Split out eval_op_geq
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include "typeprint.h"
42 #include <ctype.h>
43
44 /* Prototypes for local functions. */
45
46 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
47 enum noside);
48
49 static struct value *evaluate_subexp_for_address (struct expression *,
50 int *, enum noside);
51
52 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
53 enum noside noside,
54 struct type *type);
55
56 static struct value *evaluate_struct_tuple (struct value *,
57 struct expression *, int *,
58 enum noside, int);
59
60 struct value *
61 evaluate_subexp (struct type *expect_type, struct expression *exp,
62 int *pos, enum noside noside)
63 {
64 return ((*exp->language_defn->expression_ops ()->evaluate_exp)
65 (expect_type, exp, pos, noside));
66 }
67 \f
68 /* Parse the string EXP as a C expression, evaluate it,
69 and return the result as a number. */
70
71 CORE_ADDR
72 parse_and_eval_address (const char *exp)
73 {
74 expression_up expr = parse_expression (exp);
75
76 return value_as_address (evaluate_expression (expr.get ()));
77 }
78
79 /* Like parse_and_eval_address, but treats the value of the expression
80 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
81 LONGEST
82 parse_and_eval_long (const char *exp)
83 {
84 expression_up expr = parse_expression (exp);
85
86 return value_as_long (evaluate_expression (expr.get ()));
87 }
88
89 struct value *
90 parse_and_eval (const char *exp)
91 {
92 expression_up expr = parse_expression (exp);
93
94 return evaluate_expression (expr.get ());
95 }
96
97 /* Parse up to a comma (or to a closeparen)
98 in the string EXPP as an expression, evaluate it, and return the value.
99 EXPP is advanced to point to the comma. */
100
101 struct value *
102 parse_to_comma_and_eval (const char **expp)
103 {
104 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
105
106 return evaluate_expression (expr.get ());
107 }
108 \f
109
110 /* See expression.h. */
111
112 struct value *
113 expression::evaluate (struct type *expect_type, enum noside noside)
114 {
115 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
116 if (target_has_execution ()
117 && language_defn->la_language == language_cplus
118 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
119 stack_temporaries.emplace (inferior_thread ());
120
121 int pos = 0;
122 struct value *retval = evaluate_subexp (expect_type, this, &pos, noside);
123
124 if (stack_temporaries.has_value ()
125 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
126 retval = value_non_lval (retval);
127
128 return retval;
129 }
130
131 /* See value.h. */
132
133 struct value *
134 evaluate_expression (struct expression *exp, struct type *expect_type)
135 {
136 return exp->evaluate (expect_type, EVAL_NORMAL);
137 }
138
139 /* Evaluate an expression, avoiding all memory references
140 and getting a value whose type alone is correct. */
141
142 struct value *
143 evaluate_type (struct expression *exp)
144 {
145 return exp->evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS);
146 }
147
148 /* Evaluate a subexpression, avoiding all memory references and
149 getting a value whose type alone is correct. */
150
151 struct value *
152 evaluate_subexpression_type (struct expression *exp, int subexp)
153 {
154 return evaluate_subexp (nullptr, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
155 }
156
157 /* Find the current value of a watchpoint on EXP. Return the value in
158 *VALP and *RESULTP and the chain of intermediate and final values
159 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
160 not need them.
161
162 If PRESERVE_ERRORS is true, then exceptions are passed through.
163 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
164 occurs while evaluating the expression, *RESULTP will be set to
165 NULL. *RESULTP may be a lazy value, if the result could not be
166 read from memory. It is used to determine whether a value is
167 user-specified (we should watch the whole value) or intermediate
168 (we should watch only the bit used to locate the final value).
169
170 If the final value, or any intermediate value, could not be read
171 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
172 set to any referenced values. *VALP will never be a lazy value.
173 This is the value which we store in struct breakpoint.
174
175 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
176 released from the value chain. If VAL_CHAIN is NULL, all generated
177 values will be left on the value chain. */
178
179 void
180 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
181 struct value **resultp,
182 std::vector<value_ref_ptr> *val_chain,
183 bool preserve_errors)
184 {
185 struct value *mark, *new_mark, *result;
186
187 *valp = NULL;
188 if (resultp)
189 *resultp = NULL;
190 if (val_chain)
191 val_chain->clear ();
192
193 /* Evaluate the expression. */
194 mark = value_mark ();
195 result = NULL;
196
197 try
198 {
199 result = evaluate_subexp (nullptr, exp, pc, EVAL_NORMAL);
200 }
201 catch (const gdb_exception &ex)
202 {
203 /* Ignore memory errors if we want watchpoints pointing at
204 inaccessible memory to still be created; otherwise, throw the
205 error to some higher catcher. */
206 switch (ex.error)
207 {
208 case MEMORY_ERROR:
209 if (!preserve_errors)
210 break;
211 /* Fall through. */
212 default:
213 throw;
214 break;
215 }
216 }
217
218 new_mark = value_mark ();
219 if (mark == new_mark)
220 return;
221 if (resultp)
222 *resultp = result;
223
224 /* Make sure it's not lazy, so that after the target stops again we
225 have a non-lazy previous value to compare with. */
226 if (result != NULL)
227 {
228 if (!value_lazy (result))
229 *valp = result;
230 else
231 {
232
233 try
234 {
235 value_fetch_lazy (result);
236 *valp = result;
237 }
238 catch (const gdb_exception_error &except)
239 {
240 }
241 }
242 }
243
244 if (val_chain)
245 {
246 /* Return the chain of intermediate values. We use this to
247 decide which addresses to watch. */
248 *val_chain = value_release_to_mark (mark);
249 }
250 }
251
252 /* Extract a field operation from an expression. If the subexpression
253 of EXP starting at *SUBEXP is not a structure dereference
254 operation, return NULL. Otherwise, return the name of the
255 dereferenced field, and advance *SUBEXP to point to the
256 subexpression of the left-hand-side of the dereference. This is
257 used when completing field names. */
258
259 const char *
260 extract_field_op (struct expression *exp, int *subexp)
261 {
262 int tem;
263 char *result;
264
265 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
266 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
267 return NULL;
268 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
269 result = &exp->elts[*subexp + 2].string;
270 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
271 return result;
272 }
273
274 /* This function evaluates brace-initializers (in C/C++) for
275 structure types. */
276
277 static struct value *
278 evaluate_struct_tuple (struct value *struct_val,
279 struct expression *exp,
280 int *pos, enum noside noside, int nargs)
281 {
282 struct type *struct_type = check_typedef (value_type (struct_val));
283 struct type *field_type;
284 int fieldno = -1;
285
286 while (--nargs >= 0)
287 {
288 struct value *val = NULL;
289 int bitpos, bitsize;
290 bfd_byte *addr;
291
292 fieldno++;
293 /* Skip static fields. */
294 while (fieldno < struct_type->num_fields ()
295 && field_is_static (&struct_type->field (fieldno)))
296 fieldno++;
297 if (fieldno >= struct_type->num_fields ())
298 error (_("too many initializers"));
299 field_type = struct_type->field (fieldno).type ();
300 if (field_type->code () == TYPE_CODE_UNION
301 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
302 error (_("don't know which variant you want to set"));
303
304 /* Here, struct_type is the type of the inner struct,
305 while substruct_type is the type of the inner struct.
306 These are the same for normal structures, but a variant struct
307 contains anonymous union fields that contain substruct fields.
308 The value fieldno is the index of the top-level (normal or
309 anonymous union) field in struct_field, while the value
310 subfieldno is the index of the actual real (named inner) field
311 in substruct_type. */
312
313 field_type = struct_type->field (fieldno).type ();
314 if (val == 0)
315 val = evaluate_subexp (field_type, exp, pos, noside);
316
317 /* Now actually set the field in struct_val. */
318
319 /* Assign val to field fieldno. */
320 if (value_type (val) != field_type)
321 val = value_cast (field_type, val);
322
323 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
324 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
325 addr = value_contents_writeable (struct_val) + bitpos / 8;
326 if (bitsize)
327 modify_field (struct_type, addr,
328 value_as_long (val), bitpos % 8, bitsize);
329 else
330 memcpy (addr, value_contents (val),
331 TYPE_LENGTH (value_type (val)));
332
333 }
334 return struct_val;
335 }
336
337 /* Promote value ARG1 as appropriate before performing a unary operation
338 on this argument.
339 If the result is not appropriate for any particular language then it
340 needs to patch this function. */
341
342 void
343 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
344 struct value **arg1)
345 {
346 struct type *type1;
347
348 *arg1 = coerce_ref (*arg1);
349 type1 = check_typedef (value_type (*arg1));
350
351 if (is_integral_type (type1))
352 {
353 switch (language->la_language)
354 {
355 default:
356 /* Perform integral promotion for ANSI C/C++.
357 If not appropriate for any particular language
358 it needs to modify this function. */
359 {
360 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
361
362 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
363 *arg1 = value_cast (builtin_int, *arg1);
364 }
365 break;
366 }
367 }
368 }
369
370 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
371 operation on those two operands.
372 If the result is not appropriate for any particular language then it
373 needs to patch this function. */
374
375 void
376 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
377 struct value **arg1, struct value **arg2)
378 {
379 struct type *promoted_type = NULL;
380 struct type *type1;
381 struct type *type2;
382
383 *arg1 = coerce_ref (*arg1);
384 *arg2 = coerce_ref (*arg2);
385
386 type1 = check_typedef (value_type (*arg1));
387 type2 = check_typedef (value_type (*arg2));
388
389 if ((type1->code () != TYPE_CODE_FLT
390 && type1->code () != TYPE_CODE_DECFLOAT
391 && !is_integral_type (type1))
392 || (type2->code () != TYPE_CODE_FLT
393 && type2->code () != TYPE_CODE_DECFLOAT
394 && !is_integral_type (type2)))
395 return;
396
397 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
398 return;
399
400 if (type1->code () == TYPE_CODE_DECFLOAT
401 || type2->code () == TYPE_CODE_DECFLOAT)
402 {
403 /* No promotion required. */
404 }
405 else if (type1->code () == TYPE_CODE_FLT
406 || type2->code () == TYPE_CODE_FLT)
407 {
408 switch (language->la_language)
409 {
410 case language_c:
411 case language_cplus:
412 case language_asm:
413 case language_objc:
414 case language_opencl:
415 /* No promotion required. */
416 break;
417
418 default:
419 /* For other languages the result type is unchanged from gdb
420 version 6.7 for backward compatibility.
421 If either arg was long double, make sure that value is also long
422 double. Otherwise use double. */
423 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
424 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
425 promoted_type = builtin_type (gdbarch)->builtin_long_double;
426 else
427 promoted_type = builtin_type (gdbarch)->builtin_double;
428 break;
429 }
430 }
431 else if (type1->code () == TYPE_CODE_BOOL
432 && type2->code () == TYPE_CODE_BOOL)
433 {
434 /* No promotion required. */
435 }
436 else
437 /* Integral operations here. */
438 /* FIXME: Also mixed integral/booleans, with result an integer. */
439 {
440 const struct builtin_type *builtin = builtin_type (gdbarch);
441 unsigned int promoted_len1 = TYPE_LENGTH (type1);
442 unsigned int promoted_len2 = TYPE_LENGTH (type2);
443 int is_unsigned1 = type1->is_unsigned ();
444 int is_unsigned2 = type2->is_unsigned ();
445 unsigned int result_len;
446 int unsigned_operation;
447
448 /* Determine type length and signedness after promotion for
449 both operands. */
450 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
451 {
452 is_unsigned1 = 0;
453 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
454 }
455 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
456 {
457 is_unsigned2 = 0;
458 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
459 }
460
461 if (promoted_len1 > promoted_len2)
462 {
463 unsigned_operation = is_unsigned1;
464 result_len = promoted_len1;
465 }
466 else if (promoted_len2 > promoted_len1)
467 {
468 unsigned_operation = is_unsigned2;
469 result_len = promoted_len2;
470 }
471 else
472 {
473 unsigned_operation = is_unsigned1 || is_unsigned2;
474 result_len = promoted_len1;
475 }
476
477 switch (language->la_language)
478 {
479 case language_c:
480 case language_cplus:
481 case language_asm:
482 case language_objc:
483 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
484 {
485 promoted_type = (unsigned_operation
486 ? builtin->builtin_unsigned_int
487 : builtin->builtin_int);
488 }
489 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
490 {
491 promoted_type = (unsigned_operation
492 ? builtin->builtin_unsigned_long
493 : builtin->builtin_long);
494 }
495 else
496 {
497 promoted_type = (unsigned_operation
498 ? builtin->builtin_unsigned_long_long
499 : builtin->builtin_long_long);
500 }
501 break;
502 case language_opencl:
503 if (result_len <= TYPE_LENGTH (lookup_signed_typename
504 (language, "int")))
505 {
506 promoted_type =
507 (unsigned_operation
508 ? lookup_unsigned_typename (language, "int")
509 : lookup_signed_typename (language, "int"));
510 }
511 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
512 (language, "long")))
513 {
514 promoted_type =
515 (unsigned_operation
516 ? lookup_unsigned_typename (language, "long")
517 : lookup_signed_typename (language,"long"));
518 }
519 break;
520 default:
521 /* For other languages the result type is unchanged from gdb
522 version 6.7 for backward compatibility.
523 If either arg was long long, make sure that value is also long
524 long. Otherwise use long. */
525 if (unsigned_operation)
526 {
527 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
528 promoted_type = builtin->builtin_unsigned_long_long;
529 else
530 promoted_type = builtin->builtin_unsigned_long;
531 }
532 else
533 {
534 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
535 promoted_type = builtin->builtin_long_long;
536 else
537 promoted_type = builtin->builtin_long;
538 }
539 break;
540 }
541 }
542
543 if (promoted_type)
544 {
545 /* Promote both operands to common type. */
546 *arg1 = value_cast (promoted_type, *arg1);
547 *arg2 = value_cast (promoted_type, *arg2);
548 }
549 }
550
551 static int
552 ptrmath_type_p (const struct language_defn *lang, struct type *type)
553 {
554 type = check_typedef (type);
555 if (TYPE_IS_REFERENCE (type))
556 type = TYPE_TARGET_TYPE (type);
557
558 switch (type->code ())
559 {
560 case TYPE_CODE_PTR:
561 case TYPE_CODE_FUNC:
562 return 1;
563
564 case TYPE_CODE_ARRAY:
565 return type->is_vector () ? 0 : lang->c_style_arrays_p ();
566
567 default:
568 return 0;
569 }
570 }
571
572 /* Represents a fake method with the given parameter types. This is
573 used by the parser to construct a temporary "expected" type for
574 method overload resolution. FLAGS is used as instance flags of the
575 new type, in order to be able to make the new type represent a
576 const/volatile overload. */
577
578 class fake_method
579 {
580 public:
581 fake_method (type_instance_flags flags,
582 int num_types, struct type **param_types);
583 ~fake_method ();
584
585 /* The constructed type. */
586 struct type *type () { return &m_type; }
587
588 private:
589 struct type m_type {};
590 main_type m_main_type {};
591 };
592
593 fake_method::fake_method (type_instance_flags flags,
594 int num_types, struct type **param_types)
595 {
596 struct type *type = &m_type;
597
598 TYPE_MAIN_TYPE (type) = &m_main_type;
599 TYPE_LENGTH (type) = 1;
600 type->set_code (TYPE_CODE_METHOD);
601 TYPE_CHAIN (type) = type;
602 type->set_instance_flags (flags);
603 if (num_types > 0)
604 {
605 if (param_types[num_types - 1] == NULL)
606 {
607 --num_types;
608 type->set_has_varargs (true);
609 }
610 else if (check_typedef (param_types[num_types - 1])->code ()
611 == TYPE_CODE_VOID)
612 {
613 --num_types;
614 /* Caller should have ensured this. */
615 gdb_assert (num_types == 0);
616 type->set_is_prototyped (true);
617 }
618 }
619
620 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
621 neither an objfile nor a gdbarch. As a result we must manually
622 allocate memory for auxiliary fields, and free the memory ourselves
623 when we are done with it. */
624 type->set_num_fields (num_types);
625 type->set_fields
626 ((struct field *) xzalloc (sizeof (struct field) * num_types));
627
628 while (num_types-- > 0)
629 type->field (num_types).set_type (param_types[num_types]);
630 }
631
632 fake_method::~fake_method ()
633 {
634 xfree (m_type.fields ());
635 }
636
637 /* Helper for evaluating an OP_VAR_VALUE. */
638
639 value *
640 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
641 {
642 /* JYG: We used to just return value_zero of the symbol type if
643 we're asked to avoid side effects. Otherwise we return
644 value_of_variable (...). However I'm not sure if
645 value_of_variable () has any side effect. We need a full value
646 object returned here for whatis_exp () to call evaluate_type ()
647 and then pass the full value to value_rtti_target_type () if we
648 are dealing with a pointer or reference to a base class and print
649 object is on. */
650
651 struct value *ret = NULL;
652
653 try
654 {
655 ret = value_of_variable (var, blk);
656 }
657
658 catch (const gdb_exception_error &except)
659 {
660 if (noside != EVAL_AVOID_SIDE_EFFECTS)
661 throw;
662
663 ret = value_zero (SYMBOL_TYPE (var), not_lval);
664 }
665
666 return ret;
667 }
668
669 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
670
671 value *
672 evaluate_var_msym_value (enum noside noside,
673 struct objfile *objfile, minimal_symbol *msymbol)
674 {
675 CORE_ADDR address;
676 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
677
678 if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
679 return value_zero (the_type, not_lval);
680 else
681 return value_at_lazy (the_type, address);
682 }
683
684 /* Helper for returning a value when handling EVAL_SKIP. */
685
686 value *
687 eval_skip_value (expression *exp)
688 {
689 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
690 }
691
692 /* See expression.h. */
693
694 value *
695 evaluate_subexp_do_call (expression *exp, enum noside noside,
696 value *callee,
697 gdb::array_view<value *> argvec,
698 const char *function_name,
699 type *default_return_type)
700 {
701 if (callee == NULL)
702 error (_("Cannot evaluate function -- may be inlined"));
703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
704 {
705 /* If the return type doesn't look like a function type,
706 call an error. This can happen if somebody tries to turn
707 a variable into a function call. */
708
709 type *ftype = value_type (callee);
710
711 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
712 {
713 /* We don't know anything about what the internal
714 function might return, but we have to return
715 something. */
716 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
717 not_lval);
718 }
719 else if (ftype->code () == TYPE_CODE_XMETHOD)
720 {
721 type *return_type = result_type_of_xmethod (callee, argvec);
722
723 if (return_type == NULL)
724 error (_("Xmethod is missing return type."));
725 return value_zero (return_type, not_lval);
726 }
727 else if (ftype->code () == TYPE_CODE_FUNC
728 || ftype->code () == TYPE_CODE_METHOD)
729 {
730 if (ftype->is_gnu_ifunc ())
731 {
732 CORE_ADDR address = value_address (callee);
733 type *resolved_type = find_gnu_ifunc_target_type (address);
734
735 if (resolved_type != NULL)
736 ftype = resolved_type;
737 }
738
739 type *return_type = TYPE_TARGET_TYPE (ftype);
740
741 if (return_type == NULL)
742 return_type = default_return_type;
743
744 if (return_type == NULL)
745 error_call_unknown_return_type (function_name);
746
747 return allocate_value (return_type);
748 }
749 else
750 error (_("Expression of type other than "
751 "\"Function returning ...\" used as function"));
752 }
753 switch (value_type (callee)->code ())
754 {
755 case TYPE_CODE_INTERNAL_FUNCTION:
756 return call_internal_function (exp->gdbarch, exp->language_defn,
757 callee, argvec.size (), argvec.data ());
758 case TYPE_CODE_XMETHOD:
759 return call_xmethod (callee, argvec);
760 default:
761 return call_function_by_hand (callee, default_return_type, argvec);
762 }
763 }
764
765 /* Helper for evaluating an OP_FUNCALL. */
766
767 static value *
768 evaluate_funcall (type *expect_type, expression *exp, int *pos,
769 enum noside noside)
770 {
771 int tem;
772 int pc2 = 0;
773 value *arg1 = NULL;
774 value *arg2 = NULL;
775 int save_pos1;
776 symbol *function = NULL;
777 char *function_name = NULL;
778 const char *var_func_name = NULL;
779
780 int pc = (*pos);
781 (*pos) += 2;
782
783 exp_opcode op = exp->elts[*pos].opcode;
784 int nargs = longest_to_int (exp->elts[pc].longconst);
785 /* Allocate arg vector, including space for the function to be
786 called in argvec[0], a potential `this', and a terminating
787 NULL. */
788 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
789 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
790 {
791 /* First, evaluate the structure into arg2. */
792 pc2 = (*pos)++;
793
794 if (op == STRUCTOP_MEMBER)
795 {
796 arg2 = evaluate_subexp_for_address (exp, pos, noside);
797 }
798 else
799 {
800 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
801 }
802
803 /* If the function is a virtual function, then the aggregate
804 value (providing the structure) plays its part by providing
805 the vtable. Otherwise, it is just along for the ride: call
806 the function directly. */
807
808 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
809
810 type *a1_type = check_typedef (value_type (arg1));
811 if (noside == EVAL_SKIP)
812 tem = 1; /* Set it to the right arg index so that all
813 arguments can also be skipped. */
814 else if (a1_type->code () == TYPE_CODE_METHODPTR)
815 {
816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
817 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
818 else
819 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
820
821 /* Now, say which argument to start evaluating from. */
822 nargs++;
823 tem = 2;
824 argvec[1] = arg2;
825 }
826 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
827 {
828 struct type *type_ptr
829 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
830 struct type *target_type_ptr
831 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
832
833 /* Now, convert these values to an address. */
834 arg2 = value_cast (type_ptr, arg2);
835
836 long mem_offset = value_as_long (arg1);
837
838 arg1 = value_from_pointer (target_type_ptr,
839 value_as_long (arg2) + mem_offset);
840 arg1 = value_ind (arg1);
841 tem = 1;
842 }
843 else
844 error (_("Non-pointer-to-member value used in pointer-to-member "
845 "construct"));
846 }
847 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
848 {
849 /* Hair for method invocations. */
850 int tem2;
851
852 nargs++;
853 /* First, evaluate the structure into arg2. */
854 pc2 = (*pos)++;
855 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
856 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
857
858 if (op == STRUCTOP_STRUCT)
859 {
860 /* If v is a variable in a register, and the user types
861 v.method (), this will produce an error, because v has no
862 address.
863
864 A possible way around this would be to allocate a copy of
865 the variable on the stack, copy in the contents, call the
866 function, and copy out the contents. I.e. convert this
867 from call by reference to call by copy-return (or
868 whatever it's called). However, this does not work
869 because it is not the same: the method being called could
870 stash a copy of the address, and then future uses through
871 that address (after the method returns) would be expected
872 to use the variable itself, not some copy of it. */
873 arg2 = evaluate_subexp_for_address (exp, pos, noside);
874 }
875 else
876 {
877 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
878
879 /* Check to see if the operator '->' has been overloaded.
880 If the operator has been overloaded replace arg2 with the
881 value returned by the custom operator and continue
882 evaluation. */
883 while (unop_user_defined_p (op, arg2))
884 {
885 struct value *value = NULL;
886 try
887 {
888 value = value_x_unop (arg2, op, noside);
889 }
890
891 catch (const gdb_exception_error &except)
892 {
893 if (except.error == NOT_FOUND_ERROR)
894 break;
895 else
896 throw;
897 }
898
899 arg2 = value;
900 }
901 }
902 /* Now, say which argument to start evaluating from. */
903 tem = 2;
904 }
905 else if (op == OP_SCOPE
906 && overload_resolution
907 && (exp->language_defn->la_language == language_cplus))
908 {
909 /* Unpack it locally so we can properly handle overload
910 resolution. */
911 char *name;
912 int local_tem;
913
914 pc2 = (*pos)++;
915 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
916 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
917 struct type *type = exp->elts[pc2 + 1].type;
918 name = &exp->elts[pc2 + 3].string;
919
920 function = NULL;
921 function_name = NULL;
922 if (type->code () == TYPE_CODE_NAMESPACE)
923 {
924 function = cp_lookup_symbol_namespace (type->name (),
925 name,
926 get_selected_block (0),
927 VAR_DOMAIN).symbol;
928 if (function == NULL)
929 error (_("No symbol \"%s\" in namespace \"%s\"."),
930 name, type->name ());
931
932 tem = 1;
933 /* arg2 is left as NULL on purpose. */
934 }
935 else
936 {
937 gdb_assert (type->code () == TYPE_CODE_STRUCT
938 || type->code () == TYPE_CODE_UNION);
939 function_name = name;
940
941 /* We need a properly typed value for method lookup. For
942 static methods arg2 is otherwise unused. */
943 arg2 = value_zero (type, lval_memory);
944 ++nargs;
945 tem = 2;
946 }
947 }
948 else if (op == OP_ADL_FUNC)
949 {
950 /* Save the function position and move pos so that the arguments
951 can be evaluated. */
952 int func_name_len;
953
954 save_pos1 = *pos;
955 tem = 1;
956
957 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
958 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
959 }
960 else
961 {
962 /* Non-method function call. */
963 save_pos1 = *pos;
964 tem = 1;
965
966 /* If this is a C++ function wait until overload resolution. */
967 if (op == OP_VAR_VALUE
968 && overload_resolution
969 && (exp->language_defn->la_language == language_cplus))
970 {
971 (*pos) += 4; /* Skip the evaluation of the symbol. */
972 argvec[0] = NULL;
973 }
974 else
975 {
976 if (op == OP_VAR_MSYM_VALUE)
977 {
978 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
979 var_func_name = msym->print_name ();
980 }
981 else if (op == OP_VAR_VALUE)
982 {
983 symbol *sym = exp->elts[*pos + 2].symbol;
984 var_func_name = sym->print_name ();
985 }
986
987 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
988 type *type = value_type (argvec[0]);
989 if (type && type->code () == TYPE_CODE_PTR)
990 type = TYPE_TARGET_TYPE (type);
991 if (type && type->code () == TYPE_CODE_FUNC)
992 {
993 for (; tem <= nargs && tem <= type->num_fields (); tem++)
994 {
995 argvec[tem] = evaluate_subexp (type->field (tem - 1).type (),
996 exp, pos, noside);
997 }
998 }
999 }
1000 }
1001
1002 /* Evaluate arguments (if not already done, e.g., namespace::func()
1003 and overload-resolution is off). */
1004 for (; tem <= nargs; tem++)
1005 {
1006 /* Ensure that array expressions are coerced into pointer
1007 objects. */
1008 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1009 }
1010
1011 /* Signal end of arglist. */
1012 argvec[tem] = 0;
1013
1014 if (noside == EVAL_SKIP)
1015 return eval_skip_value (exp);
1016
1017 if (op == OP_ADL_FUNC)
1018 {
1019 struct symbol *symp;
1020 char *func_name;
1021 int name_len;
1022 int string_pc = save_pos1 + 3;
1023
1024 /* Extract the function name. */
1025 name_len = longest_to_int (exp->elts[string_pc].longconst);
1026 func_name = (char *) alloca (name_len + 1);
1027 strcpy (func_name, &exp->elts[string_pc + 1].string);
1028
1029 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1030 func_name,
1031 NON_METHOD, /* not method */
1032 NULL, NULL, /* pass NULL symbol since
1033 symbol is unknown */
1034 NULL, &symp, NULL, 0, noside);
1035
1036 /* Now fix the expression being evaluated. */
1037 exp->elts[save_pos1 + 2].symbol = symp;
1038 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1039 }
1040
1041 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1042 || (op == OP_SCOPE && function_name != NULL))
1043 {
1044 int static_memfuncp;
1045 char *tstr;
1046
1047 /* Method invocation: stuff "this" as first parameter. If the
1048 method turns out to be static we undo this below. */
1049 argvec[1] = arg2;
1050
1051 if (op != OP_SCOPE)
1052 {
1053 /* Name of method from expression. */
1054 tstr = &exp->elts[pc2 + 2].string;
1055 }
1056 else
1057 tstr = function_name;
1058
1059 if (overload_resolution && (exp->language_defn->la_language
1060 == language_cplus))
1061 {
1062 /* Language is C++, do some overload resolution before
1063 evaluation. */
1064 struct value *valp = NULL;
1065
1066 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1067 tstr,
1068 METHOD, /* method */
1069 &arg2, /* the object */
1070 NULL, &valp, NULL,
1071 &static_memfuncp, 0, noside);
1072
1073 if (op == OP_SCOPE && !static_memfuncp)
1074 {
1075 /* For the time being, we don't handle this. */
1076 error (_("Call to overloaded function %s requires "
1077 "`this' pointer"),
1078 function_name);
1079 }
1080 argvec[1] = arg2; /* the ``this'' pointer */
1081 argvec[0] = valp; /* Use the method found after overload
1082 resolution. */
1083 }
1084 else
1085 /* Non-C++ case -- or no overload resolution. */
1086 {
1087 struct value *temp = arg2;
1088
1089 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1090 &static_memfuncp,
1091 op == STRUCTOP_STRUCT
1092 ? "structure" : "structure pointer");
1093 /* value_struct_elt updates temp with the correct value of
1094 the ``this'' pointer if necessary, so modify argvec[1] to
1095 reflect any ``this'' changes. */
1096 arg2
1097 = value_from_longest (lookup_pointer_type(value_type (temp)),
1098 value_address (temp)
1099 + value_embedded_offset (temp));
1100 argvec[1] = arg2; /* the ``this'' pointer */
1101 }
1102
1103 /* Take out `this' if needed. */
1104 if (static_memfuncp)
1105 {
1106 argvec[1] = argvec[0];
1107 nargs--;
1108 argvec++;
1109 }
1110 }
1111 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1112 {
1113 /* Pointer to member. argvec[1] is already set up. */
1114 argvec[0] = arg1;
1115 }
1116 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1117 {
1118 /* Non-member function being called. */
1119 /* fn: This can only be done for C++ functions. A C-style
1120 function in a C++ program, for instance, does not have the
1121 fields that are expected here. */
1122
1123 if (overload_resolution && (exp->language_defn->la_language
1124 == language_cplus))
1125 {
1126 /* Language is C++, do some overload resolution before
1127 evaluation. */
1128 struct symbol *symp;
1129 int no_adl = 0;
1130
1131 /* If a scope has been specified disable ADL. */
1132 if (op == OP_SCOPE)
1133 no_adl = 1;
1134
1135 if (op == OP_VAR_VALUE)
1136 function = exp->elts[save_pos1+2].symbol;
1137
1138 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1139 NULL, /* no need for name */
1140 NON_METHOD, /* not method */
1141 NULL, function, /* the function */
1142 NULL, &symp, NULL, no_adl, noside);
1143
1144 if (op == OP_VAR_VALUE)
1145 {
1146 /* Now fix the expression being evaluated. */
1147 exp->elts[save_pos1+2].symbol = symp;
1148 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1149 noside);
1150 }
1151 else
1152 argvec[0] = value_of_variable (symp, get_selected_block (0));
1153 }
1154 else
1155 {
1156 /* Not C++, or no overload resolution allowed. */
1157 /* Nothing to be done; argvec already correctly set up. */
1158 }
1159 }
1160 else
1161 {
1162 /* It is probably a C-style function. */
1163 /* Nothing to be done; argvec already correctly set up. */
1164 }
1165
1166 return evaluate_subexp_do_call (exp, noside, argvec[0],
1167 gdb::make_array_view (argvec + 1, nargs),
1168 var_func_name, expect_type);
1169 }
1170
1171 /* Return true if type is integral or reference to integral */
1172
1173 static bool
1174 is_integral_or_integral_reference (struct type *type)
1175 {
1176 if (is_integral_type (type))
1177 return true;
1178
1179 type = check_typedef (type);
1180 return (type != nullptr
1181 && TYPE_IS_REFERENCE (type)
1182 && is_integral_type (TYPE_TARGET_TYPE (type)));
1183 }
1184
1185 /* Helper function that implements the body of OP_SCOPE. */
1186
1187 static struct value *
1188 eval_op_scope (struct type *expect_type, struct expression *exp,
1189 enum noside noside,
1190 struct type *type, const char *string)
1191 {
1192 if (noside == EVAL_SKIP)
1193 return eval_skip_value (exp);
1194 struct value *arg1 = value_aggregate_elt (type, string, expect_type,
1195 0, noside);
1196 if (arg1 == NULL)
1197 error (_("There is no field named %s"), string);
1198 return arg1;
1199 }
1200
1201 /* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
1202
1203 static struct value *
1204 eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
1205 enum noside noside, symbol *sym)
1206 {
1207 if (noside == EVAL_SKIP)
1208 return eval_skip_value (exp);
1209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1210 return value_zero (SYMBOL_TYPE (sym), not_lval);
1211
1212 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1213 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1214 error (_("Symbol \"%s\" does not have any specific entry value"),
1215 sym->print_name ());
1216
1217 struct frame_info *frame = get_selected_frame (NULL);
1218 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1219 }
1220
1221 /* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
1222
1223 static struct value *
1224 eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
1225 enum noside noside, bool outermost_p,
1226 minimal_symbol *msymbol, struct objfile *objfile)
1227 {
1228 value *val = evaluate_var_msym_value (noside, objfile, msymbol);
1229
1230 struct type *type = value_type (val);
1231 if (type->code () == TYPE_CODE_ERROR
1232 && (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
1233 error_unknown_type (msymbol->print_name ());
1234 return val;
1235 }
1236
1237 /* Helper function that implements the body of OP_FUNC_STATIC_VAR. */
1238
1239 static struct value *
1240 eval_op_func_static_var (struct type *expect_type, struct expression *exp,
1241 enum noside noside,
1242 value *func, const char *var)
1243 {
1244 if (noside == EVAL_SKIP)
1245 return eval_skip_value (exp);
1246 CORE_ADDR addr = value_address (func);
1247 const block *blk = block_for_pc (addr);
1248 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1249 if (sym.symbol == NULL)
1250 error (_("No symbol \"%s\" in specified context."), var);
1251 return evaluate_var_value (noside, sym.block, sym.symbol);
1252 }
1253
1254 /* Helper function that implements the body of OP_REGISTER. */
1255
1256 static struct value *
1257 eval_op_register (struct type *expect_type, struct expression *exp,
1258 enum noside noside, const char *name)
1259 {
1260 int regno;
1261 struct value *val;
1262
1263 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1264 name, strlen (name));
1265 if (regno == -1)
1266 error (_("Register $%s not available."), name);
1267
1268 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1269 a value with the appropriate register type. Unfortunately,
1270 we don't have easy access to the type of user registers.
1271 So for these registers, we fetch the register value regardless
1272 of the evaluation mode. */
1273 if (noside == EVAL_AVOID_SIDE_EFFECTS
1274 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1275 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1276 else
1277 val = value_of_register (regno, get_selected_frame (NULL));
1278 if (val == NULL)
1279 error (_("Value of register %s not available."), name);
1280 else
1281 return val;
1282 }
1283
1284 /* Helper function that implements the body of OP_STRING. */
1285
1286 static struct value *
1287 eval_op_string (struct type *expect_type, struct expression *exp,
1288 enum noside noside, int len, const char *string)
1289 {
1290 if (noside == EVAL_SKIP)
1291 return eval_skip_value (exp);
1292 struct type *type = language_string_char_type (exp->language_defn,
1293 exp->gdbarch);
1294 return value_string (string, len, type);
1295 }
1296
1297 /* Helper function that implements the body of OP_OBJC_SELECTOR. */
1298
1299 static struct value *
1300 eval_op_objc_selector (struct type *expect_type, struct expression *exp,
1301 enum noside noside,
1302 const char *sel)
1303 {
1304 if (noside == EVAL_SKIP)
1305 return eval_skip_value (exp);
1306
1307 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1308 return value_from_longest (selector_type,
1309 lookup_child_selector (exp->gdbarch, sel));
1310 }
1311
1312 /* Helper function that implements the body of BINOP_CONCAT. */
1313
1314 static struct value *
1315 eval_op_concat (struct type *expect_type, struct expression *exp,
1316 enum noside noside,
1317 enum exp_opcode op, struct value *arg1, struct value *arg2)
1318 {
1319 if (noside == EVAL_SKIP)
1320 return eval_skip_value (exp);
1321 if (binop_user_defined_p (op, arg1, arg2))
1322 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1323 else
1324 return value_concat (arg1, arg2);
1325 }
1326
1327 /* A helper function for TERNOP_SLICE. */
1328
1329 static struct value *
1330 eval_op_ternop (struct type *expect_type, struct expression *exp,
1331 enum noside noside,
1332 struct value *array, struct value *low, struct value *upper)
1333 {
1334 if (noside == EVAL_SKIP)
1335 return eval_skip_value (exp);
1336 int lowbound = value_as_long (low);
1337 int upperbound = value_as_long (upper);
1338 return value_slice (array, lowbound, upperbound - lowbound + 1);
1339 }
1340
1341 /* A helper function for STRUCTOP_STRUCT. */
1342
1343 static struct value *
1344 eval_op_structop_struct (struct type *expect_type, struct expression *exp,
1345 enum noside noside,
1346 struct value *arg1, const char *string)
1347 {
1348 if (noside == EVAL_SKIP)
1349 return eval_skip_value (exp);
1350 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1351 NULL, "structure");
1352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1353 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1354 return arg3;
1355 }
1356
1357 /* A helper function for STRUCTOP_PTR. */
1358
1359 static struct value *
1360 eval_op_structop_ptr (struct type *expect_type, struct expression *exp,
1361 enum noside noside, enum exp_opcode op,
1362 struct value *arg1, const char *string)
1363 {
1364 if (noside == EVAL_SKIP)
1365 return eval_skip_value (exp);
1366
1367 /* Check to see if operator '->' has been overloaded. If so replace
1368 arg1 with the value returned by evaluating operator->(). */
1369 while (unop_user_defined_p (op, arg1))
1370 {
1371 struct value *value = NULL;
1372 try
1373 {
1374 value = value_x_unop (arg1, op, noside);
1375 }
1376
1377 catch (const gdb_exception_error &except)
1378 {
1379 if (except.error == NOT_FOUND_ERROR)
1380 break;
1381 else
1382 throw;
1383 }
1384
1385 arg1 = value;
1386 }
1387
1388 /* JYG: if print object is on we need to replace the base type
1389 with rtti type in order to continue on with successful
1390 lookup of member / method only available in the rtti type. */
1391 {
1392 struct type *arg_type = value_type (arg1);
1393 struct type *real_type;
1394 int full, using_enc;
1395 LONGEST top;
1396 struct value_print_options opts;
1397
1398 get_user_print_options (&opts);
1399 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
1400 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
1401 {
1402 real_type = value_rtti_indirect_type (arg1, &full, &top,
1403 &using_enc);
1404 if (real_type)
1405 arg1 = value_cast (real_type, arg1);
1406 }
1407 }
1408
1409 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1410 NULL, "structure pointer");
1411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1412 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1413 return arg3;
1414 }
1415
1416 /* A helper function for STRUCTOP_MEMBER. */
1417
1418 static struct value *
1419 eval_op_member (struct type *expect_type, struct expression *exp,
1420 enum noside noside,
1421 struct value *arg1, struct value *arg2)
1422 {
1423 long mem_offset;
1424
1425 if (noside == EVAL_SKIP)
1426 return eval_skip_value (exp);
1427
1428 struct value *arg3;
1429 struct type *type = check_typedef (value_type (arg2));
1430 switch (type->code ())
1431 {
1432 case TYPE_CODE_METHODPTR:
1433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1434 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1435 else
1436 {
1437 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1438 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
1439 return value_ind (arg2);
1440 }
1441
1442 case TYPE_CODE_MEMBERPTR:
1443 /* Now, convert these values to an address. */
1444 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1445 arg1, 1);
1446
1447 mem_offset = value_as_long (arg2);
1448
1449 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1450 value_as_long (arg1) + mem_offset);
1451 return value_ind (arg3);
1452
1453 default:
1454 error (_("non-pointer-to-member value used "
1455 "in pointer-to-member construct"));
1456 }
1457 }
1458
1459 /* A helper function for BINOP_ADD. */
1460
1461 static struct value *
1462 eval_op_add (struct type *expect_type, struct expression *exp,
1463 enum noside noside, enum exp_opcode op,
1464 struct value *arg1, struct value *arg2)
1465 {
1466 if (noside == EVAL_SKIP)
1467 return eval_skip_value (exp);
1468 if (binop_user_defined_p (op, arg1, arg2))
1469 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1470 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1471 && is_integral_or_integral_reference (value_type (arg2)))
1472 return value_ptradd (arg1, value_as_long (arg2));
1473 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
1474 && is_integral_or_integral_reference (value_type (arg1)))
1475 return value_ptradd (arg2, value_as_long (arg1));
1476 else
1477 {
1478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1479 return value_binop (arg1, arg2, BINOP_ADD);
1480 }
1481 }
1482
1483 /* A helper function for BINOP_SUB. */
1484
1485 static struct value *
1486 eval_op_sub (struct type *expect_type, struct expression *exp,
1487 enum noside noside, enum exp_opcode op,
1488 struct value *arg1, struct value *arg2)
1489 {
1490 if (noside == EVAL_SKIP)
1491 return eval_skip_value (exp);
1492 if (binop_user_defined_p (op, arg1, arg2))
1493 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1494 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1495 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
1496 {
1497 /* FIXME -- should be ptrdiff_t */
1498 struct type *type = builtin_type (exp->gdbarch)->builtin_long;
1499 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1500 }
1501 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1502 && is_integral_or_integral_reference (value_type (arg2)))
1503 return value_ptradd (arg1, - value_as_long (arg2));
1504 else
1505 {
1506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1507 return value_binop (arg1, arg2, BINOP_SUB);
1508 }
1509 }
1510
1511 /* Helper function for several different binary operations. */
1512
1513 static struct value *
1514 eval_op_binary (struct type *expect_type, struct expression *exp,
1515 enum noside noside, enum exp_opcode op,
1516 struct value *arg1, struct value *arg2)
1517 {
1518 if (noside == EVAL_SKIP)
1519 return eval_skip_value (exp);
1520 if (binop_user_defined_p (op, arg1, arg2))
1521 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1522 else
1523 {
1524 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1525 fudge arg2 to avoid division-by-zero, the caller is
1526 (theoretically) only looking for the type of the result. */
1527 if (noside == EVAL_AVOID_SIDE_EFFECTS
1528 /* ??? Do we really want to test for BINOP_MOD here?
1529 The implementation of value_binop gives it a well-defined
1530 value. */
1531 && (op == BINOP_DIV
1532 || op == BINOP_INTDIV
1533 || op == BINOP_REM
1534 || op == BINOP_MOD)
1535 && value_logical_not (arg2))
1536 {
1537 struct value *v_one;
1538
1539 v_one = value_one (value_type (arg2));
1540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1541 return value_binop (arg1, v_one, op);
1542 }
1543 else
1544 {
1545 /* For shift and integer exponentiation operations,
1546 only promote the first argument. */
1547 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1548 && is_integral_type (value_type (arg2)))
1549 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1550 else
1551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1552
1553 return value_binop (arg1, arg2, op);
1554 }
1555 }
1556 }
1557
1558 /* A helper function for BINOP_SUBSCRIPT. */
1559
1560 static struct value *
1561 eval_op_subscript (struct type *expect_type, struct expression *exp,
1562 enum noside noside, enum exp_opcode op,
1563 struct value *arg1, struct value *arg2)
1564 {
1565 if (noside == EVAL_SKIP)
1566 return eval_skip_value (exp);
1567 if (binop_user_defined_p (op, arg1, arg2))
1568 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1569 else
1570 {
1571 /* If the user attempts to subscript something that is not an
1572 array or pointer type (like a plain int variable for example),
1573 then report this as an error. */
1574
1575 arg1 = coerce_ref (arg1);
1576 struct type *type = check_typedef (value_type (arg1));
1577 if (type->code () != TYPE_CODE_ARRAY
1578 && type->code () != TYPE_CODE_PTR)
1579 {
1580 if (type->name ())
1581 error (_("cannot subscript something of type `%s'"),
1582 type->name ());
1583 else
1584 error (_("cannot subscript requested type"));
1585 }
1586
1587 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1588 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1589 else
1590 return value_subscript (arg1, value_as_long (arg2));
1591 }
1592 }
1593
1594 /* A helper function for BINOP_EQUAL. */
1595
1596 static struct value *
1597 eval_op_equal (struct type *expect_type, struct expression *exp,
1598 enum noside noside, enum exp_opcode op,
1599 struct value *arg1, struct value *arg2)
1600 {
1601 if (noside == EVAL_SKIP)
1602 return eval_skip_value (exp);
1603 if (binop_user_defined_p (op, arg1, arg2))
1604 {
1605 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1606 }
1607 else
1608 {
1609 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1610 int tem = value_equal (arg1, arg2);
1611 struct type *type = language_bool_type (exp->language_defn,
1612 exp->gdbarch);
1613 return value_from_longest (type, (LONGEST) tem);
1614 }
1615 }
1616
1617 /* A helper function for BINOP_NOTEQUAL. */
1618
1619 static struct value *
1620 eval_op_notequal (struct type *expect_type, struct expression *exp,
1621 enum noside noside, enum exp_opcode op,
1622 struct value *arg1, struct value *arg2)
1623 {
1624 if (noside == EVAL_SKIP)
1625 return eval_skip_value (exp);
1626 if (binop_user_defined_p (op, arg1, arg2))
1627 {
1628 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1629 }
1630 else
1631 {
1632 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1633 int tem = value_equal (arg1, arg2);
1634 struct type *type = language_bool_type (exp->language_defn,
1635 exp->gdbarch);
1636 return value_from_longest (type, (LONGEST) ! tem);
1637 }
1638 }
1639
1640 /* A helper function for BINOP_LESS. */
1641
1642 static struct value *
1643 eval_op_less (struct type *expect_type, struct expression *exp,
1644 enum noside noside, enum exp_opcode op,
1645 struct value *arg1, struct value *arg2)
1646 {
1647 if (noside == EVAL_SKIP)
1648 return eval_skip_value (exp);
1649 if (binop_user_defined_p (op, arg1, arg2))
1650 {
1651 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1652 }
1653 else
1654 {
1655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1656 int tem = value_less (arg1, arg2);
1657 struct type *type = language_bool_type (exp->language_defn,
1658 exp->gdbarch);
1659 return value_from_longest (type, (LONGEST) tem);
1660 }
1661 }
1662
1663 /* A helper function for BINOP_GTR. */
1664
1665 static struct value *
1666 eval_op_gtr (struct type *expect_type, struct expression *exp,
1667 enum noside noside, enum exp_opcode op,
1668 struct value *arg1, struct value *arg2)
1669 {
1670 if (noside == EVAL_SKIP)
1671 return eval_skip_value (exp);
1672 if (binop_user_defined_p (op, arg1, arg2))
1673 {
1674 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1675 }
1676 else
1677 {
1678 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1679 int tem = value_less (arg2, arg1);
1680 struct type *type = language_bool_type (exp->language_defn,
1681 exp->gdbarch);
1682 return value_from_longest (type, (LONGEST) tem);
1683 }
1684 }
1685
1686 /* A helper function for BINOP_GEQ. */
1687
1688 static struct value *
1689 eval_op_geq (struct type *expect_type, struct expression *exp,
1690 enum noside noside, enum exp_opcode op,
1691 struct value *arg1, struct value *arg2)
1692 {
1693 if (noside == EVAL_SKIP)
1694 return eval_skip_value (exp);
1695 if (binop_user_defined_p (op, arg1, arg2))
1696 {
1697 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1698 }
1699 else
1700 {
1701 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1702 int tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1703 struct type *type = language_bool_type (exp->language_defn,
1704 exp->gdbarch);
1705 return value_from_longest (type, (LONGEST) tem);
1706 }
1707 }
1708
1709 struct value *
1710 evaluate_subexp_standard (struct type *expect_type,
1711 struct expression *exp, int *pos,
1712 enum noside noside)
1713 {
1714 enum exp_opcode op;
1715 int tem, tem2, tem3;
1716 int pc, oldpos;
1717 struct value *arg1 = NULL;
1718 struct value *arg2 = NULL;
1719 struct value *arg3;
1720 struct type *type;
1721 int nargs;
1722 struct value **argvec;
1723 int ix;
1724 struct type **arg_types;
1725
1726 pc = (*pos)++;
1727 op = exp->elts[pc].opcode;
1728
1729 switch (op)
1730 {
1731 case OP_SCOPE:
1732 tem = longest_to_int (exp->elts[pc + 2].longconst);
1733 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1734 return eval_op_scope (expect_type, exp, noside,
1735 exp->elts[pc + 1].type,
1736 &exp->elts[pc + 3].string);
1737
1738 case OP_LONG:
1739 (*pos) += 3;
1740 return value_from_longest (exp->elts[pc + 1].type,
1741 exp->elts[pc + 2].longconst);
1742
1743 case OP_FLOAT:
1744 (*pos) += 3;
1745 return value_from_contents (exp->elts[pc + 1].type,
1746 exp->elts[pc + 2].floatconst);
1747
1748 case OP_ADL_FUNC:
1749 case OP_VAR_VALUE:
1750 {
1751 (*pos) += 3;
1752 symbol *var = exp->elts[pc + 2].symbol;
1753 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
1754 error_unknown_type (var->print_name ());
1755 if (noside != EVAL_SKIP)
1756 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1757 else
1758 {
1759 /* Return a dummy value of the correct type when skipping, so
1760 that parent functions know what is to be skipped. */
1761 return allocate_value (SYMBOL_TYPE (var));
1762 }
1763 }
1764
1765 case OP_VAR_MSYM_VALUE:
1766 {
1767 (*pos) += 3;
1768
1769 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1770 return eval_op_var_msym_value (expect_type, exp, noside,
1771 pc == 0, msymbol,
1772 exp->elts[pc + 1].objfile);
1773 }
1774
1775 case OP_VAR_ENTRY_VALUE:
1776 (*pos) += 2;
1777
1778 {
1779 struct symbol *sym = exp->elts[pc + 1].symbol;
1780
1781 return eval_op_var_entry_value (expect_type, exp, noside, sym);
1782 }
1783
1784 case OP_FUNC_STATIC_VAR:
1785 tem = longest_to_int (exp->elts[pc + 1].longconst);
1786 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1787 if (noside == EVAL_SKIP)
1788 return eval_skip_value (exp);
1789
1790 {
1791 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1792
1793 return eval_op_func_static_var (expect_type, exp, noside, func,
1794 &exp->elts[pc + 2].string);
1795 }
1796
1797 case OP_LAST:
1798 (*pos) += 2;
1799 return
1800 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
1801
1802 case OP_REGISTER:
1803 {
1804 const char *name = &exp->elts[pc + 2].string;
1805
1806 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
1807 return eval_op_register (expect_type, exp, noside, name);
1808 }
1809 case OP_BOOL:
1810 (*pos) += 2;
1811 type = language_bool_type (exp->language_defn, exp->gdbarch);
1812 return value_from_longest (type, exp->elts[pc + 1].longconst);
1813
1814 case OP_INTERNALVAR:
1815 (*pos) += 2;
1816 return value_of_internalvar (exp->gdbarch,
1817 exp->elts[pc + 1].internalvar);
1818
1819 case OP_STRING:
1820 tem = longest_to_int (exp->elts[pc + 1].longconst);
1821 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1822 return eval_op_string (expect_type, exp, noside, tem,
1823 &exp->elts[pc + 2].string);
1824
1825 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
1826 NSString constant. */
1827 tem = longest_to_int (exp->elts[pc + 1].longconst);
1828 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1829 if (noside == EVAL_SKIP)
1830 return eval_skip_value (exp);
1831 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
1832
1833 case OP_ARRAY:
1834 (*pos) += 3;
1835 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
1836 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
1837 nargs = tem3 - tem2 + 1;
1838 type = expect_type ? check_typedef (expect_type) : nullptr;
1839
1840 if (expect_type != nullptr && noside != EVAL_SKIP
1841 && type->code () == TYPE_CODE_STRUCT)
1842 {
1843 struct value *rec = allocate_value (expect_type);
1844
1845 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
1846 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
1847 }
1848
1849 if (expect_type != nullptr && noside != EVAL_SKIP
1850 && type->code () == TYPE_CODE_ARRAY)
1851 {
1852 struct type *range_type = type->index_type ();
1853 struct type *element_type = TYPE_TARGET_TYPE (type);
1854 struct value *array = allocate_value (expect_type);
1855 int element_size = TYPE_LENGTH (check_typedef (element_type));
1856 LONGEST low_bound, high_bound, index;
1857
1858 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
1859 {
1860 low_bound = 0;
1861 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1862 }
1863 index = low_bound;
1864 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1865 for (tem = nargs; --nargs >= 0;)
1866 {
1867 struct value *element;
1868
1869 element = evaluate_subexp (element_type, exp, pos, noside);
1870 if (value_type (element) != element_type)
1871 element = value_cast (element_type, element);
1872 if (index > high_bound)
1873 /* To avoid memory corruption. */
1874 error (_("Too many array elements"));
1875 memcpy (value_contents_raw (array)
1876 + (index - low_bound) * element_size,
1877 value_contents (element),
1878 element_size);
1879 index++;
1880 }
1881 return array;
1882 }
1883
1884 if (expect_type != nullptr && noside != EVAL_SKIP
1885 && type->code () == TYPE_CODE_SET)
1886 {
1887 struct value *set = allocate_value (expect_type);
1888 gdb_byte *valaddr = value_contents_raw (set);
1889 struct type *element_type = type->index_type ();
1890 struct type *check_type = element_type;
1891 LONGEST low_bound, high_bound;
1892
1893 /* Get targettype of elementtype. */
1894 while (check_type->code () == TYPE_CODE_RANGE
1895 || check_type->code () == TYPE_CODE_TYPEDEF)
1896 check_type = TYPE_TARGET_TYPE (check_type);
1897
1898 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
1899 error (_("(power)set type with unknown size"));
1900 memset (valaddr, '\0', TYPE_LENGTH (type));
1901 for (tem = 0; tem < nargs; tem++)
1902 {
1903 LONGEST range_low, range_high;
1904 struct type *range_low_type, *range_high_type;
1905 struct value *elem_val;
1906
1907 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1908 range_low_type = range_high_type = value_type (elem_val);
1909 range_low = range_high = value_as_long (elem_val);
1910
1911 /* Check types of elements to avoid mixture of elements from
1912 different types. Also check if type of element is "compatible"
1913 with element type of powerset. */
1914 if (range_low_type->code () == TYPE_CODE_RANGE)
1915 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1916 if (range_high_type->code () == TYPE_CODE_RANGE)
1917 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1918 if ((range_low_type->code () != range_high_type->code ())
1919 || (range_low_type->code () == TYPE_CODE_ENUM
1920 && (range_low_type != range_high_type)))
1921 /* different element modes. */
1922 error (_("POWERSET tuple elements of different mode"));
1923 if ((check_type->code () != range_low_type->code ())
1924 || (check_type->code () == TYPE_CODE_ENUM
1925 && range_low_type != check_type))
1926 error (_("incompatible POWERSET tuple elements"));
1927 if (range_low > range_high)
1928 {
1929 warning (_("empty POWERSET tuple range"));
1930 continue;
1931 }
1932 if (range_low < low_bound || range_high > high_bound)
1933 error (_("POWERSET tuple element out of range"));
1934 range_low -= low_bound;
1935 range_high -= low_bound;
1936 for (; range_low <= range_high; range_low++)
1937 {
1938 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1939
1940 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
1941 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1942 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1943 |= 1 << bit_index;
1944 }
1945 }
1946 return set;
1947 }
1948
1949 argvec = XALLOCAVEC (struct value *, nargs);
1950 for (tem = 0; tem < nargs; tem++)
1951 {
1952 /* Ensure that array expressions are coerced into pointer
1953 objects. */
1954 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1955 }
1956 if (noside == EVAL_SKIP)
1957 return eval_skip_value (exp);
1958 return value_array (tem2, tem3, argvec);
1959
1960 case TERNOP_SLICE:
1961 {
1962 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
1963 struct value *low = evaluate_subexp (nullptr, exp, pos, noside);
1964 struct value *upper = evaluate_subexp (nullptr, exp, pos, noside);
1965 return eval_op_ternop (expect_type, exp, noside, array, low, upper);
1966 }
1967
1968 case TERNOP_COND:
1969 /* Skip third and second args to evaluate the first one. */
1970 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
1971 if (value_logical_not (arg1))
1972 {
1973 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
1974 return evaluate_subexp (nullptr, exp, pos, noside);
1975 }
1976 else
1977 {
1978 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
1979 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
1980 return arg2;
1981 }
1982
1983 case OP_OBJC_SELECTOR:
1984 { /* Objective C @selector operator. */
1985 char *sel = &exp->elts[pc + 2].string;
1986 int len = longest_to_int (exp->elts[pc + 1].longconst);
1987
1988 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1989 if (sel[len] != 0)
1990 sel[len] = 0; /* Make sure it's terminated. */
1991
1992 return eval_op_objc_selector (expect_type, exp, noside, sel);
1993 }
1994
1995 case OP_OBJC_MSGCALL:
1996 { /* Objective C message (method) call. */
1997
1998 CORE_ADDR responds_selector = 0;
1999 CORE_ADDR method_selector = 0;
2000
2001 CORE_ADDR selector = 0;
2002
2003 int struct_return = 0;
2004 enum noside sub_no_side = EVAL_NORMAL;
2005
2006 struct value *msg_send = NULL;
2007 struct value *msg_send_stret = NULL;
2008 int gnu_runtime = 0;
2009
2010 struct value *target = NULL;
2011 struct value *method = NULL;
2012 struct value *called_method = NULL;
2013
2014 struct type *selector_type = NULL;
2015 struct type *long_type;
2016
2017 struct value *ret = NULL;
2018 CORE_ADDR addr = 0;
2019
2020 selector = exp->elts[pc + 1].longconst;
2021 nargs = exp->elts[pc + 2].longconst;
2022 argvec = XALLOCAVEC (struct value *, nargs + 5);
2023
2024 (*pos) += 3;
2025
2026 long_type = builtin_type (exp->gdbarch)->builtin_long;
2027 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
2028
2029 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2030 sub_no_side = EVAL_NORMAL;
2031 else
2032 sub_no_side = noside;
2033
2034 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
2035
2036 if (value_as_long (target) == 0)
2037 return value_from_longest (long_type, 0);
2038
2039 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
2040 gnu_runtime = 1;
2041
2042 /* Find the method dispatch (Apple runtime) or method lookup
2043 (GNU runtime) function for Objective-C. These will be used
2044 to lookup the symbol information for the method. If we
2045 can't find any symbol information, then we'll use these to
2046 call the method, otherwise we can call the method
2047 directly. The msg_send_stret function is used in the special
2048 case of a method that returns a structure (Apple runtime
2049 only). */
2050 if (gnu_runtime)
2051 {
2052 type = selector_type;
2053
2054 type = lookup_function_type (type);
2055 type = lookup_pointer_type (type);
2056 type = lookup_function_type (type);
2057 type = lookup_pointer_type (type);
2058
2059 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
2060 msg_send_stret
2061 = find_function_in_inferior ("objc_msg_lookup", NULL);
2062
2063 msg_send = value_from_pointer (type, value_as_address (msg_send));
2064 msg_send_stret = value_from_pointer (type,
2065 value_as_address (msg_send_stret));
2066 }
2067 else
2068 {
2069 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
2070 /* Special dispatcher for methods returning structs. */
2071 msg_send_stret
2072 = find_function_in_inferior ("objc_msgSend_stret", NULL);
2073 }
2074
2075 /* Verify the target object responds to this method. The
2076 standard top-level 'Object' class uses a different name for
2077 the verification method than the non-standard, but more
2078 often used, 'NSObject' class. Make sure we check for both. */
2079
2080 responds_selector
2081 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
2082 if (responds_selector == 0)
2083 responds_selector
2084 = lookup_child_selector (exp->gdbarch, "respondsTo:");
2085
2086 if (responds_selector == 0)
2087 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
2088
2089 method_selector
2090 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
2091 if (method_selector == 0)
2092 method_selector
2093 = lookup_child_selector (exp->gdbarch, "methodFor:");
2094
2095 if (method_selector == 0)
2096 error (_("no 'methodFor:' or 'methodForSelector:' method"));
2097
2098 /* Call the verification method, to make sure that the target
2099 class implements the desired method. */
2100
2101 argvec[0] = msg_send;
2102 argvec[1] = target;
2103 argvec[2] = value_from_longest (long_type, responds_selector);
2104 argvec[3] = value_from_longest (long_type, selector);
2105 argvec[4] = 0;
2106
2107 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2108 if (gnu_runtime)
2109 {
2110 /* Function objc_msg_lookup returns a pointer. */
2111 argvec[0] = ret;
2112 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2113 }
2114 if (value_as_long (ret) == 0)
2115 error (_("Target does not respond to this message selector."));
2116
2117 /* Call "methodForSelector:" method, to get the address of a
2118 function method that implements this selector for this
2119 class. If we can find a symbol at that address, then we
2120 know the return type, parameter types etc. (that's a good
2121 thing). */
2122
2123 argvec[0] = msg_send;
2124 argvec[1] = target;
2125 argvec[2] = value_from_longest (long_type, method_selector);
2126 argvec[3] = value_from_longest (long_type, selector);
2127 argvec[4] = 0;
2128
2129 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2130 if (gnu_runtime)
2131 {
2132 argvec[0] = ret;
2133 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2134 }
2135
2136 /* ret should now be the selector. */
2137
2138 addr = value_as_long (ret);
2139 if (addr)
2140 {
2141 struct symbol *sym = NULL;
2142
2143 /* The address might point to a function descriptor;
2144 resolve it to the actual code address instead. */
2145 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
2146 current_top_target ());
2147
2148 /* Is it a high_level symbol? */
2149 sym = find_pc_function (addr);
2150 if (sym != NULL)
2151 method = value_of_variable (sym, 0);
2152 }
2153
2154 /* If we found a method with symbol information, check to see
2155 if it returns a struct. Otherwise assume it doesn't. */
2156
2157 if (method)
2158 {
2159 CORE_ADDR funaddr;
2160 struct type *val_type;
2161
2162 funaddr = find_function_addr (method, &val_type);
2163
2164 block_for_pc (funaddr);
2165
2166 val_type = check_typedef (val_type);
2167
2168 if ((val_type == NULL)
2169 || (val_type->code () == TYPE_CODE_ERROR))
2170 {
2171 if (expect_type != NULL)
2172 val_type = expect_type;
2173 }
2174
2175 struct_return = using_struct_return (exp->gdbarch, method,
2176 val_type);
2177 }
2178 else if (expect_type != NULL)
2179 {
2180 struct_return = using_struct_return (exp->gdbarch, NULL,
2181 check_typedef (expect_type));
2182 }
2183
2184 /* Found a function symbol. Now we will substitute its
2185 value in place of the message dispatcher (obj_msgSend),
2186 so that we call the method directly instead of thru
2187 the dispatcher. The main reason for doing this is that
2188 we can now evaluate the return value and parameter values
2189 according to their known data types, in case we need to
2190 do things like promotion, dereferencing, special handling
2191 of structs and doubles, etc.
2192
2193 We want to use the type signature of 'method', but still
2194 jump to objc_msgSend() or objc_msgSend_stret() to better
2195 mimic the behavior of the runtime. */
2196
2197 if (method)
2198 {
2199 if (value_type (method)->code () != TYPE_CODE_FUNC)
2200 error (_("method address has symbol information "
2201 "with non-function type; skipping"));
2202
2203 /* Create a function pointer of the appropriate type, and
2204 replace its value with the value of msg_send or
2205 msg_send_stret. We must use a pointer here, as
2206 msg_send and msg_send_stret are of pointer type, and
2207 the representation may be different on systems that use
2208 function descriptors. */
2209 if (struct_return)
2210 called_method
2211 = value_from_pointer (lookup_pointer_type (value_type (method)),
2212 value_as_address (msg_send_stret));
2213 else
2214 called_method
2215 = value_from_pointer (lookup_pointer_type (value_type (method)),
2216 value_as_address (msg_send));
2217 }
2218 else
2219 {
2220 if (struct_return)
2221 called_method = msg_send_stret;
2222 else
2223 called_method = msg_send;
2224 }
2225
2226 if (noside == EVAL_SKIP)
2227 return eval_skip_value (exp);
2228
2229 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2230 {
2231 /* If the return type doesn't look like a function type,
2232 call an error. This can happen if somebody tries to
2233 turn a variable into a function call. This is here
2234 because people often want to call, eg, strcmp, which
2235 gdb doesn't know is a function. If gdb isn't asked for
2236 it's opinion (ie. through "whatis"), it won't offer
2237 it. */
2238
2239 struct type *callee_type = value_type (called_method);
2240
2241 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
2242 callee_type = TYPE_TARGET_TYPE (callee_type);
2243 callee_type = TYPE_TARGET_TYPE (callee_type);
2244
2245 if (callee_type)
2246 {
2247 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
2248 return allocate_value (expect_type);
2249 else
2250 return allocate_value (callee_type);
2251 }
2252 else
2253 error (_("Expression of type other than "
2254 "\"method returning ...\" used as a method"));
2255 }
2256
2257 /* Now depending on whether we found a symbol for the method,
2258 we will either call the runtime dispatcher or the method
2259 directly. */
2260
2261 argvec[0] = called_method;
2262 argvec[1] = target;
2263 argvec[2] = value_from_longest (long_type, selector);
2264 /* User-supplied arguments. */
2265 for (tem = 0; tem < nargs; tem++)
2266 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
2267 argvec[tem + 3] = 0;
2268
2269 auto call_args = gdb::make_array_view (argvec + 1, nargs + 2);
2270
2271 if (gnu_runtime && (method != NULL))
2272 {
2273 /* Function objc_msg_lookup returns a pointer. */
2274 deprecated_set_value_type (argvec[0],
2275 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
2276 argvec[0] = call_function_by_hand (argvec[0], NULL, call_args);
2277 }
2278
2279 return call_function_by_hand (argvec[0], NULL, call_args);
2280 }
2281 break;
2282
2283 case OP_FUNCALL:
2284 return evaluate_funcall (expect_type, exp, pos, noside);
2285
2286 case OP_COMPLEX:
2287 /* We have a complex number, There should be 2 floating
2288 point numbers that compose it. */
2289 (*pos) += 2;
2290 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2291 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2292
2293 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
2294
2295 case STRUCTOP_STRUCT:
2296 tem = longest_to_int (exp->elts[pc + 1].longconst);
2297 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2298 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2299 return eval_op_structop_struct (expect_type, exp, noside, arg1,
2300 &exp->elts[pc + 2].string);
2301
2302 case STRUCTOP_PTR:
2303 tem = longest_to_int (exp->elts[pc + 1].longconst);
2304 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2305 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2306 return eval_op_structop_ptr (expect_type, exp, noside, op, arg1,
2307 &exp->elts[pc + 2].string);
2308
2309 case STRUCTOP_MEMBER:
2310 case STRUCTOP_MPTR:
2311 if (op == STRUCTOP_MEMBER)
2312 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2313 else
2314 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2315
2316 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2317
2318 return eval_op_member (expect_type, exp, noside, arg1, arg2);
2319
2320 case TYPE_INSTANCE:
2321 {
2322 type_instance_flags flags
2323 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2324 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2325 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2326 for (ix = 0; ix < nargs; ++ix)
2327 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2328
2329 fake_method fake_expect_type (flags, nargs, arg_types);
2330 *(pos) += 4 + nargs;
2331 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
2332 noside);
2333 }
2334
2335 case BINOP_CONCAT:
2336 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2337 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2338 return eval_op_concat (expect_type, exp, noside, op, arg1, arg2);
2339
2340 case BINOP_ASSIGN:
2341 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2342 /* Special-case assignments where the left-hand-side is a
2343 convenience variable -- in these, don't bother setting an
2344 expected type. This avoids a weird case where re-assigning a
2345 string or array to an internal variable could error with "Too
2346 many array elements". */
2347 arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
2348 ? nullptr
2349 : value_type (arg1),
2350 exp, pos, noside);
2351
2352 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2353 return arg1;
2354 if (binop_user_defined_p (op, arg1, arg2))
2355 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2356 else
2357 return value_assign (arg1, arg2);
2358
2359 case BINOP_ASSIGN_MODIFY:
2360 (*pos) += 2;
2361 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2362 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2363 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2364 return arg1;
2365 op = exp->elts[pc + 1].opcode;
2366 if (binop_user_defined_p (op, arg1, arg2))
2367 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2368 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2369 value_type (arg1))
2370 && is_integral_type (value_type (arg2)))
2371 arg2 = value_ptradd (arg1, value_as_long (arg2));
2372 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2373 value_type (arg1))
2374 && is_integral_type (value_type (arg2)))
2375 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2376 else
2377 {
2378 struct value *tmp = arg1;
2379
2380 /* For shift and integer exponentiation operations,
2381 only promote the first argument. */
2382 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2383 && is_integral_type (value_type (arg2)))
2384 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2385 else
2386 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2387
2388 arg2 = value_binop (tmp, arg2, op);
2389 }
2390 return value_assign (arg1, arg2);
2391
2392 case BINOP_ADD:
2393 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2394 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2395 return eval_op_add (expect_type, exp, noside, op, arg1, arg2);
2396
2397 case BINOP_SUB:
2398 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2399 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2400 return eval_op_sub (expect_type, exp, noside, op, arg1, arg2);
2401
2402 case BINOP_EXP:
2403 case BINOP_MUL:
2404 case BINOP_DIV:
2405 case BINOP_INTDIV:
2406 case BINOP_REM:
2407 case BINOP_MOD:
2408 case BINOP_LSH:
2409 case BINOP_RSH:
2410 case BINOP_BITWISE_AND:
2411 case BINOP_BITWISE_IOR:
2412 case BINOP_BITWISE_XOR:
2413 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2414 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2415 return eval_op_binary (expect_type, exp, noside, op, arg1, arg2);
2416
2417 case BINOP_SUBSCRIPT:
2418 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2419 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2420 return eval_op_subscript (expect_type, exp, noside, op, arg1, arg2);
2421
2422 case MULTI_SUBSCRIPT:
2423 (*pos) += 2;
2424 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2425 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2426 argvec = XALLOCAVEC (struct value *, nargs);
2427 for (ix = 0; ix < nargs; ++ix)
2428 argvec[ix] = evaluate_subexp_with_coercion (exp, pos, noside);
2429 if (noside == EVAL_SKIP)
2430 return arg1;
2431 for (ix = 0; ix < nargs; ++ix)
2432 {
2433 arg2 = argvec[ix];
2434
2435 if (binop_user_defined_p (op, arg1, arg2))
2436 {
2437 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2438 }
2439 else
2440 {
2441 arg1 = coerce_ref (arg1);
2442 type = check_typedef (value_type (arg1));
2443
2444 switch (type->code ())
2445 {
2446 case TYPE_CODE_PTR:
2447 case TYPE_CODE_ARRAY:
2448 case TYPE_CODE_STRING:
2449 arg1 = value_subscript (arg1, value_as_long (arg2));
2450 break;
2451
2452 default:
2453 if (type->name ())
2454 error (_("cannot subscript something of type `%s'"),
2455 type->name ());
2456 else
2457 error (_("cannot subscript requested type"));
2458 }
2459 }
2460 }
2461 return (arg1);
2462
2463 case BINOP_LOGICAL_AND:
2464 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2465 if (noside == EVAL_SKIP)
2466 {
2467 evaluate_subexp (nullptr, exp, pos, noside);
2468 return eval_skip_value (exp);
2469 }
2470
2471 oldpos = *pos;
2472 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2473 *pos = oldpos;
2474
2475 if (binop_user_defined_p (op, arg1, arg2))
2476 {
2477 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2478 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2479 }
2480 else
2481 {
2482 tem = value_logical_not (arg1);
2483 arg2
2484 = evaluate_subexp (nullptr, exp, pos, (tem ? EVAL_SKIP : noside));
2485 type = language_bool_type (exp->language_defn, exp->gdbarch);
2486 return value_from_longest (type,
2487 (LONGEST) (!tem && !value_logical_not (arg2)));
2488 }
2489
2490 case BINOP_LOGICAL_OR:
2491 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2492 if (noside == EVAL_SKIP)
2493 {
2494 evaluate_subexp (nullptr, exp, pos, noside);
2495 return eval_skip_value (exp);
2496 }
2497
2498 oldpos = *pos;
2499 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2500 *pos = oldpos;
2501
2502 if (binop_user_defined_p (op, arg1, arg2))
2503 {
2504 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2505 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2506 }
2507 else
2508 {
2509 tem = value_logical_not (arg1);
2510 arg2
2511 = evaluate_subexp (nullptr, exp, pos, (!tem ? EVAL_SKIP : noside));
2512 type = language_bool_type (exp->language_defn, exp->gdbarch);
2513 return value_from_longest (type,
2514 (LONGEST) (!tem || !value_logical_not (arg2)));
2515 }
2516
2517 case BINOP_EQUAL:
2518 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2519 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2520 return eval_op_equal (expect_type, exp, noside, op, arg1, arg2);
2521
2522 case BINOP_NOTEQUAL:
2523 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2524 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2525 return eval_op_notequal (expect_type, exp, noside, op, arg1, arg2);
2526
2527 case BINOP_LESS:
2528 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2529 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2530 return eval_op_less (expect_type, exp, noside, op, arg1, arg2);
2531
2532 case BINOP_GTR:
2533 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2534 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2535 return eval_op_gtr (expect_type, exp, noside, op, arg1, arg2);
2536
2537 case BINOP_GEQ:
2538 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2539 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2540 return eval_op_geq (expect_type, exp, noside, op, arg1, arg2);
2541
2542 case BINOP_LEQ:
2543 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2544 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2545 if (noside == EVAL_SKIP)
2546 return eval_skip_value (exp);
2547 if (binop_user_defined_p (op, arg1, arg2))
2548 {
2549 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2550 }
2551 else
2552 {
2553 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2554 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2555 type = language_bool_type (exp->language_defn, exp->gdbarch);
2556 return value_from_longest (type, (LONGEST) tem);
2557 }
2558
2559 case BINOP_REPEAT:
2560 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2561 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2562 if (noside == EVAL_SKIP)
2563 return eval_skip_value (exp);
2564 type = check_typedef (value_type (arg2));
2565 if (type->code () != TYPE_CODE_INT
2566 && type->code () != TYPE_CODE_ENUM)
2567 error (_("Non-integral right operand for \"@\" operator."));
2568 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2569 {
2570 return allocate_repeat_value (value_type (arg1),
2571 longest_to_int (value_as_long (arg2)));
2572 }
2573 else
2574 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2575
2576 case BINOP_COMMA:
2577 evaluate_subexp (nullptr, exp, pos, noside);
2578 return evaluate_subexp (nullptr, exp, pos, noside);
2579
2580 case UNOP_PLUS:
2581 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2582 if (noside == EVAL_SKIP)
2583 return eval_skip_value (exp);
2584 if (unop_user_defined_p (op, arg1))
2585 return value_x_unop (arg1, op, noside);
2586 else
2587 {
2588 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2589 return value_pos (arg1);
2590 }
2591
2592 case UNOP_NEG:
2593 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2594 if (noside == EVAL_SKIP)
2595 return eval_skip_value (exp);
2596 if (unop_user_defined_p (op, arg1))
2597 return value_x_unop (arg1, op, noside);
2598 else
2599 {
2600 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2601 return value_neg (arg1);
2602 }
2603
2604 case UNOP_COMPLEMENT:
2605 /* C++: check for and handle destructor names. */
2606
2607 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2608 if (noside == EVAL_SKIP)
2609 return eval_skip_value (exp);
2610 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2611 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2612 else
2613 {
2614 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2615 return value_complement (arg1);
2616 }
2617
2618 case UNOP_LOGICAL_NOT:
2619 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2620 if (noside == EVAL_SKIP)
2621 return eval_skip_value (exp);
2622 if (unop_user_defined_p (op, arg1))
2623 return value_x_unop (arg1, op, noside);
2624 else
2625 {
2626 type = language_bool_type (exp->language_defn, exp->gdbarch);
2627 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2628 }
2629
2630 case UNOP_IND:
2631 if (expect_type && expect_type->code () == TYPE_CODE_PTR)
2632 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2633 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2634 type = check_typedef (value_type (arg1));
2635 if (type->code () == TYPE_CODE_METHODPTR
2636 || type->code () == TYPE_CODE_MEMBERPTR)
2637 error (_("Attempt to dereference pointer "
2638 "to member without an object"));
2639 if (noside == EVAL_SKIP)
2640 return eval_skip_value (exp);
2641 if (unop_user_defined_p (op, arg1))
2642 return value_x_unop (arg1, op, noside);
2643 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2644 {
2645 type = check_typedef (value_type (arg1));
2646
2647 /* If the type pointed to is dynamic then in order to resolve the
2648 dynamic properties we must actually dereference the pointer.
2649 There is a risk that this dereference will have side-effects
2650 in the inferior, but being able to print accurate type
2651 information seems worth the risk. */
2652 if ((type->code () != TYPE_CODE_PTR
2653 && !TYPE_IS_REFERENCE (type))
2654 || !is_dynamic_type (TYPE_TARGET_TYPE (type)))
2655 {
2656 if (type->code () == TYPE_CODE_PTR
2657 || TYPE_IS_REFERENCE (type)
2658 /* In C you can dereference an array to get the 1st elt. */
2659 || type->code () == TYPE_CODE_ARRAY)
2660 return value_zero (TYPE_TARGET_TYPE (type),
2661 lval_memory);
2662 else if (type->code () == TYPE_CODE_INT)
2663 /* GDB allows dereferencing an int. */
2664 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2665 lval_memory);
2666 else
2667 error (_("Attempt to take contents of a non-pointer value."));
2668 }
2669 }
2670
2671 /* Allow * on an integer so we can cast it to whatever we want.
2672 This returns an int, which seems like the most C-like thing to
2673 do. "long long" variables are rare enough that
2674 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2675 if (type->code () == TYPE_CODE_INT)
2676 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2677 (CORE_ADDR) value_as_address (arg1));
2678 return value_ind (arg1);
2679
2680 case UNOP_ADDR:
2681 /* C++: check for and handle pointer to members. */
2682
2683 if (noside == EVAL_SKIP)
2684 {
2685 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2686 return eval_skip_value (exp);
2687 }
2688 else
2689 return evaluate_subexp_for_address (exp, pos, noside);
2690
2691 case UNOP_SIZEOF:
2692 if (noside == EVAL_SKIP)
2693 {
2694 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2695 return eval_skip_value (exp);
2696 }
2697 return evaluate_subexp_for_sizeof (exp, pos, noside);
2698
2699 case UNOP_ALIGNOF:
2700 {
2701 type = value_type (
2702 evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS));
2703 /* FIXME: This should be size_t. */
2704 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2705 ULONGEST align = type_align (type);
2706 if (align == 0)
2707 error (_("could not determine alignment of type"));
2708 return value_from_longest (size_type, align);
2709 }
2710
2711 case UNOP_CAST:
2712 (*pos) += 2;
2713 type = exp->elts[pc + 1].type;
2714 return evaluate_subexp_for_cast (exp, pos, noside, type);
2715
2716 case UNOP_CAST_TYPE:
2717 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2718 type = value_type (arg1);
2719 return evaluate_subexp_for_cast (exp, pos, noside, type);
2720
2721 case UNOP_DYNAMIC_CAST:
2722 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2723 type = value_type (arg1);
2724 arg1 = evaluate_subexp (type, exp, pos, noside);
2725 if (noside == EVAL_SKIP)
2726 return eval_skip_value (exp);
2727 return value_dynamic_cast (type, arg1);
2728
2729 case UNOP_REINTERPRET_CAST:
2730 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2731 type = value_type (arg1);
2732 arg1 = evaluate_subexp (type, exp, pos, noside);
2733 if (noside == EVAL_SKIP)
2734 return eval_skip_value (exp);
2735 return value_reinterpret_cast (type, arg1);
2736
2737 case UNOP_MEMVAL:
2738 (*pos) += 2;
2739 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2740 if (noside == EVAL_SKIP)
2741 return eval_skip_value (exp);
2742 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2743 return value_zero (exp->elts[pc + 1].type, lval_memory);
2744 else
2745 return value_at_lazy (exp->elts[pc + 1].type,
2746 value_as_address (arg1));
2747
2748 case UNOP_MEMVAL_TYPE:
2749 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2750 type = value_type (arg1);
2751 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2752 if (noside == EVAL_SKIP)
2753 return eval_skip_value (exp);
2754 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2755 return value_zero (type, lval_memory);
2756 else
2757 return value_at_lazy (type, value_as_address (arg1));
2758
2759 case UNOP_PREINCREMENT:
2760 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2761 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2762 return arg1;
2763 else if (unop_user_defined_p (op, arg1))
2764 {
2765 return value_x_unop (arg1, op, noside);
2766 }
2767 else
2768 {
2769 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2770 arg2 = value_ptradd (arg1, 1);
2771 else
2772 {
2773 struct value *tmp = arg1;
2774
2775 arg2 = value_one (value_type (arg1));
2776 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2777 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2778 }
2779
2780 return value_assign (arg1, arg2);
2781 }
2782
2783 case UNOP_PREDECREMENT:
2784 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2785 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2786 return arg1;
2787 else if (unop_user_defined_p (op, arg1))
2788 {
2789 return value_x_unop (arg1, op, noside);
2790 }
2791 else
2792 {
2793 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2794 arg2 = value_ptradd (arg1, -1);
2795 else
2796 {
2797 struct value *tmp = arg1;
2798
2799 arg2 = value_one (value_type (arg1));
2800 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2801 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2802 }
2803
2804 return value_assign (arg1, arg2);
2805 }
2806
2807 case UNOP_POSTINCREMENT:
2808 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2809 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2810 return arg1;
2811 else if (unop_user_defined_p (op, arg1))
2812 {
2813 return value_x_unop (arg1, op, noside);
2814 }
2815 else
2816 {
2817 arg3 = value_non_lval (arg1);
2818
2819 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2820 arg2 = value_ptradd (arg1, 1);
2821 else
2822 {
2823 struct value *tmp = arg1;
2824
2825 arg2 = value_one (value_type (arg1));
2826 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2827 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2828 }
2829
2830 value_assign (arg1, arg2);
2831 return arg3;
2832 }
2833
2834 case UNOP_POSTDECREMENT:
2835 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2836 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2837 return arg1;
2838 else if (unop_user_defined_p (op, arg1))
2839 {
2840 return value_x_unop (arg1, op, noside);
2841 }
2842 else
2843 {
2844 arg3 = value_non_lval (arg1);
2845
2846 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2847 arg2 = value_ptradd (arg1, -1);
2848 else
2849 {
2850 struct value *tmp = arg1;
2851
2852 arg2 = value_one (value_type (arg1));
2853 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2854 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2855 }
2856
2857 value_assign (arg1, arg2);
2858 return arg3;
2859 }
2860
2861 case OP_THIS:
2862 (*pos) += 1;
2863 return value_of_this (exp->language_defn);
2864
2865 case OP_TYPE:
2866 /* The value is not supposed to be used. This is here to make it
2867 easier to accommodate expressions that contain types. */
2868 (*pos) += 2;
2869 if (noside == EVAL_SKIP)
2870 return eval_skip_value (exp);
2871 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2872 return allocate_value (exp->elts[pc + 1].type);
2873 else
2874 error (_("Attempt to use a type name as an expression"));
2875
2876 case OP_TYPEOF:
2877 case OP_DECLTYPE:
2878 if (noside == EVAL_SKIP)
2879 {
2880 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2881 return eval_skip_value (exp);
2882 }
2883 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2884 {
2885 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2886 struct value *result;
2887
2888 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2889
2890 /* 'decltype' has special semantics for lvalues. */
2891 if (op == OP_DECLTYPE
2892 && (sub_op == BINOP_SUBSCRIPT
2893 || sub_op == STRUCTOP_MEMBER
2894 || sub_op == STRUCTOP_MPTR
2895 || sub_op == UNOP_IND
2896 || sub_op == STRUCTOP_STRUCT
2897 || sub_op == STRUCTOP_PTR
2898 || sub_op == OP_SCOPE))
2899 {
2900 type = value_type (result);
2901
2902 if (!TYPE_IS_REFERENCE (type))
2903 {
2904 type = lookup_lvalue_reference_type (type);
2905 result = allocate_value (type);
2906 }
2907 }
2908
2909 return result;
2910 }
2911 else
2912 error (_("Attempt to use a type as an expression"));
2913
2914 case OP_TYPEID:
2915 {
2916 struct value *result;
2917 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2918
2919 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2920 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2921 else
2922 result = evaluate_subexp (nullptr, exp, pos, noside);
2923
2924 if (noside != EVAL_NORMAL)
2925 return allocate_value (cplus_typeid_type (exp->gdbarch));
2926
2927 return cplus_typeid (result);
2928 }
2929
2930 default:
2931 /* Removing this case and compiling with gcc -Wall reveals that
2932 a lot of cases are hitting this case. Some of these should
2933 probably be removed from expression.h; others are legitimate
2934 expressions which are (apparently) not fully implemented.
2935
2936 If there are any cases landing here which mean a user error,
2937 then they should be separate cases, with more descriptive
2938 error messages. */
2939
2940 error (_("GDB does not (yet) know how to "
2941 "evaluate that kind of expression"));
2942 }
2943
2944 gdb_assert_not_reached ("missed return?");
2945 }
2946 \f
2947 /* Evaluate a subexpression of EXP, at index *POS,
2948 and return the address of that subexpression.
2949 Advance *POS over the subexpression.
2950 If the subexpression isn't an lvalue, get an error.
2951 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2952 then only the type of the result need be correct. */
2953
2954 static struct value *
2955 evaluate_subexp_for_address (struct expression *exp, int *pos,
2956 enum noside noside)
2957 {
2958 enum exp_opcode op;
2959 int pc;
2960 struct symbol *var;
2961 struct value *x;
2962 int tem;
2963
2964 pc = (*pos);
2965 op = exp->elts[pc].opcode;
2966
2967 switch (op)
2968 {
2969 case UNOP_IND:
2970 (*pos)++;
2971 x = evaluate_subexp (nullptr, exp, pos, noside);
2972
2973 /* We can't optimize out "&*" if there's a user-defined operator*. */
2974 if (unop_user_defined_p (op, x))
2975 {
2976 x = value_x_unop (x, op, noside);
2977 goto default_case_after_eval;
2978 }
2979
2980 return coerce_array (x);
2981
2982 case UNOP_MEMVAL:
2983 (*pos) += 3;
2984 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2985 evaluate_subexp (nullptr, exp, pos, noside));
2986
2987 case UNOP_MEMVAL_TYPE:
2988 {
2989 struct type *type;
2990
2991 (*pos) += 1;
2992 x = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2993 type = value_type (x);
2994 return value_cast (lookup_pointer_type (type),
2995 evaluate_subexp (nullptr, exp, pos, noside));
2996 }
2997
2998 case OP_VAR_VALUE:
2999 var = exp->elts[pc + 2].symbol;
3000
3001 /* C++: The "address" of a reference should yield the address
3002 * of the object pointed to. Let value_addr() deal with it. */
3003 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
3004 goto default_case;
3005
3006 (*pos) += 4;
3007 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3008 {
3009 struct type *type =
3010 lookup_pointer_type (SYMBOL_TYPE (var));
3011 enum address_class sym_class = SYMBOL_CLASS (var);
3012
3013 if (sym_class == LOC_CONST
3014 || sym_class == LOC_CONST_BYTES
3015 || sym_class == LOC_REGISTER)
3016 error (_("Attempt to take address of register or constant."));
3017
3018 return
3019 value_zero (type, not_lval);
3020 }
3021 else
3022 return address_of_variable (var, exp->elts[pc + 1].block);
3023
3024 case OP_VAR_MSYM_VALUE:
3025 {
3026 (*pos) += 4;
3027
3028 value *val = evaluate_var_msym_value (noside,
3029 exp->elts[pc + 1].objfile,
3030 exp->elts[pc + 2].msymbol);
3031 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3032 {
3033 struct type *type = lookup_pointer_type (value_type (val));
3034 return value_zero (type, not_lval);
3035 }
3036 else
3037 return value_addr (val);
3038 }
3039
3040 case OP_SCOPE:
3041 tem = longest_to_int (exp->elts[pc + 2].longconst);
3042 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3043 x = value_aggregate_elt (exp->elts[pc + 1].type,
3044 &exp->elts[pc + 3].string,
3045 NULL, 1, noside);
3046 if (x == NULL)
3047 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3048 return x;
3049
3050 default:
3051 default_case:
3052 x = evaluate_subexp (nullptr, exp, pos, noside);
3053 default_case_after_eval:
3054 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3055 {
3056 struct type *type = check_typedef (value_type (x));
3057
3058 if (TYPE_IS_REFERENCE (type))
3059 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3060 not_lval);
3061 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3062 return value_zero (lookup_pointer_type (value_type (x)),
3063 not_lval);
3064 else
3065 error (_("Attempt to take address of "
3066 "value not located in memory."));
3067 }
3068 return value_addr (x);
3069 }
3070 }
3071
3072 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3073 When used in contexts where arrays will be coerced anyway, this is
3074 equivalent to `evaluate_subexp' but much faster because it avoids
3075 actually fetching array contents (perhaps obsolete now that we have
3076 value_lazy()).
3077
3078 Note that we currently only do the coercion for C expressions, where
3079 arrays are zero based and the coercion is correct. For other languages,
3080 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3081 to decide if coercion is appropriate. */
3082
3083 struct value *
3084 evaluate_subexp_with_coercion (struct expression *exp,
3085 int *pos, enum noside noside)
3086 {
3087 enum exp_opcode op;
3088 int pc;
3089 struct value *val;
3090 struct symbol *var;
3091 struct type *type;
3092
3093 pc = (*pos);
3094 op = exp->elts[pc].opcode;
3095
3096 switch (op)
3097 {
3098 case OP_VAR_VALUE:
3099 var = exp->elts[pc + 2].symbol;
3100 type = check_typedef (SYMBOL_TYPE (var));
3101 if (type->code () == TYPE_CODE_ARRAY
3102 && !type->is_vector ()
3103 && CAST_IS_CONVERSION (exp->language_defn))
3104 {
3105 (*pos) += 4;
3106 val = address_of_variable (var, exp->elts[pc + 1].block);
3107 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3108 val);
3109 }
3110 /* FALLTHROUGH */
3111
3112 default:
3113 return evaluate_subexp (nullptr, exp, pos, noside);
3114 }
3115 }
3116
3117 /* Evaluate a subexpression of EXP, at index *POS,
3118 and return a value for the size of that subexpression.
3119 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3120 we allow side-effects on the operand if its type is a variable
3121 length array. */
3122
3123 static struct value *
3124 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3125 enum noside noside)
3126 {
3127 /* FIXME: This should be size_t. */
3128 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3129 enum exp_opcode op;
3130 int pc;
3131 struct type *type;
3132 struct value *val;
3133
3134 pc = (*pos);
3135 op = exp->elts[pc].opcode;
3136
3137 switch (op)
3138 {
3139 /* This case is handled specially
3140 so that we avoid creating a value for the result type.
3141 If the result type is very big, it's desirable not to
3142 create a value unnecessarily. */
3143 case UNOP_IND:
3144 (*pos)++;
3145 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3146 type = check_typedef (value_type (val));
3147 if (type->code () != TYPE_CODE_PTR
3148 && !TYPE_IS_REFERENCE (type)
3149 && type->code () != TYPE_CODE_ARRAY)
3150 error (_("Attempt to take contents of a non-pointer value."));
3151 type = TYPE_TARGET_TYPE (type);
3152 if (is_dynamic_type (type))
3153 type = value_type (value_ind (val));
3154 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3155
3156 case UNOP_MEMVAL:
3157 (*pos) += 3;
3158 type = exp->elts[pc + 1].type;
3159 break;
3160
3161 case UNOP_MEMVAL_TYPE:
3162 (*pos) += 1;
3163 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3164 type = value_type (val);
3165 break;
3166
3167 case OP_VAR_VALUE:
3168 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3169 if (is_dynamic_type (type))
3170 {
3171 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3172 type = value_type (val);
3173 if (type->code () == TYPE_CODE_ARRAY)
3174 {
3175 if (type_not_allocated (type) || type_not_associated (type))
3176 return value_zero (size_type, not_lval);
3177 else if (is_dynamic_type (type->index_type ())
3178 && type->bounds ()->high.kind () == PROP_UNDEFINED)
3179 return allocate_optimized_out_value (size_type);
3180 }
3181 }
3182 else
3183 (*pos) += 4;
3184 break;
3185
3186 case OP_VAR_MSYM_VALUE:
3187 {
3188 (*pos) += 4;
3189
3190 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3191 value *mval = evaluate_var_msym_value (noside,
3192 exp->elts[pc + 1].objfile,
3193 msymbol);
3194
3195 type = value_type (mval);
3196 if (type->code () == TYPE_CODE_ERROR)
3197 error_unknown_type (msymbol->print_name ());
3198
3199 return value_from_longest (size_type, TYPE_LENGTH (type));
3200 }
3201 break;
3202
3203 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3204 type of the subscript is a variable length array type. In this case we
3205 must re-evaluate the right hand side of the subscription to allow
3206 side-effects. */
3207 case BINOP_SUBSCRIPT:
3208 if (noside == EVAL_NORMAL)
3209 {
3210 int npc = (*pos) + 1;
3211
3212 val = evaluate_subexp (nullptr, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
3213 type = check_typedef (value_type (val));
3214 if (type->code () == TYPE_CODE_ARRAY)
3215 {
3216 type = check_typedef (TYPE_TARGET_TYPE (type));
3217 if (type->code () == TYPE_CODE_ARRAY)
3218 {
3219 type = type->index_type ();
3220 /* Only re-evaluate the right hand side if the resulting type
3221 is a variable length type. */
3222 if (type->bounds ()->flag_bound_evaluated)
3223 {
3224 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3225 return value_from_longest
3226 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3227 }
3228 }
3229 }
3230 }
3231
3232 /* Fall through. */
3233
3234 default:
3235 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3236 type = value_type (val);
3237 break;
3238 }
3239
3240 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3241 "When applied to a reference or a reference type, the result is
3242 the size of the referenced type." */
3243 type = check_typedef (type);
3244 if (exp->language_defn->la_language == language_cplus
3245 && (TYPE_IS_REFERENCE (type)))
3246 type = check_typedef (TYPE_TARGET_TYPE (type));
3247 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3248 }
3249
3250 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3251 for that subexpression cast to TO_TYPE. Advance *POS over the
3252 subexpression. */
3253
3254 static value *
3255 evaluate_subexp_for_cast (expression *exp, int *pos,
3256 enum noside noside,
3257 struct type *to_type)
3258 {
3259 int pc = *pos;
3260
3261 /* Don't let symbols be evaluated with evaluate_subexp because that
3262 throws an "unknown type" error for no-debug data symbols.
3263 Instead, we want the cast to reinterpret the symbol. */
3264 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3265 || exp->elts[pc].opcode == OP_VAR_VALUE)
3266 {
3267 (*pos) += 4;
3268
3269 value *val;
3270 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3271 {
3272 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3273 return value_zero (to_type, not_lval);
3274
3275 val = evaluate_var_msym_value (noside,
3276 exp->elts[pc + 1].objfile,
3277 exp->elts[pc + 2].msymbol);
3278 }
3279 else
3280 val = evaluate_var_value (noside,
3281 exp->elts[pc + 1].block,
3282 exp->elts[pc + 2].symbol);
3283
3284 if (noside == EVAL_SKIP)
3285 return eval_skip_value (exp);
3286
3287 val = value_cast (to_type, val);
3288
3289 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3290 if (VALUE_LVAL (val) == lval_memory)
3291 {
3292 if (value_lazy (val))
3293 value_fetch_lazy (val);
3294 VALUE_LVAL (val) = not_lval;
3295 }
3296 return val;
3297 }
3298
3299 value *val = evaluate_subexp (to_type, exp, pos, noside);
3300 if (noside == EVAL_SKIP)
3301 return eval_skip_value (exp);
3302 return value_cast (to_type, val);
3303 }
3304
3305 /* Parse a type expression in the string [P..P+LENGTH). */
3306
3307 struct type *
3308 parse_and_eval_type (const char *p, int length)
3309 {
3310 char *tmp = (char *) alloca (length + 4);
3311
3312 tmp[0] = '(';
3313 memcpy (tmp + 1, p, length);
3314 tmp[length + 1] = ')';
3315 tmp[length + 2] = '0';
3316 tmp[length + 3] = '\0';
3317 expression_up expr = parse_expression (tmp);
3318 if (expr->first_opcode () != UNOP_CAST)
3319 error (_("Internal error in eval_type."));
3320 return expr->elts[1].type;
3321 }
This page took 0.106116 seconds and 5 git commands to generate.