5ac03bc448602c91c06d76445f8547379617eb10
[deliverable/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2 Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 GDB is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GDB is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GDB; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include <stdio.h>
21 #include "defs.h"
22 #include "param.h"
23 #include "symtab.h"
24 #include "frame.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "inferior.h"
28 #include "target.h"
29
30 #if !defined (GET_SAVED_REGISTER)
31
32 /* Return the address in which frame FRAME's value of register REGNUM
33 has been saved in memory. Or return zero if it has not been saved.
34 If REGNUM specifies the SP, the value we return is actually
35 the SP value, not an address where it was saved. */
36
37 CORE_ADDR
38 find_saved_register (frame, regnum)
39 FRAME frame;
40 int regnum;
41 {
42 struct frame_info *fi;
43 struct frame_saved_regs saved_regs;
44
45 register FRAME frame1 = 0;
46 register CORE_ADDR addr = 0;
47
48 if (frame == 0) /* No regs saved if want current frame */
49 return 0;
50
51 #ifdef HAVE_REGISTER_WINDOWS
52 /* We assume that a register in a register window will only be saved
53 in one place (since the name changes and/or disappears as you go
54 towards inner frames), so we only call get_frame_saved_regs on
55 the current frame. This is directly in contradiction to the
56 usage below, which assumes that registers used in a frame must be
57 saved in a lower (more interior) frame. This change is a result
58 of working on a register window machine; get_frame_saved_regs
59 always returns the registers saved within a frame, within the
60 context (register namespace) of that frame. */
61
62 /* However, note that we don't want this to return anything if
63 nothing is saved (if there's a frame inside of this one). Also,
64 callers to this routine asking for the stack pointer want the
65 stack pointer saved for *this* frame; this is returned from the
66 next frame. */
67
68
69 if (REGISTER_IN_WINDOW_P(regnum))
70 {
71 frame1 = get_next_frame (frame);
72 if (!frame1) return 0; /* Registers of this frame are
73 active. */
74
75 /* Get the SP from the next frame in; it will be this
76 current frame. */
77 if (regnum != SP_REGNUM)
78 frame1 = frame;
79
80 fi = get_frame_info (frame1);
81 get_frame_saved_regs (fi, &saved_regs);
82 return saved_regs.regs[regnum]; /* ... which might be zero */
83 }
84 #endif /* HAVE_REGISTER_WINDOWS */
85
86 /* Note that this next routine assumes that registers used in
87 frame x will be saved only in the frame that x calls and
88 frames interior to it. This is not true on the sparc, but the
89 above macro takes care of it, so we should be all right. */
90 while (1)
91 {
92 QUIT;
93 frame1 = get_prev_frame (frame1);
94 if (frame1 == 0 || frame1 == frame)
95 break;
96 fi = get_frame_info (frame1);
97 get_frame_saved_regs (fi, &saved_regs);
98 if (saved_regs.regs[regnum])
99 addr = saved_regs.regs[regnum];
100 }
101
102 return addr;
103 }
104
105 /* Find register number REGNUM relative to FRAME and put its
106 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
107 was optimized out (and thus can't be fetched). Set *LVAL to
108 lval_memory, lval_register, or not_lval, depending on whether the
109 value was fetched from memory, from a register, or in a strange
110 and non-modifiable way (e.g. a frame pointer which was calculated
111 rather than fetched). Set *ADDRP to the address, either in memory
112 on as a REGISTER_BYTE offset into the registers array.
113
114 Note that this implementation never sets *LVAL to not_lval. But
115 it can be replaced by defining GET_SAVED_REGISTER and supplying
116 your own.
117
118 The argument RAW_BUFFER must point to aligned memory. */
119 void
120 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
121 char *raw_buffer;
122 int *optimized;
123 CORE_ADDR *addrp;
124 FRAME frame;
125 int regnum;
126 enum lval_type *lval;
127 {
128 CORE_ADDR addr;
129 /* Normal systems don't optimize out things with register numbers. */
130 if (optimized != NULL)
131 *optimized = 0;
132 addr = find_saved_register (frame, regnum);
133 if (addr != NULL)
134 {
135 if (lval != NULL)
136 *lval = lval_memory;
137 if (regnum == SP_REGNUM)
138 {
139 if (raw_buffer != NULL)
140 *(CORE_ADDR *)raw_buffer = addr;
141 if (addrp != NULL)
142 *addrp = 0;
143 return;
144 }
145 if (raw_buffer != NULL)
146 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
147 }
148 else
149 {
150 if (lval != NULL)
151 *lval = lval_register;
152 addr = REGISTER_BYTE (regnum);
153 if (raw_buffer != NULL)
154 read_register_gen (regnum, raw_buffer);
155 }
156 if (addrp != NULL)
157 *addrp = addr;
158 }
159 #endif /* GET_SAVED_REGISTER. */
160
161 /* Copy the bytes of register REGNUM, relative to the current stack frame,
162 into our memory at MYADDR, in target byte order.
163 The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
164
165 Returns 1 if could not be read, 0 if could. */
166
167 int
168 read_relative_register_raw_bytes (regnum, myaddr)
169 int regnum;
170 char *myaddr;
171 {
172 int optim;
173 if (regnum == FP_REGNUM && selected_frame)
174 {
175 bcopy (&FRAME_FP(selected_frame), myaddr, sizeof (CORE_ADDR));
176 SWAP_TARGET_AND_HOST (myaddr, sizeof (CORE_ADDR)); /* in target order */
177 return 0;
178 }
179
180 get_saved_register (myaddr, &optim, (CORE_ADDR) NULL, selected_frame,
181 regnum, (enum lval_type *)NULL);
182 return optim;
183 }
184
185 /* Return a `value' with the contents of register REGNUM
186 in its virtual format, with the type specified by
187 REGISTER_VIRTUAL_TYPE. */
188
189 value
190 value_of_register (regnum)
191 int regnum;
192 {
193 CORE_ADDR addr;
194 int optim;
195 register value val;
196 char raw_buffer[MAX_REGISTER_RAW_SIZE];
197 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
198 enum lval_type lval;
199
200 get_saved_register (raw_buffer, &optim, &addr,
201 selected_frame, regnum, &lval);
202
203 target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
204 val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
205 bcopy (virtual_buffer, VALUE_CONTENTS_RAW (val),
206 REGISTER_VIRTUAL_SIZE (regnum));
207 VALUE_LVAL (val) = lval;
208 VALUE_ADDRESS (val) = addr;
209 VALUE_REGNO (val) = regnum;
210 VALUE_OPTIMIZED_OUT (val) = optim;
211 return val;
212 }
213 \f
214 /* Low level examining and depositing of registers.
215
216 The caller is responsible for making
217 sure that the inferior is stopped before calling the fetching routines,
218 or it will get garbage. (a change from GDB version 3, in which
219 the caller got the value from the last stop). */
220
221 /* Contents of the registers in target byte order.
222 We allocate some extra slop since we do a lot of bcopy's around `registers',
223 and failing-soft is better than failing hard. */
224 char registers[REGISTER_BYTES + /* SLOP */ 256];
225
226 /* Nonzero if that register has been fetched. */
227 char register_valid[NUM_REGS];
228
229 /* Indicate that registers may have changed, so invalidate the cache. */
230 void
231 registers_changed ()
232 {
233 int i;
234 for (i = 0; i < NUM_REGS; i++)
235 register_valid[i] = 0;
236 }
237
238 /* Indicate that all registers have been fetched, so mark them all valid. */
239 void
240 registers_fetched ()
241 {
242 int i;
243 for (i = 0; i < NUM_REGS; i++)
244 register_valid[i] = 1;
245 }
246
247 /* Copy LEN bytes of consecutive data from registers
248 starting with the REGBYTE'th byte of register data
249 into memory at MYADDR. */
250
251 void
252 read_register_bytes (regbyte, myaddr, len)
253 int regbyte;
254 char *myaddr;
255 int len;
256 {
257 /* Fetch all registers. */
258 int i;
259 for (i = 0; i < NUM_REGS; i++)
260 if (!register_valid[i])
261 {
262 target_fetch_registers (-1);
263 break;
264 }
265 if (myaddr != NULL)
266 bcopy (&registers[regbyte], myaddr, len);
267 }
268
269 /* Read register REGNO into memory at MYADDR, which must be large enough
270 for REGISTER_RAW_BYTES (REGNO). Target byte-order.
271 If the register is known to be the size of a CORE_ADDR or smaller,
272 read_register can be used instead. */
273 void
274 read_register_gen (regno, myaddr)
275 int regno;
276 char *myaddr;
277 {
278 if (!register_valid[regno])
279 target_fetch_registers (regno);
280 bcopy (&registers[REGISTER_BYTE (regno)], myaddr, REGISTER_RAW_SIZE (regno));
281 }
282
283 /* Copy LEN bytes of consecutive data from memory at MYADDR
284 into registers starting with the REGBYTE'th byte of register data. */
285
286 void
287 write_register_bytes (regbyte, myaddr, len)
288 int regbyte;
289 char *myaddr;
290 int len;
291 {
292 /* Make sure the entire registers array is valid. */
293 read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
294 bcopy (myaddr, &registers[regbyte], len);
295 target_store_registers (-1);
296 }
297
298 /* Return the contents of register REGNO, regarding it as an integer. */
299
300 CORE_ADDR
301 read_register (regno)
302 int regno;
303 {
304 int reg;
305 if (!register_valid[regno])
306 target_fetch_registers (regno);
307 /* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
308 reg = *(int *) &registers[REGISTER_BYTE (regno)];
309 SWAP_TARGET_AND_HOST (&reg, sizeof (int));
310 return reg;
311 }
312
313 /* Registers we shouldn't try to store. */
314 #if !defined (CANNOT_STORE_REGISTER)
315 #define CANNOT_STORE_REGISTER(regno) 0
316 #endif
317
318 /* Store VALUE in the register number REGNO, regarded as an integer. */
319
320 void
321 write_register (regno, val)
322 int regno, val;
323 {
324 /* On the sparc, writing %g0 is a no-op, so we don't even want to change
325 the registers array if something writes to this register. */
326 if (CANNOT_STORE_REGISTER (regno))
327 return;
328
329 SWAP_TARGET_AND_HOST (&val, sizeof (int));
330
331 target_prepare_to_store ();
332
333 register_valid [regno] = 1;
334 /* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
335 /* FIXME, this depends on REGISTER_BYTE (regno) being aligned for host */
336 *(int *) &registers[REGISTER_BYTE (regno)] = val;
337
338 target_store_registers (regno);
339 }
340
341 /* Record that register REGNO contains VAL.
342 This is used when the value is obtained from the inferior or core dump,
343 so there is no need to store the value there. */
344
345 void
346 supply_register (regno, val)
347 int regno;
348 char *val;
349 {
350 register_valid[regno] = 1;
351 bcopy (val, &registers[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno));
352 }
353 \f
354 /* Given a struct symbol for a variable,
355 and a stack frame id, read the value of the variable
356 and return a (pointer to a) struct value containing the value.
357 If the variable cannot be found, return a zero pointer.
358 If FRAME is NULL, use the selected_frame. */
359
360 value
361 read_var_value (var, frame)
362 register struct symbol *var;
363 FRAME frame;
364 {
365 register value v;
366 struct frame_info *fi;
367 struct type *type = SYMBOL_TYPE (var);
368 CORE_ADDR addr;
369 int val;
370 register int len;
371
372 v = allocate_value (type);
373 VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
374 len = TYPE_LENGTH (type);
375
376 if (frame == 0) frame = selected_frame;
377
378 switch (SYMBOL_CLASS (var))
379 {
380 case LOC_CONST:
381 val = SYMBOL_VALUE (var);
382 bcopy (&val, VALUE_CONTENTS_RAW (v), len);
383 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
384 VALUE_LVAL (v) = not_lval;
385 return v;
386
387 case LOC_LABEL:
388 addr = SYMBOL_VALUE_ADDRESS (var);
389 bcopy (&addr, VALUE_CONTENTS_RAW (v), len);
390 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
391 VALUE_LVAL (v) = not_lval;
392 return v;
393
394 case LOC_CONST_BYTES:
395 addr = SYMBOL_VALUE_ADDRESS (var);
396 bcopy (addr, VALUE_CONTENTS_RAW (v), len);
397 VALUE_LVAL (v) = not_lval;
398 return v;
399
400 case LOC_STATIC:
401 case LOC_EXTERNAL:
402 addr = SYMBOL_VALUE_ADDRESS (var);
403 break;
404
405 /* Nonzero if a struct which is located in a register or a LOC_ARG
406 really contains
407 the address of the struct, not the struct itself. GCC_P is nonzero
408 if the function was compiled with GCC. */
409 #if !defined (REG_STRUCT_HAS_ADDR)
410 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
411 #endif
412
413 case LOC_ARG:
414 fi = get_frame_info (frame);
415 if (fi == NULL)
416 return 0;
417 addr = FRAME_ARGS_ADDRESS (fi);
418 if (!addr) {
419 return 0;
420 }
421 addr += SYMBOL_VALUE (var);
422 break;
423
424 case LOC_REF_ARG:
425 fi = get_frame_info (frame);
426 if (fi == NULL)
427 return 0;
428 addr = FRAME_ARGS_ADDRESS (fi);
429 if (!addr) {
430 return 0;
431 }
432 addr += SYMBOL_VALUE (var);
433 addr = read_memory_integer (addr, sizeof (CORE_ADDR));
434 break;
435
436 case LOC_LOCAL:
437 case LOC_LOCAL_ARG:
438 fi = get_frame_info (frame);
439 if (fi == NULL)
440 return 0;
441 addr = SYMBOL_VALUE (var) + FRAME_LOCALS_ADDRESS (fi);
442 break;
443
444 case LOC_TYPEDEF:
445 error ("Cannot look up value of a typedef");
446 break;
447
448 case LOC_BLOCK:
449 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
450 return v;
451
452 case LOC_REGISTER:
453 case LOC_REGPARM:
454 {
455 struct block *b;
456
457 if (frame == NULL)
458 return 0;
459 b = get_frame_block (frame);
460
461 v = value_from_register (type, SYMBOL_VALUE (var), frame);
462
463 if (REG_STRUCT_HAS_ADDR(b->gcc_compile_flag)
464 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
465 addr = *(CORE_ADDR *)VALUE_CONTENTS (v);
466 else
467 return v;
468 }
469 break;
470
471 default:
472 error ("Cannot look up value of a botched symbol.");
473 break;
474 }
475
476 VALUE_ADDRESS (v) = addr;
477 VALUE_LAZY (v) = 1;
478 return v;
479 }
480
481 /* Return a value of type TYPE, stored in register REGNUM, in frame
482 FRAME. */
483
484 value
485 value_from_register (type, regnum, frame)
486 struct type *type;
487 int regnum;
488 FRAME frame;
489 {
490 char raw_buffer [MAX_REGISTER_RAW_SIZE];
491 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
492 CORE_ADDR addr;
493 int optim;
494 value v = allocate_value (type);
495 int len = TYPE_LENGTH (type);
496 char *value_bytes = 0;
497 int value_bytes_copied = 0;
498 int num_storage_locs;
499 enum lval_type lval;
500
501 VALUE_REGNO (v) = regnum;
502
503 num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
504 ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
505 1);
506
507 if (num_storage_locs > 1)
508 {
509 /* Value spread across multiple storage locations. */
510
511 int local_regnum;
512 int mem_stor = 0, reg_stor = 0;
513 int mem_tracking = 1;
514 CORE_ADDR last_addr = 0;
515 CORE_ADDR first_addr;
516
517 value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
518
519 /* Copy all of the data out, whereever it may be. */
520
521 for (local_regnum = regnum;
522 value_bytes_copied < len;
523 (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
524 ++local_regnum))
525 {
526 get_saved_register (value_bytes + value_bytes_copied,
527 &optim,
528 &addr,
529 frame,
530 local_regnum,
531 &lval);
532 if (lval == lval_register)
533 reg_stor++;
534 else
535 {
536 mem_stor++;
537
538 if (regnum == local_regnum)
539 first_addr = addr;
540
541 mem_tracking =
542 (mem_tracking
543 && (regnum == local_regnum
544 || addr == last_addr));
545 }
546 last_addr = addr;
547 }
548
549 if ((reg_stor && mem_stor)
550 || (mem_stor && !mem_tracking))
551 /* Mixed storage; all of the hassle we just went through was
552 for some good purpose. */
553 {
554 VALUE_LVAL (v) = lval_reg_frame_relative;
555 VALUE_FRAME (v) = FRAME_FP (frame);
556 VALUE_FRAME_REGNUM (v) = regnum;
557 }
558 else if (mem_stor)
559 {
560 VALUE_LVAL (v) = lval_memory;
561 VALUE_ADDRESS (v) = first_addr;
562 }
563 else if (reg_stor)
564 {
565 VALUE_LVAL (v) = lval_register;
566 VALUE_ADDRESS (v) = first_addr;
567 }
568 else
569 fatal ("value_from_register: Value not stored anywhere!");
570
571 VALUE_OPTIMIZED_OUT (v) = optim;
572
573 /* Any structure stored in more than one register will always be
574 an integral number of registers. Otherwise, you'd need to do
575 some fiddling with the last register copied here for little
576 endian machines. */
577
578 /* Copy into the contents section of the value. */
579 bcopy (value_bytes, VALUE_CONTENTS_RAW (v), len);
580
581 return v;
582 }
583
584 /* Data is completely contained within a single register. Locate the
585 register's contents in a real register or in core;
586 read the data in raw format. */
587
588 get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
589 VALUE_OPTIMIZED_OUT (v) = optim;
590 VALUE_LVAL (v) = lval;
591 VALUE_ADDRESS (v) = addr;
592
593 /* Convert the raw contents to virtual contents.
594 (Just copy them if the formats are the same.) */
595
596 target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
597
598 if (REGISTER_CONVERTIBLE (regnum))
599 {
600 /* When the raw and virtual formats differ, the virtual format
601 corresponds to a specific data type. If we want that type,
602 copy the data into the value.
603 Otherwise, do a type-conversion. */
604
605 if (type != REGISTER_VIRTUAL_TYPE (regnum))
606 {
607 /* eg a variable of type `float' in a 68881 register
608 with raw type `extended' and virtual type `double'.
609 Fetch it as a `double' and then convert to `float'. */
610 v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
611 bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len);
612 v = value_cast (type, v);
613 }
614 else
615 bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len);
616 }
617 else
618 {
619 /* Raw and virtual formats are the same for this register. */
620
621 #if TARGET_BYTE_ORDER == BIG_ENDIAN
622 if (len < REGISTER_RAW_SIZE (regnum))
623 {
624 /* Big-endian, and we want less than full size. */
625 VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
626 }
627 #endif
628
629 bcopy (virtual_buffer + VALUE_OFFSET (v),
630 VALUE_CONTENTS_RAW (v), len);
631 }
632
633 return v;
634 }
635 \f
636 /* Given a struct symbol for a variable,
637 and a stack frame id,
638 return a (pointer to a) struct value containing the variable's address. */
639
640 value
641 locate_var_value (var, frame)
642 register struct symbol *var;
643 FRAME frame;
644 {
645 CORE_ADDR addr = 0;
646 struct type *type = SYMBOL_TYPE (var);
647 struct type *result_type;
648 value lazy_value;
649
650 /* Evaluate it first; if the result is a memory address, we're fine.
651 Lazy evaluation pays off here. */
652
653 lazy_value = read_var_value (var, frame);
654 if (lazy_value == 0)
655 error ("Address of \"%s\" is unknown.", SYMBOL_NAME (var));
656
657 if (VALUE_LAZY (lazy_value))
658 {
659 addr = VALUE_ADDRESS (lazy_value);
660
661 /* C++: The "address" of a reference should yield the address
662 * of the object pointed to. So force an extra de-reference. */
663
664 if (TYPE_CODE (type) == TYPE_CODE_REF)
665 {
666 char *buf = alloca (TYPE_LENGTH (type));
667 read_memory (addr, buf, TYPE_LENGTH (type));
668 addr = unpack_long (type, buf);
669 type = TYPE_TARGET_TYPE (type);
670 }
671
672 /* Address of an array is of the type of address of it's elements. */
673 result_type =
674 lookup_pointer_type (TYPE_CODE (type) == TYPE_CODE_ARRAY ?
675 TYPE_TARGET_TYPE (type) : type);
676
677 return value_cast (result_type,
678 value_from_long (builtin_type_long, (LONGEST) addr));
679 }
680
681 /* Not a memory address; check what the problem was. */
682 switch (VALUE_LVAL (lazy_value))
683 {
684 case lval_register:
685 case lval_reg_frame_relative:
686 error ("Address requested for identifier \"%s\" which is in a register.",
687 SYMBOL_NAME (var));
688 break;
689
690 default:
691 error ("Can't take address of \"%s\" which isn't an lvalue.",
692 SYMBOL_NAME (var));
693 break;
694 }
695 return 0; /* For lint -- never reached */
696 }
This page took 0.044827 seconds and 4 git commands to generate.