAL_SKIP)
2483 return eval_skip_value (exp);
2484
2485 {
2486 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
2487
2488 return eval_op_func_static_var (expect_type, exp, noside, func,
2489 &exp->elts[pc + 2].string);
2490 }
2491
2492 case OP_LAST:
2493 (*pos) += 2;
2494 return
2495 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
2496
2497 case OP_REGISTER:
2498 {
2499 const char *name = &exp->elts[pc + 2].string;
2500
2501 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2502 return eval_op_register (expect_type, exp, noside, name);
2503 }
2504 case OP_BOOL:
2505 (*pos) += 2;
2506 type = language_bool_type (exp->language_defn, exp->gdbarch);
2507 return value_from_longest (type, exp->elts[pc + 1].longconst);
2508
2509 case OP_INTERNALVAR:
2510 (*pos) += 2;
2511 return value_of_internalvar (exp->gdbarch,
2512 exp->elts[pc + 1].internalvar);
2513
2514 case OP_STRING:
2515 tem = longest_to_int (exp->elts[pc + 1].longconst);
2516 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2517 return eval_op_string (expect_type, exp, noside, tem,
2518 &exp->elts[pc + 2].string);
2519
2520 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
2521 NSString constant. */
2522 tem = longest_to_int (exp->elts[pc + 1].longconst);
2523 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2524 if (noside == EVAL_SKIP)
2525 return eval_skip_value (exp);
2526 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
2527
2528 case OP_ARRAY:
2529 (*pos) += 3;
2530 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
2531 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
2532 nargs = tem3 - tem2 + 1;
2533 type = expect_type ? check_typedef (expect_type) : nullptr;
2534
2535 if (expect_type != nullptr && noside != EVAL_SKIP
2536 && type->code () == TYPE_CODE_STRUCT)
2537 {
2538 struct value *rec = allocate_value (expect_type);
2539
2540 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
2541 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
2542 }
2543
2544 if (expect_type != nullptr && noside != EVAL_SKIP
2545 && type->code () == TYPE_CODE_ARRAY)
2546 {
2547 struct type *range_type = type->index_type ();
2548 struct type *element_type = TYPE_TARGET_TYPE (type);
2549 struct value *array = allocate_value (expect_type);
2550 int element_size = TYPE_LENGTH (check_typedef (element_type));
2551 LONGEST low_bound, high_bound, index;
2552
2553 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
2554 {
2555 low_bound = 0;
2556 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
2557 }
2558 index = low_bound;
2559 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
2560 for (tem = nargs; --nargs >= 0;)
2561 {
2562 struct value *element;
2563
2564 element = evaluate_subexp (element_type, exp, pos, noside);
2565 if (value_type (element) != element_type)
2566 element = value_cast (element_type, element);
2567 if (index > high_bound)
2568 /* To avoid memory corruption. */
2569 error (_("Too many array elements"));
2570 memcpy (value_contents_raw (array)
2571 + (index - low_bound) * element_size,
2572 value_contents (element),
2573 element_size);
2574 index++;
2575 }
2576 return array;
2577 }
2578
2579 if (expect_type != nullptr && noside != EVAL_SKIP
2580 && type->code () == TYPE_CODE_SET)
2581 {
2582 struct value *set = allocate_value (expect_type);
2583 gdb_byte *valaddr = value_contents_raw (set);
2584 struct type *element_type = type->index_type ();
2585 struct type *check_type = element_type;
2586 LONGEST low_bound, high_bound;
2587
2588 /* Get targettype of elementtype. */
2589 while (check_type->code () == TYPE_CODE_RANGE
2590 || check_type->code () == TYPE_CODE_TYPEDEF)
2591 check_type = TYPE_TARGET_TYPE (check_type);
2592
2593 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
2594 error (_("(power)set type with unknown size"));
2595 memset (valaddr, '\0', TYPE_LENGTH (type));
2596 for (tem = 0; tem < nargs; tem++)
2597 {
2598 LONGEST range_low, range_high;
2599 struct type *range_low_type, *range_high_type;
2600 struct value *elem_val;
2601
2602 elem_val = evaluate_subexp (element_type, exp, pos, noside);
2603 range_low_type = range_high_type = value_type (elem_val);
2604 range_low = range_high = value_as_long (elem_val);
2605
2606 /* Check types of elements to avoid mixture of elements from
2607 different types. Also check if type of element is "compatible"
2608 with element type of powerset. */
2609 if (range_low_type->code () == TYPE_CODE_RANGE)
2610 range_low_type = TYPE_TARGET_TYPE (range_low_type);
2611 if (range_high_type->code () == TYPE_CODE_RANGE)
2612 range_high_type = TYPE_TARGET_TYPE (range_high_type);
2613 if ((range_low_type->code () != range_high_type->code ())
2614 || (range_low_type->code () == TYPE_CODE_ENUM
2615 && (range_low_type != range_high_type)))
2616 /* different element modes. */
2617 error (_("POWERSET tuple elements of different mode"));
2618 if ((check_type->code () != range_low_type->code ())
2619 || (check_type->code () == TYPE_CODE_ENUM
2620 && range_low_type != check_type))
2621 error (_("incompatible POWERSET tuple elements"));
2622 if (range_low > range_high)
2623 {
2624 warning (_("empty POWERSET tuple range"));
2625 continue;
2626 }
2627 if (range_low < low_bound || range_high > high_bound)
2628 error (_("POWERSET tuple element out of range"));
2629 range_low -= low_bound;
2630 range_high -= low_bound;
2631 for (; range_low <= range_high; range_low++)
2632 {
2633 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
2634
2635 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
2636 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
2637 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
2638 |= 1 << bit_index;
2639 }
2640 }
2641 return set;
2642 }
2643
2644 argvec = XALLOCAVEC (struct value *, nargs);
2645 for (tem = 0; tem < nargs; tem++)
2646 {
2647 /* Ensure that array expressions are coerced into pointer
2648 objects. */
2649 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
2650 }
2651 if (noside == EVAL_SKIP)
2652 return eval_skip_value (exp);
2653 return value_array (tem2, tem3, argvec);
2654
2655 case TERNOP_SLICE:
2656 {
2657 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
2658 struct value *low = evaluate_subexp (nullptr, exp, pos, noside);
2659 struct value *upper = evaluate_subexp (nullptr, exp, pos, noside);
2660 return eval_op_ternop (expect_type, exp, noside, array, low, upper);
2661 }
2662
2663 case TERNOP_COND:
2664 /* Skip third and second args to evaluate the first one. */
2665 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2666 if (value_logical_not (arg1))
2667 {
2668 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2669 return evaluate_subexp (nullptr, exp, pos, noside);
2670 }
2671 else
2672 {
2673 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2674 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2675 return arg2;
2676 }
2677
2678 case OP_OBJC_SELECTOR:
2679 { /* Objective C @selector operator. */
2680 char *sel = &exp->elts[pc + 2].string;
2681 int len = longest_to_int (exp->elts[pc + 1].longconst);
2682
2683 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
2684 if (sel[len] != 0)
2685 sel[len] = 0; /* Make sure it's terminated. */
2686
2687 return eval_op_objc_selector (expect_type, exp, noside, sel);
2688 }
2689
2690 case OP_OBJC_MSGCALL:
2691 { /* Objective C message (method) call. */
2692 CORE_ADDR selector = 0;
2693
2694 enum noside sub_no_side = EVAL_NORMAL;
2695
2696 struct value *target = NULL;
2697
2698 struct type *selector_type = NULL;
2699
2700 selector = exp->elts[pc + 1].longconst;
2701 nargs = exp->elts[pc + 2].longconst;
2702 argvec = XALLOCAVEC (struct value *, nargs + 3);
2703
2704 (*pos) += 3;
2705
2706 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
2707
2708 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2709 sub_no_side = EVAL_NORMAL;
2710 else
2711 sub_no_side = noside;
2712
2713 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
2714
2715 if (value_as_long (target) == 0)
2716 sub_no_side = EVAL_SKIP;
2717 else
2718 sub_no_side = noside;
2719
2720 /* Now depending on whether we found a symbol for the method,
2721 we will either call the runtime dispatcher or the method
2722 directly. */
2723
2724 argvec[0] = nullptr;
2725 argvec[1] = nullptr;
2726 /* User-supplied arguments. */
2727 for (tem = 0; tem < nargs; tem++)
2728 argvec[tem + 2] = evaluate_subexp_with_coercion (exp, pos,
2729 sub_no_side);
2730 argvec[tem + 3] = 0;
2731
2732 auto call_args = gdb::make_array_view (argvec, nargs + 3);
2733
2734 return eval_op_objc_msgcall (expect_type, exp, noside, selector,
2735 target, call_args);
2736 }
2737 break;
2738
2739 case OP_FUNCALL:
2740 return evaluate_funcall (expect_type, exp, pos, noside);
2741
2742 case OP_COMPLEX:
2743 /* We have a complex number, There should be 2 floating
2744 point numbers that compose it. */
2745 (*pos) += 2;
2746 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2747 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2748
2749 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
2750
2751 case STRUCTOP_STRUCT:
2752 tem = longest_to_int (exp->elts[pc + 1].longconst);
2753 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2754 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2755 return eval_op_structop_struct (expect_type, exp, noside, arg1,
2756 &exp->elts[pc + 2].string);
2757
2758 case STRUCTOP_PTR:
2759 tem = longest_to_int (exp->elts[pc + 1].longconst);
2760 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2761 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2762 return eval_op_structop_ptr (expect_type, exp, noside, arg1,
2763 &exp->elts[pc + 2].string);
2764
2765 case STRUCTOP_MEMBER:
2766 case STRUCTOP_MPTR:
2767 if (op == STRUCTOP_MEMBER)
2768 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2769 else
2770 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2771
2772 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2773
2774 return eval_op_member (expect_type, exp, noside, arg1, arg2);
2775
2776 case TYPE_INSTANCE:
2777 {
2778 type_instance_flags flags
2779 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2780 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2781 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2782 for (ix = 0; ix < nargs; ++ix)
2783 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2784
2785 fake_method fake_expect_type (flags, nargs, arg_types);
2786 *(pos) += 4 + nargs;
2787 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
2788 noside);
2789 }
2790
2791 case BINOP_CONCAT:
2792 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2793 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2794 return eval_op_concat (expect_type, exp, noside, op, arg1, arg2);
2795
2796 case BINOP_ASSIGN:
2797 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2798 /* Special-case assignments where the left-hand-side is a
2799 convenience variable -- in these, don't bother setting an
2800 expected type. This avoids a weird case where re-assigning a
2801 string or array to an internal variable could error with "Too
2802 many array elements". */
2803 arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
2804 ? nullptr
2805 : value_type (arg1),
2806 exp, pos, noside);
2807
2808 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2809 return arg1;
2810 if (binop_user_defined_p (op, arg1, arg2))
2811 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2812 else
2813 return value_assign (arg1, arg2);
2814
2815 case BINOP_ASSIGN_MODIFY:
2816 (*pos) += 2;
2817 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2818 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2819 op = exp->elts[pc + 1].opcode;
2820 return eval_binop_assign_modify (expect_type, exp, noside, op,
2821 arg1, arg2);
2822
2823 case BINOP_ADD:
2824 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2825 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2826 return eval_op_add (expect_type, exp, noside, op, arg1, arg2);
2827
2828 case BINOP_SUB:
2829 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2830 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2831 return eval_op_sub (expect_type, exp, noside, op, arg1, arg2);
2832
2833 case BINOP_EXP:
2834 case BINOP_MUL:
2835 case BINOP_DIV:
2836 case BINOP_INTDIV:
2837 case BINOP_REM:
2838 case BINOP_MOD:
2839 case BINOP_LSH:
2840 case BINOP_RSH:
2841 case BINOP_BITWISE_AND:
2842 case BINOP_BITWISE_IOR:
2843 case BINOP_BITWISE_XOR:
2844 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2845 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2846 return eval_op_binary (expect_type, exp, noside, op, arg1, arg2);
2847
2848 case BINOP_SUBSCRIPT:
2849 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2850 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2851 return eval_op_subscript (expect_type, exp, noside, op, arg1, arg2);
2852
2853 case MULTI_SUBSCRIPT:
2854 (*pos) += 2;
2855 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2856 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2857 argvec = XALLOCAVEC (struct value *, nargs);
2858 for (ix = 0; ix < nargs; ++ix)
2859 argvec[ix] = evaluate_subexp_with_coercion (exp, pos, noside);
2860 return eval_multi_subscript (expect_type, exp, noside, arg1,
2861 gdb::make_array_view (argvec, nargs));
2862
2863 case BINOP_LOGICAL_AND:
2864 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2865 if (noside == EVAL_SKIP)
2866 {
2867 evaluate_subexp (nullptr, exp, pos, noside);
2868 return eval_skip_value (exp);
2869 }
2870
2871 oldpos = *pos;
2872 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2873 *pos = oldpos;
2874
2875 if (binop_user_defined_p (op, arg1, arg2))
2876 {
2877 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2878 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2879 }
2880 else
2881 {
2882 tem = value_logical_not (arg1);
2883 arg2
2884 = evaluate_subexp (nullptr, exp, pos, (tem ? EVAL_SKIP : noside));
2885 type = language_bool_type (exp->language_defn, exp->gdbarch);
2886 return value_from_longest (type,
2887 (LONGEST) (!tem && !value_logical_not (arg2)));
2888 }
2889
2890 case BINOP_LOGICAL_OR:
2891 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2892 if (noside == EVAL_SKIP)
2893 {
2894 evaluate_subexp (nullptr, exp, pos, noside);
2895 return eval_skip_value (exp);
2896 }
2897
2898 oldpos = *pos;
2899 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2900 *pos = oldpos;
2901
2902 if (binop_user_defined_p (op, arg1, arg2))
2903 {
2904 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2905 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2906 }
2907 else
2908 {
2909 tem = value_logical_not (arg1);
2910 arg2
2911 = evaluate_subexp (nullptr, exp, pos, (!tem ? EVAL_SKIP : noside));
2912 type = language_bool_type (exp->language_defn, exp->gdbarch);
2913 return value_from_longest (type,
2914 (LONGEST) (!tem || !value_logical_not (arg2)));
2915 }
2916
2917 case BINOP_EQUAL:
2918 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2919 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2920 return eval_op_equal (expect_type, exp, noside, op, arg1, arg2);
2921
2922 case BINOP_NOTEQUAL:
2923 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2924 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2925 return eval_op_notequal (expect_type, exp, noside, op, arg1, arg2);
2926
2927 case BINOP_LESS:
2928 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2929 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2930 return eval_op_less (expect_type, exp, noside, op, arg1, arg2);
2931
2932 case BINOP_GTR:
2933 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2934 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2935 return eval_op_gtr (expect_type, exp, noside, op, arg1, arg2);
2936
2937 case BINOP_GEQ:
2938 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2939 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2940 return eval_op_geq (expect_type, exp, noside, op, arg1, arg2);
2941
2942 case BINOP_LEQ:
2943 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2944 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2945 return eval_op_leq (expect_type, exp, noside, op, arg1, arg2);
2946
2947 case BINOP_REPEAT:
2948 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2949 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2950 return eval_op_repeat (expect_type, exp, noside, arg1, arg2);
2951
2952 case BINOP_COMMA:
2953 evaluate_subexp (nullptr, exp, pos, noside);
2954 return evaluate_subexp (nullptr, exp, pos, noside);
2955
2956 case UNOP_PLUS:
2957 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2958 return eval_op_plus (expect_type, exp, noside, op, arg1);
2959
2960 case UNOP_NEG:
2961 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2962 return eval_op_neg (expect_type, exp, noside, op, arg1);
2963
2964 case UNOP_COMPLEMENT:
2965 /* C++: check for and handle destructor names. */
2966
2967 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2968 return eval_op_complement (expect_type, exp, noside, op, arg1);
2969
2970 case UNOP_LOGICAL_NOT:
2971 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2972 return eval_op_lognot (expect_type, exp, noside, op, arg1);
2973
2974 case UNOP_IND:
2975 if (expect_type && expect_type->code () == TYPE_CODE_PTR)
2976 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2977 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2978 return eval_op_ind (expect_type, exp, noside, op, arg1);
2979
2980 case UNOP_ADDR:
2981 /* C++: check for and handle pointer to members. */
2982
2983 if (noside == EVAL_SKIP)
2984 {
2985 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2986 return eval_skip_value (exp);
2987 }
2988 else
2989 return evaluate_subexp_for_address (exp, pos, noside);
2990
2991 case UNOP_SIZEOF:
2992 if (noside == EVAL_SKIP)
2993 {
2994 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2995 return eval_skip_value (exp);
2996 }
2997 return evaluate_subexp_for_sizeof (exp, pos, noside);
2998
2999 case UNOP_ALIGNOF:
3000 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3001 return eval_op_alignof (expect_type, exp, noside, arg1);
3002
3003 case UNOP_CAST:
3004 (*pos) += 2;
3005 type = exp->elts[pc + 1].type;
3006 return evaluate_subexp_for_cast (exp, pos, noside, type);
3007
3008 case UNOP_CAST_TYPE:
3009 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3010 type = value_type (arg1);
3011 return evaluate_subexp_for_cast (exp, pos, noside, type);
3012
3013 case UNOP_DYNAMIC_CAST:
3014 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3015 type = value_type (arg1);
3016 arg1 = evaluate_subexp (type, exp, pos, noside);
3017 if (noside == EVAL_SKIP)
3018 return eval_skip_value (exp);
3019 return value_dynamic_cast (type, arg1);
3020
3021 case UNOP_REINTERPRET_CAST:
3022 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3023 type = value_type (arg1);
3024 arg1 = evaluate_subexp (type, exp, pos, noside);
3025 if (noside == EVAL_SKIP)
3026 return eval_skip_value (exp);
3027 return value_reinterpret_cast (type, arg1);
3028
3029 case UNOP_MEMVAL:
3030 (*pos) += 2;
3031 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
3032 return eval_op_memval (expect_type, exp, noside, arg1,
3033 exp->elts[pc + 1].type);
3034
3035 case UNOP_MEMVAL_TYPE:
3036 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3037 type = value_type (arg1);
3038 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
3039 return eval_op_memval (expect_type, exp, noside, arg1, type);
3040
3041 case UNOP_PREINCREMENT:
3042 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
3043 return eval_op_preinc (expect_type, exp, noside, op, arg1);
3044
3045 case UNOP_PREDECREMENT:
3046 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
3047 return eval_op_predec (expect_type, exp, noside, op, arg1);
3048
3049 case UNOP_POSTINCREMENT:
3050 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
3051 return eval_op_postinc (expect_type, exp, noside, op, arg1);
3052
3053 case UNOP_POSTDECREMENT:
3054 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
3055 return eval_op_postdec (expect_type, exp, noside, op, arg1);
3056
3057 case OP_THIS:
3058 (*pos) += 1;
3059 return value_of_this (exp->language_defn);
3060
3061 case OP_TYPE:
3062 /* The value is not supposed to be used. This is here to make it
3063 easier to accommodate expressions that contain types. */
3064 (*pos) += 2;
3065 return eval_op_type (expect_type, exp, noside, exp->elts[pc + 1].type);
3066
3067 case OP_TYPEOF:
3068 case OP_DECLTYPE:
3069 if (noside == EVAL_SKIP)
3070 {
3071 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
3072 return eval_skip_value (exp);
3073 }
3074 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3075 {
3076 enum exp_opcode sub_op = exp->elts[*pos].opcode;
3077 struct value *result;
3078
3079 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3080
3081 /* 'decltype' has special semantics for lvalues. */
3082 if (op == OP_DECLTYPE
3083 && (sub_op == BINOP_SUBSCRIPT
3084 || sub_op == STRUCTOP_MEMBER
3085 || sub_op == STRUCTOP_MPTR
3086 || sub_op == UNOP_IND
3087 || sub_op == STRUCTOP_STRUCT
3088 || sub_op == STRUCTOP_PTR
3089 || sub_op == OP_SCOPE))
3090 {
3091 type = value_type (result);
3092
3093 if (!TYPE_IS_REFERENCE (type))
3094 {
3095 type = lookup_lvalue_reference_type (type);
3096 result = allocate_value (type);
3097 }
3098 }
3099
3100 return result;
3101 }
3102 else
3103 error (_("Attempt to use a type as an expression"));
3104
3105 case OP_TYPEID:
3106 {
3107 struct value *result;
3108 enum exp_opcode sub_op = exp->elts[*pos].opcode;
3109
3110 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
3111 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3112 else
3113 result = evaluate_subexp (nullptr, exp, pos, noside);
3114
3115 if (noside != EVAL_NORMAL)
3116 return allocate_value (cplus_typeid_type (exp->gdbarch));
3117
3118 return cplus_typeid (result);
3119 }
3120
3121 default:
3122 /* Removing this case and compiling with gcc -Wall reveals that
3123 a lot of cases are hitting this case. Some of these should
3124 probably be removed from expression.h; others are legitimate
3125 expressions which are (apparently) not fully implemented.
3126
3127 If there are any cases landing here which mean a user error,
3128 then they should be separate cases, with more descriptive
3129 error messages. */
3130
3131 error (_("GDB does not (yet) know how to "
3132 "evaluate that kind of expression"));
3133 }
3134
3135 gdb_assert_not_reached ("missed return?");
3136 }
3137 \f
3138 /* Helper for evaluate_subexp_for_address. */
3139
3140 static value *
3141 evaluate_subexp_for_address_base (struct expression *exp, enum noside noside,
3142 value *x)
3143 {
3144 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3145 {
3146 struct type *type = check_typedef (value_type (x));
3147
3148 if (TYPE_IS_REFERENCE (type))
3149 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3150 not_lval);
3151 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3152 return value_zero (lookup_pointer_type (value_type (x)),
3153 not_lval);
3154 else
3155 error (_("Attempt to take address of "
3156 "value not located in memory."));
3157 }
3158 return value_addr (x);
3159 }
3160
3161 /* Evaluate a subexpression of EXP, at index *POS,
3162 and return the address of that subexpression.
3163 Advance *POS over the subexpression.
3164 If the subexpression isn't an lvalue, get an error.
3165 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
3166 then only the type of the result need be correct. */
3167
3168 static struct value *
3169 evaluate_subexp_for_address (struct expression *exp, int *pos,
3170 enum noside noside)
3171 {
3172 enum exp_opcode op;
3173 int pc;
3174 struct symbol *var;
3175 struct value *x;
3176 int tem;
3177
3178 pc = (*pos);
3179 op = exp->elts[pc].opcode;
3180
3181 switch (op)
3182 {
3183 case UNOP_IND:
3184 (*pos)++;
3185 x = evaluate_subexp (nullptr, exp, pos, noside);
3186
3187 /* We can't optimize out "&*" if there's a user-defined operator*. */
3188 if (unop_user_defined_p (op, x))
3189 {
3190 x = value_x_unop (x, op, noside);
3191 goto default_case_after_eval;
3192 }
3193
3194 return coerce_array (x);
3195
3196 case UNOP_MEMVAL:
3197 (*pos) += 3;
3198 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
3199 evaluate_subexp (nullptr, exp, pos, noside));
3200
3201 case UNOP_MEMVAL_TYPE:
3202 {
3203 struct type *type;
3204
3205 (*pos) += 1;
3206 x = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3207 type = value_type (x);
3208 return value_cast (lookup_pointer_type (type),
3209 evaluate_subexp (nullptr, exp, pos, noside));
3210 }
3211
3212 case OP_VAR_VALUE:
3213 var = exp->elts[pc + 2].symbol;
3214
3215 /* C++: The "address" of a reference should yield the address
3216 * of the object pointed to. Let value_addr() deal with it. */
3217 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
3218 goto default_case;
3219
3220 (*pos) += 4;
3221 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3222 {
3223 struct type *type =
3224 lookup_pointer_type (SYMBOL_TYPE (var));
3225 enum address_class sym_class = SYMBOL_CLASS (var);
3226
3227 if (sym_class == LOC_CONST
3228 || sym_class == LOC_CONST_BYTES
3229 || sym_class == LOC_REGISTER)
3230 error (_("Attempt to take address of register or constant."));
3231
3232 return
3233 value_zero (type, not_lval);
3234 }
3235 else
3236 return address_of_variable (var, exp->elts[pc + 1].block);
3237
3238 case OP_VAR_MSYM_VALUE:
3239 {
3240 (*pos) += 4;
3241
3242 value *val = evaluate_var_msym_value (noside,
3243 exp->elts[pc + 1].objfile,
3244 exp->elts[pc + 2].msymbol);
3245 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3246 {
3247 struct type *type = lookup_pointer_type (value_type (val));
3248 return value_zero (type, not_lval);
3249 }
3250 else
3251 return value_addr (val);
3252 }
3253
3254 case OP_SCOPE:
3255 tem = longest_to_int (exp->elts[pc + 2].longconst);
3256 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3257 x = value_aggregate_elt (exp->elts[pc + 1].type,
3258 &exp->elts[pc + 3].string,
3259 NULL, 1, noside);
3260 if (x == NULL)
3261 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3262 return x;
3263
3264 default:
3265 default_case:
3266 x = evaluate_subexp (nullptr, exp, pos, noside);
3267 default_case_after_eval:
3268 return evaluate_subexp_for_address_base (exp, noside, x);
3269 }
3270 }
3271
3272 namespace expr
3273 {
3274
3275 value *
3276 operation::evaluate_for_cast (struct type *expect_type,
3277 struct expression *exp,
3278 enum noside noside)
3279 {
3280 value *val = evaluate (expect_type, exp, noside);
3281 if (noside == EVAL_SKIP)
3282 return eval_skip_value (exp);
3283 return value_cast (expect_type, val);
3284 }
3285
3286 value *
3287 operation::evaluate_for_address (struct expression *exp, enum noside noside)
3288 {
3289 value *val = evaluate (nullptr, exp, noside);
3290 return evaluate_subexp_for_address_base (exp, noside, val);
3291 }
3292
3293 value *
3294 scope_operation::evaluate_for_address (struct expression *exp,
3295 enum noside noside)
3296 {
3297 value *x = value_aggregate_elt (std::get<0> (m_storage),
3298 std::get<1> (m_storage).c_str (),
3299 NULL, 1, noside);
3300 if (x == NULL)
3301 error (_("There is no field named %s"), std::get<1> (m_storage).c_str ());
3302 return x;
3303 }
3304
3305 value *
3306 var_msym_value_operation::evaluate_for_address (struct expression *exp,
3307 enum noside noside)
3308 {
3309 value *val = evaluate_var_msym_value (noside,
3310 std::get<1> (m_storage),
3311 std::get<0> (m_storage));
3312 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3313 {
3314 struct type *type = lookup_pointer_type (value_type (val));
3315 return value_zero (type, not_lval);
3316 }
3317 else
3318 return value_addr (val);
3319 }
3320
3321 }
3322
3323 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3324 When used in contexts where arrays will be coerced anyway, this is
3325 equivalent to `evaluate_subexp' but much faster because it avoids
3326 actually fetching array contents (perhaps obsolete now that we have
3327 value_lazy()).
3328
3329 Note that we currently only do the coercion for C expressions, where
3330 arrays are zero based and the coercion is correct. For other languages,
3331 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3332 to decide if coercion is appropriate. */
3333
3334 struct value *
3335 evaluate_subexp_with_coercion (struct expression *exp,
3336 int *pos, enum noside noside)
3337 {
3338 enum exp_opcode op;
3339 int pc;
3340 struct value *val;
3341 struct symbol *var;
3342 struct type *type;
3343
3344 pc = (*pos);
3345 op = exp->elts[pc].opcode;
3346
3347 switch (op)
3348 {
3349 case OP_VAR_VALUE:
3350 var = exp->elts[pc + 2].symbol;
3351 type = check_typedef (SYMBOL_TYPE (var));
3352 if (type->code () == TYPE_CODE_ARRAY
3353 && !type->is_vector ()
3354 && CAST_IS_CONVERSION (exp->language_defn))
3355 {
3356 (*pos) += 4;
3357 val = address_of_variable (var, exp->elts[pc + 1].block);
3358 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3359 val);
3360 }
3361 /* FALLTHROUGH */
3362
3363 default:
3364 return evaluate_subexp (nullptr, exp, pos, noside);
3365 }
3366 }
3367
3368 /* Helper function for evaluating the size of a type. */
3369
3370 static value *
3371 evaluate_subexp_for_sizeof_base (struct expression *exp, struct type *type)
3372 {
3373 /* FIXME: This should be size_t. */
3374 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3375 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3376 "When applied to a reference or a reference type, the result is
3377 the size of the referenced type." */
3378 type = check_typedef (type);
3379 if (exp->language_defn->la_language == language_cplus
3380 && (TYPE_IS_REFERENCE (type)))
3381 type = check_typedef (TYPE_TARGET_TYPE (type));
3382 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3383 }
3384
3385 /* Evaluate a subexpression of EXP, at index *POS,
3386 and return a value for the size of that subexpression.
3387 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3388 we allow side-effects on the operand if its type is a variable
3389 length array. */
3390
3391 static struct value *
3392 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3393 enum noside noside)
3394 {
3395 /* FIXME: This should be size_t. */
3396 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3397 enum exp_opcode op;
3398 int pc;
3399 struct type *type;
3400 struct value *val;
3401
3402 pc = (*pos);
3403 op = exp->elts[pc].opcode;
3404
3405 switch (op)
3406 {
3407 /* This case is handled specially
3408 so that we avoid creating a value for the result type.
3409 If the result type is very big, it's desirable not to
3410 create a value unnecessarily. */
3411 case UNOP_IND:
3412 (*pos)++;
3413 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3414 type = check_typedef (value_type (val));
3415 if (type->code () != TYPE_CODE_PTR
3416 && !TYPE_IS_REFERENCE (type)
3417 && type->code () != TYPE_CODE_ARRAY)
3418 error (_("Attempt to take contents of a non-pointer value."));
3419 type = TYPE_TARGET_TYPE (type);
3420 if (is_dynamic_type (type))
3421 type = value_type (value_ind (val));
3422 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3423
3424 case UNOP_MEMVAL:
3425 (*pos) += 3;
3426 type = exp->elts[pc + 1].type;
3427 break;
3428
3429 case UNOP_MEMVAL_TYPE:
3430 (*pos) += 1;
3431 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3432 type = value_type (val);
3433 break;
3434
3435 case OP_VAR_VALUE:
3436 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3437 if (is_dynamic_type (type))
3438 {
3439 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3440 type = value_type (val);
3441 if (type->code () == TYPE_CODE_ARRAY)
3442 {
3443 if (type_not_allocated (type) || type_not_associated (type))
3444 return value_zero (size_type, not_lval);
3445 else if (is_dynamic_type (type->index_type ())
3446 && type->bounds ()->high.kind () == PROP_UNDEFINED)
3447 return allocate_optimized_out_value (size_type);
3448 }
3449 }
3450 else
3451 (*pos) += 4;
3452 break;
3453
3454 case OP_VAR_MSYM_VALUE:
3455 {
3456 (*pos) += 4;
3457
3458 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3459 value *mval = evaluate_var_msym_value (noside,
3460 exp->elts[pc + 1].objfile,
3461 msymbol);
3462
3463 type = value_type (mval);
3464 if (type->code () == TYPE_CODE_ERROR)
3465 error_unknown_type (msymbol->print_name ());
3466
3467 return value_from_longest (size_type, TYPE_LENGTH (type));
3468 }
3469 break;
3470
3471 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3472 type of the subscript is a variable length array type. In this case we
3473 must re-evaluate the right hand side of the subscription to allow
3474 side-effects. */
3475 case BINOP_SUBSCRIPT:
3476 if (noside == EVAL_NORMAL)
3477 {
3478 int npc = (*pos) + 1;
3479
3480 val = evaluate_subexp (nullptr, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
3481 type = check_typedef (value_type (val));
3482 if (type->code () == TYPE_CODE_ARRAY)
3483 {
3484 type = check_typedef (TYPE_TARGET_TYPE (type));
3485 if (type->code () == TYPE_CODE_ARRAY)
3486 {
3487 type = type->index_type ();
3488 /* Only re-evaluate the right hand side if the resulting type
3489 is a variable length type. */
3490 if (type->bounds ()->flag_bound_evaluated)
3491 {
3492 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3493 return value_from_longest
3494 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3495 }
3496 }
3497 }
3498 }
3499
3500 /* Fall through. */
3501
3502 default:
3503 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3504 type = value_type (val);
3505 break;
3506 }
3507
3508 return evaluate_subexp_for_sizeof_base (exp, type);
3509 }
3510
3511 namespace expr
3512 {
3513
3514 value *
3515 operation::evaluate_for_sizeof (struct expression *exp, enum noside noside)
3516 {
3517 value *val = evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
3518 return evaluate_subexp_for_sizeof_base (exp, value_type (val));
3519 }
3520
3521 value *
3522 var_msym_value_operation::evaluate_for_sizeof (struct expression *exp,
3523 enum noside noside)
3524
3525 {
3526 minimal_symbol *msymbol = std::get<0> (m_storage);
3527 value *mval = evaluate_var_msym_value (noside,
3528 std::get<1> (m_storage),
3529 msymbol);
3530
3531 struct type *type = value_type (mval);
3532 if (type->code () == TYPE_CODE_ERROR)
3533 error_unknown_type (msymbol->print_name ());
3534
3535 /* FIXME: This should be size_t. */
3536 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3537 return value_from_longest (size_type, TYPE_LENGTH (type));
3538 }
3539
3540 }
3541
3542 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3543 for that subexpression cast to TO_TYPE. Advance *POS over the
3544 subexpression. */
3545
3546 static value *
3547 evaluate_subexp_for_cast (expression *exp, int *pos,
3548 enum noside noside,
3549 struct type *to_type)
3550 {
3551 int pc = *pos;
3552
3553 /* Don't let symbols be evaluated with evaluate_subexp because that
3554 throws an "unknown type" error for no-debug data symbols.
3555 Instead, we want the cast to reinterpret the symbol. */
3556 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3557 || exp->elts[pc].opcode == OP_VAR_VALUE)
3558 {
3559 (*pos) += 4;
3560
3561 value *val;
3562 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3563 {
3564 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3565 return value_zero (to_type, not_lval);
3566
3567 val = evaluate_var_msym_value (noside,
3568 exp->elts[pc + 1].objfile,
3569 exp->elts[pc + 2].msymbol);
3570 }
3571 else
3572 val = evaluate_var_value (noside,
3573 exp->elts[pc + 1].block,
3574 exp->elts[pc + 2].symbol);
3575
3576 if (noside == EVAL_SKIP)
3577 return eval_skip_value (exp);
3578
3579 val = value_cast (to_type, val);
3580
3581 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3582 if (VALUE_LVAL (val) == lval_memory)
3583 {
3584 if (value_lazy (val))
3585 value_fetch_lazy (val);
3586 VALUE_LVAL (val) = not_lval;
3587 }
3588 return val;
3589 }
3590
3591 value *val = evaluate_subexp (to_type, exp, pos, noside);
3592 if (noside == EVAL_SKIP)
3593 return eval_skip_value (exp);
3594 return value_cast (to_type, val);
3595 }
3596
3597 namespace expr
3598 {
3599
3600 value *
3601 var_msym_value_operation::evaluate_for_cast (struct type *to_type,
3602 struct expression *exp,
3603 enum noside noside)
3604 {
3605 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3606 return value_zero (to_type, not_lval);
3607
3608 value *val = evaluate_var_msym_value (noside,
3609 std::get<1> (m_storage),
3610 std::get<0> (m_storage));
3611
3612 if (noside == EVAL_SKIP)
3613 return eval_skip_value (exp);
3614
3615 val = value_cast (to_type, val);
3616
3617 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3618 if (VALUE_LVAL (val) == lval_memory)
3619 {
3620 if (value_lazy (val))
3621 value_fetch_lazy (val);
3622 VALUE_LVAL (val) = not_lval;
3623 }
3624 return val;
3625 }
3626
3627 }
3628
3629 /* Parse a type expression in the string [P..P+LENGTH). */
3630
3631 struct type *
3632 parse_and_eval_type (const char *p, int length)
3633 {
3634 char *tmp = (char *) alloca (length + 4);
3635
3636 tmp[0] = '(';
3637 memcpy (tmp + 1, p, length);
3638 tmp[length + 1] = ')';
3639 tmp[length + 2] = '0';
3640 tmp[length + 3] = '\0';
3641 expression_up expr = parse_expression (tmp);
3642 if (expr->first_opcode () != UNOP_CAST)
3643 error (_("Internal error in eval_type."));
3644 return expr->elts[1].type;
3645 }
This page took 0.103365 seconds and 5 git commands to generate.