c6e3b7ee36711757855499c2d86e0d0e37c01b1a
[deliverable/binutils-gdb.git] / gdb / event-top.c
1 /* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
4
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observer.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
38 #include "annotate.h"
39 #include "maint.h"
40 #include "buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
43
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
47
48 /* readline defines this. */
49 #undef savestring
50
51 static void command_line_handler (char *rl);
52 static void change_line_handler (void);
53 static char *top_level_prompt (void);
54
55 /* Signal handlers. */
56 #ifdef SIGQUIT
57 static void handle_sigquit (int sig);
58 #endif
59 #ifdef SIGHUP
60 static void handle_sighup (int sig);
61 #endif
62 static void handle_sigfpe (int sig);
63
64 /* Functions to be invoked by the event loop in response to
65 signals. */
66 #if defined (SIGQUIT) || defined (SIGHUP)
67 static void async_do_nothing (gdb_client_data);
68 #endif
69 #ifdef SIGHUP
70 static void async_disconnect (gdb_client_data);
71 #endif
72 static void async_float_handler (gdb_client_data);
73 #ifdef STOP_SIGNAL
74 static void async_stop_sig (gdb_client_data);
75 #endif
76 static void async_sigterm_handler (gdb_client_data arg);
77
78 /* Instead of invoking (and waiting for) readline to read the command
79 line and pass it back for processing, we use readline's alternate
80 interface, via callback functions, so that the event loop can react
81 to other event sources while we wait for input. */
82
83 /* Important variables for the event loop. */
84
85 /* This is used to determine if GDB is using the readline library or
86 its own simplified form of readline. It is used by the asynchronous
87 form of the set editing command.
88 ezannoni: as of 1999-04-29 I expect that this
89 variable will not be used after gdb is changed to use the event
90 loop as default engine, and event-top.c is merged into top.c. */
91 int async_command_editing_p;
92
93 /* This is used to display the notification of the completion of an
94 asynchronous execution command. */
95 int exec_done_display_p = 0;
96
97 /* This is the file descriptor for the input stream that GDB uses to
98 read commands from. */
99 int input_fd;
100
101 /* Used by the stdin event handler to compensate for missed stdin events.
102 Setting this to a non-zero value inside an stdin callback makes the callback
103 run again. */
104 int call_stdin_event_handler_again_p;
105
106 /* Signal handling variables. */
107 /* Each of these is a pointer to a function that the event loop will
108 invoke if the corresponding signal has received. The real signal
109 handlers mark these functions as ready to be executed and the event
110 loop, in a later iteration, calls them. See the function
111 invoke_async_signal_handler. */
112 static struct async_signal_handler *sigint_token;
113 #ifdef SIGHUP
114 static struct async_signal_handler *sighup_token;
115 #endif
116 #ifdef SIGQUIT
117 static struct async_signal_handler *sigquit_token;
118 #endif
119 static struct async_signal_handler *sigfpe_token;
120 #ifdef STOP_SIGNAL
121 static struct async_signal_handler *sigtstp_token;
122 #endif
123 static struct async_signal_handler *async_sigterm_token;
124
125 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
126 character is processed. */
127 void (*after_char_processing_hook) (void);
128 \f
129
130 /* Wrapper function for calling into the readline library. This takes
131 care of a couple things:
132
133 - The event loop expects the callback function to have a parameter,
134 while readline expects none.
135
136 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
137 across readline requires special handling.
138
139 On the exceptions issue:
140
141 DWARF-based unwinding cannot cross code built without -fexceptions.
142 Any exception that tries to propagate through such code will fail
143 and the result is a call to std::terminate. While some ABIs, such
144 as x86-64, require all code to be built with exception tables,
145 others don't.
146
147 This is a problem when GDB calls some non-EH-aware C library code,
148 that calls into GDB again through a callback, and that GDB callback
149 code throws a C++ exception. Turns out this is exactly what
150 happens with GDB's readline callback.
151
152 In such cases, we must catch and save any C++ exception that might
153 be thrown from the GDB callback before returning to the
154 non-EH-aware code. When the non-EH-aware function itself returns
155 back to GDB, we then rethrow the original C++ exception.
156
157 In the readline case however, the right thing to do is to longjmp
158 out of the callback, rather than do a normal return -- there's no
159 way for the callback to return to readline an indication that an
160 error happened, so a normal return would have rl_callback_read_char
161 potentially continue processing further input, redisplay the
162 prompt, etc. Instead of raw setjmp/longjmp however, we use our
163 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
164 levels of active setjmp/longjmp frames, needed in order to handle
165 the readline callback recursing, as happens with e.g., secondary
166 prompts / queries, through gdb_readline_wrapper. */
167
168 static void
169 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
170 {
171 struct gdb_exception gdb_expt = exception_none;
172
173 /* C++ exceptions can't normally be thrown across readline (unless
174 it is built with -fexceptions, but it won't by default on many
175 ABIs). So we instead wrap the readline call with a sjlj-based
176 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
177 TRY_SJLJ
178 {
179 rl_callback_read_char ();
180 if (after_char_processing_hook)
181 (*after_char_processing_hook) ();
182 }
183 CATCH_SJLJ (ex, RETURN_MASK_ALL)
184 {
185 gdb_expt = ex;
186 }
187 END_CATCH_SJLJ
188
189 /* Rethrow using the normal EH mechanism. */
190 if (gdb_expt.reason < 0)
191 throw_exception (gdb_expt);
192 }
193
194 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
195 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
196 across readline. See gdb_rl_callback_read_char_wrapper. */
197
198 static void
199 gdb_rl_callback_handler (char *rl)
200 {
201 struct gdb_exception gdb_rl_expt = exception_none;
202 struct ui *ui = current_ui;
203
204 TRY
205 {
206 ui->input_handler (rl);
207 }
208 CATCH (ex, RETURN_MASK_ALL)
209 {
210 gdb_rl_expt = ex;
211 }
212 END_CATCH
213
214 /* If we caught a GDB exception, longjmp out of the readline
215 callback. There's no other way for the callback to signal to
216 readline that an error happened. A normal return would have
217 readline potentially continue processing further input, redisplay
218 the prompt, etc. (This is what GDB historically did when it was
219 a C program.) Note that since we're long jumping, local variable
220 dtors are NOT run automatically. */
221 if (gdb_rl_expt.reason < 0)
222 throw_exception_sjlj (gdb_rl_expt);
223 }
224
225 /* Initialize all the necessary variables, start the event loop,
226 register readline, and stdin, start the loop. The DATA is the
227 interpreter data cookie, ignored for now. */
228
229 void
230 cli_command_loop (void *data)
231 {
232 display_gdb_prompt (0);
233
234 /* Now it's time to start the event loop. */
235 start_event_loop ();
236 }
237
238 /* Change the function to be invoked every time there is a character
239 ready on stdin. This is used when the user sets the editing off,
240 therefore bypassing readline, and letting gdb handle the input
241 itself, via gdb_readline_no_editing_callback. Also it is used in
242 the opposite case in which the user sets editing on again, by
243 restoring readline handling of the input. */
244 static void
245 change_line_handler (void)
246 {
247 struct ui *ui = current_ui;
248
249 /* NOTE: this operates on input_fd, not instream. If we are reading
250 commands from a file, instream will point to the file. However in
251 async mode, we always read commands from a file with editing
252 off. This means that the 'set editing on/off' will have effect
253 only on the interactive session. */
254
255 if (async_command_editing_p)
256 {
257 /* Turn on editing by using readline. */
258 ui->call_readline = gdb_rl_callback_read_char_wrapper;
259 ui->input_handler = command_line_handler;
260 }
261 else
262 {
263 /* Turn off editing by using gdb_readline_no_editing_callback. */
264 gdb_rl_callback_handler_remove ();
265 ui->call_readline = gdb_readline_no_editing_callback;
266
267 /* Set up the command handler as well, in case we are called as
268 first thing from .gdbinit. */
269 ui->input_handler = command_line_handler;
270 }
271 }
272
273 /* The functions below are wrappers for rl_callback_handler_remove and
274 rl_callback_handler_install that keep track of whether the callback
275 handler is installed in readline. This is necessary because after
276 handling a target event of a background execution command, we may
277 need to reinstall the callback handler if it was removed due to a
278 secondary prompt. See gdb_readline_wrapper_line. We don't
279 unconditionally install the handler for every target event because
280 that also clears the line buffer, thus installing it while the user
281 is typing would lose input. */
282
283 /* Whether we've registered a callback handler with readline. */
284 static int callback_handler_installed;
285
286 /* See event-top.h, and above. */
287
288 void
289 gdb_rl_callback_handler_remove (void)
290 {
291 rl_callback_handler_remove ();
292 callback_handler_installed = 0;
293 }
294
295 /* See event-top.h, and above. Note this wrapper doesn't have an
296 actual callback parameter because we always install
297 INPUT_HANDLER. */
298
299 void
300 gdb_rl_callback_handler_install (const char *prompt)
301 {
302 /* Calling rl_callback_handler_install resets readline's input
303 buffer. Calling this when we were already processing input
304 therefore loses input. */
305 gdb_assert (!callback_handler_installed);
306
307 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
308 callback_handler_installed = 1;
309 }
310
311 /* See event-top.h, and above. */
312
313 void
314 gdb_rl_callback_handler_reinstall (void)
315 {
316 if (!callback_handler_installed)
317 {
318 /* Passing NULL as prompt argument tells readline to not display
319 a prompt. */
320 gdb_rl_callback_handler_install (NULL);
321 }
322 }
323
324 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
325 prompt that is displayed is the current top level prompt.
326 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
327 prompt.
328
329 This is used after each gdb command has completed, and in the
330 following cases:
331
332 1. When the user enters a command line which is ended by '\'
333 indicating that the command will continue on the next line. In
334 that case the prompt that is displayed is the empty string.
335
336 2. When the user is entering 'commands' for a breakpoint, or
337 actions for a tracepoint. In this case the prompt will be '>'
338
339 3. On prompting for pagination. */
340
341 void
342 display_gdb_prompt (const char *new_prompt)
343 {
344 char *actual_gdb_prompt = NULL;
345 struct cleanup *old_chain;
346
347 annotate_display_prompt ();
348
349 /* Reset the nesting depth used when trace-commands is set. */
350 reset_command_nest_depth ();
351
352 old_chain = make_cleanup (free_current_contents, &actual_gdb_prompt);
353
354 /* Do not call the python hook on an explicit prompt change as
355 passed to this function, as this forms a secondary/local prompt,
356 IE, displayed but not set. */
357 if (! new_prompt)
358 {
359 if (sync_execution)
360 {
361 /* This is to trick readline into not trying to display the
362 prompt. Even though we display the prompt using this
363 function, readline still tries to do its own display if
364 we don't call rl_callback_handler_install and
365 rl_callback_handler_remove (which readline detects
366 because a global variable is not set). If readline did
367 that, it could mess up gdb signal handlers for SIGINT.
368 Readline assumes that between calls to rl_set_signals and
369 rl_clear_signals gdb doesn't do anything with the signal
370 handlers. Well, that's not the case, because when the
371 target executes we change the SIGINT signal handler. If
372 we allowed readline to display the prompt, the signal
373 handler change would happen exactly between the calls to
374 the above two functions. Calling
375 rl_callback_handler_remove(), does the job. */
376
377 gdb_rl_callback_handler_remove ();
378 do_cleanups (old_chain);
379 return;
380 }
381 else
382 {
383 /* Display the top level prompt. */
384 actual_gdb_prompt = top_level_prompt ();
385 }
386 }
387 else
388 actual_gdb_prompt = xstrdup (new_prompt);
389
390 if (async_command_editing_p)
391 {
392 gdb_rl_callback_handler_remove ();
393 gdb_rl_callback_handler_install (actual_gdb_prompt);
394 }
395 /* new_prompt at this point can be the top of the stack or the one
396 passed in. It can't be NULL. */
397 else
398 {
399 /* Don't use a _filtered function here. It causes the assumed
400 character position to be off, since the newline we read from
401 the user is not accounted for. */
402 fputs_unfiltered (actual_gdb_prompt, gdb_stdout);
403 gdb_flush (gdb_stdout);
404 }
405
406 do_cleanups (old_chain);
407 }
408
409 /* Return the top level prompt, as specified by "set prompt", possibly
410 overriden by the python gdb.prompt_hook hook, and then composed
411 with the prompt prefix and suffix (annotations). The caller is
412 responsible for freeing the returned string. */
413
414 static char *
415 top_level_prompt (void)
416 {
417 char *prompt;
418
419 /* Give observers a chance of changing the prompt. E.g., the python
420 `gdb.prompt_hook' is installed as an observer. */
421 observer_notify_before_prompt (get_prompt ());
422
423 prompt = get_prompt ();
424
425 if (annotation_level >= 2)
426 {
427 /* Prefix needs to have new line at end. */
428 const char prefix[] = "\n\032\032pre-prompt\n";
429
430 /* Suffix needs to have a new line at end and \032 \032 at
431 beginning. */
432 const char suffix[] = "\n\032\032prompt\n";
433
434 return concat (prefix, prompt, suffix, (char *) NULL);
435 }
436
437 return xstrdup (prompt);
438 }
439
440 /* The main UI. This is the UI that is bound to stdin/stdout/stderr.
441 It always exists and is created automatically when GDB starts
442 up. */
443 static struct ui main_ui_;
444
445 struct ui *current_ui = &main_ui_;
446 struct ui *ui_list = &main_ui_;
447
448 /* Cleanup that restores the current UI. */
449
450 static void
451 restore_ui_cleanup (void *data)
452 {
453 current_ui = (struct ui *) data;
454 }
455
456 /* See top.h. */
457
458 void
459 switch_thru_all_uis_init (struct switch_thru_all_uis *state)
460 {
461 state->iter = ui_list;
462 state->old_chain = make_cleanup (restore_ui_cleanup, current_ui);
463 }
464
465 /* See top.h. */
466
467 int
468 switch_thru_all_uis_cond (struct switch_thru_all_uis *state)
469 {
470 if (state->iter != NULL)
471 {
472 current_ui = state->iter;
473 return 1;
474 }
475 else
476 {
477 do_cleanups (state->old_chain);
478 return 0;
479 }
480 }
481
482 /* See top.h. */
483
484 void
485 switch_thru_all_uis_next (struct switch_thru_all_uis *state)
486 {
487 state->iter = state->iter->next;
488 }
489
490 /* Get a pointer to the current UI's line buffer. This is used to
491 construct a whole line of input from partial input. */
492
493 static struct buffer *
494 get_command_line_buffer (void)
495 {
496 return &current_ui->line_buffer;
497 }
498
499 /* When there is an event ready on the stdin file descriptor, instead
500 of calling readline directly throught the callback function, or
501 instead of calling gdb_readline_no_editing_callback, give gdb a
502 chance to detect errors and do something. */
503
504 void
505 stdin_event_handler (int error, gdb_client_data client_data)
506 {
507 struct ui *ui = current_ui;
508
509 if (error)
510 {
511 printf_unfiltered (_("error detected on stdin\n"));
512 delete_file_handler (input_fd);
513 /* If stdin died, we may as well kill gdb. */
514 quit_command ((char *) 0, stdin == instream);
515 }
516 else
517 {
518 /* This makes sure a ^C immediately followed by further input is
519 always processed in that order. E.g,. with input like
520 "^Cprint 1\n", the SIGINT handler runs, marks the async signal
521 handler, and then select/poll may return with stdin ready,
522 instead of -1/EINTR. The
523 gdb.base/double-prompt-target-event-error.exp test exercises
524 this. */
525 QUIT;
526
527 do
528 {
529 call_stdin_event_handler_again_p = 0;
530 ui->call_readline (client_data);
531 } while (call_stdin_event_handler_again_p != 0);
532 }
533 }
534
535 /* Re-enable stdin after the end of an execution command in
536 synchronous mode, or after an error from the target, and we aborted
537 the exec operation. */
538
539 void
540 async_enable_stdin (void)
541 {
542 if (sync_execution)
543 {
544 /* See NOTE in async_disable_stdin(). */
545 /* FIXME: cagney/1999-09-27: Call this before clearing
546 sync_execution. Current target_terminal_ours() implementations
547 check for sync_execution before switching the terminal. */
548 target_terminal_ours ();
549 sync_execution = 0;
550 }
551 }
552
553 /* Disable reads from stdin (the console) marking the command as
554 synchronous. */
555
556 void
557 async_disable_stdin (void)
558 {
559 sync_execution = 1;
560 }
561 \f
562
563 /* Handle a gdb command line. This function is called when
564 handle_line_of_input has concatenated one or more input lines into
565 a whole command. */
566
567 void
568 command_handler (char *command)
569 {
570 struct cleanup *stat_chain;
571 char *c;
572
573 if (instream == stdin)
574 reinitialize_more_filter ();
575
576 stat_chain = make_command_stats_cleanup (1);
577
578 /* Do not execute commented lines. */
579 for (c = command; *c == ' ' || *c == '\t'; c++)
580 ;
581 if (c[0] != '#')
582 {
583 execute_command (command, instream == stdin);
584
585 /* Do any commands attached to breakpoint we stopped at. */
586 bpstat_do_actions ();
587 }
588
589 do_cleanups (stat_chain);
590 }
591
592 /* Append RL, an input line returned by readline or one of its
593 emulations, to CMD_LINE_BUFFER. Returns the command line if we
594 have a whole command line ready to be processed by the command
595 interpreter or NULL if the command line isn't complete yet (input
596 line ends in a backslash). Takes ownership of RL. */
597
598 static char *
599 command_line_append_input_line (struct buffer *cmd_line_buffer, char *rl)
600 {
601 char *cmd;
602 size_t len;
603
604 len = strlen (rl);
605
606 if (len > 0 && rl[len - 1] == '\\')
607 {
608 /* Don't copy the backslash and wait for more. */
609 buffer_grow (cmd_line_buffer, rl, len - 1);
610 cmd = NULL;
611 }
612 else
613 {
614 /* Copy whole line including terminating null, and we're
615 done. */
616 buffer_grow (cmd_line_buffer, rl, len + 1);
617 cmd = cmd_line_buffer->buffer;
618 }
619
620 /* Allocated in readline. */
621 xfree (rl);
622
623 return cmd;
624 }
625
626 /* Handle a line of input coming from readline.
627
628 If the read line ends with a continuation character (backslash),
629 save the partial input in CMD_LINE_BUFFER (except the backslash),
630 and return NULL. Otherwise, save the partial input and return a
631 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
632 whole command line is ready to be executed.
633
634 Returns EOF on end of file.
635
636 If REPEAT, handle command repetitions:
637
638 - If the input command line is NOT empty, the command returned is
639 copied into the global 'saved_command_line' var so that it can
640 be repeated later.
641
642 - OTOH, if the input command line IS empty, return the previously
643 saved command instead of the empty input line.
644 */
645
646 char *
647 handle_line_of_input (struct buffer *cmd_line_buffer,
648 char *rl, int repeat, char *annotation_suffix)
649 {
650 char *p1;
651 char *cmd;
652
653 if (rl == NULL)
654 return (char *) EOF;
655
656 cmd = command_line_append_input_line (cmd_line_buffer, rl);
657 if (cmd == NULL)
658 return NULL;
659
660 /* We have a complete command line now. Prepare for the next
661 command, but leave ownership of memory to the buffer . */
662 cmd_line_buffer->used_size = 0;
663
664 if (annotation_level > 1 && instream == stdin)
665 {
666 printf_unfiltered (("\n\032\032post-"));
667 puts_unfiltered (annotation_suffix);
668 printf_unfiltered (("\n"));
669 }
670
671 #define SERVER_COMMAND_PREFIX "server "
672 if (startswith (cmd, SERVER_COMMAND_PREFIX))
673 {
674 /* Note that we don't set `saved_command_line'. Between this
675 and the check in dont_repeat, this insures that repeating
676 will still do the right thing. */
677 return cmd + strlen (SERVER_COMMAND_PREFIX);
678 }
679
680 /* Do history expansion if that is wished. */
681 if (history_expansion_p && instream == stdin
682 && ISATTY (instream))
683 {
684 char *history_value;
685 int expanded;
686
687 expanded = history_expand (cmd, &history_value);
688 if (expanded)
689 {
690 size_t len;
691
692 /* Print the changes. */
693 printf_unfiltered ("%s\n", history_value);
694
695 /* If there was an error, call this function again. */
696 if (expanded < 0)
697 {
698 xfree (history_value);
699 return cmd;
700 }
701
702 /* history_expand returns an allocated string. Just replace
703 our buffer with it. */
704 len = strlen (history_value);
705 xfree (buffer_finish (cmd_line_buffer));
706 cmd_line_buffer->buffer = history_value;
707 cmd_line_buffer->buffer_size = len + 1;
708 cmd = history_value;
709 }
710 }
711
712 /* If we just got an empty line, and that is supposed to repeat the
713 previous command, return the previously saved command. */
714 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
715 ;
716 if (repeat && *p1 == '\0')
717 return saved_command_line;
718
719 /* Add command to history if appropriate. Note: lines consisting
720 solely of comments are also added to the command history. This
721 is useful when you type a command, and then realize you don't
722 want to execute it quite yet. You can comment out the command
723 and then later fetch it from the value history and remove the
724 '#'. The kill ring is probably better, but some people are in
725 the habit of commenting things out. */
726 if (*cmd != '\0' && input_from_terminal_p ())
727 gdb_add_history (cmd);
728
729 /* Save into global buffer if appropriate. */
730 if (repeat)
731 {
732 xfree (saved_command_line);
733 saved_command_line = xstrdup (cmd);
734 return saved_command_line;
735 }
736 else
737 return cmd;
738 }
739
740 /* Handle a complete line of input. This is called by the callback
741 mechanism within the readline library. Deal with incomplete
742 commands as well, by saving the partial input in a global
743 buffer.
744
745 NOTE: This is the asynchronous version of the command_line_input
746 function. */
747
748 void
749 command_line_handler (char *rl)
750 {
751 struct buffer *line_buffer = get_command_line_buffer ();
752 char *cmd;
753
754 cmd = handle_line_of_input (line_buffer, rl, instream == stdin, "prompt");
755 if (cmd == (char *) EOF)
756 {
757 /* stdin closed. The connection with the terminal is gone.
758 This happens at the end of a testsuite run, after Expect has
759 hung up but GDB is still alive. In such a case, we just quit
760 gdb killing the inferior program too. */
761 printf_unfiltered ("quit\n");
762 execute_command ("quit", stdin == instream);
763 }
764 else if (cmd == NULL)
765 {
766 /* We don't have a full line yet. Print an empty prompt. */
767 display_gdb_prompt ("");
768 }
769 else
770 {
771 command_handler (cmd);
772 display_gdb_prompt (0);
773 }
774 }
775
776 /* Does reading of input from terminal w/o the editing features
777 provided by the readline library. Calls the line input handler
778 once we have a whole input line. */
779
780 void
781 gdb_readline_no_editing_callback (gdb_client_data client_data)
782 {
783 int c;
784 char *result;
785 struct buffer line_buffer;
786 static int done_once = 0;
787 struct ui *ui = current_ui;
788
789 buffer_init (&line_buffer);
790
791 /* Unbuffer the input stream, so that, later on, the calls to fgetc
792 fetch only one char at the time from the stream. The fgetc's will
793 get up to the first newline, but there may be more chars in the
794 stream after '\n'. If we buffer the input and fgetc drains the
795 stream, getting stuff beyond the newline as well, a select, done
796 afterwards will not trigger. */
797 if (!done_once && !ISATTY (instream))
798 {
799 setbuf (instream, NULL);
800 done_once = 1;
801 }
802
803 /* We still need the while loop here, even though it would seem
804 obvious to invoke gdb_readline_no_editing_callback at every
805 character entered. If not using the readline library, the
806 terminal is in cooked mode, which sends the characters all at
807 once. Poll will notice that the input fd has changed state only
808 after enter is pressed. At this point we still need to fetch all
809 the chars entered. */
810
811 while (1)
812 {
813 /* Read from stdin if we are executing a user defined command.
814 This is the right thing for prompt_for_continue, at least. */
815 c = fgetc (instream ? instream : stdin);
816
817 if (c == EOF)
818 {
819 if (line_buffer.used_size > 0)
820 {
821 /* The last line does not end with a newline. Return it, and
822 if we are called again fgetc will still return EOF and
823 we'll return NULL then. */
824 break;
825 }
826 xfree (buffer_finish (&line_buffer));
827 ui->input_handler (NULL);
828 return;
829 }
830
831 if (c == '\n')
832 {
833 if (line_buffer.used_size > 0
834 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
835 line_buffer.used_size--;
836 break;
837 }
838
839 buffer_grow_char (&line_buffer, c);
840 }
841
842 buffer_grow_char (&line_buffer, '\0');
843 result = buffer_finish (&line_buffer);
844 ui->input_handler (result);
845 }
846 \f
847
848 /* The serial event associated with the QUIT flag. set_quit_flag sets
849 this, and check_quit_flag clears it. Used by interruptible_select
850 to be able to do interruptible I/O with no race with the SIGINT
851 handler. */
852 static struct serial_event *quit_serial_event;
853
854 /* Initialization of signal handlers and tokens. There is a function
855 handle_sig* for each of the signals GDB cares about. Specifically:
856 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
857 functions are the actual signal handlers associated to the signals
858 via calls to signal(). The only job for these functions is to
859 enqueue the appropriate event/procedure with the event loop. Such
860 procedures are the old signal handlers. The event loop will take
861 care of invoking the queued procedures to perform the usual tasks
862 associated with the reception of the signal. */
863 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
864 init_signals will become obsolete as we move to have to event loop
865 as the default for gdb. */
866 void
867 async_init_signals (void)
868 {
869 initialize_async_signal_handlers ();
870
871 quit_serial_event = make_serial_event ();
872
873 signal (SIGINT, handle_sigint);
874 sigint_token =
875 create_async_signal_handler (async_request_quit, NULL);
876 signal (SIGTERM, handle_sigterm);
877 async_sigterm_token
878 = create_async_signal_handler (async_sigterm_handler, NULL);
879
880 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
881 to the inferior and breakpoints will be ignored. */
882 #ifdef SIGTRAP
883 signal (SIGTRAP, SIG_DFL);
884 #endif
885
886 #ifdef SIGQUIT
887 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
888 passed to the inferior, which we don't want. It would be
889 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
890 on BSD4.3 systems using vfork, that can affect the
891 GDB process as well as the inferior (the signal handling tables
892 might be in memory, shared between the two). Since we establish
893 a handler for SIGQUIT, when we call exec it will set the signal
894 to SIG_DFL for us. */
895 signal (SIGQUIT, handle_sigquit);
896 sigquit_token =
897 create_async_signal_handler (async_do_nothing, NULL);
898 #endif
899 #ifdef SIGHUP
900 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
901 sighup_token =
902 create_async_signal_handler (async_disconnect, NULL);
903 else
904 sighup_token =
905 create_async_signal_handler (async_do_nothing, NULL);
906 #endif
907 signal (SIGFPE, handle_sigfpe);
908 sigfpe_token =
909 create_async_signal_handler (async_float_handler, NULL);
910
911 #ifdef STOP_SIGNAL
912 sigtstp_token =
913 create_async_signal_handler (async_stop_sig, NULL);
914 #endif
915 }
916
917 /* See defs.h. */
918
919 void
920 quit_serial_event_set (void)
921 {
922 serial_event_set (quit_serial_event);
923 }
924
925 /* See defs.h. */
926
927 void
928 quit_serial_event_clear (void)
929 {
930 serial_event_clear (quit_serial_event);
931 }
932
933 /* Return the selectable file descriptor of the serial event
934 associated with the quit flag. */
935
936 static int
937 quit_serial_event_fd (void)
938 {
939 return serial_event_fd (quit_serial_event);
940 }
941
942 /* See defs.h. */
943
944 void
945 default_quit_handler (void)
946 {
947 if (check_quit_flag ())
948 {
949 if (target_terminal_is_ours ())
950 quit ();
951 else
952 target_pass_ctrlc ();
953 }
954 }
955
956 /* See defs.h. */
957 quit_handler_ftype *quit_handler = default_quit_handler;
958
959 /* Data for make_cleanup_override_quit_handler. Wrap the previous
960 handler pointer in a data struct because it's not portable to cast
961 a function pointer to a data pointer, which is what make_cleanup
962 expects. */
963 struct quit_handler_cleanup_data
964 {
965 /* The previous quit handler. */
966 quit_handler_ftype *prev_handler;
967 };
968
969 /* Cleanup call that restores the previous quit handler. */
970
971 static void
972 restore_quit_handler (void *arg)
973 {
974 struct quit_handler_cleanup_data *data
975 = (struct quit_handler_cleanup_data *) arg;
976
977 quit_handler = data->prev_handler;
978 }
979
980 /* Destructor for the quit handler cleanup. */
981
982 static void
983 restore_quit_handler_dtor (void *arg)
984 {
985 xfree (arg);
986 }
987
988 /* See defs.h. */
989
990 struct cleanup *
991 make_cleanup_override_quit_handler (quit_handler_ftype *new_quit_handler)
992 {
993 struct cleanup *old_chain;
994 struct quit_handler_cleanup_data *data;
995
996 data = XNEW (struct quit_handler_cleanup_data);
997 data->prev_handler = quit_handler;
998 old_chain = make_cleanup_dtor (restore_quit_handler, data,
999 restore_quit_handler_dtor);
1000 quit_handler = new_quit_handler;
1001 return old_chain;
1002 }
1003
1004 /* Handle a SIGINT. */
1005
1006 void
1007 handle_sigint (int sig)
1008 {
1009 signal (sig, handle_sigint);
1010
1011 /* We could be running in a loop reading in symfiles or something so
1012 it may be quite a while before we get back to the event loop. So
1013 set quit_flag to 1 here. Then if QUIT is called before we get to
1014 the event loop, we will unwind as expected. */
1015 set_quit_flag ();
1016
1017 /* In case nothing calls QUIT before the event loop is reached, the
1018 event loop handles it. */
1019 mark_async_signal_handler (sigint_token);
1020 }
1021
1022 /* See gdb_select.h. */
1023
1024 int
1025 interruptible_select (int n,
1026 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
1027 struct timeval *timeout)
1028 {
1029 fd_set my_readfds;
1030 int fd;
1031 int res;
1032
1033 if (readfds == NULL)
1034 {
1035 readfds = &my_readfds;
1036 FD_ZERO (&my_readfds);
1037 }
1038
1039 fd = quit_serial_event_fd ();
1040 FD_SET (fd, readfds);
1041 if (n <= fd)
1042 n = fd + 1;
1043
1044 do
1045 {
1046 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1047 }
1048 while (res == -1 && errno == EINTR);
1049
1050 if (res == 1 && FD_ISSET (fd, readfds))
1051 {
1052 errno = EINTR;
1053 return -1;
1054 }
1055 return res;
1056 }
1057
1058 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1059
1060 static void
1061 async_sigterm_handler (gdb_client_data arg)
1062 {
1063 quit_force (NULL, stdin == instream);
1064 }
1065
1066 /* See defs.h. */
1067 volatile int sync_quit_force_run;
1068
1069 /* Quit GDB if SIGTERM is received.
1070 GDB would quit anyway, but this way it will clean up properly. */
1071 void
1072 handle_sigterm (int sig)
1073 {
1074 signal (sig, handle_sigterm);
1075
1076 sync_quit_force_run = 1;
1077 set_quit_flag ();
1078
1079 mark_async_signal_handler (async_sigterm_token);
1080 }
1081
1082 /* Do the quit. All the checks have been done by the caller. */
1083 void
1084 async_request_quit (gdb_client_data arg)
1085 {
1086 /* If the quit_flag has gotten reset back to 0 by the time we get
1087 back here, that means that an exception was thrown to unwind the
1088 current command before we got back to the event loop. So there
1089 is no reason to call quit again here. */
1090 QUIT;
1091 }
1092
1093 #ifdef SIGQUIT
1094 /* Tell the event loop what to do if SIGQUIT is received.
1095 See event-signal.c. */
1096 static void
1097 handle_sigquit (int sig)
1098 {
1099 mark_async_signal_handler (sigquit_token);
1100 signal (sig, handle_sigquit);
1101 }
1102 #endif
1103
1104 #if defined (SIGQUIT) || defined (SIGHUP)
1105 /* Called by the event loop in response to a SIGQUIT or an
1106 ignored SIGHUP. */
1107 static void
1108 async_do_nothing (gdb_client_data arg)
1109 {
1110 /* Empty function body. */
1111 }
1112 #endif
1113
1114 #ifdef SIGHUP
1115 /* Tell the event loop what to do if SIGHUP is received.
1116 See event-signal.c. */
1117 static void
1118 handle_sighup (int sig)
1119 {
1120 mark_async_signal_handler (sighup_token);
1121 signal (sig, handle_sighup);
1122 }
1123
1124 /* Called by the event loop to process a SIGHUP. */
1125 static void
1126 async_disconnect (gdb_client_data arg)
1127 {
1128
1129 TRY
1130 {
1131 quit_cover ();
1132 }
1133
1134 CATCH (exception, RETURN_MASK_ALL)
1135 {
1136 fputs_filtered ("Could not kill the program being debugged",
1137 gdb_stderr);
1138 exception_print (gdb_stderr, exception);
1139 }
1140 END_CATCH
1141
1142 TRY
1143 {
1144 pop_all_targets ();
1145 }
1146 CATCH (exception, RETURN_MASK_ALL)
1147 {
1148 }
1149 END_CATCH
1150
1151 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1152 raise (SIGHUP);
1153 }
1154 #endif
1155
1156 #ifdef STOP_SIGNAL
1157 void
1158 handle_stop_sig (int sig)
1159 {
1160 mark_async_signal_handler (sigtstp_token);
1161 signal (sig, handle_stop_sig);
1162 }
1163
1164 static void
1165 async_stop_sig (gdb_client_data arg)
1166 {
1167 char *prompt = get_prompt ();
1168
1169 #if STOP_SIGNAL == SIGTSTP
1170 signal (SIGTSTP, SIG_DFL);
1171 #if HAVE_SIGPROCMASK
1172 {
1173 sigset_t zero;
1174
1175 sigemptyset (&zero);
1176 sigprocmask (SIG_SETMASK, &zero, 0);
1177 }
1178 #elif HAVE_SIGSETMASK
1179 sigsetmask (0);
1180 #endif
1181 raise (SIGTSTP);
1182 signal (SIGTSTP, handle_stop_sig);
1183 #else
1184 signal (STOP_SIGNAL, handle_stop_sig);
1185 #endif
1186 printf_unfiltered ("%s", prompt);
1187 gdb_flush (gdb_stdout);
1188
1189 /* Forget about any previous command -- null line now will do
1190 nothing. */
1191 dont_repeat ();
1192 }
1193 #endif /* STOP_SIGNAL */
1194
1195 /* Tell the event loop what to do if SIGFPE is received.
1196 See event-signal.c. */
1197 static void
1198 handle_sigfpe (int sig)
1199 {
1200 mark_async_signal_handler (sigfpe_token);
1201 signal (sig, handle_sigfpe);
1202 }
1203
1204 /* Event loop will call this functin to process a SIGFPE. */
1205 static void
1206 async_float_handler (gdb_client_data arg)
1207 {
1208 /* This message is based on ANSI C, section 4.7. Note that integer
1209 divide by zero causes this, so "float" is a misnomer. */
1210 error (_("Erroneous arithmetic operation."));
1211 }
1212 \f
1213
1214 /* Called by do_setshow_command. */
1215 void
1216 set_async_editing_command (char *args, int from_tty,
1217 struct cmd_list_element *c)
1218 {
1219 change_line_handler ();
1220 }
1221
1222 /* Set things up for readline to be invoked via the alternate
1223 interface, i.e. via a callback function
1224 (gdb_rl_callback_read_char), and hook up instream to the event
1225 loop. */
1226
1227 void
1228 gdb_setup_readline (void)
1229 {
1230 struct ui *ui = current_ui;
1231
1232 /* This function is a noop for the sync case. The assumption is
1233 that the sync setup is ALL done in gdb_init, and we would only
1234 mess it up here. The sync stuff should really go away over
1235 time. */
1236 if (!batch_silent)
1237 gdb_stdout = stdio_fileopen (stdout);
1238 gdb_stderr = stderr_fileopen ();
1239 gdb_stdlog = gdb_stderr; /* for moment */
1240 gdb_stdtarg = gdb_stderr; /* for moment */
1241 gdb_stdtargerr = gdb_stderr; /* for moment */
1242
1243 /* If the input stream is connected to a terminal, turn on
1244 editing. */
1245 if (ISATTY (instream))
1246 {
1247 /* Tell gdb that we will be using the readline library. This
1248 could be overwritten by a command in .gdbinit like 'set
1249 editing on' or 'off'. */
1250 async_command_editing_p = 1;
1251
1252 /* When a character is detected on instream by select or poll,
1253 readline will be invoked via this callback function. */
1254 ui->call_readline = gdb_rl_callback_read_char_wrapper;
1255 }
1256 else
1257 {
1258 async_command_editing_p = 0;
1259 ui->call_readline = gdb_readline_no_editing_callback;
1260 }
1261
1262 /* When readline has read an end-of-line character, it passes the
1263 complete line to gdb for processing; command_line_handler is the
1264 function that does this. */
1265 ui->input_handler = command_line_handler;
1266
1267 /* Tell readline to use the same input stream that gdb uses. */
1268 rl_instream = instream;
1269
1270 /* Get a file descriptor for the input stream, so that we can
1271 register it with the event loop. */
1272 input_fd = fileno (instream);
1273
1274 /* Now we need to create the event sources for the input file
1275 descriptor. */
1276 /* At this point in time, this is the only event source that we
1277 register with the even loop. Another source is going to be the
1278 target program (inferior), but that must be registered only when
1279 it actually exists (I.e. after we say 'run' or after we connect
1280 to a remote target. */
1281 add_file_handler (input_fd, stdin_event_handler, 0);
1282 }
1283
1284 /* Disable command input through the standard CLI channels. Used in
1285 the suspend proc for interpreters that use the standard gdb readline
1286 interface, like the cli & the mi. */
1287 void
1288 gdb_disable_readline (void)
1289 {
1290 /* FIXME - It is too heavyweight to delete and remake these every
1291 time you run an interpreter that needs readline. It is probably
1292 better to have the interpreters cache these, which in turn means
1293 that this needs to be moved into interpreter specific code. */
1294
1295 #if 0
1296 ui_file_delete (gdb_stdout);
1297 ui_file_delete (gdb_stderr);
1298 gdb_stdlog = NULL;
1299 gdb_stdtarg = NULL;
1300 gdb_stdtargerr = NULL;
1301 #endif
1302
1303 gdb_rl_callback_handler_remove ();
1304 delete_file_handler (input_fd);
1305 }
This page took 0.057611 seconds and 4 git commands to generate.