Use sigsetjmp/siglongjmp in opcodes
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "gdb_assert.h"
27 #include <string.h>
28 #include "user-regs.h"
29 #include "gdb_obstack.h"
30 #include "dummy-frame.h"
31 #include "sentinel-frame.h"
32 #include "gdbcore.h"
33 #include "annotate.h"
34 #include "language.h"
35 #include "frame-unwind.h"
36 #include "frame-base.h"
37 #include "command.h"
38 #include "gdbcmd.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "exceptions.h"
42 #include "gdbthread.h"
43 #include "block.h"
44 #include "inline-frame.h"
45 #include "tracepoint.h"
46 #include "hashtab.h"
47 #include "valprint.h"
48
49 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
50 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
51
52 /* Status of some values cached in the frame_info object. */
53
54 enum cached_copy_status
55 {
56 /* Value is unknown. */
57 CC_UNKNOWN,
58
59 /* We have a value. */
60 CC_VALUE,
61
62 /* Value was not saved. */
63 CC_NOT_SAVED,
64
65 /* Value is unavailable. */
66 CC_UNAVAILABLE
67 };
68
69 /* We keep a cache of stack frames, each of which is a "struct
70 frame_info". The innermost one gets allocated (in
71 wait_for_inferior) each time the inferior stops; current_frame
72 points to it. Additional frames get allocated (in get_prev_frame)
73 as needed, and are chained through the next and prev fields. Any
74 time that the frame cache becomes invalid (most notably when we
75 execute something, but also if we change how we interpret the
76 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
77 which reads new symbols)), we should call reinit_frame_cache. */
78
79 struct frame_info
80 {
81 /* Level of this frame. The inner-most (youngest) frame is at level
82 0. As you move towards the outer-most (oldest) frame, the level
83 increases. This is a cached value. It could just as easily be
84 computed by counting back from the selected frame to the inner
85 most frame. */
86 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
87 reserved to indicate a bogus frame - one that has been created
88 just to keep GDB happy (GDB always needs a frame). For the
89 moment leave this as speculation. */
90 int level;
91
92 /* The frame's program space. */
93 struct program_space *pspace;
94
95 /* The frame's address space. */
96 struct address_space *aspace;
97
98 /* The frame's low-level unwinder and corresponding cache. The
99 low-level unwinder is responsible for unwinding register values
100 for the previous frame. The low-level unwind methods are
101 selected based on the presence, or otherwise, of register unwind
102 information such as CFI. */
103 void *prologue_cache;
104 const struct frame_unwind *unwind;
105
106 /* Cached copy of the previous frame's architecture. */
107 struct
108 {
109 int p;
110 struct gdbarch *arch;
111 } prev_arch;
112
113 /* Cached copy of the previous frame's resume address. */
114 struct {
115 enum cached_copy_status status;
116 CORE_ADDR value;
117 } prev_pc;
118
119 /* Cached copy of the previous frame's function address. */
120 struct
121 {
122 CORE_ADDR addr;
123 int p;
124 } prev_func;
125
126 /* This frame's ID. */
127 struct
128 {
129 int p;
130 struct frame_id value;
131 } this_id;
132
133 /* The frame's high-level base methods, and corresponding cache.
134 The high level base methods are selected based on the frame's
135 debug info. */
136 const struct frame_base *base;
137 void *base_cache;
138
139 /* Pointers to the next (down, inner, younger) and previous (up,
140 outer, older) frame_info's in the frame cache. */
141 struct frame_info *next; /* down, inner, younger */
142 int prev_p;
143 struct frame_info *prev; /* up, outer, older */
144
145 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
146 could. Only valid when PREV_P is set. */
147 enum unwind_stop_reason stop_reason;
148 };
149
150 /* A frame stash used to speed up frame lookups. Create a hash table
151 to stash frames previously accessed from the frame cache for
152 quicker subsequent retrieval. The hash table is emptied whenever
153 the frame cache is invalidated. */
154
155 static htab_t frame_stash;
156
157 /* Internal function to calculate a hash from the frame_id addresses,
158 using as many valid addresses as possible. Frames below level 0
159 are not stored in the hash table. */
160
161 static hashval_t
162 frame_addr_hash (const void *ap)
163 {
164 const struct frame_info *frame = ap;
165 const struct frame_id f_id = frame->this_id.value;
166 hashval_t hash = 0;
167
168 gdb_assert (f_id.stack_status != FID_STACK_INVALID
169 || f_id.code_addr_p
170 || f_id.special_addr_p);
171
172 if (f_id.stack_status == FID_STACK_VALID)
173 hash = iterative_hash (&f_id.stack_addr,
174 sizeof (f_id.stack_addr), hash);
175 if (f_id.code_addr_p)
176 hash = iterative_hash (&f_id.code_addr,
177 sizeof (f_id.code_addr), hash);
178 if (f_id.special_addr_p)
179 hash = iterative_hash (&f_id.special_addr,
180 sizeof (f_id.special_addr), hash);
181
182 return hash;
183 }
184
185 /* Internal equality function for the hash table. This function
186 defers equality operations to frame_id_eq. */
187
188 static int
189 frame_addr_hash_eq (const void *a, const void *b)
190 {
191 const struct frame_info *f_entry = a;
192 const struct frame_info *f_element = b;
193
194 return frame_id_eq (f_entry->this_id.value,
195 f_element->this_id.value);
196 }
197
198 /* Internal function to create the frame_stash hash table. 100 seems
199 to be a good compromise to start the hash table at. */
200
201 static void
202 frame_stash_create (void)
203 {
204 frame_stash = htab_create (100,
205 frame_addr_hash,
206 frame_addr_hash_eq,
207 NULL);
208 }
209
210 /* Internal function to add a frame to the frame_stash hash table.
211 Returns false if a frame with the same ID was already stashed, true
212 otherwise. */
213
214 static int
215 frame_stash_add (struct frame_info *frame)
216 {
217 struct frame_info **slot;
218
219 /* Do not try to stash the sentinel frame. */
220 gdb_assert (frame->level >= 0);
221
222 slot = (struct frame_info **) htab_find_slot (frame_stash,
223 frame,
224 INSERT);
225
226 /* If we already have a frame in the stack with the same id, we
227 either have a stack cycle (corrupted stack?), or some bug
228 elsewhere in GDB. In any case, ignore the duplicate and return
229 an indication to the caller. */
230 if (*slot != NULL)
231 return 0;
232
233 *slot = frame;
234 return 1;
235 }
236
237 /* Internal function to search the frame stash for an entry with the
238 given frame ID. If found, return that frame. Otherwise return
239 NULL. */
240
241 static struct frame_info *
242 frame_stash_find (struct frame_id id)
243 {
244 struct frame_info dummy;
245 struct frame_info *frame;
246
247 dummy.this_id.value = id;
248 frame = htab_find (frame_stash, &dummy);
249 return frame;
250 }
251
252 /* Internal function to invalidate the frame stash by removing all
253 entries in it. This only occurs when the frame cache is
254 invalidated. */
255
256 static void
257 frame_stash_invalidate (void)
258 {
259 htab_empty (frame_stash);
260 }
261
262 /* Flag to control debugging. */
263
264 unsigned int frame_debug;
265 static void
266 show_frame_debug (struct ui_file *file, int from_tty,
267 struct cmd_list_element *c, const char *value)
268 {
269 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
270 }
271
272 /* Flag to indicate whether backtraces should stop at main et.al. */
273
274 static int backtrace_past_main;
275 static void
276 show_backtrace_past_main (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278 {
279 fprintf_filtered (file,
280 _("Whether backtraces should "
281 "continue past \"main\" is %s.\n"),
282 value);
283 }
284
285 static int backtrace_past_entry;
286 static void
287 show_backtrace_past_entry (struct ui_file *file, int from_tty,
288 struct cmd_list_element *c, const char *value)
289 {
290 fprintf_filtered (file, _("Whether backtraces should continue past the "
291 "entry point of a program is %s.\n"),
292 value);
293 }
294
295 static unsigned int backtrace_limit = UINT_MAX;
296 static void
297 show_backtrace_limit (struct ui_file *file, int from_tty,
298 struct cmd_list_element *c, const char *value)
299 {
300 fprintf_filtered (file,
301 _("An upper bound on the number "
302 "of backtrace levels is %s.\n"),
303 value);
304 }
305
306
307 static void
308 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
309 {
310 if (p)
311 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
312 else
313 fprintf_unfiltered (file, "!%s", name);
314 }
315
316 void
317 fprint_frame_id (struct ui_file *file, struct frame_id id)
318 {
319 fprintf_unfiltered (file, "{");
320
321 if (id.stack_status == FID_STACK_INVALID)
322 fprintf_unfiltered (file, "!stack");
323 else if (id.stack_status == FID_STACK_UNAVAILABLE)
324 fprintf_unfiltered (file, "stack=<unavailable>");
325 else
326 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
327 fprintf_unfiltered (file, ",");
328
329 fprint_field (file, "code", id.code_addr_p, id.code_addr);
330 fprintf_unfiltered (file, ",");
331
332 fprint_field (file, "special", id.special_addr_p, id.special_addr);
333
334 if (id.artificial_depth)
335 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
336
337 fprintf_unfiltered (file, "}");
338 }
339
340 static void
341 fprint_frame_type (struct ui_file *file, enum frame_type type)
342 {
343 switch (type)
344 {
345 case NORMAL_FRAME:
346 fprintf_unfiltered (file, "NORMAL_FRAME");
347 return;
348 case DUMMY_FRAME:
349 fprintf_unfiltered (file, "DUMMY_FRAME");
350 return;
351 case INLINE_FRAME:
352 fprintf_unfiltered (file, "INLINE_FRAME");
353 return;
354 case TAILCALL_FRAME:
355 fprintf_unfiltered (file, "TAILCALL_FRAME");
356 return;
357 case SIGTRAMP_FRAME:
358 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
359 return;
360 case ARCH_FRAME:
361 fprintf_unfiltered (file, "ARCH_FRAME");
362 return;
363 case SENTINEL_FRAME:
364 fprintf_unfiltered (file, "SENTINEL_FRAME");
365 return;
366 default:
367 fprintf_unfiltered (file, "<unknown type>");
368 return;
369 };
370 }
371
372 static void
373 fprint_frame (struct ui_file *file, struct frame_info *fi)
374 {
375 if (fi == NULL)
376 {
377 fprintf_unfiltered (file, "<NULL frame>");
378 return;
379 }
380 fprintf_unfiltered (file, "{");
381 fprintf_unfiltered (file, "level=%d", fi->level);
382 fprintf_unfiltered (file, ",");
383 fprintf_unfiltered (file, "type=");
384 if (fi->unwind != NULL)
385 fprint_frame_type (file, fi->unwind->type);
386 else
387 fprintf_unfiltered (file, "<unknown>");
388 fprintf_unfiltered (file, ",");
389 fprintf_unfiltered (file, "unwind=");
390 if (fi->unwind != NULL)
391 gdb_print_host_address (fi->unwind, file);
392 else
393 fprintf_unfiltered (file, "<unknown>");
394 fprintf_unfiltered (file, ",");
395 fprintf_unfiltered (file, "pc=");
396 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
397 fprintf_unfiltered (file, "<unknown>");
398 else if (fi->next->prev_pc.status == CC_VALUE)
399 fprintf_unfiltered (file, "%s",
400 hex_string (fi->next->prev_pc.value));
401 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
402 val_print_not_saved (file);
403 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
404 val_print_unavailable (file);
405 fprintf_unfiltered (file, ",");
406 fprintf_unfiltered (file, "id=");
407 if (fi->this_id.p)
408 fprint_frame_id (file, fi->this_id.value);
409 else
410 fprintf_unfiltered (file, "<unknown>");
411 fprintf_unfiltered (file, ",");
412 fprintf_unfiltered (file, "func=");
413 if (fi->next != NULL && fi->next->prev_func.p)
414 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
415 else
416 fprintf_unfiltered (file, "<unknown>");
417 fprintf_unfiltered (file, "}");
418 }
419
420 /* Given FRAME, return the enclosing frame as found in real frames read-in from
421 inferior memory. Skip any previous frames which were made up by GDB.
422 Return the original frame if no immediate previous frames exist. */
423
424 static struct frame_info *
425 skip_artificial_frames (struct frame_info *frame)
426 {
427 /* Note we use get_prev_frame_always, and not get_prev_frame. The
428 latter will truncate the frame chain, leading to this function
429 unintentionally returning a null_frame_id (e.g., when the user
430 sets a backtrace limit). This is safe, because as these frames
431 are made up by GDB, there must be a real frame in the chain
432 below. */
433 while (get_frame_type (frame) == INLINE_FRAME
434 || get_frame_type (frame) == TAILCALL_FRAME)
435 frame = get_prev_frame_always (frame);
436
437 return frame;
438 }
439
440 /* Compute the frame's uniq ID that can be used to, later, re-find the
441 frame. */
442
443 static void
444 compute_frame_id (struct frame_info *fi)
445 {
446 gdb_assert (!fi->this_id.p);
447
448 if (frame_debug)
449 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
450 fi->level);
451 /* Find the unwinder. */
452 if (fi->unwind == NULL)
453 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
454 /* Find THIS frame's ID. */
455 /* Default to outermost if no ID is found. */
456 fi->this_id.value = outer_frame_id;
457 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
458 gdb_assert (frame_id_p (fi->this_id.value));
459 fi->this_id.p = 1;
460 if (frame_debug)
461 {
462 fprintf_unfiltered (gdb_stdlog, "-> ");
463 fprint_frame_id (gdb_stdlog, fi->this_id.value);
464 fprintf_unfiltered (gdb_stdlog, " }\n");
465 }
466 }
467
468 /* Return a frame uniq ID that can be used to, later, re-find the
469 frame. */
470
471 struct frame_id
472 get_frame_id (struct frame_info *fi)
473 {
474 if (fi == NULL)
475 return null_frame_id;
476
477 gdb_assert (fi->this_id.p);
478 return fi->this_id.value;
479 }
480
481 struct frame_id
482 get_stack_frame_id (struct frame_info *next_frame)
483 {
484 return get_frame_id (skip_artificial_frames (next_frame));
485 }
486
487 struct frame_id
488 frame_unwind_caller_id (struct frame_info *next_frame)
489 {
490 struct frame_info *this_frame;
491
492 /* Use get_prev_frame_always, and not get_prev_frame. The latter
493 will truncate the frame chain, leading to this function
494 unintentionally returning a null_frame_id (e.g., when a caller
495 requests the frame ID of "main()"s caller. */
496
497 next_frame = skip_artificial_frames (next_frame);
498 this_frame = get_prev_frame_always (next_frame);
499 if (this_frame)
500 return get_frame_id (skip_artificial_frames (this_frame));
501 else
502 return null_frame_id;
503 }
504
505 const struct frame_id null_frame_id; /* All zeros. */
506 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
507
508 struct frame_id
509 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
510 CORE_ADDR special_addr)
511 {
512 struct frame_id id = null_frame_id;
513
514 id.stack_addr = stack_addr;
515 id.stack_status = FID_STACK_VALID;
516 id.code_addr = code_addr;
517 id.code_addr_p = 1;
518 id.special_addr = special_addr;
519 id.special_addr_p = 1;
520 return id;
521 }
522
523 /* See frame.h. */
524
525 struct frame_id
526 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
527 {
528 struct frame_id id = null_frame_id;
529
530 id.stack_status = FID_STACK_UNAVAILABLE;
531 id.code_addr = code_addr;
532 id.code_addr_p = 1;
533 return id;
534 }
535
536 /* See frame.h. */
537
538 struct frame_id
539 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
540 CORE_ADDR special_addr)
541 {
542 struct frame_id id = null_frame_id;
543
544 id.stack_status = FID_STACK_UNAVAILABLE;
545 id.code_addr = code_addr;
546 id.code_addr_p = 1;
547 id.special_addr = special_addr;
548 id.special_addr_p = 1;
549 return id;
550 }
551
552 struct frame_id
553 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
554 {
555 struct frame_id id = null_frame_id;
556
557 id.stack_addr = stack_addr;
558 id.stack_status = FID_STACK_VALID;
559 id.code_addr = code_addr;
560 id.code_addr_p = 1;
561 return id;
562 }
563
564 struct frame_id
565 frame_id_build_wild (CORE_ADDR stack_addr)
566 {
567 struct frame_id id = null_frame_id;
568
569 id.stack_addr = stack_addr;
570 id.stack_status = FID_STACK_VALID;
571 return id;
572 }
573
574 int
575 frame_id_p (struct frame_id l)
576 {
577 int p;
578
579 /* The frame is valid iff it has a valid stack address. */
580 p = l.stack_status != FID_STACK_INVALID;
581 /* outer_frame_id is also valid. */
582 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
583 p = 1;
584 if (frame_debug)
585 {
586 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
587 fprint_frame_id (gdb_stdlog, l);
588 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
589 }
590 return p;
591 }
592
593 int
594 frame_id_artificial_p (struct frame_id l)
595 {
596 if (!frame_id_p (l))
597 return 0;
598
599 return (l.artificial_depth != 0);
600 }
601
602 int
603 frame_id_eq (struct frame_id l, struct frame_id r)
604 {
605 int eq;
606
607 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
608 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
609 /* The outermost frame marker is equal to itself. This is the
610 dodgy thing about outer_frame_id, since between execution steps
611 we might step into another function - from which we can't
612 unwind either. More thought required to get rid of
613 outer_frame_id. */
614 eq = 1;
615 else if (l.stack_status == FID_STACK_INVALID
616 || l.stack_status == FID_STACK_INVALID)
617 /* Like a NaN, if either ID is invalid, the result is false.
618 Note that a frame ID is invalid iff it is the null frame ID. */
619 eq = 0;
620 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
621 /* If .stack addresses are different, the frames are different. */
622 eq = 0;
623 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
624 /* An invalid code addr is a wild card. If .code addresses are
625 different, the frames are different. */
626 eq = 0;
627 else if (l.special_addr_p && r.special_addr_p
628 && l.special_addr != r.special_addr)
629 /* An invalid special addr is a wild card (or unused). Otherwise
630 if special addresses are different, the frames are different. */
631 eq = 0;
632 else if (l.artificial_depth != r.artificial_depth)
633 /* If artifical depths are different, the frames must be different. */
634 eq = 0;
635 else
636 /* Frames are equal. */
637 eq = 1;
638
639 if (frame_debug)
640 {
641 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
642 fprint_frame_id (gdb_stdlog, l);
643 fprintf_unfiltered (gdb_stdlog, ",r=");
644 fprint_frame_id (gdb_stdlog, r);
645 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
646 }
647 return eq;
648 }
649
650 /* Safety net to check whether frame ID L should be inner to
651 frame ID R, according to their stack addresses.
652
653 This method cannot be used to compare arbitrary frames, as the
654 ranges of valid stack addresses may be discontiguous (e.g. due
655 to sigaltstack).
656
657 However, it can be used as safety net to discover invalid frame
658 IDs in certain circumstances. Assuming that NEXT is the immediate
659 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
660
661 * The stack address of NEXT must be inner-than-or-equal to the stack
662 address of THIS.
663
664 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
665 error has occurred.
666
667 * If NEXT and THIS have different stack addresses, no other frame
668 in the frame chain may have a stack address in between.
669
670 Therefore, if frame_id_inner (TEST, THIS) holds, but
671 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
672 to a valid frame in the frame chain.
673
674 The sanity checks above cannot be performed when a SIGTRAMP frame
675 is involved, because signal handlers might be executed on a different
676 stack than the stack used by the routine that caused the signal
677 to be raised. This can happen for instance when a thread exceeds
678 its maximum stack size. In this case, certain compilers implement
679 a stack overflow strategy that cause the handler to be run on a
680 different stack. */
681
682 static int
683 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
684 {
685 int inner;
686
687 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
688 /* Like NaN, any operation involving an invalid ID always fails.
689 Likewise if either ID has an unavailable stack address. */
690 inner = 0;
691 else if (l.artificial_depth > r.artificial_depth
692 && l.stack_addr == r.stack_addr
693 && l.code_addr_p == r.code_addr_p
694 && l.special_addr_p == r.special_addr_p
695 && l.special_addr == r.special_addr)
696 {
697 /* Same function, different inlined functions. */
698 struct block *lb, *rb;
699
700 gdb_assert (l.code_addr_p && r.code_addr_p);
701
702 lb = block_for_pc (l.code_addr);
703 rb = block_for_pc (r.code_addr);
704
705 if (lb == NULL || rb == NULL)
706 /* Something's gone wrong. */
707 inner = 0;
708 else
709 /* This will return true if LB and RB are the same block, or
710 if the block with the smaller depth lexically encloses the
711 block with the greater depth. */
712 inner = contained_in (lb, rb);
713 }
714 else
715 /* Only return non-zero when strictly inner than. Note that, per
716 comment in "frame.h", there is some fuzz here. Frameless
717 functions are not strictly inner than (same .stack but
718 different .code and/or .special address). */
719 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
720 if (frame_debug)
721 {
722 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
723 fprint_frame_id (gdb_stdlog, l);
724 fprintf_unfiltered (gdb_stdlog, ",r=");
725 fprint_frame_id (gdb_stdlog, r);
726 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
727 }
728 return inner;
729 }
730
731 struct frame_info *
732 frame_find_by_id (struct frame_id id)
733 {
734 struct frame_info *frame, *prev_frame;
735
736 /* ZERO denotes the null frame, let the caller decide what to do
737 about it. Should it instead return get_current_frame()? */
738 if (!frame_id_p (id))
739 return NULL;
740
741 /* Try using the frame stash first. Finding it there removes the need
742 to perform the search by looping over all frames, which can be very
743 CPU-intensive if the number of frames is very high (the loop is O(n)
744 and get_prev_frame performs a series of checks that are relatively
745 expensive). This optimization is particularly useful when this function
746 is called from another function (such as value_fetch_lazy, case
747 VALUE_LVAL (val) == lval_register) which already loops over all frames,
748 making the overall behavior O(n^2). */
749 frame = frame_stash_find (id);
750 if (frame)
751 return frame;
752
753 for (frame = get_current_frame (); ; frame = prev_frame)
754 {
755 struct frame_id this = get_frame_id (frame);
756
757 if (frame_id_eq (id, this))
758 /* An exact match. */
759 return frame;
760
761 prev_frame = get_prev_frame (frame);
762 if (!prev_frame)
763 return NULL;
764
765 /* As a safety net to avoid unnecessary backtracing while trying
766 to find an invalid ID, we check for a common situation where
767 we can detect from comparing stack addresses that no other
768 frame in the current frame chain can have this ID. See the
769 comment at frame_id_inner for details. */
770 if (get_frame_type (frame) == NORMAL_FRAME
771 && !frame_id_inner (get_frame_arch (frame), id, this)
772 && frame_id_inner (get_frame_arch (prev_frame), id,
773 get_frame_id (prev_frame)))
774 return NULL;
775 }
776 return NULL;
777 }
778
779 static CORE_ADDR
780 frame_unwind_pc (struct frame_info *this_frame)
781 {
782 if (this_frame->prev_pc.status == CC_UNKNOWN)
783 {
784 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
785 {
786 volatile struct gdb_exception ex;
787 struct gdbarch *prev_gdbarch;
788 CORE_ADDR pc = 0;
789
790 /* The right way. The `pure' way. The one true way. This
791 method depends solely on the register-unwind code to
792 determine the value of registers in THIS frame, and hence
793 the value of this frame's PC (resume address). A typical
794 implementation is no more than:
795
796 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
797 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
798
799 Note: this method is very heavily dependent on a correct
800 register-unwind implementation, it pays to fix that
801 method first; this method is frame type agnostic, since
802 it only deals with register values, it works with any
803 frame. This is all in stark contrast to the old
804 FRAME_SAVED_PC which would try to directly handle all the
805 different ways that a PC could be unwound. */
806 prev_gdbarch = frame_unwind_arch (this_frame);
807
808 TRY_CATCH (ex, RETURN_MASK_ERROR)
809 {
810 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
811 }
812 if (ex.reason < 0)
813 {
814 if (ex.error == NOT_AVAILABLE_ERROR)
815 {
816 this_frame->prev_pc.status = CC_UNAVAILABLE;
817
818 if (frame_debug)
819 fprintf_unfiltered (gdb_stdlog,
820 "{ frame_unwind_pc (this_frame=%d)"
821 " -> <unavailable> }\n",
822 this_frame->level);
823 }
824 else if (ex.error == OPTIMIZED_OUT_ERROR)
825 {
826 this_frame->prev_pc.status = CC_NOT_SAVED;
827
828 if (frame_debug)
829 fprintf_unfiltered (gdb_stdlog,
830 "{ frame_unwind_pc (this_frame=%d)"
831 " -> <not saved> }\n",
832 this_frame->level);
833 }
834 else
835 throw_exception (ex);
836 }
837 else
838 {
839 this_frame->prev_pc.value = pc;
840 this_frame->prev_pc.status = CC_VALUE;
841 if (frame_debug)
842 fprintf_unfiltered (gdb_stdlog,
843 "{ frame_unwind_pc (this_frame=%d) "
844 "-> %s }\n",
845 this_frame->level,
846 hex_string (this_frame->prev_pc.value));
847 }
848 }
849 else
850 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
851 }
852
853 if (this_frame->prev_pc.status == CC_VALUE)
854 return this_frame->prev_pc.value;
855 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
856 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
857 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
858 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
859 else
860 internal_error (__FILE__, __LINE__,
861 "unexpected prev_pc status: %d",
862 (int) this_frame->prev_pc.status);
863 }
864
865 CORE_ADDR
866 frame_unwind_caller_pc (struct frame_info *this_frame)
867 {
868 return frame_unwind_pc (skip_artificial_frames (this_frame));
869 }
870
871 int
872 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
873 {
874 struct frame_info *next_frame = this_frame->next;
875
876 if (!next_frame->prev_func.p)
877 {
878 CORE_ADDR addr_in_block;
879
880 /* Make certain that this, and not the adjacent, function is
881 found. */
882 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
883 {
884 next_frame->prev_func.p = -1;
885 if (frame_debug)
886 fprintf_unfiltered (gdb_stdlog,
887 "{ get_frame_func (this_frame=%d)"
888 " -> unavailable }\n",
889 this_frame->level);
890 }
891 else
892 {
893 next_frame->prev_func.p = 1;
894 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
895 if (frame_debug)
896 fprintf_unfiltered (gdb_stdlog,
897 "{ get_frame_func (this_frame=%d) -> %s }\n",
898 this_frame->level,
899 hex_string (next_frame->prev_func.addr));
900 }
901 }
902
903 if (next_frame->prev_func.p < 0)
904 {
905 *pc = -1;
906 return 0;
907 }
908 else
909 {
910 *pc = next_frame->prev_func.addr;
911 return 1;
912 }
913 }
914
915 CORE_ADDR
916 get_frame_func (struct frame_info *this_frame)
917 {
918 CORE_ADDR pc;
919
920 if (!get_frame_func_if_available (this_frame, &pc))
921 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
922
923 return pc;
924 }
925
926 static enum register_status
927 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
928 {
929 if (!deprecated_frame_register_read (src, regnum, buf))
930 return REG_UNAVAILABLE;
931 else
932 return REG_VALID;
933 }
934
935 struct regcache *
936 frame_save_as_regcache (struct frame_info *this_frame)
937 {
938 struct address_space *aspace = get_frame_address_space (this_frame);
939 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
940 aspace);
941 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
942
943 regcache_save (regcache, do_frame_register_read, this_frame);
944 discard_cleanups (cleanups);
945 return regcache;
946 }
947
948 void
949 frame_pop (struct frame_info *this_frame)
950 {
951 struct frame_info *prev_frame;
952 struct regcache *scratch;
953 struct cleanup *cleanups;
954
955 if (get_frame_type (this_frame) == DUMMY_FRAME)
956 {
957 /* Popping a dummy frame involves restoring more than just registers.
958 dummy_frame_pop does all the work. */
959 dummy_frame_pop (get_frame_id (this_frame));
960 return;
961 }
962
963 /* Ensure that we have a frame to pop to. */
964 prev_frame = get_prev_frame_always (this_frame);
965
966 if (!prev_frame)
967 error (_("Cannot pop the initial frame."));
968
969 /* Ignore TAILCALL_FRAME type frames, they were executed already before
970 entering THISFRAME. */
971 while (get_frame_type (prev_frame) == TAILCALL_FRAME)
972 prev_frame = get_prev_frame (prev_frame);
973
974 /* Make a copy of all the register values unwound from this frame.
975 Save them in a scratch buffer so that there isn't a race between
976 trying to extract the old values from the current regcache while
977 at the same time writing new values into that same cache. */
978 scratch = frame_save_as_regcache (prev_frame);
979 cleanups = make_cleanup_regcache_xfree (scratch);
980
981 /* FIXME: cagney/2003-03-16: It should be possible to tell the
982 target's register cache that it is about to be hit with a burst
983 register transfer and that the sequence of register writes should
984 be batched. The pair target_prepare_to_store() and
985 target_store_registers() kind of suggest this functionality.
986 Unfortunately, they don't implement it. Their lack of a formal
987 definition can lead to targets writing back bogus values
988 (arguably a bug in the target code mind). */
989 /* Now copy those saved registers into the current regcache.
990 Here, regcache_cpy() calls regcache_restore(). */
991 regcache_cpy (get_current_regcache (), scratch);
992 do_cleanups (cleanups);
993
994 /* We've made right mess of GDB's local state, just discard
995 everything. */
996 reinit_frame_cache ();
997 }
998
999 void
1000 frame_register_unwind (struct frame_info *frame, int regnum,
1001 int *optimizedp, int *unavailablep,
1002 enum lval_type *lvalp, CORE_ADDR *addrp,
1003 int *realnump, gdb_byte *bufferp)
1004 {
1005 struct value *value;
1006
1007 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1008 that the value proper does not need to be fetched. */
1009 gdb_assert (optimizedp != NULL);
1010 gdb_assert (lvalp != NULL);
1011 gdb_assert (addrp != NULL);
1012 gdb_assert (realnump != NULL);
1013 /* gdb_assert (bufferp != NULL); */
1014
1015 value = frame_unwind_register_value (frame, regnum);
1016
1017 gdb_assert (value != NULL);
1018
1019 *optimizedp = value_optimized_out (value);
1020 *unavailablep = !value_entirely_available (value);
1021 *lvalp = VALUE_LVAL (value);
1022 *addrp = value_address (value);
1023 *realnump = VALUE_REGNUM (value);
1024
1025 if (bufferp)
1026 {
1027 if (!*optimizedp && !*unavailablep)
1028 memcpy (bufferp, value_contents_all (value),
1029 TYPE_LENGTH (value_type (value)));
1030 else
1031 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1032 }
1033
1034 /* Dispose of the new value. This prevents watchpoints from
1035 trying to watch the saved frame pointer. */
1036 release_value (value);
1037 value_free (value);
1038 }
1039
1040 void
1041 frame_register (struct frame_info *frame, int regnum,
1042 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1043 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1044 {
1045 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1046 that the value proper does not need to be fetched. */
1047 gdb_assert (optimizedp != NULL);
1048 gdb_assert (lvalp != NULL);
1049 gdb_assert (addrp != NULL);
1050 gdb_assert (realnump != NULL);
1051 /* gdb_assert (bufferp != NULL); */
1052
1053 /* Obtain the register value by unwinding the register from the next
1054 (more inner frame). */
1055 gdb_assert (frame != NULL && frame->next != NULL);
1056 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1057 lvalp, addrp, realnump, bufferp);
1058 }
1059
1060 void
1061 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1062 {
1063 int optimized;
1064 int unavailable;
1065 CORE_ADDR addr;
1066 int realnum;
1067 enum lval_type lval;
1068
1069 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1070 &lval, &addr, &realnum, buf);
1071
1072 if (optimized)
1073 throw_error (OPTIMIZED_OUT_ERROR,
1074 _("Register %d was not saved"), regnum);
1075 if (unavailable)
1076 throw_error (NOT_AVAILABLE_ERROR,
1077 _("Register %d is not available"), regnum);
1078 }
1079
1080 void
1081 get_frame_register (struct frame_info *frame,
1082 int regnum, gdb_byte *buf)
1083 {
1084 frame_unwind_register (frame->next, regnum, buf);
1085 }
1086
1087 struct value *
1088 frame_unwind_register_value (struct frame_info *frame, int regnum)
1089 {
1090 struct gdbarch *gdbarch;
1091 struct value *value;
1092
1093 gdb_assert (frame != NULL);
1094 gdbarch = frame_unwind_arch (frame);
1095
1096 if (frame_debug)
1097 {
1098 fprintf_unfiltered (gdb_stdlog,
1099 "{ frame_unwind_register_value "
1100 "(frame=%d,regnum=%d(%s),...) ",
1101 frame->level, regnum,
1102 user_reg_map_regnum_to_name (gdbarch, regnum));
1103 }
1104
1105 /* Find the unwinder. */
1106 if (frame->unwind == NULL)
1107 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1108
1109 /* Ask this frame to unwind its register. */
1110 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1111
1112 if (frame_debug)
1113 {
1114 fprintf_unfiltered (gdb_stdlog, "->");
1115 if (value_optimized_out (value))
1116 {
1117 fprintf_unfiltered (gdb_stdlog, " ");
1118 val_print_optimized_out (value, gdb_stdlog);
1119 }
1120 else
1121 {
1122 if (VALUE_LVAL (value) == lval_register)
1123 fprintf_unfiltered (gdb_stdlog, " register=%d",
1124 VALUE_REGNUM (value));
1125 else if (VALUE_LVAL (value) == lval_memory)
1126 fprintf_unfiltered (gdb_stdlog, " address=%s",
1127 paddress (gdbarch,
1128 value_address (value)));
1129 else
1130 fprintf_unfiltered (gdb_stdlog, " computed");
1131
1132 if (value_lazy (value))
1133 fprintf_unfiltered (gdb_stdlog, " lazy");
1134 else
1135 {
1136 int i;
1137 const gdb_byte *buf = value_contents (value);
1138
1139 fprintf_unfiltered (gdb_stdlog, " bytes=");
1140 fprintf_unfiltered (gdb_stdlog, "[");
1141 for (i = 0; i < register_size (gdbarch, regnum); i++)
1142 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1143 fprintf_unfiltered (gdb_stdlog, "]");
1144 }
1145 }
1146
1147 fprintf_unfiltered (gdb_stdlog, " }\n");
1148 }
1149
1150 return value;
1151 }
1152
1153 struct value *
1154 get_frame_register_value (struct frame_info *frame, int regnum)
1155 {
1156 return frame_unwind_register_value (frame->next, regnum);
1157 }
1158
1159 LONGEST
1160 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1161 {
1162 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1163 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1164 int size = register_size (gdbarch, regnum);
1165 gdb_byte buf[MAX_REGISTER_SIZE];
1166
1167 frame_unwind_register (frame, regnum, buf);
1168 return extract_signed_integer (buf, size, byte_order);
1169 }
1170
1171 LONGEST
1172 get_frame_register_signed (struct frame_info *frame, int regnum)
1173 {
1174 return frame_unwind_register_signed (frame->next, regnum);
1175 }
1176
1177 ULONGEST
1178 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1179 {
1180 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1181 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1182 int size = register_size (gdbarch, regnum);
1183 gdb_byte buf[MAX_REGISTER_SIZE];
1184
1185 frame_unwind_register (frame, regnum, buf);
1186 return extract_unsigned_integer (buf, size, byte_order);
1187 }
1188
1189 ULONGEST
1190 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1191 {
1192 return frame_unwind_register_unsigned (frame->next, regnum);
1193 }
1194
1195 int
1196 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1197 ULONGEST *val)
1198 {
1199 struct value *regval = get_frame_register_value (frame, regnum);
1200
1201 if (!value_optimized_out (regval)
1202 && value_entirely_available (regval))
1203 {
1204 struct gdbarch *gdbarch = get_frame_arch (frame);
1205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1206 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1207
1208 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1209 return 1;
1210 }
1211
1212 return 0;
1213 }
1214
1215 void
1216 put_frame_register (struct frame_info *frame, int regnum,
1217 const gdb_byte *buf)
1218 {
1219 struct gdbarch *gdbarch = get_frame_arch (frame);
1220 int realnum;
1221 int optim;
1222 int unavail;
1223 enum lval_type lval;
1224 CORE_ADDR addr;
1225
1226 frame_register (frame, regnum, &optim, &unavail,
1227 &lval, &addr, &realnum, NULL);
1228 if (optim)
1229 error (_("Attempt to assign to a register that was not saved."));
1230 switch (lval)
1231 {
1232 case lval_memory:
1233 {
1234 write_memory (addr, buf, register_size (gdbarch, regnum));
1235 break;
1236 }
1237 case lval_register:
1238 regcache_cooked_write (get_current_regcache (), realnum, buf);
1239 break;
1240 default:
1241 error (_("Attempt to assign to an unmodifiable value."));
1242 }
1243 }
1244
1245 /* This function is deprecated. Use get_frame_register_value instead,
1246 which provides more accurate information.
1247
1248 Find and return the value of REGNUM for the specified stack frame.
1249 The number of bytes copied is REGISTER_SIZE (REGNUM).
1250
1251 Returns 0 if the register value could not be found. */
1252
1253 int
1254 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1255 gdb_byte *myaddr)
1256 {
1257 int optimized;
1258 int unavailable;
1259 enum lval_type lval;
1260 CORE_ADDR addr;
1261 int realnum;
1262
1263 frame_register (frame, regnum, &optimized, &unavailable,
1264 &lval, &addr, &realnum, myaddr);
1265
1266 return !optimized && !unavailable;
1267 }
1268
1269 int
1270 get_frame_register_bytes (struct frame_info *frame, int regnum,
1271 CORE_ADDR offset, int len, gdb_byte *myaddr,
1272 int *optimizedp, int *unavailablep)
1273 {
1274 struct gdbarch *gdbarch = get_frame_arch (frame);
1275 int i;
1276 int maxsize;
1277 int numregs;
1278
1279 /* Skip registers wholly inside of OFFSET. */
1280 while (offset >= register_size (gdbarch, regnum))
1281 {
1282 offset -= register_size (gdbarch, regnum);
1283 regnum++;
1284 }
1285
1286 /* Ensure that we will not read beyond the end of the register file.
1287 This can only ever happen if the debug information is bad. */
1288 maxsize = -offset;
1289 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1290 for (i = regnum; i < numregs; i++)
1291 {
1292 int thissize = register_size (gdbarch, i);
1293
1294 if (thissize == 0)
1295 break; /* This register is not available on this architecture. */
1296 maxsize += thissize;
1297 }
1298 if (len > maxsize)
1299 error (_("Bad debug information detected: "
1300 "Attempt to read %d bytes from registers."), len);
1301
1302 /* Copy the data. */
1303 while (len > 0)
1304 {
1305 int curr_len = register_size (gdbarch, regnum) - offset;
1306
1307 if (curr_len > len)
1308 curr_len = len;
1309
1310 if (curr_len == register_size (gdbarch, regnum))
1311 {
1312 enum lval_type lval;
1313 CORE_ADDR addr;
1314 int realnum;
1315
1316 frame_register (frame, regnum, optimizedp, unavailablep,
1317 &lval, &addr, &realnum, myaddr);
1318 if (*optimizedp || *unavailablep)
1319 return 0;
1320 }
1321 else
1322 {
1323 gdb_byte buf[MAX_REGISTER_SIZE];
1324 enum lval_type lval;
1325 CORE_ADDR addr;
1326 int realnum;
1327
1328 frame_register (frame, regnum, optimizedp, unavailablep,
1329 &lval, &addr, &realnum, buf);
1330 if (*optimizedp || *unavailablep)
1331 return 0;
1332 memcpy (myaddr, buf + offset, curr_len);
1333 }
1334
1335 myaddr += curr_len;
1336 len -= curr_len;
1337 offset = 0;
1338 regnum++;
1339 }
1340
1341 *optimizedp = 0;
1342 *unavailablep = 0;
1343 return 1;
1344 }
1345
1346 void
1347 put_frame_register_bytes (struct frame_info *frame, int regnum,
1348 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1349 {
1350 struct gdbarch *gdbarch = get_frame_arch (frame);
1351
1352 /* Skip registers wholly inside of OFFSET. */
1353 while (offset >= register_size (gdbarch, regnum))
1354 {
1355 offset -= register_size (gdbarch, regnum);
1356 regnum++;
1357 }
1358
1359 /* Copy the data. */
1360 while (len > 0)
1361 {
1362 int curr_len = register_size (gdbarch, regnum) - offset;
1363
1364 if (curr_len > len)
1365 curr_len = len;
1366
1367 if (curr_len == register_size (gdbarch, regnum))
1368 {
1369 put_frame_register (frame, regnum, myaddr);
1370 }
1371 else
1372 {
1373 gdb_byte buf[MAX_REGISTER_SIZE];
1374
1375 deprecated_frame_register_read (frame, regnum, buf);
1376 memcpy (buf + offset, myaddr, curr_len);
1377 put_frame_register (frame, regnum, buf);
1378 }
1379
1380 myaddr += curr_len;
1381 len -= curr_len;
1382 offset = 0;
1383 regnum++;
1384 }
1385 }
1386
1387 /* Create a sentinel frame. */
1388
1389 static struct frame_info *
1390 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1391 {
1392 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1393
1394 frame->level = -1;
1395 frame->pspace = pspace;
1396 frame->aspace = get_regcache_aspace (regcache);
1397 /* Explicitly initialize the sentinel frame's cache. Provide it
1398 with the underlying regcache. In the future additional
1399 information, such as the frame's thread will be added. */
1400 frame->prologue_cache = sentinel_frame_cache (regcache);
1401 /* For the moment there is only one sentinel frame implementation. */
1402 frame->unwind = &sentinel_frame_unwind;
1403 /* Link this frame back to itself. The frame is self referential
1404 (the unwound PC is the same as the pc), so make it so. */
1405 frame->next = frame;
1406 /* Make the sentinel frame's ID valid, but invalid. That way all
1407 comparisons with it should fail. */
1408 frame->this_id.p = 1;
1409 frame->this_id.value = null_frame_id;
1410 if (frame_debug)
1411 {
1412 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1413 fprint_frame (gdb_stdlog, frame);
1414 fprintf_unfiltered (gdb_stdlog, " }\n");
1415 }
1416 return frame;
1417 }
1418
1419 /* Info about the innermost stack frame (contents of FP register). */
1420
1421 static struct frame_info *current_frame;
1422
1423 /* Cache for frame addresses already read by gdb. Valid only while
1424 inferior is stopped. Control variables for the frame cache should
1425 be local to this module. */
1426
1427 static struct obstack frame_cache_obstack;
1428
1429 void *
1430 frame_obstack_zalloc (unsigned long size)
1431 {
1432 void *data = obstack_alloc (&frame_cache_obstack, size);
1433
1434 memset (data, 0, size);
1435 return data;
1436 }
1437
1438 /* Return the innermost (currently executing) stack frame. This is
1439 split into two functions. The function unwind_to_current_frame()
1440 is wrapped in catch exceptions so that, even when the unwind of the
1441 sentinel frame fails, the function still returns a stack frame. */
1442
1443 static int
1444 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1445 {
1446 struct frame_info *frame = get_prev_frame (args);
1447
1448 /* A sentinel frame can fail to unwind, e.g., because its PC value
1449 lands in somewhere like start. */
1450 if (frame == NULL)
1451 return 1;
1452 current_frame = frame;
1453 return 0;
1454 }
1455
1456 struct frame_info *
1457 get_current_frame (void)
1458 {
1459 /* First check, and report, the lack of registers. Having GDB
1460 report "No stack!" or "No memory" when the target doesn't even
1461 have registers is very confusing. Besides, "printcmd.exp"
1462 explicitly checks that ``print $pc'' with no registers prints "No
1463 registers". */
1464 if (!target_has_registers)
1465 error (_("No registers."));
1466 if (!target_has_stack)
1467 error (_("No stack."));
1468 if (!target_has_memory)
1469 error (_("No memory."));
1470 /* Traceframes are effectively a substitute for the live inferior. */
1471 if (get_traceframe_number () < 0)
1472 {
1473 if (ptid_equal (inferior_ptid, null_ptid))
1474 error (_("No selected thread."));
1475 if (is_exited (inferior_ptid))
1476 error (_("Invalid selected thread."));
1477 if (is_executing (inferior_ptid))
1478 error (_("Target is executing."));
1479 }
1480
1481 if (current_frame == NULL)
1482 {
1483 struct frame_info *sentinel_frame =
1484 create_sentinel_frame (current_program_space, get_current_regcache ());
1485 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1486 sentinel_frame, RETURN_MASK_ERROR) != 0)
1487 {
1488 /* Oops! Fake a current frame? Is this useful? It has a PC
1489 of zero, for instance. */
1490 current_frame = sentinel_frame;
1491 }
1492 }
1493 return current_frame;
1494 }
1495
1496 /* The "selected" stack frame is used by default for local and arg
1497 access. May be zero, for no selected frame. */
1498
1499 static struct frame_info *selected_frame;
1500
1501 int
1502 has_stack_frames (void)
1503 {
1504 if (!target_has_registers || !target_has_stack || !target_has_memory)
1505 return 0;
1506
1507 /* Traceframes are effectively a substitute for the live inferior. */
1508 if (get_traceframe_number () < 0)
1509 {
1510 /* No current inferior, no frame. */
1511 if (ptid_equal (inferior_ptid, null_ptid))
1512 return 0;
1513
1514 /* Don't try to read from a dead thread. */
1515 if (is_exited (inferior_ptid))
1516 return 0;
1517
1518 /* ... or from a spinning thread. */
1519 if (is_executing (inferior_ptid))
1520 return 0;
1521 }
1522
1523 return 1;
1524 }
1525
1526 /* Return the selected frame. Always non-NULL (unless there isn't an
1527 inferior sufficient for creating a frame) in which case an error is
1528 thrown. */
1529
1530 struct frame_info *
1531 get_selected_frame (const char *message)
1532 {
1533 if (selected_frame == NULL)
1534 {
1535 if (message != NULL && !has_stack_frames ())
1536 error (("%s"), message);
1537 /* Hey! Don't trust this. It should really be re-finding the
1538 last selected frame of the currently selected thread. This,
1539 though, is better than nothing. */
1540 select_frame (get_current_frame ());
1541 }
1542 /* There is always a frame. */
1543 gdb_assert (selected_frame != NULL);
1544 return selected_frame;
1545 }
1546
1547 /* If there is a selected frame, return it. Otherwise, return NULL. */
1548
1549 struct frame_info *
1550 get_selected_frame_if_set (void)
1551 {
1552 return selected_frame;
1553 }
1554
1555 /* This is a variant of get_selected_frame() which can be called when
1556 the inferior does not have a frame; in that case it will return
1557 NULL instead of calling error(). */
1558
1559 struct frame_info *
1560 deprecated_safe_get_selected_frame (void)
1561 {
1562 if (!has_stack_frames ())
1563 return NULL;
1564 return get_selected_frame (NULL);
1565 }
1566
1567 /* Select frame FI (or NULL - to invalidate the current frame). */
1568
1569 void
1570 select_frame (struct frame_info *fi)
1571 {
1572 selected_frame = fi;
1573 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1574 frame is being invalidated. */
1575 if (deprecated_selected_frame_level_changed_hook)
1576 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1577
1578 /* FIXME: kseitz/2002-08-28: It would be nice to call
1579 selected_frame_level_changed_event() right here, but due to limitations
1580 in the current interfaces, we would end up flooding UIs with events
1581 because select_frame() is used extensively internally.
1582
1583 Once we have frame-parameterized frame (and frame-related) commands,
1584 the event notification can be moved here, since this function will only
1585 be called when the user's selected frame is being changed. */
1586
1587 /* Ensure that symbols for this frame are read in. Also, determine the
1588 source language of this frame, and switch to it if desired. */
1589 if (fi)
1590 {
1591 CORE_ADDR pc;
1592
1593 /* We retrieve the frame's symtab by using the frame PC.
1594 However we cannot use the frame PC as-is, because it usually
1595 points to the instruction following the "call", which is
1596 sometimes the first instruction of another function. So we
1597 rely on get_frame_address_in_block() which provides us with a
1598 PC which is guaranteed to be inside the frame's code
1599 block. */
1600 if (get_frame_address_in_block_if_available (fi, &pc))
1601 {
1602 struct symtab *s = find_pc_symtab (pc);
1603
1604 if (s
1605 && s->language != current_language->la_language
1606 && s->language != language_unknown
1607 && language_mode == language_mode_auto)
1608 set_language (s->language);
1609 }
1610 }
1611 }
1612
1613 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1614 Always returns a non-NULL value. */
1615
1616 struct frame_info *
1617 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1618 {
1619 struct frame_info *fi;
1620
1621 if (frame_debug)
1622 {
1623 fprintf_unfiltered (gdb_stdlog,
1624 "{ create_new_frame (addr=%s, pc=%s) ",
1625 hex_string (addr), hex_string (pc));
1626 }
1627
1628 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1629
1630 fi->next = create_sentinel_frame (current_program_space,
1631 get_current_regcache ());
1632
1633 /* Set/update this frame's cached PC value, found in the next frame.
1634 Do this before looking for this frame's unwinder. A sniffer is
1635 very likely to read this, and the corresponding unwinder is
1636 entitled to rely that the PC doesn't magically change. */
1637 fi->next->prev_pc.value = pc;
1638 fi->next->prev_pc.status = CC_VALUE;
1639
1640 /* We currently assume that frame chain's can't cross spaces. */
1641 fi->pspace = fi->next->pspace;
1642 fi->aspace = fi->next->aspace;
1643
1644 /* Select/initialize both the unwind function and the frame's type
1645 based on the PC. */
1646 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1647
1648 fi->this_id.p = 1;
1649 fi->this_id.value = frame_id_build (addr, pc);
1650
1651 if (frame_debug)
1652 {
1653 fprintf_unfiltered (gdb_stdlog, "-> ");
1654 fprint_frame (gdb_stdlog, fi);
1655 fprintf_unfiltered (gdb_stdlog, " }\n");
1656 }
1657
1658 return fi;
1659 }
1660
1661 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1662 innermost frame). Be careful to not fall off the bottom of the
1663 frame chain and onto the sentinel frame. */
1664
1665 struct frame_info *
1666 get_next_frame (struct frame_info *this_frame)
1667 {
1668 if (this_frame->level > 0)
1669 return this_frame->next;
1670 else
1671 return NULL;
1672 }
1673
1674 /* Observer for the target_changed event. */
1675
1676 static void
1677 frame_observer_target_changed (struct target_ops *target)
1678 {
1679 reinit_frame_cache ();
1680 }
1681
1682 /* Flush the entire frame cache. */
1683
1684 void
1685 reinit_frame_cache (void)
1686 {
1687 struct frame_info *fi;
1688
1689 /* Tear down all frame caches. */
1690 for (fi = current_frame; fi != NULL; fi = fi->prev)
1691 {
1692 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1693 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1694 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1695 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1696 }
1697
1698 /* Since we can't really be sure what the first object allocated was. */
1699 obstack_free (&frame_cache_obstack, 0);
1700 obstack_init (&frame_cache_obstack);
1701
1702 if (current_frame != NULL)
1703 annotate_frames_invalid ();
1704
1705 current_frame = NULL; /* Invalidate cache */
1706 select_frame (NULL);
1707 frame_stash_invalidate ();
1708 if (frame_debug)
1709 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1710 }
1711
1712 /* Find where a register is saved (in memory or another register).
1713 The result of frame_register_unwind is just where it is saved
1714 relative to this particular frame. */
1715
1716 static void
1717 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1718 int *optimizedp, enum lval_type *lvalp,
1719 CORE_ADDR *addrp, int *realnump)
1720 {
1721 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1722
1723 while (this_frame != NULL)
1724 {
1725 int unavailable;
1726
1727 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1728 lvalp, addrp, realnump, NULL);
1729
1730 if (*optimizedp)
1731 break;
1732
1733 if (*lvalp != lval_register)
1734 break;
1735
1736 regnum = *realnump;
1737 this_frame = get_next_frame (this_frame);
1738 }
1739 }
1740
1741 /* Get the previous raw frame, and check that it is not identical to
1742 same other frame frame already in the chain. If it is, there is
1743 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1744 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1745 validity tests, that compare THIS_FRAME and the next frame, we do
1746 this right after creating the previous frame, to avoid ever ending
1747 up with two frames with the same id in the frame chain. */
1748
1749 static struct frame_info *
1750 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1751 {
1752 struct frame_info *prev_frame;
1753
1754 prev_frame = get_prev_frame_raw (this_frame);
1755 if (prev_frame == NULL)
1756 return NULL;
1757
1758 compute_frame_id (prev_frame);
1759 if (frame_stash_add (prev_frame))
1760 return prev_frame;
1761
1762 /* Another frame with the same id was already in the stash. We just
1763 detected a cycle. */
1764 if (frame_debug)
1765 {
1766 fprintf_unfiltered (gdb_stdlog, "-> ");
1767 fprint_frame (gdb_stdlog, NULL);
1768 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1769 }
1770 this_frame->stop_reason = UNWIND_SAME_ID;
1771 /* Unlink. */
1772 prev_frame->next = NULL;
1773 this_frame->prev = NULL;
1774 return NULL;
1775 }
1776
1777 /* Return a "struct frame_info" corresponding to the frame that called
1778 THIS_FRAME. Returns NULL if there is no such frame.
1779
1780 Unlike get_prev_frame, this function always tries to unwind the
1781 frame. */
1782
1783 struct frame_info *
1784 get_prev_frame_always (struct frame_info *this_frame)
1785 {
1786 struct gdbarch *gdbarch;
1787
1788 gdb_assert (this_frame != NULL);
1789 gdbarch = get_frame_arch (this_frame);
1790
1791 if (frame_debug)
1792 {
1793 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1794 if (this_frame != NULL)
1795 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1796 else
1797 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1798 fprintf_unfiltered (gdb_stdlog, ") ");
1799 }
1800
1801 /* Only try to do the unwind once. */
1802 if (this_frame->prev_p)
1803 {
1804 if (frame_debug)
1805 {
1806 fprintf_unfiltered (gdb_stdlog, "-> ");
1807 fprint_frame (gdb_stdlog, this_frame->prev);
1808 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1809 }
1810 return this_frame->prev;
1811 }
1812
1813 /* If the frame unwinder hasn't been selected yet, we must do so
1814 before setting prev_p; otherwise the check for misbehaved
1815 sniffers will think that this frame's sniffer tried to unwind
1816 further (see frame_cleanup_after_sniffer). */
1817 if (this_frame->unwind == NULL)
1818 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1819
1820 this_frame->prev_p = 1;
1821 this_frame->stop_reason = UNWIND_NO_REASON;
1822
1823 /* If we are unwinding from an inline frame, all of the below tests
1824 were already performed when we unwound from the next non-inline
1825 frame. We must skip them, since we can not get THIS_FRAME's ID
1826 until we have unwound all the way down to the previous non-inline
1827 frame. */
1828 if (get_frame_type (this_frame) == INLINE_FRAME)
1829 return get_prev_frame_if_no_cycle (this_frame);
1830
1831 /* Check that this frame is unwindable. If it isn't, don't try to
1832 unwind to the prev frame. */
1833 this_frame->stop_reason
1834 = this_frame->unwind->stop_reason (this_frame,
1835 &this_frame->prologue_cache);
1836
1837 if (this_frame->stop_reason != UNWIND_NO_REASON)
1838 {
1839 if (frame_debug)
1840 {
1841 enum unwind_stop_reason reason = this_frame->stop_reason;
1842
1843 fprintf_unfiltered (gdb_stdlog, "-> ");
1844 fprint_frame (gdb_stdlog, NULL);
1845 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1846 frame_stop_reason_symbol_string (reason));
1847 }
1848 return NULL;
1849 }
1850
1851 /* Check that this frame's ID isn't inner to (younger, below, next)
1852 the next frame. This happens when a frame unwind goes backwards.
1853 This check is valid only if this frame and the next frame are NORMAL.
1854 See the comment at frame_id_inner for details. */
1855 if (get_frame_type (this_frame) == NORMAL_FRAME
1856 && this_frame->next->unwind->type == NORMAL_FRAME
1857 && frame_id_inner (get_frame_arch (this_frame->next),
1858 get_frame_id (this_frame),
1859 get_frame_id (this_frame->next)))
1860 {
1861 CORE_ADDR this_pc_in_block;
1862 struct minimal_symbol *morestack_msym;
1863 const char *morestack_name = NULL;
1864
1865 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1866 this_pc_in_block = get_frame_address_in_block (this_frame);
1867 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1868 if (morestack_msym)
1869 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
1870 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1871 {
1872 if (frame_debug)
1873 {
1874 fprintf_unfiltered (gdb_stdlog, "-> ");
1875 fprint_frame (gdb_stdlog, NULL);
1876 fprintf_unfiltered (gdb_stdlog,
1877 " // this frame ID is inner }\n");
1878 }
1879 this_frame->stop_reason = UNWIND_INNER_ID;
1880 return NULL;
1881 }
1882 }
1883
1884 /* Check that this and the next frame do not unwind the PC register
1885 to the same memory location. If they do, then even though they
1886 have different frame IDs, the new frame will be bogus; two
1887 functions can't share a register save slot for the PC. This can
1888 happen when the prologue analyzer finds a stack adjustment, but
1889 no PC save.
1890
1891 This check does assume that the "PC register" is roughly a
1892 traditional PC, even if the gdbarch_unwind_pc method adjusts
1893 it (we do not rely on the value, only on the unwound PC being
1894 dependent on this value). A potential improvement would be
1895 to have the frame prev_pc method and the gdbarch unwind_pc
1896 method set the same lval and location information as
1897 frame_register_unwind. */
1898 if (this_frame->level > 0
1899 && gdbarch_pc_regnum (gdbarch) >= 0
1900 && get_frame_type (this_frame) == NORMAL_FRAME
1901 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1902 || get_frame_type (this_frame->next) == INLINE_FRAME))
1903 {
1904 int optimized, realnum, nrealnum;
1905 enum lval_type lval, nlval;
1906 CORE_ADDR addr, naddr;
1907
1908 frame_register_unwind_location (this_frame,
1909 gdbarch_pc_regnum (gdbarch),
1910 &optimized, &lval, &addr, &realnum);
1911 frame_register_unwind_location (get_next_frame (this_frame),
1912 gdbarch_pc_regnum (gdbarch),
1913 &optimized, &nlval, &naddr, &nrealnum);
1914
1915 if ((lval == lval_memory && lval == nlval && addr == naddr)
1916 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1917 {
1918 if (frame_debug)
1919 {
1920 fprintf_unfiltered (gdb_stdlog, "-> ");
1921 fprint_frame (gdb_stdlog, NULL);
1922 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1923 }
1924
1925 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1926 this_frame->prev = NULL;
1927 return NULL;
1928 }
1929 }
1930
1931 return get_prev_frame_if_no_cycle (this_frame);
1932 }
1933
1934 /* Construct a new "struct frame_info" and link it previous to
1935 this_frame. */
1936
1937 static struct frame_info *
1938 get_prev_frame_raw (struct frame_info *this_frame)
1939 {
1940 struct frame_info *prev_frame;
1941
1942 /* Allocate the new frame but do not wire it in to the frame chain.
1943 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1944 frame->next to pull some fancy tricks (of course such code is, by
1945 definition, recursive). Try to prevent it.
1946
1947 There is no reason to worry about memory leaks, should the
1948 remainder of the function fail. The allocated memory will be
1949 quickly reclaimed when the frame cache is flushed, and the `we've
1950 been here before' check above will stop repeated memory
1951 allocation calls. */
1952 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1953 prev_frame->level = this_frame->level + 1;
1954
1955 /* For now, assume we don't have frame chains crossing address
1956 spaces. */
1957 prev_frame->pspace = this_frame->pspace;
1958 prev_frame->aspace = this_frame->aspace;
1959
1960 /* Don't yet compute ->unwind (and hence ->type). It is computed
1961 on-demand in get_frame_type, frame_register_unwind, and
1962 get_frame_id. */
1963
1964 /* Don't yet compute the frame's ID. It is computed on-demand by
1965 get_frame_id(). */
1966
1967 /* The unwound frame ID is validate at the start of this function,
1968 as part of the logic to decide if that frame should be further
1969 unwound, and not here while the prev frame is being created.
1970 Doing this makes it possible for the user to examine a frame that
1971 has an invalid frame ID.
1972
1973 Some very old VAX code noted: [...] For the sake of argument,
1974 suppose that the stack is somewhat trashed (which is one reason
1975 that "info frame" exists). So, return 0 (indicating we don't
1976 know the address of the arglist) if we don't know what frame this
1977 frame calls. */
1978
1979 /* Link it in. */
1980 this_frame->prev = prev_frame;
1981 prev_frame->next = this_frame;
1982
1983 if (frame_debug)
1984 {
1985 fprintf_unfiltered (gdb_stdlog, "-> ");
1986 fprint_frame (gdb_stdlog, prev_frame);
1987 fprintf_unfiltered (gdb_stdlog, " }\n");
1988 }
1989
1990 return prev_frame;
1991 }
1992
1993 /* Debug routine to print a NULL frame being returned. */
1994
1995 static void
1996 frame_debug_got_null_frame (struct frame_info *this_frame,
1997 const char *reason)
1998 {
1999 if (frame_debug)
2000 {
2001 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2002 if (this_frame != NULL)
2003 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2004 else
2005 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2006 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2007 }
2008 }
2009
2010 /* Is this (non-sentinel) frame in the "main"() function? */
2011
2012 static int
2013 inside_main_func (struct frame_info *this_frame)
2014 {
2015 struct bound_minimal_symbol msymbol;
2016 CORE_ADDR maddr;
2017
2018 if (symfile_objfile == 0)
2019 return 0;
2020 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2021 if (msymbol.minsym == NULL)
2022 return 0;
2023 /* Make certain that the code, and not descriptor, address is
2024 returned. */
2025 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2026 BMSYMBOL_VALUE_ADDRESS (msymbol),
2027 &current_target);
2028 return maddr == get_frame_func (this_frame);
2029 }
2030
2031 /* Test whether THIS_FRAME is inside the process entry point function. */
2032
2033 static int
2034 inside_entry_func (struct frame_info *this_frame)
2035 {
2036 CORE_ADDR entry_point;
2037
2038 if (!entry_point_address_query (&entry_point))
2039 return 0;
2040
2041 return get_frame_func (this_frame) == entry_point;
2042 }
2043
2044 /* Return a structure containing various interesting information about
2045 the frame that called THIS_FRAME. Returns NULL if there is entier
2046 no such frame or the frame fails any of a set of target-independent
2047 condition that should terminate the frame chain (e.g., as unwinding
2048 past main()).
2049
2050 This function should not contain target-dependent tests, such as
2051 checking whether the program-counter is zero. */
2052
2053 struct frame_info *
2054 get_prev_frame (struct frame_info *this_frame)
2055 {
2056 CORE_ADDR frame_pc;
2057 int frame_pc_p;
2058
2059 /* There is always a frame. If this assertion fails, suspect that
2060 something should be calling get_selected_frame() or
2061 get_current_frame(). */
2062 gdb_assert (this_frame != NULL);
2063 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2064
2065 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2066 sense to stop unwinding at a dummy frame. One place where a dummy
2067 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2068 pcsqh register (space register for the instruction at the head of the
2069 instruction queue) cannot be written directly; the only way to set it
2070 is to branch to code that is in the target space. In order to implement
2071 frame dummies on HPUX, the called function is made to jump back to where
2072 the inferior was when the user function was called. If gdb was inside
2073 the main function when we created the dummy frame, the dummy frame will
2074 point inside the main function. */
2075 if (this_frame->level >= 0
2076 && get_frame_type (this_frame) == NORMAL_FRAME
2077 && !backtrace_past_main
2078 && frame_pc_p
2079 && inside_main_func (this_frame))
2080 /* Don't unwind past main(). Note, this is done _before_ the
2081 frame has been marked as previously unwound. That way if the
2082 user later decides to enable unwinds past main(), that will
2083 automatically happen. */
2084 {
2085 frame_debug_got_null_frame (this_frame, "inside main func");
2086 return NULL;
2087 }
2088
2089 /* If the user's backtrace limit has been exceeded, stop. We must
2090 add two to the current level; one of those accounts for backtrace_limit
2091 being 1-based and the level being 0-based, and the other accounts for
2092 the level of the new frame instead of the level of the current
2093 frame. */
2094 if (this_frame->level + 2 > backtrace_limit)
2095 {
2096 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2097 return NULL;
2098 }
2099
2100 /* If we're already inside the entry function for the main objfile,
2101 then it isn't valid. Don't apply this test to a dummy frame -
2102 dummy frame PCs typically land in the entry func. Don't apply
2103 this test to the sentinel frame. Sentinel frames should always
2104 be allowed to unwind. */
2105 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2106 wasn't checking for "main" in the minimal symbols. With that
2107 fixed asm-source tests now stop in "main" instead of halting the
2108 backtrace in weird and wonderful ways somewhere inside the entry
2109 file. Suspect that tests for inside the entry file/func were
2110 added to work around that (now fixed) case. */
2111 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2112 suggested having the inside_entry_func test use the
2113 inside_main_func() msymbol trick (along with entry_point_address()
2114 I guess) to determine the address range of the start function.
2115 That should provide a far better stopper than the current
2116 heuristics. */
2117 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2118 applied tail-call optimizations to main so that a function called
2119 from main returns directly to the caller of main. Since we don't
2120 stop at main, we should at least stop at the entry point of the
2121 application. */
2122 if (this_frame->level >= 0
2123 && get_frame_type (this_frame) == NORMAL_FRAME
2124 && !backtrace_past_entry
2125 && frame_pc_p
2126 && inside_entry_func (this_frame))
2127 {
2128 frame_debug_got_null_frame (this_frame, "inside entry func");
2129 return NULL;
2130 }
2131
2132 /* Assume that the only way to get a zero PC is through something
2133 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2134 will never unwind a zero PC. */
2135 if (this_frame->level > 0
2136 && (get_frame_type (this_frame) == NORMAL_FRAME
2137 || get_frame_type (this_frame) == INLINE_FRAME)
2138 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2139 && frame_pc_p && frame_pc == 0)
2140 {
2141 frame_debug_got_null_frame (this_frame, "zero PC");
2142 return NULL;
2143 }
2144
2145 return get_prev_frame_always (this_frame);
2146 }
2147
2148 CORE_ADDR
2149 get_frame_pc (struct frame_info *frame)
2150 {
2151 gdb_assert (frame->next != NULL);
2152 return frame_unwind_pc (frame->next);
2153 }
2154
2155 int
2156 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2157 {
2158 volatile struct gdb_exception ex;
2159
2160 gdb_assert (frame->next != NULL);
2161
2162 TRY_CATCH (ex, RETURN_MASK_ERROR)
2163 {
2164 *pc = frame_unwind_pc (frame->next);
2165 }
2166 if (ex.reason < 0)
2167 {
2168 if (ex.error == NOT_AVAILABLE_ERROR)
2169 return 0;
2170 else
2171 throw_exception (ex);
2172 }
2173
2174 return 1;
2175 }
2176
2177 /* Return an address that falls within THIS_FRAME's code block. */
2178
2179 CORE_ADDR
2180 get_frame_address_in_block (struct frame_info *this_frame)
2181 {
2182 /* A draft address. */
2183 CORE_ADDR pc = get_frame_pc (this_frame);
2184
2185 struct frame_info *next_frame = this_frame->next;
2186
2187 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2188 Normally the resume address is inside the body of the function
2189 associated with THIS_FRAME, but there is a special case: when
2190 calling a function which the compiler knows will never return
2191 (for instance abort), the call may be the very last instruction
2192 in the calling function. The resume address will point after the
2193 call and may be at the beginning of a different function
2194 entirely.
2195
2196 If THIS_FRAME is a signal frame or dummy frame, then we should
2197 not adjust the unwound PC. For a dummy frame, GDB pushed the
2198 resume address manually onto the stack. For a signal frame, the
2199 OS may have pushed the resume address manually and invoked the
2200 handler (e.g. GNU/Linux), or invoked the trampoline which called
2201 the signal handler - but in either case the signal handler is
2202 expected to return to the trampoline. So in both of these
2203 cases we know that the resume address is executable and
2204 related. So we only need to adjust the PC if THIS_FRAME
2205 is a normal function.
2206
2207 If the program has been interrupted while THIS_FRAME is current,
2208 then clearly the resume address is inside the associated
2209 function. There are three kinds of interruption: debugger stop
2210 (next frame will be SENTINEL_FRAME), operating system
2211 signal or exception (next frame will be SIGTRAMP_FRAME),
2212 or debugger-induced function call (next frame will be
2213 DUMMY_FRAME). So we only need to adjust the PC if
2214 NEXT_FRAME is a normal function.
2215
2216 We check the type of NEXT_FRAME first, since it is already
2217 known; frame type is determined by the unwinder, and since
2218 we have THIS_FRAME we've already selected an unwinder for
2219 NEXT_FRAME.
2220
2221 If the next frame is inlined, we need to keep going until we find
2222 the real function - for instance, if a signal handler is invoked
2223 while in an inlined function, then the code address of the
2224 "calling" normal function should not be adjusted either. */
2225
2226 while (get_frame_type (next_frame) == INLINE_FRAME)
2227 next_frame = next_frame->next;
2228
2229 if ((get_frame_type (next_frame) == NORMAL_FRAME
2230 || get_frame_type (next_frame) == TAILCALL_FRAME)
2231 && (get_frame_type (this_frame) == NORMAL_FRAME
2232 || get_frame_type (this_frame) == TAILCALL_FRAME
2233 || get_frame_type (this_frame) == INLINE_FRAME))
2234 return pc - 1;
2235
2236 return pc;
2237 }
2238
2239 int
2240 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2241 CORE_ADDR *pc)
2242 {
2243 volatile struct gdb_exception ex;
2244
2245 TRY_CATCH (ex, RETURN_MASK_ERROR)
2246 {
2247 *pc = get_frame_address_in_block (this_frame);
2248 }
2249 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2250 return 0;
2251 else if (ex.reason < 0)
2252 throw_exception (ex);
2253 else
2254 return 1;
2255 }
2256
2257 void
2258 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2259 {
2260 struct frame_info *next_frame;
2261 int notcurrent;
2262 CORE_ADDR pc;
2263
2264 /* If the next frame represents an inlined function call, this frame's
2265 sal is the "call site" of that inlined function, which can not
2266 be inferred from get_frame_pc. */
2267 next_frame = get_next_frame (frame);
2268 if (frame_inlined_callees (frame) > 0)
2269 {
2270 struct symbol *sym;
2271
2272 if (next_frame)
2273 sym = get_frame_function (next_frame);
2274 else
2275 sym = inline_skipped_symbol (inferior_ptid);
2276
2277 /* If frame is inline, it certainly has symbols. */
2278 gdb_assert (sym);
2279 init_sal (sal);
2280 if (SYMBOL_LINE (sym) != 0)
2281 {
2282 sal->symtab = SYMBOL_SYMTAB (sym);
2283 sal->line = SYMBOL_LINE (sym);
2284 }
2285 else
2286 /* If the symbol does not have a location, we don't know where
2287 the call site is. Do not pretend to. This is jarring, but
2288 we can't do much better. */
2289 sal->pc = get_frame_pc (frame);
2290
2291 sal->pspace = get_frame_program_space (frame);
2292
2293 return;
2294 }
2295
2296 /* If FRAME is not the innermost frame, that normally means that
2297 FRAME->pc points at the return instruction (which is *after* the
2298 call instruction), and we want to get the line containing the
2299 call (because the call is where the user thinks the program is).
2300 However, if the next frame is either a SIGTRAMP_FRAME or a
2301 DUMMY_FRAME, then the next frame will contain a saved interrupt
2302 PC and such a PC indicates the current (rather than next)
2303 instruction/line, consequently, for such cases, want to get the
2304 line containing fi->pc. */
2305 if (!get_frame_pc_if_available (frame, &pc))
2306 {
2307 init_sal (sal);
2308 return;
2309 }
2310
2311 notcurrent = (pc != get_frame_address_in_block (frame));
2312 (*sal) = find_pc_line (pc, notcurrent);
2313 }
2314
2315 /* Per "frame.h", return the ``address'' of the frame. Code should
2316 really be using get_frame_id(). */
2317 CORE_ADDR
2318 get_frame_base (struct frame_info *fi)
2319 {
2320 return get_frame_id (fi).stack_addr;
2321 }
2322
2323 /* High-level offsets into the frame. Used by the debug info. */
2324
2325 CORE_ADDR
2326 get_frame_base_address (struct frame_info *fi)
2327 {
2328 if (get_frame_type (fi) != NORMAL_FRAME)
2329 return 0;
2330 if (fi->base == NULL)
2331 fi->base = frame_base_find_by_frame (fi);
2332 /* Sneaky: If the low-level unwind and high-level base code share a
2333 common unwinder, let them share the prologue cache. */
2334 if (fi->base->unwind == fi->unwind)
2335 return fi->base->this_base (fi, &fi->prologue_cache);
2336 return fi->base->this_base (fi, &fi->base_cache);
2337 }
2338
2339 CORE_ADDR
2340 get_frame_locals_address (struct frame_info *fi)
2341 {
2342 if (get_frame_type (fi) != NORMAL_FRAME)
2343 return 0;
2344 /* If there isn't a frame address method, find it. */
2345 if (fi->base == NULL)
2346 fi->base = frame_base_find_by_frame (fi);
2347 /* Sneaky: If the low-level unwind and high-level base code share a
2348 common unwinder, let them share the prologue cache. */
2349 if (fi->base->unwind == fi->unwind)
2350 return fi->base->this_locals (fi, &fi->prologue_cache);
2351 return fi->base->this_locals (fi, &fi->base_cache);
2352 }
2353
2354 CORE_ADDR
2355 get_frame_args_address (struct frame_info *fi)
2356 {
2357 if (get_frame_type (fi) != NORMAL_FRAME)
2358 return 0;
2359 /* If there isn't a frame address method, find it. */
2360 if (fi->base == NULL)
2361 fi->base = frame_base_find_by_frame (fi);
2362 /* Sneaky: If the low-level unwind and high-level base code share a
2363 common unwinder, let them share the prologue cache. */
2364 if (fi->base->unwind == fi->unwind)
2365 return fi->base->this_args (fi, &fi->prologue_cache);
2366 return fi->base->this_args (fi, &fi->base_cache);
2367 }
2368
2369 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2370 otherwise. */
2371
2372 int
2373 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2374 {
2375 if (fi->unwind == NULL)
2376 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2377 return fi->unwind == unwinder;
2378 }
2379
2380 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2381 or -1 for a NULL frame. */
2382
2383 int
2384 frame_relative_level (struct frame_info *fi)
2385 {
2386 if (fi == NULL)
2387 return -1;
2388 else
2389 return fi->level;
2390 }
2391
2392 enum frame_type
2393 get_frame_type (struct frame_info *frame)
2394 {
2395 if (frame->unwind == NULL)
2396 /* Initialize the frame's unwinder because that's what
2397 provides the frame's type. */
2398 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2399 return frame->unwind->type;
2400 }
2401
2402 struct program_space *
2403 get_frame_program_space (struct frame_info *frame)
2404 {
2405 return frame->pspace;
2406 }
2407
2408 struct program_space *
2409 frame_unwind_program_space (struct frame_info *this_frame)
2410 {
2411 gdb_assert (this_frame);
2412
2413 /* This is really a placeholder to keep the API consistent --- we
2414 assume for now that we don't have frame chains crossing
2415 spaces. */
2416 return this_frame->pspace;
2417 }
2418
2419 struct address_space *
2420 get_frame_address_space (struct frame_info *frame)
2421 {
2422 return frame->aspace;
2423 }
2424
2425 /* Memory access methods. */
2426
2427 void
2428 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2429 gdb_byte *buf, int len)
2430 {
2431 read_memory (addr, buf, len);
2432 }
2433
2434 LONGEST
2435 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2436 int len)
2437 {
2438 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2439 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2440
2441 return read_memory_integer (addr, len, byte_order);
2442 }
2443
2444 ULONGEST
2445 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2446 int len)
2447 {
2448 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2449 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2450
2451 return read_memory_unsigned_integer (addr, len, byte_order);
2452 }
2453
2454 int
2455 safe_frame_unwind_memory (struct frame_info *this_frame,
2456 CORE_ADDR addr, gdb_byte *buf, int len)
2457 {
2458 /* NOTE: target_read_memory returns zero on success! */
2459 return !target_read_memory (addr, buf, len);
2460 }
2461
2462 /* Architecture methods. */
2463
2464 struct gdbarch *
2465 get_frame_arch (struct frame_info *this_frame)
2466 {
2467 return frame_unwind_arch (this_frame->next);
2468 }
2469
2470 struct gdbarch *
2471 frame_unwind_arch (struct frame_info *next_frame)
2472 {
2473 if (!next_frame->prev_arch.p)
2474 {
2475 struct gdbarch *arch;
2476
2477 if (next_frame->unwind == NULL)
2478 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2479
2480 if (next_frame->unwind->prev_arch != NULL)
2481 arch = next_frame->unwind->prev_arch (next_frame,
2482 &next_frame->prologue_cache);
2483 else
2484 arch = get_frame_arch (next_frame);
2485
2486 next_frame->prev_arch.arch = arch;
2487 next_frame->prev_arch.p = 1;
2488 if (frame_debug)
2489 fprintf_unfiltered (gdb_stdlog,
2490 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2491 next_frame->level,
2492 gdbarch_bfd_arch_info (arch)->printable_name);
2493 }
2494
2495 return next_frame->prev_arch.arch;
2496 }
2497
2498 struct gdbarch *
2499 frame_unwind_caller_arch (struct frame_info *next_frame)
2500 {
2501 return frame_unwind_arch (skip_artificial_frames (next_frame));
2502 }
2503
2504 /* Stack pointer methods. */
2505
2506 CORE_ADDR
2507 get_frame_sp (struct frame_info *this_frame)
2508 {
2509 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2510
2511 /* Normality - an architecture that provides a way of obtaining any
2512 frame inner-most address. */
2513 if (gdbarch_unwind_sp_p (gdbarch))
2514 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2515 operate on THIS_FRAME now. */
2516 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2517 /* Now things are really are grim. Hope that the value returned by
2518 the gdbarch_sp_regnum register is meaningful. */
2519 if (gdbarch_sp_regnum (gdbarch) >= 0)
2520 return get_frame_register_unsigned (this_frame,
2521 gdbarch_sp_regnum (gdbarch));
2522 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2523 }
2524
2525 /* Return the reason why we can't unwind past FRAME. */
2526
2527 enum unwind_stop_reason
2528 get_frame_unwind_stop_reason (struct frame_info *frame)
2529 {
2530 /* Fill-in STOP_REASON. */
2531 get_prev_frame_always (frame);
2532 gdb_assert (frame->prev_p);
2533
2534 return frame->stop_reason;
2535 }
2536
2537 /* Return a string explaining REASON. */
2538
2539 const char *
2540 frame_stop_reason_string (enum unwind_stop_reason reason)
2541 {
2542 switch (reason)
2543 {
2544 #define SET(name, description) \
2545 case name: return _(description);
2546 #include "unwind_stop_reasons.def"
2547 #undef SET
2548
2549 default:
2550 internal_error (__FILE__, __LINE__,
2551 "Invalid frame stop reason");
2552 }
2553 }
2554
2555 /* Return the enum symbol name of REASON as a string, to use in debug
2556 output. */
2557
2558 static const char *
2559 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2560 {
2561 switch (reason)
2562 {
2563 #define SET(name, description) \
2564 case name: return #name;
2565 #include "unwind_stop_reasons.def"
2566 #undef SET
2567
2568 default:
2569 internal_error (__FILE__, __LINE__,
2570 "Invalid frame stop reason");
2571 }
2572 }
2573
2574 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2575 FRAME. */
2576
2577 static void
2578 frame_cleanup_after_sniffer (void *arg)
2579 {
2580 struct frame_info *frame = arg;
2581
2582 /* The sniffer should not allocate a prologue cache if it did not
2583 match this frame. */
2584 gdb_assert (frame->prologue_cache == NULL);
2585
2586 /* No sniffer should extend the frame chain; sniff based on what is
2587 already certain. */
2588 gdb_assert (!frame->prev_p);
2589
2590 /* The sniffer should not check the frame's ID; that's circular. */
2591 gdb_assert (!frame->this_id.p);
2592
2593 /* Clear cached fields dependent on the unwinder.
2594
2595 The previous PC is independent of the unwinder, but the previous
2596 function is not (see get_frame_address_in_block). */
2597 frame->prev_func.p = 0;
2598 frame->prev_func.addr = 0;
2599
2600 /* Discard the unwinder last, so that we can easily find it if an assertion
2601 in this function triggers. */
2602 frame->unwind = NULL;
2603 }
2604
2605 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2606 Return a cleanup which should be called if unwinding fails, and
2607 discarded if it succeeds. */
2608
2609 struct cleanup *
2610 frame_prepare_for_sniffer (struct frame_info *frame,
2611 const struct frame_unwind *unwind)
2612 {
2613 gdb_assert (frame->unwind == NULL);
2614 frame->unwind = unwind;
2615 return make_cleanup (frame_cleanup_after_sniffer, frame);
2616 }
2617
2618 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2619
2620 static struct cmd_list_element *set_backtrace_cmdlist;
2621 static struct cmd_list_element *show_backtrace_cmdlist;
2622
2623 static void
2624 set_backtrace_cmd (char *args, int from_tty)
2625 {
2626 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2627 }
2628
2629 static void
2630 show_backtrace_cmd (char *args, int from_tty)
2631 {
2632 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2633 }
2634
2635 void
2636 _initialize_frame (void)
2637 {
2638 obstack_init (&frame_cache_obstack);
2639
2640 frame_stash_create ();
2641
2642 observer_attach_target_changed (frame_observer_target_changed);
2643
2644 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2645 Set backtrace specific variables.\n\
2646 Configure backtrace variables such as the backtrace limit"),
2647 &set_backtrace_cmdlist, "set backtrace ",
2648 0/*allow-unknown*/, &setlist);
2649 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2650 Show backtrace specific variables\n\
2651 Show backtrace variables such as the backtrace limit"),
2652 &show_backtrace_cmdlist, "show backtrace ",
2653 0/*allow-unknown*/, &showlist);
2654
2655 add_setshow_boolean_cmd ("past-main", class_obscure,
2656 &backtrace_past_main, _("\
2657 Set whether backtraces should continue past \"main\"."), _("\
2658 Show whether backtraces should continue past \"main\"."), _("\
2659 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2660 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2661 of the stack trace."),
2662 NULL,
2663 show_backtrace_past_main,
2664 &set_backtrace_cmdlist,
2665 &show_backtrace_cmdlist);
2666
2667 add_setshow_boolean_cmd ("past-entry", class_obscure,
2668 &backtrace_past_entry, _("\
2669 Set whether backtraces should continue past the entry point of a program."),
2670 _("\
2671 Show whether backtraces should continue past the entry point of a program."),
2672 _("\
2673 Normally there are no callers beyond the entry point of a program, so GDB\n\
2674 will terminate the backtrace there. Set this variable if you need to see\n\
2675 the rest of the stack trace."),
2676 NULL,
2677 show_backtrace_past_entry,
2678 &set_backtrace_cmdlist,
2679 &show_backtrace_cmdlist);
2680
2681 add_setshow_uinteger_cmd ("limit", class_obscure,
2682 &backtrace_limit, _("\
2683 Set an upper bound on the number of backtrace levels."), _("\
2684 Show the upper bound on the number of backtrace levels."), _("\
2685 No more than the specified number of frames can be displayed or examined.\n\
2686 Literal \"unlimited\" or zero means no limit."),
2687 NULL,
2688 show_backtrace_limit,
2689 &set_backtrace_cmdlist,
2690 &show_backtrace_cmdlist);
2691
2692 /* Debug this files internals. */
2693 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2694 Set frame debugging."), _("\
2695 Show frame debugging."), _("\
2696 When non-zero, frame specific internal debugging is enabled."),
2697 NULL,
2698 show_frame_debug,
2699 &setdebuglist, &showdebuglist);
2700 }
This page took 0.136901 seconds and 4 git commands to generate.