Split out eval_op_gtr
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include "typeprint.h"
42 #include <ctype.h>
43
44 /* Prototypes for local functions. */
45
46 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
47 enum noside);
48
49 static struct value *evaluate_subexp_for_address (struct expression *,
50 int *, enum noside);
51
52 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
53 enum noside noside,
54 struct type *type);
55
56 static struct value *evaluate_struct_tuple (struct value *,
57 struct expression *, int *,
58 enum noside, int);
59
60 struct value *
61 evaluate_subexp (struct type *expect_type, struct expression *exp,
62 int *pos, enum noside noside)
63 {
64 return ((*exp->language_defn->expression_ops ()->evaluate_exp)
65 (expect_type, exp, pos, noside));
66 }
67 \f
68 /* Parse the string EXP as a C expression, evaluate it,
69 and return the result as a number. */
70
71 CORE_ADDR
72 parse_and_eval_address (const char *exp)
73 {
74 expression_up expr = parse_expression (exp);
75
76 return value_as_address (evaluate_expression (expr.get ()));
77 }
78
79 /* Like parse_and_eval_address, but treats the value of the expression
80 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
81 LONGEST
82 parse_and_eval_long (const char *exp)
83 {
84 expression_up expr = parse_expression (exp);
85
86 return value_as_long (evaluate_expression (expr.get ()));
87 }
88
89 struct value *
90 parse_and_eval (const char *exp)
91 {
92 expression_up expr = parse_expression (exp);
93
94 return evaluate_expression (expr.get ());
95 }
96
97 /* Parse up to a comma (or to a closeparen)
98 in the string EXPP as an expression, evaluate it, and return the value.
99 EXPP is advanced to point to the comma. */
100
101 struct value *
102 parse_to_comma_and_eval (const char **expp)
103 {
104 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
105
106 return evaluate_expression (expr.get ());
107 }
108 \f
109
110 /* See expression.h. */
111
112 struct value *
113 expression::evaluate (struct type *expect_type, enum noside noside)
114 {
115 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
116 if (target_has_execution ()
117 && language_defn->la_language == language_cplus
118 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
119 stack_temporaries.emplace (inferior_thread ());
120
121 int pos = 0;
122 struct value *retval = evaluate_subexp (expect_type, this, &pos, noside);
123
124 if (stack_temporaries.has_value ()
125 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
126 retval = value_non_lval (retval);
127
128 return retval;
129 }
130
131 /* See value.h. */
132
133 struct value *
134 evaluate_expression (struct expression *exp, struct type *expect_type)
135 {
136 return exp->evaluate (expect_type, EVAL_NORMAL);
137 }
138
139 /* Evaluate an expression, avoiding all memory references
140 and getting a value whose type alone is correct. */
141
142 struct value *
143 evaluate_type (struct expression *exp)
144 {
145 return exp->evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS);
146 }
147
148 /* Evaluate a subexpression, avoiding all memory references and
149 getting a value whose type alone is correct. */
150
151 struct value *
152 evaluate_subexpression_type (struct expression *exp, int subexp)
153 {
154 return evaluate_subexp (nullptr, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
155 }
156
157 /* Find the current value of a watchpoint on EXP. Return the value in
158 *VALP and *RESULTP and the chain of intermediate and final values
159 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
160 not need them.
161
162 If PRESERVE_ERRORS is true, then exceptions are passed through.
163 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
164 occurs while evaluating the expression, *RESULTP will be set to
165 NULL. *RESULTP may be a lazy value, if the result could not be
166 read from memory. It is used to determine whether a value is
167 user-specified (we should watch the whole value) or intermediate
168 (we should watch only the bit used to locate the final value).
169
170 If the final value, or any intermediate value, could not be read
171 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
172 set to any referenced values. *VALP will never be a lazy value.
173 This is the value which we store in struct breakpoint.
174
175 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
176 released from the value chain. If VAL_CHAIN is NULL, all generated
177 values will be left on the value chain. */
178
179 void
180 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
181 struct value **resultp,
182 std::vector<value_ref_ptr> *val_chain,
183 bool preserve_errors)
184 {
185 struct value *mark, *new_mark, *result;
186
187 *valp = NULL;
188 if (resultp)
189 *resultp = NULL;
190 if (val_chain)
191 val_chain->clear ();
192
193 /* Evaluate the expression. */
194 mark = value_mark ();
195 result = NULL;
196
197 try
198 {
199 result = evaluate_subexp (nullptr, exp, pc, EVAL_NORMAL);
200 }
201 catch (const gdb_exception &ex)
202 {
203 /* Ignore memory errors if we want watchpoints pointing at
204 inaccessible memory to still be created; otherwise, throw the
205 error to some higher catcher. */
206 switch (ex.error)
207 {
208 case MEMORY_ERROR:
209 if (!preserve_errors)
210 break;
211 /* Fall through. */
212 default:
213 throw;
214 break;
215 }
216 }
217
218 new_mark = value_mark ();
219 if (mark == new_mark)
220 return;
221 if (resultp)
222 *resultp = result;
223
224 /* Make sure it's not lazy, so that after the target stops again we
225 have a non-lazy previous value to compare with. */
226 if (result != NULL)
227 {
228 if (!value_lazy (result))
229 *valp = result;
230 else
231 {
232
233 try
234 {
235 value_fetch_lazy (result);
236 *valp = result;
237 }
238 catch (const gdb_exception_error &except)
239 {
240 }
241 }
242 }
243
244 if (val_chain)
245 {
246 /* Return the chain of intermediate values. We use this to
247 decide which addresses to watch. */
248 *val_chain = value_release_to_mark (mark);
249 }
250 }
251
252 /* Extract a field operation from an expression. If the subexpression
253 of EXP starting at *SUBEXP is not a structure dereference
254 operation, return NULL. Otherwise, return the name of the
255 dereferenced field, and advance *SUBEXP to point to the
256 subexpression of the left-hand-side of the dereference. This is
257 used when completing field names. */
258
259 const char *
260 extract_field_op (struct expression *exp, int *subexp)
261 {
262 int tem;
263 char *result;
264
265 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
266 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
267 return NULL;
268 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
269 result = &exp->elts[*subexp + 2].string;
270 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
271 return result;
272 }
273
274 /* This function evaluates brace-initializers (in C/C++) for
275 structure types. */
276
277 static struct value *
278 evaluate_struct_tuple (struct value *struct_val,
279 struct expression *exp,
280 int *pos, enum noside noside, int nargs)
281 {
282 struct type *struct_type = check_typedef (value_type (struct_val));
283 struct type *field_type;
284 int fieldno = -1;
285
286 while (--nargs >= 0)
287 {
288 struct value *val = NULL;
289 int bitpos, bitsize;
290 bfd_byte *addr;
291
292 fieldno++;
293 /* Skip static fields. */
294 while (fieldno < struct_type->num_fields ()
295 && field_is_static (&struct_type->field (fieldno)))
296 fieldno++;
297 if (fieldno >= struct_type->num_fields ())
298 error (_("too many initializers"));
299 field_type = struct_type->field (fieldno).type ();
300 if (field_type->code () == TYPE_CODE_UNION
301 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
302 error (_("don't know which variant you want to set"));
303
304 /* Here, struct_type is the type of the inner struct,
305 while substruct_type is the type of the inner struct.
306 These are the same for normal structures, but a variant struct
307 contains anonymous union fields that contain substruct fields.
308 The value fieldno is the index of the top-level (normal or
309 anonymous union) field in struct_field, while the value
310 subfieldno is the index of the actual real (named inner) field
311 in substruct_type. */
312
313 field_type = struct_type->field (fieldno).type ();
314 if (val == 0)
315 val = evaluate_subexp (field_type, exp, pos, noside);
316
317 /* Now actually set the field in struct_val. */
318
319 /* Assign val to field fieldno. */
320 if (value_type (val) != field_type)
321 val = value_cast (field_type, val);
322
323 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
324 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
325 addr = value_contents_writeable (struct_val) + bitpos / 8;
326 if (bitsize)
327 modify_field (struct_type, addr,
328 value_as_long (val), bitpos % 8, bitsize);
329 else
330 memcpy (addr, value_contents (val),
331 TYPE_LENGTH (value_type (val)));
332
333 }
334 return struct_val;
335 }
336
337 /* Promote value ARG1 as appropriate before performing a unary operation
338 on this argument.
339 If the result is not appropriate for any particular language then it
340 needs to patch this function. */
341
342 void
343 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
344 struct value **arg1)
345 {
346 struct type *type1;
347
348 *arg1 = coerce_ref (*arg1);
349 type1 = check_typedef (value_type (*arg1));
350
351 if (is_integral_type (type1))
352 {
353 switch (language->la_language)
354 {
355 default:
356 /* Perform integral promotion for ANSI C/C++.
357 If not appropriate for any particular language
358 it needs to modify this function. */
359 {
360 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
361
362 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
363 *arg1 = value_cast (builtin_int, *arg1);
364 }
365 break;
366 }
367 }
368 }
369
370 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
371 operation on those two operands.
372 If the result is not appropriate for any particular language then it
373 needs to patch this function. */
374
375 void
376 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
377 struct value **arg1, struct value **arg2)
378 {
379 struct type *promoted_type = NULL;
380 struct type *type1;
381 struct type *type2;
382
383 *arg1 = coerce_ref (*arg1);
384 *arg2 = coerce_ref (*arg2);
385
386 type1 = check_typedef (value_type (*arg1));
387 type2 = check_typedef (value_type (*arg2));
388
389 if ((type1->code () != TYPE_CODE_FLT
390 && type1->code () != TYPE_CODE_DECFLOAT
391 && !is_integral_type (type1))
392 || (type2->code () != TYPE_CODE_FLT
393 && type2->code () != TYPE_CODE_DECFLOAT
394 && !is_integral_type (type2)))
395 return;
396
397 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
398 return;
399
400 if (type1->code () == TYPE_CODE_DECFLOAT
401 || type2->code () == TYPE_CODE_DECFLOAT)
402 {
403 /* No promotion required. */
404 }
405 else if (type1->code () == TYPE_CODE_FLT
406 || type2->code () == TYPE_CODE_FLT)
407 {
408 switch (language->la_language)
409 {
410 case language_c:
411 case language_cplus:
412 case language_asm:
413 case language_objc:
414 case language_opencl:
415 /* No promotion required. */
416 break;
417
418 default:
419 /* For other languages the result type is unchanged from gdb
420 version 6.7 for backward compatibility.
421 If either arg was long double, make sure that value is also long
422 double. Otherwise use double. */
423 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
424 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
425 promoted_type = builtin_type (gdbarch)->builtin_long_double;
426 else
427 promoted_type = builtin_type (gdbarch)->builtin_double;
428 break;
429 }
430 }
431 else if (type1->code () == TYPE_CODE_BOOL
432 && type2->code () == TYPE_CODE_BOOL)
433 {
434 /* No promotion required. */
435 }
436 else
437 /* Integral operations here. */
438 /* FIXME: Also mixed integral/booleans, with result an integer. */
439 {
440 const struct builtin_type *builtin = builtin_type (gdbarch);
441 unsigned int promoted_len1 = TYPE_LENGTH (type1);
442 unsigned int promoted_len2 = TYPE_LENGTH (type2);
443 int is_unsigned1 = type1->is_unsigned ();
444 int is_unsigned2 = type2->is_unsigned ();
445 unsigned int result_len;
446 int unsigned_operation;
447
448 /* Determine type length and signedness after promotion for
449 both operands. */
450 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
451 {
452 is_unsigned1 = 0;
453 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
454 }
455 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
456 {
457 is_unsigned2 = 0;
458 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
459 }
460
461 if (promoted_len1 > promoted_len2)
462 {
463 unsigned_operation = is_unsigned1;
464 result_len = promoted_len1;
465 }
466 else if (promoted_len2 > promoted_len1)
467 {
468 unsigned_operation = is_unsigned2;
469 result_len = promoted_len2;
470 }
471 else
472 {
473 unsigned_operation = is_unsigned1 || is_unsigned2;
474 result_len = promoted_len1;
475 }
476
477 switch (language->la_language)
478 {
479 case language_c:
480 case language_cplus:
481 case language_asm:
482 case language_objc:
483 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
484 {
485 promoted_type = (unsigned_operation
486 ? builtin->builtin_unsigned_int
487 : builtin->builtin_int);
488 }
489 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
490 {
491 promoted_type = (unsigned_operation
492 ? builtin->builtin_unsigned_long
493 : builtin->builtin_long);
494 }
495 else
496 {
497 promoted_type = (unsigned_operation
498 ? builtin->builtin_unsigned_long_long
499 : builtin->builtin_long_long);
500 }
501 break;
502 case language_opencl:
503 if (result_len <= TYPE_LENGTH (lookup_signed_typename
504 (language, "int")))
505 {
506 promoted_type =
507 (unsigned_operation
508 ? lookup_unsigned_typename (language, "int")
509 : lookup_signed_typename (language, "int"));
510 }
511 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
512 (language, "long")))
513 {
514 promoted_type =
515 (unsigned_operation
516 ? lookup_unsigned_typename (language, "long")
517 : lookup_signed_typename (language,"long"));
518 }
519 break;
520 default:
521 /* For other languages the result type is unchanged from gdb
522 version 6.7 for backward compatibility.
523 If either arg was long long, make sure that value is also long
524 long. Otherwise use long. */
525 if (unsigned_operation)
526 {
527 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
528 promoted_type = builtin->builtin_unsigned_long_long;
529 else
530 promoted_type = builtin->builtin_unsigned_long;
531 }
532 else
533 {
534 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
535 promoted_type = builtin->builtin_long_long;
536 else
537 promoted_type = builtin->builtin_long;
538 }
539 break;
540 }
541 }
542
543 if (promoted_type)
544 {
545 /* Promote both operands to common type. */
546 *arg1 = value_cast (promoted_type, *arg1);
547 *arg2 = value_cast (promoted_type, *arg2);
548 }
549 }
550
551 static int
552 ptrmath_type_p (const struct language_defn *lang, struct type *type)
553 {
554 type = check_typedef (type);
555 if (TYPE_IS_REFERENCE (type))
556 type = TYPE_TARGET_TYPE (type);
557
558 switch (type->code ())
559 {
560 case TYPE_CODE_PTR:
561 case TYPE_CODE_FUNC:
562 return 1;
563
564 case TYPE_CODE_ARRAY:
565 return type->is_vector () ? 0 : lang->c_style_arrays_p ();
566
567 default:
568 return 0;
569 }
570 }
571
572 /* Represents a fake method with the given parameter types. This is
573 used by the parser to construct a temporary "expected" type for
574 method overload resolution. FLAGS is used as instance flags of the
575 new type, in order to be able to make the new type represent a
576 const/volatile overload. */
577
578 class fake_method
579 {
580 public:
581 fake_method (type_instance_flags flags,
582 int num_types, struct type **param_types);
583 ~fake_method ();
584
585 /* The constructed type. */
586 struct type *type () { return &m_type; }
587
588 private:
589 struct type m_type {};
590 main_type m_main_type {};
591 };
592
593 fake_method::fake_method (type_instance_flags flags,
594 int num_types, struct type **param_types)
595 {
596 struct type *type = &m_type;
597
598 TYPE_MAIN_TYPE (type) = &m_main_type;
599 TYPE_LENGTH (type) = 1;
600 type->set_code (TYPE_CODE_METHOD);
601 TYPE_CHAIN (type) = type;
602 type->set_instance_flags (flags);
603 if (num_types > 0)
604 {
605 if (param_types[num_types - 1] == NULL)
606 {
607 --num_types;
608 type->set_has_varargs (true);
609 }
610 else if (check_typedef (param_types[num_types - 1])->code ()
611 == TYPE_CODE_VOID)
612 {
613 --num_types;
614 /* Caller should have ensured this. */
615 gdb_assert (num_types == 0);
616 type->set_is_prototyped (true);
617 }
618 }
619
620 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
621 neither an objfile nor a gdbarch. As a result we must manually
622 allocate memory for auxiliary fields, and free the memory ourselves
623 when we are done with it. */
624 type->set_num_fields (num_types);
625 type->set_fields
626 ((struct field *) xzalloc (sizeof (struct field) * num_types));
627
628 while (num_types-- > 0)
629 type->field (num_types).set_type (param_types[num_types]);
630 }
631
632 fake_method::~fake_method ()
633 {
634 xfree (m_type.fields ());
635 }
636
637 /* Helper for evaluating an OP_VAR_VALUE. */
638
639 value *
640 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
641 {
642 /* JYG: We used to just return value_zero of the symbol type if
643 we're asked to avoid side effects. Otherwise we return
644 value_of_variable (...). However I'm not sure if
645 value_of_variable () has any side effect. We need a full value
646 object returned here for whatis_exp () to call evaluate_type ()
647 and then pass the full value to value_rtti_target_type () if we
648 are dealing with a pointer or reference to a base class and print
649 object is on. */
650
651 struct value *ret = NULL;
652
653 try
654 {
655 ret = value_of_variable (var, blk);
656 }
657
658 catch (const gdb_exception_error &except)
659 {
660 if (noside != EVAL_AVOID_SIDE_EFFECTS)
661 throw;
662
663 ret = value_zero (SYMBOL_TYPE (var), not_lval);
664 }
665
666 return ret;
667 }
668
669 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
670
671 value *
672 evaluate_var_msym_value (enum noside noside,
673 struct objfile *objfile, minimal_symbol *msymbol)
674 {
675 CORE_ADDR address;
676 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
677
678 if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
679 return value_zero (the_type, not_lval);
680 else
681 return value_at_lazy (the_type, address);
682 }
683
684 /* Helper for returning a value when handling EVAL_SKIP. */
685
686 value *
687 eval_skip_value (expression *exp)
688 {
689 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
690 }
691
692 /* See expression.h. */
693
694 value *
695 evaluate_subexp_do_call (expression *exp, enum noside noside,
696 value *callee,
697 gdb::array_view<value *> argvec,
698 const char *function_name,
699 type *default_return_type)
700 {
701 if (callee == NULL)
702 error (_("Cannot evaluate function -- may be inlined"));
703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
704 {
705 /* If the return type doesn't look like a function type,
706 call an error. This can happen if somebody tries to turn
707 a variable into a function call. */
708
709 type *ftype = value_type (callee);
710
711 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
712 {
713 /* We don't know anything about what the internal
714 function might return, but we have to return
715 something. */
716 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
717 not_lval);
718 }
719 else if (ftype->code () == TYPE_CODE_XMETHOD)
720 {
721 type *return_type = result_type_of_xmethod (callee, argvec);
722
723 if (return_type == NULL)
724 error (_("Xmethod is missing return type."));
725 return value_zero (return_type, not_lval);
726 }
727 else if (ftype->code () == TYPE_CODE_FUNC
728 || ftype->code () == TYPE_CODE_METHOD)
729 {
730 if (ftype->is_gnu_ifunc ())
731 {
732 CORE_ADDR address = value_address (callee);
733 type *resolved_type = find_gnu_ifunc_target_type (address);
734
735 if (resolved_type != NULL)
736 ftype = resolved_type;
737 }
738
739 type *return_type = TYPE_TARGET_TYPE (ftype);
740
741 if (return_type == NULL)
742 return_type = default_return_type;
743
744 if (return_type == NULL)
745 error_call_unknown_return_type (function_name);
746
747 return allocate_value (return_type);
748 }
749 else
750 error (_("Expression of type other than "
751 "\"Function returning ...\" used as function"));
752 }
753 switch (value_type (callee)->code ())
754 {
755 case TYPE_CODE_INTERNAL_FUNCTION:
756 return call_internal_function (exp->gdbarch, exp->language_defn,
757 callee, argvec.size (), argvec.data ());
758 case TYPE_CODE_XMETHOD:
759 return call_xmethod (callee, argvec);
760 default:
761 return call_function_by_hand (callee, default_return_type, argvec);
762 }
763 }
764
765 /* Helper for evaluating an OP_FUNCALL. */
766
767 static value *
768 evaluate_funcall (type *expect_type, expression *exp, int *pos,
769 enum noside noside)
770 {
771 int tem;
772 int pc2 = 0;
773 value *arg1 = NULL;
774 value *arg2 = NULL;
775 int save_pos1;
776 symbol *function = NULL;
777 char *function_name = NULL;
778 const char *var_func_name = NULL;
779
780 int pc = (*pos);
781 (*pos) += 2;
782
783 exp_opcode op = exp->elts[*pos].opcode;
784 int nargs = longest_to_int (exp->elts[pc].longconst);
785 /* Allocate arg vector, including space for the function to be
786 called in argvec[0], a potential `this', and a terminating
787 NULL. */
788 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
789 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
790 {
791 /* First, evaluate the structure into arg2. */
792 pc2 = (*pos)++;
793
794 if (op == STRUCTOP_MEMBER)
795 {
796 arg2 = evaluate_subexp_for_address (exp, pos, noside);
797 }
798 else
799 {
800 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
801 }
802
803 /* If the function is a virtual function, then the aggregate
804 value (providing the structure) plays its part by providing
805 the vtable. Otherwise, it is just along for the ride: call
806 the function directly. */
807
808 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
809
810 type *a1_type = check_typedef (value_type (arg1));
811 if (noside == EVAL_SKIP)
812 tem = 1; /* Set it to the right arg index so that all
813 arguments can also be skipped. */
814 else if (a1_type->code () == TYPE_CODE_METHODPTR)
815 {
816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
817 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
818 else
819 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
820
821 /* Now, say which argument to start evaluating from. */
822 nargs++;
823 tem = 2;
824 argvec[1] = arg2;
825 }
826 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
827 {
828 struct type *type_ptr
829 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
830 struct type *target_type_ptr
831 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
832
833 /* Now, convert these values to an address. */
834 arg2 = value_cast (type_ptr, arg2);
835
836 long mem_offset = value_as_long (arg1);
837
838 arg1 = value_from_pointer (target_type_ptr,
839 value_as_long (arg2) + mem_offset);
840 arg1 = value_ind (arg1);
841 tem = 1;
842 }
843 else
844 error (_("Non-pointer-to-member value used in pointer-to-member "
845 "construct"));
846 }
847 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
848 {
849 /* Hair for method invocations. */
850 int tem2;
851
852 nargs++;
853 /* First, evaluate the structure into arg2. */
854 pc2 = (*pos)++;
855 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
856 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
857
858 if (op == STRUCTOP_STRUCT)
859 {
860 /* If v is a variable in a register, and the user types
861 v.method (), this will produce an error, because v has no
862 address.
863
864 A possible way around this would be to allocate a copy of
865 the variable on the stack, copy in the contents, call the
866 function, and copy out the contents. I.e. convert this
867 from call by reference to call by copy-return (or
868 whatever it's called). However, this does not work
869 because it is not the same: the method being called could
870 stash a copy of the address, and then future uses through
871 that address (after the method returns) would be expected
872 to use the variable itself, not some copy of it. */
873 arg2 = evaluate_subexp_for_address (exp, pos, noside);
874 }
875 else
876 {
877 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
878
879 /* Check to see if the operator '->' has been overloaded.
880 If the operator has been overloaded replace arg2 with the
881 value returned by the custom operator and continue
882 evaluation. */
883 while (unop_user_defined_p (op, arg2))
884 {
885 struct value *value = NULL;
886 try
887 {
888 value = value_x_unop (arg2, op, noside);
889 }
890
891 catch (const gdb_exception_error &except)
892 {
893 if (except.error == NOT_FOUND_ERROR)
894 break;
895 else
896 throw;
897 }
898
899 arg2 = value;
900 }
901 }
902 /* Now, say which argument to start evaluating from. */
903 tem = 2;
904 }
905 else if (op == OP_SCOPE
906 && overload_resolution
907 && (exp->language_defn->la_language == language_cplus))
908 {
909 /* Unpack it locally so we can properly handle overload
910 resolution. */
911 char *name;
912 int local_tem;
913
914 pc2 = (*pos)++;
915 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
916 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
917 struct type *type = exp->elts[pc2 + 1].type;
918 name = &exp->elts[pc2 + 3].string;
919
920 function = NULL;
921 function_name = NULL;
922 if (type->code () == TYPE_CODE_NAMESPACE)
923 {
924 function = cp_lookup_symbol_namespace (type->name (),
925 name,
926 get_selected_block (0),
927 VAR_DOMAIN).symbol;
928 if (function == NULL)
929 error (_("No symbol \"%s\" in namespace \"%s\"."),
930 name, type->name ());
931
932 tem = 1;
933 /* arg2 is left as NULL on purpose. */
934 }
935 else
936 {
937 gdb_assert (type->code () == TYPE_CODE_STRUCT
938 || type->code () == TYPE_CODE_UNION);
939 function_name = name;
940
941 /* We need a properly typed value for method lookup. For
942 static methods arg2 is otherwise unused. */
943 arg2 = value_zero (type, lval_memory);
944 ++nargs;
945 tem = 2;
946 }
947 }
948 else if (op == OP_ADL_FUNC)
949 {
950 /* Save the function position and move pos so that the arguments
951 can be evaluated. */
952 int func_name_len;
953
954 save_pos1 = *pos;
955 tem = 1;
956
957 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
958 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
959 }
960 else
961 {
962 /* Non-method function call. */
963 save_pos1 = *pos;
964 tem = 1;
965
966 /* If this is a C++ function wait until overload resolution. */
967 if (op == OP_VAR_VALUE
968 && overload_resolution
969 && (exp->language_defn->la_language == language_cplus))
970 {
971 (*pos) += 4; /* Skip the evaluation of the symbol. */
972 argvec[0] = NULL;
973 }
974 else
975 {
976 if (op == OP_VAR_MSYM_VALUE)
977 {
978 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
979 var_func_name = msym->print_name ();
980 }
981 else if (op == OP_VAR_VALUE)
982 {
983 symbol *sym = exp->elts[*pos + 2].symbol;
984 var_func_name = sym->print_name ();
985 }
986
987 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
988 type *type = value_type (argvec[0]);
989 if (type && type->code () == TYPE_CODE_PTR)
990 type = TYPE_TARGET_TYPE (type);
991 if (type && type->code () == TYPE_CODE_FUNC)
992 {
993 for (; tem <= nargs && tem <= type->num_fields (); tem++)
994 {
995 argvec[tem] = evaluate_subexp (type->field (tem - 1).type (),
996 exp, pos, noside);
997 }
998 }
999 }
1000 }
1001
1002 /* Evaluate arguments (if not already done, e.g., namespace::func()
1003 and overload-resolution is off). */
1004 for (; tem <= nargs; tem++)
1005 {
1006 /* Ensure that array expressions are coerced into pointer
1007 objects. */
1008 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1009 }
1010
1011 /* Signal end of arglist. */
1012 argvec[tem] = 0;
1013
1014 if (noside == EVAL_SKIP)
1015 return eval_skip_value (exp);
1016
1017 if (op == OP_ADL_FUNC)
1018 {
1019 struct symbol *symp;
1020 char *func_name;
1021 int name_len;
1022 int string_pc = save_pos1 + 3;
1023
1024 /* Extract the function name. */
1025 name_len = longest_to_int (exp->elts[string_pc].longconst);
1026 func_name = (char *) alloca (name_len + 1);
1027 strcpy (func_name, &exp->elts[string_pc + 1].string);
1028
1029 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1030 func_name,
1031 NON_METHOD, /* not method */
1032 NULL, NULL, /* pass NULL symbol since
1033 symbol is unknown */
1034 NULL, &symp, NULL, 0, noside);
1035
1036 /* Now fix the expression being evaluated. */
1037 exp->elts[save_pos1 + 2].symbol = symp;
1038 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1039 }
1040
1041 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1042 || (op == OP_SCOPE && function_name != NULL))
1043 {
1044 int static_memfuncp;
1045 char *tstr;
1046
1047 /* Method invocation: stuff "this" as first parameter. If the
1048 method turns out to be static we undo this below. */
1049 argvec[1] = arg2;
1050
1051 if (op != OP_SCOPE)
1052 {
1053 /* Name of method from expression. */
1054 tstr = &exp->elts[pc2 + 2].string;
1055 }
1056 else
1057 tstr = function_name;
1058
1059 if (overload_resolution && (exp->language_defn->la_language
1060 == language_cplus))
1061 {
1062 /* Language is C++, do some overload resolution before
1063 evaluation. */
1064 struct value *valp = NULL;
1065
1066 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1067 tstr,
1068 METHOD, /* method */
1069 &arg2, /* the object */
1070 NULL, &valp, NULL,
1071 &static_memfuncp, 0, noside);
1072
1073 if (op == OP_SCOPE && !static_memfuncp)
1074 {
1075 /* For the time being, we don't handle this. */
1076 error (_("Call to overloaded function %s requires "
1077 "`this' pointer"),
1078 function_name);
1079 }
1080 argvec[1] = arg2; /* the ``this'' pointer */
1081 argvec[0] = valp; /* Use the method found after overload
1082 resolution. */
1083 }
1084 else
1085 /* Non-C++ case -- or no overload resolution. */
1086 {
1087 struct value *temp = arg2;
1088
1089 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1090 &static_memfuncp,
1091 op == STRUCTOP_STRUCT
1092 ? "structure" : "structure pointer");
1093 /* value_struct_elt updates temp with the correct value of
1094 the ``this'' pointer if necessary, so modify argvec[1] to
1095 reflect any ``this'' changes. */
1096 arg2
1097 = value_from_longest (lookup_pointer_type(value_type (temp)),
1098 value_address (temp)
1099 + value_embedded_offset (temp));
1100 argvec[1] = arg2; /* the ``this'' pointer */
1101 }
1102
1103 /* Take out `this' if needed. */
1104 if (static_memfuncp)
1105 {
1106 argvec[1] = argvec[0];
1107 nargs--;
1108 argvec++;
1109 }
1110 }
1111 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1112 {
1113 /* Pointer to member. argvec[1] is already set up. */
1114 argvec[0] = arg1;
1115 }
1116 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1117 {
1118 /* Non-member function being called. */
1119 /* fn: This can only be done for C++ functions. A C-style
1120 function in a C++ program, for instance, does not have the
1121 fields that are expected here. */
1122
1123 if (overload_resolution && (exp->language_defn->la_language
1124 == language_cplus))
1125 {
1126 /* Language is C++, do some overload resolution before
1127 evaluation. */
1128 struct symbol *symp;
1129 int no_adl = 0;
1130
1131 /* If a scope has been specified disable ADL. */
1132 if (op == OP_SCOPE)
1133 no_adl = 1;
1134
1135 if (op == OP_VAR_VALUE)
1136 function = exp->elts[save_pos1+2].symbol;
1137
1138 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1139 NULL, /* no need for name */
1140 NON_METHOD, /* not method */
1141 NULL, function, /* the function */
1142 NULL, &symp, NULL, no_adl, noside);
1143
1144 if (op == OP_VAR_VALUE)
1145 {
1146 /* Now fix the expression being evaluated. */
1147 exp->elts[save_pos1+2].symbol = symp;
1148 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1149 noside);
1150 }
1151 else
1152 argvec[0] = value_of_variable (symp, get_selected_block (0));
1153 }
1154 else
1155 {
1156 /* Not C++, or no overload resolution allowed. */
1157 /* Nothing to be done; argvec already correctly set up. */
1158 }
1159 }
1160 else
1161 {
1162 /* It is probably a C-style function. */
1163 /* Nothing to be done; argvec already correctly set up. */
1164 }
1165
1166 return evaluate_subexp_do_call (exp, noside, argvec[0],
1167 gdb::make_array_view (argvec + 1, nargs),
1168 var_func_name, expect_type);
1169 }
1170
1171 /* Return true if type is integral or reference to integral */
1172
1173 static bool
1174 is_integral_or_integral_reference (struct type *type)
1175 {
1176 if (is_integral_type (type))
1177 return true;
1178
1179 type = check_typedef (type);
1180 return (type != nullptr
1181 && TYPE_IS_REFERENCE (type)
1182 && is_integral_type (TYPE_TARGET_TYPE (type)));
1183 }
1184
1185 /* Helper function that implements the body of OP_SCOPE. */
1186
1187 static struct value *
1188 eval_op_scope (struct type *expect_type, struct expression *exp,
1189 enum noside noside,
1190 struct type *type, const char *string)
1191 {
1192 if (noside == EVAL_SKIP)
1193 return eval_skip_value (exp);
1194 struct value *arg1 = value_aggregate_elt (type, string, expect_type,
1195 0, noside);
1196 if (arg1 == NULL)
1197 error (_("There is no field named %s"), string);
1198 return arg1;
1199 }
1200
1201 /* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
1202
1203 static struct value *
1204 eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
1205 enum noside noside, symbol *sym)
1206 {
1207 if (noside == EVAL_SKIP)
1208 return eval_skip_value (exp);
1209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1210 return value_zero (SYMBOL_TYPE (sym), not_lval);
1211
1212 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1213 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1214 error (_("Symbol \"%s\" does not have any specific entry value"),
1215 sym->print_name ());
1216
1217 struct frame_info *frame = get_selected_frame (NULL);
1218 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1219 }
1220
1221 /* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
1222
1223 static struct value *
1224 eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
1225 enum noside noside, bool outermost_p,
1226 minimal_symbol *msymbol, struct objfile *objfile)
1227 {
1228 value *val = evaluate_var_msym_value (noside, objfile, msymbol);
1229
1230 struct type *type = value_type (val);
1231 if (type->code () == TYPE_CODE_ERROR
1232 && (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
1233 error_unknown_type (msymbol->print_name ());
1234 return val;
1235 }
1236
1237 /* Helper function that implements the body of OP_FUNC_STATIC_VAR. */
1238
1239 static struct value *
1240 eval_op_func_static_var (struct type *expect_type, struct expression *exp,
1241 enum noside noside,
1242 value *func, const char *var)
1243 {
1244 if (noside == EVAL_SKIP)
1245 return eval_skip_value (exp);
1246 CORE_ADDR addr = value_address (func);
1247 const block *blk = block_for_pc (addr);
1248 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1249 if (sym.symbol == NULL)
1250 error (_("No symbol \"%s\" in specified context."), var);
1251 return evaluate_var_value (noside, sym.block, sym.symbol);
1252 }
1253
1254 /* Helper function that implements the body of OP_REGISTER. */
1255
1256 static struct value *
1257 eval_op_register (struct type *expect_type, struct expression *exp,
1258 enum noside noside, const char *name)
1259 {
1260 int regno;
1261 struct value *val;
1262
1263 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1264 name, strlen (name));
1265 if (regno == -1)
1266 error (_("Register $%s not available."), name);
1267
1268 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1269 a value with the appropriate register type. Unfortunately,
1270 we don't have easy access to the type of user registers.
1271 So for these registers, we fetch the register value regardless
1272 of the evaluation mode. */
1273 if (noside == EVAL_AVOID_SIDE_EFFECTS
1274 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1275 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1276 else
1277 val = value_of_register (regno, get_selected_frame (NULL));
1278 if (val == NULL)
1279 error (_("Value of register %s not available."), name);
1280 else
1281 return val;
1282 }
1283
1284 /* Helper function that implements the body of OP_STRING. */
1285
1286 static struct value *
1287 eval_op_string (struct type *expect_type, struct expression *exp,
1288 enum noside noside, int len, const char *string)
1289 {
1290 if (noside == EVAL_SKIP)
1291 return eval_skip_value (exp);
1292 struct type *type = language_string_char_type (exp->language_defn,
1293 exp->gdbarch);
1294 return value_string (string, len, type);
1295 }
1296
1297 /* Helper function that implements the body of OP_OBJC_SELECTOR. */
1298
1299 static struct value *
1300 eval_op_objc_selector (struct type *expect_type, struct expression *exp,
1301 enum noside noside,
1302 const char *sel)
1303 {
1304 if (noside == EVAL_SKIP)
1305 return eval_skip_value (exp);
1306
1307 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1308 return value_from_longest (selector_type,
1309 lookup_child_selector (exp->gdbarch, sel));
1310 }
1311
1312 /* Helper function that implements the body of BINOP_CONCAT. */
1313
1314 static struct value *
1315 eval_op_concat (struct type *expect_type, struct expression *exp,
1316 enum noside noside,
1317 enum exp_opcode op, struct value *arg1, struct value *arg2)
1318 {
1319 if (noside == EVAL_SKIP)
1320 return eval_skip_value (exp);
1321 if (binop_user_defined_p (op, arg1, arg2))
1322 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1323 else
1324 return value_concat (arg1, arg2);
1325 }
1326
1327 /* A helper function for TERNOP_SLICE. */
1328
1329 static struct value *
1330 eval_op_ternop (struct type *expect_type, struct expression *exp,
1331 enum noside noside,
1332 struct value *array, struct value *low, struct value *upper)
1333 {
1334 if (noside == EVAL_SKIP)
1335 return eval_skip_value (exp);
1336 int lowbound = value_as_long (low);
1337 int upperbound = value_as_long (upper);
1338 return value_slice (array, lowbound, upperbound - lowbound + 1);
1339 }
1340
1341 /* A helper function for STRUCTOP_STRUCT. */
1342
1343 static struct value *
1344 eval_op_structop_struct (struct type *expect_type, struct expression *exp,
1345 enum noside noside,
1346 struct value *arg1, const char *string)
1347 {
1348 if (noside == EVAL_SKIP)
1349 return eval_skip_value (exp);
1350 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1351 NULL, "structure");
1352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1353 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1354 return arg3;
1355 }
1356
1357 /* A helper function for STRUCTOP_PTR. */
1358
1359 static struct value *
1360 eval_op_structop_ptr (struct type *expect_type, struct expression *exp,
1361 enum noside noside, enum exp_opcode op,
1362 struct value *arg1, const char *string)
1363 {
1364 if (noside == EVAL_SKIP)
1365 return eval_skip_value (exp);
1366
1367 /* Check to see if operator '->' has been overloaded. If so replace
1368 arg1 with the value returned by evaluating operator->(). */
1369 while (unop_user_defined_p (op, arg1))
1370 {
1371 struct value *value = NULL;
1372 try
1373 {
1374 value = value_x_unop (arg1, op, noside);
1375 }
1376
1377 catch (const gdb_exception_error &except)
1378 {
1379 if (except.error == NOT_FOUND_ERROR)
1380 break;
1381 else
1382 throw;
1383 }
1384
1385 arg1 = value;
1386 }
1387
1388 /* JYG: if print object is on we need to replace the base type
1389 with rtti type in order to continue on with successful
1390 lookup of member / method only available in the rtti type. */
1391 {
1392 struct type *arg_type = value_type (arg1);
1393 struct type *real_type;
1394 int full, using_enc;
1395 LONGEST top;
1396 struct value_print_options opts;
1397
1398 get_user_print_options (&opts);
1399 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
1400 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
1401 {
1402 real_type = value_rtti_indirect_type (arg1, &full, &top,
1403 &using_enc);
1404 if (real_type)
1405 arg1 = value_cast (real_type, arg1);
1406 }
1407 }
1408
1409 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1410 NULL, "structure pointer");
1411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1412 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1413 return arg3;
1414 }
1415
1416 /* A helper function for STRUCTOP_MEMBER. */
1417
1418 static struct value *
1419 eval_op_member (struct type *expect_type, struct expression *exp,
1420 enum noside noside,
1421 struct value *arg1, struct value *arg2)
1422 {
1423 long mem_offset;
1424
1425 if (noside == EVAL_SKIP)
1426 return eval_skip_value (exp);
1427
1428 struct value *arg3;
1429 struct type *type = check_typedef (value_type (arg2));
1430 switch (type->code ())
1431 {
1432 case TYPE_CODE_METHODPTR:
1433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1434 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1435 else
1436 {
1437 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1438 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
1439 return value_ind (arg2);
1440 }
1441
1442 case TYPE_CODE_MEMBERPTR:
1443 /* Now, convert these values to an address. */
1444 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1445 arg1, 1);
1446
1447 mem_offset = value_as_long (arg2);
1448
1449 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1450 value_as_long (arg1) + mem_offset);
1451 return value_ind (arg3);
1452
1453 default:
1454 error (_("non-pointer-to-member value used "
1455 "in pointer-to-member construct"));
1456 }
1457 }
1458
1459 /* A helper function for BINOP_ADD. */
1460
1461 static struct value *
1462 eval_op_add (struct type *expect_type, struct expression *exp,
1463 enum noside noside, enum exp_opcode op,
1464 struct value *arg1, struct value *arg2)
1465 {
1466 if (noside == EVAL_SKIP)
1467 return eval_skip_value (exp);
1468 if (binop_user_defined_p (op, arg1, arg2))
1469 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1470 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1471 && is_integral_or_integral_reference (value_type (arg2)))
1472 return value_ptradd (arg1, value_as_long (arg2));
1473 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
1474 && is_integral_or_integral_reference (value_type (arg1)))
1475 return value_ptradd (arg2, value_as_long (arg1));
1476 else
1477 {
1478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1479 return value_binop (arg1, arg2, BINOP_ADD);
1480 }
1481 }
1482
1483 /* A helper function for BINOP_SUB. */
1484
1485 static struct value *
1486 eval_op_sub (struct type *expect_type, struct expression *exp,
1487 enum noside noside, enum exp_opcode op,
1488 struct value *arg1, struct value *arg2)
1489 {
1490 if (noside == EVAL_SKIP)
1491 return eval_skip_value (exp);
1492 if (binop_user_defined_p (op, arg1, arg2))
1493 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1494 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1495 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
1496 {
1497 /* FIXME -- should be ptrdiff_t */
1498 struct type *type = builtin_type (exp->gdbarch)->builtin_long;
1499 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1500 }
1501 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1502 && is_integral_or_integral_reference (value_type (arg2)))
1503 return value_ptradd (arg1, - value_as_long (arg2));
1504 else
1505 {
1506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1507 return value_binop (arg1, arg2, BINOP_SUB);
1508 }
1509 }
1510
1511 /* Helper function for several different binary operations. */
1512
1513 static struct value *
1514 eval_op_binary (struct type *expect_type, struct expression *exp,
1515 enum noside noside, enum exp_opcode op,
1516 struct value *arg1, struct value *arg2)
1517 {
1518 if (noside == EVAL_SKIP)
1519 return eval_skip_value (exp);
1520 if (binop_user_defined_p (op, arg1, arg2))
1521 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1522 else
1523 {
1524 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1525 fudge arg2 to avoid division-by-zero, the caller is
1526 (theoretically) only looking for the type of the result. */
1527 if (noside == EVAL_AVOID_SIDE_EFFECTS
1528 /* ??? Do we really want to test for BINOP_MOD here?
1529 The implementation of value_binop gives it a well-defined
1530 value. */
1531 && (op == BINOP_DIV
1532 || op == BINOP_INTDIV
1533 || op == BINOP_REM
1534 || op == BINOP_MOD)
1535 && value_logical_not (arg2))
1536 {
1537 struct value *v_one;
1538
1539 v_one = value_one (value_type (arg2));
1540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1541 return value_binop (arg1, v_one, op);
1542 }
1543 else
1544 {
1545 /* For shift and integer exponentiation operations,
1546 only promote the first argument. */
1547 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1548 && is_integral_type (value_type (arg2)))
1549 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1550 else
1551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1552
1553 return value_binop (arg1, arg2, op);
1554 }
1555 }
1556 }
1557
1558 /* A helper function for BINOP_SUBSCRIPT. */
1559
1560 static struct value *
1561 eval_op_subscript (struct type *expect_type, struct expression *exp,
1562 enum noside noside, enum exp_opcode op,
1563 struct value *arg1, struct value *arg2)
1564 {
1565 if (noside == EVAL_SKIP)
1566 return eval_skip_value (exp);
1567 if (binop_user_defined_p (op, arg1, arg2))
1568 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1569 else
1570 {
1571 /* If the user attempts to subscript something that is not an
1572 array or pointer type (like a plain int variable for example),
1573 then report this as an error. */
1574
1575 arg1 = coerce_ref (arg1);
1576 struct type *type = check_typedef (value_type (arg1));
1577 if (type->code () != TYPE_CODE_ARRAY
1578 && type->code () != TYPE_CODE_PTR)
1579 {
1580 if (type->name ())
1581 error (_("cannot subscript something of type `%s'"),
1582 type->name ());
1583 else
1584 error (_("cannot subscript requested type"));
1585 }
1586
1587 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1588 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1589 else
1590 return value_subscript (arg1, value_as_long (arg2));
1591 }
1592 }
1593
1594 /* A helper function for BINOP_EQUAL. */
1595
1596 static struct value *
1597 eval_op_equal (struct type *expect_type, struct expression *exp,
1598 enum noside noside, enum exp_opcode op,
1599 struct value *arg1, struct value *arg2)
1600 {
1601 if (noside == EVAL_SKIP)
1602 return eval_skip_value (exp);
1603 if (binop_user_defined_p (op, arg1, arg2))
1604 {
1605 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1606 }
1607 else
1608 {
1609 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1610 int tem = value_equal (arg1, arg2);
1611 struct type *type = language_bool_type (exp->language_defn,
1612 exp->gdbarch);
1613 return value_from_longest (type, (LONGEST) tem);
1614 }
1615 }
1616
1617 /* A helper function for BINOP_NOTEQUAL. */
1618
1619 static struct value *
1620 eval_op_notequal (struct type *expect_type, struct expression *exp,
1621 enum noside noside, enum exp_opcode op,
1622 struct value *arg1, struct value *arg2)
1623 {
1624 if (noside == EVAL_SKIP)
1625 return eval_skip_value (exp);
1626 if (binop_user_defined_p (op, arg1, arg2))
1627 {
1628 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1629 }
1630 else
1631 {
1632 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1633 int tem = value_equal (arg1, arg2);
1634 struct type *type = language_bool_type (exp->language_defn,
1635 exp->gdbarch);
1636 return value_from_longest (type, (LONGEST) ! tem);
1637 }
1638 }
1639
1640 /* A helper function for BINOP_LESS. */
1641
1642 static struct value *
1643 eval_op_less (struct type *expect_type, struct expression *exp,
1644 enum noside noside, enum exp_opcode op,
1645 struct value *arg1, struct value *arg2)
1646 {
1647 if (noside == EVAL_SKIP)
1648 return eval_skip_value (exp);
1649 if (binop_user_defined_p (op, arg1, arg2))
1650 {
1651 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1652 }
1653 else
1654 {
1655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1656 int tem = value_less (arg1, arg2);
1657 struct type *type = language_bool_type (exp->language_defn,
1658 exp->gdbarch);
1659 return value_from_longest (type, (LONGEST) tem);
1660 }
1661 }
1662
1663 /* A helper function for BINOP_GTR. */
1664
1665 static struct value *
1666 eval_op_gtr (struct type *expect_type, struct expression *exp,
1667 enum noside noside, enum exp_opcode op,
1668 struct value *arg1, struct value *arg2)
1669 {
1670 if (noside == EVAL_SKIP)
1671 return eval_skip_value (exp);
1672 if (binop_user_defined_p (op, arg1, arg2))
1673 {
1674 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1675 }
1676 else
1677 {
1678 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1679 int tem = value_less (arg2, arg1);
1680 struct type *type = language_bool_type (exp->language_defn,
1681 exp->gdbarch);
1682 return value_from_longest (type, (LONGEST) tem);
1683 }
1684 }
1685
1686 struct value *
1687 evaluate_subexp_standard (struct type *expect_type,
1688 struct expression *exp, int *pos,
1689 enum noside noside)
1690 {
1691 enum exp_opcode op;
1692 int tem, tem2, tem3;
1693 int pc, oldpos;
1694 struct value *arg1 = NULL;
1695 struct value *arg2 = NULL;
1696 struct value *arg3;
1697 struct type *type;
1698 int nargs;
1699 struct value **argvec;
1700 int ix;
1701 struct type **arg_types;
1702
1703 pc = (*pos)++;
1704 op = exp->elts[pc].opcode;
1705
1706 switch (op)
1707 {
1708 case OP_SCOPE:
1709 tem = longest_to_int (exp->elts[pc + 2].longconst);
1710 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1711 return eval_op_scope (expect_type, exp, noside,
1712 exp->elts[pc + 1].type,
1713 &exp->elts[pc + 3].string);
1714
1715 case OP_LONG:
1716 (*pos) += 3;
1717 return value_from_longest (exp->elts[pc + 1].type,
1718 exp->elts[pc + 2].longconst);
1719
1720 case OP_FLOAT:
1721 (*pos) += 3;
1722 return value_from_contents (exp->elts[pc + 1].type,
1723 exp->elts[pc + 2].floatconst);
1724
1725 case OP_ADL_FUNC:
1726 case OP_VAR_VALUE:
1727 {
1728 (*pos) += 3;
1729 symbol *var = exp->elts[pc + 2].symbol;
1730 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
1731 error_unknown_type (var->print_name ());
1732 if (noside != EVAL_SKIP)
1733 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1734 else
1735 {
1736 /* Return a dummy value of the correct type when skipping, so
1737 that parent functions know what is to be skipped. */
1738 return allocate_value (SYMBOL_TYPE (var));
1739 }
1740 }
1741
1742 case OP_VAR_MSYM_VALUE:
1743 {
1744 (*pos) += 3;
1745
1746 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1747 return eval_op_var_msym_value (expect_type, exp, noside,
1748 pc == 0, msymbol,
1749 exp->elts[pc + 1].objfile);
1750 }
1751
1752 case OP_VAR_ENTRY_VALUE:
1753 (*pos) += 2;
1754
1755 {
1756 struct symbol *sym = exp->elts[pc + 1].symbol;
1757
1758 return eval_op_var_entry_value (expect_type, exp, noside, sym);
1759 }
1760
1761 case OP_FUNC_STATIC_VAR:
1762 tem = longest_to_int (exp->elts[pc + 1].longconst);
1763 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1764 if (noside == EVAL_SKIP)
1765 return eval_skip_value (exp);
1766
1767 {
1768 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1769
1770 return eval_op_func_static_var (expect_type, exp, noside, func,
1771 &exp->elts[pc + 2].string);
1772 }
1773
1774 case OP_LAST:
1775 (*pos) += 2;
1776 return
1777 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
1778
1779 case OP_REGISTER:
1780 {
1781 const char *name = &exp->elts[pc + 2].string;
1782
1783 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
1784 return eval_op_register (expect_type, exp, noside, name);
1785 }
1786 case OP_BOOL:
1787 (*pos) += 2;
1788 type = language_bool_type (exp->language_defn, exp->gdbarch);
1789 return value_from_longest (type, exp->elts[pc + 1].longconst);
1790
1791 case OP_INTERNALVAR:
1792 (*pos) += 2;
1793 return value_of_internalvar (exp->gdbarch,
1794 exp->elts[pc + 1].internalvar);
1795
1796 case OP_STRING:
1797 tem = longest_to_int (exp->elts[pc + 1].longconst);
1798 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1799 return eval_op_string (expect_type, exp, noside, tem,
1800 &exp->elts[pc + 2].string);
1801
1802 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
1803 NSString constant. */
1804 tem = longest_to_int (exp->elts[pc + 1].longconst);
1805 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1806 if (noside == EVAL_SKIP)
1807 return eval_skip_value (exp);
1808 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
1809
1810 case OP_ARRAY:
1811 (*pos) += 3;
1812 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
1813 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
1814 nargs = tem3 - tem2 + 1;
1815 type = expect_type ? check_typedef (expect_type) : nullptr;
1816
1817 if (expect_type != nullptr && noside != EVAL_SKIP
1818 && type->code () == TYPE_CODE_STRUCT)
1819 {
1820 struct value *rec = allocate_value (expect_type);
1821
1822 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
1823 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
1824 }
1825
1826 if (expect_type != nullptr && noside != EVAL_SKIP
1827 && type->code () == TYPE_CODE_ARRAY)
1828 {
1829 struct type *range_type = type->index_type ();
1830 struct type *element_type = TYPE_TARGET_TYPE (type);
1831 struct value *array = allocate_value (expect_type);
1832 int element_size = TYPE_LENGTH (check_typedef (element_type));
1833 LONGEST low_bound, high_bound, index;
1834
1835 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
1836 {
1837 low_bound = 0;
1838 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1839 }
1840 index = low_bound;
1841 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1842 for (tem = nargs; --nargs >= 0;)
1843 {
1844 struct value *element;
1845
1846 element = evaluate_subexp (element_type, exp, pos, noside);
1847 if (value_type (element) != element_type)
1848 element = value_cast (element_type, element);
1849 if (index > high_bound)
1850 /* To avoid memory corruption. */
1851 error (_("Too many array elements"));
1852 memcpy (value_contents_raw (array)
1853 + (index - low_bound) * element_size,
1854 value_contents (element),
1855 element_size);
1856 index++;
1857 }
1858 return array;
1859 }
1860
1861 if (expect_type != nullptr && noside != EVAL_SKIP
1862 && type->code () == TYPE_CODE_SET)
1863 {
1864 struct value *set = allocate_value (expect_type);
1865 gdb_byte *valaddr = value_contents_raw (set);
1866 struct type *element_type = type->index_type ();
1867 struct type *check_type = element_type;
1868 LONGEST low_bound, high_bound;
1869
1870 /* Get targettype of elementtype. */
1871 while (check_type->code () == TYPE_CODE_RANGE
1872 || check_type->code () == TYPE_CODE_TYPEDEF)
1873 check_type = TYPE_TARGET_TYPE (check_type);
1874
1875 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
1876 error (_("(power)set type with unknown size"));
1877 memset (valaddr, '\0', TYPE_LENGTH (type));
1878 for (tem = 0; tem < nargs; tem++)
1879 {
1880 LONGEST range_low, range_high;
1881 struct type *range_low_type, *range_high_type;
1882 struct value *elem_val;
1883
1884 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1885 range_low_type = range_high_type = value_type (elem_val);
1886 range_low = range_high = value_as_long (elem_val);
1887
1888 /* Check types of elements to avoid mixture of elements from
1889 different types. Also check if type of element is "compatible"
1890 with element type of powerset. */
1891 if (range_low_type->code () == TYPE_CODE_RANGE)
1892 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1893 if (range_high_type->code () == TYPE_CODE_RANGE)
1894 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1895 if ((range_low_type->code () != range_high_type->code ())
1896 || (range_low_type->code () == TYPE_CODE_ENUM
1897 && (range_low_type != range_high_type)))
1898 /* different element modes. */
1899 error (_("POWERSET tuple elements of different mode"));
1900 if ((check_type->code () != range_low_type->code ())
1901 || (check_type->code () == TYPE_CODE_ENUM
1902 && range_low_type != check_type))
1903 error (_("incompatible POWERSET tuple elements"));
1904 if (range_low > range_high)
1905 {
1906 warning (_("empty POWERSET tuple range"));
1907 continue;
1908 }
1909 if (range_low < low_bound || range_high > high_bound)
1910 error (_("POWERSET tuple element out of range"));
1911 range_low -= low_bound;
1912 range_high -= low_bound;
1913 for (; range_low <= range_high; range_low++)
1914 {
1915 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1916
1917 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
1918 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1919 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1920 |= 1 << bit_index;
1921 }
1922 }
1923 return set;
1924 }
1925
1926 argvec = XALLOCAVEC (struct value *, nargs);
1927 for (tem = 0; tem < nargs; tem++)
1928 {
1929 /* Ensure that array expressions are coerced into pointer
1930 objects. */
1931 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1932 }
1933 if (noside == EVAL_SKIP)
1934 return eval_skip_value (exp);
1935 return value_array (tem2, tem3, argvec);
1936
1937 case TERNOP_SLICE:
1938 {
1939 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
1940 struct value *low = evaluate_subexp (nullptr, exp, pos, noside);
1941 struct value *upper = evaluate_subexp (nullptr, exp, pos, noside);
1942 return eval_op_ternop (expect_type, exp, noside, array, low, upper);
1943 }
1944
1945 case TERNOP_COND:
1946 /* Skip third and second args to evaluate the first one. */
1947 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
1948 if (value_logical_not (arg1))
1949 {
1950 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
1951 return evaluate_subexp (nullptr, exp, pos, noside);
1952 }
1953 else
1954 {
1955 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
1956 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
1957 return arg2;
1958 }
1959
1960 case OP_OBJC_SELECTOR:
1961 { /* Objective C @selector operator. */
1962 char *sel = &exp->elts[pc + 2].string;
1963 int len = longest_to_int (exp->elts[pc + 1].longconst);
1964
1965 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1966 if (sel[len] != 0)
1967 sel[len] = 0; /* Make sure it's terminated. */
1968
1969 return eval_op_objc_selector (expect_type, exp, noside, sel);
1970 }
1971
1972 case OP_OBJC_MSGCALL:
1973 { /* Objective C message (method) call. */
1974
1975 CORE_ADDR responds_selector = 0;
1976 CORE_ADDR method_selector = 0;
1977
1978 CORE_ADDR selector = 0;
1979
1980 int struct_return = 0;
1981 enum noside sub_no_side = EVAL_NORMAL;
1982
1983 struct value *msg_send = NULL;
1984 struct value *msg_send_stret = NULL;
1985 int gnu_runtime = 0;
1986
1987 struct value *target = NULL;
1988 struct value *method = NULL;
1989 struct value *called_method = NULL;
1990
1991 struct type *selector_type = NULL;
1992 struct type *long_type;
1993
1994 struct value *ret = NULL;
1995 CORE_ADDR addr = 0;
1996
1997 selector = exp->elts[pc + 1].longconst;
1998 nargs = exp->elts[pc + 2].longconst;
1999 argvec = XALLOCAVEC (struct value *, nargs + 5);
2000
2001 (*pos) += 3;
2002
2003 long_type = builtin_type (exp->gdbarch)->builtin_long;
2004 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
2005
2006 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2007 sub_no_side = EVAL_NORMAL;
2008 else
2009 sub_no_side = noside;
2010
2011 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
2012
2013 if (value_as_long (target) == 0)
2014 return value_from_longest (long_type, 0);
2015
2016 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
2017 gnu_runtime = 1;
2018
2019 /* Find the method dispatch (Apple runtime) or method lookup
2020 (GNU runtime) function for Objective-C. These will be used
2021 to lookup the symbol information for the method. If we
2022 can't find any symbol information, then we'll use these to
2023 call the method, otherwise we can call the method
2024 directly. The msg_send_stret function is used in the special
2025 case of a method that returns a structure (Apple runtime
2026 only). */
2027 if (gnu_runtime)
2028 {
2029 type = selector_type;
2030
2031 type = lookup_function_type (type);
2032 type = lookup_pointer_type (type);
2033 type = lookup_function_type (type);
2034 type = lookup_pointer_type (type);
2035
2036 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
2037 msg_send_stret
2038 = find_function_in_inferior ("objc_msg_lookup", NULL);
2039
2040 msg_send = value_from_pointer (type, value_as_address (msg_send));
2041 msg_send_stret = value_from_pointer (type,
2042 value_as_address (msg_send_stret));
2043 }
2044 else
2045 {
2046 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
2047 /* Special dispatcher for methods returning structs. */
2048 msg_send_stret
2049 = find_function_in_inferior ("objc_msgSend_stret", NULL);
2050 }
2051
2052 /* Verify the target object responds to this method. The
2053 standard top-level 'Object' class uses a different name for
2054 the verification method than the non-standard, but more
2055 often used, 'NSObject' class. Make sure we check for both. */
2056
2057 responds_selector
2058 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
2059 if (responds_selector == 0)
2060 responds_selector
2061 = lookup_child_selector (exp->gdbarch, "respondsTo:");
2062
2063 if (responds_selector == 0)
2064 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
2065
2066 method_selector
2067 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
2068 if (method_selector == 0)
2069 method_selector
2070 = lookup_child_selector (exp->gdbarch, "methodFor:");
2071
2072 if (method_selector == 0)
2073 error (_("no 'methodFor:' or 'methodForSelector:' method"));
2074
2075 /* Call the verification method, to make sure that the target
2076 class implements the desired method. */
2077
2078 argvec[0] = msg_send;
2079 argvec[1] = target;
2080 argvec[2] = value_from_longest (long_type, responds_selector);
2081 argvec[3] = value_from_longest (long_type, selector);
2082 argvec[4] = 0;
2083
2084 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2085 if (gnu_runtime)
2086 {
2087 /* Function objc_msg_lookup returns a pointer. */
2088 argvec[0] = ret;
2089 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2090 }
2091 if (value_as_long (ret) == 0)
2092 error (_("Target does not respond to this message selector."));
2093
2094 /* Call "methodForSelector:" method, to get the address of a
2095 function method that implements this selector for this
2096 class. If we can find a symbol at that address, then we
2097 know the return type, parameter types etc. (that's a good
2098 thing). */
2099
2100 argvec[0] = msg_send;
2101 argvec[1] = target;
2102 argvec[2] = value_from_longest (long_type, method_selector);
2103 argvec[3] = value_from_longest (long_type, selector);
2104 argvec[4] = 0;
2105
2106 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2107 if (gnu_runtime)
2108 {
2109 argvec[0] = ret;
2110 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2111 }
2112
2113 /* ret should now be the selector. */
2114
2115 addr = value_as_long (ret);
2116 if (addr)
2117 {
2118 struct symbol *sym = NULL;
2119
2120 /* The address might point to a function descriptor;
2121 resolve it to the actual code address instead. */
2122 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
2123 current_top_target ());
2124
2125 /* Is it a high_level symbol? */
2126 sym = find_pc_function (addr);
2127 if (sym != NULL)
2128 method = value_of_variable (sym, 0);
2129 }
2130
2131 /* If we found a method with symbol information, check to see
2132 if it returns a struct. Otherwise assume it doesn't. */
2133
2134 if (method)
2135 {
2136 CORE_ADDR funaddr;
2137 struct type *val_type;
2138
2139 funaddr = find_function_addr (method, &val_type);
2140
2141 block_for_pc (funaddr);
2142
2143 val_type = check_typedef (val_type);
2144
2145 if ((val_type == NULL)
2146 || (val_type->code () == TYPE_CODE_ERROR))
2147 {
2148 if (expect_type != NULL)
2149 val_type = expect_type;
2150 }
2151
2152 struct_return = using_struct_return (exp->gdbarch, method,
2153 val_type);
2154 }
2155 else if (expect_type != NULL)
2156 {
2157 struct_return = using_struct_return (exp->gdbarch, NULL,
2158 check_typedef (expect_type));
2159 }
2160
2161 /* Found a function symbol. Now we will substitute its
2162 value in place of the message dispatcher (obj_msgSend),
2163 so that we call the method directly instead of thru
2164 the dispatcher. The main reason for doing this is that
2165 we can now evaluate the return value and parameter values
2166 according to their known data types, in case we need to
2167 do things like promotion, dereferencing, special handling
2168 of structs and doubles, etc.
2169
2170 We want to use the type signature of 'method', but still
2171 jump to objc_msgSend() or objc_msgSend_stret() to better
2172 mimic the behavior of the runtime. */
2173
2174 if (method)
2175 {
2176 if (value_type (method)->code () != TYPE_CODE_FUNC)
2177 error (_("method address has symbol information "
2178 "with non-function type; skipping"));
2179
2180 /* Create a function pointer of the appropriate type, and
2181 replace its value with the value of msg_send or
2182 msg_send_stret. We must use a pointer here, as
2183 msg_send and msg_send_stret are of pointer type, and
2184 the representation may be different on systems that use
2185 function descriptors. */
2186 if (struct_return)
2187 called_method
2188 = value_from_pointer (lookup_pointer_type (value_type (method)),
2189 value_as_address (msg_send_stret));
2190 else
2191 called_method
2192 = value_from_pointer (lookup_pointer_type (value_type (method)),
2193 value_as_address (msg_send));
2194 }
2195 else
2196 {
2197 if (struct_return)
2198 called_method = msg_send_stret;
2199 else
2200 called_method = msg_send;
2201 }
2202
2203 if (noside == EVAL_SKIP)
2204 return eval_skip_value (exp);
2205
2206 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2207 {
2208 /* If the return type doesn't look like a function type,
2209 call an error. This can happen if somebody tries to
2210 turn a variable into a function call. This is here
2211 because people often want to call, eg, strcmp, which
2212 gdb doesn't know is a function. If gdb isn't asked for
2213 it's opinion (ie. through "whatis"), it won't offer
2214 it. */
2215
2216 struct type *callee_type = value_type (called_method);
2217
2218 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
2219 callee_type = TYPE_TARGET_TYPE (callee_type);
2220 callee_type = TYPE_TARGET_TYPE (callee_type);
2221
2222 if (callee_type)
2223 {
2224 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
2225 return allocate_value (expect_type);
2226 else
2227 return allocate_value (callee_type);
2228 }
2229 else
2230 error (_("Expression of type other than "
2231 "\"method returning ...\" used as a method"));
2232 }
2233
2234 /* Now depending on whether we found a symbol for the method,
2235 we will either call the runtime dispatcher or the method
2236 directly. */
2237
2238 argvec[0] = called_method;
2239 argvec[1] = target;
2240 argvec[2] = value_from_longest (long_type, selector);
2241 /* User-supplied arguments. */
2242 for (tem = 0; tem < nargs; tem++)
2243 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
2244 argvec[tem + 3] = 0;
2245
2246 auto call_args = gdb::make_array_view (argvec + 1, nargs + 2);
2247
2248 if (gnu_runtime && (method != NULL))
2249 {
2250 /* Function objc_msg_lookup returns a pointer. */
2251 deprecated_set_value_type (argvec[0],
2252 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
2253 argvec[0] = call_function_by_hand (argvec[0], NULL, call_args);
2254 }
2255
2256 return call_function_by_hand (argvec[0], NULL, call_args);
2257 }
2258 break;
2259
2260 case OP_FUNCALL:
2261 return evaluate_funcall (expect_type, exp, pos, noside);
2262
2263 case OP_COMPLEX:
2264 /* We have a complex number, There should be 2 floating
2265 point numbers that compose it. */
2266 (*pos) += 2;
2267 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2268 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2269
2270 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
2271
2272 case STRUCTOP_STRUCT:
2273 tem = longest_to_int (exp->elts[pc + 1].longconst);
2274 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2275 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2276 return eval_op_structop_struct (expect_type, exp, noside, arg1,
2277 &exp->elts[pc + 2].string);
2278
2279 case STRUCTOP_PTR:
2280 tem = longest_to_int (exp->elts[pc + 1].longconst);
2281 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2282 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2283 return eval_op_structop_ptr (expect_type, exp, noside, op, arg1,
2284 &exp->elts[pc + 2].string);
2285
2286 case STRUCTOP_MEMBER:
2287 case STRUCTOP_MPTR:
2288 if (op == STRUCTOP_MEMBER)
2289 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2290 else
2291 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2292
2293 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2294
2295 return eval_op_member (expect_type, exp, noside, arg1, arg2);
2296
2297 case TYPE_INSTANCE:
2298 {
2299 type_instance_flags flags
2300 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2301 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2302 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2303 for (ix = 0; ix < nargs; ++ix)
2304 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2305
2306 fake_method fake_expect_type (flags, nargs, arg_types);
2307 *(pos) += 4 + nargs;
2308 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
2309 noside);
2310 }
2311
2312 case BINOP_CONCAT:
2313 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2314 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2315 return eval_op_concat (expect_type, exp, noside, op, arg1, arg2);
2316
2317 case BINOP_ASSIGN:
2318 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2319 /* Special-case assignments where the left-hand-side is a
2320 convenience variable -- in these, don't bother setting an
2321 expected type. This avoids a weird case where re-assigning a
2322 string or array to an internal variable could error with "Too
2323 many array elements". */
2324 arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
2325 ? nullptr
2326 : value_type (arg1),
2327 exp, pos, noside);
2328
2329 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2330 return arg1;
2331 if (binop_user_defined_p (op, arg1, arg2))
2332 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2333 else
2334 return value_assign (arg1, arg2);
2335
2336 case BINOP_ASSIGN_MODIFY:
2337 (*pos) += 2;
2338 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2339 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2340 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2341 return arg1;
2342 op = exp->elts[pc + 1].opcode;
2343 if (binop_user_defined_p (op, arg1, arg2))
2344 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2345 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2346 value_type (arg1))
2347 && is_integral_type (value_type (arg2)))
2348 arg2 = value_ptradd (arg1, value_as_long (arg2));
2349 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2350 value_type (arg1))
2351 && is_integral_type (value_type (arg2)))
2352 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2353 else
2354 {
2355 struct value *tmp = arg1;
2356
2357 /* For shift and integer exponentiation operations,
2358 only promote the first argument. */
2359 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2360 && is_integral_type (value_type (arg2)))
2361 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2362 else
2363 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2364
2365 arg2 = value_binop (tmp, arg2, op);
2366 }
2367 return value_assign (arg1, arg2);
2368
2369 case BINOP_ADD:
2370 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2371 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2372 return eval_op_add (expect_type, exp, noside, op, arg1, arg2);
2373
2374 case BINOP_SUB:
2375 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2376 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2377 return eval_op_sub (expect_type, exp, noside, op, arg1, arg2);
2378
2379 case BINOP_EXP:
2380 case BINOP_MUL:
2381 case BINOP_DIV:
2382 case BINOP_INTDIV:
2383 case BINOP_REM:
2384 case BINOP_MOD:
2385 case BINOP_LSH:
2386 case BINOP_RSH:
2387 case BINOP_BITWISE_AND:
2388 case BINOP_BITWISE_IOR:
2389 case BINOP_BITWISE_XOR:
2390 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2391 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2392 return eval_op_binary (expect_type, exp, noside, op, arg1, arg2);
2393
2394 case BINOP_SUBSCRIPT:
2395 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2396 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2397 return eval_op_subscript (expect_type, exp, noside, op, arg1, arg2);
2398
2399 case MULTI_SUBSCRIPT:
2400 (*pos) += 2;
2401 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2402 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2403 argvec = XALLOCAVEC (struct value *, nargs);
2404 for (ix = 0; ix < nargs; ++ix)
2405 argvec[ix] = evaluate_subexp_with_coercion (exp, pos, noside);
2406 if (noside == EVAL_SKIP)
2407 return arg1;
2408 for (ix = 0; ix < nargs; ++ix)
2409 {
2410 arg2 = argvec[ix];
2411
2412 if (binop_user_defined_p (op, arg1, arg2))
2413 {
2414 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2415 }
2416 else
2417 {
2418 arg1 = coerce_ref (arg1);
2419 type = check_typedef (value_type (arg1));
2420
2421 switch (type->code ())
2422 {
2423 case TYPE_CODE_PTR:
2424 case TYPE_CODE_ARRAY:
2425 case TYPE_CODE_STRING:
2426 arg1 = value_subscript (arg1, value_as_long (arg2));
2427 break;
2428
2429 default:
2430 if (type->name ())
2431 error (_("cannot subscript something of type `%s'"),
2432 type->name ());
2433 else
2434 error (_("cannot subscript requested type"));
2435 }
2436 }
2437 }
2438 return (arg1);
2439
2440 case BINOP_LOGICAL_AND:
2441 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2442 if (noside == EVAL_SKIP)
2443 {
2444 evaluate_subexp (nullptr, exp, pos, noside);
2445 return eval_skip_value (exp);
2446 }
2447
2448 oldpos = *pos;
2449 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2450 *pos = oldpos;
2451
2452 if (binop_user_defined_p (op, arg1, arg2))
2453 {
2454 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2455 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2456 }
2457 else
2458 {
2459 tem = value_logical_not (arg1);
2460 arg2
2461 = evaluate_subexp (nullptr, exp, pos, (tem ? EVAL_SKIP : noside));
2462 type = language_bool_type (exp->language_defn, exp->gdbarch);
2463 return value_from_longest (type,
2464 (LONGEST) (!tem && !value_logical_not (arg2)));
2465 }
2466
2467 case BINOP_LOGICAL_OR:
2468 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2469 if (noside == EVAL_SKIP)
2470 {
2471 evaluate_subexp (nullptr, exp, pos, noside);
2472 return eval_skip_value (exp);
2473 }
2474
2475 oldpos = *pos;
2476 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2477 *pos = oldpos;
2478
2479 if (binop_user_defined_p (op, arg1, arg2))
2480 {
2481 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2482 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2483 }
2484 else
2485 {
2486 tem = value_logical_not (arg1);
2487 arg2
2488 = evaluate_subexp (nullptr, exp, pos, (!tem ? EVAL_SKIP : noside));
2489 type = language_bool_type (exp->language_defn, exp->gdbarch);
2490 return value_from_longest (type,
2491 (LONGEST) (!tem || !value_logical_not (arg2)));
2492 }
2493
2494 case BINOP_EQUAL:
2495 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2496 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2497 return eval_op_equal (expect_type, exp, noside, op, arg1, arg2);
2498
2499 case BINOP_NOTEQUAL:
2500 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2501 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2502 return eval_op_notequal (expect_type, exp, noside, op, arg1, arg2);
2503
2504 case BINOP_LESS:
2505 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2506 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2507 return eval_op_less (expect_type, exp, noside, op, arg1, arg2);
2508
2509 case BINOP_GTR:
2510 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2511 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2512 return eval_op_gtr (expect_type, exp, noside, op, arg1, arg2);
2513
2514 case BINOP_GEQ:
2515 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2516 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2517 if (noside == EVAL_SKIP)
2518 return eval_skip_value (exp);
2519 if (binop_user_defined_p (op, arg1, arg2))
2520 {
2521 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2522 }
2523 else
2524 {
2525 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2526 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2527 type = language_bool_type (exp->language_defn, exp->gdbarch);
2528 return value_from_longest (type, (LONGEST) tem);
2529 }
2530
2531 case BINOP_LEQ:
2532 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2533 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2534 if (noside == EVAL_SKIP)
2535 return eval_skip_value (exp);
2536 if (binop_user_defined_p (op, arg1, arg2))
2537 {
2538 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2539 }
2540 else
2541 {
2542 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2543 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2544 type = language_bool_type (exp->language_defn, exp->gdbarch);
2545 return value_from_longest (type, (LONGEST) tem);
2546 }
2547
2548 case BINOP_REPEAT:
2549 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2550 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2551 if (noside == EVAL_SKIP)
2552 return eval_skip_value (exp);
2553 type = check_typedef (value_type (arg2));
2554 if (type->code () != TYPE_CODE_INT
2555 && type->code () != TYPE_CODE_ENUM)
2556 error (_("Non-integral right operand for \"@\" operator."));
2557 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2558 {
2559 return allocate_repeat_value (value_type (arg1),
2560 longest_to_int (value_as_long (arg2)));
2561 }
2562 else
2563 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2564
2565 case BINOP_COMMA:
2566 evaluate_subexp (nullptr, exp, pos, noside);
2567 return evaluate_subexp (nullptr, exp, pos, noside);
2568
2569 case UNOP_PLUS:
2570 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2571 if (noside == EVAL_SKIP)
2572 return eval_skip_value (exp);
2573 if (unop_user_defined_p (op, arg1))
2574 return value_x_unop (arg1, op, noside);
2575 else
2576 {
2577 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2578 return value_pos (arg1);
2579 }
2580
2581 case UNOP_NEG:
2582 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2583 if (noside == EVAL_SKIP)
2584 return eval_skip_value (exp);
2585 if (unop_user_defined_p (op, arg1))
2586 return value_x_unop (arg1, op, noside);
2587 else
2588 {
2589 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2590 return value_neg (arg1);
2591 }
2592
2593 case UNOP_COMPLEMENT:
2594 /* C++: check for and handle destructor names. */
2595
2596 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2597 if (noside == EVAL_SKIP)
2598 return eval_skip_value (exp);
2599 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2600 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2601 else
2602 {
2603 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2604 return value_complement (arg1);
2605 }
2606
2607 case UNOP_LOGICAL_NOT:
2608 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2609 if (noside == EVAL_SKIP)
2610 return eval_skip_value (exp);
2611 if (unop_user_defined_p (op, arg1))
2612 return value_x_unop (arg1, op, noside);
2613 else
2614 {
2615 type = language_bool_type (exp->language_defn, exp->gdbarch);
2616 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2617 }
2618
2619 case UNOP_IND:
2620 if (expect_type && expect_type->code () == TYPE_CODE_PTR)
2621 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2622 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2623 type = check_typedef (value_type (arg1));
2624 if (type->code () == TYPE_CODE_METHODPTR
2625 || type->code () == TYPE_CODE_MEMBERPTR)
2626 error (_("Attempt to dereference pointer "
2627 "to member without an object"));
2628 if (noside == EVAL_SKIP)
2629 return eval_skip_value (exp);
2630 if (unop_user_defined_p (op, arg1))
2631 return value_x_unop (arg1, op, noside);
2632 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2633 {
2634 type = check_typedef (value_type (arg1));
2635
2636 /* If the type pointed to is dynamic then in order to resolve the
2637 dynamic properties we must actually dereference the pointer.
2638 There is a risk that this dereference will have side-effects
2639 in the inferior, but being able to print accurate type
2640 information seems worth the risk. */
2641 if ((type->code () != TYPE_CODE_PTR
2642 && !TYPE_IS_REFERENCE (type))
2643 || !is_dynamic_type (TYPE_TARGET_TYPE (type)))
2644 {
2645 if (type->code () == TYPE_CODE_PTR
2646 || TYPE_IS_REFERENCE (type)
2647 /* In C you can dereference an array to get the 1st elt. */
2648 || type->code () == TYPE_CODE_ARRAY)
2649 return value_zero (TYPE_TARGET_TYPE (type),
2650 lval_memory);
2651 else if (type->code () == TYPE_CODE_INT)
2652 /* GDB allows dereferencing an int. */
2653 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2654 lval_memory);
2655 else
2656 error (_("Attempt to take contents of a non-pointer value."));
2657 }
2658 }
2659
2660 /* Allow * on an integer so we can cast it to whatever we want.
2661 This returns an int, which seems like the most C-like thing to
2662 do. "long long" variables are rare enough that
2663 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2664 if (type->code () == TYPE_CODE_INT)
2665 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2666 (CORE_ADDR) value_as_address (arg1));
2667 return value_ind (arg1);
2668
2669 case UNOP_ADDR:
2670 /* C++: check for and handle pointer to members. */
2671
2672 if (noside == EVAL_SKIP)
2673 {
2674 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2675 return eval_skip_value (exp);
2676 }
2677 else
2678 return evaluate_subexp_for_address (exp, pos, noside);
2679
2680 case UNOP_SIZEOF:
2681 if (noside == EVAL_SKIP)
2682 {
2683 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2684 return eval_skip_value (exp);
2685 }
2686 return evaluate_subexp_for_sizeof (exp, pos, noside);
2687
2688 case UNOP_ALIGNOF:
2689 {
2690 type = value_type (
2691 evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS));
2692 /* FIXME: This should be size_t. */
2693 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2694 ULONGEST align = type_align (type);
2695 if (align == 0)
2696 error (_("could not determine alignment of type"));
2697 return value_from_longest (size_type, align);
2698 }
2699
2700 case UNOP_CAST:
2701 (*pos) += 2;
2702 type = exp->elts[pc + 1].type;
2703 return evaluate_subexp_for_cast (exp, pos, noside, type);
2704
2705 case UNOP_CAST_TYPE:
2706 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2707 type = value_type (arg1);
2708 return evaluate_subexp_for_cast (exp, pos, noside, type);
2709
2710 case UNOP_DYNAMIC_CAST:
2711 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2712 type = value_type (arg1);
2713 arg1 = evaluate_subexp (type, exp, pos, noside);
2714 if (noside == EVAL_SKIP)
2715 return eval_skip_value (exp);
2716 return value_dynamic_cast (type, arg1);
2717
2718 case UNOP_REINTERPRET_CAST:
2719 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2720 type = value_type (arg1);
2721 arg1 = evaluate_subexp (type, exp, pos, noside);
2722 if (noside == EVAL_SKIP)
2723 return eval_skip_value (exp);
2724 return value_reinterpret_cast (type, arg1);
2725
2726 case UNOP_MEMVAL:
2727 (*pos) += 2;
2728 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2729 if (noside == EVAL_SKIP)
2730 return eval_skip_value (exp);
2731 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2732 return value_zero (exp->elts[pc + 1].type, lval_memory);
2733 else
2734 return value_at_lazy (exp->elts[pc + 1].type,
2735 value_as_address (arg1));
2736
2737 case UNOP_MEMVAL_TYPE:
2738 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2739 type = value_type (arg1);
2740 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2741 if (noside == EVAL_SKIP)
2742 return eval_skip_value (exp);
2743 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2744 return value_zero (type, lval_memory);
2745 else
2746 return value_at_lazy (type, value_as_address (arg1));
2747
2748 case UNOP_PREINCREMENT:
2749 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2750 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2751 return arg1;
2752 else if (unop_user_defined_p (op, arg1))
2753 {
2754 return value_x_unop (arg1, op, noside);
2755 }
2756 else
2757 {
2758 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2759 arg2 = value_ptradd (arg1, 1);
2760 else
2761 {
2762 struct value *tmp = arg1;
2763
2764 arg2 = value_one (value_type (arg1));
2765 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2766 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2767 }
2768
2769 return value_assign (arg1, arg2);
2770 }
2771
2772 case UNOP_PREDECREMENT:
2773 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2774 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2775 return arg1;
2776 else if (unop_user_defined_p (op, arg1))
2777 {
2778 return value_x_unop (arg1, op, noside);
2779 }
2780 else
2781 {
2782 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2783 arg2 = value_ptradd (arg1, -1);
2784 else
2785 {
2786 struct value *tmp = arg1;
2787
2788 arg2 = value_one (value_type (arg1));
2789 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2790 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2791 }
2792
2793 return value_assign (arg1, arg2);
2794 }
2795
2796 case UNOP_POSTINCREMENT:
2797 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2798 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2799 return arg1;
2800 else if (unop_user_defined_p (op, arg1))
2801 {
2802 return value_x_unop (arg1, op, noside);
2803 }
2804 else
2805 {
2806 arg3 = value_non_lval (arg1);
2807
2808 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2809 arg2 = value_ptradd (arg1, 1);
2810 else
2811 {
2812 struct value *tmp = arg1;
2813
2814 arg2 = value_one (value_type (arg1));
2815 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2816 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2817 }
2818
2819 value_assign (arg1, arg2);
2820 return arg3;
2821 }
2822
2823 case UNOP_POSTDECREMENT:
2824 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2825 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2826 return arg1;
2827 else if (unop_user_defined_p (op, arg1))
2828 {
2829 return value_x_unop (arg1, op, noside);
2830 }
2831 else
2832 {
2833 arg3 = value_non_lval (arg1);
2834
2835 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2836 arg2 = value_ptradd (arg1, -1);
2837 else
2838 {
2839 struct value *tmp = arg1;
2840
2841 arg2 = value_one (value_type (arg1));
2842 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2843 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2844 }
2845
2846 value_assign (arg1, arg2);
2847 return arg3;
2848 }
2849
2850 case OP_THIS:
2851 (*pos) += 1;
2852 return value_of_this (exp->language_defn);
2853
2854 case OP_TYPE:
2855 /* The value is not supposed to be used. This is here to make it
2856 easier to accommodate expressions that contain types. */
2857 (*pos) += 2;
2858 if (noside == EVAL_SKIP)
2859 return eval_skip_value (exp);
2860 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2861 return allocate_value (exp->elts[pc + 1].type);
2862 else
2863 error (_("Attempt to use a type name as an expression"));
2864
2865 case OP_TYPEOF:
2866 case OP_DECLTYPE:
2867 if (noside == EVAL_SKIP)
2868 {
2869 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2870 return eval_skip_value (exp);
2871 }
2872 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2873 {
2874 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2875 struct value *result;
2876
2877 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2878
2879 /* 'decltype' has special semantics for lvalues. */
2880 if (op == OP_DECLTYPE
2881 && (sub_op == BINOP_SUBSCRIPT
2882 || sub_op == STRUCTOP_MEMBER
2883 || sub_op == STRUCTOP_MPTR
2884 || sub_op == UNOP_IND
2885 || sub_op == STRUCTOP_STRUCT
2886 || sub_op == STRUCTOP_PTR
2887 || sub_op == OP_SCOPE))
2888 {
2889 type = value_type (result);
2890
2891 if (!TYPE_IS_REFERENCE (type))
2892 {
2893 type = lookup_lvalue_reference_type (type);
2894 result = allocate_value (type);
2895 }
2896 }
2897
2898 return result;
2899 }
2900 else
2901 error (_("Attempt to use a type as an expression"));
2902
2903 case OP_TYPEID:
2904 {
2905 struct value *result;
2906 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2907
2908 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2909 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2910 else
2911 result = evaluate_subexp (nullptr, exp, pos, noside);
2912
2913 if (noside != EVAL_NORMAL)
2914 return allocate_value (cplus_typeid_type (exp->gdbarch));
2915
2916 return cplus_typeid (result);
2917 }
2918
2919 default:
2920 /* Removing this case and compiling with gcc -Wall reveals that
2921 a lot of cases are hitting this case. Some of these should
2922 probably be removed from expression.h; others are legitimate
2923 expressions which are (apparently) not fully implemented.
2924
2925 If there are any cases landing here which mean a user error,
2926 then they should be separate cases, with more descriptive
2927 error messages. */
2928
2929 error (_("GDB does not (yet) know how to "
2930 "evaluate that kind of expression"));
2931 }
2932
2933 gdb_assert_not_reached ("missed return?");
2934 }
2935 \f
2936 /* Evaluate a subexpression of EXP, at index *POS,
2937 and return the address of that subexpression.
2938 Advance *POS over the subexpression.
2939 If the subexpression isn't an lvalue, get an error.
2940 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2941 then only the type of the result need be correct. */
2942
2943 static struct value *
2944 evaluate_subexp_for_address (struct expression *exp, int *pos,
2945 enum noside noside)
2946 {
2947 enum exp_opcode op;
2948 int pc;
2949 struct symbol *var;
2950 struct value *x;
2951 int tem;
2952
2953 pc = (*pos);
2954 op = exp->elts[pc].opcode;
2955
2956 switch (op)
2957 {
2958 case UNOP_IND:
2959 (*pos)++;
2960 x = evaluate_subexp (nullptr, exp, pos, noside);
2961
2962 /* We can't optimize out "&*" if there's a user-defined operator*. */
2963 if (unop_user_defined_p (op, x))
2964 {
2965 x = value_x_unop (x, op, noside);
2966 goto default_case_after_eval;
2967 }
2968
2969 return coerce_array (x);
2970
2971 case UNOP_MEMVAL:
2972 (*pos) += 3;
2973 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2974 evaluate_subexp (nullptr, exp, pos, noside));
2975
2976 case UNOP_MEMVAL_TYPE:
2977 {
2978 struct type *type;
2979
2980 (*pos) += 1;
2981 x = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2982 type = value_type (x);
2983 return value_cast (lookup_pointer_type (type),
2984 evaluate_subexp (nullptr, exp, pos, noside));
2985 }
2986
2987 case OP_VAR_VALUE:
2988 var = exp->elts[pc + 2].symbol;
2989
2990 /* C++: The "address" of a reference should yield the address
2991 * of the object pointed to. Let value_addr() deal with it. */
2992 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
2993 goto default_case;
2994
2995 (*pos) += 4;
2996 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2997 {
2998 struct type *type =
2999 lookup_pointer_type (SYMBOL_TYPE (var));
3000 enum address_class sym_class = SYMBOL_CLASS (var);
3001
3002 if (sym_class == LOC_CONST
3003 || sym_class == LOC_CONST_BYTES
3004 || sym_class == LOC_REGISTER)
3005 error (_("Attempt to take address of register or constant."));
3006
3007 return
3008 value_zero (type, not_lval);
3009 }
3010 else
3011 return address_of_variable (var, exp->elts[pc + 1].block);
3012
3013 case OP_VAR_MSYM_VALUE:
3014 {
3015 (*pos) += 4;
3016
3017 value *val = evaluate_var_msym_value (noside,
3018 exp->elts[pc + 1].objfile,
3019 exp->elts[pc + 2].msymbol);
3020 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3021 {
3022 struct type *type = lookup_pointer_type (value_type (val));
3023 return value_zero (type, not_lval);
3024 }
3025 else
3026 return value_addr (val);
3027 }
3028
3029 case OP_SCOPE:
3030 tem = longest_to_int (exp->elts[pc + 2].longconst);
3031 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3032 x = value_aggregate_elt (exp->elts[pc + 1].type,
3033 &exp->elts[pc + 3].string,
3034 NULL, 1, noside);
3035 if (x == NULL)
3036 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3037 return x;
3038
3039 default:
3040 default_case:
3041 x = evaluate_subexp (nullptr, exp, pos, noside);
3042 default_case_after_eval:
3043 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3044 {
3045 struct type *type = check_typedef (value_type (x));
3046
3047 if (TYPE_IS_REFERENCE (type))
3048 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3049 not_lval);
3050 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3051 return value_zero (lookup_pointer_type (value_type (x)),
3052 not_lval);
3053 else
3054 error (_("Attempt to take address of "
3055 "value not located in memory."));
3056 }
3057 return value_addr (x);
3058 }
3059 }
3060
3061 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3062 When used in contexts where arrays will be coerced anyway, this is
3063 equivalent to `evaluate_subexp' but much faster because it avoids
3064 actually fetching array contents (perhaps obsolete now that we have
3065 value_lazy()).
3066
3067 Note that we currently only do the coercion for C expressions, where
3068 arrays are zero based and the coercion is correct. For other languages,
3069 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3070 to decide if coercion is appropriate. */
3071
3072 struct value *
3073 evaluate_subexp_with_coercion (struct expression *exp,
3074 int *pos, enum noside noside)
3075 {
3076 enum exp_opcode op;
3077 int pc;
3078 struct value *val;
3079 struct symbol *var;
3080 struct type *type;
3081
3082 pc = (*pos);
3083 op = exp->elts[pc].opcode;
3084
3085 switch (op)
3086 {
3087 case OP_VAR_VALUE:
3088 var = exp->elts[pc + 2].symbol;
3089 type = check_typedef (SYMBOL_TYPE (var));
3090 if (type->code () == TYPE_CODE_ARRAY
3091 && !type->is_vector ()
3092 && CAST_IS_CONVERSION (exp->language_defn))
3093 {
3094 (*pos) += 4;
3095 val = address_of_variable (var, exp->elts[pc + 1].block);
3096 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3097 val);
3098 }
3099 /* FALLTHROUGH */
3100
3101 default:
3102 return evaluate_subexp (nullptr, exp, pos, noside);
3103 }
3104 }
3105
3106 /* Evaluate a subexpression of EXP, at index *POS,
3107 and return a value for the size of that subexpression.
3108 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3109 we allow side-effects on the operand if its type is a variable
3110 length array. */
3111
3112 static struct value *
3113 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3114 enum noside noside)
3115 {
3116 /* FIXME: This should be size_t. */
3117 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3118 enum exp_opcode op;
3119 int pc;
3120 struct type *type;
3121 struct value *val;
3122
3123 pc = (*pos);
3124 op = exp->elts[pc].opcode;
3125
3126 switch (op)
3127 {
3128 /* This case is handled specially
3129 so that we avoid creating a value for the result type.
3130 If the result type is very big, it's desirable not to
3131 create a value unnecessarily. */
3132 case UNOP_IND:
3133 (*pos)++;
3134 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3135 type = check_typedef (value_type (val));
3136 if (type->code () != TYPE_CODE_PTR
3137 && !TYPE_IS_REFERENCE (type)
3138 && type->code () != TYPE_CODE_ARRAY)
3139 error (_("Attempt to take contents of a non-pointer value."));
3140 type = TYPE_TARGET_TYPE (type);
3141 if (is_dynamic_type (type))
3142 type = value_type (value_ind (val));
3143 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3144
3145 case UNOP_MEMVAL:
3146 (*pos) += 3;
3147 type = exp->elts[pc + 1].type;
3148 break;
3149
3150 case UNOP_MEMVAL_TYPE:
3151 (*pos) += 1;
3152 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3153 type = value_type (val);
3154 break;
3155
3156 case OP_VAR_VALUE:
3157 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3158 if (is_dynamic_type (type))
3159 {
3160 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3161 type = value_type (val);
3162 if (type->code () == TYPE_CODE_ARRAY)
3163 {
3164 if (type_not_allocated (type) || type_not_associated (type))
3165 return value_zero (size_type, not_lval);
3166 else if (is_dynamic_type (type->index_type ())
3167 && type->bounds ()->high.kind () == PROP_UNDEFINED)
3168 return allocate_optimized_out_value (size_type);
3169 }
3170 }
3171 else
3172 (*pos) += 4;
3173 break;
3174
3175 case OP_VAR_MSYM_VALUE:
3176 {
3177 (*pos) += 4;
3178
3179 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3180 value *mval = evaluate_var_msym_value (noside,
3181 exp->elts[pc + 1].objfile,
3182 msymbol);
3183
3184 type = value_type (mval);
3185 if (type->code () == TYPE_CODE_ERROR)
3186 error_unknown_type (msymbol->print_name ());
3187
3188 return value_from_longest (size_type, TYPE_LENGTH (type));
3189 }
3190 break;
3191
3192 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3193 type of the subscript is a variable length array type. In this case we
3194 must re-evaluate the right hand side of the subscription to allow
3195 side-effects. */
3196 case BINOP_SUBSCRIPT:
3197 if (noside == EVAL_NORMAL)
3198 {
3199 int npc = (*pos) + 1;
3200
3201 val = evaluate_subexp (nullptr, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
3202 type = check_typedef (value_type (val));
3203 if (type->code () == TYPE_CODE_ARRAY)
3204 {
3205 type = check_typedef (TYPE_TARGET_TYPE (type));
3206 if (type->code () == TYPE_CODE_ARRAY)
3207 {
3208 type = type->index_type ();
3209 /* Only re-evaluate the right hand side if the resulting type
3210 is a variable length type. */
3211 if (type->bounds ()->flag_bound_evaluated)
3212 {
3213 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3214 return value_from_longest
3215 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3216 }
3217 }
3218 }
3219 }
3220
3221 /* Fall through. */
3222
3223 default:
3224 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3225 type = value_type (val);
3226 break;
3227 }
3228
3229 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3230 "When applied to a reference or a reference type, the result is
3231 the size of the referenced type." */
3232 type = check_typedef (type);
3233 if (exp->language_defn->la_language == language_cplus
3234 && (TYPE_IS_REFERENCE (type)))
3235 type = check_typedef (TYPE_TARGET_TYPE (type));
3236 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3237 }
3238
3239 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3240 for that subexpression cast to TO_TYPE. Advance *POS over the
3241 subexpression. */
3242
3243 static value *
3244 evaluate_subexp_for_cast (expression *exp, int *pos,
3245 enum noside noside,
3246 struct type *to_type)
3247 {
3248 int pc = *pos;
3249
3250 /* Don't let symbols be evaluated with evaluate_subexp because that
3251 throws an "unknown type" error for no-debug data symbols.
3252 Instead, we want the cast to reinterpret the symbol. */
3253 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3254 || exp->elts[pc].opcode == OP_VAR_VALUE)
3255 {
3256 (*pos) += 4;
3257
3258 value *val;
3259 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3260 {
3261 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3262 return value_zero (to_type, not_lval);
3263
3264 val = evaluate_var_msym_value (noside,
3265 exp->elts[pc + 1].objfile,
3266 exp->elts[pc + 2].msymbol);
3267 }
3268 else
3269 val = evaluate_var_value (noside,
3270 exp->elts[pc + 1].block,
3271 exp->elts[pc + 2].symbol);
3272
3273 if (noside == EVAL_SKIP)
3274 return eval_skip_value (exp);
3275
3276 val = value_cast (to_type, val);
3277
3278 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3279 if (VALUE_LVAL (val) == lval_memory)
3280 {
3281 if (value_lazy (val))
3282 value_fetch_lazy (val);
3283 VALUE_LVAL (val) = not_lval;
3284 }
3285 return val;
3286 }
3287
3288 value *val = evaluate_subexp (to_type, exp, pos, noside);
3289 if (noside == EVAL_SKIP)
3290 return eval_skip_value (exp);
3291 return value_cast (to_type, val);
3292 }
3293
3294 /* Parse a type expression in the string [P..P+LENGTH). */
3295
3296 struct type *
3297 parse_and_eval_type (const char *p, int length)
3298 {
3299 char *tmp = (char *) alloca (length + 4);
3300
3301 tmp[0] = '(';
3302 memcpy (tmp + 1, p, length);
3303 tmp[length + 1] = ')';
3304 tmp[length + 2] = '0';
3305 tmp[length + 3] = '\0';
3306 expression_up expr = parse_expression (tmp);
3307 if (expr->first_opcode () != UNOP_CAST)
3308 error (_("Internal error in eval_type."));
3309 return expr->elts[1].type;
3310 }
This page took 0.107179 seconds and 5 git commands to generate.