Split out eval_op_neg
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include "typeprint.h"
42 #include <ctype.h>
43
44 /* Prototypes for local functions. */
45
46 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
47 enum noside);
48
49 static struct value *evaluate_subexp_for_address (struct expression *,
50 int *, enum noside);
51
52 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
53 enum noside noside,
54 struct type *type);
55
56 static struct value *evaluate_struct_tuple (struct value *,
57 struct expression *, int *,
58 enum noside, int);
59
60 struct value *
61 evaluate_subexp (struct type *expect_type, struct expression *exp,
62 int *pos, enum noside noside)
63 {
64 return ((*exp->language_defn->expression_ops ()->evaluate_exp)
65 (expect_type, exp, pos, noside));
66 }
67 \f
68 /* Parse the string EXP as a C expression, evaluate it,
69 and return the result as a number. */
70
71 CORE_ADDR
72 parse_and_eval_address (const char *exp)
73 {
74 expression_up expr = parse_expression (exp);
75
76 return value_as_address (evaluate_expression (expr.get ()));
77 }
78
79 /* Like parse_and_eval_address, but treats the value of the expression
80 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
81 LONGEST
82 parse_and_eval_long (const char *exp)
83 {
84 expression_up expr = parse_expression (exp);
85
86 return value_as_long (evaluate_expression (expr.get ()));
87 }
88
89 struct value *
90 parse_and_eval (const char *exp)
91 {
92 expression_up expr = parse_expression (exp);
93
94 return evaluate_expression (expr.get ());
95 }
96
97 /* Parse up to a comma (or to a closeparen)
98 in the string EXPP as an expression, evaluate it, and return the value.
99 EXPP is advanced to point to the comma. */
100
101 struct value *
102 parse_to_comma_and_eval (const char **expp)
103 {
104 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
105
106 return evaluate_expression (expr.get ());
107 }
108 \f
109
110 /* See expression.h. */
111
112 struct value *
113 expression::evaluate (struct type *expect_type, enum noside noside)
114 {
115 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
116 if (target_has_execution ()
117 && language_defn->la_language == language_cplus
118 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
119 stack_temporaries.emplace (inferior_thread ());
120
121 int pos = 0;
122 struct value *retval = evaluate_subexp (expect_type, this, &pos, noside);
123
124 if (stack_temporaries.has_value ()
125 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
126 retval = value_non_lval (retval);
127
128 return retval;
129 }
130
131 /* See value.h. */
132
133 struct value *
134 evaluate_expression (struct expression *exp, struct type *expect_type)
135 {
136 return exp->evaluate (expect_type, EVAL_NORMAL);
137 }
138
139 /* Evaluate an expression, avoiding all memory references
140 and getting a value whose type alone is correct. */
141
142 struct value *
143 evaluate_type (struct expression *exp)
144 {
145 return exp->evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS);
146 }
147
148 /* Evaluate a subexpression, avoiding all memory references and
149 getting a value whose type alone is correct. */
150
151 struct value *
152 evaluate_subexpression_type (struct expression *exp, int subexp)
153 {
154 return evaluate_subexp (nullptr, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
155 }
156
157 /* Find the current value of a watchpoint on EXP. Return the value in
158 *VALP and *RESULTP and the chain of intermediate and final values
159 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
160 not need them.
161
162 If PRESERVE_ERRORS is true, then exceptions are passed through.
163 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
164 occurs while evaluating the expression, *RESULTP will be set to
165 NULL. *RESULTP may be a lazy value, if the result could not be
166 read from memory. It is used to determine whether a value is
167 user-specified (we should watch the whole value) or intermediate
168 (we should watch only the bit used to locate the final value).
169
170 If the final value, or any intermediate value, could not be read
171 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
172 set to any referenced values. *VALP will never be a lazy value.
173 This is the value which we store in struct breakpoint.
174
175 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
176 released from the value chain. If VAL_CHAIN is NULL, all generated
177 values will be left on the value chain. */
178
179 void
180 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
181 struct value **resultp,
182 std::vector<value_ref_ptr> *val_chain,
183 bool preserve_errors)
184 {
185 struct value *mark, *new_mark, *result;
186
187 *valp = NULL;
188 if (resultp)
189 *resultp = NULL;
190 if (val_chain)
191 val_chain->clear ();
192
193 /* Evaluate the expression. */
194 mark = value_mark ();
195 result = NULL;
196
197 try
198 {
199 result = evaluate_subexp (nullptr, exp, pc, EVAL_NORMAL);
200 }
201 catch (const gdb_exception &ex)
202 {
203 /* Ignore memory errors if we want watchpoints pointing at
204 inaccessible memory to still be created; otherwise, throw the
205 error to some higher catcher. */
206 switch (ex.error)
207 {
208 case MEMORY_ERROR:
209 if (!preserve_errors)
210 break;
211 /* Fall through. */
212 default:
213 throw;
214 break;
215 }
216 }
217
218 new_mark = value_mark ();
219 if (mark == new_mark)
220 return;
221 if (resultp)
222 *resultp = result;
223
224 /* Make sure it's not lazy, so that after the target stops again we
225 have a non-lazy previous value to compare with. */
226 if (result != NULL)
227 {
228 if (!value_lazy (result))
229 *valp = result;
230 else
231 {
232
233 try
234 {
235 value_fetch_lazy (result);
236 *valp = result;
237 }
238 catch (const gdb_exception_error &except)
239 {
240 }
241 }
242 }
243
244 if (val_chain)
245 {
246 /* Return the chain of intermediate values. We use this to
247 decide which addresses to watch. */
248 *val_chain = value_release_to_mark (mark);
249 }
250 }
251
252 /* Extract a field operation from an expression. If the subexpression
253 of EXP starting at *SUBEXP is not a structure dereference
254 operation, return NULL. Otherwise, return the name of the
255 dereferenced field, and advance *SUBEXP to point to the
256 subexpression of the left-hand-side of the dereference. This is
257 used when completing field names. */
258
259 const char *
260 extract_field_op (struct expression *exp, int *subexp)
261 {
262 int tem;
263 char *result;
264
265 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
266 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
267 return NULL;
268 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
269 result = &exp->elts[*subexp + 2].string;
270 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
271 return result;
272 }
273
274 /* This function evaluates brace-initializers (in C/C++) for
275 structure types. */
276
277 static struct value *
278 evaluate_struct_tuple (struct value *struct_val,
279 struct expression *exp,
280 int *pos, enum noside noside, int nargs)
281 {
282 struct type *struct_type = check_typedef (value_type (struct_val));
283 struct type *field_type;
284 int fieldno = -1;
285
286 while (--nargs >= 0)
287 {
288 struct value *val = NULL;
289 int bitpos, bitsize;
290 bfd_byte *addr;
291
292 fieldno++;
293 /* Skip static fields. */
294 while (fieldno < struct_type->num_fields ()
295 && field_is_static (&struct_type->field (fieldno)))
296 fieldno++;
297 if (fieldno >= struct_type->num_fields ())
298 error (_("too many initializers"));
299 field_type = struct_type->field (fieldno).type ();
300 if (field_type->code () == TYPE_CODE_UNION
301 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
302 error (_("don't know which variant you want to set"));
303
304 /* Here, struct_type is the type of the inner struct,
305 while substruct_type is the type of the inner struct.
306 These are the same for normal structures, but a variant struct
307 contains anonymous union fields that contain substruct fields.
308 The value fieldno is the index of the top-level (normal or
309 anonymous union) field in struct_field, while the value
310 subfieldno is the index of the actual real (named inner) field
311 in substruct_type. */
312
313 field_type = struct_type->field (fieldno).type ();
314 if (val == 0)
315 val = evaluate_subexp (field_type, exp, pos, noside);
316
317 /* Now actually set the field in struct_val. */
318
319 /* Assign val to field fieldno. */
320 if (value_type (val) != field_type)
321 val = value_cast (field_type, val);
322
323 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
324 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
325 addr = value_contents_writeable (struct_val) + bitpos / 8;
326 if (bitsize)
327 modify_field (struct_type, addr,
328 value_as_long (val), bitpos % 8, bitsize);
329 else
330 memcpy (addr, value_contents (val),
331 TYPE_LENGTH (value_type (val)));
332
333 }
334 return struct_val;
335 }
336
337 /* Promote value ARG1 as appropriate before performing a unary operation
338 on this argument.
339 If the result is not appropriate for any particular language then it
340 needs to patch this function. */
341
342 void
343 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
344 struct value **arg1)
345 {
346 struct type *type1;
347
348 *arg1 = coerce_ref (*arg1);
349 type1 = check_typedef (value_type (*arg1));
350
351 if (is_integral_type (type1))
352 {
353 switch (language->la_language)
354 {
355 default:
356 /* Perform integral promotion for ANSI C/C++.
357 If not appropriate for any particular language
358 it needs to modify this function. */
359 {
360 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
361
362 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
363 *arg1 = value_cast (builtin_int, *arg1);
364 }
365 break;
366 }
367 }
368 }
369
370 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
371 operation on those two operands.
372 If the result is not appropriate for any particular language then it
373 needs to patch this function. */
374
375 void
376 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
377 struct value **arg1, struct value **arg2)
378 {
379 struct type *promoted_type = NULL;
380 struct type *type1;
381 struct type *type2;
382
383 *arg1 = coerce_ref (*arg1);
384 *arg2 = coerce_ref (*arg2);
385
386 type1 = check_typedef (value_type (*arg1));
387 type2 = check_typedef (value_type (*arg2));
388
389 if ((type1->code () != TYPE_CODE_FLT
390 && type1->code () != TYPE_CODE_DECFLOAT
391 && !is_integral_type (type1))
392 || (type2->code () != TYPE_CODE_FLT
393 && type2->code () != TYPE_CODE_DECFLOAT
394 && !is_integral_type (type2)))
395 return;
396
397 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
398 return;
399
400 if (type1->code () == TYPE_CODE_DECFLOAT
401 || type2->code () == TYPE_CODE_DECFLOAT)
402 {
403 /* No promotion required. */
404 }
405 else if (type1->code () == TYPE_CODE_FLT
406 || type2->code () == TYPE_CODE_FLT)
407 {
408 switch (language->la_language)
409 {
410 case language_c:
411 case language_cplus:
412 case language_asm:
413 case language_objc:
414 case language_opencl:
415 /* No promotion required. */
416 break;
417
418 default:
419 /* For other languages the result type is unchanged from gdb
420 version 6.7 for backward compatibility.
421 If either arg was long double, make sure that value is also long
422 double. Otherwise use double. */
423 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
424 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
425 promoted_type = builtin_type (gdbarch)->builtin_long_double;
426 else
427 promoted_type = builtin_type (gdbarch)->builtin_double;
428 break;
429 }
430 }
431 else if (type1->code () == TYPE_CODE_BOOL
432 && type2->code () == TYPE_CODE_BOOL)
433 {
434 /* No promotion required. */
435 }
436 else
437 /* Integral operations here. */
438 /* FIXME: Also mixed integral/booleans, with result an integer. */
439 {
440 const struct builtin_type *builtin = builtin_type (gdbarch);
441 unsigned int promoted_len1 = TYPE_LENGTH (type1);
442 unsigned int promoted_len2 = TYPE_LENGTH (type2);
443 int is_unsigned1 = type1->is_unsigned ();
444 int is_unsigned2 = type2->is_unsigned ();
445 unsigned int result_len;
446 int unsigned_operation;
447
448 /* Determine type length and signedness after promotion for
449 both operands. */
450 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
451 {
452 is_unsigned1 = 0;
453 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
454 }
455 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
456 {
457 is_unsigned2 = 0;
458 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
459 }
460
461 if (promoted_len1 > promoted_len2)
462 {
463 unsigned_operation = is_unsigned1;
464 result_len = promoted_len1;
465 }
466 else if (promoted_len2 > promoted_len1)
467 {
468 unsigned_operation = is_unsigned2;
469 result_len = promoted_len2;
470 }
471 else
472 {
473 unsigned_operation = is_unsigned1 || is_unsigned2;
474 result_len = promoted_len1;
475 }
476
477 switch (language->la_language)
478 {
479 case language_c:
480 case language_cplus:
481 case language_asm:
482 case language_objc:
483 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
484 {
485 promoted_type = (unsigned_operation
486 ? builtin->builtin_unsigned_int
487 : builtin->builtin_int);
488 }
489 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
490 {
491 promoted_type = (unsigned_operation
492 ? builtin->builtin_unsigned_long
493 : builtin->builtin_long);
494 }
495 else
496 {
497 promoted_type = (unsigned_operation
498 ? builtin->builtin_unsigned_long_long
499 : builtin->builtin_long_long);
500 }
501 break;
502 case language_opencl:
503 if (result_len <= TYPE_LENGTH (lookup_signed_typename
504 (language, "int")))
505 {
506 promoted_type =
507 (unsigned_operation
508 ? lookup_unsigned_typename (language, "int")
509 : lookup_signed_typename (language, "int"));
510 }
511 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
512 (language, "long")))
513 {
514 promoted_type =
515 (unsigned_operation
516 ? lookup_unsigned_typename (language, "long")
517 : lookup_signed_typename (language,"long"));
518 }
519 break;
520 default:
521 /* For other languages the result type is unchanged from gdb
522 version 6.7 for backward compatibility.
523 If either arg was long long, make sure that value is also long
524 long. Otherwise use long. */
525 if (unsigned_operation)
526 {
527 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
528 promoted_type = builtin->builtin_unsigned_long_long;
529 else
530 promoted_type = builtin->builtin_unsigned_long;
531 }
532 else
533 {
534 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
535 promoted_type = builtin->builtin_long_long;
536 else
537 promoted_type = builtin->builtin_long;
538 }
539 break;
540 }
541 }
542
543 if (promoted_type)
544 {
545 /* Promote both operands to common type. */
546 *arg1 = value_cast (promoted_type, *arg1);
547 *arg2 = value_cast (promoted_type, *arg2);
548 }
549 }
550
551 static int
552 ptrmath_type_p (const struct language_defn *lang, struct type *type)
553 {
554 type = check_typedef (type);
555 if (TYPE_IS_REFERENCE (type))
556 type = TYPE_TARGET_TYPE (type);
557
558 switch (type->code ())
559 {
560 case TYPE_CODE_PTR:
561 case TYPE_CODE_FUNC:
562 return 1;
563
564 case TYPE_CODE_ARRAY:
565 return type->is_vector () ? 0 : lang->c_style_arrays_p ();
566
567 default:
568 return 0;
569 }
570 }
571
572 /* Represents a fake method with the given parameter types. This is
573 used by the parser to construct a temporary "expected" type for
574 method overload resolution. FLAGS is used as instance flags of the
575 new type, in order to be able to make the new type represent a
576 const/volatile overload. */
577
578 class fake_method
579 {
580 public:
581 fake_method (type_instance_flags flags,
582 int num_types, struct type **param_types);
583 ~fake_method ();
584
585 /* The constructed type. */
586 struct type *type () { return &m_type; }
587
588 private:
589 struct type m_type {};
590 main_type m_main_type {};
591 };
592
593 fake_method::fake_method (type_instance_flags flags,
594 int num_types, struct type **param_types)
595 {
596 struct type *type = &m_type;
597
598 TYPE_MAIN_TYPE (type) = &m_main_type;
599 TYPE_LENGTH (type) = 1;
600 type->set_code (TYPE_CODE_METHOD);
601 TYPE_CHAIN (type) = type;
602 type->set_instance_flags (flags);
603 if (num_types > 0)
604 {
605 if (param_types[num_types - 1] == NULL)
606 {
607 --num_types;
608 type->set_has_varargs (true);
609 }
610 else if (check_typedef (param_types[num_types - 1])->code ()
611 == TYPE_CODE_VOID)
612 {
613 --num_types;
614 /* Caller should have ensured this. */
615 gdb_assert (num_types == 0);
616 type->set_is_prototyped (true);
617 }
618 }
619
620 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
621 neither an objfile nor a gdbarch. As a result we must manually
622 allocate memory for auxiliary fields, and free the memory ourselves
623 when we are done with it. */
624 type->set_num_fields (num_types);
625 type->set_fields
626 ((struct field *) xzalloc (sizeof (struct field) * num_types));
627
628 while (num_types-- > 0)
629 type->field (num_types).set_type (param_types[num_types]);
630 }
631
632 fake_method::~fake_method ()
633 {
634 xfree (m_type.fields ());
635 }
636
637 /* Helper for evaluating an OP_VAR_VALUE. */
638
639 value *
640 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
641 {
642 /* JYG: We used to just return value_zero of the symbol type if
643 we're asked to avoid side effects. Otherwise we return
644 value_of_variable (...). However I'm not sure if
645 value_of_variable () has any side effect. We need a full value
646 object returned here for whatis_exp () to call evaluate_type ()
647 and then pass the full value to value_rtti_target_type () if we
648 are dealing with a pointer or reference to a base class and print
649 object is on. */
650
651 struct value *ret = NULL;
652
653 try
654 {
655 ret = value_of_variable (var, blk);
656 }
657
658 catch (const gdb_exception_error &except)
659 {
660 if (noside != EVAL_AVOID_SIDE_EFFECTS)
661 throw;
662
663 ret = value_zero (SYMBOL_TYPE (var), not_lval);
664 }
665
666 return ret;
667 }
668
669 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
670
671 value *
672 evaluate_var_msym_value (enum noside noside,
673 struct objfile *objfile, minimal_symbol *msymbol)
674 {
675 CORE_ADDR address;
676 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
677
678 if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
679 return value_zero (the_type, not_lval);
680 else
681 return value_at_lazy (the_type, address);
682 }
683
684 /* Helper for returning a value when handling EVAL_SKIP. */
685
686 value *
687 eval_skip_value (expression *exp)
688 {
689 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
690 }
691
692 /* See expression.h. */
693
694 value *
695 evaluate_subexp_do_call (expression *exp, enum noside noside,
696 value *callee,
697 gdb::array_view<value *> argvec,
698 const char *function_name,
699 type *default_return_type)
700 {
701 if (callee == NULL)
702 error (_("Cannot evaluate function -- may be inlined"));
703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
704 {
705 /* If the return type doesn't look like a function type,
706 call an error. This can happen if somebody tries to turn
707 a variable into a function call. */
708
709 type *ftype = value_type (callee);
710
711 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
712 {
713 /* We don't know anything about what the internal
714 function might return, but we have to return
715 something. */
716 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
717 not_lval);
718 }
719 else if (ftype->code () == TYPE_CODE_XMETHOD)
720 {
721 type *return_type = result_type_of_xmethod (callee, argvec);
722
723 if (return_type == NULL)
724 error (_("Xmethod is missing return type."));
725 return value_zero (return_type, not_lval);
726 }
727 else if (ftype->code () == TYPE_CODE_FUNC
728 || ftype->code () == TYPE_CODE_METHOD)
729 {
730 if (ftype->is_gnu_ifunc ())
731 {
732 CORE_ADDR address = value_address (callee);
733 type *resolved_type = find_gnu_ifunc_target_type (address);
734
735 if (resolved_type != NULL)
736 ftype = resolved_type;
737 }
738
739 type *return_type = TYPE_TARGET_TYPE (ftype);
740
741 if (return_type == NULL)
742 return_type = default_return_type;
743
744 if (return_type == NULL)
745 error_call_unknown_return_type (function_name);
746
747 return allocate_value (return_type);
748 }
749 else
750 error (_("Expression of type other than "
751 "\"Function returning ...\" used as function"));
752 }
753 switch (value_type (callee)->code ())
754 {
755 case TYPE_CODE_INTERNAL_FUNCTION:
756 return call_internal_function (exp->gdbarch, exp->language_defn,
757 callee, argvec.size (), argvec.data ());
758 case TYPE_CODE_XMETHOD:
759 return call_xmethod (callee, argvec);
760 default:
761 return call_function_by_hand (callee, default_return_type, argvec);
762 }
763 }
764
765 /* Helper for evaluating an OP_FUNCALL. */
766
767 static value *
768 evaluate_funcall (type *expect_type, expression *exp, int *pos,
769 enum noside noside)
770 {
771 int tem;
772 int pc2 = 0;
773 value *arg1 = NULL;
774 value *arg2 = NULL;
775 int save_pos1;
776 symbol *function = NULL;
777 char *function_name = NULL;
778 const char *var_func_name = NULL;
779
780 int pc = (*pos);
781 (*pos) += 2;
782
783 exp_opcode op = exp->elts[*pos].opcode;
784 int nargs = longest_to_int (exp->elts[pc].longconst);
785 /* Allocate arg vector, including space for the function to be
786 called in argvec[0], a potential `this', and a terminating
787 NULL. */
788 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
789 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
790 {
791 /* First, evaluate the structure into arg2. */
792 pc2 = (*pos)++;
793
794 if (op == STRUCTOP_MEMBER)
795 {
796 arg2 = evaluate_subexp_for_address (exp, pos, noside);
797 }
798 else
799 {
800 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
801 }
802
803 /* If the function is a virtual function, then the aggregate
804 value (providing the structure) plays its part by providing
805 the vtable. Otherwise, it is just along for the ride: call
806 the function directly. */
807
808 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
809
810 type *a1_type = check_typedef (value_type (arg1));
811 if (noside == EVAL_SKIP)
812 tem = 1; /* Set it to the right arg index so that all
813 arguments can also be skipped. */
814 else if (a1_type->code () == TYPE_CODE_METHODPTR)
815 {
816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
817 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
818 else
819 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
820
821 /* Now, say which argument to start evaluating from. */
822 nargs++;
823 tem = 2;
824 argvec[1] = arg2;
825 }
826 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
827 {
828 struct type *type_ptr
829 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
830 struct type *target_type_ptr
831 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
832
833 /* Now, convert these values to an address. */
834 arg2 = value_cast (type_ptr, arg2);
835
836 long mem_offset = value_as_long (arg1);
837
838 arg1 = value_from_pointer (target_type_ptr,
839 value_as_long (arg2) + mem_offset);
840 arg1 = value_ind (arg1);
841 tem = 1;
842 }
843 else
844 error (_("Non-pointer-to-member value used in pointer-to-member "
845 "construct"));
846 }
847 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
848 {
849 /* Hair for method invocations. */
850 int tem2;
851
852 nargs++;
853 /* First, evaluate the structure into arg2. */
854 pc2 = (*pos)++;
855 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
856 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
857
858 if (op == STRUCTOP_STRUCT)
859 {
860 /* If v is a variable in a register, and the user types
861 v.method (), this will produce an error, because v has no
862 address.
863
864 A possible way around this would be to allocate a copy of
865 the variable on the stack, copy in the contents, call the
866 function, and copy out the contents. I.e. convert this
867 from call by reference to call by copy-return (or
868 whatever it's called). However, this does not work
869 because it is not the same: the method being called could
870 stash a copy of the address, and then future uses through
871 that address (after the method returns) would be expected
872 to use the variable itself, not some copy of it. */
873 arg2 = evaluate_subexp_for_address (exp, pos, noside);
874 }
875 else
876 {
877 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
878
879 /* Check to see if the operator '->' has been overloaded.
880 If the operator has been overloaded replace arg2 with the
881 value returned by the custom operator and continue
882 evaluation. */
883 while (unop_user_defined_p (op, arg2))
884 {
885 struct value *value = NULL;
886 try
887 {
888 value = value_x_unop (arg2, op, noside);
889 }
890
891 catch (const gdb_exception_error &except)
892 {
893 if (except.error == NOT_FOUND_ERROR)
894 break;
895 else
896 throw;
897 }
898
899 arg2 = value;
900 }
901 }
902 /* Now, say which argument to start evaluating from. */
903 tem = 2;
904 }
905 else if (op == OP_SCOPE
906 && overload_resolution
907 && (exp->language_defn->la_language == language_cplus))
908 {
909 /* Unpack it locally so we can properly handle overload
910 resolution. */
911 char *name;
912 int local_tem;
913
914 pc2 = (*pos)++;
915 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
916 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
917 struct type *type = exp->elts[pc2 + 1].type;
918 name = &exp->elts[pc2 + 3].string;
919
920 function = NULL;
921 function_name = NULL;
922 if (type->code () == TYPE_CODE_NAMESPACE)
923 {
924 function = cp_lookup_symbol_namespace (type->name (),
925 name,
926 get_selected_block (0),
927 VAR_DOMAIN).symbol;
928 if (function == NULL)
929 error (_("No symbol \"%s\" in namespace \"%s\"."),
930 name, type->name ());
931
932 tem = 1;
933 /* arg2 is left as NULL on purpose. */
934 }
935 else
936 {
937 gdb_assert (type->code () == TYPE_CODE_STRUCT
938 || type->code () == TYPE_CODE_UNION);
939 function_name = name;
940
941 /* We need a properly typed value for method lookup. For
942 static methods arg2 is otherwise unused. */
943 arg2 = value_zero (type, lval_memory);
944 ++nargs;
945 tem = 2;
946 }
947 }
948 else if (op == OP_ADL_FUNC)
949 {
950 /* Save the function position and move pos so that the arguments
951 can be evaluated. */
952 int func_name_len;
953
954 save_pos1 = *pos;
955 tem = 1;
956
957 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
958 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
959 }
960 else
961 {
962 /* Non-method function call. */
963 save_pos1 = *pos;
964 tem = 1;
965
966 /* If this is a C++ function wait until overload resolution. */
967 if (op == OP_VAR_VALUE
968 && overload_resolution
969 && (exp->language_defn->la_language == language_cplus))
970 {
971 (*pos) += 4; /* Skip the evaluation of the symbol. */
972 argvec[0] = NULL;
973 }
974 else
975 {
976 if (op == OP_VAR_MSYM_VALUE)
977 {
978 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
979 var_func_name = msym->print_name ();
980 }
981 else if (op == OP_VAR_VALUE)
982 {
983 symbol *sym = exp->elts[*pos + 2].symbol;
984 var_func_name = sym->print_name ();
985 }
986
987 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
988 type *type = value_type (argvec[0]);
989 if (type && type->code () == TYPE_CODE_PTR)
990 type = TYPE_TARGET_TYPE (type);
991 if (type && type->code () == TYPE_CODE_FUNC)
992 {
993 for (; tem <= nargs && tem <= type->num_fields (); tem++)
994 {
995 argvec[tem] = evaluate_subexp (type->field (tem - 1).type (),
996 exp, pos, noside);
997 }
998 }
999 }
1000 }
1001
1002 /* Evaluate arguments (if not already done, e.g., namespace::func()
1003 and overload-resolution is off). */
1004 for (; tem <= nargs; tem++)
1005 {
1006 /* Ensure that array expressions are coerced into pointer
1007 objects. */
1008 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1009 }
1010
1011 /* Signal end of arglist. */
1012 argvec[tem] = 0;
1013
1014 if (noside == EVAL_SKIP)
1015 return eval_skip_value (exp);
1016
1017 if (op == OP_ADL_FUNC)
1018 {
1019 struct symbol *symp;
1020 char *func_name;
1021 int name_len;
1022 int string_pc = save_pos1 + 3;
1023
1024 /* Extract the function name. */
1025 name_len = longest_to_int (exp->elts[string_pc].longconst);
1026 func_name = (char *) alloca (name_len + 1);
1027 strcpy (func_name, &exp->elts[string_pc + 1].string);
1028
1029 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1030 func_name,
1031 NON_METHOD, /* not method */
1032 NULL, NULL, /* pass NULL symbol since
1033 symbol is unknown */
1034 NULL, &symp, NULL, 0, noside);
1035
1036 /* Now fix the expression being evaluated. */
1037 exp->elts[save_pos1 + 2].symbol = symp;
1038 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1039 }
1040
1041 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1042 || (op == OP_SCOPE && function_name != NULL))
1043 {
1044 int static_memfuncp;
1045 char *tstr;
1046
1047 /* Method invocation: stuff "this" as first parameter. If the
1048 method turns out to be static we undo this below. */
1049 argvec[1] = arg2;
1050
1051 if (op != OP_SCOPE)
1052 {
1053 /* Name of method from expression. */
1054 tstr = &exp->elts[pc2 + 2].string;
1055 }
1056 else
1057 tstr = function_name;
1058
1059 if (overload_resolution && (exp->language_defn->la_language
1060 == language_cplus))
1061 {
1062 /* Language is C++, do some overload resolution before
1063 evaluation. */
1064 struct value *valp = NULL;
1065
1066 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1067 tstr,
1068 METHOD, /* method */
1069 &arg2, /* the object */
1070 NULL, &valp, NULL,
1071 &static_memfuncp, 0, noside);
1072
1073 if (op == OP_SCOPE && !static_memfuncp)
1074 {
1075 /* For the time being, we don't handle this. */
1076 error (_("Call to overloaded function %s requires "
1077 "`this' pointer"),
1078 function_name);
1079 }
1080 argvec[1] = arg2; /* the ``this'' pointer */
1081 argvec[0] = valp; /* Use the method found after overload
1082 resolution. */
1083 }
1084 else
1085 /* Non-C++ case -- or no overload resolution. */
1086 {
1087 struct value *temp = arg2;
1088
1089 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1090 &static_memfuncp,
1091 op == STRUCTOP_STRUCT
1092 ? "structure" : "structure pointer");
1093 /* value_struct_elt updates temp with the correct value of
1094 the ``this'' pointer if necessary, so modify argvec[1] to
1095 reflect any ``this'' changes. */
1096 arg2
1097 = value_from_longest (lookup_pointer_type(value_type (temp)),
1098 value_address (temp)
1099 + value_embedded_offset (temp));
1100 argvec[1] = arg2; /* the ``this'' pointer */
1101 }
1102
1103 /* Take out `this' if needed. */
1104 if (static_memfuncp)
1105 {
1106 argvec[1] = argvec[0];
1107 nargs--;
1108 argvec++;
1109 }
1110 }
1111 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1112 {
1113 /* Pointer to member. argvec[1] is already set up. */
1114 argvec[0] = arg1;
1115 }
1116 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1117 {
1118 /* Non-member function being called. */
1119 /* fn: This can only be done for C++ functions. A C-style
1120 function in a C++ program, for instance, does not have the
1121 fields that are expected here. */
1122
1123 if (overload_resolution && (exp->language_defn->la_language
1124 == language_cplus))
1125 {
1126 /* Language is C++, do some overload resolution before
1127 evaluation. */
1128 struct symbol *symp;
1129 int no_adl = 0;
1130
1131 /* If a scope has been specified disable ADL. */
1132 if (op == OP_SCOPE)
1133 no_adl = 1;
1134
1135 if (op == OP_VAR_VALUE)
1136 function = exp->elts[save_pos1+2].symbol;
1137
1138 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1139 NULL, /* no need for name */
1140 NON_METHOD, /* not method */
1141 NULL, function, /* the function */
1142 NULL, &symp, NULL, no_adl, noside);
1143
1144 if (op == OP_VAR_VALUE)
1145 {
1146 /* Now fix the expression being evaluated. */
1147 exp->elts[save_pos1+2].symbol = symp;
1148 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1149 noside);
1150 }
1151 else
1152 argvec[0] = value_of_variable (symp, get_selected_block (0));
1153 }
1154 else
1155 {
1156 /* Not C++, or no overload resolution allowed. */
1157 /* Nothing to be done; argvec already correctly set up. */
1158 }
1159 }
1160 else
1161 {
1162 /* It is probably a C-style function. */
1163 /* Nothing to be done; argvec already correctly set up. */
1164 }
1165
1166 return evaluate_subexp_do_call (exp, noside, argvec[0],
1167 gdb::make_array_view (argvec + 1, nargs),
1168 var_func_name, expect_type);
1169 }
1170
1171 /* Return true if type is integral or reference to integral */
1172
1173 static bool
1174 is_integral_or_integral_reference (struct type *type)
1175 {
1176 if (is_integral_type (type))
1177 return true;
1178
1179 type = check_typedef (type);
1180 return (type != nullptr
1181 && TYPE_IS_REFERENCE (type)
1182 && is_integral_type (TYPE_TARGET_TYPE (type)));
1183 }
1184
1185 /* Helper function that implements the body of OP_SCOPE. */
1186
1187 static struct value *
1188 eval_op_scope (struct type *expect_type, struct expression *exp,
1189 enum noside noside,
1190 struct type *type, const char *string)
1191 {
1192 if (noside == EVAL_SKIP)
1193 return eval_skip_value (exp);
1194 struct value *arg1 = value_aggregate_elt (type, string, expect_type,
1195 0, noside);
1196 if (arg1 == NULL)
1197 error (_("There is no field named %s"), string);
1198 return arg1;
1199 }
1200
1201 /* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
1202
1203 static struct value *
1204 eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
1205 enum noside noside, symbol *sym)
1206 {
1207 if (noside == EVAL_SKIP)
1208 return eval_skip_value (exp);
1209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1210 return value_zero (SYMBOL_TYPE (sym), not_lval);
1211
1212 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1213 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1214 error (_("Symbol \"%s\" does not have any specific entry value"),
1215 sym->print_name ());
1216
1217 struct frame_info *frame = get_selected_frame (NULL);
1218 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1219 }
1220
1221 /* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
1222
1223 static struct value *
1224 eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
1225 enum noside noside, bool outermost_p,
1226 minimal_symbol *msymbol, struct objfile *objfile)
1227 {
1228 value *val = evaluate_var_msym_value (noside, objfile, msymbol);
1229
1230 struct type *type = value_type (val);
1231 if (type->code () == TYPE_CODE_ERROR
1232 && (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
1233 error_unknown_type (msymbol->print_name ());
1234 return val;
1235 }
1236
1237 /* Helper function that implements the body of OP_FUNC_STATIC_VAR. */
1238
1239 static struct value *
1240 eval_op_func_static_var (struct type *expect_type, struct expression *exp,
1241 enum noside noside,
1242 value *func, const char *var)
1243 {
1244 if (noside == EVAL_SKIP)
1245 return eval_skip_value (exp);
1246 CORE_ADDR addr = value_address (func);
1247 const block *blk = block_for_pc (addr);
1248 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1249 if (sym.symbol == NULL)
1250 error (_("No symbol \"%s\" in specified context."), var);
1251 return evaluate_var_value (noside, sym.block, sym.symbol);
1252 }
1253
1254 /* Helper function that implements the body of OP_REGISTER. */
1255
1256 static struct value *
1257 eval_op_register (struct type *expect_type, struct expression *exp,
1258 enum noside noside, const char *name)
1259 {
1260 int regno;
1261 struct value *val;
1262
1263 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1264 name, strlen (name));
1265 if (regno == -1)
1266 error (_("Register $%s not available."), name);
1267
1268 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1269 a value with the appropriate register type. Unfortunately,
1270 we don't have easy access to the type of user registers.
1271 So for these registers, we fetch the register value regardless
1272 of the evaluation mode. */
1273 if (noside == EVAL_AVOID_SIDE_EFFECTS
1274 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1275 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1276 else
1277 val = value_of_register (regno, get_selected_frame (NULL));
1278 if (val == NULL)
1279 error (_("Value of register %s not available."), name);
1280 else
1281 return val;
1282 }
1283
1284 /* Helper function that implements the body of OP_STRING. */
1285
1286 static struct value *
1287 eval_op_string (struct type *expect_type, struct expression *exp,
1288 enum noside noside, int len, const char *string)
1289 {
1290 if (noside == EVAL_SKIP)
1291 return eval_skip_value (exp);
1292 struct type *type = language_string_char_type (exp->language_defn,
1293 exp->gdbarch);
1294 return value_string (string, len, type);
1295 }
1296
1297 /* Helper function that implements the body of OP_OBJC_SELECTOR. */
1298
1299 static struct value *
1300 eval_op_objc_selector (struct type *expect_type, struct expression *exp,
1301 enum noside noside,
1302 const char *sel)
1303 {
1304 if (noside == EVAL_SKIP)
1305 return eval_skip_value (exp);
1306
1307 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1308 return value_from_longest (selector_type,
1309 lookup_child_selector (exp->gdbarch, sel));
1310 }
1311
1312 /* Helper function that implements the body of BINOP_CONCAT. */
1313
1314 static struct value *
1315 eval_op_concat (struct type *expect_type, struct expression *exp,
1316 enum noside noside,
1317 enum exp_opcode op, struct value *arg1, struct value *arg2)
1318 {
1319 if (noside == EVAL_SKIP)
1320 return eval_skip_value (exp);
1321 if (binop_user_defined_p (op, arg1, arg2))
1322 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1323 else
1324 return value_concat (arg1, arg2);
1325 }
1326
1327 /* A helper function for TERNOP_SLICE. */
1328
1329 static struct value *
1330 eval_op_ternop (struct type *expect_type, struct expression *exp,
1331 enum noside noside,
1332 struct value *array, struct value *low, struct value *upper)
1333 {
1334 if (noside == EVAL_SKIP)
1335 return eval_skip_value (exp);
1336 int lowbound = value_as_long (low);
1337 int upperbound = value_as_long (upper);
1338 return value_slice (array, lowbound, upperbound - lowbound + 1);
1339 }
1340
1341 /* A helper function for STRUCTOP_STRUCT. */
1342
1343 static struct value *
1344 eval_op_structop_struct (struct type *expect_type, struct expression *exp,
1345 enum noside noside,
1346 struct value *arg1, const char *string)
1347 {
1348 if (noside == EVAL_SKIP)
1349 return eval_skip_value (exp);
1350 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1351 NULL, "structure");
1352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1353 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1354 return arg3;
1355 }
1356
1357 /* A helper function for STRUCTOP_PTR. */
1358
1359 static struct value *
1360 eval_op_structop_ptr (struct type *expect_type, struct expression *exp,
1361 enum noside noside, enum exp_opcode op,
1362 struct value *arg1, const char *string)
1363 {
1364 if (noside == EVAL_SKIP)
1365 return eval_skip_value (exp);
1366
1367 /* Check to see if operator '->' has been overloaded. If so replace
1368 arg1 with the value returned by evaluating operator->(). */
1369 while (unop_user_defined_p (op, arg1))
1370 {
1371 struct value *value = NULL;
1372 try
1373 {
1374 value = value_x_unop (arg1, op, noside);
1375 }
1376
1377 catch (const gdb_exception_error &except)
1378 {
1379 if (except.error == NOT_FOUND_ERROR)
1380 break;
1381 else
1382 throw;
1383 }
1384
1385 arg1 = value;
1386 }
1387
1388 /* JYG: if print object is on we need to replace the base type
1389 with rtti type in order to continue on with successful
1390 lookup of member / method only available in the rtti type. */
1391 {
1392 struct type *arg_type = value_type (arg1);
1393 struct type *real_type;
1394 int full, using_enc;
1395 LONGEST top;
1396 struct value_print_options opts;
1397
1398 get_user_print_options (&opts);
1399 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
1400 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
1401 {
1402 real_type = value_rtti_indirect_type (arg1, &full, &top,
1403 &using_enc);
1404 if (real_type)
1405 arg1 = value_cast (real_type, arg1);
1406 }
1407 }
1408
1409 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1410 NULL, "structure pointer");
1411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1412 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1413 return arg3;
1414 }
1415
1416 /* A helper function for STRUCTOP_MEMBER. */
1417
1418 static struct value *
1419 eval_op_member (struct type *expect_type, struct expression *exp,
1420 enum noside noside,
1421 struct value *arg1, struct value *arg2)
1422 {
1423 long mem_offset;
1424
1425 if (noside == EVAL_SKIP)
1426 return eval_skip_value (exp);
1427
1428 struct value *arg3;
1429 struct type *type = check_typedef (value_type (arg2));
1430 switch (type->code ())
1431 {
1432 case TYPE_CODE_METHODPTR:
1433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1434 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1435 else
1436 {
1437 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1438 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
1439 return value_ind (arg2);
1440 }
1441
1442 case TYPE_CODE_MEMBERPTR:
1443 /* Now, convert these values to an address. */
1444 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1445 arg1, 1);
1446
1447 mem_offset = value_as_long (arg2);
1448
1449 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1450 value_as_long (arg1) + mem_offset);
1451 return value_ind (arg3);
1452
1453 default:
1454 error (_("non-pointer-to-member value used "
1455 "in pointer-to-member construct"));
1456 }
1457 }
1458
1459 /* A helper function for BINOP_ADD. */
1460
1461 static struct value *
1462 eval_op_add (struct type *expect_type, struct expression *exp,
1463 enum noside noside, enum exp_opcode op,
1464 struct value *arg1, struct value *arg2)
1465 {
1466 if (noside == EVAL_SKIP)
1467 return eval_skip_value (exp);
1468 if (binop_user_defined_p (op, arg1, arg2))
1469 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1470 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1471 && is_integral_or_integral_reference (value_type (arg2)))
1472 return value_ptradd (arg1, value_as_long (arg2));
1473 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
1474 && is_integral_or_integral_reference (value_type (arg1)))
1475 return value_ptradd (arg2, value_as_long (arg1));
1476 else
1477 {
1478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1479 return value_binop (arg1, arg2, BINOP_ADD);
1480 }
1481 }
1482
1483 /* A helper function for BINOP_SUB. */
1484
1485 static struct value *
1486 eval_op_sub (struct type *expect_type, struct expression *exp,
1487 enum noside noside, enum exp_opcode op,
1488 struct value *arg1, struct value *arg2)
1489 {
1490 if (noside == EVAL_SKIP)
1491 return eval_skip_value (exp);
1492 if (binop_user_defined_p (op, arg1, arg2))
1493 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1494 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1495 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
1496 {
1497 /* FIXME -- should be ptrdiff_t */
1498 struct type *type = builtin_type (exp->gdbarch)->builtin_long;
1499 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1500 }
1501 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1502 && is_integral_or_integral_reference (value_type (arg2)))
1503 return value_ptradd (arg1, - value_as_long (arg2));
1504 else
1505 {
1506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1507 return value_binop (arg1, arg2, BINOP_SUB);
1508 }
1509 }
1510
1511 /* Helper function for several different binary operations. */
1512
1513 static struct value *
1514 eval_op_binary (struct type *expect_type, struct expression *exp,
1515 enum noside noside, enum exp_opcode op,
1516 struct value *arg1, struct value *arg2)
1517 {
1518 if (noside == EVAL_SKIP)
1519 return eval_skip_value (exp);
1520 if (binop_user_defined_p (op, arg1, arg2))
1521 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1522 else
1523 {
1524 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1525 fudge arg2 to avoid division-by-zero, the caller is
1526 (theoretically) only looking for the type of the result. */
1527 if (noside == EVAL_AVOID_SIDE_EFFECTS
1528 /* ??? Do we really want to test for BINOP_MOD here?
1529 The implementation of value_binop gives it a well-defined
1530 value. */
1531 && (op == BINOP_DIV
1532 || op == BINOP_INTDIV
1533 || op == BINOP_REM
1534 || op == BINOP_MOD)
1535 && value_logical_not (arg2))
1536 {
1537 struct value *v_one;
1538
1539 v_one = value_one (value_type (arg2));
1540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1541 return value_binop (arg1, v_one, op);
1542 }
1543 else
1544 {
1545 /* For shift and integer exponentiation operations,
1546 only promote the first argument. */
1547 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1548 && is_integral_type (value_type (arg2)))
1549 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1550 else
1551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1552
1553 return value_binop (arg1, arg2, op);
1554 }
1555 }
1556 }
1557
1558 /* A helper function for BINOP_SUBSCRIPT. */
1559
1560 static struct value *
1561 eval_op_subscript (struct type *expect_type, struct expression *exp,
1562 enum noside noside, enum exp_opcode op,
1563 struct value *arg1, struct value *arg2)
1564 {
1565 if (noside == EVAL_SKIP)
1566 return eval_skip_value (exp);
1567 if (binop_user_defined_p (op, arg1, arg2))
1568 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1569 else
1570 {
1571 /* If the user attempts to subscript something that is not an
1572 array or pointer type (like a plain int variable for example),
1573 then report this as an error. */
1574
1575 arg1 = coerce_ref (arg1);
1576 struct type *type = check_typedef (value_type (arg1));
1577 if (type->code () != TYPE_CODE_ARRAY
1578 && type->code () != TYPE_CODE_PTR)
1579 {
1580 if (type->name ())
1581 error (_("cannot subscript something of type `%s'"),
1582 type->name ());
1583 else
1584 error (_("cannot subscript requested type"));
1585 }
1586
1587 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1588 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1589 else
1590 return value_subscript (arg1, value_as_long (arg2));
1591 }
1592 }
1593
1594 /* A helper function for BINOP_EQUAL. */
1595
1596 static struct value *
1597 eval_op_equal (struct type *expect_type, struct expression *exp,
1598 enum noside noside, enum exp_opcode op,
1599 struct value *arg1, struct value *arg2)
1600 {
1601 if (noside == EVAL_SKIP)
1602 return eval_skip_value (exp);
1603 if (binop_user_defined_p (op, arg1, arg2))
1604 {
1605 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1606 }
1607 else
1608 {
1609 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1610 int tem = value_equal (arg1, arg2);
1611 struct type *type = language_bool_type (exp->language_defn,
1612 exp->gdbarch);
1613 return value_from_longest (type, (LONGEST) tem);
1614 }
1615 }
1616
1617 /* A helper function for BINOP_NOTEQUAL. */
1618
1619 static struct value *
1620 eval_op_notequal (struct type *expect_type, struct expression *exp,
1621 enum noside noside, enum exp_opcode op,
1622 struct value *arg1, struct value *arg2)
1623 {
1624 if (noside == EVAL_SKIP)
1625 return eval_skip_value (exp);
1626 if (binop_user_defined_p (op, arg1, arg2))
1627 {
1628 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1629 }
1630 else
1631 {
1632 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1633 int tem = value_equal (arg1, arg2);
1634 struct type *type = language_bool_type (exp->language_defn,
1635 exp->gdbarch);
1636 return value_from_longest (type, (LONGEST) ! tem);
1637 }
1638 }
1639
1640 /* A helper function for BINOP_LESS. */
1641
1642 static struct value *
1643 eval_op_less (struct type *expect_type, struct expression *exp,
1644 enum noside noside, enum exp_opcode op,
1645 struct value *arg1, struct value *arg2)
1646 {
1647 if (noside == EVAL_SKIP)
1648 return eval_skip_value (exp);
1649 if (binop_user_defined_p (op, arg1, arg2))
1650 {
1651 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1652 }
1653 else
1654 {
1655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1656 int tem = value_less (arg1, arg2);
1657 struct type *type = language_bool_type (exp->language_defn,
1658 exp->gdbarch);
1659 return value_from_longest (type, (LONGEST) tem);
1660 }
1661 }
1662
1663 /* A helper function for BINOP_GTR. */
1664
1665 static struct value *
1666 eval_op_gtr (struct type *expect_type, struct expression *exp,
1667 enum noside noside, enum exp_opcode op,
1668 struct value *arg1, struct value *arg2)
1669 {
1670 if (noside == EVAL_SKIP)
1671 return eval_skip_value (exp);
1672 if (binop_user_defined_p (op, arg1, arg2))
1673 {
1674 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1675 }
1676 else
1677 {
1678 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1679 int tem = value_less (arg2, arg1);
1680 struct type *type = language_bool_type (exp->language_defn,
1681 exp->gdbarch);
1682 return value_from_longest (type, (LONGEST) tem);
1683 }
1684 }
1685
1686 /* A helper function for BINOP_GEQ. */
1687
1688 static struct value *
1689 eval_op_geq (struct type *expect_type, struct expression *exp,
1690 enum noside noside, enum exp_opcode op,
1691 struct value *arg1, struct value *arg2)
1692 {
1693 if (noside == EVAL_SKIP)
1694 return eval_skip_value (exp);
1695 if (binop_user_defined_p (op, arg1, arg2))
1696 {
1697 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1698 }
1699 else
1700 {
1701 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1702 int tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1703 struct type *type = language_bool_type (exp->language_defn,
1704 exp->gdbarch);
1705 return value_from_longest (type, (LONGEST) tem);
1706 }
1707 }
1708
1709 /* A helper function for BINOP_LEQ. */
1710
1711 static struct value *
1712 eval_op_leq (struct type *expect_type, struct expression *exp,
1713 enum noside noside, enum exp_opcode op,
1714 struct value *arg1, struct value *arg2)
1715 {
1716 if (noside == EVAL_SKIP)
1717 return eval_skip_value (exp);
1718 if (binop_user_defined_p (op, arg1, arg2))
1719 {
1720 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1721 }
1722 else
1723 {
1724 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1725 int tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
1726 struct type *type = language_bool_type (exp->language_defn,
1727 exp->gdbarch);
1728 return value_from_longest (type, (LONGEST) tem);
1729 }
1730 }
1731
1732 /* A helper function for BINOP_REPEAT. */
1733
1734 static struct value *
1735 eval_op_repeat (struct type *expect_type, struct expression *exp,
1736 enum noside noside,
1737 struct value *arg1, struct value *arg2)
1738 {
1739 if (noside == EVAL_SKIP)
1740 return eval_skip_value (exp);
1741 struct type *type = check_typedef (value_type (arg2));
1742 if (type->code () != TYPE_CODE_INT
1743 && type->code () != TYPE_CODE_ENUM)
1744 error (_("Non-integral right operand for \"@\" operator."));
1745 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1746 {
1747 return allocate_repeat_value (value_type (arg1),
1748 longest_to_int (value_as_long (arg2)));
1749 }
1750 else
1751 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
1752 }
1753
1754 /* A helper function for UNOP_PLUS. */
1755
1756 static struct value *
1757 eval_op_plus (struct type *expect_type, struct expression *exp,
1758 enum noside noside, enum exp_opcode op,
1759 struct value *arg1)
1760 {
1761 if (noside == EVAL_SKIP)
1762 return eval_skip_value (exp);
1763 if (unop_user_defined_p (op, arg1))
1764 return value_x_unop (arg1, op, noside);
1765 else
1766 {
1767 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1768 return value_pos (arg1);
1769 }
1770 }
1771
1772 /* A helper function for UNOP_NEG. */
1773
1774 static struct value *
1775 eval_op_neg (struct type *expect_type, struct expression *exp,
1776 enum noside noside, enum exp_opcode op,
1777 struct value *arg1)
1778 {
1779 if (noside == EVAL_SKIP)
1780 return eval_skip_value (exp);
1781 if (unop_user_defined_p (op, arg1))
1782 return value_x_unop (arg1, op, noside);
1783 else
1784 {
1785 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1786 return value_neg (arg1);
1787 }
1788 }
1789
1790 struct value *
1791 evaluate_subexp_standard (struct type *expect_type,
1792 struct expression *exp, int *pos,
1793 enum noside noside)
1794 {
1795 enum exp_opcode op;
1796 int tem, tem2, tem3;
1797 int pc, oldpos;
1798 struct value *arg1 = NULL;
1799 struct value *arg2 = NULL;
1800 struct value *arg3;
1801 struct type *type;
1802 int nargs;
1803 struct value **argvec;
1804 int ix;
1805 struct type **arg_types;
1806
1807 pc = (*pos)++;
1808 op = exp->elts[pc].opcode;
1809
1810 switch (op)
1811 {
1812 case OP_SCOPE:
1813 tem = longest_to_int (exp->elts[pc + 2].longconst);
1814 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1815 return eval_op_scope (expect_type, exp, noside,
1816 exp->elts[pc + 1].type,
1817 &exp->elts[pc + 3].string);
1818
1819 case OP_LONG:
1820 (*pos) += 3;
1821 return value_from_longest (exp->elts[pc + 1].type,
1822 exp->elts[pc + 2].longconst);
1823
1824 case OP_FLOAT:
1825 (*pos) += 3;
1826 return value_from_contents (exp->elts[pc + 1].type,
1827 exp->elts[pc + 2].floatconst);
1828
1829 case OP_ADL_FUNC:
1830 case OP_VAR_VALUE:
1831 {
1832 (*pos) += 3;
1833 symbol *var = exp->elts[pc + 2].symbol;
1834 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
1835 error_unknown_type (var->print_name ());
1836 if (noside != EVAL_SKIP)
1837 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1838 else
1839 {
1840 /* Return a dummy value of the correct type when skipping, so
1841 that parent functions know what is to be skipped. */
1842 return allocate_value (SYMBOL_TYPE (var));
1843 }
1844 }
1845
1846 case OP_VAR_MSYM_VALUE:
1847 {
1848 (*pos) += 3;
1849
1850 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1851 return eval_op_var_msym_value (expect_type, exp, noside,
1852 pc == 0, msymbol,
1853 exp->elts[pc + 1].objfile);
1854 }
1855
1856 case OP_VAR_ENTRY_VALUE:
1857 (*pos) += 2;
1858
1859 {
1860 struct symbol *sym = exp->elts[pc + 1].symbol;
1861
1862 return eval_op_var_entry_value (expect_type, exp, noside, sym);
1863 }
1864
1865 case OP_FUNC_STATIC_VAR:
1866 tem = longest_to_int (exp->elts[pc + 1].longconst);
1867 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1868 if (noside == EVAL_SKIP)
1869 return eval_skip_value (exp);
1870
1871 {
1872 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1873
1874 return eval_op_func_static_var (expect_type, exp, noside, func,
1875 &exp->elts[pc + 2].string);
1876 }
1877
1878 case OP_LAST:
1879 (*pos) += 2;
1880 return
1881 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
1882
1883 case OP_REGISTER:
1884 {
1885 const char *name = &exp->elts[pc + 2].string;
1886
1887 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
1888 return eval_op_register (expect_type, exp, noside, name);
1889 }
1890 case OP_BOOL:
1891 (*pos) += 2;
1892 type = language_bool_type (exp->language_defn, exp->gdbarch);
1893 return value_from_longest (type, exp->elts[pc + 1].longconst);
1894
1895 case OP_INTERNALVAR:
1896 (*pos) += 2;
1897 return value_of_internalvar (exp->gdbarch,
1898 exp->elts[pc + 1].internalvar);
1899
1900 case OP_STRING:
1901 tem = longest_to_int (exp->elts[pc + 1].longconst);
1902 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1903 return eval_op_string (expect_type, exp, noside, tem,
1904 &exp->elts[pc + 2].string);
1905
1906 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
1907 NSString constant. */
1908 tem = longest_to_int (exp->elts[pc + 1].longconst);
1909 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1910 if (noside == EVAL_SKIP)
1911 return eval_skip_value (exp);
1912 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
1913
1914 case OP_ARRAY:
1915 (*pos) += 3;
1916 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
1917 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
1918 nargs = tem3 - tem2 + 1;
1919 type = expect_type ? check_typedef (expect_type) : nullptr;
1920
1921 if (expect_type != nullptr && noside != EVAL_SKIP
1922 && type->code () == TYPE_CODE_STRUCT)
1923 {
1924 struct value *rec = allocate_value (expect_type);
1925
1926 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
1927 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
1928 }
1929
1930 if (expect_type != nullptr && noside != EVAL_SKIP
1931 && type->code () == TYPE_CODE_ARRAY)
1932 {
1933 struct type *range_type = type->index_type ();
1934 struct type *element_type = TYPE_TARGET_TYPE (type);
1935 struct value *array = allocate_value (expect_type);
1936 int element_size = TYPE_LENGTH (check_typedef (element_type));
1937 LONGEST low_bound, high_bound, index;
1938
1939 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
1940 {
1941 low_bound = 0;
1942 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1943 }
1944 index = low_bound;
1945 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1946 for (tem = nargs; --nargs >= 0;)
1947 {
1948 struct value *element;
1949
1950 element = evaluate_subexp (element_type, exp, pos, noside);
1951 if (value_type (element) != element_type)
1952 element = value_cast (element_type, element);
1953 if (index > high_bound)
1954 /* To avoid memory corruption. */
1955 error (_("Too many array elements"));
1956 memcpy (value_contents_raw (array)
1957 + (index - low_bound) * element_size,
1958 value_contents (element),
1959 element_size);
1960 index++;
1961 }
1962 return array;
1963 }
1964
1965 if (expect_type != nullptr && noside != EVAL_SKIP
1966 && type->code () == TYPE_CODE_SET)
1967 {
1968 struct value *set = allocate_value (expect_type);
1969 gdb_byte *valaddr = value_contents_raw (set);
1970 struct type *element_type = type->index_type ();
1971 struct type *check_type = element_type;
1972 LONGEST low_bound, high_bound;
1973
1974 /* Get targettype of elementtype. */
1975 while (check_type->code () == TYPE_CODE_RANGE
1976 || check_type->code () == TYPE_CODE_TYPEDEF)
1977 check_type = TYPE_TARGET_TYPE (check_type);
1978
1979 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
1980 error (_("(power)set type with unknown size"));
1981 memset (valaddr, '\0', TYPE_LENGTH (type));
1982 for (tem = 0; tem < nargs; tem++)
1983 {
1984 LONGEST range_low, range_high;
1985 struct type *range_low_type, *range_high_type;
1986 struct value *elem_val;
1987
1988 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1989 range_low_type = range_high_type = value_type (elem_val);
1990 range_low = range_high = value_as_long (elem_val);
1991
1992 /* Check types of elements to avoid mixture of elements from
1993 different types. Also check if type of element is "compatible"
1994 with element type of powerset. */
1995 if (range_low_type->code () == TYPE_CODE_RANGE)
1996 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1997 if (range_high_type->code () == TYPE_CODE_RANGE)
1998 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1999 if ((range_low_type->code () != range_high_type->code ())
2000 || (range_low_type->code () == TYPE_CODE_ENUM
2001 && (range_low_type != range_high_type)))
2002 /* different element modes. */
2003 error (_("POWERSET tuple elements of different mode"));
2004 if ((check_type->code () != range_low_type->code ())
2005 || (check_type->code () == TYPE_CODE_ENUM
2006 && range_low_type != check_type))
2007 error (_("incompatible POWERSET tuple elements"));
2008 if (range_low > range_high)
2009 {
2010 warning (_("empty POWERSET tuple range"));
2011 continue;
2012 }
2013 if (range_low < low_bound || range_high > high_bound)
2014 error (_("POWERSET tuple element out of range"));
2015 range_low -= low_bound;
2016 range_high -= low_bound;
2017 for (; range_low <= range_high; range_low++)
2018 {
2019 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
2020
2021 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
2022 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
2023 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
2024 |= 1 << bit_index;
2025 }
2026 }
2027 return set;
2028 }
2029
2030 argvec = XALLOCAVEC (struct value *, nargs);
2031 for (tem = 0; tem < nargs; tem++)
2032 {
2033 /* Ensure that array expressions are coerced into pointer
2034 objects. */
2035 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
2036 }
2037 if (noside == EVAL_SKIP)
2038 return eval_skip_value (exp);
2039 return value_array (tem2, tem3, argvec);
2040
2041 case TERNOP_SLICE:
2042 {
2043 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
2044 struct value *low = evaluate_subexp (nullptr, exp, pos, noside);
2045 struct value *upper = evaluate_subexp (nullptr, exp, pos, noside);
2046 return eval_op_ternop (expect_type, exp, noside, array, low, upper);
2047 }
2048
2049 case TERNOP_COND:
2050 /* Skip third and second args to evaluate the first one. */
2051 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2052 if (value_logical_not (arg1))
2053 {
2054 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2055 return evaluate_subexp (nullptr, exp, pos, noside);
2056 }
2057 else
2058 {
2059 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2060 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2061 return arg2;
2062 }
2063
2064 case OP_OBJC_SELECTOR:
2065 { /* Objective C @selector operator. */
2066 char *sel = &exp->elts[pc + 2].string;
2067 int len = longest_to_int (exp->elts[pc + 1].longconst);
2068
2069 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
2070 if (sel[len] != 0)
2071 sel[len] = 0; /* Make sure it's terminated. */
2072
2073 return eval_op_objc_selector (expect_type, exp, noside, sel);
2074 }
2075
2076 case OP_OBJC_MSGCALL:
2077 { /* Objective C message (method) call. */
2078
2079 CORE_ADDR responds_selector = 0;
2080 CORE_ADDR method_selector = 0;
2081
2082 CORE_ADDR selector = 0;
2083
2084 int struct_return = 0;
2085 enum noside sub_no_side = EVAL_NORMAL;
2086
2087 struct value *msg_send = NULL;
2088 struct value *msg_send_stret = NULL;
2089 int gnu_runtime = 0;
2090
2091 struct value *target = NULL;
2092 struct value *method = NULL;
2093 struct value *called_method = NULL;
2094
2095 struct type *selector_type = NULL;
2096 struct type *long_type;
2097
2098 struct value *ret = NULL;
2099 CORE_ADDR addr = 0;
2100
2101 selector = exp->elts[pc + 1].longconst;
2102 nargs = exp->elts[pc + 2].longconst;
2103 argvec = XALLOCAVEC (struct value *, nargs + 5);
2104
2105 (*pos) += 3;
2106
2107 long_type = builtin_type (exp->gdbarch)->builtin_long;
2108 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
2109
2110 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2111 sub_no_side = EVAL_NORMAL;
2112 else
2113 sub_no_side = noside;
2114
2115 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
2116
2117 if (value_as_long (target) == 0)
2118 return value_from_longest (long_type, 0);
2119
2120 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
2121 gnu_runtime = 1;
2122
2123 /* Find the method dispatch (Apple runtime) or method lookup
2124 (GNU runtime) function for Objective-C. These will be used
2125 to lookup the symbol information for the method. If we
2126 can't find any symbol information, then we'll use these to
2127 call the method, otherwise we can call the method
2128 directly. The msg_send_stret function is used in the special
2129 case of a method that returns a structure (Apple runtime
2130 only). */
2131 if (gnu_runtime)
2132 {
2133 type = selector_type;
2134
2135 type = lookup_function_type (type);
2136 type = lookup_pointer_type (type);
2137 type = lookup_function_type (type);
2138 type = lookup_pointer_type (type);
2139
2140 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
2141 msg_send_stret
2142 = find_function_in_inferior ("objc_msg_lookup", NULL);
2143
2144 msg_send = value_from_pointer (type, value_as_address (msg_send));
2145 msg_send_stret = value_from_pointer (type,
2146 value_as_address (msg_send_stret));
2147 }
2148 else
2149 {
2150 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
2151 /* Special dispatcher for methods returning structs. */
2152 msg_send_stret
2153 = find_function_in_inferior ("objc_msgSend_stret", NULL);
2154 }
2155
2156 /* Verify the target object responds to this method. The
2157 standard top-level 'Object' class uses a different name for
2158 the verification method than the non-standard, but more
2159 often used, 'NSObject' class. Make sure we check for both. */
2160
2161 responds_selector
2162 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
2163 if (responds_selector == 0)
2164 responds_selector
2165 = lookup_child_selector (exp->gdbarch, "respondsTo:");
2166
2167 if (responds_selector == 0)
2168 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
2169
2170 method_selector
2171 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
2172 if (method_selector == 0)
2173 method_selector
2174 = lookup_child_selector (exp->gdbarch, "methodFor:");
2175
2176 if (method_selector == 0)
2177 error (_("no 'methodFor:' or 'methodForSelector:' method"));
2178
2179 /* Call the verification method, to make sure that the target
2180 class implements the desired method. */
2181
2182 argvec[0] = msg_send;
2183 argvec[1] = target;
2184 argvec[2] = value_from_longest (long_type, responds_selector);
2185 argvec[3] = value_from_longest (long_type, selector);
2186 argvec[4] = 0;
2187
2188 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2189 if (gnu_runtime)
2190 {
2191 /* Function objc_msg_lookup returns a pointer. */
2192 argvec[0] = ret;
2193 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2194 }
2195 if (value_as_long (ret) == 0)
2196 error (_("Target does not respond to this message selector."));
2197
2198 /* Call "methodForSelector:" method, to get the address of a
2199 function method that implements this selector for this
2200 class. If we can find a symbol at that address, then we
2201 know the return type, parameter types etc. (that's a good
2202 thing). */
2203
2204 argvec[0] = msg_send;
2205 argvec[1] = target;
2206 argvec[2] = value_from_longest (long_type, method_selector);
2207 argvec[3] = value_from_longest (long_type, selector);
2208 argvec[4] = 0;
2209
2210 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2211 if (gnu_runtime)
2212 {
2213 argvec[0] = ret;
2214 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2215 }
2216
2217 /* ret should now be the selector. */
2218
2219 addr = value_as_long (ret);
2220 if (addr)
2221 {
2222 struct symbol *sym = NULL;
2223
2224 /* The address might point to a function descriptor;
2225 resolve it to the actual code address instead. */
2226 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
2227 current_top_target ());
2228
2229 /* Is it a high_level symbol? */
2230 sym = find_pc_function (addr);
2231 if (sym != NULL)
2232 method = value_of_variable (sym, 0);
2233 }
2234
2235 /* If we found a method with symbol information, check to see
2236 if it returns a struct. Otherwise assume it doesn't. */
2237
2238 if (method)
2239 {
2240 CORE_ADDR funaddr;
2241 struct type *val_type;
2242
2243 funaddr = find_function_addr (method, &val_type);
2244
2245 block_for_pc (funaddr);
2246
2247 val_type = check_typedef (val_type);
2248
2249 if ((val_type == NULL)
2250 || (val_type->code () == TYPE_CODE_ERROR))
2251 {
2252 if (expect_type != NULL)
2253 val_type = expect_type;
2254 }
2255
2256 struct_return = using_struct_return (exp->gdbarch, method,
2257 val_type);
2258 }
2259 else if (expect_type != NULL)
2260 {
2261 struct_return = using_struct_return (exp->gdbarch, NULL,
2262 check_typedef (expect_type));
2263 }
2264
2265 /* Found a function symbol. Now we will substitute its
2266 value in place of the message dispatcher (obj_msgSend),
2267 so that we call the method directly instead of thru
2268 the dispatcher. The main reason for doing this is that
2269 we can now evaluate the return value and parameter values
2270 according to their known data types, in case we need to
2271 do things like promotion, dereferencing, special handling
2272 of structs and doubles, etc.
2273
2274 We want to use the type signature of 'method', but still
2275 jump to objc_msgSend() or objc_msgSend_stret() to better
2276 mimic the behavior of the runtime. */
2277
2278 if (method)
2279 {
2280 if (value_type (method)->code () != TYPE_CODE_FUNC)
2281 error (_("method address has symbol information "
2282 "with non-function type; skipping"));
2283
2284 /* Create a function pointer of the appropriate type, and
2285 replace its value with the value of msg_send or
2286 msg_send_stret. We must use a pointer here, as
2287 msg_send and msg_send_stret are of pointer type, and
2288 the representation may be different on systems that use
2289 function descriptors. */
2290 if (struct_return)
2291 called_method
2292 = value_from_pointer (lookup_pointer_type (value_type (method)),
2293 value_as_address (msg_send_stret));
2294 else
2295 called_method
2296 = value_from_pointer (lookup_pointer_type (value_type (method)),
2297 value_as_address (msg_send));
2298 }
2299 else
2300 {
2301 if (struct_return)
2302 called_method = msg_send_stret;
2303 else
2304 called_method = msg_send;
2305 }
2306
2307 if (noside == EVAL_SKIP)
2308 return eval_skip_value (exp);
2309
2310 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2311 {
2312 /* If the return type doesn't look like a function type,
2313 call an error. This can happen if somebody tries to
2314 turn a variable into a function call. This is here
2315 because people often want to call, eg, strcmp, which
2316 gdb doesn't know is a function. If gdb isn't asked for
2317 it's opinion (ie. through "whatis"), it won't offer
2318 it. */
2319
2320 struct type *callee_type = value_type (called_method);
2321
2322 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
2323 callee_type = TYPE_TARGET_TYPE (callee_type);
2324 callee_type = TYPE_TARGET_TYPE (callee_type);
2325
2326 if (callee_type)
2327 {
2328 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
2329 return allocate_value (expect_type);
2330 else
2331 return allocate_value (callee_type);
2332 }
2333 else
2334 error (_("Expression of type other than "
2335 "\"method returning ...\" used as a method"));
2336 }
2337
2338 /* Now depending on whether we found a symbol for the method,
2339 we will either call the runtime dispatcher or the method
2340 directly. */
2341
2342 argvec[0] = called_method;
2343 argvec[1] = target;
2344 argvec[2] = value_from_longest (long_type, selector);
2345 /* User-supplied arguments. */
2346 for (tem = 0; tem < nargs; tem++)
2347 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
2348 argvec[tem + 3] = 0;
2349
2350 auto call_args = gdb::make_array_view (argvec + 1, nargs + 2);
2351
2352 if (gnu_runtime && (method != NULL))
2353 {
2354 /* Function objc_msg_lookup returns a pointer. */
2355 deprecated_set_value_type (argvec[0],
2356 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
2357 argvec[0] = call_function_by_hand (argvec[0], NULL, call_args);
2358 }
2359
2360 return call_function_by_hand (argvec[0], NULL, call_args);
2361 }
2362 break;
2363
2364 case OP_FUNCALL:
2365 return evaluate_funcall (expect_type, exp, pos, noside);
2366
2367 case OP_COMPLEX:
2368 /* We have a complex number, There should be 2 floating
2369 point numbers that compose it. */
2370 (*pos) += 2;
2371 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2372 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2373
2374 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
2375
2376 case STRUCTOP_STRUCT:
2377 tem = longest_to_int (exp->elts[pc + 1].longconst);
2378 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2379 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2380 return eval_op_structop_struct (expect_type, exp, noside, arg1,
2381 &exp->elts[pc + 2].string);
2382
2383 case STRUCTOP_PTR:
2384 tem = longest_to_int (exp->elts[pc + 1].longconst);
2385 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2386 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2387 return eval_op_structop_ptr (expect_type, exp, noside, op, arg1,
2388 &exp->elts[pc + 2].string);
2389
2390 case STRUCTOP_MEMBER:
2391 case STRUCTOP_MPTR:
2392 if (op == STRUCTOP_MEMBER)
2393 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2394 else
2395 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2396
2397 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2398
2399 return eval_op_member (expect_type, exp, noside, arg1, arg2);
2400
2401 case TYPE_INSTANCE:
2402 {
2403 type_instance_flags flags
2404 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2405 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2406 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2407 for (ix = 0; ix < nargs; ++ix)
2408 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2409
2410 fake_method fake_expect_type (flags, nargs, arg_types);
2411 *(pos) += 4 + nargs;
2412 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
2413 noside);
2414 }
2415
2416 case BINOP_CONCAT:
2417 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2418 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2419 return eval_op_concat (expect_type, exp, noside, op, arg1, arg2);
2420
2421 case BINOP_ASSIGN:
2422 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2423 /* Special-case assignments where the left-hand-side is a
2424 convenience variable -- in these, don't bother setting an
2425 expected type. This avoids a weird case where re-assigning a
2426 string or array to an internal variable could error with "Too
2427 many array elements". */
2428 arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
2429 ? nullptr
2430 : value_type (arg1),
2431 exp, pos, noside);
2432
2433 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2434 return arg1;
2435 if (binop_user_defined_p (op, arg1, arg2))
2436 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2437 else
2438 return value_assign (arg1, arg2);
2439
2440 case BINOP_ASSIGN_MODIFY:
2441 (*pos) += 2;
2442 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2443 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2444 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2445 return arg1;
2446 op = exp->elts[pc + 1].opcode;
2447 if (binop_user_defined_p (op, arg1, arg2))
2448 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2449 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2450 value_type (arg1))
2451 && is_integral_type (value_type (arg2)))
2452 arg2 = value_ptradd (arg1, value_as_long (arg2));
2453 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2454 value_type (arg1))
2455 && is_integral_type (value_type (arg2)))
2456 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2457 else
2458 {
2459 struct value *tmp = arg1;
2460
2461 /* For shift and integer exponentiation operations,
2462 only promote the first argument. */
2463 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2464 && is_integral_type (value_type (arg2)))
2465 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2466 else
2467 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2468
2469 arg2 = value_binop (tmp, arg2, op);
2470 }
2471 return value_assign (arg1, arg2);
2472
2473 case BINOP_ADD:
2474 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2475 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2476 return eval_op_add (expect_type, exp, noside, op, arg1, arg2);
2477
2478 case BINOP_SUB:
2479 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2480 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2481 return eval_op_sub (expect_type, exp, noside, op, arg1, arg2);
2482
2483 case BINOP_EXP:
2484 case BINOP_MUL:
2485 case BINOP_DIV:
2486 case BINOP_INTDIV:
2487 case BINOP_REM:
2488 case BINOP_MOD:
2489 case BINOP_LSH:
2490 case BINOP_RSH:
2491 case BINOP_BITWISE_AND:
2492 case BINOP_BITWISE_IOR:
2493 case BINOP_BITWISE_XOR:
2494 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2495 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2496 return eval_op_binary (expect_type, exp, noside, op, arg1, arg2);
2497
2498 case BINOP_SUBSCRIPT:
2499 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2500 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2501 return eval_op_subscript (expect_type, exp, noside, op, arg1, arg2);
2502
2503 case MULTI_SUBSCRIPT:
2504 (*pos) += 2;
2505 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2506 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2507 argvec = XALLOCAVEC (struct value *, nargs);
2508 for (ix = 0; ix < nargs; ++ix)
2509 argvec[ix] = evaluate_subexp_with_coercion (exp, pos, noside);
2510 if (noside == EVAL_SKIP)
2511 return arg1;
2512 for (ix = 0; ix < nargs; ++ix)
2513 {
2514 arg2 = argvec[ix];
2515
2516 if (binop_user_defined_p (op, arg1, arg2))
2517 {
2518 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2519 }
2520 else
2521 {
2522 arg1 = coerce_ref (arg1);
2523 type = check_typedef (value_type (arg1));
2524
2525 switch (type->code ())
2526 {
2527 case TYPE_CODE_PTR:
2528 case TYPE_CODE_ARRAY:
2529 case TYPE_CODE_STRING:
2530 arg1 = value_subscript (arg1, value_as_long (arg2));
2531 break;
2532
2533 default:
2534 if (type->name ())
2535 error (_("cannot subscript something of type `%s'"),
2536 type->name ());
2537 else
2538 error (_("cannot subscript requested type"));
2539 }
2540 }
2541 }
2542 return (arg1);
2543
2544 case BINOP_LOGICAL_AND:
2545 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2546 if (noside == EVAL_SKIP)
2547 {
2548 evaluate_subexp (nullptr, exp, pos, noside);
2549 return eval_skip_value (exp);
2550 }
2551
2552 oldpos = *pos;
2553 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2554 *pos = oldpos;
2555
2556 if (binop_user_defined_p (op, arg1, arg2))
2557 {
2558 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2559 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2560 }
2561 else
2562 {
2563 tem = value_logical_not (arg1);
2564 arg2
2565 = evaluate_subexp (nullptr, exp, pos, (tem ? EVAL_SKIP : noside));
2566 type = language_bool_type (exp->language_defn, exp->gdbarch);
2567 return value_from_longest (type,
2568 (LONGEST) (!tem && !value_logical_not (arg2)));
2569 }
2570
2571 case BINOP_LOGICAL_OR:
2572 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2573 if (noside == EVAL_SKIP)
2574 {
2575 evaluate_subexp (nullptr, exp, pos, noside);
2576 return eval_skip_value (exp);
2577 }
2578
2579 oldpos = *pos;
2580 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2581 *pos = oldpos;
2582
2583 if (binop_user_defined_p (op, arg1, arg2))
2584 {
2585 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2586 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2587 }
2588 else
2589 {
2590 tem = value_logical_not (arg1);
2591 arg2
2592 = evaluate_subexp (nullptr, exp, pos, (!tem ? EVAL_SKIP : noside));
2593 type = language_bool_type (exp->language_defn, exp->gdbarch);
2594 return value_from_longest (type,
2595 (LONGEST) (!tem || !value_logical_not (arg2)));
2596 }
2597
2598 case BINOP_EQUAL:
2599 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2600 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2601 return eval_op_equal (expect_type, exp, noside, op, arg1, arg2);
2602
2603 case BINOP_NOTEQUAL:
2604 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2605 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2606 return eval_op_notequal (expect_type, exp, noside, op, arg1, arg2);
2607
2608 case BINOP_LESS:
2609 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2610 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2611 return eval_op_less (expect_type, exp, noside, op, arg1, arg2);
2612
2613 case BINOP_GTR:
2614 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2615 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2616 return eval_op_gtr (expect_type, exp, noside, op, arg1, arg2);
2617
2618 case BINOP_GEQ:
2619 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2620 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2621 return eval_op_geq (expect_type, exp, noside, op, arg1, arg2);
2622
2623 case BINOP_LEQ:
2624 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2625 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2626 return eval_op_leq (expect_type, exp, noside, op, arg1, arg2);
2627
2628 case BINOP_REPEAT:
2629 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2630 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2631 return eval_op_repeat (expect_type, exp, noside, arg1, arg2);
2632
2633 case BINOP_COMMA:
2634 evaluate_subexp (nullptr, exp, pos, noside);
2635 return evaluate_subexp (nullptr, exp, pos, noside);
2636
2637 case UNOP_PLUS:
2638 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2639 return eval_op_plus (expect_type, exp, noside, op, arg1);
2640
2641 case UNOP_NEG:
2642 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2643 return eval_op_neg (expect_type, exp, noside, op, arg1);
2644
2645 case UNOP_COMPLEMENT:
2646 /* C++: check for and handle destructor names. */
2647
2648 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2649 if (noside == EVAL_SKIP)
2650 return eval_skip_value (exp);
2651 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2652 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2653 else
2654 {
2655 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2656 return value_complement (arg1);
2657 }
2658
2659 case UNOP_LOGICAL_NOT:
2660 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2661 if (noside == EVAL_SKIP)
2662 return eval_skip_value (exp);
2663 if (unop_user_defined_p (op, arg1))
2664 return value_x_unop (arg1, op, noside);
2665 else
2666 {
2667 type = language_bool_type (exp->language_defn, exp->gdbarch);
2668 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2669 }
2670
2671 case UNOP_IND:
2672 if (expect_type && expect_type->code () == TYPE_CODE_PTR)
2673 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2674 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2675 type = check_typedef (value_type (arg1));
2676 if (type->code () == TYPE_CODE_METHODPTR
2677 || type->code () == TYPE_CODE_MEMBERPTR)
2678 error (_("Attempt to dereference pointer "
2679 "to member without an object"));
2680 if (noside == EVAL_SKIP)
2681 return eval_skip_value (exp);
2682 if (unop_user_defined_p (op, arg1))
2683 return value_x_unop (arg1, op, noside);
2684 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2685 {
2686 type = check_typedef (value_type (arg1));
2687
2688 /* If the type pointed to is dynamic then in order to resolve the
2689 dynamic properties we must actually dereference the pointer.
2690 There is a risk that this dereference will have side-effects
2691 in the inferior, but being able to print accurate type
2692 information seems worth the risk. */
2693 if ((type->code () != TYPE_CODE_PTR
2694 && !TYPE_IS_REFERENCE (type))
2695 || !is_dynamic_type (TYPE_TARGET_TYPE (type)))
2696 {
2697 if (type->code () == TYPE_CODE_PTR
2698 || TYPE_IS_REFERENCE (type)
2699 /* In C you can dereference an array to get the 1st elt. */
2700 || type->code () == TYPE_CODE_ARRAY)
2701 return value_zero (TYPE_TARGET_TYPE (type),
2702 lval_memory);
2703 else if (type->code () == TYPE_CODE_INT)
2704 /* GDB allows dereferencing an int. */
2705 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2706 lval_memory);
2707 else
2708 error (_("Attempt to take contents of a non-pointer value."));
2709 }
2710 }
2711
2712 /* Allow * on an integer so we can cast it to whatever we want.
2713 This returns an int, which seems like the most C-like thing to
2714 do. "long long" variables are rare enough that
2715 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2716 if (type->code () == TYPE_CODE_INT)
2717 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2718 (CORE_ADDR) value_as_address (arg1));
2719 return value_ind (arg1);
2720
2721 case UNOP_ADDR:
2722 /* C++: check for and handle pointer to members. */
2723
2724 if (noside == EVAL_SKIP)
2725 {
2726 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2727 return eval_skip_value (exp);
2728 }
2729 else
2730 return evaluate_subexp_for_address (exp, pos, noside);
2731
2732 case UNOP_SIZEOF:
2733 if (noside == EVAL_SKIP)
2734 {
2735 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2736 return eval_skip_value (exp);
2737 }
2738 return evaluate_subexp_for_sizeof (exp, pos, noside);
2739
2740 case UNOP_ALIGNOF:
2741 {
2742 type = value_type (
2743 evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS));
2744 /* FIXME: This should be size_t. */
2745 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2746 ULONGEST align = type_align (type);
2747 if (align == 0)
2748 error (_("could not determine alignment of type"));
2749 return value_from_longest (size_type, align);
2750 }
2751
2752 case UNOP_CAST:
2753 (*pos) += 2;
2754 type = exp->elts[pc + 1].type;
2755 return evaluate_subexp_for_cast (exp, pos, noside, type);
2756
2757 case UNOP_CAST_TYPE:
2758 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2759 type = value_type (arg1);
2760 return evaluate_subexp_for_cast (exp, pos, noside, type);
2761
2762 case UNOP_DYNAMIC_CAST:
2763 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2764 type = value_type (arg1);
2765 arg1 = evaluate_subexp (type, exp, pos, noside);
2766 if (noside == EVAL_SKIP)
2767 return eval_skip_value (exp);
2768 return value_dynamic_cast (type, arg1);
2769
2770 case UNOP_REINTERPRET_CAST:
2771 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2772 type = value_type (arg1);
2773 arg1 = evaluate_subexp (type, exp, pos, noside);
2774 if (noside == EVAL_SKIP)
2775 return eval_skip_value (exp);
2776 return value_reinterpret_cast (type, arg1);
2777
2778 case UNOP_MEMVAL:
2779 (*pos) += 2;
2780 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2781 if (noside == EVAL_SKIP)
2782 return eval_skip_value (exp);
2783 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2784 return value_zero (exp->elts[pc + 1].type, lval_memory);
2785 else
2786 return value_at_lazy (exp->elts[pc + 1].type,
2787 value_as_address (arg1));
2788
2789 case UNOP_MEMVAL_TYPE:
2790 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2791 type = value_type (arg1);
2792 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2793 if (noside == EVAL_SKIP)
2794 return eval_skip_value (exp);
2795 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2796 return value_zero (type, lval_memory);
2797 else
2798 return value_at_lazy (type, value_as_address (arg1));
2799
2800 case UNOP_PREINCREMENT:
2801 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2802 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2803 return arg1;
2804 else if (unop_user_defined_p (op, arg1))
2805 {
2806 return value_x_unop (arg1, op, noside);
2807 }
2808 else
2809 {
2810 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2811 arg2 = value_ptradd (arg1, 1);
2812 else
2813 {
2814 struct value *tmp = arg1;
2815
2816 arg2 = value_one (value_type (arg1));
2817 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2818 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2819 }
2820
2821 return value_assign (arg1, arg2);
2822 }
2823
2824 case UNOP_PREDECREMENT:
2825 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2826 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2827 return arg1;
2828 else if (unop_user_defined_p (op, arg1))
2829 {
2830 return value_x_unop (arg1, op, noside);
2831 }
2832 else
2833 {
2834 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2835 arg2 = value_ptradd (arg1, -1);
2836 else
2837 {
2838 struct value *tmp = arg1;
2839
2840 arg2 = value_one (value_type (arg1));
2841 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2842 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2843 }
2844
2845 return value_assign (arg1, arg2);
2846 }
2847
2848 case UNOP_POSTINCREMENT:
2849 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2850 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2851 return arg1;
2852 else if (unop_user_defined_p (op, arg1))
2853 {
2854 return value_x_unop (arg1, op, noside);
2855 }
2856 else
2857 {
2858 arg3 = value_non_lval (arg1);
2859
2860 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2861 arg2 = value_ptradd (arg1, 1);
2862 else
2863 {
2864 struct value *tmp = arg1;
2865
2866 arg2 = value_one (value_type (arg1));
2867 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2868 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2869 }
2870
2871 value_assign (arg1, arg2);
2872 return arg3;
2873 }
2874
2875 case UNOP_POSTDECREMENT:
2876 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2877 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2878 return arg1;
2879 else if (unop_user_defined_p (op, arg1))
2880 {
2881 return value_x_unop (arg1, op, noside);
2882 }
2883 else
2884 {
2885 arg3 = value_non_lval (arg1);
2886
2887 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2888 arg2 = value_ptradd (arg1, -1);
2889 else
2890 {
2891 struct value *tmp = arg1;
2892
2893 arg2 = value_one (value_type (arg1));
2894 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2895 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2896 }
2897
2898 value_assign (arg1, arg2);
2899 return arg3;
2900 }
2901
2902 case OP_THIS:
2903 (*pos) += 1;
2904 return value_of_this (exp->language_defn);
2905
2906 case OP_TYPE:
2907 /* The value is not supposed to be used. This is here to make it
2908 easier to accommodate expressions that contain types. */
2909 (*pos) += 2;
2910 if (noside == EVAL_SKIP)
2911 return eval_skip_value (exp);
2912 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2913 return allocate_value (exp->elts[pc + 1].type);
2914 else
2915 error (_("Attempt to use a type name as an expression"));
2916
2917 case OP_TYPEOF:
2918 case OP_DECLTYPE:
2919 if (noside == EVAL_SKIP)
2920 {
2921 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2922 return eval_skip_value (exp);
2923 }
2924 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2925 {
2926 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2927 struct value *result;
2928
2929 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2930
2931 /* 'decltype' has special semantics for lvalues. */
2932 if (op == OP_DECLTYPE
2933 && (sub_op == BINOP_SUBSCRIPT
2934 || sub_op == STRUCTOP_MEMBER
2935 || sub_op == STRUCTOP_MPTR
2936 || sub_op == UNOP_IND
2937 || sub_op == STRUCTOP_STRUCT
2938 || sub_op == STRUCTOP_PTR
2939 || sub_op == OP_SCOPE))
2940 {
2941 type = value_type (result);
2942
2943 if (!TYPE_IS_REFERENCE (type))
2944 {
2945 type = lookup_lvalue_reference_type (type);
2946 result = allocate_value (type);
2947 }
2948 }
2949
2950 return result;
2951 }
2952 else
2953 error (_("Attempt to use a type as an expression"));
2954
2955 case OP_TYPEID:
2956 {
2957 struct value *result;
2958 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2959
2960 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2961 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2962 else
2963 result = evaluate_subexp (nullptr, exp, pos, noside);
2964
2965 if (noside != EVAL_NORMAL)
2966 return allocate_value (cplus_typeid_type (exp->gdbarch));
2967
2968 return cplus_typeid (result);
2969 }
2970
2971 default:
2972 /* Removing this case and compiling with gcc -Wall reveals that
2973 a lot of cases are hitting this case. Some of these should
2974 probably be removed from expression.h; others are legitimate
2975 expressions which are (apparently) not fully implemented.
2976
2977 If there are any cases landing here which mean a user error,
2978 then they should be separate cases, with more descriptive
2979 error messages. */
2980
2981 error (_("GDB does not (yet) know how to "
2982 "evaluate that kind of expression"));
2983 }
2984
2985 gdb_assert_not_reached ("missed return?");
2986 }
2987 \f
2988 /* Evaluate a subexpression of EXP, at index *POS,
2989 and return the address of that subexpression.
2990 Advance *POS over the subexpression.
2991 If the subexpression isn't an lvalue, get an error.
2992 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2993 then only the type of the result need be correct. */
2994
2995 static struct value *
2996 evaluate_subexp_for_address (struct expression *exp, int *pos,
2997 enum noside noside)
2998 {
2999 enum exp_opcode op;
3000 int pc;
3001 struct symbol *var;
3002 struct value *x;
3003 int tem;
3004
3005 pc = (*pos);
3006 op = exp->elts[pc].opcode;
3007
3008 switch (op)
3009 {
3010 case UNOP_IND:
3011 (*pos)++;
3012 x = evaluate_subexp (nullptr, exp, pos, noside);
3013
3014 /* We can't optimize out "&*" if there's a user-defined operator*. */
3015 if (unop_user_defined_p (op, x))
3016 {
3017 x = value_x_unop (x, op, noside);
3018 goto default_case_after_eval;
3019 }
3020
3021 return coerce_array (x);
3022
3023 case UNOP_MEMVAL:
3024 (*pos) += 3;
3025 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
3026 evaluate_subexp (nullptr, exp, pos, noside));
3027
3028 case UNOP_MEMVAL_TYPE:
3029 {
3030 struct type *type;
3031
3032 (*pos) += 1;
3033 x = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3034 type = value_type (x);
3035 return value_cast (lookup_pointer_type (type),
3036 evaluate_subexp (nullptr, exp, pos, noside));
3037 }
3038
3039 case OP_VAR_VALUE:
3040 var = exp->elts[pc + 2].symbol;
3041
3042 /* C++: The "address" of a reference should yield the address
3043 * of the object pointed to. Let value_addr() deal with it. */
3044 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
3045 goto default_case;
3046
3047 (*pos) += 4;
3048 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3049 {
3050 struct type *type =
3051 lookup_pointer_type (SYMBOL_TYPE (var));
3052 enum address_class sym_class = SYMBOL_CLASS (var);
3053
3054 if (sym_class == LOC_CONST
3055 || sym_class == LOC_CONST_BYTES
3056 || sym_class == LOC_REGISTER)
3057 error (_("Attempt to take address of register or constant."));
3058
3059 return
3060 value_zero (type, not_lval);
3061 }
3062 else
3063 return address_of_variable (var, exp->elts[pc + 1].block);
3064
3065 case OP_VAR_MSYM_VALUE:
3066 {
3067 (*pos) += 4;
3068
3069 value *val = evaluate_var_msym_value (noside,
3070 exp->elts[pc + 1].objfile,
3071 exp->elts[pc + 2].msymbol);
3072 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3073 {
3074 struct type *type = lookup_pointer_type (value_type (val));
3075 return value_zero (type, not_lval);
3076 }
3077 else
3078 return value_addr (val);
3079 }
3080
3081 case OP_SCOPE:
3082 tem = longest_to_int (exp->elts[pc + 2].longconst);
3083 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3084 x = value_aggregate_elt (exp->elts[pc + 1].type,
3085 &exp->elts[pc + 3].string,
3086 NULL, 1, noside);
3087 if (x == NULL)
3088 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3089 return x;
3090
3091 default:
3092 default_case:
3093 x = evaluate_subexp (nullptr, exp, pos, noside);
3094 default_case_after_eval:
3095 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3096 {
3097 struct type *type = check_typedef (value_type (x));
3098
3099 if (TYPE_IS_REFERENCE (type))
3100 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3101 not_lval);
3102 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3103 return value_zero (lookup_pointer_type (value_type (x)),
3104 not_lval);
3105 else
3106 error (_("Attempt to take address of "
3107 "value not located in memory."));
3108 }
3109 return value_addr (x);
3110 }
3111 }
3112
3113 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3114 When used in contexts where arrays will be coerced anyway, this is
3115 equivalent to `evaluate_subexp' but much faster because it avoids
3116 actually fetching array contents (perhaps obsolete now that we have
3117 value_lazy()).
3118
3119 Note that we currently only do the coercion for C expressions, where
3120 arrays are zero based and the coercion is correct. For other languages,
3121 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3122 to decide if coercion is appropriate. */
3123
3124 struct value *
3125 evaluate_subexp_with_coercion (struct expression *exp,
3126 int *pos, enum noside noside)
3127 {
3128 enum exp_opcode op;
3129 int pc;
3130 struct value *val;
3131 struct symbol *var;
3132 struct type *type;
3133
3134 pc = (*pos);
3135 op = exp->elts[pc].opcode;
3136
3137 switch (op)
3138 {
3139 case OP_VAR_VALUE:
3140 var = exp->elts[pc + 2].symbol;
3141 type = check_typedef (SYMBOL_TYPE (var));
3142 if (type->code () == TYPE_CODE_ARRAY
3143 && !type->is_vector ()
3144 && CAST_IS_CONVERSION (exp->language_defn))
3145 {
3146 (*pos) += 4;
3147 val = address_of_variable (var, exp->elts[pc + 1].block);
3148 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3149 val);
3150 }
3151 /* FALLTHROUGH */
3152
3153 default:
3154 return evaluate_subexp (nullptr, exp, pos, noside);
3155 }
3156 }
3157
3158 /* Evaluate a subexpression of EXP, at index *POS,
3159 and return a value for the size of that subexpression.
3160 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3161 we allow side-effects on the operand if its type is a variable
3162 length array. */
3163
3164 static struct value *
3165 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3166 enum noside noside)
3167 {
3168 /* FIXME: This should be size_t. */
3169 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3170 enum exp_opcode op;
3171 int pc;
3172 struct type *type;
3173 struct value *val;
3174
3175 pc = (*pos);
3176 op = exp->elts[pc].opcode;
3177
3178 switch (op)
3179 {
3180 /* This case is handled specially
3181 so that we avoid creating a value for the result type.
3182 If the result type is very big, it's desirable not to
3183 create a value unnecessarily. */
3184 case UNOP_IND:
3185 (*pos)++;
3186 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3187 type = check_typedef (value_type (val));
3188 if (type->code () != TYPE_CODE_PTR
3189 && !TYPE_IS_REFERENCE (type)
3190 && type->code () != TYPE_CODE_ARRAY)
3191 error (_("Attempt to take contents of a non-pointer value."));
3192 type = TYPE_TARGET_TYPE (type);
3193 if (is_dynamic_type (type))
3194 type = value_type (value_ind (val));
3195 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3196
3197 case UNOP_MEMVAL:
3198 (*pos) += 3;
3199 type = exp->elts[pc + 1].type;
3200 break;
3201
3202 case UNOP_MEMVAL_TYPE:
3203 (*pos) += 1;
3204 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3205 type = value_type (val);
3206 break;
3207
3208 case OP_VAR_VALUE:
3209 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3210 if (is_dynamic_type (type))
3211 {
3212 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3213 type = value_type (val);
3214 if (type->code () == TYPE_CODE_ARRAY)
3215 {
3216 if (type_not_allocated (type) || type_not_associated (type))
3217 return value_zero (size_type, not_lval);
3218 else if (is_dynamic_type (type->index_type ())
3219 && type->bounds ()->high.kind () == PROP_UNDEFINED)
3220 return allocate_optimized_out_value (size_type);
3221 }
3222 }
3223 else
3224 (*pos) += 4;
3225 break;
3226
3227 case OP_VAR_MSYM_VALUE:
3228 {
3229 (*pos) += 4;
3230
3231 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3232 value *mval = evaluate_var_msym_value (noside,
3233 exp->elts[pc + 1].objfile,
3234 msymbol);
3235
3236 type = value_type (mval);
3237 if (type->code () == TYPE_CODE_ERROR)
3238 error_unknown_type (msymbol->print_name ());
3239
3240 return value_from_longest (size_type, TYPE_LENGTH (type));
3241 }
3242 break;
3243
3244 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3245 type of the subscript is a variable length array type. In this case we
3246 must re-evaluate the right hand side of the subscription to allow
3247 side-effects. */
3248 case BINOP_SUBSCRIPT:
3249 if (noside == EVAL_NORMAL)
3250 {
3251 int npc = (*pos) + 1;
3252
3253 val = evaluate_subexp (nullptr, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
3254 type = check_typedef (value_type (val));
3255 if (type->code () == TYPE_CODE_ARRAY)
3256 {
3257 type = check_typedef (TYPE_TARGET_TYPE (type));
3258 if (type->code () == TYPE_CODE_ARRAY)
3259 {
3260 type = type->index_type ();
3261 /* Only re-evaluate the right hand side if the resulting type
3262 is a variable length type. */
3263 if (type->bounds ()->flag_bound_evaluated)
3264 {
3265 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3266 return value_from_longest
3267 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3268 }
3269 }
3270 }
3271 }
3272
3273 /* Fall through. */
3274
3275 default:
3276 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3277 type = value_type (val);
3278 break;
3279 }
3280
3281 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3282 "When applied to a reference or a reference type, the result is
3283 the size of the referenced type." */
3284 type = check_typedef (type);
3285 if (exp->language_defn->la_language == language_cplus
3286 && (TYPE_IS_REFERENCE (type)))
3287 type = check_typedef (TYPE_TARGET_TYPE (type));
3288 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3289 }
3290
3291 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3292 for that subexpression cast to TO_TYPE. Advance *POS over the
3293 subexpression. */
3294
3295 static value *
3296 evaluate_subexp_for_cast (expression *exp, int *pos,
3297 enum noside noside,
3298 struct type *to_type)
3299 {
3300 int pc = *pos;
3301
3302 /* Don't let symbols be evaluated with evaluate_subexp because that
3303 throws an "unknown type" error for no-debug data symbols.
3304 Instead, we want the cast to reinterpret the symbol. */
3305 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3306 || exp->elts[pc].opcode == OP_VAR_VALUE)
3307 {
3308 (*pos) += 4;
3309
3310 value *val;
3311 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3312 {
3313 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3314 return value_zero (to_type, not_lval);
3315
3316 val = evaluate_var_msym_value (noside,
3317 exp->elts[pc + 1].objfile,
3318 exp->elts[pc + 2].msymbol);
3319 }
3320 else
3321 val = evaluate_var_value (noside,
3322 exp->elts[pc + 1].block,
3323 exp->elts[pc + 2].symbol);
3324
3325 if (noside == EVAL_SKIP)
3326 return eval_skip_value (exp);
3327
3328 val = value_cast (to_type, val);
3329
3330 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3331 if (VALUE_LVAL (val) == lval_memory)
3332 {
3333 if (value_lazy (val))
3334 value_fetch_lazy (val);
3335 VALUE_LVAL (val) = not_lval;
3336 }
3337 return val;
3338 }
3339
3340 value *val = evaluate_subexp (to_type, exp, pos, noside);
3341 if (noside == EVAL_SKIP)
3342 return eval_skip_value (exp);
3343 return value_cast (to_type, val);
3344 }
3345
3346 /* Parse a type expression in the string [P..P+LENGTH). */
3347
3348 struct type *
3349 parse_and_eval_type (const char *p, int length)
3350 {
3351 char *tmp = (char *) alloca (length + 4);
3352
3353 tmp[0] = '(';
3354 memcpy (tmp + 1, p, length);
3355 tmp[length + 1] = ')';
3356 tmp[length + 2] = '0';
3357 tmp[length + 3] = '\0';
3358 expression_up expr = parse_expression (tmp);
3359 if (expr->first_opcode () != UNOP_CAST)
3360 error (_("Internal error in eval_type."));
3361 return expr->elts[1].type;
3362 }
This page took 0.099328 seconds and 5 git commands to generate.