2002-10-21 Jim Blandy <jimb@redhat.com>
[deliverable/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "frame.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "inferior.h"
30 #include "target.h"
31 #include "gdb_string.h"
32 #include "gdb_assert.h"
33 #include "floatformat.h"
34 #include "symfile.h" /* for overlay functions */
35 #include "regcache.h"
36 #include "builtin-regs.h"
37
38 /* Basic byte-swapping routines. GDB has needed these for a long time...
39 All extract a target-format integer at ADDR which is LEN bytes long. */
40
41 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
42 /* 8 bit characters are a pretty safe assumption these days, so we
43 assume it throughout all these swapping routines. If we had to deal with
44 9 bit characters, we would need to make len be in bits and would have
45 to re-write these routines... */
46 you lose
47 #endif
48
49 LONGEST
50 extract_signed_integer (const void *addr, int len)
51 {
52 LONGEST retval;
53 const unsigned char *p;
54 const unsigned char *startaddr = addr;
55 const unsigned char *endaddr = startaddr + len;
56
57 if (len > (int) sizeof (LONGEST))
58 error ("\
59 That operation is not available on integers of more than %d bytes.",
60 (int) sizeof (LONGEST));
61
62 /* Start at the most significant end of the integer, and work towards
63 the least significant. */
64 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
65 {
66 p = startaddr;
67 /* Do the sign extension once at the start. */
68 retval = ((LONGEST) * p ^ 0x80) - 0x80;
69 for (++p; p < endaddr; ++p)
70 retval = (retval << 8) | *p;
71 }
72 else
73 {
74 p = endaddr - 1;
75 /* Do the sign extension once at the start. */
76 retval = ((LONGEST) * p ^ 0x80) - 0x80;
77 for (--p; p >= startaddr; --p)
78 retval = (retval << 8) | *p;
79 }
80 return retval;
81 }
82
83 ULONGEST
84 extract_unsigned_integer (const void *addr, int len)
85 {
86 ULONGEST retval;
87 const unsigned char *p;
88 const unsigned char *startaddr = addr;
89 const unsigned char *endaddr = startaddr + len;
90
91 if (len > (int) sizeof (ULONGEST))
92 error ("\
93 That operation is not available on integers of more than %d bytes.",
94 (int) sizeof (ULONGEST));
95
96 /* Start at the most significant end of the integer, and work towards
97 the least significant. */
98 retval = 0;
99 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
100 {
101 for (p = startaddr; p < endaddr; ++p)
102 retval = (retval << 8) | *p;
103 }
104 else
105 {
106 for (p = endaddr - 1; p >= startaddr; --p)
107 retval = (retval << 8) | *p;
108 }
109 return retval;
110 }
111
112 /* Sometimes a long long unsigned integer can be extracted as a
113 LONGEST value. This is done so that we can print these values
114 better. If this integer can be converted to a LONGEST, this
115 function returns 1 and sets *PVAL. Otherwise it returns 0. */
116
117 int
118 extract_long_unsigned_integer (void *addr, int orig_len, LONGEST *pval)
119 {
120 char *p, *first_addr;
121 int len;
122
123 len = orig_len;
124 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
125 {
126 for (p = (char *) addr;
127 len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
128 p++)
129 {
130 if (*p == 0)
131 len--;
132 else
133 break;
134 }
135 first_addr = p;
136 }
137 else
138 {
139 first_addr = (char *) addr;
140 for (p = (char *) addr + orig_len - 1;
141 len > (int) sizeof (LONGEST) && p >= (char *) addr;
142 p--)
143 {
144 if (*p == 0)
145 len--;
146 else
147 break;
148 }
149 }
150
151 if (len <= (int) sizeof (LONGEST))
152 {
153 *pval = (LONGEST) extract_unsigned_integer (first_addr,
154 sizeof (LONGEST));
155 return 1;
156 }
157
158 return 0;
159 }
160
161
162 /* Treat the LEN bytes at ADDR as a target-format address, and return
163 that address. ADDR is a buffer in the GDB process, not in the
164 inferior.
165
166 This function should only be used by target-specific code. It
167 assumes that a pointer has the same representation as that thing's
168 address represented as an integer. Some machines use word
169 addresses, or similarly munged things, for certain types of
170 pointers, so that assumption doesn't hold everywhere.
171
172 Common code should use extract_typed_address instead, or something
173 else based on POINTER_TO_ADDRESS. */
174
175 CORE_ADDR
176 extract_address (void *addr, int len)
177 {
178 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
179 whether we want this to be true eventually. */
180 return (CORE_ADDR) extract_unsigned_integer (addr, len);
181 }
182
183
184 /* Treat the bytes at BUF as a pointer of type TYPE, and return the
185 address it represents. */
186 CORE_ADDR
187 extract_typed_address (void *buf, struct type *type)
188 {
189 if (TYPE_CODE (type) != TYPE_CODE_PTR
190 && TYPE_CODE (type) != TYPE_CODE_REF)
191 internal_error (__FILE__, __LINE__,
192 "extract_typed_address: "
193 "type is not a pointer or reference");
194
195 return POINTER_TO_ADDRESS (type, buf);
196 }
197
198
199 void
200 store_signed_integer (void *addr, int len, LONGEST val)
201 {
202 unsigned char *p;
203 unsigned char *startaddr = (unsigned char *) addr;
204 unsigned char *endaddr = startaddr + len;
205
206 /* Start at the least significant end of the integer, and work towards
207 the most significant. */
208 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
209 {
210 for (p = endaddr - 1; p >= startaddr; --p)
211 {
212 *p = val & 0xff;
213 val >>= 8;
214 }
215 }
216 else
217 {
218 for (p = startaddr; p < endaddr; ++p)
219 {
220 *p = val & 0xff;
221 val >>= 8;
222 }
223 }
224 }
225
226 void
227 store_unsigned_integer (void *addr, int len, ULONGEST val)
228 {
229 unsigned char *p;
230 unsigned char *startaddr = (unsigned char *) addr;
231 unsigned char *endaddr = startaddr + len;
232
233 /* Start at the least significant end of the integer, and work towards
234 the most significant. */
235 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
236 {
237 for (p = endaddr - 1; p >= startaddr; --p)
238 {
239 *p = val & 0xff;
240 val >>= 8;
241 }
242 }
243 else
244 {
245 for (p = startaddr; p < endaddr; ++p)
246 {
247 *p = val & 0xff;
248 val >>= 8;
249 }
250 }
251 }
252
253 /* Store the address VAL as a LEN-byte value in target byte order at
254 ADDR. ADDR is a buffer in the GDB process, not in the inferior.
255
256 This function should only be used by target-specific code. It
257 assumes that a pointer has the same representation as that thing's
258 address represented as an integer. Some machines use word
259 addresses, or similarly munged things, for certain types of
260 pointers, so that assumption doesn't hold everywhere.
261
262 Common code should use store_typed_address instead, or something else
263 based on ADDRESS_TO_POINTER. */
264 void
265 store_address (void *addr, int len, LONGEST val)
266 {
267 store_unsigned_integer (addr, len, val);
268 }
269
270
271 /* Store the address ADDR as a pointer of type TYPE at BUF, in target
272 form. */
273 void
274 store_typed_address (void *buf, struct type *type, CORE_ADDR addr)
275 {
276 if (TYPE_CODE (type) != TYPE_CODE_PTR
277 && TYPE_CODE (type) != TYPE_CODE_REF)
278 internal_error (__FILE__, __LINE__,
279 "store_typed_address: "
280 "type is not a pointer or reference");
281
282 ADDRESS_TO_POINTER (type, buf, addr);
283 }
284
285
286
287 /* Return a `value' with the contents of (virtual or cooked) register
288 REGNUM as found in the specified FRAME. The register's type is
289 determined by REGISTER_VIRTUAL_TYPE.
290
291 NOTE: returns NULL if register value is not available. Caller will
292 check return value or die! */
293
294 struct value *
295 value_of_register (int regnum, struct frame_info *frame)
296 {
297 CORE_ADDR addr;
298 int optim;
299 struct value *reg_val;
300 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
301 enum lval_type lval;
302
303 /* Builtin registers lie completly outside of the range of normal
304 registers. Catch them early so that the target never sees them. */
305 if (regnum >= NUM_REGS + NUM_PSEUDO_REGS)
306 return value_of_builtin_reg (regnum, selected_frame);
307
308 get_saved_register (raw_buffer, &optim, &addr,
309 frame, regnum, &lval);
310
311 /* FIXME: cagney/2002-05-15: This test is just bogus.
312
313 It indicates that the target failed to supply a value for a
314 register because it was "not available" at this time. Problem
315 is, the target still has the register and so get saved_register()
316 may be returning a value saved on the stack. */
317
318 if (register_cached (regnum) < 0)
319 return NULL; /* register value not available */
320
321 reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
322
323 /* Convert raw data to virtual format if necessary. */
324
325 if (REGISTER_CONVERTIBLE (regnum))
326 {
327 REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
328 raw_buffer, VALUE_CONTENTS_RAW (reg_val));
329 }
330 else if (REGISTER_RAW_SIZE (regnum) == REGISTER_VIRTUAL_SIZE (regnum))
331 memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
332 REGISTER_RAW_SIZE (regnum));
333 else
334 internal_error (__FILE__, __LINE__,
335 "Register \"%s\" (%d) has conflicting raw (%d) and virtual (%d) size",
336 REGISTER_NAME (regnum),
337 regnum,
338 REGISTER_RAW_SIZE (regnum),
339 REGISTER_VIRTUAL_SIZE (regnum));
340 VALUE_LVAL (reg_val) = lval;
341 VALUE_ADDRESS (reg_val) = addr;
342 VALUE_REGNO (reg_val) = regnum;
343 VALUE_OPTIMIZED_OUT (reg_val) = optim;
344 return reg_val;
345 }
346
347 /* Given a pointer of type TYPE in target form in BUF, return the
348 address it represents. */
349 CORE_ADDR
350 unsigned_pointer_to_address (struct type *type, void *buf)
351 {
352 return extract_address (buf, TYPE_LENGTH (type));
353 }
354
355 CORE_ADDR
356 signed_pointer_to_address (struct type *type, void *buf)
357 {
358 return extract_signed_integer (buf, TYPE_LENGTH (type));
359 }
360
361 /* Given an address, store it as a pointer of type TYPE in target
362 format in BUF. */
363 void
364 unsigned_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
365 {
366 store_address (buf, TYPE_LENGTH (type), addr);
367 }
368
369 void
370 address_to_signed_pointer (struct type *type, void *buf, CORE_ADDR addr)
371 {
372 store_signed_integer (buf, TYPE_LENGTH (type), addr);
373 }
374 \f
375 /* Will calling read_var_value or locate_var_value on SYM end
376 up caring what frame it is being evaluated relative to? SYM must
377 be non-NULL. */
378 int
379 symbol_read_needs_frame (struct symbol *sym)
380 {
381 switch (SYMBOL_CLASS (sym))
382 {
383 /* All cases listed explicitly so that gcc -Wall will detect it if
384 we failed to consider one. */
385 case LOC_REGISTER:
386 case LOC_ARG:
387 case LOC_REF_ARG:
388 case LOC_REGPARM:
389 case LOC_REGPARM_ADDR:
390 case LOC_LOCAL:
391 case LOC_LOCAL_ARG:
392 case LOC_BASEREG:
393 case LOC_BASEREG_ARG:
394 case LOC_HP_THREAD_LOCAL_STATIC:
395 return 1;
396
397 case LOC_UNDEF:
398 case LOC_CONST:
399 case LOC_STATIC:
400 case LOC_INDIRECT:
401 case LOC_TYPEDEF:
402
403 case LOC_LABEL:
404 /* Getting the address of a label can be done independently of the block,
405 even if some *uses* of that address wouldn't work so well without
406 the right frame. */
407
408 case LOC_BLOCK:
409 case LOC_CONST_BYTES:
410 case LOC_UNRESOLVED:
411 case LOC_OPTIMIZED_OUT:
412 return 0;
413 }
414 return 1;
415 }
416
417 /* Given a struct symbol for a variable,
418 and a stack frame id, read the value of the variable
419 and return a (pointer to a) struct value containing the value.
420 If the variable cannot be found, return a zero pointer.
421 If FRAME is NULL, use the selected_frame. */
422
423 struct value *
424 read_var_value (register struct symbol *var, struct frame_info *frame)
425 {
426 register struct value *v;
427 struct type *type = SYMBOL_TYPE (var);
428 CORE_ADDR addr;
429 register int len;
430
431 v = allocate_value (type);
432 VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
433 VALUE_BFD_SECTION (v) = SYMBOL_BFD_SECTION (var);
434
435 len = TYPE_LENGTH (type);
436
437 if (frame == NULL)
438 frame = selected_frame;
439
440 switch (SYMBOL_CLASS (var))
441 {
442 case LOC_CONST:
443 /* Put the constant back in target format. */
444 store_signed_integer (VALUE_CONTENTS_RAW (v), len,
445 (LONGEST) SYMBOL_VALUE (var));
446 VALUE_LVAL (v) = not_lval;
447 return v;
448
449 case LOC_LABEL:
450 /* Put the constant back in target format. */
451 if (overlay_debugging)
452 {
453 CORE_ADDR addr
454 = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
455 SYMBOL_BFD_SECTION (var));
456 store_typed_address (VALUE_CONTENTS_RAW (v), type, addr);
457 }
458 else
459 store_typed_address (VALUE_CONTENTS_RAW (v), type,
460 SYMBOL_VALUE_ADDRESS (var));
461 VALUE_LVAL (v) = not_lval;
462 return v;
463
464 case LOC_CONST_BYTES:
465 {
466 char *bytes_addr;
467 bytes_addr = SYMBOL_VALUE_BYTES (var);
468 memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
469 VALUE_LVAL (v) = not_lval;
470 return v;
471 }
472
473 case LOC_STATIC:
474 if (overlay_debugging)
475 addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
476 SYMBOL_BFD_SECTION (var));
477 else
478 addr = SYMBOL_VALUE_ADDRESS (var);
479 break;
480
481 case LOC_INDIRECT:
482 {
483 /* The import slot does not have a real address in it from the
484 dynamic loader (dld.sl on HP-UX), if the target hasn't
485 begun execution yet, so check for that. */
486 CORE_ADDR locaddr;
487 struct value *loc;
488 if (!target_has_execution)
489 error ("\
490 Attempt to access variable defined in different shared object or load module when\n\
491 addresses have not been bound by the dynamic loader. Try again when executable is running.");
492
493 locaddr = SYMBOL_VALUE_ADDRESS (var);
494 loc = value_at (lookup_pointer_type (type), locaddr, NULL);
495 addr = value_as_address (loc);
496 }
497
498 case LOC_ARG:
499 if (frame == NULL)
500 return 0;
501 addr = FRAME_ARGS_ADDRESS (frame);
502 if (!addr)
503 return 0;
504 addr += SYMBOL_VALUE (var);
505 break;
506
507 case LOC_REF_ARG:
508 {
509 struct value *ref;
510 CORE_ADDR argref;
511 if (frame == NULL)
512 return 0;
513 argref = FRAME_ARGS_ADDRESS (frame);
514 if (!argref)
515 return 0;
516 argref += SYMBOL_VALUE (var);
517 ref = value_at (lookup_pointer_type (type), argref, NULL);
518 addr = value_as_address (ref);
519 break;
520 }
521
522 case LOC_LOCAL:
523 case LOC_LOCAL_ARG:
524 if (frame == NULL)
525 return 0;
526 addr = FRAME_LOCALS_ADDRESS (frame);
527 addr += SYMBOL_VALUE (var);
528 break;
529
530 case LOC_BASEREG:
531 case LOC_BASEREG_ARG:
532 case LOC_HP_THREAD_LOCAL_STATIC:
533 {
534 struct value *regval;
535
536 regval = value_from_register (lookup_pointer_type (type),
537 SYMBOL_BASEREG (var), frame);
538 if (regval == NULL)
539 error ("Value of base register not available.");
540 addr = value_as_address (regval);
541 addr += SYMBOL_VALUE (var);
542 break;
543 }
544
545 case LOC_THREAD_LOCAL_STATIC:
546 {
547 /* We want to let the target / ABI-specific code construct
548 this value for us, so we need to dispose of the value
549 allocated for us above. */
550 if (target_get_thread_local_address_p ())
551 addr = target_get_thread_local_address (inferior_ptid,
552 SYMBOL_OBJFILE (var),
553 SYMBOL_VALUE_ADDRESS (var));
554 /* It wouldn't be wrong here to try a gdbarch method, too;
555 finding TLS is an ABI-specific thing. But we don't do that
556 yet. */
557 else
558 error ("Cannot find thread-local variables on this target");
559 break;
560 }
561
562 case LOC_TYPEDEF:
563 error ("Cannot look up value of a typedef");
564 break;
565
566 case LOC_BLOCK:
567 if (overlay_debugging)
568 VALUE_ADDRESS (v) = symbol_overlayed_address
569 (BLOCK_START (SYMBOL_BLOCK_VALUE (var)), SYMBOL_BFD_SECTION (var));
570 else
571 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
572 return v;
573
574 case LOC_REGISTER:
575 case LOC_REGPARM:
576 case LOC_REGPARM_ADDR:
577 {
578 struct block *b;
579 int regno = SYMBOL_VALUE (var);
580 struct value *regval;
581
582 if (frame == NULL)
583 return 0;
584 b = get_frame_block (frame, 0);
585
586 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
587 {
588 regval = value_from_register (lookup_pointer_type (type),
589 regno,
590 frame);
591
592 if (regval == NULL)
593 error ("Value of register variable not available.");
594
595 addr = value_as_address (regval);
596 VALUE_LVAL (v) = lval_memory;
597 }
598 else
599 {
600 regval = value_from_register (type, regno, frame);
601
602 if (regval == NULL)
603 error ("Value of register variable not available.");
604 return regval;
605 }
606 }
607 break;
608
609 case LOC_UNRESOLVED:
610 {
611 struct minimal_symbol *msym;
612
613 msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
614 if (msym == NULL)
615 return 0;
616 if (overlay_debugging)
617 addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (msym),
618 SYMBOL_BFD_SECTION (msym));
619 else
620 addr = SYMBOL_VALUE_ADDRESS (msym);
621 }
622 break;
623
624 case LOC_OPTIMIZED_OUT:
625 VALUE_LVAL (v) = not_lval;
626 VALUE_OPTIMIZED_OUT (v) = 1;
627 return v;
628
629 default:
630 error ("Cannot look up value of a botched symbol.");
631 break;
632 }
633
634 VALUE_ADDRESS (v) = addr;
635 VALUE_LAZY (v) = 1;
636 return v;
637 }
638
639 /* Return a value of type TYPE, stored in register REGNUM, in frame
640 FRAME.
641
642 NOTE: returns NULL if register value is not available.
643 Caller will check return value or die! */
644
645 struct value *
646 value_from_register (struct type *type, int regnum, struct frame_info *frame)
647 {
648 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
649 CORE_ADDR addr;
650 int optim;
651 struct value *v = allocate_value (type);
652 char *value_bytes = 0;
653 int value_bytes_copied = 0;
654 int num_storage_locs;
655 enum lval_type lval;
656 int len;
657
658 CHECK_TYPEDEF (type);
659 len = TYPE_LENGTH (type);
660
661 VALUE_REGNO (v) = regnum;
662
663 num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
664 ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
665 1);
666
667 if (num_storage_locs > 1
668 #ifdef GDB_TARGET_IS_H8500
669 || TYPE_CODE (type) == TYPE_CODE_PTR
670 #endif
671 )
672 {
673 /* Value spread across multiple storage locations. */
674
675 int local_regnum;
676 int mem_stor = 0, reg_stor = 0;
677 int mem_tracking = 1;
678 CORE_ADDR last_addr = 0;
679 CORE_ADDR first_addr = 0;
680
681 value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
682
683 /* Copy all of the data out, whereever it may be. */
684
685 #ifdef GDB_TARGET_IS_H8500
686 /* This piece of hideosity is required because the H8500 treats registers
687 differently depending upon whether they are used as pointers or not. As a
688 pointer, a register needs to have a page register tacked onto the front.
689 An alternate way to do this would be to have gcc output different register
690 numbers for the pointer & non-pointer form of the register. But, it
691 doesn't, so we're stuck with this. */
692
693 if (TYPE_CODE (type) == TYPE_CODE_PTR
694 && len > 2)
695 {
696 int page_regnum;
697
698 switch (regnum)
699 {
700 case R0_REGNUM:
701 case R1_REGNUM:
702 case R2_REGNUM:
703 case R3_REGNUM:
704 page_regnum = SEG_D_REGNUM;
705 break;
706 case R4_REGNUM:
707 case R5_REGNUM:
708 page_regnum = SEG_E_REGNUM;
709 break;
710 case R6_REGNUM:
711 case R7_REGNUM:
712 page_regnum = SEG_T_REGNUM;
713 break;
714 }
715
716 value_bytes[0] = 0;
717 get_saved_register (value_bytes + 1,
718 &optim,
719 &addr,
720 frame,
721 page_regnum,
722 &lval);
723
724 if (register_cached (page_regnum) == -1)
725 return NULL; /* register value not available */
726
727 if (lval == lval_register)
728 reg_stor++;
729 else
730 mem_stor++;
731 first_addr = addr;
732 last_addr = addr;
733
734 get_saved_register (value_bytes + 2,
735 &optim,
736 &addr,
737 frame,
738 regnum,
739 &lval);
740
741 if (register_cached (regnum) == -1)
742 return NULL; /* register value not available */
743
744 if (lval == lval_register)
745 reg_stor++;
746 else
747 {
748 mem_stor++;
749 mem_tracking = mem_tracking && (addr == last_addr);
750 }
751 last_addr = addr;
752 }
753 else
754 #endif /* GDB_TARGET_IS_H8500 */
755 for (local_regnum = regnum;
756 value_bytes_copied < len;
757 (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
758 ++local_regnum))
759 {
760 get_saved_register (value_bytes + value_bytes_copied,
761 &optim,
762 &addr,
763 frame,
764 local_regnum,
765 &lval);
766
767 if (register_cached (local_regnum) == -1)
768 return NULL; /* register value not available */
769
770 if (regnum == local_regnum)
771 first_addr = addr;
772 if (lval == lval_register)
773 reg_stor++;
774 else
775 {
776 mem_stor++;
777
778 mem_tracking =
779 (mem_tracking
780 && (regnum == local_regnum
781 || addr == last_addr));
782 }
783 last_addr = addr;
784 }
785
786 if ((reg_stor && mem_stor)
787 || (mem_stor && !mem_tracking))
788 /* Mixed storage; all of the hassle we just went through was
789 for some good purpose. */
790 {
791 VALUE_LVAL (v) = lval_reg_frame_relative;
792 VALUE_FRAME (v) = FRAME_FP (frame);
793 VALUE_FRAME_REGNUM (v) = regnum;
794 }
795 else if (mem_stor)
796 {
797 VALUE_LVAL (v) = lval_memory;
798 VALUE_ADDRESS (v) = first_addr;
799 }
800 else if (reg_stor)
801 {
802 VALUE_LVAL (v) = lval_register;
803 VALUE_ADDRESS (v) = first_addr;
804 }
805 else
806 internal_error (__FILE__, __LINE__,
807 "value_from_register: Value not stored anywhere!");
808
809 VALUE_OPTIMIZED_OUT (v) = optim;
810
811 /* Any structure stored in more than one register will always be
812 an integral number of registers. Otherwise, you'd need to do
813 some fiddling with the last register copied here for little
814 endian machines. */
815
816 /* Copy into the contents section of the value. */
817 memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
818
819 /* Finally do any conversion necessary when extracting this
820 type from more than one register. */
821 #ifdef REGISTER_CONVERT_TO_TYPE
822 REGISTER_CONVERT_TO_TYPE (regnum, type, VALUE_CONTENTS_RAW (v));
823 #endif
824 return v;
825 }
826
827 /* Data is completely contained within a single register. Locate the
828 register's contents in a real register or in core;
829 read the data in raw format. */
830
831 get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
832
833 if (register_cached (regnum) == -1)
834 return NULL; /* register value not available */
835
836 VALUE_OPTIMIZED_OUT (v) = optim;
837 VALUE_LVAL (v) = lval;
838 VALUE_ADDRESS (v) = addr;
839
840 /* Convert the raw register to the corresponding data value's memory
841 format, if necessary. */
842
843 if (CONVERT_REGISTER_P (regnum))
844 {
845 REGISTER_TO_VALUE (regnum, type, raw_buffer, VALUE_CONTENTS_RAW (v));
846 }
847 else
848 {
849 /* Raw and virtual formats are the same for this register. */
850
851 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG && len < REGISTER_RAW_SIZE (regnum))
852 {
853 /* Big-endian, and we want less than full size. */
854 VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
855 }
856
857 memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
858 }
859
860 return v;
861 }
862 \f
863 /* Given a struct symbol for a variable or function,
864 and a stack frame id,
865 return a (pointer to a) struct value containing the properly typed
866 address. */
867
868 struct value *
869 locate_var_value (register struct symbol *var, struct frame_info *frame)
870 {
871 CORE_ADDR addr = 0;
872 struct type *type = SYMBOL_TYPE (var);
873 struct value *lazy_value;
874
875 /* Evaluate it first; if the result is a memory address, we're fine.
876 Lazy evaluation pays off here. */
877
878 lazy_value = read_var_value (var, frame);
879 if (lazy_value == 0)
880 error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
881
882 if (VALUE_LAZY (lazy_value)
883 || TYPE_CODE (type) == TYPE_CODE_FUNC)
884 {
885 struct value *val;
886
887 addr = VALUE_ADDRESS (lazy_value);
888 val = value_from_pointer (lookup_pointer_type (type), addr);
889 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (lazy_value);
890 return val;
891 }
892
893 /* Not a memory address; check what the problem was. */
894 switch (VALUE_LVAL (lazy_value))
895 {
896 case lval_register:
897 gdb_assert (REGISTER_NAME (VALUE_REGNO (lazy_value)) != NULL
898 && *REGISTER_NAME (VALUE_REGNO (lazy_value)) != '\0');
899 error("Address requested for identifier "
900 "\"%s\" which is in register $%s",
901 SYMBOL_SOURCE_NAME (var),
902 REGISTER_NAME (VALUE_REGNO (lazy_value)));
903 break;
904
905 case lval_reg_frame_relative:
906 gdb_assert (REGISTER_NAME (VALUE_FRAME_REGNUM (lazy_value)) != NULL
907 && *REGISTER_NAME (VALUE_FRAME_REGNUM (lazy_value)) != '\0');
908 error("Address requested for identifier "
909 "\"%s\" which is in frame register $%s",
910 SYMBOL_SOURCE_NAME (var),
911 REGISTER_NAME (VALUE_FRAME_REGNUM (lazy_value)));
912 break;
913
914 default:
915 error ("Can't take address of \"%s\" which isn't an lvalue.",
916 SYMBOL_SOURCE_NAME (var));
917 break;
918 }
919 return 0; /* For lint -- never reached */
920 }
This page took 0.047404 seconds and 4 git commands to generate.