Split out eval_op_ind
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include "typeprint.h"
42 #include <ctype.h>
43
44 /* Prototypes for local functions. */
45
46 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
47 enum noside);
48
49 static struct value *evaluate_subexp_for_address (struct expression *,
50 int *, enum noside);
51
52 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
53 enum noside noside,
54 struct type *type);
55
56 static struct value *evaluate_struct_tuple (struct value *,
57 struct expression *, int *,
58 enum noside, int);
59
60 struct value *
61 evaluate_subexp (struct type *expect_type, struct expression *exp,
62 int *pos, enum noside noside)
63 {
64 return ((*exp->language_defn->expression_ops ()->evaluate_exp)
65 (expect_type, exp, pos, noside));
66 }
67 \f
68 /* Parse the string EXP as a C expression, evaluate it,
69 and return the result as a number. */
70
71 CORE_ADDR
72 parse_and_eval_address (const char *exp)
73 {
74 expression_up expr = parse_expression (exp);
75
76 return value_as_address (evaluate_expression (expr.get ()));
77 }
78
79 /* Like parse_and_eval_address, but treats the value of the expression
80 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
81 LONGEST
82 parse_and_eval_long (const char *exp)
83 {
84 expression_up expr = parse_expression (exp);
85
86 return value_as_long (evaluate_expression (expr.get ()));
87 }
88
89 struct value *
90 parse_and_eval (const char *exp)
91 {
92 expression_up expr = parse_expression (exp);
93
94 return evaluate_expression (expr.get ());
95 }
96
97 /* Parse up to a comma (or to a closeparen)
98 in the string EXPP as an expression, evaluate it, and return the value.
99 EXPP is advanced to point to the comma. */
100
101 struct value *
102 parse_to_comma_and_eval (const char **expp)
103 {
104 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
105
106 return evaluate_expression (expr.get ());
107 }
108 \f
109
110 /* See expression.h. */
111
112 struct value *
113 expression::evaluate (struct type *expect_type, enum noside noside)
114 {
115 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
116 if (target_has_execution ()
117 && language_defn->la_language == language_cplus
118 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
119 stack_temporaries.emplace (inferior_thread ());
120
121 int pos = 0;
122 struct value *retval = evaluate_subexp (expect_type, this, &pos, noside);
123
124 if (stack_temporaries.has_value ()
125 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
126 retval = value_non_lval (retval);
127
128 return retval;
129 }
130
131 /* See value.h. */
132
133 struct value *
134 evaluate_expression (struct expression *exp, struct type *expect_type)
135 {
136 return exp->evaluate (expect_type, EVAL_NORMAL);
137 }
138
139 /* Evaluate an expression, avoiding all memory references
140 and getting a value whose type alone is correct. */
141
142 struct value *
143 evaluate_type (struct expression *exp)
144 {
145 return exp->evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS);
146 }
147
148 /* Evaluate a subexpression, avoiding all memory references and
149 getting a value whose type alone is correct. */
150
151 struct value *
152 evaluate_subexpression_type (struct expression *exp, int subexp)
153 {
154 return evaluate_subexp (nullptr, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
155 }
156
157 /* Find the current value of a watchpoint on EXP. Return the value in
158 *VALP and *RESULTP and the chain of intermediate and final values
159 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
160 not need them.
161
162 If PRESERVE_ERRORS is true, then exceptions are passed through.
163 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
164 occurs while evaluating the expression, *RESULTP will be set to
165 NULL. *RESULTP may be a lazy value, if the result could not be
166 read from memory. It is used to determine whether a value is
167 user-specified (we should watch the whole value) or intermediate
168 (we should watch only the bit used to locate the final value).
169
170 If the final value, or any intermediate value, could not be read
171 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
172 set to any referenced values. *VALP will never be a lazy value.
173 This is the value which we store in struct breakpoint.
174
175 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
176 released from the value chain. If VAL_CHAIN is NULL, all generated
177 values will be left on the value chain. */
178
179 void
180 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
181 struct value **resultp,
182 std::vector<value_ref_ptr> *val_chain,
183 bool preserve_errors)
184 {
185 struct value *mark, *new_mark, *result;
186
187 *valp = NULL;
188 if (resultp)
189 *resultp = NULL;
190 if (val_chain)
191 val_chain->clear ();
192
193 /* Evaluate the expression. */
194 mark = value_mark ();
195 result = NULL;
196
197 try
198 {
199 result = evaluate_subexp (nullptr, exp, pc, EVAL_NORMAL);
200 }
201 catch (const gdb_exception &ex)
202 {
203 /* Ignore memory errors if we want watchpoints pointing at
204 inaccessible memory to still be created; otherwise, throw the
205 error to some higher catcher. */
206 switch (ex.error)
207 {
208 case MEMORY_ERROR:
209 if (!preserve_errors)
210 break;
211 /* Fall through. */
212 default:
213 throw;
214 break;
215 }
216 }
217
218 new_mark = value_mark ();
219 if (mark == new_mark)
220 return;
221 if (resultp)
222 *resultp = result;
223
224 /* Make sure it's not lazy, so that after the target stops again we
225 have a non-lazy previous value to compare with. */
226 if (result != NULL)
227 {
228 if (!value_lazy (result))
229 *valp = result;
230 else
231 {
232
233 try
234 {
235 value_fetch_lazy (result);
236 *valp = result;
237 }
238 catch (const gdb_exception_error &except)
239 {
240 }
241 }
242 }
243
244 if (val_chain)
245 {
246 /* Return the chain of intermediate values. We use this to
247 decide which addresses to watch. */
248 *val_chain = value_release_to_mark (mark);
249 }
250 }
251
252 /* Extract a field operation from an expression. If the subexpression
253 of EXP starting at *SUBEXP is not a structure dereference
254 operation, return NULL. Otherwise, return the name of the
255 dereferenced field, and advance *SUBEXP to point to the
256 subexpression of the left-hand-side of the dereference. This is
257 used when completing field names. */
258
259 const char *
260 extract_field_op (struct expression *exp, int *subexp)
261 {
262 int tem;
263 char *result;
264
265 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
266 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
267 return NULL;
268 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
269 result = &exp->elts[*subexp + 2].string;
270 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
271 return result;
272 }
273
274 /* This function evaluates brace-initializers (in C/C++) for
275 structure types. */
276
277 static struct value *
278 evaluate_struct_tuple (struct value *struct_val,
279 struct expression *exp,
280 int *pos, enum noside noside, int nargs)
281 {
282 struct type *struct_type = check_typedef (value_type (struct_val));
283 struct type *field_type;
284 int fieldno = -1;
285
286 while (--nargs >= 0)
287 {
288 struct value *val = NULL;
289 int bitpos, bitsize;
290 bfd_byte *addr;
291
292 fieldno++;
293 /* Skip static fields. */
294 while (fieldno < struct_type->num_fields ()
295 && field_is_static (&struct_type->field (fieldno)))
296 fieldno++;
297 if (fieldno >= struct_type->num_fields ())
298 error (_("too many initializers"));
299 field_type = struct_type->field (fieldno).type ();
300 if (field_type->code () == TYPE_CODE_UNION
301 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
302 error (_("don't know which variant you want to set"));
303
304 /* Here, struct_type is the type of the inner struct,
305 while substruct_type is the type of the inner struct.
306 These are the same for normal structures, but a variant struct
307 contains anonymous union fields that contain substruct fields.
308 The value fieldno is the index of the top-level (normal or
309 anonymous union) field in struct_field, while the value
310 subfieldno is the index of the actual real (named inner) field
311 in substruct_type. */
312
313 field_type = struct_type->field (fieldno).type ();
314 if (val == 0)
315 val = evaluate_subexp (field_type, exp, pos, noside);
316
317 /* Now actually set the field in struct_val. */
318
319 /* Assign val to field fieldno. */
320 if (value_type (val) != field_type)
321 val = value_cast (field_type, val);
322
323 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
324 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
325 addr = value_contents_writeable (struct_val) + bitpos / 8;
326 if (bitsize)
327 modify_field (struct_type, addr,
328 value_as_long (val), bitpos % 8, bitsize);
329 else
330 memcpy (addr, value_contents (val),
331 TYPE_LENGTH (value_type (val)));
332
333 }
334 return struct_val;
335 }
336
337 /* Promote value ARG1 as appropriate before performing a unary operation
338 on this argument.
339 If the result is not appropriate for any particular language then it
340 needs to patch this function. */
341
342 void
343 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
344 struct value **arg1)
345 {
346 struct type *type1;
347
348 *arg1 = coerce_ref (*arg1);
349 type1 = check_typedef (value_type (*arg1));
350
351 if (is_integral_type (type1))
352 {
353 switch (language->la_language)
354 {
355 default:
356 /* Perform integral promotion for ANSI C/C++.
357 If not appropriate for any particular language
358 it needs to modify this function. */
359 {
360 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
361
362 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
363 *arg1 = value_cast (builtin_int, *arg1);
364 }
365 break;
366 }
367 }
368 }
369
370 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
371 operation on those two operands.
372 If the result is not appropriate for any particular language then it
373 needs to patch this function. */
374
375 void
376 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
377 struct value **arg1, struct value **arg2)
378 {
379 struct type *promoted_type = NULL;
380 struct type *type1;
381 struct type *type2;
382
383 *arg1 = coerce_ref (*arg1);
384 *arg2 = coerce_ref (*arg2);
385
386 type1 = check_typedef (value_type (*arg1));
387 type2 = check_typedef (value_type (*arg2));
388
389 if ((type1->code () != TYPE_CODE_FLT
390 && type1->code () != TYPE_CODE_DECFLOAT
391 && !is_integral_type (type1))
392 || (type2->code () != TYPE_CODE_FLT
393 && type2->code () != TYPE_CODE_DECFLOAT
394 && !is_integral_type (type2)))
395 return;
396
397 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
398 return;
399
400 if (type1->code () == TYPE_CODE_DECFLOAT
401 || type2->code () == TYPE_CODE_DECFLOAT)
402 {
403 /* No promotion required. */
404 }
405 else if (type1->code () == TYPE_CODE_FLT
406 || type2->code () == TYPE_CODE_FLT)
407 {
408 switch (language->la_language)
409 {
410 case language_c:
411 case language_cplus:
412 case language_asm:
413 case language_objc:
414 case language_opencl:
415 /* No promotion required. */
416 break;
417
418 default:
419 /* For other languages the result type is unchanged from gdb
420 version 6.7 for backward compatibility.
421 If either arg was long double, make sure that value is also long
422 double. Otherwise use double. */
423 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
424 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
425 promoted_type = builtin_type (gdbarch)->builtin_long_double;
426 else
427 promoted_type = builtin_type (gdbarch)->builtin_double;
428 break;
429 }
430 }
431 else if (type1->code () == TYPE_CODE_BOOL
432 && type2->code () == TYPE_CODE_BOOL)
433 {
434 /* No promotion required. */
435 }
436 else
437 /* Integral operations here. */
438 /* FIXME: Also mixed integral/booleans, with result an integer. */
439 {
440 const struct builtin_type *builtin = builtin_type (gdbarch);
441 unsigned int promoted_len1 = TYPE_LENGTH (type1);
442 unsigned int promoted_len2 = TYPE_LENGTH (type2);
443 int is_unsigned1 = type1->is_unsigned ();
444 int is_unsigned2 = type2->is_unsigned ();
445 unsigned int result_len;
446 int unsigned_operation;
447
448 /* Determine type length and signedness after promotion for
449 both operands. */
450 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
451 {
452 is_unsigned1 = 0;
453 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
454 }
455 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
456 {
457 is_unsigned2 = 0;
458 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
459 }
460
461 if (promoted_len1 > promoted_len2)
462 {
463 unsigned_operation = is_unsigned1;
464 result_len = promoted_len1;
465 }
466 else if (promoted_len2 > promoted_len1)
467 {
468 unsigned_operation = is_unsigned2;
469 result_len = promoted_len2;
470 }
471 else
472 {
473 unsigned_operation = is_unsigned1 || is_unsigned2;
474 result_len = promoted_len1;
475 }
476
477 switch (language->la_language)
478 {
479 case language_c:
480 case language_cplus:
481 case language_asm:
482 case language_objc:
483 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
484 {
485 promoted_type = (unsigned_operation
486 ? builtin->builtin_unsigned_int
487 : builtin->builtin_int);
488 }
489 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
490 {
491 promoted_type = (unsigned_operation
492 ? builtin->builtin_unsigned_long
493 : builtin->builtin_long);
494 }
495 else
496 {
497 promoted_type = (unsigned_operation
498 ? builtin->builtin_unsigned_long_long
499 : builtin->builtin_long_long);
500 }
501 break;
502 case language_opencl:
503 if (result_len <= TYPE_LENGTH (lookup_signed_typename
504 (language, "int")))
505 {
506 promoted_type =
507 (unsigned_operation
508 ? lookup_unsigned_typename (language, "int")
509 : lookup_signed_typename (language, "int"));
510 }
511 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
512 (language, "long")))
513 {
514 promoted_type =
515 (unsigned_operation
516 ? lookup_unsigned_typename (language, "long")
517 : lookup_signed_typename (language,"long"));
518 }
519 break;
520 default:
521 /* For other languages the result type is unchanged from gdb
522 version 6.7 for backward compatibility.
523 If either arg was long long, make sure that value is also long
524 long. Otherwise use long. */
525 if (unsigned_operation)
526 {
527 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
528 promoted_type = builtin->builtin_unsigned_long_long;
529 else
530 promoted_type = builtin->builtin_unsigned_long;
531 }
532 else
533 {
534 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
535 promoted_type = builtin->builtin_long_long;
536 else
537 promoted_type = builtin->builtin_long;
538 }
539 break;
540 }
541 }
542
543 if (promoted_type)
544 {
545 /* Promote both operands to common type. */
546 *arg1 = value_cast (promoted_type, *arg1);
547 *arg2 = value_cast (promoted_type, *arg2);
548 }
549 }
550
551 static int
552 ptrmath_type_p (const struct language_defn *lang, struct type *type)
553 {
554 type = check_typedef (type);
555 if (TYPE_IS_REFERENCE (type))
556 type = TYPE_TARGET_TYPE (type);
557
558 switch (type->code ())
559 {
560 case TYPE_CODE_PTR:
561 case TYPE_CODE_FUNC:
562 return 1;
563
564 case TYPE_CODE_ARRAY:
565 return type->is_vector () ? 0 : lang->c_style_arrays_p ();
566
567 default:
568 return 0;
569 }
570 }
571
572 /* Represents a fake method with the given parameter types. This is
573 used by the parser to construct a temporary "expected" type for
574 method overload resolution. FLAGS is used as instance flags of the
575 new type, in order to be able to make the new type represent a
576 const/volatile overload. */
577
578 class fake_method
579 {
580 public:
581 fake_method (type_instance_flags flags,
582 int num_types, struct type **param_types);
583 ~fake_method ();
584
585 /* The constructed type. */
586 struct type *type () { return &m_type; }
587
588 private:
589 struct type m_type {};
590 main_type m_main_type {};
591 };
592
593 fake_method::fake_method (type_instance_flags flags,
594 int num_types, struct type **param_types)
595 {
596 struct type *type = &m_type;
597
598 TYPE_MAIN_TYPE (type) = &m_main_type;
599 TYPE_LENGTH (type) = 1;
600 type->set_code (TYPE_CODE_METHOD);
601 TYPE_CHAIN (type) = type;
602 type->set_instance_flags (flags);
603 if (num_types > 0)
604 {
605 if (param_types[num_types - 1] == NULL)
606 {
607 --num_types;
608 type->set_has_varargs (true);
609 }
610 else if (check_typedef (param_types[num_types - 1])->code ()
611 == TYPE_CODE_VOID)
612 {
613 --num_types;
614 /* Caller should have ensured this. */
615 gdb_assert (num_types == 0);
616 type->set_is_prototyped (true);
617 }
618 }
619
620 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
621 neither an objfile nor a gdbarch. As a result we must manually
622 allocate memory for auxiliary fields, and free the memory ourselves
623 when we are done with it. */
624 type->set_num_fields (num_types);
625 type->set_fields
626 ((struct field *) xzalloc (sizeof (struct field) * num_types));
627
628 while (num_types-- > 0)
629 type->field (num_types).set_type (param_types[num_types]);
630 }
631
632 fake_method::~fake_method ()
633 {
634 xfree (m_type.fields ());
635 }
636
637 /* Helper for evaluating an OP_VAR_VALUE. */
638
639 value *
640 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
641 {
642 /* JYG: We used to just return value_zero of the symbol type if
643 we're asked to avoid side effects. Otherwise we return
644 value_of_variable (...). However I'm not sure if
645 value_of_variable () has any side effect. We need a full value
646 object returned here for whatis_exp () to call evaluate_type ()
647 and then pass the full value to value_rtti_target_type () if we
648 are dealing with a pointer or reference to a base class and print
649 object is on. */
650
651 struct value *ret = NULL;
652
653 try
654 {
655 ret = value_of_variable (var, blk);
656 }
657
658 catch (const gdb_exception_error &except)
659 {
660 if (noside != EVAL_AVOID_SIDE_EFFECTS)
661 throw;
662
663 ret = value_zero (SYMBOL_TYPE (var), not_lval);
664 }
665
666 return ret;
667 }
668
669 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
670
671 value *
672 evaluate_var_msym_value (enum noside noside,
673 struct objfile *objfile, minimal_symbol *msymbol)
674 {
675 CORE_ADDR address;
676 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
677
678 if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
679 return value_zero (the_type, not_lval);
680 else
681 return value_at_lazy (the_type, address);
682 }
683
684 /* Helper for returning a value when handling EVAL_SKIP. */
685
686 value *
687 eval_skip_value (expression *exp)
688 {
689 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
690 }
691
692 /* See expression.h. */
693
694 value *
695 evaluate_subexp_do_call (expression *exp, enum noside noside,
696 value *callee,
697 gdb::array_view<value *> argvec,
698 const char *function_name,
699 type *default_return_type)
700 {
701 if (callee == NULL)
702 error (_("Cannot evaluate function -- may be inlined"));
703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
704 {
705 /* If the return type doesn't look like a function type,
706 call an error. This can happen if somebody tries to turn
707 a variable into a function call. */
708
709 type *ftype = value_type (callee);
710
711 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
712 {
713 /* We don't know anything about what the internal
714 function might return, but we have to return
715 something. */
716 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
717 not_lval);
718 }
719 else if (ftype->code () == TYPE_CODE_XMETHOD)
720 {
721 type *return_type = result_type_of_xmethod (callee, argvec);
722
723 if (return_type == NULL)
724 error (_("Xmethod is missing return type."));
725 return value_zero (return_type, not_lval);
726 }
727 else if (ftype->code () == TYPE_CODE_FUNC
728 || ftype->code () == TYPE_CODE_METHOD)
729 {
730 if (ftype->is_gnu_ifunc ())
731 {
732 CORE_ADDR address = value_address (callee);
733 type *resolved_type = find_gnu_ifunc_target_type (address);
734
735 if (resolved_type != NULL)
736 ftype = resolved_type;
737 }
738
739 type *return_type = TYPE_TARGET_TYPE (ftype);
740
741 if (return_type == NULL)
742 return_type = default_return_type;
743
744 if (return_type == NULL)
745 error_call_unknown_return_type (function_name);
746
747 return allocate_value (return_type);
748 }
749 else
750 error (_("Expression of type other than "
751 "\"Function returning ...\" used as function"));
752 }
753 switch (value_type (callee)->code ())
754 {
755 case TYPE_CODE_INTERNAL_FUNCTION:
756 return call_internal_function (exp->gdbarch, exp->language_defn,
757 callee, argvec.size (), argvec.data ());
758 case TYPE_CODE_XMETHOD:
759 return call_xmethod (callee, argvec);
760 default:
761 return call_function_by_hand (callee, default_return_type, argvec);
762 }
763 }
764
765 /* Helper for evaluating an OP_FUNCALL. */
766
767 static value *
768 evaluate_funcall (type *expect_type, expression *exp, int *pos,
769 enum noside noside)
770 {
771 int tem;
772 int pc2 = 0;
773 value *arg1 = NULL;
774 value *arg2 = NULL;
775 int save_pos1;
776 symbol *function = NULL;
777 char *function_name = NULL;
778 const char *var_func_name = NULL;
779
780 int pc = (*pos);
781 (*pos) += 2;
782
783 exp_opcode op = exp->elts[*pos].opcode;
784 int nargs = longest_to_int (exp->elts[pc].longconst);
785 /* Allocate arg vector, including space for the function to be
786 called in argvec[0], a potential `this', and a terminating
787 NULL. */
788 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
789 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
790 {
791 /* First, evaluate the structure into arg2. */
792 pc2 = (*pos)++;
793
794 if (op == STRUCTOP_MEMBER)
795 {
796 arg2 = evaluate_subexp_for_address (exp, pos, noside);
797 }
798 else
799 {
800 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
801 }
802
803 /* If the function is a virtual function, then the aggregate
804 value (providing the structure) plays its part by providing
805 the vtable. Otherwise, it is just along for the ride: call
806 the function directly. */
807
808 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
809
810 type *a1_type = check_typedef (value_type (arg1));
811 if (noside == EVAL_SKIP)
812 tem = 1; /* Set it to the right arg index so that all
813 arguments can also be skipped. */
814 else if (a1_type->code () == TYPE_CODE_METHODPTR)
815 {
816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
817 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
818 else
819 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
820
821 /* Now, say which argument to start evaluating from. */
822 nargs++;
823 tem = 2;
824 argvec[1] = arg2;
825 }
826 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
827 {
828 struct type *type_ptr
829 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
830 struct type *target_type_ptr
831 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
832
833 /* Now, convert these values to an address. */
834 arg2 = value_cast (type_ptr, arg2);
835
836 long mem_offset = value_as_long (arg1);
837
838 arg1 = value_from_pointer (target_type_ptr,
839 value_as_long (arg2) + mem_offset);
840 arg1 = value_ind (arg1);
841 tem = 1;
842 }
843 else
844 error (_("Non-pointer-to-member value used in pointer-to-member "
845 "construct"));
846 }
847 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
848 {
849 /* Hair for method invocations. */
850 int tem2;
851
852 nargs++;
853 /* First, evaluate the structure into arg2. */
854 pc2 = (*pos)++;
855 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
856 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
857
858 if (op == STRUCTOP_STRUCT)
859 {
860 /* If v is a variable in a register, and the user types
861 v.method (), this will produce an error, because v has no
862 address.
863
864 A possible way around this would be to allocate a copy of
865 the variable on the stack, copy in the contents, call the
866 function, and copy out the contents. I.e. convert this
867 from call by reference to call by copy-return (or
868 whatever it's called). However, this does not work
869 because it is not the same: the method being called could
870 stash a copy of the address, and then future uses through
871 that address (after the method returns) would be expected
872 to use the variable itself, not some copy of it. */
873 arg2 = evaluate_subexp_for_address (exp, pos, noside);
874 }
875 else
876 {
877 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
878
879 /* Check to see if the operator '->' has been overloaded.
880 If the operator has been overloaded replace arg2 with the
881 value returned by the custom operator and continue
882 evaluation. */
883 while (unop_user_defined_p (op, arg2))
884 {
885 struct value *value = NULL;
886 try
887 {
888 value = value_x_unop (arg2, op, noside);
889 }
890
891 catch (const gdb_exception_error &except)
892 {
893 if (except.error == NOT_FOUND_ERROR)
894 break;
895 else
896 throw;
897 }
898
899 arg2 = value;
900 }
901 }
902 /* Now, say which argument to start evaluating from. */
903 tem = 2;
904 }
905 else if (op == OP_SCOPE
906 && overload_resolution
907 && (exp->language_defn->la_language == language_cplus))
908 {
909 /* Unpack it locally so we can properly handle overload
910 resolution. */
911 char *name;
912 int local_tem;
913
914 pc2 = (*pos)++;
915 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
916 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
917 struct type *type = exp->elts[pc2 + 1].type;
918 name = &exp->elts[pc2 + 3].string;
919
920 function = NULL;
921 function_name = NULL;
922 if (type->code () == TYPE_CODE_NAMESPACE)
923 {
924 function = cp_lookup_symbol_namespace (type->name (),
925 name,
926 get_selected_block (0),
927 VAR_DOMAIN).symbol;
928 if (function == NULL)
929 error (_("No symbol \"%s\" in namespace \"%s\"."),
930 name, type->name ());
931
932 tem = 1;
933 /* arg2 is left as NULL on purpose. */
934 }
935 else
936 {
937 gdb_assert (type->code () == TYPE_CODE_STRUCT
938 || type->code () == TYPE_CODE_UNION);
939 function_name = name;
940
941 /* We need a properly typed value for method lookup. For
942 static methods arg2 is otherwise unused. */
943 arg2 = value_zero (type, lval_memory);
944 ++nargs;
945 tem = 2;
946 }
947 }
948 else if (op == OP_ADL_FUNC)
949 {
950 /* Save the function position and move pos so that the arguments
951 can be evaluated. */
952 int func_name_len;
953
954 save_pos1 = *pos;
955 tem = 1;
956
957 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
958 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
959 }
960 else
961 {
962 /* Non-method function call. */
963 save_pos1 = *pos;
964 tem = 1;
965
966 /* If this is a C++ function wait until overload resolution. */
967 if (op == OP_VAR_VALUE
968 && overload_resolution
969 && (exp->language_defn->la_language == language_cplus))
970 {
971 (*pos) += 4; /* Skip the evaluation of the symbol. */
972 argvec[0] = NULL;
973 }
974 else
975 {
976 if (op == OP_VAR_MSYM_VALUE)
977 {
978 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
979 var_func_name = msym->print_name ();
980 }
981 else if (op == OP_VAR_VALUE)
982 {
983 symbol *sym = exp->elts[*pos + 2].symbol;
984 var_func_name = sym->print_name ();
985 }
986
987 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
988 type *type = value_type (argvec[0]);
989 if (type && type->code () == TYPE_CODE_PTR)
990 type = TYPE_TARGET_TYPE (type);
991 if (type && type->code () == TYPE_CODE_FUNC)
992 {
993 for (; tem <= nargs && tem <= type->num_fields (); tem++)
994 {
995 argvec[tem] = evaluate_subexp (type->field (tem - 1).type (),
996 exp, pos, noside);
997 }
998 }
999 }
1000 }
1001
1002 /* Evaluate arguments (if not already done, e.g., namespace::func()
1003 and overload-resolution is off). */
1004 for (; tem <= nargs; tem++)
1005 {
1006 /* Ensure that array expressions are coerced into pointer
1007 objects. */
1008 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1009 }
1010
1011 /* Signal end of arglist. */
1012 argvec[tem] = 0;
1013
1014 if (noside == EVAL_SKIP)
1015 return eval_skip_value (exp);
1016
1017 if (op == OP_ADL_FUNC)
1018 {
1019 struct symbol *symp;
1020 char *func_name;
1021 int name_len;
1022 int string_pc = save_pos1 + 3;
1023
1024 /* Extract the function name. */
1025 name_len = longest_to_int (exp->elts[string_pc].longconst);
1026 func_name = (char *) alloca (name_len + 1);
1027 strcpy (func_name, &exp->elts[string_pc + 1].string);
1028
1029 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1030 func_name,
1031 NON_METHOD, /* not method */
1032 NULL, NULL, /* pass NULL symbol since
1033 symbol is unknown */
1034 NULL, &symp, NULL, 0, noside);
1035
1036 /* Now fix the expression being evaluated. */
1037 exp->elts[save_pos1 + 2].symbol = symp;
1038 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1039 }
1040
1041 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1042 || (op == OP_SCOPE && function_name != NULL))
1043 {
1044 int static_memfuncp;
1045 char *tstr;
1046
1047 /* Method invocation: stuff "this" as first parameter. If the
1048 method turns out to be static we undo this below. */
1049 argvec[1] = arg2;
1050
1051 if (op != OP_SCOPE)
1052 {
1053 /* Name of method from expression. */
1054 tstr = &exp->elts[pc2 + 2].string;
1055 }
1056 else
1057 tstr = function_name;
1058
1059 if (overload_resolution && (exp->language_defn->la_language
1060 == language_cplus))
1061 {
1062 /* Language is C++, do some overload resolution before
1063 evaluation. */
1064 struct value *valp = NULL;
1065
1066 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1067 tstr,
1068 METHOD, /* method */
1069 &arg2, /* the object */
1070 NULL, &valp, NULL,
1071 &static_memfuncp, 0, noside);
1072
1073 if (op == OP_SCOPE && !static_memfuncp)
1074 {
1075 /* For the time being, we don't handle this. */
1076 error (_("Call to overloaded function %s requires "
1077 "`this' pointer"),
1078 function_name);
1079 }
1080 argvec[1] = arg2; /* the ``this'' pointer */
1081 argvec[0] = valp; /* Use the method found after overload
1082 resolution. */
1083 }
1084 else
1085 /* Non-C++ case -- or no overload resolution. */
1086 {
1087 struct value *temp = arg2;
1088
1089 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1090 &static_memfuncp,
1091 op == STRUCTOP_STRUCT
1092 ? "structure" : "structure pointer");
1093 /* value_struct_elt updates temp with the correct value of
1094 the ``this'' pointer if necessary, so modify argvec[1] to
1095 reflect any ``this'' changes. */
1096 arg2
1097 = value_from_longest (lookup_pointer_type(value_type (temp)),
1098 value_address (temp)
1099 + value_embedded_offset (temp));
1100 argvec[1] = arg2; /* the ``this'' pointer */
1101 }
1102
1103 /* Take out `this' if needed. */
1104 if (static_memfuncp)
1105 {
1106 argvec[1] = argvec[0];
1107 nargs--;
1108 argvec++;
1109 }
1110 }
1111 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1112 {
1113 /* Pointer to member. argvec[1] is already set up. */
1114 argvec[0] = arg1;
1115 }
1116 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1117 {
1118 /* Non-member function being called. */
1119 /* fn: This can only be done for C++ functions. A C-style
1120 function in a C++ program, for instance, does not have the
1121 fields that are expected here. */
1122
1123 if (overload_resolution && (exp->language_defn->la_language
1124 == language_cplus))
1125 {
1126 /* Language is C++, do some overload resolution before
1127 evaluation. */
1128 struct symbol *symp;
1129 int no_adl = 0;
1130
1131 /* If a scope has been specified disable ADL. */
1132 if (op == OP_SCOPE)
1133 no_adl = 1;
1134
1135 if (op == OP_VAR_VALUE)
1136 function = exp->elts[save_pos1+2].symbol;
1137
1138 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1139 NULL, /* no need for name */
1140 NON_METHOD, /* not method */
1141 NULL, function, /* the function */
1142 NULL, &symp, NULL, no_adl, noside);
1143
1144 if (op == OP_VAR_VALUE)
1145 {
1146 /* Now fix the expression being evaluated. */
1147 exp->elts[save_pos1+2].symbol = symp;
1148 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1149 noside);
1150 }
1151 else
1152 argvec[0] = value_of_variable (symp, get_selected_block (0));
1153 }
1154 else
1155 {
1156 /* Not C++, or no overload resolution allowed. */
1157 /* Nothing to be done; argvec already correctly set up. */
1158 }
1159 }
1160 else
1161 {
1162 /* It is probably a C-style function. */
1163 /* Nothing to be done; argvec already correctly set up. */
1164 }
1165
1166 return evaluate_subexp_do_call (exp, noside, argvec[0],
1167 gdb::make_array_view (argvec + 1, nargs),
1168 var_func_name, expect_type);
1169 }
1170
1171 /* Return true if type is integral or reference to integral */
1172
1173 static bool
1174 is_integral_or_integral_reference (struct type *type)
1175 {
1176 if (is_integral_type (type))
1177 return true;
1178
1179 type = check_typedef (type);
1180 return (type != nullptr
1181 && TYPE_IS_REFERENCE (type)
1182 && is_integral_type (TYPE_TARGET_TYPE (type)));
1183 }
1184
1185 /* Helper function that implements the body of OP_SCOPE. */
1186
1187 static struct value *
1188 eval_op_scope (struct type *expect_type, struct expression *exp,
1189 enum noside noside,
1190 struct type *type, const char *string)
1191 {
1192 if (noside == EVAL_SKIP)
1193 return eval_skip_value (exp);
1194 struct value *arg1 = value_aggregate_elt (type, string, expect_type,
1195 0, noside);
1196 if (arg1 == NULL)
1197 error (_("There is no field named %s"), string);
1198 return arg1;
1199 }
1200
1201 /* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
1202
1203 static struct value *
1204 eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
1205 enum noside noside, symbol *sym)
1206 {
1207 if (noside == EVAL_SKIP)
1208 return eval_skip_value (exp);
1209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1210 return value_zero (SYMBOL_TYPE (sym), not_lval);
1211
1212 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1213 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1214 error (_("Symbol \"%s\" does not have any specific entry value"),
1215 sym->print_name ());
1216
1217 struct frame_info *frame = get_selected_frame (NULL);
1218 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1219 }
1220
1221 /* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
1222
1223 static struct value *
1224 eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
1225 enum noside noside, bool outermost_p,
1226 minimal_symbol *msymbol, struct objfile *objfile)
1227 {
1228 value *val = evaluate_var_msym_value (noside, objfile, msymbol);
1229
1230 struct type *type = value_type (val);
1231 if (type->code () == TYPE_CODE_ERROR
1232 && (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
1233 error_unknown_type (msymbol->print_name ());
1234 return val;
1235 }
1236
1237 /* Helper function that implements the body of OP_FUNC_STATIC_VAR. */
1238
1239 static struct value *
1240 eval_op_func_static_var (struct type *expect_type, struct expression *exp,
1241 enum noside noside,
1242 value *func, const char *var)
1243 {
1244 if (noside == EVAL_SKIP)
1245 return eval_skip_value (exp);
1246 CORE_ADDR addr = value_address (func);
1247 const block *blk = block_for_pc (addr);
1248 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1249 if (sym.symbol == NULL)
1250 error (_("No symbol \"%s\" in specified context."), var);
1251 return evaluate_var_value (noside, sym.block, sym.symbol);
1252 }
1253
1254 /* Helper function that implements the body of OP_REGISTER. */
1255
1256 static struct value *
1257 eval_op_register (struct type *expect_type, struct expression *exp,
1258 enum noside noside, const char *name)
1259 {
1260 int regno;
1261 struct value *val;
1262
1263 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1264 name, strlen (name));
1265 if (regno == -1)
1266 error (_("Register $%s not available."), name);
1267
1268 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1269 a value with the appropriate register type. Unfortunately,
1270 we don't have easy access to the type of user registers.
1271 So for these registers, we fetch the register value regardless
1272 of the evaluation mode. */
1273 if (noside == EVAL_AVOID_SIDE_EFFECTS
1274 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1275 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1276 else
1277 val = value_of_register (regno, get_selected_frame (NULL));
1278 if (val == NULL)
1279 error (_("Value of register %s not available."), name);
1280 else
1281 return val;
1282 }
1283
1284 /* Helper function that implements the body of OP_STRING. */
1285
1286 static struct value *
1287 eval_op_string (struct type *expect_type, struct expression *exp,
1288 enum noside noside, int len, const char *string)
1289 {
1290 if (noside == EVAL_SKIP)
1291 return eval_skip_value (exp);
1292 struct type *type = language_string_char_type (exp->language_defn,
1293 exp->gdbarch);
1294 return value_string (string, len, type);
1295 }
1296
1297 /* Helper function that implements the body of OP_OBJC_SELECTOR. */
1298
1299 static struct value *
1300 eval_op_objc_selector (struct type *expect_type, struct expression *exp,
1301 enum noside noside,
1302 const char *sel)
1303 {
1304 if (noside == EVAL_SKIP)
1305 return eval_skip_value (exp);
1306
1307 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1308 return value_from_longest (selector_type,
1309 lookup_child_selector (exp->gdbarch, sel));
1310 }
1311
1312 /* Helper function that implements the body of BINOP_CONCAT. */
1313
1314 static struct value *
1315 eval_op_concat (struct type *expect_type, struct expression *exp,
1316 enum noside noside,
1317 enum exp_opcode op, struct value *arg1, struct value *arg2)
1318 {
1319 if (noside == EVAL_SKIP)
1320 return eval_skip_value (exp);
1321 if (binop_user_defined_p (op, arg1, arg2))
1322 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1323 else
1324 return value_concat (arg1, arg2);
1325 }
1326
1327 /* A helper function for TERNOP_SLICE. */
1328
1329 static struct value *
1330 eval_op_ternop (struct type *expect_type, struct expression *exp,
1331 enum noside noside,
1332 struct value *array, struct value *low, struct value *upper)
1333 {
1334 if (noside == EVAL_SKIP)
1335 return eval_skip_value (exp);
1336 int lowbound = value_as_long (low);
1337 int upperbound = value_as_long (upper);
1338 return value_slice (array, lowbound, upperbound - lowbound + 1);
1339 }
1340
1341 /* A helper function for STRUCTOP_STRUCT. */
1342
1343 static struct value *
1344 eval_op_structop_struct (struct type *expect_type, struct expression *exp,
1345 enum noside noside,
1346 struct value *arg1, const char *string)
1347 {
1348 if (noside == EVAL_SKIP)
1349 return eval_skip_value (exp);
1350 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1351 NULL, "structure");
1352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1353 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1354 return arg3;
1355 }
1356
1357 /* A helper function for STRUCTOP_PTR. */
1358
1359 static struct value *
1360 eval_op_structop_ptr (struct type *expect_type, struct expression *exp,
1361 enum noside noside, enum exp_opcode op,
1362 struct value *arg1, const char *string)
1363 {
1364 if (noside == EVAL_SKIP)
1365 return eval_skip_value (exp);
1366
1367 /* Check to see if operator '->' has been overloaded. If so replace
1368 arg1 with the value returned by evaluating operator->(). */
1369 while (unop_user_defined_p (op, arg1))
1370 {
1371 struct value *value = NULL;
1372 try
1373 {
1374 value = value_x_unop (arg1, op, noside);
1375 }
1376
1377 catch (const gdb_exception_error &except)
1378 {
1379 if (except.error == NOT_FOUND_ERROR)
1380 break;
1381 else
1382 throw;
1383 }
1384
1385 arg1 = value;
1386 }
1387
1388 /* JYG: if print object is on we need to replace the base type
1389 with rtti type in order to continue on with successful
1390 lookup of member / method only available in the rtti type. */
1391 {
1392 struct type *arg_type = value_type (arg1);
1393 struct type *real_type;
1394 int full, using_enc;
1395 LONGEST top;
1396 struct value_print_options opts;
1397
1398 get_user_print_options (&opts);
1399 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
1400 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
1401 {
1402 real_type = value_rtti_indirect_type (arg1, &full, &top,
1403 &using_enc);
1404 if (real_type)
1405 arg1 = value_cast (real_type, arg1);
1406 }
1407 }
1408
1409 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1410 NULL, "structure pointer");
1411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1412 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1413 return arg3;
1414 }
1415
1416 /* A helper function for STRUCTOP_MEMBER. */
1417
1418 static struct value *
1419 eval_op_member (struct type *expect_type, struct expression *exp,
1420 enum noside noside,
1421 struct value *arg1, struct value *arg2)
1422 {
1423 long mem_offset;
1424
1425 if (noside == EVAL_SKIP)
1426 return eval_skip_value (exp);
1427
1428 struct value *arg3;
1429 struct type *type = check_typedef (value_type (arg2));
1430 switch (type->code ())
1431 {
1432 case TYPE_CODE_METHODPTR:
1433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1434 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1435 else
1436 {
1437 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1438 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
1439 return value_ind (arg2);
1440 }
1441
1442 case TYPE_CODE_MEMBERPTR:
1443 /* Now, convert these values to an address. */
1444 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1445 arg1, 1);
1446
1447 mem_offset = value_as_long (arg2);
1448
1449 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1450 value_as_long (arg1) + mem_offset);
1451 return value_ind (arg3);
1452
1453 default:
1454 error (_("non-pointer-to-member value used "
1455 "in pointer-to-member construct"));
1456 }
1457 }
1458
1459 /* A helper function for BINOP_ADD. */
1460
1461 static struct value *
1462 eval_op_add (struct type *expect_type, struct expression *exp,
1463 enum noside noside, enum exp_opcode op,
1464 struct value *arg1, struct value *arg2)
1465 {
1466 if (noside == EVAL_SKIP)
1467 return eval_skip_value (exp);
1468 if (binop_user_defined_p (op, arg1, arg2))
1469 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1470 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1471 && is_integral_or_integral_reference (value_type (arg2)))
1472 return value_ptradd (arg1, value_as_long (arg2));
1473 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
1474 && is_integral_or_integral_reference (value_type (arg1)))
1475 return value_ptradd (arg2, value_as_long (arg1));
1476 else
1477 {
1478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1479 return value_binop (arg1, arg2, BINOP_ADD);
1480 }
1481 }
1482
1483 /* A helper function for BINOP_SUB. */
1484
1485 static struct value *
1486 eval_op_sub (struct type *expect_type, struct expression *exp,
1487 enum noside noside, enum exp_opcode op,
1488 struct value *arg1, struct value *arg2)
1489 {
1490 if (noside == EVAL_SKIP)
1491 return eval_skip_value (exp);
1492 if (binop_user_defined_p (op, arg1, arg2))
1493 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1494 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1495 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
1496 {
1497 /* FIXME -- should be ptrdiff_t */
1498 struct type *type = builtin_type (exp->gdbarch)->builtin_long;
1499 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1500 }
1501 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1502 && is_integral_or_integral_reference (value_type (arg2)))
1503 return value_ptradd (arg1, - value_as_long (arg2));
1504 else
1505 {
1506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1507 return value_binop (arg1, arg2, BINOP_SUB);
1508 }
1509 }
1510
1511 /* Helper function for several different binary operations. */
1512
1513 static struct value *
1514 eval_op_binary (struct type *expect_type, struct expression *exp,
1515 enum noside noside, enum exp_opcode op,
1516 struct value *arg1, struct value *arg2)
1517 {
1518 if (noside == EVAL_SKIP)
1519 return eval_skip_value (exp);
1520 if (binop_user_defined_p (op, arg1, arg2))
1521 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1522 else
1523 {
1524 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1525 fudge arg2 to avoid division-by-zero, the caller is
1526 (theoretically) only looking for the type of the result. */
1527 if (noside == EVAL_AVOID_SIDE_EFFECTS
1528 /* ??? Do we really want to test for BINOP_MOD here?
1529 The implementation of value_binop gives it a well-defined
1530 value. */
1531 && (op == BINOP_DIV
1532 || op == BINOP_INTDIV
1533 || op == BINOP_REM
1534 || op == BINOP_MOD)
1535 && value_logical_not (arg2))
1536 {
1537 struct value *v_one;
1538
1539 v_one = value_one (value_type (arg2));
1540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1541 return value_binop (arg1, v_one, op);
1542 }
1543 else
1544 {
1545 /* For shift and integer exponentiation operations,
1546 only promote the first argument. */
1547 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1548 && is_integral_type (value_type (arg2)))
1549 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1550 else
1551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1552
1553 return value_binop (arg1, arg2, op);
1554 }
1555 }
1556 }
1557
1558 /* A helper function for BINOP_SUBSCRIPT. */
1559
1560 static struct value *
1561 eval_op_subscript (struct type *expect_type, struct expression *exp,
1562 enum noside noside, enum exp_opcode op,
1563 struct value *arg1, struct value *arg2)
1564 {
1565 if (noside == EVAL_SKIP)
1566 return eval_skip_value (exp);
1567 if (binop_user_defined_p (op, arg1, arg2))
1568 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1569 else
1570 {
1571 /* If the user attempts to subscript something that is not an
1572 array or pointer type (like a plain int variable for example),
1573 then report this as an error. */
1574
1575 arg1 = coerce_ref (arg1);
1576 struct type *type = check_typedef (value_type (arg1));
1577 if (type->code () != TYPE_CODE_ARRAY
1578 && type->code () != TYPE_CODE_PTR)
1579 {
1580 if (type->name ())
1581 error (_("cannot subscript something of type `%s'"),
1582 type->name ());
1583 else
1584 error (_("cannot subscript requested type"));
1585 }
1586
1587 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1588 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1589 else
1590 return value_subscript (arg1, value_as_long (arg2));
1591 }
1592 }
1593
1594 /* A helper function for BINOP_EQUAL. */
1595
1596 static struct value *
1597 eval_op_equal (struct type *expect_type, struct expression *exp,
1598 enum noside noside, enum exp_opcode op,
1599 struct value *arg1, struct value *arg2)
1600 {
1601 if (noside == EVAL_SKIP)
1602 return eval_skip_value (exp);
1603 if (binop_user_defined_p (op, arg1, arg2))
1604 {
1605 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1606 }
1607 else
1608 {
1609 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1610 int tem = value_equal (arg1, arg2);
1611 struct type *type = language_bool_type (exp->language_defn,
1612 exp->gdbarch);
1613 return value_from_longest (type, (LONGEST) tem);
1614 }
1615 }
1616
1617 /* A helper function for BINOP_NOTEQUAL. */
1618
1619 static struct value *
1620 eval_op_notequal (struct type *expect_type, struct expression *exp,
1621 enum noside noside, enum exp_opcode op,
1622 struct value *arg1, struct value *arg2)
1623 {
1624 if (noside == EVAL_SKIP)
1625 return eval_skip_value (exp);
1626 if (binop_user_defined_p (op, arg1, arg2))
1627 {
1628 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1629 }
1630 else
1631 {
1632 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1633 int tem = value_equal (arg1, arg2);
1634 struct type *type = language_bool_type (exp->language_defn,
1635 exp->gdbarch);
1636 return value_from_longest (type, (LONGEST) ! tem);
1637 }
1638 }
1639
1640 /* A helper function for BINOP_LESS. */
1641
1642 static struct value *
1643 eval_op_less (struct type *expect_type, struct expression *exp,
1644 enum noside noside, enum exp_opcode op,
1645 struct value *arg1, struct value *arg2)
1646 {
1647 if (noside == EVAL_SKIP)
1648 return eval_skip_value (exp);
1649 if (binop_user_defined_p (op, arg1, arg2))
1650 {
1651 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1652 }
1653 else
1654 {
1655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1656 int tem = value_less (arg1, arg2);
1657 struct type *type = language_bool_type (exp->language_defn,
1658 exp->gdbarch);
1659 return value_from_longest (type, (LONGEST) tem);
1660 }
1661 }
1662
1663 /* A helper function for BINOP_GTR. */
1664
1665 static struct value *
1666 eval_op_gtr (struct type *expect_type, struct expression *exp,
1667 enum noside noside, enum exp_opcode op,
1668 struct value *arg1, struct value *arg2)
1669 {
1670 if (noside == EVAL_SKIP)
1671 return eval_skip_value (exp);
1672 if (binop_user_defined_p (op, arg1, arg2))
1673 {
1674 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1675 }
1676 else
1677 {
1678 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1679 int tem = value_less (arg2, arg1);
1680 struct type *type = language_bool_type (exp->language_defn,
1681 exp->gdbarch);
1682 return value_from_longest (type, (LONGEST) tem);
1683 }
1684 }
1685
1686 /* A helper function for BINOP_GEQ. */
1687
1688 static struct value *
1689 eval_op_geq (struct type *expect_type, struct expression *exp,
1690 enum noside noside, enum exp_opcode op,
1691 struct value *arg1, struct value *arg2)
1692 {
1693 if (noside == EVAL_SKIP)
1694 return eval_skip_value (exp);
1695 if (binop_user_defined_p (op, arg1, arg2))
1696 {
1697 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1698 }
1699 else
1700 {
1701 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1702 int tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1703 struct type *type = language_bool_type (exp->language_defn,
1704 exp->gdbarch);
1705 return value_from_longest (type, (LONGEST) tem);
1706 }
1707 }
1708
1709 /* A helper function for BINOP_LEQ. */
1710
1711 static struct value *
1712 eval_op_leq (struct type *expect_type, struct expression *exp,
1713 enum noside noside, enum exp_opcode op,
1714 struct value *arg1, struct value *arg2)
1715 {
1716 if (noside == EVAL_SKIP)
1717 return eval_skip_value (exp);
1718 if (binop_user_defined_p (op, arg1, arg2))
1719 {
1720 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1721 }
1722 else
1723 {
1724 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1725 int tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
1726 struct type *type = language_bool_type (exp->language_defn,
1727 exp->gdbarch);
1728 return value_from_longest (type, (LONGEST) tem);
1729 }
1730 }
1731
1732 /* A helper function for BINOP_REPEAT. */
1733
1734 static struct value *
1735 eval_op_repeat (struct type *expect_type, struct expression *exp,
1736 enum noside noside,
1737 struct value *arg1, struct value *arg2)
1738 {
1739 if (noside == EVAL_SKIP)
1740 return eval_skip_value (exp);
1741 struct type *type = check_typedef (value_type (arg2));
1742 if (type->code () != TYPE_CODE_INT
1743 && type->code () != TYPE_CODE_ENUM)
1744 error (_("Non-integral right operand for \"@\" operator."));
1745 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1746 {
1747 return allocate_repeat_value (value_type (arg1),
1748 longest_to_int (value_as_long (arg2)));
1749 }
1750 else
1751 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
1752 }
1753
1754 /* A helper function for UNOP_PLUS. */
1755
1756 static struct value *
1757 eval_op_plus (struct type *expect_type, struct expression *exp,
1758 enum noside noside, enum exp_opcode op,
1759 struct value *arg1)
1760 {
1761 if (noside == EVAL_SKIP)
1762 return eval_skip_value (exp);
1763 if (unop_user_defined_p (op, arg1))
1764 return value_x_unop (arg1, op, noside);
1765 else
1766 {
1767 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1768 return value_pos (arg1);
1769 }
1770 }
1771
1772 /* A helper function for UNOP_NEG. */
1773
1774 static struct value *
1775 eval_op_neg (struct type *expect_type, struct expression *exp,
1776 enum noside noside, enum exp_opcode op,
1777 struct value *arg1)
1778 {
1779 if (noside == EVAL_SKIP)
1780 return eval_skip_value (exp);
1781 if (unop_user_defined_p (op, arg1))
1782 return value_x_unop (arg1, op, noside);
1783 else
1784 {
1785 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1786 return value_neg (arg1);
1787 }
1788 }
1789
1790 /* A helper function for UNOP_COMPLEMENT. */
1791
1792 static struct value *
1793 eval_op_complement (struct type *expect_type, struct expression *exp,
1794 enum noside noside, enum exp_opcode op,
1795 struct value *arg1)
1796 {
1797 if (noside == EVAL_SKIP)
1798 return eval_skip_value (exp);
1799 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
1800 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
1801 else
1802 {
1803 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1804 return value_complement (arg1);
1805 }
1806 }
1807
1808 /* A helper function for UNOP_LOGICAL_NOT. */
1809
1810 static struct value *
1811 eval_op_lognot (struct type *expect_type, struct expression *exp,
1812 enum noside noside, enum exp_opcode op,
1813 struct value *arg1)
1814 {
1815 if (noside == EVAL_SKIP)
1816 return eval_skip_value (exp);
1817 if (unop_user_defined_p (op, arg1))
1818 return value_x_unop (arg1, op, noside);
1819 else
1820 {
1821 struct type *type = language_bool_type (exp->language_defn,
1822 exp->gdbarch);
1823 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
1824 }
1825 }
1826
1827 /* A helper function for UNOP_IND. */
1828
1829 static struct value *
1830 eval_op_ind (struct type *expect_type, struct expression *exp,
1831 enum noside noside, enum exp_opcode op,
1832 struct value *arg1)
1833 {
1834 struct type *type = check_typedef (value_type (arg1));
1835 if (type->code () == TYPE_CODE_METHODPTR
1836 || type->code () == TYPE_CODE_MEMBERPTR)
1837 error (_("Attempt to dereference pointer "
1838 "to member without an object"));
1839 if (noside == EVAL_SKIP)
1840 return eval_skip_value (exp);
1841 if (unop_user_defined_p (op, arg1))
1842 return value_x_unop (arg1, op, noside);
1843 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
1844 {
1845 type = check_typedef (value_type (arg1));
1846
1847 /* If the type pointed to is dynamic then in order to resolve the
1848 dynamic properties we must actually dereference the pointer.
1849 There is a risk that this dereference will have side-effects
1850 in the inferior, but being able to print accurate type
1851 information seems worth the risk. */
1852 if ((type->code () != TYPE_CODE_PTR
1853 && !TYPE_IS_REFERENCE (type))
1854 || !is_dynamic_type (TYPE_TARGET_TYPE (type)))
1855 {
1856 if (type->code () == TYPE_CODE_PTR
1857 || TYPE_IS_REFERENCE (type)
1858 /* In C you can dereference an array to get the 1st elt. */
1859 || type->code () == TYPE_CODE_ARRAY)
1860 return value_zero (TYPE_TARGET_TYPE (type),
1861 lval_memory);
1862 else if (type->code () == TYPE_CODE_INT)
1863 /* GDB allows dereferencing an int. */
1864 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1865 lval_memory);
1866 else
1867 error (_("Attempt to take contents of a non-pointer value."));
1868 }
1869 }
1870
1871 /* Allow * on an integer so we can cast it to whatever we want.
1872 This returns an int, which seems like the most C-like thing to
1873 do. "long long" variables are rare enough that
1874 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
1875 if (type->code () == TYPE_CODE_INT)
1876 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
1877 (CORE_ADDR) value_as_address (arg1));
1878 return value_ind (arg1);
1879 }
1880
1881 struct value *
1882 evaluate_subexp_standard (struct type *expect_type,
1883 struct expression *exp, int *pos,
1884 enum noside noside)
1885 {
1886 enum exp_opcode op;
1887 int tem, tem2, tem3;
1888 int pc, oldpos;
1889 struct value *arg1 = NULL;
1890 struct value *arg2 = NULL;
1891 struct value *arg3;
1892 struct type *type;
1893 int nargs;
1894 struct value **argvec;
1895 int ix;
1896 struct type **arg_types;
1897
1898 pc = (*pos)++;
1899 op = exp->elts[pc].opcode;
1900
1901 switch (op)
1902 {
1903 case OP_SCOPE:
1904 tem = longest_to_int (exp->elts[pc + 2].longconst);
1905 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1906 return eval_op_scope (expect_type, exp, noside,
1907 exp->elts[pc + 1].type,
1908 &exp->elts[pc + 3].string);
1909
1910 case OP_LONG:
1911 (*pos) += 3;
1912 return value_from_longest (exp->elts[pc + 1].type,
1913 exp->elts[pc + 2].longconst);
1914
1915 case OP_FLOAT:
1916 (*pos) += 3;
1917 return value_from_contents (exp->elts[pc + 1].type,
1918 exp->elts[pc + 2].floatconst);
1919
1920 case OP_ADL_FUNC:
1921 case OP_VAR_VALUE:
1922 {
1923 (*pos) += 3;
1924 symbol *var = exp->elts[pc + 2].symbol;
1925 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
1926 error_unknown_type (var->print_name ());
1927 if (noside != EVAL_SKIP)
1928 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1929 else
1930 {
1931 /* Return a dummy value of the correct type when skipping, so
1932 that parent functions know what is to be skipped. */
1933 return allocate_value (SYMBOL_TYPE (var));
1934 }
1935 }
1936
1937 case OP_VAR_MSYM_VALUE:
1938 {
1939 (*pos) += 3;
1940
1941 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1942 return eval_op_var_msym_value (expect_type, exp, noside,
1943 pc == 0, msymbol,
1944 exp->elts[pc + 1].objfile);
1945 }
1946
1947 case OP_VAR_ENTRY_VALUE:
1948 (*pos) += 2;
1949
1950 {
1951 struct symbol *sym = exp->elts[pc + 1].symbol;
1952
1953 return eval_op_var_entry_value (expect_type, exp, noside, sym);
1954 }
1955
1956 case OP_FUNC_STATIC_VAR:
1957 tem = longest_to_int (exp->elts[pc + 1].longconst);
1958 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1959 if (noside == EVAL_SKIP)
1960 return eval_skip_value (exp);
1961
1962 {
1963 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1964
1965 return eval_op_func_static_var (expect_type, exp, noside, func,
1966 &exp->elts[pc + 2].string);
1967 }
1968
1969 case OP_LAST:
1970 (*pos) += 2;
1971 return
1972 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
1973
1974 case OP_REGISTER:
1975 {
1976 const char *name = &exp->elts[pc + 2].string;
1977
1978 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
1979 return eval_op_register (expect_type, exp, noside, name);
1980 }
1981 case OP_BOOL:
1982 (*pos) += 2;
1983 type = language_bool_type (exp->language_defn, exp->gdbarch);
1984 return value_from_longest (type, exp->elts[pc + 1].longconst);
1985
1986 case OP_INTERNALVAR:
1987 (*pos) += 2;
1988 return value_of_internalvar (exp->gdbarch,
1989 exp->elts[pc + 1].internalvar);
1990
1991 case OP_STRING:
1992 tem = longest_to_int (exp->elts[pc + 1].longconst);
1993 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1994 return eval_op_string (expect_type, exp, noside, tem,
1995 &exp->elts[pc + 2].string);
1996
1997 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
1998 NSString constant. */
1999 tem = longest_to_int (exp->elts[pc + 1].longconst);
2000 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2001 if (noside == EVAL_SKIP)
2002 return eval_skip_value (exp);
2003 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
2004
2005 case OP_ARRAY:
2006 (*pos) += 3;
2007 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
2008 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
2009 nargs = tem3 - tem2 + 1;
2010 type = expect_type ? check_typedef (expect_type) : nullptr;
2011
2012 if (expect_type != nullptr && noside != EVAL_SKIP
2013 && type->code () == TYPE_CODE_STRUCT)
2014 {
2015 struct value *rec = allocate_value (expect_type);
2016
2017 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
2018 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
2019 }
2020
2021 if (expect_type != nullptr && noside != EVAL_SKIP
2022 && type->code () == TYPE_CODE_ARRAY)
2023 {
2024 struct type *range_type = type->index_type ();
2025 struct type *element_type = TYPE_TARGET_TYPE (type);
2026 struct value *array = allocate_value (expect_type);
2027 int element_size = TYPE_LENGTH (check_typedef (element_type));
2028 LONGEST low_bound, high_bound, index;
2029
2030 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
2031 {
2032 low_bound = 0;
2033 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
2034 }
2035 index = low_bound;
2036 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
2037 for (tem = nargs; --nargs >= 0;)
2038 {
2039 struct value *element;
2040
2041 element = evaluate_subexp (element_type, exp, pos, noside);
2042 if (value_type (element) != element_type)
2043 element = value_cast (element_type, element);
2044 if (index > high_bound)
2045 /* To avoid memory corruption. */
2046 error (_("Too many array elements"));
2047 memcpy (value_contents_raw (array)
2048 + (index - low_bound) * element_size,
2049 value_contents (element),
2050 element_size);
2051 index++;
2052 }
2053 return array;
2054 }
2055
2056 if (expect_type != nullptr && noside != EVAL_SKIP
2057 && type->code () == TYPE_CODE_SET)
2058 {
2059 struct value *set = allocate_value (expect_type);
2060 gdb_byte *valaddr = value_contents_raw (set);
2061 struct type *element_type = type->index_type ();
2062 struct type *check_type = element_type;
2063 LONGEST low_bound, high_bound;
2064
2065 /* Get targettype of elementtype. */
2066 while (check_type->code () == TYPE_CODE_RANGE
2067 || check_type->code () == TYPE_CODE_TYPEDEF)
2068 check_type = TYPE_TARGET_TYPE (check_type);
2069
2070 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
2071 error (_("(power)set type with unknown size"));
2072 memset (valaddr, '\0', TYPE_LENGTH (type));
2073 for (tem = 0; tem < nargs; tem++)
2074 {
2075 LONGEST range_low, range_high;
2076 struct type *range_low_type, *range_high_type;
2077 struct value *elem_val;
2078
2079 elem_val = evaluate_subexp (element_type, exp, pos, noside);
2080 range_low_type = range_high_type = value_type (elem_val);
2081 range_low = range_high = value_as_long (elem_val);
2082
2083 /* Check types of elements to avoid mixture of elements from
2084 different types. Also check if type of element is "compatible"
2085 with element type of powerset. */
2086 if (range_low_type->code () == TYPE_CODE_RANGE)
2087 range_low_type = TYPE_TARGET_TYPE (range_low_type);
2088 if (range_high_type->code () == TYPE_CODE_RANGE)
2089 range_high_type = TYPE_TARGET_TYPE (range_high_type);
2090 if ((range_low_type->code () != range_high_type->code ())
2091 || (range_low_type->code () == TYPE_CODE_ENUM
2092 && (range_low_type != range_high_type)))
2093 /* different element modes. */
2094 error (_("POWERSET tuple elements of different mode"));
2095 if ((check_type->code () != range_low_type->code ())
2096 || (check_type->code () == TYPE_CODE_ENUM
2097 && range_low_type != check_type))
2098 error (_("incompatible POWERSET tuple elements"));
2099 if (range_low > range_high)
2100 {
2101 warning (_("empty POWERSET tuple range"));
2102 continue;
2103 }
2104 if (range_low < low_bound || range_high > high_bound)
2105 error (_("POWERSET tuple element out of range"));
2106 range_low -= low_bound;
2107 range_high -= low_bound;
2108 for (; range_low <= range_high; range_low++)
2109 {
2110 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
2111
2112 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
2113 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
2114 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
2115 |= 1 << bit_index;
2116 }
2117 }
2118 return set;
2119 }
2120
2121 argvec = XALLOCAVEC (struct value *, nargs);
2122 for (tem = 0; tem < nargs; tem++)
2123 {
2124 /* Ensure that array expressions are coerced into pointer
2125 objects. */
2126 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
2127 }
2128 if (noside == EVAL_SKIP)
2129 return eval_skip_value (exp);
2130 return value_array (tem2, tem3, argvec);
2131
2132 case TERNOP_SLICE:
2133 {
2134 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
2135 struct value *low = evaluate_subexp (nullptr, exp, pos, noside);
2136 struct value *upper = evaluate_subexp (nullptr, exp, pos, noside);
2137 return eval_op_ternop (expect_type, exp, noside, array, low, upper);
2138 }
2139
2140 case TERNOP_COND:
2141 /* Skip third and second args to evaluate the first one. */
2142 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2143 if (value_logical_not (arg1))
2144 {
2145 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2146 return evaluate_subexp (nullptr, exp, pos, noside);
2147 }
2148 else
2149 {
2150 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2151 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2152 return arg2;
2153 }
2154
2155 case OP_OBJC_SELECTOR:
2156 { /* Objective C @selector operator. */
2157 char *sel = &exp->elts[pc + 2].string;
2158 int len = longest_to_int (exp->elts[pc + 1].longconst);
2159
2160 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
2161 if (sel[len] != 0)
2162 sel[len] = 0; /* Make sure it's terminated. */
2163
2164 return eval_op_objc_selector (expect_type, exp, noside, sel);
2165 }
2166
2167 case OP_OBJC_MSGCALL:
2168 { /* Objective C message (method) call. */
2169
2170 CORE_ADDR responds_selector = 0;
2171 CORE_ADDR method_selector = 0;
2172
2173 CORE_ADDR selector = 0;
2174
2175 int struct_return = 0;
2176 enum noside sub_no_side = EVAL_NORMAL;
2177
2178 struct value *msg_send = NULL;
2179 struct value *msg_send_stret = NULL;
2180 int gnu_runtime = 0;
2181
2182 struct value *target = NULL;
2183 struct value *method = NULL;
2184 struct value *called_method = NULL;
2185
2186 struct type *selector_type = NULL;
2187 struct type *long_type;
2188
2189 struct value *ret = NULL;
2190 CORE_ADDR addr = 0;
2191
2192 selector = exp->elts[pc + 1].longconst;
2193 nargs = exp->elts[pc + 2].longconst;
2194 argvec = XALLOCAVEC (struct value *, nargs + 5);
2195
2196 (*pos) += 3;
2197
2198 long_type = builtin_type (exp->gdbarch)->builtin_long;
2199 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
2200
2201 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2202 sub_no_side = EVAL_NORMAL;
2203 else
2204 sub_no_side = noside;
2205
2206 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
2207
2208 if (value_as_long (target) == 0)
2209 return value_from_longest (long_type, 0);
2210
2211 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
2212 gnu_runtime = 1;
2213
2214 /* Find the method dispatch (Apple runtime) or method lookup
2215 (GNU runtime) function for Objective-C. These will be used
2216 to lookup the symbol information for the method. If we
2217 can't find any symbol information, then we'll use these to
2218 call the method, otherwise we can call the method
2219 directly. The msg_send_stret function is used in the special
2220 case of a method that returns a structure (Apple runtime
2221 only). */
2222 if (gnu_runtime)
2223 {
2224 type = selector_type;
2225
2226 type = lookup_function_type (type);
2227 type = lookup_pointer_type (type);
2228 type = lookup_function_type (type);
2229 type = lookup_pointer_type (type);
2230
2231 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
2232 msg_send_stret
2233 = find_function_in_inferior ("objc_msg_lookup", NULL);
2234
2235 msg_send = value_from_pointer (type, value_as_address (msg_send));
2236 msg_send_stret = value_from_pointer (type,
2237 value_as_address (msg_send_stret));
2238 }
2239 else
2240 {
2241 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
2242 /* Special dispatcher for methods returning structs. */
2243 msg_send_stret
2244 = find_function_in_inferior ("objc_msgSend_stret", NULL);
2245 }
2246
2247 /* Verify the target object responds to this method. The
2248 standard top-level 'Object' class uses a different name for
2249 the verification method than the non-standard, but more
2250 often used, 'NSObject' class. Make sure we check for both. */
2251
2252 responds_selector
2253 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
2254 if (responds_selector == 0)
2255 responds_selector
2256 = lookup_child_selector (exp->gdbarch, "respondsTo:");
2257
2258 if (responds_selector == 0)
2259 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
2260
2261 method_selector
2262 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
2263 if (method_selector == 0)
2264 method_selector
2265 = lookup_child_selector (exp->gdbarch, "methodFor:");
2266
2267 if (method_selector == 0)
2268 error (_("no 'methodFor:' or 'methodForSelector:' method"));
2269
2270 /* Call the verification method, to make sure that the target
2271 class implements the desired method. */
2272
2273 argvec[0] = msg_send;
2274 argvec[1] = target;
2275 argvec[2] = value_from_longest (long_type, responds_selector);
2276 argvec[3] = value_from_longest (long_type, selector);
2277 argvec[4] = 0;
2278
2279 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2280 if (gnu_runtime)
2281 {
2282 /* Function objc_msg_lookup returns a pointer. */
2283 argvec[0] = ret;
2284 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2285 }
2286 if (value_as_long (ret) == 0)
2287 error (_("Target does not respond to this message selector."));
2288
2289 /* Call "methodForSelector:" method, to get the address of a
2290 function method that implements this selector for this
2291 class. If we can find a symbol at that address, then we
2292 know the return type, parameter types etc. (that's a good
2293 thing). */
2294
2295 argvec[0] = msg_send;
2296 argvec[1] = target;
2297 argvec[2] = value_from_longest (long_type, method_selector);
2298 argvec[3] = value_from_longest (long_type, selector);
2299 argvec[4] = 0;
2300
2301 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2302 if (gnu_runtime)
2303 {
2304 argvec[0] = ret;
2305 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2306 }
2307
2308 /* ret should now be the selector. */
2309
2310 addr = value_as_long (ret);
2311 if (addr)
2312 {
2313 struct symbol *sym = NULL;
2314
2315 /* The address might point to a function descriptor;
2316 resolve it to the actual code address instead. */
2317 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
2318 current_top_target ());
2319
2320 /* Is it a high_level symbol? */
2321 sym = find_pc_function (addr);
2322 if (sym != NULL)
2323 method = value_of_variable (sym, 0);
2324 }
2325
2326 /* If we found a method with symbol information, check to see
2327 if it returns a struct. Otherwise assume it doesn't. */
2328
2329 if (method)
2330 {
2331 CORE_ADDR funaddr;
2332 struct type *val_type;
2333
2334 funaddr = find_function_addr (method, &val_type);
2335
2336 block_for_pc (funaddr);
2337
2338 val_type = check_typedef (val_type);
2339
2340 if ((val_type == NULL)
2341 || (val_type->code () == TYPE_CODE_ERROR))
2342 {
2343 if (expect_type != NULL)
2344 val_type = expect_type;
2345 }
2346
2347 struct_return = using_struct_return (exp->gdbarch, method,
2348 val_type);
2349 }
2350 else if (expect_type != NULL)
2351 {
2352 struct_return = using_struct_return (exp->gdbarch, NULL,
2353 check_typedef (expect_type));
2354 }
2355
2356 /* Found a function symbol. Now we will substitute its
2357 value in place of the message dispatcher (obj_msgSend),
2358 so that we call the method directly instead of thru
2359 the dispatcher. The main reason for doing this is that
2360 we can now evaluate the return value and parameter values
2361 according to their known data types, in case we need to
2362 do things like promotion, dereferencing, special handling
2363 of structs and doubles, etc.
2364
2365 We want to use the type signature of 'method', but still
2366 jump to objc_msgSend() or objc_msgSend_stret() to better
2367 mimic the behavior of the runtime. */
2368
2369 if (method)
2370 {
2371 if (value_type (method)->code () != TYPE_CODE_FUNC)
2372 error (_("method address has symbol information "
2373 "with non-function type; skipping"));
2374
2375 /* Create a function pointer of the appropriate type, and
2376 replace its value with the value of msg_send or
2377 msg_send_stret. We must use a pointer here, as
2378 msg_send and msg_send_stret are of pointer type, and
2379 the representation may be different on systems that use
2380 function descriptors. */
2381 if (struct_return)
2382 called_method
2383 = value_from_pointer (lookup_pointer_type (value_type (method)),
2384 value_as_address (msg_send_stret));
2385 else
2386 called_method
2387 = value_from_pointer (lookup_pointer_type (value_type (method)),
2388 value_as_address (msg_send));
2389 }
2390 else
2391 {
2392 if (struct_return)
2393 called_method = msg_send_stret;
2394 else
2395 called_method = msg_send;
2396 }
2397
2398 if (noside == EVAL_SKIP)
2399 return eval_skip_value (exp);
2400
2401 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2402 {
2403 /* If the return type doesn't look like a function type,
2404 call an error. This can happen if somebody tries to
2405 turn a variable into a function call. This is here
2406 because people often want to call, eg, strcmp, which
2407 gdb doesn't know is a function. If gdb isn't asked for
2408 it's opinion (ie. through "whatis"), it won't offer
2409 it. */
2410
2411 struct type *callee_type = value_type (called_method);
2412
2413 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
2414 callee_type = TYPE_TARGET_TYPE (callee_type);
2415 callee_type = TYPE_TARGET_TYPE (callee_type);
2416
2417 if (callee_type)
2418 {
2419 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
2420 return allocate_value (expect_type);
2421 else
2422 return allocate_value (callee_type);
2423 }
2424 else
2425 error (_("Expression of type other than "
2426 "\"method returning ...\" used as a method"));
2427 }
2428
2429 /* Now depending on whether we found a symbol for the method,
2430 we will either call the runtime dispatcher or the method
2431 directly. */
2432
2433 argvec[0] = called_method;
2434 argvec[1] = target;
2435 argvec[2] = value_from_longest (long_type, selector);
2436 /* User-supplied arguments. */
2437 for (tem = 0; tem < nargs; tem++)
2438 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
2439 argvec[tem + 3] = 0;
2440
2441 auto call_args = gdb::make_array_view (argvec + 1, nargs + 2);
2442
2443 if (gnu_runtime && (method != NULL))
2444 {
2445 /* Function objc_msg_lookup returns a pointer. */
2446 deprecated_set_value_type (argvec[0],
2447 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
2448 argvec[0] = call_function_by_hand (argvec[0], NULL, call_args);
2449 }
2450
2451 return call_function_by_hand (argvec[0], NULL, call_args);
2452 }
2453 break;
2454
2455 case OP_FUNCALL:
2456 return evaluate_funcall (expect_type, exp, pos, noside);
2457
2458 case OP_COMPLEX:
2459 /* We have a complex number, There should be 2 floating
2460 point numbers that compose it. */
2461 (*pos) += 2;
2462 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2463 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2464
2465 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
2466
2467 case STRUCTOP_STRUCT:
2468 tem = longest_to_int (exp->elts[pc + 1].longconst);
2469 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2470 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2471 return eval_op_structop_struct (expect_type, exp, noside, arg1,
2472 &exp->elts[pc + 2].string);
2473
2474 case STRUCTOP_PTR:
2475 tem = longest_to_int (exp->elts[pc + 1].longconst);
2476 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2477 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2478 return eval_op_structop_ptr (expect_type, exp, noside, op, arg1,
2479 &exp->elts[pc + 2].string);
2480
2481 case STRUCTOP_MEMBER:
2482 case STRUCTOP_MPTR:
2483 if (op == STRUCTOP_MEMBER)
2484 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2485 else
2486 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2487
2488 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2489
2490 return eval_op_member (expect_type, exp, noside, arg1, arg2);
2491
2492 case TYPE_INSTANCE:
2493 {
2494 type_instance_flags flags
2495 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2496 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2497 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2498 for (ix = 0; ix < nargs; ++ix)
2499 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2500
2501 fake_method fake_expect_type (flags, nargs, arg_types);
2502 *(pos) += 4 + nargs;
2503 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
2504 noside);
2505 }
2506
2507 case BINOP_CONCAT:
2508 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2509 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2510 return eval_op_concat (expect_type, exp, noside, op, arg1, arg2);
2511
2512 case BINOP_ASSIGN:
2513 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2514 /* Special-case assignments where the left-hand-side is a
2515 convenience variable -- in these, don't bother setting an
2516 expected type. This avoids a weird case where re-assigning a
2517 string or array to an internal variable could error with "Too
2518 many array elements". */
2519 arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
2520 ? nullptr
2521 : value_type (arg1),
2522 exp, pos, noside);
2523
2524 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2525 return arg1;
2526 if (binop_user_defined_p (op, arg1, arg2))
2527 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2528 else
2529 return value_assign (arg1, arg2);
2530
2531 case BINOP_ASSIGN_MODIFY:
2532 (*pos) += 2;
2533 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2534 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2535 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2536 return arg1;
2537 op = exp->elts[pc + 1].opcode;
2538 if (binop_user_defined_p (op, arg1, arg2))
2539 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2540 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2541 value_type (arg1))
2542 && is_integral_type (value_type (arg2)))
2543 arg2 = value_ptradd (arg1, value_as_long (arg2));
2544 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2545 value_type (arg1))
2546 && is_integral_type (value_type (arg2)))
2547 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2548 else
2549 {
2550 struct value *tmp = arg1;
2551
2552 /* For shift and integer exponentiation operations,
2553 only promote the first argument. */
2554 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2555 && is_integral_type (value_type (arg2)))
2556 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2557 else
2558 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2559
2560 arg2 = value_binop (tmp, arg2, op);
2561 }
2562 return value_assign (arg1, arg2);
2563
2564 case BINOP_ADD:
2565 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2566 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2567 return eval_op_add (expect_type, exp, noside, op, arg1, arg2);
2568
2569 case BINOP_SUB:
2570 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2571 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2572 return eval_op_sub (expect_type, exp, noside, op, arg1, arg2);
2573
2574 case BINOP_EXP:
2575 case BINOP_MUL:
2576 case BINOP_DIV:
2577 case BINOP_INTDIV:
2578 case BINOP_REM:
2579 case BINOP_MOD:
2580 case BINOP_LSH:
2581 case BINOP_RSH:
2582 case BINOP_BITWISE_AND:
2583 case BINOP_BITWISE_IOR:
2584 case BINOP_BITWISE_XOR:
2585 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2586 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2587 return eval_op_binary (expect_type, exp, noside, op, arg1, arg2);
2588
2589 case BINOP_SUBSCRIPT:
2590 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2591 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2592 return eval_op_subscript (expect_type, exp, noside, op, arg1, arg2);
2593
2594 case MULTI_SUBSCRIPT:
2595 (*pos) += 2;
2596 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2597 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2598 argvec = XALLOCAVEC (struct value *, nargs);
2599 for (ix = 0; ix < nargs; ++ix)
2600 argvec[ix] = evaluate_subexp_with_coercion (exp, pos, noside);
2601 if (noside == EVAL_SKIP)
2602 return arg1;
2603 for (ix = 0; ix < nargs; ++ix)
2604 {
2605 arg2 = argvec[ix];
2606
2607 if (binop_user_defined_p (op, arg1, arg2))
2608 {
2609 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2610 }
2611 else
2612 {
2613 arg1 = coerce_ref (arg1);
2614 type = check_typedef (value_type (arg1));
2615
2616 switch (type->code ())
2617 {
2618 case TYPE_CODE_PTR:
2619 case TYPE_CODE_ARRAY:
2620 case TYPE_CODE_STRING:
2621 arg1 = value_subscript (arg1, value_as_long (arg2));
2622 break;
2623
2624 default:
2625 if (type->name ())
2626 error (_("cannot subscript something of type `%s'"),
2627 type->name ());
2628 else
2629 error (_("cannot subscript requested type"));
2630 }
2631 }
2632 }
2633 return (arg1);
2634
2635 case BINOP_LOGICAL_AND:
2636 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2637 if (noside == EVAL_SKIP)
2638 {
2639 evaluate_subexp (nullptr, exp, pos, noside);
2640 return eval_skip_value (exp);
2641 }
2642
2643 oldpos = *pos;
2644 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2645 *pos = oldpos;
2646
2647 if (binop_user_defined_p (op, arg1, arg2))
2648 {
2649 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2650 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2651 }
2652 else
2653 {
2654 tem = value_logical_not (arg1);
2655 arg2
2656 = evaluate_subexp (nullptr, exp, pos, (tem ? EVAL_SKIP : noside));
2657 type = language_bool_type (exp->language_defn, exp->gdbarch);
2658 return value_from_longest (type,
2659 (LONGEST) (!tem && !value_logical_not (arg2)));
2660 }
2661
2662 case BINOP_LOGICAL_OR:
2663 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2664 if (noside == EVAL_SKIP)
2665 {
2666 evaluate_subexp (nullptr, exp, pos, noside);
2667 return eval_skip_value (exp);
2668 }
2669
2670 oldpos = *pos;
2671 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2672 *pos = oldpos;
2673
2674 if (binop_user_defined_p (op, arg1, arg2))
2675 {
2676 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2677 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2678 }
2679 else
2680 {
2681 tem = value_logical_not (arg1);
2682 arg2
2683 = evaluate_subexp (nullptr, exp, pos, (!tem ? EVAL_SKIP : noside));
2684 type = language_bool_type (exp->language_defn, exp->gdbarch);
2685 return value_from_longest (type,
2686 (LONGEST) (!tem || !value_logical_not (arg2)));
2687 }
2688
2689 case BINOP_EQUAL:
2690 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2691 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2692 return eval_op_equal (expect_type, exp, noside, op, arg1, arg2);
2693
2694 case BINOP_NOTEQUAL:
2695 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2696 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2697 return eval_op_notequal (expect_type, exp, noside, op, arg1, arg2);
2698
2699 case BINOP_LESS:
2700 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2701 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2702 return eval_op_less (expect_type, exp, noside, op, arg1, arg2);
2703
2704 case BINOP_GTR:
2705 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2706 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2707 return eval_op_gtr (expect_type, exp, noside, op, arg1, arg2);
2708
2709 case BINOP_GEQ:
2710 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2711 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2712 return eval_op_geq (expect_type, exp, noside, op, arg1, arg2);
2713
2714 case BINOP_LEQ:
2715 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2716 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2717 return eval_op_leq (expect_type, exp, noside, op, arg1, arg2);
2718
2719 case BINOP_REPEAT:
2720 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2721 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2722 return eval_op_repeat (expect_type, exp, noside, arg1, arg2);
2723
2724 case BINOP_COMMA:
2725 evaluate_subexp (nullptr, exp, pos, noside);
2726 return evaluate_subexp (nullptr, exp, pos, noside);
2727
2728 case UNOP_PLUS:
2729 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2730 return eval_op_plus (expect_type, exp, noside, op, arg1);
2731
2732 case UNOP_NEG:
2733 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2734 return eval_op_neg (expect_type, exp, noside, op, arg1);
2735
2736 case UNOP_COMPLEMENT:
2737 /* C++: check for and handle destructor names. */
2738
2739 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2740 return eval_op_complement (expect_type, exp, noside, op, arg1);
2741
2742 case UNOP_LOGICAL_NOT:
2743 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2744 return eval_op_lognot (expect_type, exp, noside, op, arg1);
2745
2746 case UNOP_IND:
2747 if (expect_type && expect_type->code () == TYPE_CODE_PTR)
2748 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2749 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2750 return eval_op_ind (expect_type, exp, noside, op, arg1);
2751
2752 case UNOP_ADDR:
2753 /* C++: check for and handle pointer to members. */
2754
2755 if (noside == EVAL_SKIP)
2756 {
2757 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2758 return eval_skip_value (exp);
2759 }
2760 else
2761 return evaluate_subexp_for_address (exp, pos, noside);
2762
2763 case UNOP_SIZEOF:
2764 if (noside == EVAL_SKIP)
2765 {
2766 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2767 return eval_skip_value (exp);
2768 }
2769 return evaluate_subexp_for_sizeof (exp, pos, noside);
2770
2771 case UNOP_ALIGNOF:
2772 {
2773 type = value_type (
2774 evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS));
2775 /* FIXME: This should be size_t. */
2776 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2777 ULONGEST align = type_align (type);
2778 if (align == 0)
2779 error (_("could not determine alignment of type"));
2780 return value_from_longest (size_type, align);
2781 }
2782
2783 case UNOP_CAST:
2784 (*pos) += 2;
2785 type = exp->elts[pc + 1].type;
2786 return evaluate_subexp_for_cast (exp, pos, noside, type);
2787
2788 case UNOP_CAST_TYPE:
2789 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2790 type = value_type (arg1);
2791 return evaluate_subexp_for_cast (exp, pos, noside, type);
2792
2793 case UNOP_DYNAMIC_CAST:
2794 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2795 type = value_type (arg1);
2796 arg1 = evaluate_subexp (type, exp, pos, noside);
2797 if (noside == EVAL_SKIP)
2798 return eval_skip_value (exp);
2799 return value_dynamic_cast (type, arg1);
2800
2801 case UNOP_REINTERPRET_CAST:
2802 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2803 type = value_type (arg1);
2804 arg1 = evaluate_subexp (type, exp, pos, noside);
2805 if (noside == EVAL_SKIP)
2806 return eval_skip_value (exp);
2807 return value_reinterpret_cast (type, arg1);
2808
2809 case UNOP_MEMVAL:
2810 (*pos) += 2;
2811 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2812 if (noside == EVAL_SKIP)
2813 return eval_skip_value (exp);
2814 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2815 return value_zero (exp->elts[pc + 1].type, lval_memory);
2816 else
2817 return value_at_lazy (exp->elts[pc + 1].type,
2818 value_as_address (arg1));
2819
2820 case UNOP_MEMVAL_TYPE:
2821 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2822 type = value_type (arg1);
2823 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2824 if (noside == EVAL_SKIP)
2825 return eval_skip_value (exp);
2826 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2827 return value_zero (type, lval_memory);
2828 else
2829 return value_at_lazy (type, value_as_address (arg1));
2830
2831 case UNOP_PREINCREMENT:
2832 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2833 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2834 return arg1;
2835 else if (unop_user_defined_p (op, arg1))
2836 {
2837 return value_x_unop (arg1, op, noside);
2838 }
2839 else
2840 {
2841 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2842 arg2 = value_ptradd (arg1, 1);
2843 else
2844 {
2845 struct value *tmp = arg1;
2846
2847 arg2 = value_one (value_type (arg1));
2848 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2849 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2850 }
2851
2852 return value_assign (arg1, arg2);
2853 }
2854
2855 case UNOP_PREDECREMENT:
2856 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2857 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2858 return arg1;
2859 else if (unop_user_defined_p (op, arg1))
2860 {
2861 return value_x_unop (arg1, op, noside);
2862 }
2863 else
2864 {
2865 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2866 arg2 = value_ptradd (arg1, -1);
2867 else
2868 {
2869 struct value *tmp = arg1;
2870
2871 arg2 = value_one (value_type (arg1));
2872 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2873 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2874 }
2875
2876 return value_assign (arg1, arg2);
2877 }
2878
2879 case UNOP_POSTINCREMENT:
2880 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2881 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2882 return arg1;
2883 else if (unop_user_defined_p (op, arg1))
2884 {
2885 return value_x_unop (arg1, op, noside);
2886 }
2887 else
2888 {
2889 arg3 = value_non_lval (arg1);
2890
2891 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2892 arg2 = value_ptradd (arg1, 1);
2893 else
2894 {
2895 struct value *tmp = arg1;
2896
2897 arg2 = value_one (value_type (arg1));
2898 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2899 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2900 }
2901
2902 value_assign (arg1, arg2);
2903 return arg3;
2904 }
2905
2906 case UNOP_POSTDECREMENT:
2907 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2908 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2909 return arg1;
2910 else if (unop_user_defined_p (op, arg1))
2911 {
2912 return value_x_unop (arg1, op, noside);
2913 }
2914 else
2915 {
2916 arg3 = value_non_lval (arg1);
2917
2918 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2919 arg2 = value_ptradd (arg1, -1);
2920 else
2921 {
2922 struct value *tmp = arg1;
2923
2924 arg2 = value_one (value_type (arg1));
2925 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2926 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2927 }
2928
2929 value_assign (arg1, arg2);
2930 return arg3;
2931 }
2932
2933 case OP_THIS:
2934 (*pos) += 1;
2935 return value_of_this (exp->language_defn);
2936
2937 case OP_TYPE:
2938 /* The value is not supposed to be used. This is here to make it
2939 easier to accommodate expressions that contain types. */
2940 (*pos) += 2;
2941 if (noside == EVAL_SKIP)
2942 return eval_skip_value (exp);
2943 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2944 return allocate_value (exp->elts[pc + 1].type);
2945 else
2946 error (_("Attempt to use a type name as an expression"));
2947
2948 case OP_TYPEOF:
2949 case OP_DECLTYPE:
2950 if (noside == EVAL_SKIP)
2951 {
2952 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2953 return eval_skip_value (exp);
2954 }
2955 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2956 {
2957 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2958 struct value *result;
2959
2960 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2961
2962 /* 'decltype' has special semantics for lvalues. */
2963 if (op == OP_DECLTYPE
2964 && (sub_op == BINOP_SUBSCRIPT
2965 || sub_op == STRUCTOP_MEMBER
2966 || sub_op == STRUCTOP_MPTR
2967 || sub_op == UNOP_IND
2968 || sub_op == STRUCTOP_STRUCT
2969 || sub_op == STRUCTOP_PTR
2970 || sub_op == OP_SCOPE))
2971 {
2972 type = value_type (result);
2973
2974 if (!TYPE_IS_REFERENCE (type))
2975 {
2976 type = lookup_lvalue_reference_type (type);
2977 result = allocate_value (type);
2978 }
2979 }
2980
2981 return result;
2982 }
2983 else
2984 error (_("Attempt to use a type as an expression"));
2985
2986 case OP_TYPEID:
2987 {
2988 struct value *result;
2989 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2990
2991 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2992 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2993 else
2994 result = evaluate_subexp (nullptr, exp, pos, noside);
2995
2996 if (noside != EVAL_NORMAL)
2997 return allocate_value (cplus_typeid_type (exp->gdbarch));
2998
2999 return cplus_typeid (result);
3000 }
3001
3002 default:
3003 /* Removing this case and compiling with gcc -Wall reveals that
3004 a lot of cases are hitting this case. Some of these should
3005 probably be removed from expression.h; others are legitimate
3006 expressions which are (apparently) not fully implemented.
3007
3008 If there are any cases landing here which mean a user error,
3009 then they should be separate cases, with more descriptive
3010 error messages. */
3011
3012 error (_("GDB does not (yet) know how to "
3013 "evaluate that kind of expression"));
3014 }
3015
3016 gdb_assert_not_reached ("missed return?");
3017 }
3018 \f
3019 /* Evaluate a subexpression of EXP, at index *POS,
3020 and return the address of that subexpression.
3021 Advance *POS over the subexpression.
3022 If the subexpression isn't an lvalue, get an error.
3023 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
3024 then only the type of the result need be correct. */
3025
3026 static struct value *
3027 evaluate_subexp_for_address (struct expression *exp, int *pos,
3028 enum noside noside)
3029 {
3030 enum exp_opcode op;
3031 int pc;
3032 struct symbol *var;
3033 struct value *x;
3034 int tem;
3035
3036 pc = (*pos);
3037 op = exp->elts[pc].opcode;
3038
3039 switch (op)
3040 {
3041 case UNOP_IND:
3042 (*pos)++;
3043 x = evaluate_subexp (nullptr, exp, pos, noside);
3044
3045 /* We can't optimize out "&*" if there's a user-defined operator*. */
3046 if (unop_user_defined_p (op, x))
3047 {
3048 x = value_x_unop (x, op, noside);
3049 goto default_case_after_eval;
3050 }
3051
3052 return coerce_array (x);
3053
3054 case UNOP_MEMVAL:
3055 (*pos) += 3;
3056 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
3057 evaluate_subexp (nullptr, exp, pos, noside));
3058
3059 case UNOP_MEMVAL_TYPE:
3060 {
3061 struct type *type;
3062
3063 (*pos) += 1;
3064 x = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3065 type = value_type (x);
3066 return value_cast (lookup_pointer_type (type),
3067 evaluate_subexp (nullptr, exp, pos, noside));
3068 }
3069
3070 case OP_VAR_VALUE:
3071 var = exp->elts[pc + 2].symbol;
3072
3073 /* C++: The "address" of a reference should yield the address
3074 * of the object pointed to. Let value_addr() deal with it. */
3075 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
3076 goto default_case;
3077
3078 (*pos) += 4;
3079 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3080 {
3081 struct type *type =
3082 lookup_pointer_type (SYMBOL_TYPE (var));
3083 enum address_class sym_class = SYMBOL_CLASS (var);
3084
3085 if (sym_class == LOC_CONST
3086 || sym_class == LOC_CONST_BYTES
3087 || sym_class == LOC_REGISTER)
3088 error (_("Attempt to take address of register or constant."));
3089
3090 return
3091 value_zero (type, not_lval);
3092 }
3093 else
3094 return address_of_variable (var, exp->elts[pc + 1].block);
3095
3096 case OP_VAR_MSYM_VALUE:
3097 {
3098 (*pos) += 4;
3099
3100 value *val = evaluate_var_msym_value (noside,
3101 exp->elts[pc + 1].objfile,
3102 exp->elts[pc + 2].msymbol);
3103 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3104 {
3105 struct type *type = lookup_pointer_type (value_type (val));
3106 return value_zero (type, not_lval);
3107 }
3108 else
3109 return value_addr (val);
3110 }
3111
3112 case OP_SCOPE:
3113 tem = longest_to_int (exp->elts[pc + 2].longconst);
3114 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3115 x = value_aggregate_elt (exp->elts[pc + 1].type,
3116 &exp->elts[pc + 3].string,
3117 NULL, 1, noside);
3118 if (x == NULL)
3119 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3120 return x;
3121
3122 default:
3123 default_case:
3124 x = evaluate_subexp (nullptr, exp, pos, noside);
3125 default_case_after_eval:
3126 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3127 {
3128 struct type *type = check_typedef (value_type (x));
3129
3130 if (TYPE_IS_REFERENCE (type))
3131 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3132 not_lval);
3133 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3134 return value_zero (lookup_pointer_type (value_type (x)),
3135 not_lval);
3136 else
3137 error (_("Attempt to take address of "
3138 "value not located in memory."));
3139 }
3140 return value_addr (x);
3141 }
3142 }
3143
3144 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3145 When used in contexts where arrays will be coerced anyway, this is
3146 equivalent to `evaluate_subexp' but much faster because it avoids
3147 actually fetching array contents (perhaps obsolete now that we have
3148 value_lazy()).
3149
3150 Note that we currently only do the coercion for C expressions, where
3151 arrays are zero based and the coercion is correct. For other languages,
3152 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3153 to decide if coercion is appropriate. */
3154
3155 struct value *
3156 evaluate_subexp_with_coercion (struct expression *exp,
3157 int *pos, enum noside noside)
3158 {
3159 enum exp_opcode op;
3160 int pc;
3161 struct value *val;
3162 struct symbol *var;
3163 struct type *type;
3164
3165 pc = (*pos);
3166 op = exp->elts[pc].opcode;
3167
3168 switch (op)
3169 {
3170 case OP_VAR_VALUE:
3171 var = exp->elts[pc + 2].symbol;
3172 type = check_typedef (SYMBOL_TYPE (var));
3173 if (type->code () == TYPE_CODE_ARRAY
3174 && !type->is_vector ()
3175 && CAST_IS_CONVERSION (exp->language_defn))
3176 {
3177 (*pos) += 4;
3178 val = address_of_variable (var, exp->elts[pc + 1].block);
3179 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3180 val);
3181 }
3182 /* FALLTHROUGH */
3183
3184 default:
3185 return evaluate_subexp (nullptr, exp, pos, noside);
3186 }
3187 }
3188
3189 /* Evaluate a subexpression of EXP, at index *POS,
3190 and return a value for the size of that subexpression.
3191 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3192 we allow side-effects on the operand if its type is a variable
3193 length array. */
3194
3195 static struct value *
3196 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3197 enum noside noside)
3198 {
3199 /* FIXME: This should be size_t. */
3200 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3201 enum exp_opcode op;
3202 int pc;
3203 struct type *type;
3204 struct value *val;
3205
3206 pc = (*pos);
3207 op = exp->elts[pc].opcode;
3208
3209 switch (op)
3210 {
3211 /* This case is handled specially
3212 so that we avoid creating a value for the result type.
3213 If the result type is very big, it's desirable not to
3214 create a value unnecessarily. */
3215 case UNOP_IND:
3216 (*pos)++;
3217 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3218 type = check_typedef (value_type (val));
3219 if (type->code () != TYPE_CODE_PTR
3220 && !TYPE_IS_REFERENCE (type)
3221 && type->code () != TYPE_CODE_ARRAY)
3222 error (_("Attempt to take contents of a non-pointer value."));
3223 type = TYPE_TARGET_TYPE (type);
3224 if (is_dynamic_type (type))
3225 type = value_type (value_ind (val));
3226 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3227
3228 case UNOP_MEMVAL:
3229 (*pos) += 3;
3230 type = exp->elts[pc + 1].type;
3231 break;
3232
3233 case UNOP_MEMVAL_TYPE:
3234 (*pos) += 1;
3235 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3236 type = value_type (val);
3237 break;
3238
3239 case OP_VAR_VALUE:
3240 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3241 if (is_dynamic_type (type))
3242 {
3243 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3244 type = value_type (val);
3245 if (type->code () == TYPE_CODE_ARRAY)
3246 {
3247 if (type_not_allocated (type) || type_not_associated (type))
3248 return value_zero (size_type, not_lval);
3249 else if (is_dynamic_type (type->index_type ())
3250 && type->bounds ()->high.kind () == PROP_UNDEFINED)
3251 return allocate_optimized_out_value (size_type);
3252 }
3253 }
3254 else
3255 (*pos) += 4;
3256 break;
3257
3258 case OP_VAR_MSYM_VALUE:
3259 {
3260 (*pos) += 4;
3261
3262 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3263 value *mval = evaluate_var_msym_value (noside,
3264 exp->elts[pc + 1].objfile,
3265 msymbol);
3266
3267 type = value_type (mval);
3268 if (type->code () == TYPE_CODE_ERROR)
3269 error_unknown_type (msymbol->print_name ());
3270
3271 return value_from_longest (size_type, TYPE_LENGTH (type));
3272 }
3273 break;
3274
3275 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3276 type of the subscript is a variable length array type. In this case we
3277 must re-evaluate the right hand side of the subscription to allow
3278 side-effects. */
3279 case BINOP_SUBSCRIPT:
3280 if (noside == EVAL_NORMAL)
3281 {
3282 int npc = (*pos) + 1;
3283
3284 val = evaluate_subexp (nullptr, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
3285 type = check_typedef (value_type (val));
3286 if (type->code () == TYPE_CODE_ARRAY)
3287 {
3288 type = check_typedef (TYPE_TARGET_TYPE (type));
3289 if (type->code () == TYPE_CODE_ARRAY)
3290 {
3291 type = type->index_type ();
3292 /* Only re-evaluate the right hand side if the resulting type
3293 is a variable length type. */
3294 if (type->bounds ()->flag_bound_evaluated)
3295 {
3296 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3297 return value_from_longest
3298 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3299 }
3300 }
3301 }
3302 }
3303
3304 /* Fall through. */
3305
3306 default:
3307 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3308 type = value_type (val);
3309 break;
3310 }
3311
3312 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3313 "When applied to a reference or a reference type, the result is
3314 the size of the referenced type." */
3315 type = check_typedef (type);
3316 if (exp->language_defn->la_language == language_cplus
3317 && (TYPE_IS_REFERENCE (type)))
3318 type = check_typedef (TYPE_TARGET_TYPE (type));
3319 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3320 }
3321
3322 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3323 for that subexpression cast to TO_TYPE. Advance *POS over the
3324 subexpression. */
3325
3326 static value *
3327 evaluate_subexp_for_cast (expression *exp, int *pos,
3328 enum noside noside,
3329 struct type *to_type)
3330 {
3331 int pc = *pos;
3332
3333 /* Don't let symbols be evaluated with evaluate_subexp because that
3334 throws an "unknown type" error for no-debug data symbols.
3335 Instead, we want the cast to reinterpret the symbol. */
3336 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3337 || exp->elts[pc].opcode == OP_VAR_VALUE)
3338 {
3339 (*pos) += 4;
3340
3341 value *val;
3342 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3343 {
3344 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3345 return value_zero (to_type, not_lval);
3346
3347 val = evaluate_var_msym_value (noside,
3348 exp->elts[pc + 1].objfile,
3349 exp->elts[pc + 2].msymbol);
3350 }
3351 else
3352 val = evaluate_var_value (noside,
3353 exp->elts[pc + 1].block,
3354 exp->elts[pc + 2].symbol);
3355
3356 if (noside == EVAL_SKIP)
3357 return eval_skip_value (exp);
3358
3359 val = value_cast (to_type, val);
3360
3361 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3362 if (VALUE_LVAL (val) == lval_memory)
3363 {
3364 if (value_lazy (val))
3365 value_fetch_lazy (val);
3366 VALUE_LVAL (val) = not_lval;
3367 }
3368 return val;
3369 }
3370
3371 value *val = evaluate_subexp (to_type, exp, pos, noside);
3372 if (noside == EVAL_SKIP)
3373 return eval_skip_value (exp);
3374 return value_cast (to_type, val);
3375 }
3376
3377 /* Parse a type expression in the string [P..P+LENGTH). */
3378
3379 struct type *
3380 parse_and_eval_type (const char *p, int length)
3381 {
3382 char *tmp = (char *) alloca (length + 4);
3383
3384 tmp[0] = '(';
3385 memcpy (tmp + 1, p, length);
3386 tmp[length + 1] = ')';
3387 tmp[length + 2] = '0';
3388 tmp[length + 3] = '\0';
3389 expression_up expr = parse_expression (tmp);
3390 if (expr->first_opcode () != UNOP_CAST)
3391 error (_("Internal error in eval_type."));
3392 return expr->elts[1].type;
3393 }
This page took 0.093704 seconds and 5 git commands to generate.