use remote-utils facilities for baud_rate
[deliverable/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "inferior.h"
27 #include "target.h"
28
29 /* Basic byte-swapping routines. GDB has needed these for a long time...
30 All extract a target-format integer at ADDR which is LEN bytes long. */
31
32 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
33 /* 8 bit characters are a pretty safe assumption these days, so we
34 assume it throughout all these swapping routines. If we had to deal with
35 9 bit characters, we would need to make len be in bits and would have
36 to re-write these routines... */
37 you lose
38 #endif
39
40 LONGEST
41 extract_signed_integer (addr, len)
42 PTR addr;
43 int len;
44 {
45 LONGEST retval;
46 unsigned char *p;
47 unsigned char *startaddr = (unsigned char *)addr;
48 unsigned char *endaddr = startaddr + len;
49
50 if (len > sizeof (LONGEST))
51 error ("\
52 That operation is not available on integers of more than %d bytes.",
53 sizeof (LONGEST));
54
55 /* Start at the most significant end of the integer, and work towards
56 the least significant. */
57 #if TARGET_BYTE_ORDER == BIG_ENDIAN
58 p = startaddr;
59 #else
60 p = endaddr - 1;
61 #endif
62 /* Do the sign extension once at the start. */
63 retval = (*p ^ 0x80) - 0x80;
64 #if TARGET_BYTE_ORDER == BIG_ENDIAN
65 for (++p; p < endaddr; ++p)
66 #else
67 for (--p; p >= startaddr; --p)
68 #endif
69 {
70 retval = (retval << 8) | *p;
71 }
72 return retval;
73 }
74
75 unsigned LONGEST
76 extract_unsigned_integer (addr, len)
77 PTR addr;
78 int len;
79 {
80 unsigned LONGEST retval;
81 unsigned char *p;
82 unsigned char *startaddr = (unsigned char *)addr;
83 unsigned char *endaddr = startaddr + len;
84
85 if (len > sizeof (unsigned LONGEST))
86 error ("\
87 That operation is not available on integers of more than %d bytes.",
88 sizeof (unsigned LONGEST));
89
90 /* Start at the most significant end of the integer, and work towards
91 the least significant. */
92 retval = 0;
93 #if TARGET_BYTE_ORDER == BIG_ENDIAN
94 for (p = startaddr; p < endaddr; ++p)
95 #else
96 for (p = endaddr - 1; p >= startaddr; --p)
97 #endif
98 {
99 retval = (retval << 8) | *p;
100 }
101 return retval;
102 }
103
104 CORE_ADDR
105 extract_address (addr, len)
106 PTR addr;
107 int len;
108 {
109 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
110 whether we want this to be true eventually. */
111 return extract_unsigned_integer (addr, len);
112 }
113
114 void
115 store_signed_integer (addr, len, val)
116 PTR addr;
117 int len;
118 LONGEST val;
119 {
120 unsigned char *p;
121 unsigned char *startaddr = (unsigned char *)addr;
122 unsigned char *endaddr = startaddr + len;
123
124 /* Start at the least significant end of the integer, and work towards
125 the most significant. */
126 #if TARGET_BYTE_ORDER == BIG_ENDIAN
127 for (p = endaddr - 1; p >= startaddr; --p)
128 #else
129 for (p = startaddr; p < endaddr; ++p)
130 #endif
131 {
132 *p = val & 0xff;
133 val >>= 8;
134 }
135 }
136
137 void
138 store_unsigned_integer (addr, len, val)
139 PTR addr;
140 int len;
141 unsigned LONGEST val;
142 {
143 unsigned char *p;
144 unsigned char *startaddr = (unsigned char *)addr;
145 unsigned char *endaddr = startaddr + len;
146
147 /* Start at the least significant end of the integer, and work towards
148 the most significant. */
149 #if TARGET_BYTE_ORDER == BIG_ENDIAN
150 for (p = endaddr - 1; p >= startaddr; --p)
151 #else
152 for (p = startaddr; p < endaddr; ++p)
153 #endif
154 {
155 *p = val & 0xff;
156 val >>= 8;
157 }
158 }
159
160 void
161 store_address (addr, len, val)
162 PTR addr;
163 int len;
164 CORE_ADDR val;
165 {
166 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
167 whether we want this to be true eventually. */
168 store_unsigned_integer (addr, len, (LONGEST)val);
169 }
170 \f
171 #if !defined (GET_SAVED_REGISTER)
172
173 /* Return the address in which frame FRAME's value of register REGNUM
174 has been saved in memory. Or return zero if it has not been saved.
175 If REGNUM specifies the SP, the value we return is actually
176 the SP value, not an address where it was saved. */
177
178 CORE_ADDR
179 find_saved_register (frame, regnum)
180 FRAME frame;
181 int regnum;
182 {
183 struct frame_info *fi;
184 struct frame_saved_regs saved_regs;
185
186 register FRAME frame1 = 0;
187 register CORE_ADDR addr = 0;
188
189 if (frame == 0) /* No regs saved if want current frame */
190 return 0;
191
192 #ifdef HAVE_REGISTER_WINDOWS
193 /* We assume that a register in a register window will only be saved
194 in one place (since the name changes and/or disappears as you go
195 towards inner frames), so we only call get_frame_saved_regs on
196 the current frame. This is directly in contradiction to the
197 usage below, which assumes that registers used in a frame must be
198 saved in a lower (more interior) frame. This change is a result
199 of working on a register window machine; get_frame_saved_regs
200 always returns the registers saved within a frame, within the
201 context (register namespace) of that frame. */
202
203 /* However, note that we don't want this to return anything if
204 nothing is saved (if there's a frame inside of this one). Also,
205 callers to this routine asking for the stack pointer want the
206 stack pointer saved for *this* frame; this is returned from the
207 next frame. */
208
209
210 if (REGISTER_IN_WINDOW_P(regnum))
211 {
212 frame1 = get_next_frame (frame);
213 if (!frame1) return 0; /* Registers of this frame are
214 active. */
215
216 /* Get the SP from the next frame in; it will be this
217 current frame. */
218 if (regnum != SP_REGNUM)
219 frame1 = frame;
220
221 fi = get_frame_info (frame1);
222 get_frame_saved_regs (fi, &saved_regs);
223 return saved_regs.regs[regnum]; /* ... which might be zero */
224 }
225 #endif /* HAVE_REGISTER_WINDOWS */
226
227 /* Note that this next routine assumes that registers used in
228 frame x will be saved only in the frame that x calls and
229 frames interior to it. This is not true on the sparc, but the
230 above macro takes care of it, so we should be all right. */
231 while (1)
232 {
233 QUIT;
234 frame1 = get_prev_frame (frame1);
235 if (frame1 == 0 || frame1 == frame)
236 break;
237 fi = get_frame_info (frame1);
238 get_frame_saved_regs (fi, &saved_regs);
239 if (saved_regs.regs[regnum])
240 addr = saved_regs.regs[regnum];
241 }
242
243 return addr;
244 }
245
246 /* Find register number REGNUM relative to FRAME and put its (raw,
247 target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the
248 variable was optimized out (and thus can't be fetched). Set *LVAL
249 to lval_memory, lval_register, or not_lval, depending on whether
250 the value was fetched from memory, from a register, or in a strange
251 and non-modifiable way (e.g. a frame pointer which was calculated
252 rather than fetched). Set *ADDRP to the address, either in memory
253 on as a REGISTER_BYTE offset into the registers array.
254
255 Note that this implementation never sets *LVAL to not_lval. But
256 it can be replaced by defining GET_SAVED_REGISTER and supplying
257 your own.
258
259 The argument RAW_BUFFER must point to aligned memory. */
260
261 void
262 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
263 char *raw_buffer;
264 int *optimized;
265 CORE_ADDR *addrp;
266 FRAME frame;
267 int regnum;
268 enum lval_type *lval;
269 {
270 CORE_ADDR addr;
271 /* Normal systems don't optimize out things with register numbers. */
272 if (optimized != NULL)
273 *optimized = 0;
274 addr = find_saved_register (frame, regnum);
275 if (addr != 0)
276 {
277 if (lval != NULL)
278 *lval = lval_memory;
279 if (regnum == SP_REGNUM)
280 {
281 if (raw_buffer != NULL)
282 {
283 /* Put it back in target format. */
284 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
285 }
286 if (addrp != NULL)
287 *addrp = 0;
288 return;
289 }
290 if (raw_buffer != NULL)
291 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
292 }
293 else
294 {
295 if (lval != NULL)
296 *lval = lval_register;
297 addr = REGISTER_BYTE (regnum);
298 if (raw_buffer != NULL)
299 read_register_gen (regnum, raw_buffer);
300 }
301 if (addrp != NULL)
302 *addrp = addr;
303 }
304 #endif /* GET_SAVED_REGISTER. */
305
306 /* Copy the bytes of register REGNUM, relative to the current stack frame,
307 into our memory at MYADDR, in target byte order.
308 The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
309
310 Returns 1 if could not be read, 0 if could. */
311
312 int
313 read_relative_register_raw_bytes (regnum, myaddr)
314 int regnum;
315 char *myaddr;
316 {
317 int optim;
318 if (regnum == FP_REGNUM && selected_frame)
319 {
320 /* Put it back in target format. */
321 store_address (myaddr, REGISTER_RAW_SIZE(FP_REGNUM),
322 FRAME_FP(selected_frame));
323 return 0;
324 }
325
326 get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame,
327 regnum, (enum lval_type *)NULL);
328 return optim;
329 }
330
331 /* Return a `value' with the contents of register REGNUM
332 in its virtual format, with the type specified by
333 REGISTER_VIRTUAL_TYPE. */
334
335 value
336 value_of_register (regnum)
337 int regnum;
338 {
339 CORE_ADDR addr;
340 int optim;
341 register value val;
342 char raw_buffer[MAX_REGISTER_RAW_SIZE];
343 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
344 enum lval_type lval;
345
346 get_saved_register (raw_buffer, &optim, &addr,
347 selected_frame, regnum, &lval);
348
349 REGISTER_CONVERT_TO_VIRTUAL (regnum, raw_buffer, virtual_buffer);
350 val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
351 memcpy (VALUE_CONTENTS_RAW (val), virtual_buffer,
352 REGISTER_VIRTUAL_SIZE (regnum));
353 VALUE_LVAL (val) = lval;
354 VALUE_ADDRESS (val) = addr;
355 VALUE_REGNO (val) = regnum;
356 VALUE_OPTIMIZED_OUT (val) = optim;
357 return val;
358 }
359 \f
360 /* Low level examining and depositing of registers.
361
362 The caller is responsible for making
363 sure that the inferior is stopped before calling the fetching routines,
364 or it will get garbage. (a change from GDB version 3, in which
365 the caller got the value from the last stop). */
366
367 /* Contents of the registers in target byte order.
368 We allocate some extra slop since we do a lot of memcpy's around `registers',
369 and failing-soft is better than failing hard. */
370 char registers[REGISTER_BYTES + /* SLOP */ 256];
371
372 /* Nonzero if that register has been fetched. */
373 char register_valid[NUM_REGS];
374
375 /* Indicate that registers may have changed, so invalidate the cache. */
376 void
377 registers_changed ()
378 {
379 int i;
380 for (i = 0; i < NUM_REGS; i++)
381 register_valid[i] = 0;
382 }
383
384 /* Indicate that all registers have been fetched, so mark them all valid. */
385 void
386 registers_fetched ()
387 {
388 int i;
389 for (i = 0; i < NUM_REGS; i++)
390 register_valid[i] = 1;
391 }
392
393 /* Copy LEN bytes of consecutive data from registers
394 starting with the REGBYTE'th byte of register data
395 into memory at MYADDR. */
396
397 void
398 read_register_bytes (regbyte, myaddr, len)
399 int regbyte;
400 char *myaddr;
401 int len;
402 {
403 /* Fetch all registers. */
404 int i;
405 for (i = 0; i < NUM_REGS; i++)
406 if (!register_valid[i])
407 {
408 target_fetch_registers (-1);
409 break;
410 }
411 if (myaddr != NULL)
412 memcpy (myaddr, &registers[regbyte], len);
413 }
414
415 /* Read register REGNO into memory at MYADDR, which must be large enough
416 for REGISTER_RAW_BYTES (REGNO). Target byte-order.
417 If the register is known to be the size of a CORE_ADDR or smaller,
418 read_register can be used instead. */
419 void
420 read_register_gen (regno, myaddr)
421 int regno;
422 char *myaddr;
423 {
424 if (!register_valid[regno])
425 target_fetch_registers (regno);
426 memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
427 REGISTER_RAW_SIZE (regno));
428 }
429
430 /* Copy LEN bytes of consecutive data from memory at MYADDR
431 into registers starting with the REGBYTE'th byte of register data. */
432
433 void
434 write_register_bytes (regbyte, myaddr, len)
435 int regbyte;
436 char *myaddr;
437 int len;
438 {
439 /* Make sure the entire registers array is valid. */
440 read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
441 memcpy (&registers[regbyte], myaddr, len);
442 target_store_registers (-1);
443 }
444
445 /* Return the raw contents of register REGNO, regarding it as an integer. */
446 /* This probably should be returning LONGEST rather than CORE_ADDR. */
447
448 CORE_ADDR
449 read_register (regno)
450 int regno;
451 {
452 if (!register_valid[regno])
453 target_fetch_registers (regno);
454
455 return extract_address (&registers[REGISTER_BYTE (regno)],
456 REGISTER_RAW_SIZE(regno));
457 }
458
459 /* Registers we shouldn't try to store. */
460 #if !defined (CANNOT_STORE_REGISTER)
461 #define CANNOT_STORE_REGISTER(regno) 0
462 #endif
463
464 /* Store VALUE, into the raw contents of register number REGNO. */
465 /* FIXME: The val arg should probably be a LONGEST. */
466
467 void
468 write_register (regno, val)
469 int regno, val;
470 {
471 PTR buf;
472 int size;
473
474 /* On the sparc, writing %g0 is a no-op, so we don't even want to change
475 the registers array if something writes to this register. */
476 if (CANNOT_STORE_REGISTER (regno))
477 return;
478
479 size = REGISTER_RAW_SIZE(regno);
480 buf = alloca (size);
481 store_signed_integer (buf, size, (LONGEST) val);
482
483 /* If we have a valid copy of the register, and new value == old value,
484 then don't bother doing the actual store. */
485
486 if (register_valid [regno])
487 {
488 if (memcmp (&registers[REGISTER_BYTE (regno)], buf, size) == 0)
489 return;
490 }
491
492 target_prepare_to_store ();
493
494 memcpy (&registers[REGISTER_BYTE (regno)], buf, size);
495
496 register_valid [regno] = 1;
497
498 target_store_registers (regno);
499 }
500
501 /* Record that register REGNO contains VAL.
502 This is used when the value is obtained from the inferior or core dump,
503 so there is no need to store the value there. */
504
505 void
506 supply_register (regno, val)
507 int regno;
508 char *val;
509 {
510 register_valid[regno] = 1;
511 memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
512
513 /* On some architectures, e.g. HPPA, there are a few stray bits in some
514 registers, that the rest of the code would like to ignore. */
515 #ifdef CLEAN_UP_REGISTER_VALUE
516 CLEAN_UP_REGISTER_VALUE(regno, &registers[REGISTER_BYTE(regno)]);
517 #endif
518 }
519 \f
520 /* Given a struct symbol for a variable,
521 and a stack frame id, read the value of the variable
522 and return a (pointer to a) struct value containing the value.
523 If the variable cannot be found, return a zero pointer.
524 If FRAME is NULL, use the selected_frame. */
525
526 value
527 read_var_value (var, frame)
528 register struct symbol *var;
529 FRAME frame;
530 {
531 register value v;
532 struct frame_info *fi;
533 struct type *type = SYMBOL_TYPE (var);
534 CORE_ADDR addr;
535 register int len;
536
537 v = allocate_value (type);
538 VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
539 len = TYPE_LENGTH (type);
540
541 if (frame == 0) frame = selected_frame;
542
543 switch (SYMBOL_CLASS (var))
544 {
545 case LOC_CONST:
546 /* Put the constant back in target format. */
547 store_signed_integer (VALUE_CONTENTS_RAW (v), len,
548 (LONGEST) SYMBOL_VALUE (var));
549 VALUE_LVAL (v) = not_lval;
550 return v;
551
552 case LOC_LABEL:
553 /* Put the constant back in target format. */
554 store_address (VALUE_CONTENTS_RAW (v), len, SYMBOL_VALUE_ADDRESS (var));
555 VALUE_LVAL (v) = not_lval;
556 return v;
557
558 case LOC_CONST_BYTES:
559 {
560 char *bytes_addr;
561 bytes_addr = SYMBOL_VALUE_BYTES (var);
562 memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
563 VALUE_LVAL (v) = not_lval;
564 return v;
565 }
566
567 case LOC_STATIC:
568 addr = SYMBOL_VALUE_ADDRESS (var);
569 break;
570
571 case LOC_ARG:
572 fi = get_frame_info (frame);
573 if (fi == NULL)
574 return 0;
575 addr = FRAME_ARGS_ADDRESS (fi);
576 if (!addr)
577 {
578 return 0;
579 }
580 addr += SYMBOL_VALUE (var);
581 break;
582
583 case LOC_REF_ARG:
584 fi = get_frame_info (frame);
585 if (fi == NULL)
586 return 0;
587 addr = FRAME_ARGS_ADDRESS (fi);
588 if (!addr)
589 {
590 return 0;
591 }
592 addr += SYMBOL_VALUE (var);
593 addr = read_memory_unsigned_integer
594 (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
595 break;
596
597 case LOC_LOCAL:
598 case LOC_LOCAL_ARG:
599 fi = get_frame_info (frame);
600 if (fi == NULL)
601 return 0;
602 addr = FRAME_LOCALS_ADDRESS (fi);
603 addr += SYMBOL_VALUE (var);
604 break;
605
606 case LOC_BASEREG:
607 case LOC_BASEREG_ARG:
608 {
609 char buf[MAX_REGISTER_RAW_SIZE];
610 get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
611 NULL);
612 addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
613 addr += SYMBOL_VALUE (var);
614 break;
615 }
616
617 case LOC_TYPEDEF:
618 error ("Cannot look up value of a typedef");
619 break;
620
621 case LOC_BLOCK:
622 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
623 return v;
624
625 case LOC_REGISTER:
626 case LOC_REGPARM:
627 case LOC_REGPARM_ADDR:
628 {
629 struct block *b;
630
631 if (frame == NULL)
632 return 0;
633 b = get_frame_block (frame);
634
635 v = value_from_register (type, SYMBOL_VALUE (var), frame);
636
637 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
638 {
639 addr = *(CORE_ADDR *)VALUE_CONTENTS (v);
640 VALUE_LVAL (v) = lval_memory;
641 }
642 else
643 return v;
644 }
645 break;
646
647 case LOC_OPTIMIZED_OUT:
648 VALUE_LVAL (v) = not_lval;
649 VALUE_OPTIMIZED_OUT (v) = 1;
650 return v;
651
652 default:
653 error ("Cannot look up value of a botched symbol.");
654 break;
655 }
656
657 VALUE_ADDRESS (v) = addr;
658 VALUE_LAZY (v) = 1;
659 return v;
660 }
661
662 /* Return a value of type TYPE, stored in register REGNUM, in frame
663 FRAME. */
664
665 value
666 value_from_register (type, regnum, frame)
667 struct type *type;
668 int regnum;
669 FRAME frame;
670 {
671 char raw_buffer [MAX_REGISTER_RAW_SIZE];
672 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
673 CORE_ADDR addr;
674 int optim;
675 value v = allocate_value (type);
676 int len = TYPE_LENGTH (type);
677 char *value_bytes = 0;
678 int value_bytes_copied = 0;
679 int num_storage_locs;
680 enum lval_type lval;
681
682 VALUE_REGNO (v) = regnum;
683
684 num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
685 ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
686 1);
687
688 if (num_storage_locs > 1
689 #ifdef GDB_TARGET_IS_H8500
690 || TYPE_CODE (type) == TYPE_CODE_PTR
691 #endif
692 )
693 {
694 /* Value spread across multiple storage locations. */
695
696 int local_regnum;
697 int mem_stor = 0, reg_stor = 0;
698 int mem_tracking = 1;
699 CORE_ADDR last_addr = 0;
700 CORE_ADDR first_addr;
701
702 value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
703
704 /* Copy all of the data out, whereever it may be. */
705
706 #ifdef GDB_TARGET_IS_H8500
707 /* This piece of hideosity is required because the H8500 treats registers
708 differently depending upon whether they are used as pointers or not. As a
709 pointer, a register needs to have a page register tacked onto the front.
710 An alternate way to do this would be to have gcc output different register
711 numbers for the pointer & non-pointer form of the register. But, it
712 doesn't, so we're stuck with this. */
713
714 if (TYPE_CODE (type) == TYPE_CODE_PTR
715 && len > 2)
716 {
717 int page_regnum;
718
719 switch (regnum)
720 {
721 case R0_REGNUM: case R1_REGNUM: case R2_REGNUM: case R3_REGNUM:
722 page_regnum = SEG_D_REGNUM;
723 break;
724 case R4_REGNUM: case R5_REGNUM:
725 page_regnum = SEG_E_REGNUM;
726 break;
727 case R6_REGNUM: case R7_REGNUM:
728 page_regnum = SEG_T_REGNUM;
729 break;
730 }
731
732 value_bytes[0] = 0;
733 get_saved_register (value_bytes + 1,
734 &optim,
735 &addr,
736 frame,
737 page_regnum,
738 &lval);
739
740 if (lval == lval_register)
741 reg_stor++;
742 else
743 mem_stor++;
744 first_addr = addr;
745 last_addr = addr;
746
747 get_saved_register (value_bytes + 2,
748 &optim,
749 &addr,
750 frame,
751 regnum,
752 &lval);
753
754 if (lval == lval_register)
755 reg_stor++;
756 else
757 {
758 mem_stor++;
759 mem_tracking = mem_tracking && (addr == last_addr);
760 }
761 last_addr = addr;
762 }
763 else
764 #endif /* GDB_TARGET_IS_H8500 */
765 for (local_regnum = regnum;
766 value_bytes_copied < len;
767 (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
768 ++local_regnum))
769 {
770 get_saved_register (value_bytes + value_bytes_copied,
771 &optim,
772 &addr,
773 frame,
774 local_regnum,
775 &lval);
776
777 if (regnum == local_regnum)
778 first_addr = addr;
779 if (lval == lval_register)
780 reg_stor++;
781 else
782 {
783 mem_stor++;
784
785 mem_tracking =
786 (mem_tracking
787 && (regnum == local_regnum
788 || addr == last_addr));
789 }
790 last_addr = addr;
791 }
792
793 if ((reg_stor && mem_stor)
794 || (mem_stor && !mem_tracking))
795 /* Mixed storage; all of the hassle we just went through was
796 for some good purpose. */
797 {
798 VALUE_LVAL (v) = lval_reg_frame_relative;
799 VALUE_FRAME (v) = FRAME_FP (frame);
800 VALUE_FRAME_REGNUM (v) = regnum;
801 }
802 else if (mem_stor)
803 {
804 VALUE_LVAL (v) = lval_memory;
805 VALUE_ADDRESS (v) = first_addr;
806 }
807 else if (reg_stor)
808 {
809 VALUE_LVAL (v) = lval_register;
810 VALUE_ADDRESS (v) = first_addr;
811 }
812 else
813 fatal ("value_from_register: Value not stored anywhere!");
814
815 VALUE_OPTIMIZED_OUT (v) = optim;
816
817 /* Any structure stored in more than one register will always be
818 an integral number of registers. Otherwise, you'd need to do
819 some fiddling with the last register copied here for little
820 endian machines. */
821
822 /* Copy into the contents section of the value. */
823 memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
824
825 /* Finally do any conversion necessary when extracting this
826 type from more than one register. */
827 #ifdef REGISTER_CONVERT_TO_TYPE
828 REGISTER_CONVERT_TO_TYPE(regnum, type, VALUE_CONTENTS_RAW(v));
829 #endif
830 return v;
831 }
832
833 /* Data is completely contained within a single register. Locate the
834 register's contents in a real register or in core;
835 read the data in raw format. */
836
837 get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
838 VALUE_OPTIMIZED_OUT (v) = optim;
839 VALUE_LVAL (v) = lval;
840 VALUE_ADDRESS (v) = addr;
841
842 /* Convert the raw contents to virtual contents.
843 (Just copy them if the formats are the same.) */
844
845 REGISTER_CONVERT_TO_VIRTUAL (regnum, raw_buffer, virtual_buffer);
846
847 if (REGISTER_CONVERTIBLE (regnum))
848 {
849 /* When the raw and virtual formats differ, the virtual format
850 corresponds to a specific data type. If we want that type,
851 copy the data into the value.
852 Otherwise, do a type-conversion. */
853
854 if (type != REGISTER_VIRTUAL_TYPE (regnum))
855 {
856 /* eg a variable of type `float' in a 68881 register
857 with raw type `extended' and virtual type `double'.
858 Fetch it as a `double' and then convert to `float'. */
859 v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
860 memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len);
861 v = value_cast (type, v);
862 }
863 else
864 memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len);
865 }
866 else
867 {
868 /* Raw and virtual formats are the same for this register. */
869
870 #if TARGET_BYTE_ORDER == BIG_ENDIAN
871 if (len < REGISTER_RAW_SIZE (regnum))
872 {
873 /* Big-endian, and we want less than full size. */
874 VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
875 }
876 #endif
877
878 memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer + VALUE_OFFSET (v), len);
879 }
880
881 return v;
882 }
883 \f
884 /* Given a struct symbol for a variable or function,
885 and a stack frame id,
886 return a (pointer to a) struct value containing the properly typed
887 address. */
888
889 value
890 locate_var_value (var, frame)
891 register struct symbol *var;
892 FRAME frame;
893 {
894 CORE_ADDR addr = 0;
895 struct type *type = SYMBOL_TYPE (var);
896 value lazy_value;
897
898 /* Evaluate it first; if the result is a memory address, we're fine.
899 Lazy evaluation pays off here. */
900
901 lazy_value = read_var_value (var, frame);
902 if (lazy_value == 0)
903 error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
904
905 if (VALUE_LAZY (lazy_value)
906 || TYPE_CODE (type) == TYPE_CODE_FUNC)
907 {
908 addr = VALUE_ADDRESS (lazy_value);
909 return value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
910 }
911
912 /* Not a memory address; check what the problem was. */
913 switch (VALUE_LVAL (lazy_value))
914 {
915 case lval_register:
916 case lval_reg_frame_relative:
917 error ("Address requested for identifier \"%s\" which is in a register.",
918 SYMBOL_SOURCE_NAME (var));
919 break;
920
921 default:
922 error ("Can't take address of \"%s\" which isn't an lvalue.",
923 SYMBOL_SOURCE_NAME (var));
924 break;
925 }
926 return 0; /* For lint -- never reached */
927 }
This page took 0.047651 seconds and 4 git commands to generate.