2011-07-22 Phil Muldoon <pmuldoon@redhat.com>
[deliverable/binutils-gdb.git] / gdb / f-valprint.c
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2003, 2005, 2006,
4 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5
6 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
7 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "value.h"
30 #include "valprint.h"
31 #include "language.h"
32 #include "f-lang.h"
33 #include "frame.h"
34 #include "gdbcore.h"
35 #include "command.h"
36 #include "block.h"
37
38 #if 0
39 static int there_is_a_visible_common_named (char *);
40 #endif
41
42 extern void _initialize_f_valprint (void);
43 static void info_common_command (char *, int);
44 static void list_all_visible_commons (char *);
45 static void f77_create_arrayprint_offset_tbl (struct type *,
46 struct ui_file *);
47 static void f77_get_dynamic_length_of_aggregate (struct type *);
48
49 int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
50
51 /* Array which holds offsets to be applied to get a row's elements
52 for a given array. Array also holds the size of each subarray. */
53
54 /* The following macro gives us the size of the nth dimension, Where
55 n is 1 based. */
56
57 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
58
59 /* The following gives us the offset for row n where n is 1-based. */
60
61 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
62
63 int
64 f77_get_lowerbound (struct type *type)
65 {
66 if (TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
67 error (_("Lower bound may not be '*' in F77"));
68
69 return TYPE_ARRAY_LOWER_BOUND_VALUE (type);
70 }
71
72 int
73 f77_get_upperbound (struct type *type)
74 {
75 if (TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
76 {
77 /* We have an assumed size array on our hands. Assume that
78 upper_bound == lower_bound so that we show at least 1 element.
79 If the user wants to see more elements, let him manually ask for 'em
80 and we'll subscript the array and show him. */
81
82 return f77_get_lowerbound (type);
83 }
84
85 return TYPE_ARRAY_UPPER_BOUND_VALUE (type);
86 }
87
88 /* Obtain F77 adjustable array dimensions. */
89
90 static void
91 f77_get_dynamic_length_of_aggregate (struct type *type)
92 {
93 int upper_bound = -1;
94 int lower_bound = 1;
95
96 /* Recursively go all the way down into a possibly multi-dimensional
97 F77 array and get the bounds. For simple arrays, this is pretty
98 easy but when the bounds are dynamic, we must be very careful
99 to add up all the lengths correctly. Not doing this right
100 will lead to horrendous-looking arrays in parameter lists.
101
102 This function also works for strings which behave very
103 similarly to arrays. */
104
105 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
106 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
107 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
108
109 /* Recursion ends here, start setting up lengths. */
110 lower_bound = f77_get_lowerbound (type);
111 upper_bound = f77_get_upperbound (type);
112
113 /* Patch in a valid length value. */
114
115 TYPE_LENGTH (type) =
116 (upper_bound - lower_bound + 1)
117 * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
118 }
119
120 /* Function that sets up the array offset,size table for the array
121 type "type". */
122
123 static void
124 f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
125 {
126 struct type *tmp_type;
127 int eltlen;
128 int ndimen = 1;
129 int upper, lower;
130
131 tmp_type = type;
132
133 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
134 {
135 upper = f77_get_upperbound (tmp_type);
136 lower = f77_get_lowerbound (tmp_type);
137
138 F77_DIM_SIZE (ndimen) = upper - lower + 1;
139
140 tmp_type = TYPE_TARGET_TYPE (tmp_type);
141 ndimen++;
142 }
143
144 /* Now we multiply eltlen by all the offsets, so that later we
145 can print out array elements correctly. Up till now we
146 know an offset to apply to get the item but we also
147 have to know how much to add to get to the next item. */
148
149 ndimen--;
150 eltlen = TYPE_LENGTH (tmp_type);
151 F77_DIM_OFFSET (ndimen) = eltlen;
152 while (--ndimen > 0)
153 {
154 eltlen *= F77_DIM_SIZE (ndimen + 1);
155 F77_DIM_OFFSET (ndimen) = eltlen;
156 }
157 }
158
159
160
161 /* Actual function which prints out F77 arrays, Valaddr == address in
162 the superior. Address == the address in the inferior. */
163
164 static void
165 f77_print_array_1 (int nss, int ndimensions, struct type *type,
166 const gdb_byte *valaddr,
167 int embedded_offset, CORE_ADDR address,
168 struct ui_file *stream, int recurse,
169 const struct value *val,
170 const struct value_print_options *options,
171 int *elts)
172 {
173 int i;
174
175 if (nss != ndimensions)
176 {
177 for (i = 0;
178 (i < F77_DIM_SIZE (nss) && (*elts) < options->print_max);
179 i++)
180 {
181 fprintf_filtered (stream, "( ");
182 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
183 valaddr,
184 embedded_offset + i * F77_DIM_OFFSET (nss),
185 address,
186 stream, recurse, val, options, elts);
187 fprintf_filtered (stream, ") ");
188 }
189 if (*elts >= options->print_max && i < F77_DIM_SIZE (nss))
190 fprintf_filtered (stream, "...");
191 }
192 else
193 {
194 for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < options->print_max;
195 i++, (*elts)++)
196 {
197 val_print (TYPE_TARGET_TYPE (type),
198 valaddr,
199 embedded_offset + i * F77_DIM_OFFSET (ndimensions),
200 address, stream, recurse,
201 val, options, current_language);
202
203 if (i != (F77_DIM_SIZE (nss) - 1))
204 fprintf_filtered (stream, ", ");
205
206 if ((*elts == options->print_max - 1)
207 && (i != (F77_DIM_SIZE (nss) - 1)))
208 fprintf_filtered (stream, "...");
209 }
210 }
211 }
212
213 /* This function gets called to print an F77 array, we set up some
214 stuff and then immediately call f77_print_array_1(). */
215
216 static void
217 f77_print_array (struct type *type, const gdb_byte *valaddr,
218 int embedded_offset,
219 CORE_ADDR address, struct ui_file *stream,
220 int recurse,
221 const struct value *val,
222 const struct value_print_options *options)
223 {
224 int ndimensions;
225 int elts = 0;
226
227 ndimensions = calc_f77_array_dims (type);
228
229 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
230 error (_("\
231 Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"),
232 ndimensions, MAX_FORTRAN_DIMS);
233
234 /* Since F77 arrays are stored column-major, we set up an
235 offset table to get at the various row's elements. The
236 offset table contains entries for both offset and subarray size. */
237
238 f77_create_arrayprint_offset_tbl (type, stream);
239
240 f77_print_array_1 (1, ndimensions, type, valaddr, embedded_offset,
241 address, stream, recurse, val, options, &elts);
242 }
243 \f
244
245 /* See val_print for a description of the various parameters of this
246 function; they are identical. The semantics of the return value is
247 also identical to val_print. */
248
249 int
250 f_val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
251 CORE_ADDR address, struct ui_file *stream, int recurse,
252 const struct value *original_value,
253 const struct value_print_options *options)
254 {
255 struct gdbarch *gdbarch = get_type_arch (type);
256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
257 unsigned int i = 0; /* Number of characters printed. */
258 struct type *elttype;
259 LONGEST val;
260 CORE_ADDR addr;
261 int index;
262
263 CHECK_TYPEDEF (type);
264 switch (TYPE_CODE (type))
265 {
266 case TYPE_CODE_STRING:
267 f77_get_dynamic_length_of_aggregate (type);
268 LA_PRINT_STRING (stream, builtin_type (gdbarch)->builtin_char,
269 valaddr + embedded_offset,
270 TYPE_LENGTH (type), NULL, 0, options);
271 break;
272
273 case TYPE_CODE_ARRAY:
274 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_CHAR)
275 {
276 fprintf_filtered (stream, "(");
277 f77_print_array (type, valaddr, embedded_offset,
278 address, stream, recurse, original_value, options);
279 fprintf_filtered (stream, ")");
280 }
281 else
282 {
283 struct type *ch_type = TYPE_TARGET_TYPE (type);
284
285 f77_get_dynamic_length_of_aggregate (type);
286 LA_PRINT_STRING (stream, ch_type,
287 valaddr + embedded_offset,
288 TYPE_LENGTH (type) / TYPE_LENGTH (ch_type),
289 NULL, 0, options);
290 }
291 break;
292
293 case TYPE_CODE_PTR:
294 if (options->format && options->format != 's')
295 {
296 val_print_scalar_formatted (type, valaddr, embedded_offset,
297 original_value, options, 0, stream);
298 break;
299 }
300 else
301 {
302 addr = unpack_pointer (type, valaddr + embedded_offset);
303 elttype = check_typedef (TYPE_TARGET_TYPE (type));
304
305 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
306 {
307 /* Try to print what function it points to. */
308 print_address_demangle (gdbarch, addr, stream, demangle);
309 /* Return value is irrelevant except for string pointers. */
310 return 0;
311 }
312
313 if (options->addressprint && options->format != 's')
314 fputs_filtered (paddress (gdbarch, addr), stream);
315
316 /* For a pointer to char or unsigned char, also print the string
317 pointed to, unless pointer is null. */
318 if (TYPE_LENGTH (elttype) == 1
319 && TYPE_CODE (elttype) == TYPE_CODE_INT
320 && (options->format == 0 || options->format == 's')
321 && addr != 0)
322 i = val_print_string (TYPE_TARGET_TYPE (type), NULL, addr, -1,
323 stream, options);
324
325 /* Return number of characters printed, including the terminating
326 '\0' if we reached the end. val_print_string takes care including
327 the terminating '\0' if necessary. */
328 return i;
329 }
330 break;
331
332 case TYPE_CODE_REF:
333 elttype = check_typedef (TYPE_TARGET_TYPE (type));
334 if (options->addressprint)
335 {
336 CORE_ADDR addr
337 = extract_typed_address (valaddr + embedded_offset, type);
338
339 fprintf_filtered (stream, "@");
340 fputs_filtered (paddress (gdbarch, addr), stream);
341 if (options->deref_ref)
342 fputs_filtered (": ", stream);
343 }
344 /* De-reference the reference. */
345 if (options->deref_ref)
346 {
347 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
348 {
349 struct value *deref_val =
350 value_at
351 (TYPE_TARGET_TYPE (type),
352 unpack_pointer (type, valaddr + embedded_offset));
353
354 common_val_print (deref_val, stream, recurse,
355 options, current_language);
356 }
357 else
358 fputs_filtered ("???", stream);
359 }
360 break;
361
362 case TYPE_CODE_FUNC:
363 if (options->format)
364 {
365 val_print_scalar_formatted (type, valaddr, embedded_offset,
366 original_value, options, 0, stream);
367 break;
368 }
369 /* FIXME, we should consider, at least for ANSI C language, eliminating
370 the distinction made between FUNCs and POINTERs to FUNCs. */
371 fprintf_filtered (stream, "{");
372 type_print (type, "", stream, -1);
373 fprintf_filtered (stream, "} ");
374 /* Try to print what function it points to, and its address. */
375 print_address_demangle (gdbarch, address, stream, demangle);
376 break;
377
378 case TYPE_CODE_INT:
379 case TYPE_CODE_CHAR:
380 if (options->format || options->output_format)
381 {
382 struct value_print_options opts = *options;
383
384 opts.format = (options->format ? options->format
385 : options->output_format);
386 val_print_scalar_formatted (type, valaddr, embedded_offset,
387 original_value, options, 0, stream);
388 }
389 else
390 {
391 val_print_type_code_int (type, valaddr + embedded_offset, stream);
392 /* C and C++ has no single byte int type, char is used instead.
393 Since we don't know whether the value is really intended to
394 be used as an integer or a character, print the character
395 equivalent as well. */
396 if (TYPE_LENGTH (type) == 1 || TYPE_CODE (type) == TYPE_CODE_CHAR)
397 {
398 LONGEST c;
399
400 fputs_filtered (" ", stream);
401 c = unpack_long (type, valaddr + embedded_offset);
402 LA_PRINT_CHAR ((unsigned char) c, type, stream);
403 }
404 }
405 break;
406
407 case TYPE_CODE_FLAGS:
408 if (options->format)
409 val_print_scalar_formatted (type, valaddr, embedded_offset,
410 original_value, options, 0, stream);
411 else
412 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
413 break;
414
415 case TYPE_CODE_FLT:
416 if (options->format)
417 val_print_scalar_formatted (type, valaddr, embedded_offset,
418 original_value, options, 0, stream);
419 else
420 print_floating (valaddr + embedded_offset, type, stream);
421 break;
422
423 case TYPE_CODE_VOID:
424 fprintf_filtered (stream, "VOID");
425 break;
426
427 case TYPE_CODE_ERROR:
428 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
429 break;
430
431 case TYPE_CODE_RANGE:
432 /* FIXME, we should not ever have to print one of these yet. */
433 fprintf_filtered (stream, "<range type>");
434 break;
435
436 case TYPE_CODE_BOOL:
437 if (options->format || options->output_format)
438 {
439 struct value_print_options opts = *options;
440
441 opts.format = (options->format ? options->format
442 : options->output_format);
443 val_print_scalar_formatted (type, valaddr, embedded_offset,
444 original_value, &opts, 0, stream);
445 }
446 else
447 {
448 val = extract_unsigned_integer (valaddr + embedded_offset,
449 TYPE_LENGTH (type), byte_order);
450 if (val == 0)
451 fprintf_filtered (stream, ".FALSE.");
452 else if (val == 1)
453 fprintf_filtered (stream, ".TRUE.");
454 else
455 /* Not a legitimate logical type, print as an integer. */
456 {
457 /* Bash the type code temporarily. */
458 TYPE_CODE (type) = TYPE_CODE_INT;
459 val_print (type, valaddr, embedded_offset,
460 address, stream, recurse,
461 original_value, options, current_language);
462 /* Restore the type code so later uses work as intended. */
463 TYPE_CODE (type) = TYPE_CODE_BOOL;
464 }
465 }
466 break;
467
468 case TYPE_CODE_COMPLEX:
469 type = TYPE_TARGET_TYPE (type);
470 fputs_filtered ("(", stream);
471 print_floating (valaddr + embedded_offset, type, stream);
472 fputs_filtered (",", stream);
473 print_floating (valaddr + embedded_offset + TYPE_LENGTH (type),
474 type, stream);
475 fputs_filtered (")", stream);
476 break;
477
478 case TYPE_CODE_UNDEF:
479 /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
480 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
481 and no complete type for struct foo in that file. */
482 fprintf_filtered (stream, "<incomplete type>");
483 break;
484
485 case TYPE_CODE_STRUCT:
486 case TYPE_CODE_UNION:
487 /* Starting from the Fortran 90 standard, Fortran supports derived
488 types. */
489 fprintf_filtered (stream, "( ");
490 for (index = 0; index < TYPE_NFIELDS (type); index++)
491 {
492 int offset = TYPE_FIELD_BITPOS (type, index) / 8;
493
494 val_print (TYPE_FIELD_TYPE (type, index), valaddr,
495 embedded_offset + offset,
496 address, stream, recurse + 1,
497 original_value, options, current_language);
498 if (index != TYPE_NFIELDS (type) - 1)
499 fputs_filtered (", ", stream);
500 }
501 fprintf_filtered (stream, " )");
502 break;
503
504 default:
505 error (_("Invalid F77 type code %d in symbol table."), TYPE_CODE (type));
506 }
507 gdb_flush (stream);
508 return 0;
509 }
510
511 static void
512 list_all_visible_commons (char *funname)
513 {
514 SAVED_F77_COMMON_PTR tmp;
515
516 tmp = head_common_list;
517
518 printf_filtered (_("All COMMON blocks visible at this level:\n\n"));
519
520 while (tmp != NULL)
521 {
522 if (strcmp (tmp->owning_function, funname) == 0)
523 printf_filtered ("%s\n", tmp->name);
524
525 tmp = tmp->next;
526 }
527 }
528
529 /* This function is used to print out the values in a given COMMON
530 block. It will always use the most local common block of the
531 given name. */
532
533 static void
534 info_common_command (char *comname, int from_tty)
535 {
536 SAVED_F77_COMMON_PTR the_common;
537 COMMON_ENTRY_PTR entry;
538 struct frame_info *fi;
539 char *funname = 0;
540 struct symbol *func;
541
542 /* We have been told to display the contents of F77 COMMON
543 block supposedly visible in this function. Let us
544 first make sure that it is visible and if so, let
545 us display its contents. */
546
547 fi = get_selected_frame (_("No frame selected"));
548
549 /* The following is generally ripped off from stack.c's routine
550 print_frame_info(). */
551
552 func = find_pc_function (get_frame_pc (fi));
553 if (func)
554 {
555 /* In certain pathological cases, the symtabs give the wrong
556 function (when we are in the first function in a file which
557 is compiled without debugging symbols, the previous function
558 is compiled with debugging symbols, and the "foo.o" symbol
559 that is supposed to tell us where the file with debugging symbols
560 ends has been truncated by ar because it is longer than 15
561 characters).
562
563 So look in the minimal symbol tables as well, and if it comes
564 up with a larger address for the function use that instead.
565 I don't think this can ever cause any problems; there shouldn't
566 be any minimal symbols in the middle of a function.
567 FIXME: (Not necessarily true. What about text labels?) */
568
569 struct minimal_symbol *msymbol =
570 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
571
572 if (msymbol != NULL
573 && (SYMBOL_VALUE_ADDRESS (msymbol)
574 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
575 funname = SYMBOL_LINKAGE_NAME (msymbol);
576 else
577 funname = SYMBOL_LINKAGE_NAME (func);
578 }
579 else
580 {
581 struct minimal_symbol *msymbol =
582 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
583
584 if (msymbol != NULL)
585 funname = SYMBOL_LINKAGE_NAME (msymbol);
586 else /* Got no 'funname', code below will fail. */
587 error (_("No function found for frame."));
588 }
589
590 /* If comname is NULL, we assume the user wishes to see the
591 which COMMON blocks are visible here and then return. */
592
593 if (comname == 0)
594 {
595 list_all_visible_commons (funname);
596 return;
597 }
598
599 the_common = find_common_for_function (comname, funname);
600
601 if (the_common)
602 {
603 if (strcmp (comname, BLANK_COMMON_NAME_LOCAL) == 0)
604 printf_filtered (_("Contents of blank COMMON block:\n"));
605 else
606 printf_filtered (_("Contents of F77 COMMON block '%s':\n"), comname);
607
608 printf_filtered ("\n");
609 entry = the_common->entries;
610
611 while (entry != NULL)
612 {
613 print_variable_and_value (NULL, entry->symbol, fi, gdb_stdout, 0);
614 entry = entry->next;
615 }
616 }
617 else
618 printf_filtered (_("Cannot locate the common block %s in function '%s'\n"),
619 comname, funname);
620 }
621
622 /* This function is used to determine whether there is a
623 F77 common block visible at the current scope called 'comname'. */
624
625 #if 0
626 static int
627 there_is_a_visible_common_named (char *comname)
628 {
629 SAVED_F77_COMMON_PTR the_common;
630 struct frame_info *fi;
631 char *funname = 0;
632 struct symbol *func;
633
634 if (comname == NULL)
635 error (_("Cannot deal with NULL common name!"));
636
637 fi = get_selected_frame (_("No frame selected"));
638
639 /* The following is generally ripped off from stack.c's routine
640 print_frame_info(). */
641
642 func = find_pc_function (fi->pc);
643 if (func)
644 {
645 /* In certain pathological cases, the symtabs give the wrong
646 function (when we are in the first function in a file which
647 is compiled without debugging symbols, the previous function
648 is compiled with debugging symbols, and the "foo.o" symbol
649 that is supposed to tell us where the file with debugging symbols
650 ends has been truncated by ar because it is longer than 15
651 characters).
652
653 So look in the minimal symbol tables as well, and if it comes
654 up with a larger address for the function use that instead.
655 I don't think this can ever cause any problems; there shouldn't
656 be any minimal symbols in the middle of a function.
657 FIXME: (Not necessarily true. What about text labels?) */
658
659 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
660
661 if (msymbol != NULL
662 && (SYMBOL_VALUE_ADDRESS (msymbol)
663 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
664 funname = SYMBOL_LINKAGE_NAME (msymbol);
665 else
666 funname = SYMBOL_LINKAGE_NAME (func);
667 }
668 else
669 {
670 struct minimal_symbol *msymbol =
671 lookup_minimal_symbol_by_pc (fi->pc);
672
673 if (msymbol != NULL)
674 funname = SYMBOL_LINKAGE_NAME (msymbol);
675 }
676
677 the_common = find_common_for_function (comname, funname);
678
679 return (the_common ? 1 : 0);
680 }
681 #endif
682
683 void
684 _initialize_f_valprint (void)
685 {
686 add_info ("common", info_common_command,
687 _("Print out the values contained in a Fortran COMMON block."));
688 if (xdb_commands)
689 add_com ("lc", class_info, info_common_command,
690 _("Print out the values contained in a Fortran COMMON block."));
691 }
This page took 0.044699 seconds and 4 git commands to generate.