Fix problems with infinite recursion when printing a class
[deliverable/binutils-gdb.git] / gdb / f-valprint.c
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2 Copyright 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
4 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "value.h"
28 #include "demangle.h"
29 #include "valprint.h"
30 #include "language.h"
31 #include "f-lang.h"
32 #include "frame.h"
33 #include "gdbcore.h"
34 #include "command.h"
35
36 extern unsigned int print_max; /* No of array elements to print */
37
38 extern int calc_f77_array_dims PARAMS ((struct type *));
39
40 int f77_array_offset_tbl[MAX_FORTRAN_DIMS+1][2];
41
42 /* Array which holds offsets to be applied to get a row's elements
43 for a given array. Array also holds the size of each subarray. */
44
45 /* The following macro gives us the size of the nth dimension, Where
46 n is 1 based. */
47
48 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
49
50 /* The following gives us the offset for row n where n is 1-based. */
51
52 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
53
54 int
55 f77_get_dynamic_lowerbound (type, lower_bound)
56 struct type *type;
57 int *lower_bound;
58 {
59 CORE_ADDR current_frame_addr;
60 CORE_ADDR ptr_to_lower_bound;
61
62 switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
63 {
64 case BOUND_BY_VALUE_ON_STACK:
65 current_frame_addr = selected_frame->frame;
66 if (current_frame_addr > 0)
67 {
68 *lower_bound =
69 read_memory_integer (current_frame_addr +
70 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
71 4);
72 }
73 else
74 {
75 *lower_bound = DEFAULT_LOWER_BOUND;
76 return BOUND_FETCH_ERROR;
77 }
78 break;
79
80 case BOUND_SIMPLE:
81 *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
82 break;
83
84 case BOUND_CANNOT_BE_DETERMINED:
85 error ("Lower bound may not be '*' in F77");
86 break;
87
88 case BOUND_BY_REF_ON_STACK:
89 current_frame_addr = selected_frame->frame;
90 if (current_frame_addr > 0)
91 {
92 ptr_to_lower_bound =
93 read_memory_integer (current_frame_addr +
94 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
95 4);
96 *lower_bound = read_memory_integer (ptr_to_lower_bound, 4);
97 }
98 else
99 {
100 *lower_bound = DEFAULT_LOWER_BOUND;
101 return BOUND_FETCH_ERROR;
102 }
103 break;
104
105 case BOUND_BY_REF_IN_REG:
106 case BOUND_BY_VALUE_IN_REG:
107 default:
108 error ("??? unhandled dynamic array bound type ???");
109 break;
110 }
111 return BOUND_FETCH_OK;
112 }
113
114 int
115 f77_get_dynamic_upperbound (type, upper_bound)
116 struct type *type;
117 int *upper_bound;
118 {
119 CORE_ADDR current_frame_addr = 0;
120 CORE_ADDR ptr_to_upper_bound;
121
122 switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
123 {
124 case BOUND_BY_VALUE_ON_STACK:
125 current_frame_addr = selected_frame->frame;
126 if (current_frame_addr > 0)
127 {
128 *upper_bound =
129 read_memory_integer (current_frame_addr +
130 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
131 4);
132 }
133 else
134 {
135 *upper_bound = DEFAULT_UPPER_BOUND;
136 return BOUND_FETCH_ERROR;
137 }
138 break;
139
140 case BOUND_SIMPLE:
141 *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
142 break;
143
144 case BOUND_CANNOT_BE_DETERMINED:
145 /* we have an assumed size array on our hands. Assume that
146 upper_bound == lower_bound so that we show at least
147 1 element.If the user wants to see more elements, let
148 him manually ask for 'em and we'll subscript the
149 array and show him */
150 f77_get_dynamic_lowerbound (type, upper_bound);
151 break;
152
153 case BOUND_BY_REF_ON_STACK:
154 current_frame_addr = selected_frame->frame;
155 if (current_frame_addr > 0)
156 {
157 ptr_to_upper_bound =
158 read_memory_integer (current_frame_addr +
159 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
160 4);
161 *upper_bound = read_memory_integer(ptr_to_upper_bound, 4);
162 }
163 else
164 {
165 *upper_bound = DEFAULT_UPPER_BOUND;
166 return BOUND_FETCH_ERROR;
167 }
168 break;
169
170 case BOUND_BY_REF_IN_REG:
171 case BOUND_BY_VALUE_IN_REG:
172 default:
173 error ("??? unhandled dynamic array bound type ???");
174 break;
175 }
176 return BOUND_FETCH_OK;
177 }
178
179 /* Obtain F77 adjustable array dimensions */
180
181 void
182 f77_get_dynamic_length_of_aggregate (type)
183 struct type *type;
184 {
185 int upper_bound = -1;
186 int lower_bound = 1;
187 int retcode;
188
189 /* Recursively go all the way down into a possibly multi-dimensional
190 F77 array and get the bounds. For simple arrays, this is pretty
191 easy but when the bounds are dynamic, we must be very careful
192 to add up all the lengths correctly. Not doing this right
193 will lead to horrendous-looking arrays in parameter lists.
194
195 This function also works for strings which behave very
196 similarly to arrays. */
197
198 if (TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
199 || TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
200 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
201
202 /* Recursion ends here, start setting up lengths. */
203 retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
204 if (retcode == BOUND_FETCH_ERROR)
205 error ("Cannot obtain valid array lower bound");
206
207 retcode = f77_get_dynamic_upperbound (type, &upper_bound);
208 if (retcode == BOUND_FETCH_ERROR)
209 error ("Cannot obtain valid array upper bound");
210
211 /* Patch in a valid length value. */
212
213 TYPE_LENGTH (type) =
214 (upper_bound - lower_bound + 1) * TYPE_LENGTH (TYPE_TARGET_TYPE (type));
215 }
216
217 /* Function that sets up the array offset,size table for the array
218 type "type". */
219
220 void
221 f77_create_arrayprint_offset_tbl (type, stream)
222 struct type *type;
223 FILE *stream;
224 {
225 struct type *tmp_type;
226 int eltlen;
227 int ndimen = 1;
228 int upper, lower, retcode;
229
230 tmp_type = type;
231
232 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
233 {
234 if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
235 fprintf_filtered (stream, "<assumed size array> ");
236
237 retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
238 if (retcode == BOUND_FETCH_ERROR)
239 error ("Cannot obtain dynamic upper bound");
240
241 retcode = f77_get_dynamic_lowerbound(tmp_type,&lower);
242 if (retcode == BOUND_FETCH_ERROR)
243 error("Cannot obtain dynamic lower bound");
244
245 F77_DIM_SIZE (ndimen) = upper - lower + 1;
246
247 tmp_type = TYPE_TARGET_TYPE (tmp_type);
248 ndimen++;
249 }
250
251 /* Now we multiply eltlen by all the offsets, so that later we
252 can print out array elements correctly. Up till now we
253 know an offset to apply to get the item but we also
254 have to know how much to add to get to the next item */
255
256 ndimen--;
257 eltlen = TYPE_LENGTH (tmp_type);
258 F77_DIM_OFFSET (ndimen) = eltlen;
259 while (--ndimen > 0)
260 {
261 eltlen *= F77_DIM_SIZE (ndimen + 1);
262 F77_DIM_OFFSET (ndimen) = eltlen;
263 }
264 }
265
266 /* Actual function which prints out F77 arrays, Valaddr == address in
267 the superior. Address == the address in the inferior. */
268
269 void
270 f77_print_array_1 (nss, ndimensions, type, valaddr, address,
271 stream, format, deref_ref, recurse, pretty)
272 int nss;
273 int ndimensions;
274 char *valaddr;
275 struct type *type;
276 CORE_ADDR address;
277 FILE *stream;
278 int format;
279 int deref_ref;
280 int recurse;
281 enum val_prettyprint pretty;
282 {
283 int i;
284
285 if (nss != ndimensions)
286 {
287 for (i = 0; i< F77_DIM_SIZE(nss); i++)
288 {
289 fprintf_filtered (stream, "( ");
290 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
291 valaddr + i * F77_DIM_OFFSET (nss),
292 address + i * F77_DIM_OFFSET (nss),
293 stream, format, deref_ref, recurse, pretty, i);
294 fprintf_filtered (stream, ") ");
295 }
296 }
297 else
298 {
299 for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++)
300 {
301 val_print (TYPE_TARGET_TYPE (type),
302 valaddr + i * F77_DIM_OFFSET (ndimensions),
303 address + i * F77_DIM_OFFSET (ndimensions),
304 stream, format, deref_ref, recurse, pretty);
305
306 if (i != (F77_DIM_SIZE (nss) - 1))
307 fprintf_filtered (stream, ", ");
308
309 if (i == print_max - 1)
310 fprintf_filtered (stream, "...");
311 }
312 }
313 }
314
315 /* This function gets called to print an F77 array, we set up some
316 stuff and then immediately call f77_print_array_1() */
317
318 void
319 f77_print_array (type, valaddr, address, stream, format, deref_ref, recurse,
320 pretty)
321 struct type *type;
322 char *valaddr;
323 CORE_ADDR address;
324 FILE *stream;
325 int format;
326 int deref_ref;
327 int recurse;
328 enum val_prettyprint pretty;
329 {
330 int ndimensions;
331
332 ndimensions = calc_f77_array_dims (type);
333
334 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
335 error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
336 ndimensions, MAX_FORTRAN_DIMS);
337
338 /* Since F77 arrays are stored column-major, we set up an
339 offset table to get at the various row's elements. The
340 offset table contains entries for both offset and subarray size. */
341
342 f77_create_arrayprint_offset_tbl (type, stream);
343
344 f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
345 deref_ref, recurse, pretty);
346 }
347
348 \f
349 /* Print data of type TYPE located at VALADDR (within GDB), which came from
350 the inferior at address ADDRESS, onto stdio stream STREAM according to
351 FORMAT (a letter or 0 for natural format). The data at VALADDR is in
352 target byte order.
353
354 If the data are a string pointer, returns the number of string characters
355 printed.
356
357 If DEREF_REF is nonzero, then dereference references, otherwise just print
358 them like pointers.
359
360 The PRETTY parameter controls prettyprinting. */
361
362 int
363 f_val_print (type, valaddr, address, stream, format, deref_ref, recurse,
364 pretty)
365 struct type *type;
366 char *valaddr;
367 CORE_ADDR address;
368 FILE *stream;
369 int format;
370 int deref_ref;
371 int recurse;
372 enum val_prettyprint pretty;
373 {
374 register unsigned int i = 0; /* Number of characters printed */
375 unsigned len;
376 struct type *elttype;
377 LONGEST val;
378 char *localstr;
379 char *straddr;
380 CORE_ADDR addr;
381
382 switch (TYPE_CODE (type))
383 {
384 case TYPE_CODE_STRING:
385 f77_get_dynamic_length_of_aggregate (type);
386 LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 0);
387 break;
388
389 case TYPE_CODE_ARRAY:
390 fprintf_filtered (stream, "(");
391 f77_print_array (type, valaddr, address, stream, format,
392 deref_ref, recurse, pretty);
393 fprintf_filtered (stream, ")");
394 break;
395 #if 0
396 /* Array of unspecified length: treat like pointer to first elt. */
397 valaddr = (char *) &address;
398 /* FALL THROUGH */
399 #endif
400 case TYPE_CODE_PTR:
401 if (format && format != 's')
402 {
403 print_scalar_formatted (valaddr, type, format, 0, stream);
404 break;
405 }
406 else
407 {
408 addr = unpack_pointer (type, valaddr);
409 elttype = TYPE_TARGET_TYPE (type);
410
411 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
412 {
413 /* Try to print what function it points to. */
414 print_address_demangle (addr, stream, demangle);
415 /* Return value is irrelevant except for string pointers. */
416 return 0;
417 }
418
419 if (addressprint && format != 's')
420 fprintf_filtered (stream, "0x%x", addr);
421
422 /* For a pointer to char or unsigned char, also print the string
423 pointed to, unless pointer is null. */
424 if (TYPE_LENGTH (elttype) == 1
425 && TYPE_CODE (elttype) == TYPE_CODE_INT
426 && (format == 0 || format == 's')
427 && addr != 0)
428 i = val_print_string (addr, 0, stream);
429
430 /* Return number of characters printed, plus one for the
431 terminating null if we have "reached the end". */
432 return (i + (print_max && i != print_max));
433 }
434 break;
435
436 case TYPE_CODE_FUNC:
437 if (format)
438 {
439 print_scalar_formatted (valaddr, type, format, 0, stream);
440 break;
441 }
442 /* FIXME, we should consider, at least for ANSI C language, eliminating
443 the distinction made between FUNCs and POINTERs to FUNCs. */
444 fprintf_filtered (stream, "{");
445 type_print (type, "", stream, -1);
446 fprintf_filtered (stream, "} ");
447 /* Try to print what function it points to, and its address. */
448 print_address_demangle (address, stream, demangle);
449 break;
450
451 case TYPE_CODE_INT:
452 format = format ? format : output_format;
453 if (format)
454 print_scalar_formatted (valaddr, type, format, 0, stream);
455 else
456 {
457 val_print_type_code_int (type, valaddr, stream);
458 /* C and C++ has no single byte int type, char is used instead.
459 Since we don't know whether the value is really intended to
460 be used as an integer or a character, print the character
461 equivalent as well. */
462 if (TYPE_LENGTH (type) == 1)
463 {
464 fputs_filtered (" ", stream);
465 LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
466 stream);
467 }
468 }
469 break;
470
471 case TYPE_CODE_FLT:
472 if (format)
473 print_scalar_formatted (valaddr, type, format, 0, stream);
474 else
475 print_floating (valaddr, type, stream);
476 break;
477
478 case TYPE_CODE_VOID:
479 fprintf_filtered (stream, "VOID");
480 break;
481
482 case TYPE_CODE_ERROR:
483 fprintf_filtered (stream, "<error type>");
484 break;
485
486 case TYPE_CODE_RANGE:
487 /* FIXME, we should not ever have to print one of these yet. */
488 fprintf_filtered (stream, "<range type>");
489 break;
490
491 case TYPE_CODE_BOOL:
492 format = format ? format : output_format;
493 if (format)
494 print_scalar_formatted (valaddr, type, format, 0, stream);
495 else
496 {
497 val = 0;
498 switch (TYPE_LENGTH(type))
499 {
500 case 1:
501 val = unpack_long (builtin_type_f_logical_s1, valaddr);
502 break ;
503
504 case 2:
505 val = unpack_long (builtin_type_f_logical_s2, valaddr);
506 break ;
507
508 case 4:
509 val = unpack_long (builtin_type_f_logical, valaddr);
510 break ;
511
512 default:
513 error ("Logicals of length %d bytes not supported",
514 TYPE_LENGTH (type));
515
516 }
517
518 if (val == 0)
519 fprintf_filtered (stream, ".FALSE.");
520 else
521 if (val == 1)
522 fprintf_filtered (stream, ".TRUE.");
523 else
524 /* Not a legitimate logical type, print as an integer. */
525 {
526 /* Bash the type code temporarily. */
527 TYPE_CODE (type) = TYPE_CODE_INT;
528 f_val_print (type, valaddr, address, stream, format,
529 deref_ref, recurse, pretty);
530 /* Restore the type code so later uses work as intended. */
531 TYPE_CODE (type) = TYPE_CODE_BOOL;
532 }
533 }
534 break;
535
536 case TYPE_CODE_COMPLEX:
537 switch (TYPE_LENGTH (type))
538 {
539 case 8: type = builtin_type_f_real; break;
540 case 16: type = builtin_type_f_real_s8; break;
541 case 32: type = builtin_type_f_real_s16; break;
542 default:
543 error ("Cannot print out complex*%d variables", TYPE_LENGTH(type));
544 }
545 fputs_filtered ("(", stream);
546 print_floating (valaddr, type, stream);
547 fputs_filtered (",", stream);
548 print_floating (valaddr, type, stream);
549 fputs_filtered (")", stream);
550 break;
551
552 case TYPE_CODE_UNDEF:
553 /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
554 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
555 and no complete type for struct foo in that file. */
556 fprintf_filtered (stream, "<incomplete type>");
557 break;
558
559 default:
560 error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
561 }
562 fflush (stream);
563 return 0;
564 }
565
566 void
567 list_all_visible_commons (funname)
568 char *funname;
569 {
570 SAVED_F77_COMMON_PTR tmp;
571
572 tmp = head_common_list;
573
574 printf_filtered ("All COMMON blocks visible at this level:\n\n");
575
576 while (tmp != NULL)
577 {
578 if (STREQ(tmp->owning_function,funname))
579 printf_filtered ("%s\n", tmp->name);
580
581 tmp = tmp->next;
582 }
583 }
584
585 /* This function is used to print out the values in a given COMMON
586 block. It will always use the most local common block of the
587 given name */
588
589 static void
590 info_common_command (comname, from_tty)
591 char *comname;
592 int from_tty;
593 {
594 SAVED_F77_COMMON_PTR the_common;
595 COMMON_ENTRY_PTR entry;
596 struct frame_info *fi;
597 register char *funname = 0;
598 struct symbol *func;
599
600 /* We have been told to display the contents of F77 COMMON
601 block supposedly visible in this function. Let us
602 first make sure that it is visible and if so, let
603 us display its contents */
604
605 fi = selected_frame;
606
607 if (fi == NULL)
608 error ("No frame selected");
609
610 /* The following is generally ripped off from stack.c's routine
611 print_frame_info() */
612
613 func = find_pc_function (fi->pc);
614 if (func)
615 {
616 /* In certain pathological cases, the symtabs give the wrong
617 function (when we are in the first function in a file which
618 is compiled without debugging symbols, the previous function
619 is compiled with debugging symbols, and the "foo.o" symbol
620 that is supposed to tell us where the file with debugging symbols
621 ends has been truncated by ar because it is longer than 15
622 characters).
623
624 So look in the minimal symbol tables as well, and if it comes
625 up with a larger address for the function use that instead.
626 I don't think this can ever cause any problems; there shouldn't
627 be any minimal symbols in the middle of a function.
628 FIXME: (Not necessarily true. What about text labels) */
629
630 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
631
632 if (msymbol != NULL
633 && (SYMBOL_VALUE_ADDRESS (msymbol)
634 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
635 funname = SYMBOL_NAME (msymbol);
636 else
637 funname = SYMBOL_NAME (func);
638 }
639 else
640 {
641 register struct minimal_symbol *msymbol =
642 lookup_minimal_symbol_by_pc (fi->pc);
643
644 if (msymbol != NULL)
645 funname = SYMBOL_NAME (msymbol);
646 }
647
648 /* If comname is NULL, we assume the user wishes to see the
649 which COMMON blocks are visible here and then return */
650
651 if (comname == 0)
652 {
653 list_all_visible_commons (funname);
654 return;
655 }
656
657 the_common = find_common_for_function (comname,funname);
658
659 if (the_common)
660 {
661 if (STREQ(comname,BLANK_COMMON_NAME_LOCAL))
662 printf_filtered ("Contents of blank COMMON block:\n");
663 else
664 printf_filtered ("Contents of F77 COMMON block '%s':\n",comname);
665
666 printf_filtered ("\n");
667 entry = the_common->entries;
668
669 while (entry != NULL)
670 {
671 printf_filtered ("%s = ",SYMBOL_NAME(entry->symbol));
672 print_variable_value (entry->symbol,fi,stdout);
673 printf_filtered ("\n");
674 entry = entry->next;
675 }
676 }
677 else
678 printf_filtered ("Cannot locate the common block %s in function '%s'\n",
679 comname, funname);
680 }
681
682 /* This function is used to determine whether there is a
683 F77 common block visible at the current scope called 'comname'. */
684
685 int
686 there_is_a_visible_common_named (comname)
687 char *comname;
688 {
689 SAVED_F77_COMMON_PTR the_common;
690 struct frame_info *fi;
691 register char *funname = 0;
692 struct symbol *func;
693
694 if (comname == NULL)
695 error ("Cannot deal with NULL common name!");
696
697 fi = selected_frame;
698
699 if (fi == NULL)
700 error ("No frame selected");
701
702 /* The following is generally ripped off from stack.c's routine
703 print_frame_info() */
704
705 func = find_pc_function (fi->pc);
706 if (func)
707 {
708 /* In certain pathological cases, the symtabs give the wrong
709 function (when we are in the first function in a file which
710 is compiled without debugging symbols, the previous function
711 is compiled with debugging symbols, and the "foo.o" symbol
712 that is supposed to tell us where the file with debugging symbols
713 ends has been truncated by ar because it is longer than 15
714 characters).
715
716 So look in the minimal symbol tables as well, and if it comes
717 up with a larger address for the function use that instead.
718 I don't think this can ever cause any problems; there shouldn't
719 be any minimal symbols in the middle of a function.
720 FIXME: (Not necessarily true. What about text labels) */
721
722 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
723
724 if (msymbol != NULL
725 && (SYMBOL_VALUE_ADDRESS (msymbol)
726 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
727 funname = SYMBOL_NAME (msymbol);
728 else
729 funname = SYMBOL_NAME (func);
730 }
731 else
732 {
733 register struct minimal_symbol *msymbol =
734 lookup_minimal_symbol_by_pc (fi->pc);
735
736 if (msymbol != NULL)
737 funname = SYMBOL_NAME (msymbol);
738 }
739
740 the_common = find_common_for_function (comname, funname);
741
742 return (the_common ? 1 : 0);
743 }
744
745 void
746 _initialize_f_valprint ()
747 {
748 add_info ("common", info_common_command,
749 "Print out the values contained in a Fortran COMMON block.");
750 }
This page took 0.044117 seconds and 4 git commands to generate.