* Rename remote-es1800.c to remote-es.c
[deliverable/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "inferior.h"
27 #include "target.h"
28
29 #if !defined (GET_SAVED_REGISTER)
30
31 /* Return the address in which frame FRAME's value of register REGNUM
32 has been saved in memory. Or return zero if it has not been saved.
33 If REGNUM specifies the SP, the value we return is actually
34 the SP value, not an address where it was saved. */
35
36 CORE_ADDR
37 find_saved_register (frame, regnum)
38 FRAME frame;
39 int regnum;
40 {
41 struct frame_info *fi;
42 struct frame_saved_regs saved_regs;
43
44 register FRAME frame1 = 0;
45 register CORE_ADDR addr = 0;
46
47 if (frame == 0) /* No regs saved if want current frame */
48 return 0;
49
50 #ifdef HAVE_REGISTER_WINDOWS
51 /* We assume that a register in a register window will only be saved
52 in one place (since the name changes and/or disappears as you go
53 towards inner frames), so we only call get_frame_saved_regs on
54 the current frame. This is directly in contradiction to the
55 usage below, which assumes that registers used in a frame must be
56 saved in a lower (more interior) frame. This change is a result
57 of working on a register window machine; get_frame_saved_regs
58 always returns the registers saved within a frame, within the
59 context (register namespace) of that frame. */
60
61 /* However, note that we don't want this to return anything if
62 nothing is saved (if there's a frame inside of this one). Also,
63 callers to this routine asking for the stack pointer want the
64 stack pointer saved for *this* frame; this is returned from the
65 next frame. */
66
67
68 if (REGISTER_IN_WINDOW_P(regnum))
69 {
70 frame1 = get_next_frame (frame);
71 if (!frame1) return 0; /* Registers of this frame are
72 active. */
73
74 /* Get the SP from the next frame in; it will be this
75 current frame. */
76 if (regnum != SP_REGNUM)
77 frame1 = frame;
78
79 fi = get_frame_info (frame1);
80 get_frame_saved_regs (fi, &saved_regs);
81 return saved_regs.regs[regnum]; /* ... which might be zero */
82 }
83 #endif /* HAVE_REGISTER_WINDOWS */
84
85 /* Note that this next routine assumes that registers used in
86 frame x will be saved only in the frame that x calls and
87 frames interior to it. This is not true on the sparc, but the
88 above macro takes care of it, so we should be all right. */
89 while (1)
90 {
91 QUIT;
92 frame1 = get_prev_frame (frame1);
93 if (frame1 == 0 || frame1 == frame)
94 break;
95 fi = get_frame_info (frame1);
96 get_frame_saved_regs (fi, &saved_regs);
97 if (saved_regs.regs[regnum])
98 addr = saved_regs.regs[regnum];
99 }
100
101 return addr;
102 }
103
104 /* Find register number REGNUM relative to FRAME and put its
105 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
106 was optimized out (and thus can't be fetched). Set *LVAL to
107 lval_memory, lval_register, or not_lval, depending on whether the
108 value was fetched from memory, from a register, or in a strange
109 and non-modifiable way (e.g. a frame pointer which was calculated
110 rather than fetched). Set *ADDRP to the address, either in memory
111 on as a REGISTER_BYTE offset into the registers array.
112
113 Note that this implementation never sets *LVAL to not_lval. But
114 it can be replaced by defining GET_SAVED_REGISTER and supplying
115 your own.
116
117 The argument RAW_BUFFER must point to aligned memory. */
118 void
119 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
120 char *raw_buffer;
121 int *optimized;
122 CORE_ADDR *addrp;
123 FRAME frame;
124 int regnum;
125 enum lval_type *lval;
126 {
127 CORE_ADDR addr;
128 /* Normal systems don't optimize out things with register numbers. */
129 if (optimized != NULL)
130 *optimized = 0;
131 addr = find_saved_register (frame, regnum);
132 if (addr != 0)
133 {
134 if (lval != NULL)
135 *lval = lval_memory;
136 if (regnum == SP_REGNUM)
137 {
138 if (raw_buffer != NULL)
139 *(CORE_ADDR *)raw_buffer = addr;
140 if (addrp != NULL)
141 *addrp = 0;
142 return;
143 }
144 if (raw_buffer != NULL)
145 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
146 }
147 else
148 {
149 if (lval != NULL)
150 *lval = lval_register;
151 addr = REGISTER_BYTE (regnum);
152 if (raw_buffer != NULL)
153 read_register_gen (regnum, raw_buffer);
154 }
155 if (addrp != NULL)
156 *addrp = addr;
157 }
158 #endif /* GET_SAVED_REGISTER. */
159
160 /* Copy the bytes of register REGNUM, relative to the current stack frame,
161 into our memory at MYADDR, in target byte order.
162 The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
163
164 Returns 1 if could not be read, 0 if could. */
165
166 int
167 read_relative_register_raw_bytes (regnum, myaddr)
168 int regnum;
169 char *myaddr;
170 {
171 int optim;
172 if (regnum == FP_REGNUM && selected_frame)
173 {
174 memcpy (myaddr, &FRAME_FP(selected_frame), REGISTER_RAW_SIZE(FP_REGNUM));
175 SWAP_TARGET_AND_HOST (myaddr, REGISTER_RAW_SIZE(FP_REGNUM)); /* in target order */
176 return 0;
177 }
178
179 get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame,
180 regnum, (enum lval_type *)NULL);
181 return optim;
182 }
183
184 /* Return a `value' with the contents of register REGNUM
185 in its virtual format, with the type specified by
186 REGISTER_VIRTUAL_TYPE. */
187
188 value
189 value_of_register (regnum)
190 int regnum;
191 {
192 CORE_ADDR addr;
193 int optim;
194 register value val;
195 char raw_buffer[MAX_REGISTER_RAW_SIZE];
196 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
197 enum lval_type lval;
198
199 get_saved_register (raw_buffer, &optim, &addr,
200 selected_frame, regnum, &lval);
201
202 REGISTER_CONVERT_TO_VIRTUAL (regnum, raw_buffer, virtual_buffer);
203 val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
204 memcpy (VALUE_CONTENTS_RAW (val), virtual_buffer,
205 REGISTER_VIRTUAL_SIZE (regnum));
206 VALUE_LVAL (val) = lval;
207 VALUE_ADDRESS (val) = addr;
208 VALUE_REGNO (val) = regnum;
209 VALUE_OPTIMIZED_OUT (val) = optim;
210 return val;
211 }
212 \f
213 /* Low level examining and depositing of registers.
214
215 The caller is responsible for making
216 sure that the inferior is stopped before calling the fetching routines,
217 or it will get garbage. (a change from GDB version 3, in which
218 the caller got the value from the last stop). */
219
220 /* Contents of the registers in target byte order.
221 We allocate some extra slop since we do a lot of bcopy's around `registers',
222 and failing-soft is better than failing hard. */
223 char registers[REGISTER_BYTES + /* SLOP */ 256];
224
225 /* Nonzero if that register has been fetched. */
226 char register_valid[NUM_REGS];
227
228 /* Indicate that registers may have changed, so invalidate the cache. */
229 void
230 registers_changed ()
231 {
232 int i;
233 for (i = 0; i < NUM_REGS; i++)
234 register_valid[i] = 0;
235 }
236
237 /* Indicate that all registers have been fetched, so mark them all valid. */
238 void
239 registers_fetched ()
240 {
241 int i;
242 for (i = 0; i < NUM_REGS; i++)
243 register_valid[i] = 1;
244 }
245
246 /* Copy LEN bytes of consecutive data from registers
247 starting with the REGBYTE'th byte of register data
248 into memory at MYADDR. */
249
250 void
251 read_register_bytes (regbyte, myaddr, len)
252 int regbyte;
253 char *myaddr;
254 int len;
255 {
256 /* Fetch all registers. */
257 int i;
258 for (i = 0; i < NUM_REGS; i++)
259 if (!register_valid[i])
260 {
261 target_fetch_registers (-1);
262 break;
263 }
264 if (myaddr != NULL)
265 memcpy (myaddr, &registers[regbyte], len);
266 }
267
268 /* Read register REGNO into memory at MYADDR, which must be large enough
269 for REGISTER_RAW_BYTES (REGNO). Target byte-order.
270 If the register is known to be the size of a CORE_ADDR or smaller,
271 read_register can be used instead. */
272 void
273 read_register_gen (regno, myaddr)
274 int regno;
275 char *myaddr;
276 {
277 if (!register_valid[regno])
278 target_fetch_registers (regno);
279 memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
280 REGISTER_RAW_SIZE (regno));
281 }
282
283 /* Copy LEN bytes of consecutive data from memory at MYADDR
284 into registers starting with the REGBYTE'th byte of register data. */
285
286 void
287 write_register_bytes (regbyte, myaddr, len)
288 int regbyte;
289 char *myaddr;
290 int len;
291 {
292 /* Make sure the entire registers array is valid. */
293 read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
294 memcpy (&registers[regbyte], myaddr, len);
295 target_store_registers (-1);
296 }
297
298 /* Return the contents of register REGNO, regarding it as an integer. */
299 /* FIXME, this loses when the REGISTER_VIRTUAL (REGNO) is true. Also,
300 why is the return type CORE_ADDR rather than some integer type? */
301
302 CORE_ADDR
303 read_register (regno)
304 int regno;
305 {
306 unsigned short sval;
307 unsigned int ival;
308 unsigned long lval;
309
310 int size;
311
312 if (!register_valid[regno])
313 target_fetch_registers (regno);
314
315 size = REGISTER_RAW_SIZE(regno);
316
317 if (size == sizeof (unsigned char))
318 return registers[REGISTER_BYTE (regno)];
319 else if (size == sizeof (sval))
320 {
321 memcpy (&sval, &registers[REGISTER_BYTE (regno)], sizeof (sval));
322 SWAP_TARGET_AND_HOST (&sval, sizeof (sval));
323 return sval;
324 }
325 else if (size == sizeof (ival))
326 {
327 memcpy (&ival, &registers[REGISTER_BYTE (regno)], sizeof (ival));
328 SWAP_TARGET_AND_HOST (&ival, sizeof (ival));
329 return ival;
330 }
331 else if (size == sizeof (lval))
332 {
333 memcpy (&lval, &registers[REGISTER_BYTE (regno)], sizeof (lval));
334 SWAP_TARGET_AND_HOST (&lval, sizeof (lval));
335 return lval;
336 }
337 else
338 {
339 error ("GDB Internal Error in read_register() for register %d, size %d",
340 regno, REGISTER_RAW_SIZE(regno));
341 }
342 }
343
344 /* Registers we shouldn't try to store. */
345 #if !defined (CANNOT_STORE_REGISTER)
346 #define CANNOT_STORE_REGISTER(regno) 0
347 #endif
348
349 /* Store VALUE in the register number REGNO, regarded as an integer. */
350 /* FIXME, this loses when REGISTER_VIRTUAL (REGNO) is true. Also,
351 shouldn't the val arg be a LONGEST or something? */
352
353 void
354 write_register (regno, val)
355 int regno, val;
356 {
357 unsigned char cval;
358 unsigned short sval;
359 unsigned int ival;
360 unsigned long lval;
361 int size;
362 PTR ptr;
363
364 /* On the sparc, writing %g0 is a no-op, so we don't even want to change
365 the registers array if something writes to this register. */
366 if (CANNOT_STORE_REGISTER (regno))
367 return;
368
369 /* If we have a valid copy of the register, and new value == old value,
370 then don't bother doing the actual store. */
371
372 size = REGISTER_RAW_SIZE(regno);
373
374 if (size == sizeof(cval))
375 {
376 ptr = (PTR) &cval;
377 cval = val;
378 }
379 else if (size == sizeof(sval))
380 {
381 ptr = (PTR) &sval;
382 sval = val;
383 }
384 else if (size == sizeof(ival))
385 {
386 ptr = (PTR) &ival;
387 ival = val;
388 }
389 else if (size == sizeof(lval))
390 {
391 ptr = (PTR) &lval;
392 lval = val;
393 }
394 else
395 {
396 error ("GDB Internal Error in write_register() for register %d, size %d",
397 regno, size);
398 }
399
400 if (register_valid [regno])
401 {
402 SWAP_TARGET_AND_HOST (ptr, size);
403 if (memcmp (&registers[REGISTER_BYTE (regno)],
404 ptr, size) == 0)
405 return;
406 }
407
408 target_prepare_to_store ();
409
410 memcpy (&registers[REGISTER_BYTE (regno)], ptr, size);
411
412 register_valid [regno] = 1;
413
414 target_store_registers (regno);
415 }
416
417 /* Record that register REGNO contains VAL.
418 This is used when the value is obtained from the inferior or core dump,
419 so there is no need to store the value there. */
420
421 void
422 supply_register (regno, val)
423 int regno;
424 char *val;
425 {
426 register_valid[regno] = 1;
427 memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
428
429 /* On some architectures, e.g. HPPA, there are a few stray bits in some
430 registers, that the rest of the code would like to ignore. */
431 #ifdef CLEAN_UP_REGISTER_VALUE
432 CLEAN_UP_REGISTER_VALUE(regno, &registers[REGISTER_BYTE(regno)]);
433 #endif
434 }
435 \f
436 /* Given a struct symbol for a variable,
437 and a stack frame id, read the value of the variable
438 and return a (pointer to a) struct value containing the value.
439 If the variable cannot be found, return a zero pointer.
440 If FRAME is NULL, use the selected_frame. */
441
442 value
443 read_var_value (var, frame)
444 register struct symbol *var;
445 FRAME frame;
446 {
447 register value v;
448 struct frame_info *fi;
449 struct type *type = SYMBOL_TYPE (var);
450 CORE_ADDR addr;
451 register int len;
452
453 v = allocate_value (type);
454 VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
455 len = TYPE_LENGTH (type);
456
457 if (frame == 0) frame = selected_frame;
458
459 switch (SYMBOL_CLASS (var))
460 {
461 case LOC_CONST:
462 memcpy (VALUE_CONTENTS_RAW (v), &SYMBOL_VALUE (var), len);
463 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
464 VALUE_LVAL (v) = not_lval;
465 return v;
466
467 case LOC_LABEL:
468 addr = SYMBOL_VALUE_ADDRESS (var);
469 memcpy (VALUE_CONTENTS_RAW (v), &addr, len);
470 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
471 VALUE_LVAL (v) = not_lval;
472 return v;
473
474 case LOC_CONST_BYTES:
475 {
476 char *bytes_addr;
477 bytes_addr = SYMBOL_VALUE_BYTES (var);
478 memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
479 VALUE_LVAL (v) = not_lval;
480 return v;
481 }
482
483 case LOC_STATIC:
484 addr = SYMBOL_VALUE_ADDRESS (var);
485 break;
486
487 case LOC_ARG:
488 if (SYMBOL_BASEREG_VALID (var))
489 {
490 addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var));
491 }
492 else
493 {
494 fi = get_frame_info (frame);
495 if (fi == NULL)
496 return 0;
497 addr = FRAME_ARGS_ADDRESS (fi);
498 }
499 if (!addr)
500 {
501 return 0;
502 }
503 addr += SYMBOL_VALUE (var);
504 break;
505
506 case LOC_REF_ARG:
507 if (SYMBOL_BASEREG_VALID (var))
508 {
509 addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var));
510 }
511 else
512 {
513 fi = get_frame_info (frame);
514 if (fi == NULL)
515 return 0;
516 addr = FRAME_ARGS_ADDRESS (fi);
517 }
518 if (!addr)
519 {
520 return 0;
521 }
522 addr += SYMBOL_VALUE (var);
523 read_memory (addr, (char *) &addr, sizeof (CORE_ADDR));
524 break;
525
526 case LOC_LOCAL:
527 case LOC_LOCAL_ARG:
528 if (SYMBOL_BASEREG_VALID (var))
529 {
530 addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var));
531 }
532 else
533 {
534 fi = get_frame_info (frame);
535 if (fi == NULL)
536 return 0;
537 addr = FRAME_LOCALS_ADDRESS (fi);
538 }
539 addr += SYMBOL_VALUE (var);
540 break;
541
542 case LOC_TYPEDEF:
543 error ("Cannot look up value of a typedef");
544 break;
545
546 case LOC_BLOCK:
547 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
548 return v;
549
550 case LOC_REGISTER:
551 case LOC_REGPARM:
552 case LOC_REGPARM_ADDR:
553 {
554 struct block *b;
555
556 if (frame == NULL)
557 return 0;
558 b = get_frame_block (frame);
559
560 v = value_from_register (type, SYMBOL_VALUE (var), frame);
561
562 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
563 {
564 addr = *(CORE_ADDR *)VALUE_CONTENTS (v);
565 VALUE_LVAL (v) = lval_memory;
566 }
567 else
568 return v;
569 }
570 break;
571
572 case LOC_OPTIMIZED_OUT:
573 VALUE_LVAL (v) = not_lval;
574 VALUE_OPTIMIZED_OUT (v) = 1;
575 return v;
576
577 default:
578 error ("Cannot look up value of a botched symbol.");
579 break;
580 }
581
582 VALUE_ADDRESS (v) = addr;
583 VALUE_LAZY (v) = 1;
584 return v;
585 }
586
587 /* Return a value of type TYPE, stored in register REGNUM, in frame
588 FRAME. */
589
590 value
591 value_from_register (type, regnum, frame)
592 struct type *type;
593 int regnum;
594 FRAME frame;
595 {
596 char raw_buffer [MAX_REGISTER_RAW_SIZE];
597 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
598 CORE_ADDR addr;
599 int optim;
600 value v = allocate_value (type);
601 int len = TYPE_LENGTH (type);
602 char *value_bytes = 0;
603 int value_bytes_copied = 0;
604 int num_storage_locs;
605 enum lval_type lval;
606
607 VALUE_REGNO (v) = regnum;
608
609 num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
610 ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
611 1);
612
613 if (num_storage_locs > 1
614 #ifdef GDB_TARGET_IS_H8500
615 || TYPE_CODE (type) == TYPE_CODE_PTR
616 #endif
617 )
618 {
619 /* Value spread across multiple storage locations. */
620
621 int local_regnum;
622 int mem_stor = 0, reg_stor = 0;
623 int mem_tracking = 1;
624 CORE_ADDR last_addr = 0;
625 CORE_ADDR first_addr;
626
627 value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
628
629 /* Copy all of the data out, whereever it may be. */
630
631 #ifdef GDB_TARGET_IS_H8500
632 /* This piece of hideosity is required because the H8500 treats registers
633 differently depending upon whether they are used as pointers or not. As a
634 pointer, a register needs to have a page register tacked onto the front.
635 An alternate way to do this would be to have gcc output different register
636 numbers for the pointer & non-pointer form of the register. But, it
637 doesn't, so we're stuck with this. */
638
639 if (TYPE_CODE (type) == TYPE_CODE_PTR
640 && len > 2)
641 {
642 int page_regnum;
643
644 switch (regnum)
645 {
646 case R0_REGNUM: case R1_REGNUM: case R2_REGNUM: case R3_REGNUM:
647 page_regnum = SEG_D_REGNUM;
648 break;
649 case R4_REGNUM: case R5_REGNUM:
650 page_regnum = SEG_E_REGNUM;
651 break;
652 case R6_REGNUM: case R7_REGNUM:
653 page_regnum = SEG_T_REGNUM;
654 break;
655 }
656
657 value_bytes[0] = 0;
658 get_saved_register (value_bytes + 1,
659 &optim,
660 &addr,
661 frame,
662 page_regnum,
663 &lval);
664
665 if (lval == lval_register)
666 reg_stor++;
667 else
668 mem_stor++;
669 first_addr = addr;
670 last_addr = addr;
671
672 get_saved_register (value_bytes + 2,
673 &optim,
674 &addr,
675 frame,
676 regnum,
677 &lval);
678
679 if (lval == lval_register)
680 reg_stor++;
681 else
682 {
683 mem_stor++;
684 mem_tracking = mem_tracking && (addr == last_addr);
685 }
686 last_addr = addr;
687 }
688 else
689 #endif /* GDB_TARGET_IS_H8500 */
690 for (local_regnum = regnum;
691 value_bytes_copied < len;
692 (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
693 ++local_regnum))
694 {
695 get_saved_register (value_bytes + value_bytes_copied,
696 &optim,
697 &addr,
698 frame,
699 local_regnum,
700 &lval);
701
702 if (regnum == local_regnum)
703 first_addr = addr;
704 if (lval == lval_register)
705 reg_stor++;
706 else
707 {
708 mem_stor++;
709
710 mem_tracking =
711 (mem_tracking
712 && (regnum == local_regnum
713 || addr == last_addr));
714 }
715 last_addr = addr;
716 }
717
718 if ((reg_stor && mem_stor)
719 || (mem_stor && !mem_tracking))
720 /* Mixed storage; all of the hassle we just went through was
721 for some good purpose. */
722 {
723 VALUE_LVAL (v) = lval_reg_frame_relative;
724 VALUE_FRAME (v) = FRAME_FP (frame);
725 VALUE_FRAME_REGNUM (v) = regnum;
726 }
727 else if (mem_stor)
728 {
729 VALUE_LVAL (v) = lval_memory;
730 VALUE_ADDRESS (v) = first_addr;
731 }
732 else if (reg_stor)
733 {
734 VALUE_LVAL (v) = lval_register;
735 VALUE_ADDRESS (v) = first_addr;
736 }
737 else
738 fatal ("value_from_register: Value not stored anywhere!");
739
740 VALUE_OPTIMIZED_OUT (v) = optim;
741
742 /* Any structure stored in more than one register will always be
743 an integral number of registers. Otherwise, you'd need to do
744 some fiddling with the last register copied here for little
745 endian machines. */
746
747 /* Copy into the contents section of the value. */
748 memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
749
750 /* Finally do any conversion necessary when extracting this
751 type from more than one register. */
752 #ifdef REGISTER_CONVERT_TO_TYPE
753 REGISTER_CONVERT_TO_TYPE(regnum, type, VALUE_CONTENTS_RAW(v));
754 #endif
755 return v;
756 }
757
758 /* Data is completely contained within a single register. Locate the
759 register's contents in a real register or in core;
760 read the data in raw format. */
761
762 get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
763 VALUE_OPTIMIZED_OUT (v) = optim;
764 VALUE_LVAL (v) = lval;
765 VALUE_ADDRESS (v) = addr;
766
767 /* Convert the raw contents to virtual contents.
768 (Just copy them if the formats are the same.) */
769
770 REGISTER_CONVERT_TO_VIRTUAL (regnum, raw_buffer, virtual_buffer);
771
772 if (REGISTER_CONVERTIBLE (regnum))
773 {
774 /* When the raw and virtual formats differ, the virtual format
775 corresponds to a specific data type. If we want that type,
776 copy the data into the value.
777 Otherwise, do a type-conversion. */
778
779 if (type != REGISTER_VIRTUAL_TYPE (regnum))
780 {
781 /* eg a variable of type `float' in a 68881 register
782 with raw type `extended' and virtual type `double'.
783 Fetch it as a `double' and then convert to `float'. */
784 v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
785 memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len);
786 v = value_cast (type, v);
787 }
788 else
789 memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len);
790 }
791 else
792 {
793 /* Raw and virtual formats are the same for this register. */
794
795 #if TARGET_BYTE_ORDER == BIG_ENDIAN
796 if (len < REGISTER_RAW_SIZE (regnum))
797 {
798 /* Big-endian, and we want less than full size. */
799 VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
800 }
801 #endif
802
803 memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer + VALUE_OFFSET (v), len);
804 }
805
806 return v;
807 }
808 \f
809 /* Given a struct symbol for a variable or function,
810 and a stack frame id,
811 return a (pointer to a) struct value containing the properly typed
812 address. */
813
814 value
815 locate_var_value (var, frame)
816 register struct symbol *var;
817 FRAME frame;
818 {
819 CORE_ADDR addr = 0;
820 struct type *type = SYMBOL_TYPE (var);
821 value lazy_value;
822
823 /* Evaluate it first; if the result is a memory address, we're fine.
824 Lazy evaluation pays off here. */
825
826 lazy_value = read_var_value (var, frame);
827 if (lazy_value == 0)
828 error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
829
830 if (VALUE_LAZY (lazy_value)
831 || TYPE_CODE (type) == TYPE_CODE_FUNC)
832 {
833 addr = VALUE_ADDRESS (lazy_value);
834 return value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
835 }
836
837 /* Not a memory address; check what the problem was. */
838 switch (VALUE_LVAL (lazy_value))
839 {
840 case lval_register:
841 case lval_reg_frame_relative:
842 error ("Address requested for identifier \"%s\" which is in a register.",
843 SYMBOL_SOURCE_NAME (var));
844 break;
845
846 default:
847 error ("Can't take address of \"%s\" which isn't an lvalue.",
848 SYMBOL_SOURCE_NAME (var));
849 break;
850 }
851 return 0; /* For lint -- never reached */
852 }
This page took 0.04651 seconds and 4 git commands to generate.