Split out eval_op_lognot
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include "typeprint.h"
42 #include <ctype.h>
43
44 /* Prototypes for local functions. */
45
46 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
47 enum noside);
48
49 static struct value *evaluate_subexp_for_address (struct expression *,
50 int *, enum noside);
51
52 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
53 enum noside noside,
54 struct type *type);
55
56 static struct value *evaluate_struct_tuple (struct value *,
57 struct expression *, int *,
58 enum noside, int);
59
60 struct value *
61 evaluate_subexp (struct type *expect_type, struct expression *exp,
62 int *pos, enum noside noside)
63 {
64 return ((*exp->language_defn->expression_ops ()->evaluate_exp)
65 (expect_type, exp, pos, noside));
66 }
67 \f
68 /* Parse the string EXP as a C expression, evaluate it,
69 and return the result as a number. */
70
71 CORE_ADDR
72 parse_and_eval_address (const char *exp)
73 {
74 expression_up expr = parse_expression (exp);
75
76 return value_as_address (evaluate_expression (expr.get ()));
77 }
78
79 /* Like parse_and_eval_address, but treats the value of the expression
80 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
81 LONGEST
82 parse_and_eval_long (const char *exp)
83 {
84 expression_up expr = parse_expression (exp);
85
86 return value_as_long (evaluate_expression (expr.get ()));
87 }
88
89 struct value *
90 parse_and_eval (const char *exp)
91 {
92 expression_up expr = parse_expression (exp);
93
94 return evaluate_expression (expr.get ());
95 }
96
97 /* Parse up to a comma (or to a closeparen)
98 in the string EXPP as an expression, evaluate it, and return the value.
99 EXPP is advanced to point to the comma. */
100
101 struct value *
102 parse_to_comma_and_eval (const char **expp)
103 {
104 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
105
106 return evaluate_expression (expr.get ());
107 }
108 \f
109
110 /* See expression.h. */
111
112 struct value *
113 expression::evaluate (struct type *expect_type, enum noside noside)
114 {
115 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
116 if (target_has_execution ()
117 && language_defn->la_language == language_cplus
118 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
119 stack_temporaries.emplace (inferior_thread ());
120
121 int pos = 0;
122 struct value *retval = evaluate_subexp (expect_type, this, &pos, noside);
123
124 if (stack_temporaries.has_value ()
125 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
126 retval = value_non_lval (retval);
127
128 return retval;
129 }
130
131 /* See value.h. */
132
133 struct value *
134 evaluate_expression (struct expression *exp, struct type *expect_type)
135 {
136 return exp->evaluate (expect_type, EVAL_NORMAL);
137 }
138
139 /* Evaluate an expression, avoiding all memory references
140 and getting a value whose type alone is correct. */
141
142 struct value *
143 evaluate_type (struct expression *exp)
144 {
145 return exp->evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS);
146 }
147
148 /* Evaluate a subexpression, avoiding all memory references and
149 getting a value whose type alone is correct. */
150
151 struct value *
152 evaluate_subexpression_type (struct expression *exp, int subexp)
153 {
154 return evaluate_subexp (nullptr, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
155 }
156
157 /* Find the current value of a watchpoint on EXP. Return the value in
158 *VALP and *RESULTP and the chain of intermediate and final values
159 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
160 not need them.
161
162 If PRESERVE_ERRORS is true, then exceptions are passed through.
163 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
164 occurs while evaluating the expression, *RESULTP will be set to
165 NULL. *RESULTP may be a lazy value, if the result could not be
166 read from memory. It is used to determine whether a value is
167 user-specified (we should watch the whole value) or intermediate
168 (we should watch only the bit used to locate the final value).
169
170 If the final value, or any intermediate value, could not be read
171 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
172 set to any referenced values. *VALP will never be a lazy value.
173 This is the value which we store in struct breakpoint.
174
175 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
176 released from the value chain. If VAL_CHAIN is NULL, all generated
177 values will be left on the value chain. */
178
179 void
180 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
181 struct value **resultp,
182 std::vector<value_ref_ptr> *val_chain,
183 bool preserve_errors)
184 {
185 struct value *mark, *new_mark, *result;
186
187 *valp = NULL;
188 if (resultp)
189 *resultp = NULL;
190 if (val_chain)
191 val_chain->clear ();
192
193 /* Evaluate the expression. */
194 mark = value_mark ();
195 result = NULL;
196
197 try
198 {
199 result = evaluate_subexp (nullptr, exp, pc, EVAL_NORMAL);
200 }
201 catch (const gdb_exception &ex)
202 {
203 /* Ignore memory errors if we want watchpoints pointing at
204 inaccessible memory to still be created; otherwise, throw the
205 error to some higher catcher. */
206 switch (ex.error)
207 {
208 case MEMORY_ERROR:
209 if (!preserve_errors)
210 break;
211 /* Fall through. */
212 default:
213 throw;
214 break;
215 }
216 }
217
218 new_mark = value_mark ();
219 if (mark == new_mark)
220 return;
221 if (resultp)
222 *resultp = result;
223
224 /* Make sure it's not lazy, so that after the target stops again we
225 have a non-lazy previous value to compare with. */
226 if (result != NULL)
227 {
228 if (!value_lazy (result))
229 *valp = result;
230 else
231 {
232
233 try
234 {
235 value_fetch_lazy (result);
236 *valp = result;
237 }
238 catch (const gdb_exception_error &except)
239 {
240 }
241 }
242 }
243
244 if (val_chain)
245 {
246 /* Return the chain of intermediate values. We use this to
247 decide which addresses to watch. */
248 *val_chain = value_release_to_mark (mark);
249 }
250 }
251
252 /* Extract a field operation from an expression. If the subexpression
253 of EXP starting at *SUBEXP is not a structure dereference
254 operation, return NULL. Otherwise, return the name of the
255 dereferenced field, and advance *SUBEXP to point to the
256 subexpression of the left-hand-side of the dereference. This is
257 used when completing field names. */
258
259 const char *
260 extract_field_op (struct expression *exp, int *subexp)
261 {
262 int tem;
263 char *result;
264
265 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
266 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
267 return NULL;
268 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
269 result = &exp->elts[*subexp + 2].string;
270 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
271 return result;
272 }
273
274 /* This function evaluates brace-initializers (in C/C++) for
275 structure types. */
276
277 static struct value *
278 evaluate_struct_tuple (struct value *struct_val,
279 struct expression *exp,
280 int *pos, enum noside noside, int nargs)
281 {
282 struct type *struct_type = check_typedef (value_type (struct_val));
283 struct type *field_type;
284 int fieldno = -1;
285
286 while (--nargs >= 0)
287 {
288 struct value *val = NULL;
289 int bitpos, bitsize;
290 bfd_byte *addr;
291
292 fieldno++;
293 /* Skip static fields. */
294 while (fieldno < struct_type->num_fields ()
295 && field_is_static (&struct_type->field (fieldno)))
296 fieldno++;
297 if (fieldno >= struct_type->num_fields ())
298 error (_("too many initializers"));
299 field_type = struct_type->field (fieldno).type ();
300 if (field_type->code () == TYPE_CODE_UNION
301 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
302 error (_("don't know which variant you want to set"));
303
304 /* Here, struct_type is the type of the inner struct,
305 while substruct_type is the type of the inner struct.
306 These are the same for normal structures, but a variant struct
307 contains anonymous union fields that contain substruct fields.
308 The value fieldno is the index of the top-level (normal or
309 anonymous union) field in struct_field, while the value
310 subfieldno is the index of the actual real (named inner) field
311 in substruct_type. */
312
313 field_type = struct_type->field (fieldno).type ();
314 if (val == 0)
315 val = evaluate_subexp (field_type, exp, pos, noside);
316
317 /* Now actually set the field in struct_val. */
318
319 /* Assign val to field fieldno. */
320 if (value_type (val) != field_type)
321 val = value_cast (field_type, val);
322
323 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
324 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
325 addr = value_contents_writeable (struct_val) + bitpos / 8;
326 if (bitsize)
327 modify_field (struct_type, addr,
328 value_as_long (val), bitpos % 8, bitsize);
329 else
330 memcpy (addr, value_contents (val),
331 TYPE_LENGTH (value_type (val)));
332
333 }
334 return struct_val;
335 }
336
337 /* Promote value ARG1 as appropriate before performing a unary operation
338 on this argument.
339 If the result is not appropriate for any particular language then it
340 needs to patch this function. */
341
342 void
343 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
344 struct value **arg1)
345 {
346 struct type *type1;
347
348 *arg1 = coerce_ref (*arg1);
349 type1 = check_typedef (value_type (*arg1));
350
351 if (is_integral_type (type1))
352 {
353 switch (language->la_language)
354 {
355 default:
356 /* Perform integral promotion for ANSI C/C++.
357 If not appropriate for any particular language
358 it needs to modify this function. */
359 {
360 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
361
362 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
363 *arg1 = value_cast (builtin_int, *arg1);
364 }
365 break;
366 }
367 }
368 }
369
370 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
371 operation on those two operands.
372 If the result is not appropriate for any particular language then it
373 needs to patch this function. */
374
375 void
376 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
377 struct value **arg1, struct value **arg2)
378 {
379 struct type *promoted_type = NULL;
380 struct type *type1;
381 struct type *type2;
382
383 *arg1 = coerce_ref (*arg1);
384 *arg2 = coerce_ref (*arg2);
385
386 type1 = check_typedef (value_type (*arg1));
387 type2 = check_typedef (value_type (*arg2));
388
389 if ((type1->code () != TYPE_CODE_FLT
390 && type1->code () != TYPE_CODE_DECFLOAT
391 && !is_integral_type (type1))
392 || (type2->code () != TYPE_CODE_FLT
393 && type2->code () != TYPE_CODE_DECFLOAT
394 && !is_integral_type (type2)))
395 return;
396
397 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
398 return;
399
400 if (type1->code () == TYPE_CODE_DECFLOAT
401 || type2->code () == TYPE_CODE_DECFLOAT)
402 {
403 /* No promotion required. */
404 }
405 else if (type1->code () == TYPE_CODE_FLT
406 || type2->code () == TYPE_CODE_FLT)
407 {
408 switch (language->la_language)
409 {
410 case language_c:
411 case language_cplus:
412 case language_asm:
413 case language_objc:
414 case language_opencl:
415 /* No promotion required. */
416 break;
417
418 default:
419 /* For other languages the result type is unchanged from gdb
420 version 6.7 for backward compatibility.
421 If either arg was long double, make sure that value is also long
422 double. Otherwise use double. */
423 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
424 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
425 promoted_type = builtin_type (gdbarch)->builtin_long_double;
426 else
427 promoted_type = builtin_type (gdbarch)->builtin_double;
428 break;
429 }
430 }
431 else if (type1->code () == TYPE_CODE_BOOL
432 && type2->code () == TYPE_CODE_BOOL)
433 {
434 /* No promotion required. */
435 }
436 else
437 /* Integral operations here. */
438 /* FIXME: Also mixed integral/booleans, with result an integer. */
439 {
440 const struct builtin_type *builtin = builtin_type (gdbarch);
441 unsigned int promoted_len1 = TYPE_LENGTH (type1);
442 unsigned int promoted_len2 = TYPE_LENGTH (type2);
443 int is_unsigned1 = type1->is_unsigned ();
444 int is_unsigned2 = type2->is_unsigned ();
445 unsigned int result_len;
446 int unsigned_operation;
447
448 /* Determine type length and signedness after promotion for
449 both operands. */
450 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
451 {
452 is_unsigned1 = 0;
453 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
454 }
455 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
456 {
457 is_unsigned2 = 0;
458 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
459 }
460
461 if (promoted_len1 > promoted_len2)
462 {
463 unsigned_operation = is_unsigned1;
464 result_len = promoted_len1;
465 }
466 else if (promoted_len2 > promoted_len1)
467 {
468 unsigned_operation = is_unsigned2;
469 result_len = promoted_len2;
470 }
471 else
472 {
473 unsigned_operation = is_unsigned1 || is_unsigned2;
474 result_len = promoted_len1;
475 }
476
477 switch (language->la_language)
478 {
479 case language_c:
480 case language_cplus:
481 case language_asm:
482 case language_objc:
483 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
484 {
485 promoted_type = (unsigned_operation
486 ? builtin->builtin_unsigned_int
487 : builtin->builtin_int);
488 }
489 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
490 {
491 promoted_type = (unsigned_operation
492 ? builtin->builtin_unsigned_long
493 : builtin->builtin_long);
494 }
495 else
496 {
497 promoted_type = (unsigned_operation
498 ? builtin->builtin_unsigned_long_long
499 : builtin->builtin_long_long);
500 }
501 break;
502 case language_opencl:
503 if (result_len <= TYPE_LENGTH (lookup_signed_typename
504 (language, "int")))
505 {
506 promoted_type =
507 (unsigned_operation
508 ? lookup_unsigned_typename (language, "int")
509 : lookup_signed_typename (language, "int"));
510 }
511 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
512 (language, "long")))
513 {
514 promoted_type =
515 (unsigned_operation
516 ? lookup_unsigned_typename (language, "long")
517 : lookup_signed_typename (language,"long"));
518 }
519 break;
520 default:
521 /* For other languages the result type is unchanged from gdb
522 version 6.7 for backward compatibility.
523 If either arg was long long, make sure that value is also long
524 long. Otherwise use long. */
525 if (unsigned_operation)
526 {
527 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
528 promoted_type = builtin->builtin_unsigned_long_long;
529 else
530 promoted_type = builtin->builtin_unsigned_long;
531 }
532 else
533 {
534 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
535 promoted_type = builtin->builtin_long_long;
536 else
537 promoted_type = builtin->builtin_long;
538 }
539 break;
540 }
541 }
542
543 if (promoted_type)
544 {
545 /* Promote both operands to common type. */
546 *arg1 = value_cast (promoted_type, *arg1);
547 *arg2 = value_cast (promoted_type, *arg2);
548 }
549 }
550
551 static int
552 ptrmath_type_p (const struct language_defn *lang, struct type *type)
553 {
554 type = check_typedef (type);
555 if (TYPE_IS_REFERENCE (type))
556 type = TYPE_TARGET_TYPE (type);
557
558 switch (type->code ())
559 {
560 case TYPE_CODE_PTR:
561 case TYPE_CODE_FUNC:
562 return 1;
563
564 case TYPE_CODE_ARRAY:
565 return type->is_vector () ? 0 : lang->c_style_arrays_p ();
566
567 default:
568 return 0;
569 }
570 }
571
572 /* Represents a fake method with the given parameter types. This is
573 used by the parser to construct a temporary "expected" type for
574 method overload resolution. FLAGS is used as instance flags of the
575 new type, in order to be able to make the new type represent a
576 const/volatile overload. */
577
578 class fake_method
579 {
580 public:
581 fake_method (type_instance_flags flags,
582 int num_types, struct type **param_types);
583 ~fake_method ();
584
585 /* The constructed type. */
586 struct type *type () { return &m_type; }
587
588 private:
589 struct type m_type {};
590 main_type m_main_type {};
591 };
592
593 fake_method::fake_method (type_instance_flags flags,
594 int num_types, struct type **param_types)
595 {
596 struct type *type = &m_type;
597
598 TYPE_MAIN_TYPE (type) = &m_main_type;
599 TYPE_LENGTH (type) = 1;
600 type->set_code (TYPE_CODE_METHOD);
601 TYPE_CHAIN (type) = type;
602 type->set_instance_flags (flags);
603 if (num_types > 0)
604 {
605 if (param_types[num_types - 1] == NULL)
606 {
607 --num_types;
608 type->set_has_varargs (true);
609 }
610 else if (check_typedef (param_types[num_types - 1])->code ()
611 == TYPE_CODE_VOID)
612 {
613 --num_types;
614 /* Caller should have ensured this. */
615 gdb_assert (num_types == 0);
616 type->set_is_prototyped (true);
617 }
618 }
619
620 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
621 neither an objfile nor a gdbarch. As a result we must manually
622 allocate memory for auxiliary fields, and free the memory ourselves
623 when we are done with it. */
624 type->set_num_fields (num_types);
625 type->set_fields
626 ((struct field *) xzalloc (sizeof (struct field) * num_types));
627
628 while (num_types-- > 0)
629 type->field (num_types).set_type (param_types[num_types]);
630 }
631
632 fake_method::~fake_method ()
633 {
634 xfree (m_type.fields ());
635 }
636
637 /* Helper for evaluating an OP_VAR_VALUE. */
638
639 value *
640 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
641 {
642 /* JYG: We used to just return value_zero of the symbol type if
643 we're asked to avoid side effects. Otherwise we return
644 value_of_variable (...). However I'm not sure if
645 value_of_variable () has any side effect. We need a full value
646 object returned here for whatis_exp () to call evaluate_type ()
647 and then pass the full value to value_rtti_target_type () if we
648 are dealing with a pointer or reference to a base class and print
649 object is on. */
650
651 struct value *ret = NULL;
652
653 try
654 {
655 ret = value_of_variable (var, blk);
656 }
657
658 catch (const gdb_exception_error &except)
659 {
660 if (noside != EVAL_AVOID_SIDE_EFFECTS)
661 throw;
662
663 ret = value_zero (SYMBOL_TYPE (var), not_lval);
664 }
665
666 return ret;
667 }
668
669 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
670
671 value *
672 evaluate_var_msym_value (enum noside noside,
673 struct objfile *objfile, minimal_symbol *msymbol)
674 {
675 CORE_ADDR address;
676 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
677
678 if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
679 return value_zero (the_type, not_lval);
680 else
681 return value_at_lazy (the_type, address);
682 }
683
684 /* Helper for returning a value when handling EVAL_SKIP. */
685
686 value *
687 eval_skip_value (expression *exp)
688 {
689 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
690 }
691
692 /* See expression.h. */
693
694 value *
695 evaluate_subexp_do_call (expression *exp, enum noside noside,
696 value *callee,
697 gdb::array_view<value *> argvec,
698 const char *function_name,
699 type *default_return_type)
700 {
701 if (callee == NULL)
702 error (_("Cannot evaluate function -- may be inlined"));
703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
704 {
705 /* If the return type doesn't look like a function type,
706 call an error. This can happen if somebody tries to turn
707 a variable into a function call. */
708
709 type *ftype = value_type (callee);
710
711 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
712 {
713 /* We don't know anything about what the internal
714 function might return, but we have to return
715 something. */
716 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
717 not_lval);
718 }
719 else if (ftype->code () == TYPE_CODE_XMETHOD)
720 {
721 type *return_type = result_type_of_xmethod (callee, argvec);
722
723 if (return_type == NULL)
724 error (_("Xmethod is missing return type."));
725 return value_zero (return_type, not_lval);
726 }
727 else if (ftype->code () == TYPE_CODE_FUNC
728 || ftype->code () == TYPE_CODE_METHOD)
729 {
730 if (ftype->is_gnu_ifunc ())
731 {
732 CORE_ADDR address = value_address (callee);
733 type *resolved_type = find_gnu_ifunc_target_type (address);
734
735 if (resolved_type != NULL)
736 ftype = resolved_type;
737 }
738
739 type *return_type = TYPE_TARGET_TYPE (ftype);
740
741 if (return_type == NULL)
742 return_type = default_return_type;
743
744 if (return_type == NULL)
745 error_call_unknown_return_type (function_name);
746
747 return allocate_value (return_type);
748 }
749 else
750 error (_("Expression of type other than "
751 "\"Function returning ...\" used as function"));
752 }
753 switch (value_type (callee)->code ())
754 {
755 case TYPE_CODE_INTERNAL_FUNCTION:
756 return call_internal_function (exp->gdbarch, exp->language_defn,
757 callee, argvec.size (), argvec.data ());
758 case TYPE_CODE_XMETHOD:
759 return call_xmethod (callee, argvec);
760 default:
761 return call_function_by_hand (callee, default_return_type, argvec);
762 }
763 }
764
765 /* Helper for evaluating an OP_FUNCALL. */
766
767 static value *
768 evaluate_funcall (type *expect_type, expression *exp, int *pos,
769 enum noside noside)
770 {
771 int tem;
772 int pc2 = 0;
773 value *arg1 = NULL;
774 value *arg2 = NULL;
775 int save_pos1;
776 symbol *function = NULL;
777 char *function_name = NULL;
778 const char *var_func_name = NULL;
779
780 int pc = (*pos);
781 (*pos) += 2;
782
783 exp_opcode op = exp->elts[*pos].opcode;
784 int nargs = longest_to_int (exp->elts[pc].longconst);
785 /* Allocate arg vector, including space for the function to be
786 called in argvec[0], a potential `this', and a terminating
787 NULL. */
788 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
789 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
790 {
791 /* First, evaluate the structure into arg2. */
792 pc2 = (*pos)++;
793
794 if (op == STRUCTOP_MEMBER)
795 {
796 arg2 = evaluate_subexp_for_address (exp, pos, noside);
797 }
798 else
799 {
800 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
801 }
802
803 /* If the function is a virtual function, then the aggregate
804 value (providing the structure) plays its part by providing
805 the vtable. Otherwise, it is just along for the ride: call
806 the function directly. */
807
808 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
809
810 type *a1_type = check_typedef (value_type (arg1));
811 if (noside == EVAL_SKIP)
812 tem = 1; /* Set it to the right arg index so that all
813 arguments can also be skipped. */
814 else if (a1_type->code () == TYPE_CODE_METHODPTR)
815 {
816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
817 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
818 else
819 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
820
821 /* Now, say which argument to start evaluating from. */
822 nargs++;
823 tem = 2;
824 argvec[1] = arg2;
825 }
826 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
827 {
828 struct type *type_ptr
829 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
830 struct type *target_type_ptr
831 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
832
833 /* Now, convert these values to an address. */
834 arg2 = value_cast (type_ptr, arg2);
835
836 long mem_offset = value_as_long (arg1);
837
838 arg1 = value_from_pointer (target_type_ptr,
839 value_as_long (arg2) + mem_offset);
840 arg1 = value_ind (arg1);
841 tem = 1;
842 }
843 else
844 error (_("Non-pointer-to-member value used in pointer-to-member "
845 "construct"));
846 }
847 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
848 {
849 /* Hair for method invocations. */
850 int tem2;
851
852 nargs++;
853 /* First, evaluate the structure into arg2. */
854 pc2 = (*pos)++;
855 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
856 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
857
858 if (op == STRUCTOP_STRUCT)
859 {
860 /* If v is a variable in a register, and the user types
861 v.method (), this will produce an error, because v has no
862 address.
863
864 A possible way around this would be to allocate a copy of
865 the variable on the stack, copy in the contents, call the
866 function, and copy out the contents. I.e. convert this
867 from call by reference to call by copy-return (or
868 whatever it's called). However, this does not work
869 because it is not the same: the method being called could
870 stash a copy of the address, and then future uses through
871 that address (after the method returns) would be expected
872 to use the variable itself, not some copy of it. */
873 arg2 = evaluate_subexp_for_address (exp, pos, noside);
874 }
875 else
876 {
877 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
878
879 /* Check to see if the operator '->' has been overloaded.
880 If the operator has been overloaded replace arg2 with the
881 value returned by the custom operator and continue
882 evaluation. */
883 while (unop_user_defined_p (op, arg2))
884 {
885 struct value *value = NULL;
886 try
887 {
888 value = value_x_unop (arg2, op, noside);
889 }
890
891 catch (const gdb_exception_error &except)
892 {
893 if (except.error == NOT_FOUND_ERROR)
894 break;
895 else
896 throw;
897 }
898
899 arg2 = value;
900 }
901 }
902 /* Now, say which argument to start evaluating from. */
903 tem = 2;
904 }
905 else if (op == OP_SCOPE
906 && overload_resolution
907 && (exp->language_defn->la_language == language_cplus))
908 {
909 /* Unpack it locally so we can properly handle overload
910 resolution. */
911 char *name;
912 int local_tem;
913
914 pc2 = (*pos)++;
915 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
916 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
917 struct type *type = exp->elts[pc2 + 1].type;
918 name = &exp->elts[pc2 + 3].string;
919
920 function = NULL;
921 function_name = NULL;
922 if (type->code () == TYPE_CODE_NAMESPACE)
923 {
924 function = cp_lookup_symbol_namespace (type->name (),
925 name,
926 get_selected_block (0),
927 VAR_DOMAIN).symbol;
928 if (function == NULL)
929 error (_("No symbol \"%s\" in namespace \"%s\"."),
930 name, type->name ());
931
932 tem = 1;
933 /* arg2 is left as NULL on purpose. */
934 }
935 else
936 {
937 gdb_assert (type->code () == TYPE_CODE_STRUCT
938 || type->code () == TYPE_CODE_UNION);
939 function_name = name;
940
941 /* We need a properly typed value for method lookup. For
942 static methods arg2 is otherwise unused. */
943 arg2 = value_zero (type, lval_memory);
944 ++nargs;
945 tem = 2;
946 }
947 }
948 else if (op == OP_ADL_FUNC)
949 {
950 /* Save the function position and move pos so that the arguments
951 can be evaluated. */
952 int func_name_len;
953
954 save_pos1 = *pos;
955 tem = 1;
956
957 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
958 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
959 }
960 else
961 {
962 /* Non-method function call. */
963 save_pos1 = *pos;
964 tem = 1;
965
966 /* If this is a C++ function wait until overload resolution. */
967 if (op == OP_VAR_VALUE
968 && overload_resolution
969 && (exp->language_defn->la_language == language_cplus))
970 {
971 (*pos) += 4; /* Skip the evaluation of the symbol. */
972 argvec[0] = NULL;
973 }
974 else
975 {
976 if (op == OP_VAR_MSYM_VALUE)
977 {
978 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
979 var_func_name = msym->print_name ();
980 }
981 else if (op == OP_VAR_VALUE)
982 {
983 symbol *sym = exp->elts[*pos + 2].symbol;
984 var_func_name = sym->print_name ();
985 }
986
987 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
988 type *type = value_type (argvec[0]);
989 if (type && type->code () == TYPE_CODE_PTR)
990 type = TYPE_TARGET_TYPE (type);
991 if (type && type->code () == TYPE_CODE_FUNC)
992 {
993 for (; tem <= nargs && tem <= type->num_fields (); tem++)
994 {
995 argvec[tem] = evaluate_subexp (type->field (tem - 1).type (),
996 exp, pos, noside);
997 }
998 }
999 }
1000 }
1001
1002 /* Evaluate arguments (if not already done, e.g., namespace::func()
1003 and overload-resolution is off). */
1004 for (; tem <= nargs; tem++)
1005 {
1006 /* Ensure that array expressions are coerced into pointer
1007 objects. */
1008 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1009 }
1010
1011 /* Signal end of arglist. */
1012 argvec[tem] = 0;
1013
1014 if (noside == EVAL_SKIP)
1015 return eval_skip_value (exp);
1016
1017 if (op == OP_ADL_FUNC)
1018 {
1019 struct symbol *symp;
1020 char *func_name;
1021 int name_len;
1022 int string_pc = save_pos1 + 3;
1023
1024 /* Extract the function name. */
1025 name_len = longest_to_int (exp->elts[string_pc].longconst);
1026 func_name = (char *) alloca (name_len + 1);
1027 strcpy (func_name, &exp->elts[string_pc + 1].string);
1028
1029 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1030 func_name,
1031 NON_METHOD, /* not method */
1032 NULL, NULL, /* pass NULL symbol since
1033 symbol is unknown */
1034 NULL, &symp, NULL, 0, noside);
1035
1036 /* Now fix the expression being evaluated. */
1037 exp->elts[save_pos1 + 2].symbol = symp;
1038 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1039 }
1040
1041 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1042 || (op == OP_SCOPE && function_name != NULL))
1043 {
1044 int static_memfuncp;
1045 char *tstr;
1046
1047 /* Method invocation: stuff "this" as first parameter. If the
1048 method turns out to be static we undo this below. */
1049 argvec[1] = arg2;
1050
1051 if (op != OP_SCOPE)
1052 {
1053 /* Name of method from expression. */
1054 tstr = &exp->elts[pc2 + 2].string;
1055 }
1056 else
1057 tstr = function_name;
1058
1059 if (overload_resolution && (exp->language_defn->la_language
1060 == language_cplus))
1061 {
1062 /* Language is C++, do some overload resolution before
1063 evaluation. */
1064 struct value *valp = NULL;
1065
1066 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1067 tstr,
1068 METHOD, /* method */
1069 &arg2, /* the object */
1070 NULL, &valp, NULL,
1071 &static_memfuncp, 0, noside);
1072
1073 if (op == OP_SCOPE && !static_memfuncp)
1074 {
1075 /* For the time being, we don't handle this. */
1076 error (_("Call to overloaded function %s requires "
1077 "`this' pointer"),
1078 function_name);
1079 }
1080 argvec[1] = arg2; /* the ``this'' pointer */
1081 argvec[0] = valp; /* Use the method found after overload
1082 resolution. */
1083 }
1084 else
1085 /* Non-C++ case -- or no overload resolution. */
1086 {
1087 struct value *temp = arg2;
1088
1089 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1090 &static_memfuncp,
1091 op == STRUCTOP_STRUCT
1092 ? "structure" : "structure pointer");
1093 /* value_struct_elt updates temp with the correct value of
1094 the ``this'' pointer if necessary, so modify argvec[1] to
1095 reflect any ``this'' changes. */
1096 arg2
1097 = value_from_longest (lookup_pointer_type(value_type (temp)),
1098 value_address (temp)
1099 + value_embedded_offset (temp));
1100 argvec[1] = arg2; /* the ``this'' pointer */
1101 }
1102
1103 /* Take out `this' if needed. */
1104 if (static_memfuncp)
1105 {
1106 argvec[1] = argvec[0];
1107 nargs--;
1108 argvec++;
1109 }
1110 }
1111 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1112 {
1113 /* Pointer to member. argvec[1] is already set up. */
1114 argvec[0] = arg1;
1115 }
1116 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1117 {
1118 /* Non-member function being called. */
1119 /* fn: This can only be done for C++ functions. A C-style
1120 function in a C++ program, for instance, does not have the
1121 fields that are expected here. */
1122
1123 if (overload_resolution && (exp->language_defn->la_language
1124 == language_cplus))
1125 {
1126 /* Language is C++, do some overload resolution before
1127 evaluation. */
1128 struct symbol *symp;
1129 int no_adl = 0;
1130
1131 /* If a scope has been specified disable ADL. */
1132 if (op == OP_SCOPE)
1133 no_adl = 1;
1134
1135 if (op == OP_VAR_VALUE)
1136 function = exp->elts[save_pos1+2].symbol;
1137
1138 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1139 NULL, /* no need for name */
1140 NON_METHOD, /* not method */
1141 NULL, function, /* the function */
1142 NULL, &symp, NULL, no_adl, noside);
1143
1144 if (op == OP_VAR_VALUE)
1145 {
1146 /* Now fix the expression being evaluated. */
1147 exp->elts[save_pos1+2].symbol = symp;
1148 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1149 noside);
1150 }
1151 else
1152 argvec[0] = value_of_variable (symp, get_selected_block (0));
1153 }
1154 else
1155 {
1156 /* Not C++, or no overload resolution allowed. */
1157 /* Nothing to be done; argvec already correctly set up. */
1158 }
1159 }
1160 else
1161 {
1162 /* It is probably a C-style function. */
1163 /* Nothing to be done; argvec already correctly set up. */
1164 }
1165
1166 return evaluate_subexp_do_call (exp, noside, argvec[0],
1167 gdb::make_array_view (argvec + 1, nargs),
1168 var_func_name, expect_type);
1169 }
1170
1171 /* Return true if type is integral or reference to integral */
1172
1173 static bool
1174 is_integral_or_integral_reference (struct type *type)
1175 {
1176 if (is_integral_type (type))
1177 return true;
1178
1179 type = check_typedef (type);
1180 return (type != nullptr
1181 && TYPE_IS_REFERENCE (type)
1182 && is_integral_type (TYPE_TARGET_TYPE (type)));
1183 }
1184
1185 /* Helper function that implements the body of OP_SCOPE. */
1186
1187 static struct value *
1188 eval_op_scope (struct type *expect_type, struct expression *exp,
1189 enum noside noside,
1190 struct type *type, const char *string)
1191 {
1192 if (noside == EVAL_SKIP)
1193 return eval_skip_value (exp);
1194 struct value *arg1 = value_aggregate_elt (type, string, expect_type,
1195 0, noside);
1196 if (arg1 == NULL)
1197 error (_("There is no field named %s"), string);
1198 return arg1;
1199 }
1200
1201 /* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
1202
1203 static struct value *
1204 eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
1205 enum noside noside, symbol *sym)
1206 {
1207 if (noside == EVAL_SKIP)
1208 return eval_skip_value (exp);
1209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1210 return value_zero (SYMBOL_TYPE (sym), not_lval);
1211
1212 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1213 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1214 error (_("Symbol \"%s\" does not have any specific entry value"),
1215 sym->print_name ());
1216
1217 struct frame_info *frame = get_selected_frame (NULL);
1218 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1219 }
1220
1221 /* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
1222
1223 static struct value *
1224 eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
1225 enum noside noside, bool outermost_p,
1226 minimal_symbol *msymbol, struct objfile *objfile)
1227 {
1228 value *val = evaluate_var_msym_value (noside, objfile, msymbol);
1229
1230 struct type *type = value_type (val);
1231 if (type->code () == TYPE_CODE_ERROR
1232 && (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
1233 error_unknown_type (msymbol->print_name ());
1234 return val;
1235 }
1236
1237 /* Helper function that implements the body of OP_FUNC_STATIC_VAR. */
1238
1239 static struct value *
1240 eval_op_func_static_var (struct type *expect_type, struct expression *exp,
1241 enum noside noside,
1242 value *func, const char *var)
1243 {
1244 if (noside == EVAL_SKIP)
1245 return eval_skip_value (exp);
1246 CORE_ADDR addr = value_address (func);
1247 const block *blk = block_for_pc (addr);
1248 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1249 if (sym.symbol == NULL)
1250 error (_("No symbol \"%s\" in specified context."), var);
1251 return evaluate_var_value (noside, sym.block, sym.symbol);
1252 }
1253
1254 /* Helper function that implements the body of OP_REGISTER. */
1255
1256 static struct value *
1257 eval_op_register (struct type *expect_type, struct expression *exp,
1258 enum noside noside, const char *name)
1259 {
1260 int regno;
1261 struct value *val;
1262
1263 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1264 name, strlen (name));
1265 if (regno == -1)
1266 error (_("Register $%s not available."), name);
1267
1268 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1269 a value with the appropriate register type. Unfortunately,
1270 we don't have easy access to the type of user registers.
1271 So for these registers, we fetch the register value regardless
1272 of the evaluation mode. */
1273 if (noside == EVAL_AVOID_SIDE_EFFECTS
1274 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1275 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1276 else
1277 val = value_of_register (regno, get_selected_frame (NULL));
1278 if (val == NULL)
1279 error (_("Value of register %s not available."), name);
1280 else
1281 return val;
1282 }
1283
1284 /* Helper function that implements the body of OP_STRING. */
1285
1286 static struct value *
1287 eval_op_string (struct type *expect_type, struct expression *exp,
1288 enum noside noside, int len, const char *string)
1289 {
1290 if (noside == EVAL_SKIP)
1291 return eval_skip_value (exp);
1292 struct type *type = language_string_char_type (exp->language_defn,
1293 exp->gdbarch);
1294 return value_string (string, len, type);
1295 }
1296
1297 /* Helper function that implements the body of OP_OBJC_SELECTOR. */
1298
1299 static struct value *
1300 eval_op_objc_selector (struct type *expect_type, struct expression *exp,
1301 enum noside noside,
1302 const char *sel)
1303 {
1304 if (noside == EVAL_SKIP)
1305 return eval_skip_value (exp);
1306
1307 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1308 return value_from_longest (selector_type,
1309 lookup_child_selector (exp->gdbarch, sel));
1310 }
1311
1312 /* Helper function that implements the body of BINOP_CONCAT. */
1313
1314 static struct value *
1315 eval_op_concat (struct type *expect_type, struct expression *exp,
1316 enum noside noside,
1317 enum exp_opcode op, struct value *arg1, struct value *arg2)
1318 {
1319 if (noside == EVAL_SKIP)
1320 return eval_skip_value (exp);
1321 if (binop_user_defined_p (op, arg1, arg2))
1322 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1323 else
1324 return value_concat (arg1, arg2);
1325 }
1326
1327 /* A helper function for TERNOP_SLICE. */
1328
1329 static struct value *
1330 eval_op_ternop (struct type *expect_type, struct expression *exp,
1331 enum noside noside,
1332 struct value *array, struct value *low, struct value *upper)
1333 {
1334 if (noside == EVAL_SKIP)
1335 return eval_skip_value (exp);
1336 int lowbound = value_as_long (low);
1337 int upperbound = value_as_long (upper);
1338 return value_slice (array, lowbound, upperbound - lowbound + 1);
1339 }
1340
1341 /* A helper function for STRUCTOP_STRUCT. */
1342
1343 static struct value *
1344 eval_op_structop_struct (struct type *expect_type, struct expression *exp,
1345 enum noside noside,
1346 struct value *arg1, const char *string)
1347 {
1348 if (noside == EVAL_SKIP)
1349 return eval_skip_value (exp);
1350 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1351 NULL, "structure");
1352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1353 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1354 return arg3;
1355 }
1356
1357 /* A helper function for STRUCTOP_PTR. */
1358
1359 static struct value *
1360 eval_op_structop_ptr (struct type *expect_type, struct expression *exp,
1361 enum noside noside, enum exp_opcode op,
1362 struct value *arg1, const char *string)
1363 {
1364 if (noside == EVAL_SKIP)
1365 return eval_skip_value (exp);
1366
1367 /* Check to see if operator '->' has been overloaded. If so replace
1368 arg1 with the value returned by evaluating operator->(). */
1369 while (unop_user_defined_p (op, arg1))
1370 {
1371 struct value *value = NULL;
1372 try
1373 {
1374 value = value_x_unop (arg1, op, noside);
1375 }
1376
1377 catch (const gdb_exception_error &except)
1378 {
1379 if (except.error == NOT_FOUND_ERROR)
1380 break;
1381 else
1382 throw;
1383 }
1384
1385 arg1 = value;
1386 }
1387
1388 /* JYG: if print object is on we need to replace the base type
1389 with rtti type in order to continue on with successful
1390 lookup of member / method only available in the rtti type. */
1391 {
1392 struct type *arg_type = value_type (arg1);
1393 struct type *real_type;
1394 int full, using_enc;
1395 LONGEST top;
1396 struct value_print_options opts;
1397
1398 get_user_print_options (&opts);
1399 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
1400 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
1401 {
1402 real_type = value_rtti_indirect_type (arg1, &full, &top,
1403 &using_enc);
1404 if (real_type)
1405 arg1 = value_cast (real_type, arg1);
1406 }
1407 }
1408
1409 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1410 NULL, "structure pointer");
1411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1412 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1413 return arg3;
1414 }
1415
1416 /* A helper function for STRUCTOP_MEMBER. */
1417
1418 static struct value *
1419 eval_op_member (struct type *expect_type, struct expression *exp,
1420 enum noside noside,
1421 struct value *arg1, struct value *arg2)
1422 {
1423 long mem_offset;
1424
1425 if (noside == EVAL_SKIP)
1426 return eval_skip_value (exp);
1427
1428 struct value *arg3;
1429 struct type *type = check_typedef (value_type (arg2));
1430 switch (type->code ())
1431 {
1432 case TYPE_CODE_METHODPTR:
1433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1434 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1435 else
1436 {
1437 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1438 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
1439 return value_ind (arg2);
1440 }
1441
1442 case TYPE_CODE_MEMBERPTR:
1443 /* Now, convert these values to an address. */
1444 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1445 arg1, 1);
1446
1447 mem_offset = value_as_long (arg2);
1448
1449 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1450 value_as_long (arg1) + mem_offset);
1451 return value_ind (arg3);
1452
1453 default:
1454 error (_("non-pointer-to-member value used "
1455 "in pointer-to-member construct"));
1456 }
1457 }
1458
1459 /* A helper function for BINOP_ADD. */
1460
1461 static struct value *
1462 eval_op_add (struct type *expect_type, struct expression *exp,
1463 enum noside noside, enum exp_opcode op,
1464 struct value *arg1, struct value *arg2)
1465 {
1466 if (noside == EVAL_SKIP)
1467 return eval_skip_value (exp);
1468 if (binop_user_defined_p (op, arg1, arg2))
1469 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1470 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1471 && is_integral_or_integral_reference (value_type (arg2)))
1472 return value_ptradd (arg1, value_as_long (arg2));
1473 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
1474 && is_integral_or_integral_reference (value_type (arg1)))
1475 return value_ptradd (arg2, value_as_long (arg1));
1476 else
1477 {
1478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1479 return value_binop (arg1, arg2, BINOP_ADD);
1480 }
1481 }
1482
1483 /* A helper function for BINOP_SUB. */
1484
1485 static struct value *
1486 eval_op_sub (struct type *expect_type, struct expression *exp,
1487 enum noside noside, enum exp_opcode op,
1488 struct value *arg1, struct value *arg2)
1489 {
1490 if (noside == EVAL_SKIP)
1491 return eval_skip_value (exp);
1492 if (binop_user_defined_p (op, arg1, arg2))
1493 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1494 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1495 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
1496 {
1497 /* FIXME -- should be ptrdiff_t */
1498 struct type *type = builtin_type (exp->gdbarch)->builtin_long;
1499 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1500 }
1501 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1502 && is_integral_or_integral_reference (value_type (arg2)))
1503 return value_ptradd (arg1, - value_as_long (arg2));
1504 else
1505 {
1506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1507 return value_binop (arg1, arg2, BINOP_SUB);
1508 }
1509 }
1510
1511 /* Helper function for several different binary operations. */
1512
1513 static struct value *
1514 eval_op_binary (struct type *expect_type, struct expression *exp,
1515 enum noside noside, enum exp_opcode op,
1516 struct value *arg1, struct value *arg2)
1517 {
1518 if (noside == EVAL_SKIP)
1519 return eval_skip_value (exp);
1520 if (binop_user_defined_p (op, arg1, arg2))
1521 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1522 else
1523 {
1524 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1525 fudge arg2 to avoid division-by-zero, the caller is
1526 (theoretically) only looking for the type of the result. */
1527 if (noside == EVAL_AVOID_SIDE_EFFECTS
1528 /* ??? Do we really want to test for BINOP_MOD here?
1529 The implementation of value_binop gives it a well-defined
1530 value. */
1531 && (op == BINOP_DIV
1532 || op == BINOP_INTDIV
1533 || op == BINOP_REM
1534 || op == BINOP_MOD)
1535 && value_logical_not (arg2))
1536 {
1537 struct value *v_one;
1538
1539 v_one = value_one (value_type (arg2));
1540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1541 return value_binop (arg1, v_one, op);
1542 }
1543 else
1544 {
1545 /* For shift and integer exponentiation operations,
1546 only promote the first argument. */
1547 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1548 && is_integral_type (value_type (arg2)))
1549 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1550 else
1551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1552
1553 return value_binop (arg1, arg2, op);
1554 }
1555 }
1556 }
1557
1558 /* A helper function for BINOP_SUBSCRIPT. */
1559
1560 static struct value *
1561 eval_op_subscript (struct type *expect_type, struct expression *exp,
1562 enum noside noside, enum exp_opcode op,
1563 struct value *arg1, struct value *arg2)
1564 {
1565 if (noside == EVAL_SKIP)
1566 return eval_skip_value (exp);
1567 if (binop_user_defined_p (op, arg1, arg2))
1568 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1569 else
1570 {
1571 /* If the user attempts to subscript something that is not an
1572 array or pointer type (like a plain int variable for example),
1573 then report this as an error. */
1574
1575 arg1 = coerce_ref (arg1);
1576 struct type *type = check_typedef (value_type (arg1));
1577 if (type->code () != TYPE_CODE_ARRAY
1578 && type->code () != TYPE_CODE_PTR)
1579 {
1580 if (type->name ())
1581 error (_("cannot subscript something of type `%s'"),
1582 type->name ());
1583 else
1584 error (_("cannot subscript requested type"));
1585 }
1586
1587 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1588 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1589 else
1590 return value_subscript (arg1, value_as_long (arg2));
1591 }
1592 }
1593
1594 /* A helper function for BINOP_EQUAL. */
1595
1596 static struct value *
1597 eval_op_equal (struct type *expect_type, struct expression *exp,
1598 enum noside noside, enum exp_opcode op,
1599 struct value *arg1, struct value *arg2)
1600 {
1601 if (noside == EVAL_SKIP)
1602 return eval_skip_value (exp);
1603 if (binop_user_defined_p (op, arg1, arg2))
1604 {
1605 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1606 }
1607 else
1608 {
1609 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1610 int tem = value_equal (arg1, arg2);
1611 struct type *type = language_bool_type (exp->language_defn,
1612 exp->gdbarch);
1613 return value_from_longest (type, (LONGEST) tem);
1614 }
1615 }
1616
1617 /* A helper function for BINOP_NOTEQUAL. */
1618
1619 static struct value *
1620 eval_op_notequal (struct type *expect_type, struct expression *exp,
1621 enum noside noside, enum exp_opcode op,
1622 struct value *arg1, struct value *arg2)
1623 {
1624 if (noside == EVAL_SKIP)
1625 return eval_skip_value (exp);
1626 if (binop_user_defined_p (op, arg1, arg2))
1627 {
1628 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1629 }
1630 else
1631 {
1632 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1633 int tem = value_equal (arg1, arg2);
1634 struct type *type = language_bool_type (exp->language_defn,
1635 exp->gdbarch);
1636 return value_from_longest (type, (LONGEST) ! tem);
1637 }
1638 }
1639
1640 /* A helper function for BINOP_LESS. */
1641
1642 static struct value *
1643 eval_op_less (struct type *expect_type, struct expression *exp,
1644 enum noside noside, enum exp_opcode op,
1645 struct value *arg1, struct value *arg2)
1646 {
1647 if (noside == EVAL_SKIP)
1648 return eval_skip_value (exp);
1649 if (binop_user_defined_p (op, arg1, arg2))
1650 {
1651 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1652 }
1653 else
1654 {
1655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1656 int tem = value_less (arg1, arg2);
1657 struct type *type = language_bool_type (exp->language_defn,
1658 exp->gdbarch);
1659 return value_from_longest (type, (LONGEST) tem);
1660 }
1661 }
1662
1663 /* A helper function for BINOP_GTR. */
1664
1665 static struct value *
1666 eval_op_gtr (struct type *expect_type, struct expression *exp,
1667 enum noside noside, enum exp_opcode op,
1668 struct value *arg1, struct value *arg2)
1669 {
1670 if (noside == EVAL_SKIP)
1671 return eval_skip_value (exp);
1672 if (binop_user_defined_p (op, arg1, arg2))
1673 {
1674 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1675 }
1676 else
1677 {
1678 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1679 int tem = value_less (arg2, arg1);
1680 struct type *type = language_bool_type (exp->language_defn,
1681 exp->gdbarch);
1682 return value_from_longest (type, (LONGEST) tem);
1683 }
1684 }
1685
1686 /* A helper function for BINOP_GEQ. */
1687
1688 static struct value *
1689 eval_op_geq (struct type *expect_type, struct expression *exp,
1690 enum noside noside, enum exp_opcode op,
1691 struct value *arg1, struct value *arg2)
1692 {
1693 if (noside == EVAL_SKIP)
1694 return eval_skip_value (exp);
1695 if (binop_user_defined_p (op, arg1, arg2))
1696 {
1697 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1698 }
1699 else
1700 {
1701 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1702 int tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1703 struct type *type = language_bool_type (exp->language_defn,
1704 exp->gdbarch);
1705 return value_from_longest (type, (LONGEST) tem);
1706 }
1707 }
1708
1709 /* A helper function for BINOP_LEQ. */
1710
1711 static struct value *
1712 eval_op_leq (struct type *expect_type, struct expression *exp,
1713 enum noside noside, enum exp_opcode op,
1714 struct value *arg1, struct value *arg2)
1715 {
1716 if (noside == EVAL_SKIP)
1717 return eval_skip_value (exp);
1718 if (binop_user_defined_p (op, arg1, arg2))
1719 {
1720 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1721 }
1722 else
1723 {
1724 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1725 int tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
1726 struct type *type = language_bool_type (exp->language_defn,
1727 exp->gdbarch);
1728 return value_from_longest (type, (LONGEST) tem);
1729 }
1730 }
1731
1732 /* A helper function for BINOP_REPEAT. */
1733
1734 static struct value *
1735 eval_op_repeat (struct type *expect_type, struct expression *exp,
1736 enum noside noside,
1737 struct value *arg1, struct value *arg2)
1738 {
1739 if (noside == EVAL_SKIP)
1740 return eval_skip_value (exp);
1741 struct type *type = check_typedef (value_type (arg2));
1742 if (type->code () != TYPE_CODE_INT
1743 && type->code () != TYPE_CODE_ENUM)
1744 error (_("Non-integral right operand for \"@\" operator."));
1745 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1746 {
1747 return allocate_repeat_value (value_type (arg1),
1748 longest_to_int (value_as_long (arg2)));
1749 }
1750 else
1751 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
1752 }
1753
1754 /* A helper function for UNOP_PLUS. */
1755
1756 static struct value *
1757 eval_op_plus (struct type *expect_type, struct expression *exp,
1758 enum noside noside, enum exp_opcode op,
1759 struct value *arg1)
1760 {
1761 if (noside == EVAL_SKIP)
1762 return eval_skip_value (exp);
1763 if (unop_user_defined_p (op, arg1))
1764 return value_x_unop (arg1, op, noside);
1765 else
1766 {
1767 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1768 return value_pos (arg1);
1769 }
1770 }
1771
1772 /* A helper function for UNOP_NEG. */
1773
1774 static struct value *
1775 eval_op_neg (struct type *expect_type, struct expression *exp,
1776 enum noside noside, enum exp_opcode op,
1777 struct value *arg1)
1778 {
1779 if (noside == EVAL_SKIP)
1780 return eval_skip_value (exp);
1781 if (unop_user_defined_p (op, arg1))
1782 return value_x_unop (arg1, op, noside);
1783 else
1784 {
1785 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1786 return value_neg (arg1);
1787 }
1788 }
1789
1790 /* A helper function for UNOP_COMPLEMENT. */
1791
1792 static struct value *
1793 eval_op_complement (struct type *expect_type, struct expression *exp,
1794 enum noside noside, enum exp_opcode op,
1795 struct value *arg1)
1796 {
1797 if (noside == EVAL_SKIP)
1798 return eval_skip_value (exp);
1799 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
1800 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
1801 else
1802 {
1803 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1804 return value_complement (arg1);
1805 }
1806 }
1807
1808 /* A helper function for UNOP_LOGICAL_NOT. */
1809
1810 static struct value *
1811 eval_op_lognot (struct type *expect_type, struct expression *exp,
1812 enum noside noside, enum exp_opcode op,
1813 struct value *arg1)
1814 {
1815 if (noside == EVAL_SKIP)
1816 return eval_skip_value (exp);
1817 if (unop_user_defined_p (op, arg1))
1818 return value_x_unop (arg1, op, noside);
1819 else
1820 {
1821 struct type *type = language_bool_type (exp->language_defn,
1822 exp->gdbarch);
1823 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
1824 }
1825 }
1826
1827 struct value *
1828 evaluate_subexp_standard (struct type *expect_type,
1829 struct expression *exp, int *pos,
1830 enum noside noside)
1831 {
1832 enum exp_opcode op;
1833 int tem, tem2, tem3;
1834 int pc, oldpos;
1835 struct value *arg1 = NULL;
1836 struct value *arg2 = NULL;
1837 struct value *arg3;
1838 struct type *type;
1839 int nargs;
1840 struct value **argvec;
1841 int ix;
1842 struct type **arg_types;
1843
1844 pc = (*pos)++;
1845 op = exp->elts[pc].opcode;
1846
1847 switch (op)
1848 {
1849 case OP_SCOPE:
1850 tem = longest_to_int (exp->elts[pc + 2].longconst);
1851 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1852 return eval_op_scope (expect_type, exp, noside,
1853 exp->elts[pc + 1].type,
1854 &exp->elts[pc + 3].string);
1855
1856 case OP_LONG:
1857 (*pos) += 3;
1858 return value_from_longest (exp->elts[pc + 1].type,
1859 exp->elts[pc + 2].longconst);
1860
1861 case OP_FLOAT:
1862 (*pos) += 3;
1863 return value_from_contents (exp->elts[pc + 1].type,
1864 exp->elts[pc + 2].floatconst);
1865
1866 case OP_ADL_FUNC:
1867 case OP_VAR_VALUE:
1868 {
1869 (*pos) += 3;
1870 symbol *var = exp->elts[pc + 2].symbol;
1871 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
1872 error_unknown_type (var->print_name ());
1873 if (noside != EVAL_SKIP)
1874 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1875 else
1876 {
1877 /* Return a dummy value of the correct type when skipping, so
1878 that parent functions know what is to be skipped. */
1879 return allocate_value (SYMBOL_TYPE (var));
1880 }
1881 }
1882
1883 case OP_VAR_MSYM_VALUE:
1884 {
1885 (*pos) += 3;
1886
1887 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1888 return eval_op_var_msym_value (expect_type, exp, noside,
1889 pc == 0, msymbol,
1890 exp->elts[pc + 1].objfile);
1891 }
1892
1893 case OP_VAR_ENTRY_VALUE:
1894 (*pos) += 2;
1895
1896 {
1897 struct symbol *sym = exp->elts[pc + 1].symbol;
1898
1899 return eval_op_var_entry_value (expect_type, exp, noside, sym);
1900 }
1901
1902 case OP_FUNC_STATIC_VAR:
1903 tem = longest_to_int (exp->elts[pc + 1].longconst);
1904 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1905 if (noside == EVAL_SKIP)
1906 return eval_skip_value (exp);
1907
1908 {
1909 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1910
1911 return eval_op_func_static_var (expect_type, exp, noside, func,
1912 &exp->elts[pc + 2].string);
1913 }
1914
1915 case OP_LAST:
1916 (*pos) += 2;
1917 return
1918 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
1919
1920 case OP_REGISTER:
1921 {
1922 const char *name = &exp->elts[pc + 2].string;
1923
1924 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
1925 return eval_op_register (expect_type, exp, noside, name);
1926 }
1927 case OP_BOOL:
1928 (*pos) += 2;
1929 type = language_bool_type (exp->language_defn, exp->gdbarch);
1930 return value_from_longest (type, exp->elts[pc + 1].longconst);
1931
1932 case OP_INTERNALVAR:
1933 (*pos) += 2;
1934 return value_of_internalvar (exp->gdbarch,
1935 exp->elts[pc + 1].internalvar);
1936
1937 case OP_STRING:
1938 tem = longest_to_int (exp->elts[pc + 1].longconst);
1939 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1940 return eval_op_string (expect_type, exp, noside, tem,
1941 &exp->elts[pc + 2].string);
1942
1943 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
1944 NSString constant. */
1945 tem = longest_to_int (exp->elts[pc + 1].longconst);
1946 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1947 if (noside == EVAL_SKIP)
1948 return eval_skip_value (exp);
1949 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
1950
1951 case OP_ARRAY:
1952 (*pos) += 3;
1953 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
1954 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
1955 nargs = tem3 - tem2 + 1;
1956 type = expect_type ? check_typedef (expect_type) : nullptr;
1957
1958 if (expect_type != nullptr && noside != EVAL_SKIP
1959 && type->code () == TYPE_CODE_STRUCT)
1960 {
1961 struct value *rec = allocate_value (expect_type);
1962
1963 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
1964 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
1965 }
1966
1967 if (expect_type != nullptr && noside != EVAL_SKIP
1968 && type->code () == TYPE_CODE_ARRAY)
1969 {
1970 struct type *range_type = type->index_type ();
1971 struct type *element_type = TYPE_TARGET_TYPE (type);
1972 struct value *array = allocate_value (expect_type);
1973 int element_size = TYPE_LENGTH (check_typedef (element_type));
1974 LONGEST low_bound, high_bound, index;
1975
1976 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
1977 {
1978 low_bound = 0;
1979 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1980 }
1981 index = low_bound;
1982 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1983 for (tem = nargs; --nargs >= 0;)
1984 {
1985 struct value *element;
1986
1987 element = evaluate_subexp (element_type, exp, pos, noside);
1988 if (value_type (element) != element_type)
1989 element = value_cast (element_type, element);
1990 if (index > high_bound)
1991 /* To avoid memory corruption. */
1992 error (_("Too many array elements"));
1993 memcpy (value_contents_raw (array)
1994 + (index - low_bound) * element_size,
1995 value_contents (element),
1996 element_size);
1997 index++;
1998 }
1999 return array;
2000 }
2001
2002 if (expect_type != nullptr && noside != EVAL_SKIP
2003 && type->code () == TYPE_CODE_SET)
2004 {
2005 struct value *set = allocate_value (expect_type);
2006 gdb_byte *valaddr = value_contents_raw (set);
2007 struct type *element_type = type->index_type ();
2008 struct type *check_type = element_type;
2009 LONGEST low_bound, high_bound;
2010
2011 /* Get targettype of elementtype. */
2012 while (check_type->code () == TYPE_CODE_RANGE
2013 || check_type->code () == TYPE_CODE_TYPEDEF)
2014 check_type = TYPE_TARGET_TYPE (check_type);
2015
2016 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
2017 error (_("(power)set type with unknown size"));
2018 memset (valaddr, '\0', TYPE_LENGTH (type));
2019 for (tem = 0; tem < nargs; tem++)
2020 {
2021 LONGEST range_low, range_high;
2022 struct type *range_low_type, *range_high_type;
2023 struct value *elem_val;
2024
2025 elem_val = evaluate_subexp (element_type, exp, pos, noside);
2026 range_low_type = range_high_type = value_type (elem_val);
2027 range_low = range_high = value_as_long (elem_val);
2028
2029 /* Check types of elements to avoid mixture of elements from
2030 different types. Also check if type of element is "compatible"
2031 with element type of powerset. */
2032 if (range_low_type->code () == TYPE_CODE_RANGE)
2033 range_low_type = TYPE_TARGET_TYPE (range_low_type);
2034 if (range_high_type->code () == TYPE_CODE_RANGE)
2035 range_high_type = TYPE_TARGET_TYPE (range_high_type);
2036 if ((range_low_type->code () != range_high_type->code ())
2037 || (range_low_type->code () == TYPE_CODE_ENUM
2038 && (range_low_type != range_high_type)))
2039 /* different element modes. */
2040 error (_("POWERSET tuple elements of different mode"));
2041 if ((check_type->code () != range_low_type->code ())
2042 || (check_type->code () == TYPE_CODE_ENUM
2043 && range_low_type != check_type))
2044 error (_("incompatible POWERSET tuple elements"));
2045 if (range_low > range_high)
2046 {
2047 warning (_("empty POWERSET tuple range"));
2048 continue;
2049 }
2050 if (range_low < low_bound || range_high > high_bound)
2051 error (_("POWERSET tuple element out of range"));
2052 range_low -= low_bound;
2053 range_high -= low_bound;
2054 for (; range_low <= range_high; range_low++)
2055 {
2056 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
2057
2058 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
2059 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
2060 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
2061 |= 1 << bit_index;
2062 }
2063 }
2064 return set;
2065 }
2066
2067 argvec = XALLOCAVEC (struct value *, nargs);
2068 for (tem = 0; tem < nargs; tem++)
2069 {
2070 /* Ensure that array expressions are coerced into pointer
2071 objects. */
2072 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
2073 }
2074 if (noside == EVAL_SKIP)
2075 return eval_skip_value (exp);
2076 return value_array (tem2, tem3, argvec);
2077
2078 case TERNOP_SLICE:
2079 {
2080 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
2081 struct value *low = evaluate_subexp (nullptr, exp, pos, noside);
2082 struct value *upper = evaluate_subexp (nullptr, exp, pos, noside);
2083 return eval_op_ternop (expect_type, exp, noside, array, low, upper);
2084 }
2085
2086 case TERNOP_COND:
2087 /* Skip third and second args to evaluate the first one. */
2088 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2089 if (value_logical_not (arg1))
2090 {
2091 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2092 return evaluate_subexp (nullptr, exp, pos, noside);
2093 }
2094 else
2095 {
2096 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2097 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2098 return arg2;
2099 }
2100
2101 case OP_OBJC_SELECTOR:
2102 { /* Objective C @selector operator. */
2103 char *sel = &exp->elts[pc + 2].string;
2104 int len = longest_to_int (exp->elts[pc + 1].longconst);
2105
2106 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
2107 if (sel[len] != 0)
2108 sel[len] = 0; /* Make sure it's terminated. */
2109
2110 return eval_op_objc_selector (expect_type, exp, noside, sel);
2111 }
2112
2113 case OP_OBJC_MSGCALL:
2114 { /* Objective C message (method) call. */
2115
2116 CORE_ADDR responds_selector = 0;
2117 CORE_ADDR method_selector = 0;
2118
2119 CORE_ADDR selector = 0;
2120
2121 int struct_return = 0;
2122 enum noside sub_no_side = EVAL_NORMAL;
2123
2124 struct value *msg_send = NULL;
2125 struct value *msg_send_stret = NULL;
2126 int gnu_runtime = 0;
2127
2128 struct value *target = NULL;
2129 struct value *method = NULL;
2130 struct value *called_method = NULL;
2131
2132 struct type *selector_type = NULL;
2133 struct type *long_type;
2134
2135 struct value *ret = NULL;
2136 CORE_ADDR addr = 0;
2137
2138 selector = exp->elts[pc + 1].longconst;
2139 nargs = exp->elts[pc + 2].longconst;
2140 argvec = XALLOCAVEC (struct value *, nargs + 5);
2141
2142 (*pos) += 3;
2143
2144 long_type = builtin_type (exp->gdbarch)->builtin_long;
2145 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
2146
2147 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2148 sub_no_side = EVAL_NORMAL;
2149 else
2150 sub_no_side = noside;
2151
2152 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
2153
2154 if (value_as_long (target) == 0)
2155 return value_from_longest (long_type, 0);
2156
2157 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
2158 gnu_runtime = 1;
2159
2160 /* Find the method dispatch (Apple runtime) or method lookup
2161 (GNU runtime) function for Objective-C. These will be used
2162 to lookup the symbol information for the method. If we
2163 can't find any symbol information, then we'll use these to
2164 call the method, otherwise we can call the method
2165 directly. The msg_send_stret function is used in the special
2166 case of a method that returns a structure (Apple runtime
2167 only). */
2168 if (gnu_runtime)
2169 {
2170 type = selector_type;
2171
2172 type = lookup_function_type (type);
2173 type = lookup_pointer_type (type);
2174 type = lookup_function_type (type);
2175 type = lookup_pointer_type (type);
2176
2177 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
2178 msg_send_stret
2179 = find_function_in_inferior ("objc_msg_lookup", NULL);
2180
2181 msg_send = value_from_pointer (type, value_as_address (msg_send));
2182 msg_send_stret = value_from_pointer (type,
2183 value_as_address (msg_send_stret));
2184 }
2185 else
2186 {
2187 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
2188 /* Special dispatcher for methods returning structs. */
2189 msg_send_stret
2190 = find_function_in_inferior ("objc_msgSend_stret", NULL);
2191 }
2192
2193 /* Verify the target object responds to this method. The
2194 standard top-level 'Object' class uses a different name for
2195 the verification method than the non-standard, but more
2196 often used, 'NSObject' class. Make sure we check for both. */
2197
2198 responds_selector
2199 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
2200 if (responds_selector == 0)
2201 responds_selector
2202 = lookup_child_selector (exp->gdbarch, "respondsTo:");
2203
2204 if (responds_selector == 0)
2205 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
2206
2207 method_selector
2208 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
2209 if (method_selector == 0)
2210 method_selector
2211 = lookup_child_selector (exp->gdbarch, "methodFor:");
2212
2213 if (method_selector == 0)
2214 error (_("no 'methodFor:' or 'methodForSelector:' method"));
2215
2216 /* Call the verification method, to make sure that the target
2217 class implements the desired method. */
2218
2219 argvec[0] = msg_send;
2220 argvec[1] = target;
2221 argvec[2] = value_from_longest (long_type, responds_selector);
2222 argvec[3] = value_from_longest (long_type, selector);
2223 argvec[4] = 0;
2224
2225 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2226 if (gnu_runtime)
2227 {
2228 /* Function objc_msg_lookup returns a pointer. */
2229 argvec[0] = ret;
2230 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2231 }
2232 if (value_as_long (ret) == 0)
2233 error (_("Target does not respond to this message selector."));
2234
2235 /* Call "methodForSelector:" method, to get the address of a
2236 function method that implements this selector for this
2237 class. If we can find a symbol at that address, then we
2238 know the return type, parameter types etc. (that's a good
2239 thing). */
2240
2241 argvec[0] = msg_send;
2242 argvec[1] = target;
2243 argvec[2] = value_from_longest (long_type, method_selector);
2244 argvec[3] = value_from_longest (long_type, selector);
2245 argvec[4] = 0;
2246
2247 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2248 if (gnu_runtime)
2249 {
2250 argvec[0] = ret;
2251 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2252 }
2253
2254 /* ret should now be the selector. */
2255
2256 addr = value_as_long (ret);
2257 if (addr)
2258 {
2259 struct symbol *sym = NULL;
2260
2261 /* The address might point to a function descriptor;
2262 resolve it to the actual code address instead. */
2263 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
2264 current_top_target ());
2265
2266 /* Is it a high_level symbol? */
2267 sym = find_pc_function (addr);
2268 if (sym != NULL)
2269 method = value_of_variable (sym, 0);
2270 }
2271
2272 /* If we found a method with symbol information, check to see
2273 if it returns a struct. Otherwise assume it doesn't. */
2274
2275 if (method)
2276 {
2277 CORE_ADDR funaddr;
2278 struct type *val_type;
2279
2280 funaddr = find_function_addr (method, &val_type);
2281
2282 block_for_pc (funaddr);
2283
2284 val_type = check_typedef (val_type);
2285
2286 if ((val_type == NULL)
2287 || (val_type->code () == TYPE_CODE_ERROR))
2288 {
2289 if (expect_type != NULL)
2290 val_type = expect_type;
2291 }
2292
2293 struct_return = using_struct_return (exp->gdbarch, method,
2294 val_type);
2295 }
2296 else if (expect_type != NULL)
2297 {
2298 struct_return = using_struct_return (exp->gdbarch, NULL,
2299 check_typedef (expect_type));
2300 }
2301
2302 /* Found a function symbol. Now we will substitute its
2303 value in place of the message dispatcher (obj_msgSend),
2304 so that we call the method directly instead of thru
2305 the dispatcher. The main reason for doing this is that
2306 we can now evaluate the return value and parameter values
2307 according to their known data types, in case we need to
2308 do things like promotion, dereferencing, special handling
2309 of structs and doubles, etc.
2310
2311 We want to use the type signature of 'method', but still
2312 jump to objc_msgSend() or objc_msgSend_stret() to better
2313 mimic the behavior of the runtime. */
2314
2315 if (method)
2316 {
2317 if (value_type (method)->code () != TYPE_CODE_FUNC)
2318 error (_("method address has symbol information "
2319 "with non-function type; skipping"));
2320
2321 /* Create a function pointer of the appropriate type, and
2322 replace its value with the value of msg_send or
2323 msg_send_stret. We must use a pointer here, as
2324 msg_send and msg_send_stret are of pointer type, and
2325 the representation may be different on systems that use
2326 function descriptors. */
2327 if (struct_return)
2328 called_method
2329 = value_from_pointer (lookup_pointer_type (value_type (method)),
2330 value_as_address (msg_send_stret));
2331 else
2332 called_method
2333 = value_from_pointer (lookup_pointer_type (value_type (method)),
2334 value_as_address (msg_send));
2335 }
2336 else
2337 {
2338 if (struct_return)
2339 called_method = msg_send_stret;
2340 else
2341 called_method = msg_send;
2342 }
2343
2344 if (noside == EVAL_SKIP)
2345 return eval_skip_value (exp);
2346
2347 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2348 {
2349 /* If the return type doesn't look like a function type,
2350 call an error. This can happen if somebody tries to
2351 turn a variable into a function call. This is here
2352 because people often want to call, eg, strcmp, which
2353 gdb doesn't know is a function. If gdb isn't asked for
2354 it's opinion (ie. through "whatis"), it won't offer
2355 it. */
2356
2357 struct type *callee_type = value_type (called_method);
2358
2359 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
2360 callee_type = TYPE_TARGET_TYPE (callee_type);
2361 callee_type = TYPE_TARGET_TYPE (callee_type);
2362
2363 if (callee_type)
2364 {
2365 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
2366 return allocate_value (expect_type);
2367 else
2368 return allocate_value (callee_type);
2369 }
2370 else
2371 error (_("Expression of type other than "
2372 "\"method returning ...\" used as a method"));
2373 }
2374
2375 /* Now depending on whether we found a symbol for the method,
2376 we will either call the runtime dispatcher or the method
2377 directly. */
2378
2379 argvec[0] = called_method;
2380 argvec[1] = target;
2381 argvec[2] = value_from_longest (long_type, selector);
2382 /* User-supplied arguments. */
2383 for (tem = 0; tem < nargs; tem++)
2384 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
2385 argvec[tem + 3] = 0;
2386
2387 auto call_args = gdb::make_array_view (argvec + 1, nargs + 2);
2388
2389 if (gnu_runtime && (method != NULL))
2390 {
2391 /* Function objc_msg_lookup returns a pointer. */
2392 deprecated_set_value_type (argvec[0],
2393 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
2394 argvec[0] = call_function_by_hand (argvec[0], NULL, call_args);
2395 }
2396
2397 return call_function_by_hand (argvec[0], NULL, call_args);
2398 }
2399 break;
2400
2401 case OP_FUNCALL:
2402 return evaluate_funcall (expect_type, exp, pos, noside);
2403
2404 case OP_COMPLEX:
2405 /* We have a complex number, There should be 2 floating
2406 point numbers that compose it. */
2407 (*pos) += 2;
2408 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2409 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2410
2411 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
2412
2413 case STRUCTOP_STRUCT:
2414 tem = longest_to_int (exp->elts[pc + 1].longconst);
2415 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2416 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2417 return eval_op_structop_struct (expect_type, exp, noside, arg1,
2418 &exp->elts[pc + 2].string);
2419
2420 case STRUCTOP_PTR:
2421 tem = longest_to_int (exp->elts[pc + 1].longconst);
2422 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2423 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2424 return eval_op_structop_ptr (expect_type, exp, noside, op, arg1,
2425 &exp->elts[pc + 2].string);
2426
2427 case STRUCTOP_MEMBER:
2428 case STRUCTOP_MPTR:
2429 if (op == STRUCTOP_MEMBER)
2430 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2431 else
2432 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2433
2434 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2435
2436 return eval_op_member (expect_type, exp, noside, arg1, arg2);
2437
2438 case TYPE_INSTANCE:
2439 {
2440 type_instance_flags flags
2441 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2442 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2443 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2444 for (ix = 0; ix < nargs; ++ix)
2445 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2446
2447 fake_method fake_expect_type (flags, nargs, arg_types);
2448 *(pos) += 4 + nargs;
2449 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
2450 noside);
2451 }
2452
2453 case BINOP_CONCAT:
2454 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2455 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2456 return eval_op_concat (expect_type, exp, noside, op, arg1, arg2);
2457
2458 case BINOP_ASSIGN:
2459 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2460 /* Special-case assignments where the left-hand-side is a
2461 convenience variable -- in these, don't bother setting an
2462 expected type. This avoids a weird case where re-assigning a
2463 string or array to an internal variable could error with "Too
2464 many array elements". */
2465 arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
2466 ? nullptr
2467 : value_type (arg1),
2468 exp, pos, noside);
2469
2470 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2471 return arg1;
2472 if (binop_user_defined_p (op, arg1, arg2))
2473 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2474 else
2475 return value_assign (arg1, arg2);
2476
2477 case BINOP_ASSIGN_MODIFY:
2478 (*pos) += 2;
2479 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2480 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2481 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2482 return arg1;
2483 op = exp->elts[pc + 1].opcode;
2484 if (binop_user_defined_p (op, arg1, arg2))
2485 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2486 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2487 value_type (arg1))
2488 && is_integral_type (value_type (arg2)))
2489 arg2 = value_ptradd (arg1, value_as_long (arg2));
2490 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2491 value_type (arg1))
2492 && is_integral_type (value_type (arg2)))
2493 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2494 else
2495 {
2496 struct value *tmp = arg1;
2497
2498 /* For shift and integer exponentiation operations,
2499 only promote the first argument. */
2500 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2501 && is_integral_type (value_type (arg2)))
2502 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2503 else
2504 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2505
2506 arg2 = value_binop (tmp, arg2, op);
2507 }
2508 return value_assign (arg1, arg2);
2509
2510 case BINOP_ADD:
2511 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2512 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2513 return eval_op_add (expect_type, exp, noside, op, arg1, arg2);
2514
2515 case BINOP_SUB:
2516 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2517 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2518 return eval_op_sub (expect_type, exp, noside, op, arg1, arg2);
2519
2520 case BINOP_EXP:
2521 case BINOP_MUL:
2522 case BINOP_DIV:
2523 case BINOP_INTDIV:
2524 case BINOP_REM:
2525 case BINOP_MOD:
2526 case BINOP_LSH:
2527 case BINOP_RSH:
2528 case BINOP_BITWISE_AND:
2529 case BINOP_BITWISE_IOR:
2530 case BINOP_BITWISE_XOR:
2531 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2532 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2533 return eval_op_binary (expect_type, exp, noside, op, arg1, arg2);
2534
2535 case BINOP_SUBSCRIPT:
2536 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2537 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2538 return eval_op_subscript (expect_type, exp, noside, op, arg1, arg2);
2539
2540 case MULTI_SUBSCRIPT:
2541 (*pos) += 2;
2542 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2543 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2544 argvec = XALLOCAVEC (struct value *, nargs);
2545 for (ix = 0; ix < nargs; ++ix)
2546 argvec[ix] = evaluate_subexp_with_coercion (exp, pos, noside);
2547 if (noside == EVAL_SKIP)
2548 return arg1;
2549 for (ix = 0; ix < nargs; ++ix)
2550 {
2551 arg2 = argvec[ix];
2552
2553 if (binop_user_defined_p (op, arg1, arg2))
2554 {
2555 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2556 }
2557 else
2558 {
2559 arg1 = coerce_ref (arg1);
2560 type = check_typedef (value_type (arg1));
2561
2562 switch (type->code ())
2563 {
2564 case TYPE_CODE_PTR:
2565 case TYPE_CODE_ARRAY:
2566 case TYPE_CODE_STRING:
2567 arg1 = value_subscript (arg1, value_as_long (arg2));
2568 break;
2569
2570 default:
2571 if (type->name ())
2572 error (_("cannot subscript something of type `%s'"),
2573 type->name ());
2574 else
2575 error (_("cannot subscript requested type"));
2576 }
2577 }
2578 }
2579 return (arg1);
2580
2581 case BINOP_LOGICAL_AND:
2582 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2583 if (noside == EVAL_SKIP)
2584 {
2585 evaluate_subexp (nullptr, exp, pos, noside);
2586 return eval_skip_value (exp);
2587 }
2588
2589 oldpos = *pos;
2590 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2591 *pos = oldpos;
2592
2593 if (binop_user_defined_p (op, arg1, arg2))
2594 {
2595 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2596 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2597 }
2598 else
2599 {
2600 tem = value_logical_not (arg1);
2601 arg2
2602 = evaluate_subexp (nullptr, exp, pos, (tem ? EVAL_SKIP : noside));
2603 type = language_bool_type (exp->language_defn, exp->gdbarch);
2604 return value_from_longest (type,
2605 (LONGEST) (!tem && !value_logical_not (arg2)));
2606 }
2607
2608 case BINOP_LOGICAL_OR:
2609 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2610 if (noside == EVAL_SKIP)
2611 {
2612 evaluate_subexp (nullptr, exp, pos, noside);
2613 return eval_skip_value (exp);
2614 }
2615
2616 oldpos = *pos;
2617 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2618 *pos = oldpos;
2619
2620 if (binop_user_defined_p (op, arg1, arg2))
2621 {
2622 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2623 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2624 }
2625 else
2626 {
2627 tem = value_logical_not (arg1);
2628 arg2
2629 = evaluate_subexp (nullptr, exp, pos, (!tem ? EVAL_SKIP : noside));
2630 type = language_bool_type (exp->language_defn, exp->gdbarch);
2631 return value_from_longest (type,
2632 (LONGEST) (!tem || !value_logical_not (arg2)));
2633 }
2634
2635 case BINOP_EQUAL:
2636 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2637 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2638 return eval_op_equal (expect_type, exp, noside, op, arg1, arg2);
2639
2640 case BINOP_NOTEQUAL:
2641 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2642 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2643 return eval_op_notequal (expect_type, exp, noside, op, arg1, arg2);
2644
2645 case BINOP_LESS:
2646 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2647 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2648 return eval_op_less (expect_type, exp, noside, op, arg1, arg2);
2649
2650 case BINOP_GTR:
2651 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2652 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2653 return eval_op_gtr (expect_type, exp, noside, op, arg1, arg2);
2654
2655 case BINOP_GEQ:
2656 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2657 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2658 return eval_op_geq (expect_type, exp, noside, op, arg1, arg2);
2659
2660 case BINOP_LEQ:
2661 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2662 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2663 return eval_op_leq (expect_type, exp, noside, op, arg1, arg2);
2664
2665 case BINOP_REPEAT:
2666 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2667 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2668 return eval_op_repeat (expect_type, exp, noside, arg1, arg2);
2669
2670 case BINOP_COMMA:
2671 evaluate_subexp (nullptr, exp, pos, noside);
2672 return evaluate_subexp (nullptr, exp, pos, noside);
2673
2674 case UNOP_PLUS:
2675 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2676 return eval_op_plus (expect_type, exp, noside, op, arg1);
2677
2678 case UNOP_NEG:
2679 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2680 return eval_op_neg (expect_type, exp, noside, op, arg1);
2681
2682 case UNOP_COMPLEMENT:
2683 /* C++: check for and handle destructor names. */
2684
2685 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2686 return eval_op_complement (expect_type, exp, noside, op, arg1);
2687
2688 case UNOP_LOGICAL_NOT:
2689 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2690 return eval_op_lognot (expect_type, exp, noside, op, arg1);
2691
2692 case UNOP_IND:
2693 if (expect_type && expect_type->code () == TYPE_CODE_PTR)
2694 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2695 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2696 type = check_typedef (value_type (arg1));
2697 if (type->code () == TYPE_CODE_METHODPTR
2698 || type->code () == TYPE_CODE_MEMBERPTR)
2699 error (_("Attempt to dereference pointer "
2700 "to member without an object"));
2701 if (noside == EVAL_SKIP)
2702 return eval_skip_value (exp);
2703 if (unop_user_defined_p (op, arg1))
2704 return value_x_unop (arg1, op, noside);
2705 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2706 {
2707 type = check_typedef (value_type (arg1));
2708
2709 /* If the type pointed to is dynamic then in order to resolve the
2710 dynamic properties we must actually dereference the pointer.
2711 There is a risk that this dereference will have side-effects
2712 in the inferior, but being able to print accurate type
2713 information seems worth the risk. */
2714 if ((type->code () != TYPE_CODE_PTR
2715 && !TYPE_IS_REFERENCE (type))
2716 || !is_dynamic_type (TYPE_TARGET_TYPE (type)))
2717 {
2718 if (type->code () == TYPE_CODE_PTR
2719 || TYPE_IS_REFERENCE (type)
2720 /* In C you can dereference an array to get the 1st elt. */
2721 || type->code () == TYPE_CODE_ARRAY)
2722 return value_zero (TYPE_TARGET_TYPE (type),
2723 lval_memory);
2724 else if (type->code () == TYPE_CODE_INT)
2725 /* GDB allows dereferencing an int. */
2726 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2727 lval_memory);
2728 else
2729 error (_("Attempt to take contents of a non-pointer value."));
2730 }
2731 }
2732
2733 /* Allow * on an integer so we can cast it to whatever we want.
2734 This returns an int, which seems like the most C-like thing to
2735 do. "long long" variables are rare enough that
2736 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2737 if (type->code () == TYPE_CODE_INT)
2738 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2739 (CORE_ADDR) value_as_address (arg1));
2740 return value_ind (arg1);
2741
2742 case UNOP_ADDR:
2743 /* C++: check for and handle pointer to members. */
2744
2745 if (noside == EVAL_SKIP)
2746 {
2747 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2748 return eval_skip_value (exp);
2749 }
2750 else
2751 return evaluate_subexp_for_address (exp, pos, noside);
2752
2753 case UNOP_SIZEOF:
2754 if (noside == EVAL_SKIP)
2755 {
2756 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2757 return eval_skip_value (exp);
2758 }
2759 return evaluate_subexp_for_sizeof (exp, pos, noside);
2760
2761 case UNOP_ALIGNOF:
2762 {
2763 type = value_type (
2764 evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS));
2765 /* FIXME: This should be size_t. */
2766 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2767 ULONGEST align = type_align (type);
2768 if (align == 0)
2769 error (_("could not determine alignment of type"));
2770 return value_from_longest (size_type, align);
2771 }
2772
2773 case UNOP_CAST:
2774 (*pos) += 2;
2775 type = exp->elts[pc + 1].type;
2776 return evaluate_subexp_for_cast (exp, pos, noside, type);
2777
2778 case UNOP_CAST_TYPE:
2779 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2780 type = value_type (arg1);
2781 return evaluate_subexp_for_cast (exp, pos, noside, type);
2782
2783 case UNOP_DYNAMIC_CAST:
2784 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2785 type = value_type (arg1);
2786 arg1 = evaluate_subexp (type, exp, pos, noside);
2787 if (noside == EVAL_SKIP)
2788 return eval_skip_value (exp);
2789 return value_dynamic_cast (type, arg1);
2790
2791 case UNOP_REINTERPRET_CAST:
2792 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2793 type = value_type (arg1);
2794 arg1 = evaluate_subexp (type, exp, pos, noside);
2795 if (noside == EVAL_SKIP)
2796 return eval_skip_value (exp);
2797 return value_reinterpret_cast (type, arg1);
2798
2799 case UNOP_MEMVAL:
2800 (*pos) += 2;
2801 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2802 if (noside == EVAL_SKIP)
2803 return eval_skip_value (exp);
2804 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2805 return value_zero (exp->elts[pc + 1].type, lval_memory);
2806 else
2807 return value_at_lazy (exp->elts[pc + 1].type,
2808 value_as_address (arg1));
2809
2810 case UNOP_MEMVAL_TYPE:
2811 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2812 type = value_type (arg1);
2813 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2814 if (noside == EVAL_SKIP)
2815 return eval_skip_value (exp);
2816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2817 return value_zero (type, lval_memory);
2818 else
2819 return value_at_lazy (type, value_as_address (arg1));
2820
2821 case UNOP_PREINCREMENT:
2822 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2823 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2824 return arg1;
2825 else if (unop_user_defined_p (op, arg1))
2826 {
2827 return value_x_unop (arg1, op, noside);
2828 }
2829 else
2830 {
2831 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2832 arg2 = value_ptradd (arg1, 1);
2833 else
2834 {
2835 struct value *tmp = arg1;
2836
2837 arg2 = value_one (value_type (arg1));
2838 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2839 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2840 }
2841
2842 return value_assign (arg1, arg2);
2843 }
2844
2845 case UNOP_PREDECREMENT:
2846 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2847 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2848 return arg1;
2849 else if (unop_user_defined_p (op, arg1))
2850 {
2851 return value_x_unop (arg1, op, noside);
2852 }
2853 else
2854 {
2855 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2856 arg2 = value_ptradd (arg1, -1);
2857 else
2858 {
2859 struct value *tmp = arg1;
2860
2861 arg2 = value_one (value_type (arg1));
2862 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2863 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2864 }
2865
2866 return value_assign (arg1, arg2);
2867 }
2868
2869 case UNOP_POSTINCREMENT:
2870 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2871 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2872 return arg1;
2873 else if (unop_user_defined_p (op, arg1))
2874 {
2875 return value_x_unop (arg1, op, noside);
2876 }
2877 else
2878 {
2879 arg3 = value_non_lval (arg1);
2880
2881 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2882 arg2 = value_ptradd (arg1, 1);
2883 else
2884 {
2885 struct value *tmp = arg1;
2886
2887 arg2 = value_one (value_type (arg1));
2888 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2889 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2890 }
2891
2892 value_assign (arg1, arg2);
2893 return arg3;
2894 }
2895
2896 case UNOP_POSTDECREMENT:
2897 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2898 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2899 return arg1;
2900 else if (unop_user_defined_p (op, arg1))
2901 {
2902 return value_x_unop (arg1, op, noside);
2903 }
2904 else
2905 {
2906 arg3 = value_non_lval (arg1);
2907
2908 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2909 arg2 = value_ptradd (arg1, -1);
2910 else
2911 {
2912 struct value *tmp = arg1;
2913
2914 arg2 = value_one (value_type (arg1));
2915 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2916 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2917 }
2918
2919 value_assign (arg1, arg2);
2920 return arg3;
2921 }
2922
2923 case OP_THIS:
2924 (*pos) += 1;
2925 return value_of_this (exp->language_defn);
2926
2927 case OP_TYPE:
2928 /* The value is not supposed to be used. This is here to make it
2929 easier to accommodate expressions that contain types. */
2930 (*pos) += 2;
2931 if (noside == EVAL_SKIP)
2932 return eval_skip_value (exp);
2933 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2934 return allocate_value (exp->elts[pc + 1].type);
2935 else
2936 error (_("Attempt to use a type name as an expression"));
2937
2938 case OP_TYPEOF:
2939 case OP_DECLTYPE:
2940 if (noside == EVAL_SKIP)
2941 {
2942 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2943 return eval_skip_value (exp);
2944 }
2945 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2946 {
2947 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2948 struct value *result;
2949
2950 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2951
2952 /* 'decltype' has special semantics for lvalues. */
2953 if (op == OP_DECLTYPE
2954 && (sub_op == BINOP_SUBSCRIPT
2955 || sub_op == STRUCTOP_MEMBER
2956 || sub_op == STRUCTOP_MPTR
2957 || sub_op == UNOP_IND
2958 || sub_op == STRUCTOP_STRUCT
2959 || sub_op == STRUCTOP_PTR
2960 || sub_op == OP_SCOPE))
2961 {
2962 type = value_type (result);
2963
2964 if (!TYPE_IS_REFERENCE (type))
2965 {
2966 type = lookup_lvalue_reference_type (type);
2967 result = allocate_value (type);
2968 }
2969 }
2970
2971 return result;
2972 }
2973 else
2974 error (_("Attempt to use a type as an expression"));
2975
2976 case OP_TYPEID:
2977 {
2978 struct value *result;
2979 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2980
2981 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2982 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2983 else
2984 result = evaluate_subexp (nullptr, exp, pos, noside);
2985
2986 if (noside != EVAL_NORMAL)
2987 return allocate_value (cplus_typeid_type (exp->gdbarch));
2988
2989 return cplus_typeid (result);
2990 }
2991
2992 default:
2993 /* Removing this case and compiling with gcc -Wall reveals that
2994 a lot of cases are hitting this case. Some of these should
2995 probably be removed from expression.h; others are legitimate
2996 expressions which are (apparently) not fully implemented.
2997
2998 If there are any cases landing here which mean a user error,
2999 then they should be separate cases, with more descriptive
3000 error messages. */
3001
3002 error (_("GDB does not (yet) know how to "
3003 "evaluate that kind of expression"));
3004 }
3005
3006 gdb_assert_not_reached ("missed return?");
3007 }
3008 \f
3009 /* Evaluate a subexpression of EXP, at index *POS,
3010 and return the address of that subexpression.
3011 Advance *POS over the subexpression.
3012 If the subexpression isn't an lvalue, get an error.
3013 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
3014 then only the type of the result need be correct. */
3015
3016 static struct value *
3017 evaluate_subexp_for_address (struct expression *exp, int *pos,
3018 enum noside noside)
3019 {
3020 enum exp_opcode op;
3021 int pc;
3022 struct symbol *var;
3023 struct value *x;
3024 int tem;
3025
3026 pc = (*pos);
3027 op = exp->elts[pc].opcode;
3028
3029 switch (op)
3030 {
3031 case UNOP_IND:
3032 (*pos)++;
3033 x = evaluate_subexp (nullptr, exp, pos, noside);
3034
3035 /* We can't optimize out "&*" if there's a user-defined operator*. */
3036 if (unop_user_defined_p (op, x))
3037 {
3038 x = value_x_unop (x, op, noside);
3039 goto default_case_after_eval;
3040 }
3041
3042 return coerce_array (x);
3043
3044 case UNOP_MEMVAL:
3045 (*pos) += 3;
3046 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
3047 evaluate_subexp (nullptr, exp, pos, noside));
3048
3049 case UNOP_MEMVAL_TYPE:
3050 {
3051 struct type *type;
3052
3053 (*pos) += 1;
3054 x = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3055 type = value_type (x);
3056 return value_cast (lookup_pointer_type (type),
3057 evaluate_subexp (nullptr, exp, pos, noside));
3058 }
3059
3060 case OP_VAR_VALUE:
3061 var = exp->elts[pc + 2].symbol;
3062
3063 /* C++: The "address" of a reference should yield the address
3064 * of the object pointed to. Let value_addr() deal with it. */
3065 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
3066 goto default_case;
3067
3068 (*pos) += 4;
3069 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3070 {
3071 struct type *type =
3072 lookup_pointer_type (SYMBOL_TYPE (var));
3073 enum address_class sym_class = SYMBOL_CLASS (var);
3074
3075 if (sym_class == LOC_CONST
3076 || sym_class == LOC_CONST_BYTES
3077 || sym_class == LOC_REGISTER)
3078 error (_("Attempt to take address of register or constant."));
3079
3080 return
3081 value_zero (type, not_lval);
3082 }
3083 else
3084 return address_of_variable (var, exp->elts[pc + 1].block);
3085
3086 case OP_VAR_MSYM_VALUE:
3087 {
3088 (*pos) += 4;
3089
3090 value *val = evaluate_var_msym_value (noside,
3091 exp->elts[pc + 1].objfile,
3092 exp->elts[pc + 2].msymbol);
3093 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3094 {
3095 struct type *type = lookup_pointer_type (value_type (val));
3096 return value_zero (type, not_lval);
3097 }
3098 else
3099 return value_addr (val);
3100 }
3101
3102 case OP_SCOPE:
3103 tem = longest_to_int (exp->elts[pc + 2].longconst);
3104 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3105 x = value_aggregate_elt (exp->elts[pc + 1].type,
3106 &exp->elts[pc + 3].string,
3107 NULL, 1, noside);
3108 if (x == NULL)
3109 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3110 return x;
3111
3112 default:
3113 default_case:
3114 x = evaluate_subexp (nullptr, exp, pos, noside);
3115 default_case_after_eval:
3116 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3117 {
3118 struct type *type = check_typedef (value_type (x));
3119
3120 if (TYPE_IS_REFERENCE (type))
3121 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3122 not_lval);
3123 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3124 return value_zero (lookup_pointer_type (value_type (x)),
3125 not_lval);
3126 else
3127 error (_("Attempt to take address of "
3128 "value not located in memory."));
3129 }
3130 return value_addr (x);
3131 }
3132 }
3133
3134 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3135 When used in contexts where arrays will be coerced anyway, this is
3136 equivalent to `evaluate_subexp' but much faster because it avoids
3137 actually fetching array contents (perhaps obsolete now that we have
3138 value_lazy()).
3139
3140 Note that we currently only do the coercion for C expressions, where
3141 arrays are zero based and the coercion is correct. For other languages,
3142 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3143 to decide if coercion is appropriate. */
3144
3145 struct value *
3146 evaluate_subexp_with_coercion (struct expression *exp,
3147 int *pos, enum noside noside)
3148 {
3149 enum exp_opcode op;
3150 int pc;
3151 struct value *val;
3152 struct symbol *var;
3153 struct type *type;
3154
3155 pc = (*pos);
3156 op = exp->elts[pc].opcode;
3157
3158 switch (op)
3159 {
3160 case OP_VAR_VALUE:
3161 var = exp->elts[pc + 2].symbol;
3162 type = check_typedef (SYMBOL_TYPE (var));
3163 if (type->code () == TYPE_CODE_ARRAY
3164 && !type->is_vector ()
3165 && CAST_IS_CONVERSION (exp->language_defn))
3166 {
3167 (*pos) += 4;
3168 val = address_of_variable (var, exp->elts[pc + 1].block);
3169 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3170 val);
3171 }
3172 /* FALLTHROUGH */
3173
3174 default:
3175 return evaluate_subexp (nullptr, exp, pos, noside);
3176 }
3177 }
3178
3179 /* Evaluate a subexpression of EXP, at index *POS,
3180 and return a value for the size of that subexpression.
3181 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3182 we allow side-effects on the operand if its type is a variable
3183 length array. */
3184
3185 static struct value *
3186 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3187 enum noside noside)
3188 {
3189 /* FIXME: This should be size_t. */
3190 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3191 enum exp_opcode op;
3192 int pc;
3193 struct type *type;
3194 struct value *val;
3195
3196 pc = (*pos);
3197 op = exp->elts[pc].opcode;
3198
3199 switch (op)
3200 {
3201 /* This case is handled specially
3202 so that we avoid creating a value for the result type.
3203 If the result type is very big, it's desirable not to
3204 create a value unnecessarily. */
3205 case UNOP_IND:
3206 (*pos)++;
3207 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3208 type = check_typedef (value_type (val));
3209 if (type->code () != TYPE_CODE_PTR
3210 && !TYPE_IS_REFERENCE (type)
3211 && type->code () != TYPE_CODE_ARRAY)
3212 error (_("Attempt to take contents of a non-pointer value."));
3213 type = TYPE_TARGET_TYPE (type);
3214 if (is_dynamic_type (type))
3215 type = value_type (value_ind (val));
3216 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3217
3218 case UNOP_MEMVAL:
3219 (*pos) += 3;
3220 type = exp->elts[pc + 1].type;
3221 break;
3222
3223 case UNOP_MEMVAL_TYPE:
3224 (*pos) += 1;
3225 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3226 type = value_type (val);
3227 break;
3228
3229 case OP_VAR_VALUE:
3230 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3231 if (is_dynamic_type (type))
3232 {
3233 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3234 type = value_type (val);
3235 if (type->code () == TYPE_CODE_ARRAY)
3236 {
3237 if (type_not_allocated (type) || type_not_associated (type))
3238 return value_zero (size_type, not_lval);
3239 else if (is_dynamic_type (type->index_type ())
3240 && type->bounds ()->high.kind () == PROP_UNDEFINED)
3241 return allocate_optimized_out_value (size_type);
3242 }
3243 }
3244 else
3245 (*pos) += 4;
3246 break;
3247
3248 case OP_VAR_MSYM_VALUE:
3249 {
3250 (*pos) += 4;
3251
3252 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3253 value *mval = evaluate_var_msym_value (noside,
3254 exp->elts[pc + 1].objfile,
3255 msymbol);
3256
3257 type = value_type (mval);
3258 if (type->code () == TYPE_CODE_ERROR)
3259 error_unknown_type (msymbol->print_name ());
3260
3261 return value_from_longest (size_type, TYPE_LENGTH (type));
3262 }
3263 break;
3264
3265 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3266 type of the subscript is a variable length array type. In this case we
3267 must re-evaluate the right hand side of the subscription to allow
3268 side-effects. */
3269 case BINOP_SUBSCRIPT:
3270 if (noside == EVAL_NORMAL)
3271 {
3272 int npc = (*pos) + 1;
3273
3274 val = evaluate_subexp (nullptr, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
3275 type = check_typedef (value_type (val));
3276 if (type->code () == TYPE_CODE_ARRAY)
3277 {
3278 type = check_typedef (TYPE_TARGET_TYPE (type));
3279 if (type->code () == TYPE_CODE_ARRAY)
3280 {
3281 type = type->index_type ();
3282 /* Only re-evaluate the right hand side if the resulting type
3283 is a variable length type. */
3284 if (type->bounds ()->flag_bound_evaluated)
3285 {
3286 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3287 return value_from_longest
3288 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3289 }
3290 }
3291 }
3292 }
3293
3294 /* Fall through. */
3295
3296 default:
3297 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3298 type = value_type (val);
3299 break;
3300 }
3301
3302 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3303 "When applied to a reference or a reference type, the result is
3304 the size of the referenced type." */
3305 type = check_typedef (type);
3306 if (exp->language_defn->la_language == language_cplus
3307 && (TYPE_IS_REFERENCE (type)))
3308 type = check_typedef (TYPE_TARGET_TYPE (type));
3309 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3310 }
3311
3312 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3313 for that subexpression cast to TO_TYPE. Advance *POS over the
3314 subexpression. */
3315
3316 static value *
3317 evaluate_subexp_for_cast (expression *exp, int *pos,
3318 enum noside noside,
3319 struct type *to_type)
3320 {
3321 int pc = *pos;
3322
3323 /* Don't let symbols be evaluated with evaluate_subexp because that
3324 throws an "unknown type" error for no-debug data symbols.
3325 Instead, we want the cast to reinterpret the symbol. */
3326 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3327 || exp->elts[pc].opcode == OP_VAR_VALUE)
3328 {
3329 (*pos) += 4;
3330
3331 value *val;
3332 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3333 {
3334 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3335 return value_zero (to_type, not_lval);
3336
3337 val = evaluate_var_msym_value (noside,
3338 exp->elts[pc + 1].objfile,
3339 exp->elts[pc + 2].msymbol);
3340 }
3341 else
3342 val = evaluate_var_value (noside,
3343 exp->elts[pc + 1].block,
3344 exp->elts[pc + 2].symbol);
3345
3346 if (noside == EVAL_SKIP)
3347 return eval_skip_value (exp);
3348
3349 val = value_cast (to_type, val);
3350
3351 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3352 if (VALUE_LVAL (val) == lval_memory)
3353 {
3354 if (value_lazy (val))
3355 value_fetch_lazy (val);
3356 VALUE_LVAL (val) = not_lval;
3357 }
3358 return val;
3359 }
3360
3361 value *val = evaluate_subexp (to_type, exp, pos, noside);
3362 if (noside == EVAL_SKIP)
3363 return eval_skip_value (exp);
3364 return value_cast (to_type, val);
3365 }
3366
3367 /* Parse a type expression in the string [P..P+LENGTH). */
3368
3369 struct type *
3370 parse_and_eval_type (const char *p, int length)
3371 {
3372 char *tmp = (char *) alloca (length + 4);
3373
3374 tmp[0] = '(';
3375 memcpy (tmp + 1, p, length);
3376 tmp[length + 1] = ')';
3377 tmp[length + 2] = '0';
3378 tmp[length + 3] = '\0';
3379 expression_up expr = parse_expression (tmp);
3380 if (expr->first_opcode () != UNOP_CAST)
3381 error (_("Internal error in eval_type."));
3382 return expr->elts[1].type;
3383 }
This page took 0.252062 seconds and 5 git commands to generate.