5bd1b03966ac1b83410da409d0ff947bfb8e12ff
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "target.h"
25 #include "value.h"
26 #include "inferior.h" /* for inferior_ptid */
27 #include "regcache.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "user-regs.h"
31 #include "gdb_obstack.h"
32 #include "dummy-frame.h"
33 #include "sentinel-frame.h"
34 #include "gdbcore.h"
35 #include "annotate.h"
36 #include "language.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "command.h"
40 #include "gdbcmd.h"
41 #include "observer.h"
42 #include "objfiles.h"
43 #include "exceptions.h"
44 #include "gdbthread.h"
45 #include "block.h"
46 #include "inline-frame.h"
47 #include "tracepoint.h"
48
49 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
50 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
51
52 /* We keep a cache of stack frames, each of which is a "struct
53 frame_info". The innermost one gets allocated (in
54 wait_for_inferior) each time the inferior stops; current_frame
55 points to it. Additional frames get allocated (in get_prev_frame)
56 as needed, and are chained through the next and prev fields. Any
57 time that the frame cache becomes invalid (most notably when we
58 execute something, but also if we change how we interpret the
59 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
60 which reads new symbols)), we should call reinit_frame_cache. */
61
62 struct frame_info
63 {
64 /* Level of this frame. The inner-most (youngest) frame is at level
65 0. As you move towards the outer-most (oldest) frame, the level
66 increases. This is a cached value. It could just as easily be
67 computed by counting back from the selected frame to the inner
68 most frame. */
69 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
70 reserved to indicate a bogus frame - one that has been created
71 just to keep GDB happy (GDB always needs a frame). For the
72 moment leave this as speculation. */
73 int level;
74
75 /* The frame's program space. */
76 struct program_space *pspace;
77
78 /* The frame's address space. */
79 struct address_space *aspace;
80
81 /* The frame's low-level unwinder and corresponding cache. The
82 low-level unwinder is responsible for unwinding register values
83 for the previous frame. The low-level unwind methods are
84 selected based on the presence, or otherwise, of register unwind
85 information such as CFI. */
86 void *prologue_cache;
87 const struct frame_unwind *unwind;
88
89 /* Cached copy of the previous frame's architecture. */
90 struct
91 {
92 int p;
93 struct gdbarch *arch;
94 } prev_arch;
95
96 /* Cached copy of the previous frame's resume address. */
97 struct {
98 int p;
99 CORE_ADDR value;
100 } prev_pc;
101
102 /* Cached copy of the previous frame's function address. */
103 struct
104 {
105 CORE_ADDR addr;
106 int p;
107 } prev_func;
108
109 /* This frame's ID. */
110 struct
111 {
112 int p;
113 struct frame_id value;
114 } this_id;
115
116 /* The frame's high-level base methods, and corresponding cache.
117 The high level base methods are selected based on the frame's
118 debug info. */
119 const struct frame_base *base;
120 void *base_cache;
121
122 /* Pointers to the next (down, inner, younger) and previous (up,
123 outer, older) frame_info's in the frame cache. */
124 struct frame_info *next; /* down, inner, younger */
125 int prev_p;
126 struct frame_info *prev; /* up, outer, older */
127
128 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
129 could. Only valid when PREV_P is set. */
130 enum unwind_stop_reason stop_reason;
131 };
132
133 /* A frame stash used to speed up frame lookups. */
134
135 /* We currently only stash one frame at a time, as this seems to be
136 sufficient for now. */
137 static struct frame_info *frame_stash = NULL;
138
139 /* Add the following FRAME to the frame stash. */
140
141 static void
142 frame_stash_add (struct frame_info *frame)
143 {
144 frame_stash = frame;
145 }
146
147 /* Search the frame stash for an entry with the given frame ID.
148 If found, return that frame. Otherwise return NULL. */
149
150 static struct frame_info *
151 frame_stash_find (struct frame_id id)
152 {
153 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
154 return frame_stash;
155
156 return NULL;
157 }
158
159 /* Invalidate the frame stash by removing all entries in it. */
160
161 static void
162 frame_stash_invalidate (void)
163 {
164 frame_stash = NULL;
165 }
166
167 /* Flag to control debugging. */
168
169 int frame_debug;
170 static void
171 show_frame_debug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
175 }
176
177 /* Flag to indicate whether backtraces should stop at main et.al. */
178
179 static int backtrace_past_main;
180 static void
181 show_backtrace_past_main (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file,
185 _("Whether backtraces should "
186 "continue past \"main\" is %s.\n"),
187 value);
188 }
189
190 static int backtrace_past_entry;
191 static void
192 show_backtrace_past_entry (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194 {
195 fprintf_filtered (file, _("Whether backtraces should continue past the "
196 "entry point of a program is %s.\n"),
197 value);
198 }
199
200 static int backtrace_limit = INT_MAX;
201 static void
202 show_backtrace_limit (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file,
206 _("An upper bound on the number "
207 "of backtrace levels is %s.\n"),
208 value);
209 }
210
211
212 static void
213 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
214 {
215 if (p)
216 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
217 else
218 fprintf_unfiltered (file, "!%s", name);
219 }
220
221 void
222 fprint_frame_id (struct ui_file *file, struct frame_id id)
223 {
224 fprintf_unfiltered (file, "{");
225 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
226 fprintf_unfiltered (file, ",");
227 fprint_field (file, "code", id.code_addr_p, id.code_addr);
228 fprintf_unfiltered (file, ",");
229 fprint_field (file, "special", id.special_addr_p, id.special_addr);
230 if (id.inline_depth)
231 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
232 fprintf_unfiltered (file, "}");
233 }
234
235 static void
236 fprint_frame_type (struct ui_file *file, enum frame_type type)
237 {
238 switch (type)
239 {
240 case NORMAL_FRAME:
241 fprintf_unfiltered (file, "NORMAL_FRAME");
242 return;
243 case DUMMY_FRAME:
244 fprintf_unfiltered (file, "DUMMY_FRAME");
245 return;
246 case INLINE_FRAME:
247 fprintf_unfiltered (file, "INLINE_FRAME");
248 return;
249 case SENTINEL_FRAME:
250 fprintf_unfiltered (file, "SENTINEL_FRAME");
251 return;
252 case SIGTRAMP_FRAME:
253 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
254 return;
255 case ARCH_FRAME:
256 fprintf_unfiltered (file, "ARCH_FRAME");
257 return;
258 default:
259 fprintf_unfiltered (file, "<unknown type>");
260 return;
261 };
262 }
263
264 static void
265 fprint_frame (struct ui_file *file, struct frame_info *fi)
266 {
267 if (fi == NULL)
268 {
269 fprintf_unfiltered (file, "<NULL frame>");
270 return;
271 }
272 fprintf_unfiltered (file, "{");
273 fprintf_unfiltered (file, "level=%d", fi->level);
274 fprintf_unfiltered (file, ",");
275 fprintf_unfiltered (file, "type=");
276 if (fi->unwind != NULL)
277 fprint_frame_type (file, fi->unwind->type);
278 else
279 fprintf_unfiltered (file, "<unknown>");
280 fprintf_unfiltered (file, ",");
281 fprintf_unfiltered (file, "unwind=");
282 if (fi->unwind != NULL)
283 gdb_print_host_address (fi->unwind, file);
284 else
285 fprintf_unfiltered (file, "<unknown>");
286 fprintf_unfiltered (file, ",");
287 fprintf_unfiltered (file, "pc=");
288 if (fi->next != NULL && fi->next->prev_pc.p)
289 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
290 else
291 fprintf_unfiltered (file, "<unknown>");
292 fprintf_unfiltered (file, ",");
293 fprintf_unfiltered (file, "id=");
294 if (fi->this_id.p)
295 fprint_frame_id (file, fi->this_id.value);
296 else
297 fprintf_unfiltered (file, "<unknown>");
298 fprintf_unfiltered (file, ",");
299 fprintf_unfiltered (file, "func=");
300 if (fi->next != NULL && fi->next->prev_func.p)
301 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
302 else
303 fprintf_unfiltered (file, "<unknown>");
304 fprintf_unfiltered (file, "}");
305 }
306
307 /* Given FRAME, return the enclosing normal frame for inlined
308 function frames. Otherwise return the original frame. */
309
310 static struct frame_info *
311 skip_inlined_frames (struct frame_info *frame)
312 {
313 while (get_frame_type (frame) == INLINE_FRAME)
314 frame = get_prev_frame (frame);
315
316 return frame;
317 }
318
319 /* Return a frame uniq ID that can be used to, later, re-find the
320 frame. */
321
322 struct frame_id
323 get_frame_id (struct frame_info *fi)
324 {
325 if (fi == NULL)
326 return null_frame_id;
327
328 if (!fi->this_id.p)
329 {
330 if (frame_debug)
331 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
332 fi->level);
333 /* Find the unwinder. */
334 if (fi->unwind == NULL)
335 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
336 /* Find THIS frame's ID. */
337 /* Default to outermost if no ID is found. */
338 fi->this_id.value = outer_frame_id;
339 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
340 gdb_assert (frame_id_p (fi->this_id.value));
341 fi->this_id.p = 1;
342 if (frame_debug)
343 {
344 fprintf_unfiltered (gdb_stdlog, "-> ");
345 fprint_frame_id (gdb_stdlog, fi->this_id.value);
346 fprintf_unfiltered (gdb_stdlog, " }\n");
347 }
348 }
349
350 frame_stash_add (fi);
351
352 return fi->this_id.value;
353 }
354
355 struct frame_id
356 get_stack_frame_id (struct frame_info *next_frame)
357 {
358 return get_frame_id (skip_inlined_frames (next_frame));
359 }
360
361 struct frame_id
362 frame_unwind_caller_id (struct frame_info *next_frame)
363 {
364 struct frame_info *this_frame;
365
366 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
367 the frame chain, leading to this function unintentionally
368 returning a null_frame_id (e.g., when a caller requests the frame
369 ID of "main()"s caller. */
370
371 next_frame = skip_inlined_frames (next_frame);
372 this_frame = get_prev_frame_1 (next_frame);
373 if (this_frame)
374 return get_frame_id (skip_inlined_frames (this_frame));
375 else
376 return null_frame_id;
377 }
378
379 const struct frame_id null_frame_id; /* All zeros. */
380 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
381
382 struct frame_id
383 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
384 CORE_ADDR special_addr)
385 {
386 struct frame_id id = null_frame_id;
387
388 id.stack_addr = stack_addr;
389 id.stack_addr_p = 1;
390 id.code_addr = code_addr;
391 id.code_addr_p = 1;
392 id.special_addr = special_addr;
393 id.special_addr_p = 1;
394 return id;
395 }
396
397 struct frame_id
398 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
399 {
400 struct frame_id id = null_frame_id;
401
402 id.stack_addr = stack_addr;
403 id.stack_addr_p = 1;
404 id.code_addr = code_addr;
405 id.code_addr_p = 1;
406 return id;
407 }
408
409 struct frame_id
410 frame_id_build_wild (CORE_ADDR stack_addr)
411 {
412 struct frame_id id = null_frame_id;
413
414 id.stack_addr = stack_addr;
415 id.stack_addr_p = 1;
416 return id;
417 }
418
419 int
420 frame_id_p (struct frame_id l)
421 {
422 int p;
423
424 /* The frame is valid iff it has a valid stack address. */
425 p = l.stack_addr_p;
426 /* outer_frame_id is also valid. */
427 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
428 p = 1;
429 if (frame_debug)
430 {
431 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
432 fprint_frame_id (gdb_stdlog, l);
433 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
434 }
435 return p;
436 }
437
438 int
439 frame_id_inlined_p (struct frame_id l)
440 {
441 if (!frame_id_p (l))
442 return 0;
443
444 return (l.inline_depth != 0);
445 }
446
447 int
448 frame_id_eq (struct frame_id l, struct frame_id r)
449 {
450 int eq;
451
452 if (!l.stack_addr_p && l.special_addr_p
453 && !r.stack_addr_p && r.special_addr_p)
454 /* The outermost frame marker is equal to itself. This is the
455 dodgy thing about outer_frame_id, since between execution steps
456 we might step into another function - from which we can't
457 unwind either. More thought required to get rid of
458 outer_frame_id. */
459 eq = 1;
460 else if (!l.stack_addr_p || !r.stack_addr_p)
461 /* Like a NaN, if either ID is invalid, the result is false.
462 Note that a frame ID is invalid iff it is the null frame ID. */
463 eq = 0;
464 else if (l.stack_addr != r.stack_addr)
465 /* If .stack addresses are different, the frames are different. */
466 eq = 0;
467 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
468 /* An invalid code addr is a wild card. If .code addresses are
469 different, the frames are different. */
470 eq = 0;
471 else if (l.special_addr_p && r.special_addr_p
472 && l.special_addr != r.special_addr)
473 /* An invalid special addr is a wild card (or unused). Otherwise
474 if special addresses are different, the frames are different. */
475 eq = 0;
476 else if (l.inline_depth != r.inline_depth)
477 /* If inline depths are different, the frames must be different. */
478 eq = 0;
479 else
480 /* Frames are equal. */
481 eq = 1;
482
483 if (frame_debug)
484 {
485 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
486 fprint_frame_id (gdb_stdlog, l);
487 fprintf_unfiltered (gdb_stdlog, ",r=");
488 fprint_frame_id (gdb_stdlog, r);
489 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
490 }
491 return eq;
492 }
493
494 /* Safety net to check whether frame ID L should be inner to
495 frame ID R, according to their stack addresses.
496
497 This method cannot be used to compare arbitrary frames, as the
498 ranges of valid stack addresses may be discontiguous (e.g. due
499 to sigaltstack).
500
501 However, it can be used as safety net to discover invalid frame
502 IDs in certain circumstances. Assuming that NEXT is the immediate
503 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
504
505 * The stack address of NEXT must be inner-than-or-equal to the stack
506 address of THIS.
507
508 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
509 error has occurred.
510
511 * If NEXT and THIS have different stack addresses, no other frame
512 in the frame chain may have a stack address in between.
513
514 Therefore, if frame_id_inner (TEST, THIS) holds, but
515 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
516 to a valid frame in the frame chain.
517
518 The sanity checks above cannot be performed when a SIGTRAMP frame
519 is involved, because signal handlers might be executed on a different
520 stack than the stack used by the routine that caused the signal
521 to be raised. This can happen for instance when a thread exceeds
522 its maximum stack size. In this case, certain compilers implement
523 a stack overflow strategy that cause the handler to be run on a
524 different stack. */
525
526 static int
527 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
528 {
529 int inner;
530
531 if (!l.stack_addr_p || !r.stack_addr_p)
532 /* Like NaN, any operation involving an invalid ID always fails. */
533 inner = 0;
534 else if (l.inline_depth > r.inline_depth
535 && l.stack_addr == r.stack_addr
536 && l.code_addr_p == r.code_addr_p
537 && l.special_addr_p == r.special_addr_p
538 && l.special_addr == r.special_addr)
539 {
540 /* Same function, different inlined functions. */
541 struct block *lb, *rb;
542
543 gdb_assert (l.code_addr_p && r.code_addr_p);
544
545 lb = block_for_pc (l.code_addr);
546 rb = block_for_pc (r.code_addr);
547
548 if (lb == NULL || rb == NULL)
549 /* Something's gone wrong. */
550 inner = 0;
551 else
552 /* This will return true if LB and RB are the same block, or
553 if the block with the smaller depth lexically encloses the
554 block with the greater depth. */
555 inner = contained_in (lb, rb);
556 }
557 else
558 /* Only return non-zero when strictly inner than. Note that, per
559 comment in "frame.h", there is some fuzz here. Frameless
560 functions are not strictly inner than (same .stack but
561 different .code and/or .special address). */
562 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
563 if (frame_debug)
564 {
565 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
566 fprint_frame_id (gdb_stdlog, l);
567 fprintf_unfiltered (gdb_stdlog, ",r=");
568 fprint_frame_id (gdb_stdlog, r);
569 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
570 }
571 return inner;
572 }
573
574 struct frame_info *
575 frame_find_by_id (struct frame_id id)
576 {
577 struct frame_info *frame, *prev_frame;
578
579 /* ZERO denotes the null frame, let the caller decide what to do
580 about it. Should it instead return get_current_frame()? */
581 if (!frame_id_p (id))
582 return NULL;
583
584 /* Try using the frame stash first. Finding it there removes the need
585 to perform the search by looping over all frames, which can be very
586 CPU-intensive if the number of frames is very high (the loop is O(n)
587 and get_prev_frame performs a series of checks that are relatively
588 expensive). This optimization is particularly useful when this function
589 is called from another function (such as value_fetch_lazy, case
590 VALUE_LVAL (val) == lval_register) which already loops over all frames,
591 making the overall behavior O(n^2). */
592 frame = frame_stash_find (id);
593 if (frame)
594 return frame;
595
596 for (frame = get_current_frame (); ; frame = prev_frame)
597 {
598 struct frame_id this = get_frame_id (frame);
599
600 if (frame_id_eq (id, this))
601 /* An exact match. */
602 return frame;
603
604 prev_frame = get_prev_frame (frame);
605 if (!prev_frame)
606 return NULL;
607
608 /* As a safety net to avoid unnecessary backtracing while trying
609 to find an invalid ID, we check for a common situation where
610 we can detect from comparing stack addresses that no other
611 frame in the current frame chain can have this ID. See the
612 comment at frame_id_inner for details. */
613 if (get_frame_type (frame) == NORMAL_FRAME
614 && !frame_id_inner (get_frame_arch (frame), id, this)
615 && frame_id_inner (get_frame_arch (prev_frame), id,
616 get_frame_id (prev_frame)))
617 return NULL;
618 }
619 return NULL;
620 }
621
622 static CORE_ADDR
623 frame_unwind_pc (struct frame_info *this_frame)
624 {
625 if (!this_frame->prev_pc.p)
626 {
627 CORE_ADDR pc;
628
629 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
630 {
631 /* The right way. The `pure' way. The one true way. This
632 method depends solely on the register-unwind code to
633 determine the value of registers in THIS frame, and hence
634 the value of this frame's PC (resume address). A typical
635 implementation is no more than:
636
637 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
638 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
639
640 Note: this method is very heavily dependent on a correct
641 register-unwind implementation, it pays to fix that
642 method first; this method is frame type agnostic, since
643 it only deals with register values, it works with any
644 frame. This is all in stark contrast to the old
645 FRAME_SAVED_PC which would try to directly handle all the
646 different ways that a PC could be unwound. */
647 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
648 }
649 else
650 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
651 this_frame->prev_pc.value = pc;
652 this_frame->prev_pc.p = 1;
653 if (frame_debug)
654 fprintf_unfiltered (gdb_stdlog,
655 "{ frame_unwind_caller_pc "
656 "(this_frame=%d) -> %s }\n",
657 this_frame->level,
658 hex_string (this_frame->prev_pc.value));
659 }
660 return this_frame->prev_pc.value;
661 }
662
663 CORE_ADDR
664 frame_unwind_caller_pc (struct frame_info *this_frame)
665 {
666 return frame_unwind_pc (skip_inlined_frames (this_frame));
667 }
668
669 CORE_ADDR
670 get_frame_func (struct frame_info *this_frame)
671 {
672 struct frame_info *next_frame = this_frame->next;
673
674 if (!next_frame->prev_func.p)
675 {
676 /* Make certain that this, and not the adjacent, function is
677 found. */
678 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
679 next_frame->prev_func.p = 1;
680 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
681 if (frame_debug)
682 fprintf_unfiltered (gdb_stdlog,
683 "{ get_frame_func (this_frame=%d) -> %s }\n",
684 this_frame->level,
685 hex_string (next_frame->prev_func.addr));
686 }
687 return next_frame->prev_func.addr;
688 }
689
690 static enum register_status
691 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
692 {
693 if (!frame_register_read (src, regnum, buf))
694 return REG_UNAVAILABLE;
695 else
696 return REG_VALID;
697 }
698
699 struct regcache *
700 frame_save_as_regcache (struct frame_info *this_frame)
701 {
702 struct address_space *aspace = get_frame_address_space (this_frame);
703 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
704 aspace);
705 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
706
707 regcache_save (regcache, do_frame_register_read, this_frame);
708 discard_cleanups (cleanups);
709 return regcache;
710 }
711
712 void
713 frame_pop (struct frame_info *this_frame)
714 {
715 struct frame_info *prev_frame;
716 struct regcache *scratch;
717 struct cleanup *cleanups;
718
719 if (get_frame_type (this_frame) == DUMMY_FRAME)
720 {
721 /* Popping a dummy frame involves restoring more than just registers.
722 dummy_frame_pop does all the work. */
723 dummy_frame_pop (get_frame_id (this_frame));
724 return;
725 }
726
727 /* Ensure that we have a frame to pop to. */
728 prev_frame = get_prev_frame_1 (this_frame);
729
730 if (!prev_frame)
731 error (_("Cannot pop the initial frame."));
732
733 /* Make a copy of all the register values unwound from this frame.
734 Save them in a scratch buffer so that there isn't a race between
735 trying to extract the old values from the current regcache while
736 at the same time writing new values into that same cache. */
737 scratch = frame_save_as_regcache (prev_frame);
738 cleanups = make_cleanup_regcache_xfree (scratch);
739
740 /* FIXME: cagney/2003-03-16: It should be possible to tell the
741 target's register cache that it is about to be hit with a burst
742 register transfer and that the sequence of register writes should
743 be batched. The pair target_prepare_to_store() and
744 target_store_registers() kind of suggest this functionality.
745 Unfortunately, they don't implement it. Their lack of a formal
746 definition can lead to targets writing back bogus values
747 (arguably a bug in the target code mind). */
748 /* Now copy those saved registers into the current regcache.
749 Here, regcache_cpy() calls regcache_restore(). */
750 regcache_cpy (get_current_regcache (), scratch);
751 do_cleanups (cleanups);
752
753 /* We've made right mess of GDB's local state, just discard
754 everything. */
755 reinit_frame_cache ();
756 }
757
758 void
759 frame_register_unwind (struct frame_info *frame, int regnum,
760 int *optimizedp, int *unavailablep,
761 enum lval_type *lvalp, CORE_ADDR *addrp,
762 int *realnump, gdb_byte *bufferp)
763 {
764 struct value *value;
765
766 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
767 that the value proper does not need to be fetched. */
768 gdb_assert (optimizedp != NULL);
769 gdb_assert (lvalp != NULL);
770 gdb_assert (addrp != NULL);
771 gdb_assert (realnump != NULL);
772 /* gdb_assert (bufferp != NULL); */
773
774 value = frame_unwind_register_value (frame, regnum);
775
776 gdb_assert (value != NULL);
777
778 *optimizedp = value_optimized_out (value);
779 *unavailablep = !value_entirely_available (value);
780 *lvalp = VALUE_LVAL (value);
781 *addrp = value_address (value);
782 *realnump = VALUE_REGNUM (value);
783
784 if (bufferp)
785 {
786 if (!*optimizedp && !*unavailablep)
787 memcpy (bufferp, value_contents_all (value),
788 TYPE_LENGTH (value_type (value)));
789 else
790 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
791 }
792
793 /* Dispose of the new value. This prevents watchpoints from
794 trying to watch the saved frame pointer. */
795 release_value (value);
796 value_free (value);
797 }
798
799 void
800 frame_register (struct frame_info *frame, int regnum,
801 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
802 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
803 {
804 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
805 that the value proper does not need to be fetched. */
806 gdb_assert (optimizedp != NULL);
807 gdb_assert (lvalp != NULL);
808 gdb_assert (addrp != NULL);
809 gdb_assert (realnump != NULL);
810 /* gdb_assert (bufferp != NULL); */
811
812 /* Obtain the register value by unwinding the register from the next
813 (more inner frame). */
814 gdb_assert (frame != NULL && frame->next != NULL);
815 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
816 lvalp, addrp, realnump, bufferp);
817 }
818
819 void
820 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
821 {
822 int optimized;
823 int unavailable;
824 CORE_ADDR addr;
825 int realnum;
826 enum lval_type lval;
827
828 frame_register_unwind (frame, regnum, &optimized, &unavailable,
829 &lval, &addr, &realnum, buf);
830 }
831
832 void
833 get_frame_register (struct frame_info *frame,
834 int regnum, gdb_byte *buf)
835 {
836 frame_unwind_register (frame->next, regnum, buf);
837 }
838
839 struct value *
840 frame_unwind_register_value (struct frame_info *frame, int regnum)
841 {
842 struct gdbarch *gdbarch;
843 struct value *value;
844
845 gdb_assert (frame != NULL);
846 gdbarch = frame_unwind_arch (frame);
847
848 if (frame_debug)
849 {
850 fprintf_unfiltered (gdb_stdlog,
851 "{ frame_unwind_register_value "
852 "(frame=%d,regnum=%d(%s),...) ",
853 frame->level, regnum,
854 user_reg_map_regnum_to_name (gdbarch, regnum));
855 }
856
857 /* Find the unwinder. */
858 if (frame->unwind == NULL)
859 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
860
861 /* Ask this frame to unwind its register. */
862 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
863
864 if (frame_debug)
865 {
866 fprintf_unfiltered (gdb_stdlog, "->");
867 if (value_optimized_out (value))
868 fprintf_unfiltered (gdb_stdlog, " optimized out");
869 else
870 {
871 if (VALUE_LVAL (value) == lval_register)
872 fprintf_unfiltered (gdb_stdlog, " register=%d",
873 VALUE_REGNUM (value));
874 else if (VALUE_LVAL (value) == lval_memory)
875 fprintf_unfiltered (gdb_stdlog, " address=%s",
876 paddress (gdbarch,
877 value_address (value)));
878 else
879 fprintf_unfiltered (gdb_stdlog, " computed");
880
881 if (value_lazy (value))
882 fprintf_unfiltered (gdb_stdlog, " lazy");
883 else
884 {
885 int i;
886 const gdb_byte *buf = value_contents (value);
887
888 fprintf_unfiltered (gdb_stdlog, " bytes=");
889 fprintf_unfiltered (gdb_stdlog, "[");
890 for (i = 0; i < register_size (gdbarch, regnum); i++)
891 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
892 fprintf_unfiltered (gdb_stdlog, "]");
893 }
894 }
895
896 fprintf_unfiltered (gdb_stdlog, " }\n");
897 }
898
899 return value;
900 }
901
902 struct value *
903 get_frame_register_value (struct frame_info *frame, int regnum)
904 {
905 return frame_unwind_register_value (frame->next, regnum);
906 }
907
908 LONGEST
909 frame_unwind_register_signed (struct frame_info *frame, int regnum)
910 {
911 struct gdbarch *gdbarch = frame_unwind_arch (frame);
912 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
913 int size = register_size (gdbarch, regnum);
914 gdb_byte buf[MAX_REGISTER_SIZE];
915
916 frame_unwind_register (frame, regnum, buf);
917 return extract_signed_integer (buf, size, byte_order);
918 }
919
920 LONGEST
921 get_frame_register_signed (struct frame_info *frame, int regnum)
922 {
923 return frame_unwind_register_signed (frame->next, regnum);
924 }
925
926 ULONGEST
927 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
928 {
929 struct gdbarch *gdbarch = frame_unwind_arch (frame);
930 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
931 int size = register_size (gdbarch, regnum);
932 gdb_byte buf[MAX_REGISTER_SIZE];
933
934 frame_unwind_register (frame, regnum, buf);
935 return extract_unsigned_integer (buf, size, byte_order);
936 }
937
938 ULONGEST
939 get_frame_register_unsigned (struct frame_info *frame, int regnum)
940 {
941 return frame_unwind_register_unsigned (frame->next, regnum);
942 }
943
944 void
945 put_frame_register (struct frame_info *frame, int regnum,
946 const gdb_byte *buf)
947 {
948 struct gdbarch *gdbarch = get_frame_arch (frame);
949 int realnum;
950 int optim;
951 int unavail;
952 enum lval_type lval;
953 CORE_ADDR addr;
954
955 frame_register (frame, regnum, &optim, &unavail,
956 &lval, &addr, &realnum, NULL);
957 if (optim)
958 error (_("Attempt to assign to a value that was optimized out."));
959 switch (lval)
960 {
961 case lval_memory:
962 {
963 /* FIXME: write_memory doesn't yet take constant buffers.
964 Arrrg! */
965 gdb_byte tmp[MAX_REGISTER_SIZE];
966
967 memcpy (tmp, buf, register_size (gdbarch, regnum));
968 write_memory (addr, tmp, register_size (gdbarch, regnum));
969 break;
970 }
971 case lval_register:
972 regcache_cooked_write (get_current_regcache (), realnum, buf);
973 break;
974 default:
975 error (_("Attempt to assign to an unmodifiable value."));
976 }
977 }
978
979 /* frame_register_read ()
980
981 Find and return the value of REGNUM for the specified stack frame.
982 The number of bytes copied is REGISTER_SIZE (REGNUM).
983
984 Returns 0 if the register value could not be found. */
985
986 int
987 frame_register_read (struct frame_info *frame, int regnum,
988 gdb_byte *myaddr)
989 {
990 int optimized;
991 int unavailable;
992 enum lval_type lval;
993 CORE_ADDR addr;
994 int realnum;
995
996 frame_register (frame, regnum, &optimized, &unavailable,
997 &lval, &addr, &realnum, myaddr);
998
999 return !optimized && !unavailable;
1000 }
1001
1002 int
1003 get_frame_register_bytes (struct frame_info *frame, int regnum,
1004 CORE_ADDR offset, int len, gdb_byte *myaddr,
1005 int *optimizedp, int *unavailablep)
1006 {
1007 struct gdbarch *gdbarch = get_frame_arch (frame);
1008 int i;
1009 int maxsize;
1010 int numregs;
1011
1012 /* Skip registers wholly inside of OFFSET. */
1013 while (offset >= register_size (gdbarch, regnum))
1014 {
1015 offset -= register_size (gdbarch, regnum);
1016 regnum++;
1017 }
1018
1019 /* Ensure that we will not read beyond the end of the register file.
1020 This can only ever happen if the debug information is bad. */
1021 maxsize = -offset;
1022 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1023 for (i = regnum; i < numregs; i++)
1024 {
1025 int thissize = register_size (gdbarch, i);
1026
1027 if (thissize == 0)
1028 break; /* This register is not available on this architecture. */
1029 maxsize += thissize;
1030 }
1031 if (len > maxsize)
1032 error (_("Bad debug information detected: "
1033 "Attempt to read %d bytes from registers."), len);
1034
1035 /* Copy the data. */
1036 while (len > 0)
1037 {
1038 int curr_len = register_size (gdbarch, regnum) - offset;
1039
1040 if (curr_len > len)
1041 curr_len = len;
1042
1043 if (curr_len == register_size (gdbarch, regnum))
1044 {
1045 enum lval_type lval;
1046 CORE_ADDR addr;
1047 int realnum;
1048
1049 frame_register (frame, regnum, optimizedp, unavailablep,
1050 &lval, &addr, &realnum, myaddr);
1051 if (*optimizedp || *unavailablep)
1052 return 0;
1053 }
1054 else
1055 {
1056 gdb_byte buf[MAX_REGISTER_SIZE];
1057 enum lval_type lval;
1058 CORE_ADDR addr;
1059 int realnum;
1060
1061 frame_register (frame, regnum, optimizedp, unavailablep,
1062 &lval, &addr, &realnum, buf);
1063 if (*optimizedp || *unavailablep)
1064 return 0;
1065 memcpy (myaddr, buf + offset, curr_len);
1066 }
1067
1068 myaddr += curr_len;
1069 len -= curr_len;
1070 offset = 0;
1071 regnum++;
1072 }
1073
1074 *optimizedp = 0;
1075 *unavailablep = 0;
1076 return 1;
1077 }
1078
1079 void
1080 put_frame_register_bytes (struct frame_info *frame, int regnum,
1081 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1082 {
1083 struct gdbarch *gdbarch = get_frame_arch (frame);
1084
1085 /* Skip registers wholly inside of OFFSET. */
1086 while (offset >= register_size (gdbarch, regnum))
1087 {
1088 offset -= register_size (gdbarch, regnum);
1089 regnum++;
1090 }
1091
1092 /* Copy the data. */
1093 while (len > 0)
1094 {
1095 int curr_len = register_size (gdbarch, regnum) - offset;
1096
1097 if (curr_len > len)
1098 curr_len = len;
1099
1100 if (curr_len == register_size (gdbarch, regnum))
1101 {
1102 put_frame_register (frame, regnum, myaddr);
1103 }
1104 else
1105 {
1106 gdb_byte buf[MAX_REGISTER_SIZE];
1107
1108 frame_register_read (frame, regnum, buf);
1109 memcpy (buf + offset, myaddr, curr_len);
1110 put_frame_register (frame, regnum, buf);
1111 }
1112
1113 myaddr += curr_len;
1114 len -= curr_len;
1115 offset = 0;
1116 regnum++;
1117 }
1118 }
1119
1120 /* Create a sentinel frame. */
1121
1122 static struct frame_info *
1123 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1124 {
1125 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1126
1127 frame->level = -1;
1128 frame->pspace = pspace;
1129 frame->aspace = get_regcache_aspace (regcache);
1130 /* Explicitly initialize the sentinel frame's cache. Provide it
1131 with the underlying regcache. In the future additional
1132 information, such as the frame's thread will be added. */
1133 frame->prologue_cache = sentinel_frame_cache (regcache);
1134 /* For the moment there is only one sentinel frame implementation. */
1135 frame->unwind = &sentinel_frame_unwind;
1136 /* Link this frame back to itself. The frame is self referential
1137 (the unwound PC is the same as the pc), so make it so. */
1138 frame->next = frame;
1139 /* Make the sentinel frame's ID valid, but invalid. That way all
1140 comparisons with it should fail. */
1141 frame->this_id.p = 1;
1142 frame->this_id.value = null_frame_id;
1143 if (frame_debug)
1144 {
1145 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1146 fprint_frame (gdb_stdlog, frame);
1147 fprintf_unfiltered (gdb_stdlog, " }\n");
1148 }
1149 return frame;
1150 }
1151
1152 /* Info about the innermost stack frame (contents of FP register). */
1153
1154 static struct frame_info *current_frame;
1155
1156 /* Cache for frame addresses already read by gdb. Valid only while
1157 inferior is stopped. Control variables for the frame cache should
1158 be local to this module. */
1159
1160 static struct obstack frame_cache_obstack;
1161
1162 void *
1163 frame_obstack_zalloc (unsigned long size)
1164 {
1165 void *data = obstack_alloc (&frame_cache_obstack, size);
1166
1167 memset (data, 0, size);
1168 return data;
1169 }
1170
1171 /* Return the innermost (currently executing) stack frame. This is
1172 split into two functions. The function unwind_to_current_frame()
1173 is wrapped in catch exceptions so that, even when the unwind of the
1174 sentinel frame fails, the function still returns a stack frame. */
1175
1176 static int
1177 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1178 {
1179 struct frame_info *frame = get_prev_frame (args);
1180
1181 /* A sentinel frame can fail to unwind, e.g., because its PC value
1182 lands in somewhere like start. */
1183 if (frame == NULL)
1184 return 1;
1185 current_frame = frame;
1186 return 0;
1187 }
1188
1189 struct frame_info *
1190 get_current_frame (void)
1191 {
1192 /* First check, and report, the lack of registers. Having GDB
1193 report "No stack!" or "No memory" when the target doesn't even
1194 have registers is very confusing. Besides, "printcmd.exp"
1195 explicitly checks that ``print $pc'' with no registers prints "No
1196 registers". */
1197 if (!target_has_registers)
1198 error (_("No registers."));
1199 if (!target_has_stack)
1200 error (_("No stack."));
1201 if (!target_has_memory)
1202 error (_("No memory."));
1203 /* Traceframes are effectively a substitute for the live inferior. */
1204 if (get_traceframe_number () < 0)
1205 {
1206 if (ptid_equal (inferior_ptid, null_ptid))
1207 error (_("No selected thread."));
1208 if (is_exited (inferior_ptid))
1209 error (_("Invalid selected thread."));
1210 if (is_executing (inferior_ptid))
1211 error (_("Target is executing."));
1212 }
1213
1214 if (current_frame == NULL)
1215 {
1216 struct frame_info *sentinel_frame =
1217 create_sentinel_frame (current_program_space, get_current_regcache ());
1218 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1219 RETURN_MASK_ERROR) != 0)
1220 {
1221 /* Oops! Fake a current frame? Is this useful? It has a PC
1222 of zero, for instance. */
1223 current_frame = sentinel_frame;
1224 }
1225 }
1226 return current_frame;
1227 }
1228
1229 /* The "selected" stack frame is used by default for local and arg
1230 access. May be zero, for no selected frame. */
1231
1232 static struct frame_info *selected_frame;
1233
1234 int
1235 has_stack_frames (void)
1236 {
1237 if (!target_has_registers || !target_has_stack || !target_has_memory)
1238 return 0;
1239
1240 /* No current inferior, no frame. */
1241 if (ptid_equal (inferior_ptid, null_ptid))
1242 return 0;
1243
1244 /* Don't try to read from a dead thread. */
1245 if (is_exited (inferior_ptid))
1246 return 0;
1247
1248 /* ... or from a spinning thread. */
1249 if (is_executing (inferior_ptid))
1250 return 0;
1251
1252 return 1;
1253 }
1254
1255 /* Return the selected frame. Always non-NULL (unless there isn't an
1256 inferior sufficient for creating a frame) in which case an error is
1257 thrown. */
1258
1259 struct frame_info *
1260 get_selected_frame (const char *message)
1261 {
1262 if (selected_frame == NULL)
1263 {
1264 if (message != NULL && !has_stack_frames ())
1265 error (("%s"), message);
1266 /* Hey! Don't trust this. It should really be re-finding the
1267 last selected frame of the currently selected thread. This,
1268 though, is better than nothing. */
1269 select_frame (get_current_frame ());
1270 }
1271 /* There is always a frame. */
1272 gdb_assert (selected_frame != NULL);
1273 return selected_frame;
1274 }
1275
1276 /* If there is a selected frame, return it. Otherwise, return NULL. */
1277
1278 struct frame_info *
1279 get_selected_frame_if_set (void)
1280 {
1281 return selected_frame;
1282 }
1283
1284 /* This is a variant of get_selected_frame() which can be called when
1285 the inferior does not have a frame; in that case it will return
1286 NULL instead of calling error(). */
1287
1288 struct frame_info *
1289 deprecated_safe_get_selected_frame (void)
1290 {
1291 if (!has_stack_frames ())
1292 return NULL;
1293 return get_selected_frame (NULL);
1294 }
1295
1296 /* Select frame FI (or NULL - to invalidate the current frame). */
1297
1298 void
1299 select_frame (struct frame_info *fi)
1300 {
1301 struct symtab *s;
1302
1303 selected_frame = fi;
1304 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1305 frame is being invalidated. */
1306 if (deprecated_selected_frame_level_changed_hook)
1307 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1308
1309 /* FIXME: kseitz/2002-08-28: It would be nice to call
1310 selected_frame_level_changed_event() right here, but due to limitations
1311 in the current interfaces, we would end up flooding UIs with events
1312 because select_frame() is used extensively internally.
1313
1314 Once we have frame-parameterized frame (and frame-related) commands,
1315 the event notification can be moved here, since this function will only
1316 be called when the user's selected frame is being changed. */
1317
1318 /* Ensure that symbols for this frame are read in. Also, determine the
1319 source language of this frame, and switch to it if desired. */
1320 if (fi)
1321 {
1322 /* We retrieve the frame's symtab by using the frame PC. However
1323 we cannot use the frame PC as-is, because it usually points to
1324 the instruction following the "call", which is sometimes the
1325 first instruction of another function. So we rely on
1326 get_frame_address_in_block() which provides us with a PC which
1327 is guaranteed to be inside the frame's code block. */
1328 s = find_pc_symtab (get_frame_address_in_block (fi));
1329 if (s
1330 && s->language != current_language->la_language
1331 && s->language != language_unknown
1332 && language_mode == language_mode_auto)
1333 {
1334 set_language (s->language);
1335 }
1336 }
1337 }
1338
1339 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1340 Always returns a non-NULL value. */
1341
1342 struct frame_info *
1343 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1344 {
1345 struct frame_info *fi;
1346
1347 if (frame_debug)
1348 {
1349 fprintf_unfiltered (gdb_stdlog,
1350 "{ create_new_frame (addr=%s, pc=%s) ",
1351 hex_string (addr), hex_string (pc));
1352 }
1353
1354 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1355
1356 fi->next = create_sentinel_frame (current_program_space,
1357 get_current_regcache ());
1358
1359 /* Set/update this frame's cached PC value, found in the next frame.
1360 Do this before looking for this frame's unwinder. A sniffer is
1361 very likely to read this, and the corresponding unwinder is
1362 entitled to rely that the PC doesn't magically change. */
1363 fi->next->prev_pc.value = pc;
1364 fi->next->prev_pc.p = 1;
1365
1366 /* We currently assume that frame chain's can't cross spaces. */
1367 fi->pspace = fi->next->pspace;
1368 fi->aspace = fi->next->aspace;
1369
1370 /* Select/initialize both the unwind function and the frame's type
1371 based on the PC. */
1372 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1373
1374 fi->this_id.p = 1;
1375 fi->this_id.value = frame_id_build (addr, pc);
1376
1377 if (frame_debug)
1378 {
1379 fprintf_unfiltered (gdb_stdlog, "-> ");
1380 fprint_frame (gdb_stdlog, fi);
1381 fprintf_unfiltered (gdb_stdlog, " }\n");
1382 }
1383
1384 return fi;
1385 }
1386
1387 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1388 innermost frame). Be careful to not fall off the bottom of the
1389 frame chain and onto the sentinel frame. */
1390
1391 struct frame_info *
1392 get_next_frame (struct frame_info *this_frame)
1393 {
1394 if (this_frame->level > 0)
1395 return this_frame->next;
1396 else
1397 return NULL;
1398 }
1399
1400 /* Observer for the target_changed event. */
1401
1402 static void
1403 frame_observer_target_changed (struct target_ops *target)
1404 {
1405 reinit_frame_cache ();
1406 }
1407
1408 /* Flush the entire frame cache. */
1409
1410 void
1411 reinit_frame_cache (void)
1412 {
1413 struct frame_info *fi;
1414
1415 /* Tear down all frame caches. */
1416 for (fi = current_frame; fi != NULL; fi = fi->prev)
1417 {
1418 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1419 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1420 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1421 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1422 }
1423
1424 /* Since we can't really be sure what the first object allocated was. */
1425 obstack_free (&frame_cache_obstack, 0);
1426 obstack_init (&frame_cache_obstack);
1427
1428 if (current_frame != NULL)
1429 annotate_frames_invalid ();
1430
1431 current_frame = NULL; /* Invalidate cache */
1432 select_frame (NULL);
1433 frame_stash_invalidate ();
1434 if (frame_debug)
1435 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1436 }
1437
1438 /* Find where a register is saved (in memory or another register).
1439 The result of frame_register_unwind is just where it is saved
1440 relative to this particular frame. */
1441
1442 static void
1443 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1444 int *optimizedp, enum lval_type *lvalp,
1445 CORE_ADDR *addrp, int *realnump)
1446 {
1447 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1448
1449 while (this_frame != NULL)
1450 {
1451 int unavailable;
1452
1453 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1454 lvalp, addrp, realnump, NULL);
1455
1456 if (*optimizedp)
1457 break;
1458
1459 if (*lvalp != lval_register)
1460 break;
1461
1462 regnum = *realnump;
1463 this_frame = get_next_frame (this_frame);
1464 }
1465 }
1466
1467 /* Return a "struct frame_info" corresponding to the frame that called
1468 THIS_FRAME. Returns NULL if there is no such frame.
1469
1470 Unlike get_prev_frame, this function always tries to unwind the
1471 frame. */
1472
1473 static struct frame_info *
1474 get_prev_frame_1 (struct frame_info *this_frame)
1475 {
1476 struct frame_id this_id;
1477 struct gdbarch *gdbarch;
1478
1479 gdb_assert (this_frame != NULL);
1480 gdbarch = get_frame_arch (this_frame);
1481
1482 if (frame_debug)
1483 {
1484 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1485 if (this_frame != NULL)
1486 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1487 else
1488 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1489 fprintf_unfiltered (gdb_stdlog, ") ");
1490 }
1491
1492 /* Only try to do the unwind once. */
1493 if (this_frame->prev_p)
1494 {
1495 if (frame_debug)
1496 {
1497 fprintf_unfiltered (gdb_stdlog, "-> ");
1498 fprint_frame (gdb_stdlog, this_frame->prev);
1499 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1500 }
1501 return this_frame->prev;
1502 }
1503
1504 /* If the frame unwinder hasn't been selected yet, we must do so
1505 before setting prev_p; otherwise the check for misbehaved
1506 sniffers will think that this frame's sniffer tried to unwind
1507 further (see frame_cleanup_after_sniffer). */
1508 if (this_frame->unwind == NULL)
1509 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1510
1511 this_frame->prev_p = 1;
1512 this_frame->stop_reason = UNWIND_NO_REASON;
1513
1514 /* If we are unwinding from an inline frame, all of the below tests
1515 were already performed when we unwound from the next non-inline
1516 frame. We must skip them, since we can not get THIS_FRAME's ID
1517 until we have unwound all the way down to the previous non-inline
1518 frame. */
1519 if (get_frame_type (this_frame) == INLINE_FRAME)
1520 return get_prev_frame_raw (this_frame);
1521
1522 /* Check that this frame's ID was valid. If it wasn't, don't try to
1523 unwind to the prev frame. Be careful to not apply this test to
1524 the sentinel frame. */
1525 this_id = get_frame_id (this_frame);
1526 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1527 {
1528 if (frame_debug)
1529 {
1530 fprintf_unfiltered (gdb_stdlog, "-> ");
1531 fprint_frame (gdb_stdlog, NULL);
1532 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1533 }
1534 this_frame->stop_reason = UNWIND_NULL_ID;
1535 return NULL;
1536 }
1537
1538 /* Check that this frame's ID isn't inner to (younger, below, next)
1539 the next frame. This happens when a frame unwind goes backwards.
1540 This check is valid only if this frame and the next frame are NORMAL.
1541 See the comment at frame_id_inner for details. */
1542 if (get_frame_type (this_frame) == NORMAL_FRAME
1543 && this_frame->next->unwind->type == NORMAL_FRAME
1544 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1545 get_frame_id (this_frame->next)))
1546 {
1547 CORE_ADDR this_pc_in_block;
1548 struct minimal_symbol *morestack_msym;
1549 const char *morestack_name = NULL;
1550
1551 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1552 this_pc_in_block = get_frame_address_in_block (this_frame);
1553 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block);
1554 if (morestack_msym)
1555 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1556 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1557 {
1558 if (frame_debug)
1559 {
1560 fprintf_unfiltered (gdb_stdlog, "-> ");
1561 fprint_frame (gdb_stdlog, NULL);
1562 fprintf_unfiltered (gdb_stdlog,
1563 " // this frame ID is inner }\n");
1564 }
1565 this_frame->stop_reason = UNWIND_INNER_ID;
1566 return NULL;
1567 }
1568 }
1569
1570 /* Check that this and the next frame are not identical. If they
1571 are, there is most likely a stack cycle. As with the inner-than
1572 test above, avoid comparing the inner-most and sentinel frames. */
1573 if (this_frame->level > 0
1574 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1575 {
1576 if (frame_debug)
1577 {
1578 fprintf_unfiltered (gdb_stdlog, "-> ");
1579 fprint_frame (gdb_stdlog, NULL);
1580 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1581 }
1582 this_frame->stop_reason = UNWIND_SAME_ID;
1583 return NULL;
1584 }
1585
1586 /* Check that this and the next frame do not unwind the PC register
1587 to the same memory location. If they do, then even though they
1588 have different frame IDs, the new frame will be bogus; two
1589 functions can't share a register save slot for the PC. This can
1590 happen when the prologue analyzer finds a stack adjustment, but
1591 no PC save.
1592
1593 This check does assume that the "PC register" is roughly a
1594 traditional PC, even if the gdbarch_unwind_pc method adjusts
1595 it (we do not rely on the value, only on the unwound PC being
1596 dependent on this value). A potential improvement would be
1597 to have the frame prev_pc method and the gdbarch unwind_pc
1598 method set the same lval and location information as
1599 frame_register_unwind. */
1600 if (this_frame->level > 0
1601 && gdbarch_pc_regnum (gdbarch) >= 0
1602 && get_frame_type (this_frame) == NORMAL_FRAME
1603 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1604 || get_frame_type (this_frame->next) == INLINE_FRAME))
1605 {
1606 int optimized, realnum, nrealnum;
1607 enum lval_type lval, nlval;
1608 CORE_ADDR addr, naddr;
1609
1610 frame_register_unwind_location (this_frame,
1611 gdbarch_pc_regnum (gdbarch),
1612 &optimized, &lval, &addr, &realnum);
1613 frame_register_unwind_location (get_next_frame (this_frame),
1614 gdbarch_pc_regnum (gdbarch),
1615 &optimized, &nlval, &naddr, &nrealnum);
1616
1617 if ((lval == lval_memory && lval == nlval && addr == naddr)
1618 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1619 {
1620 if (frame_debug)
1621 {
1622 fprintf_unfiltered (gdb_stdlog, "-> ");
1623 fprint_frame (gdb_stdlog, NULL);
1624 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1625 }
1626
1627 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1628 this_frame->prev = NULL;
1629 return NULL;
1630 }
1631 }
1632
1633 return get_prev_frame_raw (this_frame);
1634 }
1635
1636 /* Construct a new "struct frame_info" and link it previous to
1637 this_frame. */
1638
1639 static struct frame_info *
1640 get_prev_frame_raw (struct frame_info *this_frame)
1641 {
1642 struct frame_info *prev_frame;
1643
1644 /* Allocate the new frame but do not wire it in to the frame chain.
1645 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1646 frame->next to pull some fancy tricks (of course such code is, by
1647 definition, recursive). Try to prevent it.
1648
1649 There is no reason to worry about memory leaks, should the
1650 remainder of the function fail. The allocated memory will be
1651 quickly reclaimed when the frame cache is flushed, and the `we've
1652 been here before' check above will stop repeated memory
1653 allocation calls. */
1654 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1655 prev_frame->level = this_frame->level + 1;
1656
1657 /* For now, assume we don't have frame chains crossing address
1658 spaces. */
1659 prev_frame->pspace = this_frame->pspace;
1660 prev_frame->aspace = this_frame->aspace;
1661
1662 /* Don't yet compute ->unwind (and hence ->type). It is computed
1663 on-demand in get_frame_type, frame_register_unwind, and
1664 get_frame_id. */
1665
1666 /* Don't yet compute the frame's ID. It is computed on-demand by
1667 get_frame_id(). */
1668
1669 /* The unwound frame ID is validate at the start of this function,
1670 as part of the logic to decide if that frame should be further
1671 unwound, and not here while the prev frame is being created.
1672 Doing this makes it possible for the user to examine a frame that
1673 has an invalid frame ID.
1674
1675 Some very old VAX code noted: [...] For the sake of argument,
1676 suppose that the stack is somewhat trashed (which is one reason
1677 that "info frame" exists). So, return 0 (indicating we don't
1678 know the address of the arglist) if we don't know what frame this
1679 frame calls. */
1680
1681 /* Link it in. */
1682 this_frame->prev = prev_frame;
1683 prev_frame->next = this_frame;
1684
1685 if (frame_debug)
1686 {
1687 fprintf_unfiltered (gdb_stdlog, "-> ");
1688 fprint_frame (gdb_stdlog, prev_frame);
1689 fprintf_unfiltered (gdb_stdlog, " }\n");
1690 }
1691
1692 return prev_frame;
1693 }
1694
1695 /* Debug routine to print a NULL frame being returned. */
1696
1697 static void
1698 frame_debug_got_null_frame (struct frame_info *this_frame,
1699 const char *reason)
1700 {
1701 if (frame_debug)
1702 {
1703 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1704 if (this_frame != NULL)
1705 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1706 else
1707 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1708 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1709 }
1710 }
1711
1712 /* Is this (non-sentinel) frame in the "main"() function? */
1713
1714 static int
1715 inside_main_func (struct frame_info *this_frame)
1716 {
1717 struct minimal_symbol *msymbol;
1718 CORE_ADDR maddr;
1719
1720 if (symfile_objfile == 0)
1721 return 0;
1722 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1723 if (msymbol == NULL)
1724 return 0;
1725 /* Make certain that the code, and not descriptor, address is
1726 returned. */
1727 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1728 SYMBOL_VALUE_ADDRESS (msymbol),
1729 &current_target);
1730 return maddr == get_frame_func (this_frame);
1731 }
1732
1733 /* Test whether THIS_FRAME is inside the process entry point function. */
1734
1735 static int
1736 inside_entry_func (struct frame_info *this_frame)
1737 {
1738 CORE_ADDR entry_point;
1739
1740 if (!entry_point_address_query (&entry_point))
1741 return 0;
1742
1743 return get_frame_func (this_frame) == entry_point;
1744 }
1745
1746 /* Return a structure containing various interesting information about
1747 the frame that called THIS_FRAME. Returns NULL if there is entier
1748 no such frame or the frame fails any of a set of target-independent
1749 condition that should terminate the frame chain (e.g., as unwinding
1750 past main()).
1751
1752 This function should not contain target-dependent tests, such as
1753 checking whether the program-counter is zero. */
1754
1755 struct frame_info *
1756 get_prev_frame (struct frame_info *this_frame)
1757 {
1758 /* There is always a frame. If this assertion fails, suspect that
1759 something should be calling get_selected_frame() or
1760 get_current_frame(). */
1761 gdb_assert (this_frame != NULL);
1762
1763 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1764 sense to stop unwinding at a dummy frame. One place where a dummy
1765 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1766 pcsqh register (space register for the instruction at the head of the
1767 instruction queue) cannot be written directly; the only way to set it
1768 is to branch to code that is in the target space. In order to implement
1769 frame dummies on HPUX, the called function is made to jump back to where
1770 the inferior was when the user function was called. If gdb was inside
1771 the main function when we created the dummy frame, the dummy frame will
1772 point inside the main function. */
1773 if (this_frame->level >= 0
1774 && get_frame_type (this_frame) == NORMAL_FRAME
1775 && !backtrace_past_main
1776 && inside_main_func (this_frame))
1777 /* Don't unwind past main(). Note, this is done _before_ the
1778 frame has been marked as previously unwound. That way if the
1779 user later decides to enable unwinds past main(), that will
1780 automatically happen. */
1781 {
1782 frame_debug_got_null_frame (this_frame, "inside main func");
1783 return NULL;
1784 }
1785
1786 /* If the user's backtrace limit has been exceeded, stop. We must
1787 add two to the current level; one of those accounts for backtrace_limit
1788 being 1-based and the level being 0-based, and the other accounts for
1789 the level of the new frame instead of the level of the current
1790 frame. */
1791 if (this_frame->level + 2 > backtrace_limit)
1792 {
1793 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1794 return NULL;
1795 }
1796
1797 /* If we're already inside the entry function for the main objfile,
1798 then it isn't valid. Don't apply this test to a dummy frame -
1799 dummy frame PCs typically land in the entry func. Don't apply
1800 this test to the sentinel frame. Sentinel frames should always
1801 be allowed to unwind. */
1802 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1803 wasn't checking for "main" in the minimal symbols. With that
1804 fixed asm-source tests now stop in "main" instead of halting the
1805 backtrace in weird and wonderful ways somewhere inside the entry
1806 file. Suspect that tests for inside the entry file/func were
1807 added to work around that (now fixed) case. */
1808 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1809 suggested having the inside_entry_func test use the
1810 inside_main_func() msymbol trick (along with entry_point_address()
1811 I guess) to determine the address range of the start function.
1812 That should provide a far better stopper than the current
1813 heuristics. */
1814 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1815 applied tail-call optimizations to main so that a function called
1816 from main returns directly to the caller of main. Since we don't
1817 stop at main, we should at least stop at the entry point of the
1818 application. */
1819 if (this_frame->level >= 0
1820 && get_frame_type (this_frame) == NORMAL_FRAME
1821 && !backtrace_past_entry
1822 && inside_entry_func (this_frame))
1823 {
1824 frame_debug_got_null_frame (this_frame, "inside entry func");
1825 return NULL;
1826 }
1827
1828 /* Assume that the only way to get a zero PC is through something
1829 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1830 will never unwind a zero PC. */
1831 if (this_frame->level > 0
1832 && (get_frame_type (this_frame) == NORMAL_FRAME
1833 || get_frame_type (this_frame) == INLINE_FRAME)
1834 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1835 && get_frame_pc (this_frame) == 0)
1836 {
1837 frame_debug_got_null_frame (this_frame, "zero PC");
1838 return NULL;
1839 }
1840
1841 return get_prev_frame_1 (this_frame);
1842 }
1843
1844 CORE_ADDR
1845 get_frame_pc (struct frame_info *frame)
1846 {
1847 gdb_assert (frame->next != NULL);
1848 return frame_unwind_pc (frame->next);
1849 }
1850
1851 /* Return an address that falls within THIS_FRAME's code block. */
1852
1853 CORE_ADDR
1854 get_frame_address_in_block (struct frame_info *this_frame)
1855 {
1856 /* A draft address. */
1857 CORE_ADDR pc = get_frame_pc (this_frame);
1858
1859 struct frame_info *next_frame = this_frame->next;
1860
1861 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1862 Normally the resume address is inside the body of the function
1863 associated with THIS_FRAME, but there is a special case: when
1864 calling a function which the compiler knows will never return
1865 (for instance abort), the call may be the very last instruction
1866 in the calling function. The resume address will point after the
1867 call and may be at the beginning of a different function
1868 entirely.
1869
1870 If THIS_FRAME is a signal frame or dummy frame, then we should
1871 not adjust the unwound PC. For a dummy frame, GDB pushed the
1872 resume address manually onto the stack. For a signal frame, the
1873 OS may have pushed the resume address manually and invoked the
1874 handler (e.g. GNU/Linux), or invoked the trampoline which called
1875 the signal handler - but in either case the signal handler is
1876 expected to return to the trampoline. So in both of these
1877 cases we know that the resume address is executable and
1878 related. So we only need to adjust the PC if THIS_FRAME
1879 is a normal function.
1880
1881 If the program has been interrupted while THIS_FRAME is current,
1882 then clearly the resume address is inside the associated
1883 function. There are three kinds of interruption: debugger stop
1884 (next frame will be SENTINEL_FRAME), operating system
1885 signal or exception (next frame will be SIGTRAMP_FRAME),
1886 or debugger-induced function call (next frame will be
1887 DUMMY_FRAME). So we only need to adjust the PC if
1888 NEXT_FRAME is a normal function.
1889
1890 We check the type of NEXT_FRAME first, since it is already
1891 known; frame type is determined by the unwinder, and since
1892 we have THIS_FRAME we've already selected an unwinder for
1893 NEXT_FRAME.
1894
1895 If the next frame is inlined, we need to keep going until we find
1896 the real function - for instance, if a signal handler is invoked
1897 while in an inlined function, then the code address of the
1898 "calling" normal function should not be adjusted either. */
1899
1900 while (get_frame_type (next_frame) == INLINE_FRAME)
1901 next_frame = next_frame->next;
1902
1903 if (get_frame_type (next_frame) == NORMAL_FRAME
1904 && (get_frame_type (this_frame) == NORMAL_FRAME
1905 || get_frame_type (this_frame) == INLINE_FRAME))
1906 return pc - 1;
1907
1908 return pc;
1909 }
1910
1911 void
1912 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1913 {
1914 struct frame_info *next_frame;
1915 int notcurrent;
1916
1917 /* If the next frame represents an inlined function call, this frame's
1918 sal is the "call site" of that inlined function, which can not
1919 be inferred from get_frame_pc. */
1920 next_frame = get_next_frame (frame);
1921 if (frame_inlined_callees (frame) > 0)
1922 {
1923 struct symbol *sym;
1924
1925 if (next_frame)
1926 sym = get_frame_function (next_frame);
1927 else
1928 sym = inline_skipped_symbol (inferior_ptid);
1929
1930 /* If frame is inline, it certainly has symbols. */
1931 gdb_assert (sym);
1932 init_sal (sal);
1933 if (SYMBOL_LINE (sym) != 0)
1934 {
1935 sal->symtab = SYMBOL_SYMTAB (sym);
1936 sal->line = SYMBOL_LINE (sym);
1937 }
1938 else
1939 /* If the symbol does not have a location, we don't know where
1940 the call site is. Do not pretend to. This is jarring, but
1941 we can't do much better. */
1942 sal->pc = get_frame_pc (frame);
1943
1944 return;
1945 }
1946
1947 /* If FRAME is not the innermost frame, that normally means that
1948 FRAME->pc points at the return instruction (which is *after* the
1949 call instruction), and we want to get the line containing the
1950 call (because the call is where the user thinks the program is).
1951 However, if the next frame is either a SIGTRAMP_FRAME or a
1952 DUMMY_FRAME, then the next frame will contain a saved interrupt
1953 PC and such a PC indicates the current (rather than next)
1954 instruction/line, consequently, for such cases, want to get the
1955 line containing fi->pc. */
1956 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1957 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1958 }
1959
1960 /* Per "frame.h", return the ``address'' of the frame. Code should
1961 really be using get_frame_id(). */
1962 CORE_ADDR
1963 get_frame_base (struct frame_info *fi)
1964 {
1965 return get_frame_id (fi).stack_addr;
1966 }
1967
1968 /* High-level offsets into the frame. Used by the debug info. */
1969
1970 CORE_ADDR
1971 get_frame_base_address (struct frame_info *fi)
1972 {
1973 if (get_frame_type (fi) != NORMAL_FRAME)
1974 return 0;
1975 if (fi->base == NULL)
1976 fi->base = frame_base_find_by_frame (fi);
1977 /* Sneaky: If the low-level unwind and high-level base code share a
1978 common unwinder, let them share the prologue cache. */
1979 if (fi->base->unwind == fi->unwind)
1980 return fi->base->this_base (fi, &fi->prologue_cache);
1981 return fi->base->this_base (fi, &fi->base_cache);
1982 }
1983
1984 CORE_ADDR
1985 get_frame_locals_address (struct frame_info *fi)
1986 {
1987 if (get_frame_type (fi) != NORMAL_FRAME)
1988 return 0;
1989 /* If there isn't a frame address method, find it. */
1990 if (fi->base == NULL)
1991 fi->base = frame_base_find_by_frame (fi);
1992 /* Sneaky: If the low-level unwind and high-level base code share a
1993 common unwinder, let them share the prologue cache. */
1994 if (fi->base->unwind == fi->unwind)
1995 return fi->base->this_locals (fi, &fi->prologue_cache);
1996 return fi->base->this_locals (fi, &fi->base_cache);
1997 }
1998
1999 CORE_ADDR
2000 get_frame_args_address (struct frame_info *fi)
2001 {
2002 if (get_frame_type (fi) != NORMAL_FRAME)
2003 return 0;
2004 /* If there isn't a frame address method, find it. */
2005 if (fi->base == NULL)
2006 fi->base = frame_base_find_by_frame (fi);
2007 /* Sneaky: If the low-level unwind and high-level base code share a
2008 common unwinder, let them share the prologue cache. */
2009 if (fi->base->unwind == fi->unwind)
2010 return fi->base->this_args (fi, &fi->prologue_cache);
2011 return fi->base->this_args (fi, &fi->base_cache);
2012 }
2013
2014 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2015 otherwise. */
2016
2017 int
2018 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2019 {
2020 if (fi->unwind == NULL)
2021 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2022 return fi->unwind == unwinder;
2023 }
2024
2025 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2026 or -1 for a NULL frame. */
2027
2028 int
2029 frame_relative_level (struct frame_info *fi)
2030 {
2031 if (fi == NULL)
2032 return -1;
2033 else
2034 return fi->level;
2035 }
2036
2037 enum frame_type
2038 get_frame_type (struct frame_info *frame)
2039 {
2040 if (frame->unwind == NULL)
2041 /* Initialize the frame's unwinder because that's what
2042 provides the frame's type. */
2043 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2044 return frame->unwind->type;
2045 }
2046
2047 struct program_space *
2048 get_frame_program_space (struct frame_info *frame)
2049 {
2050 return frame->pspace;
2051 }
2052
2053 struct program_space *
2054 frame_unwind_program_space (struct frame_info *this_frame)
2055 {
2056 gdb_assert (this_frame);
2057
2058 /* This is really a placeholder to keep the API consistent --- we
2059 assume for now that we don't have frame chains crossing
2060 spaces. */
2061 return this_frame->pspace;
2062 }
2063
2064 struct address_space *
2065 get_frame_address_space (struct frame_info *frame)
2066 {
2067 return frame->aspace;
2068 }
2069
2070 /* Memory access methods. */
2071
2072 void
2073 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2074 gdb_byte *buf, int len)
2075 {
2076 read_memory (addr, buf, len);
2077 }
2078
2079 LONGEST
2080 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2081 int len)
2082 {
2083 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2084 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2085
2086 return read_memory_integer (addr, len, byte_order);
2087 }
2088
2089 ULONGEST
2090 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2091 int len)
2092 {
2093 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2094 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2095
2096 return read_memory_unsigned_integer (addr, len, byte_order);
2097 }
2098
2099 int
2100 safe_frame_unwind_memory (struct frame_info *this_frame,
2101 CORE_ADDR addr, gdb_byte *buf, int len)
2102 {
2103 /* NOTE: target_read_memory returns zero on success! */
2104 return !target_read_memory (addr, buf, len);
2105 }
2106
2107 /* Architecture methods. */
2108
2109 struct gdbarch *
2110 get_frame_arch (struct frame_info *this_frame)
2111 {
2112 return frame_unwind_arch (this_frame->next);
2113 }
2114
2115 struct gdbarch *
2116 frame_unwind_arch (struct frame_info *next_frame)
2117 {
2118 if (!next_frame->prev_arch.p)
2119 {
2120 struct gdbarch *arch;
2121
2122 if (next_frame->unwind == NULL)
2123 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2124
2125 if (next_frame->unwind->prev_arch != NULL)
2126 arch = next_frame->unwind->prev_arch (next_frame,
2127 &next_frame->prologue_cache);
2128 else
2129 arch = get_frame_arch (next_frame);
2130
2131 next_frame->prev_arch.arch = arch;
2132 next_frame->prev_arch.p = 1;
2133 if (frame_debug)
2134 fprintf_unfiltered (gdb_stdlog,
2135 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2136 next_frame->level,
2137 gdbarch_bfd_arch_info (arch)->printable_name);
2138 }
2139
2140 return next_frame->prev_arch.arch;
2141 }
2142
2143 struct gdbarch *
2144 frame_unwind_caller_arch (struct frame_info *next_frame)
2145 {
2146 return frame_unwind_arch (skip_inlined_frames (next_frame));
2147 }
2148
2149 /* Stack pointer methods. */
2150
2151 CORE_ADDR
2152 get_frame_sp (struct frame_info *this_frame)
2153 {
2154 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2155
2156 /* Normality - an architecture that provides a way of obtaining any
2157 frame inner-most address. */
2158 if (gdbarch_unwind_sp_p (gdbarch))
2159 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2160 operate on THIS_FRAME now. */
2161 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2162 /* Now things are really are grim. Hope that the value returned by
2163 the gdbarch_sp_regnum register is meaningful. */
2164 if (gdbarch_sp_regnum (gdbarch) >= 0)
2165 return get_frame_register_unsigned (this_frame,
2166 gdbarch_sp_regnum (gdbarch));
2167 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2168 }
2169
2170 /* Return the reason why we can't unwind past FRAME. */
2171
2172 enum unwind_stop_reason
2173 get_frame_unwind_stop_reason (struct frame_info *frame)
2174 {
2175 /* If we haven't tried to unwind past this point yet, then assume
2176 that unwinding would succeed. */
2177 if (frame->prev_p == 0)
2178 return UNWIND_NO_REASON;
2179
2180 /* Otherwise, we set a reason when we succeeded (or failed) to
2181 unwind. */
2182 return frame->stop_reason;
2183 }
2184
2185 /* Return a string explaining REASON. */
2186
2187 const char *
2188 frame_stop_reason_string (enum unwind_stop_reason reason)
2189 {
2190 switch (reason)
2191 {
2192 case UNWIND_NULL_ID:
2193 return _("unwinder did not report frame ID");
2194
2195 case UNWIND_INNER_ID:
2196 return _("previous frame inner to this frame (corrupt stack?)");
2197
2198 case UNWIND_SAME_ID:
2199 return _("previous frame identical to this frame (corrupt stack?)");
2200
2201 case UNWIND_NO_SAVED_PC:
2202 return _("frame did not save the PC");
2203
2204 case UNWIND_NO_REASON:
2205 case UNWIND_FIRST_ERROR:
2206 default:
2207 internal_error (__FILE__, __LINE__,
2208 "Invalid frame stop reason");
2209 }
2210 }
2211
2212 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2213 FRAME. */
2214
2215 static void
2216 frame_cleanup_after_sniffer (void *arg)
2217 {
2218 struct frame_info *frame = arg;
2219
2220 /* The sniffer should not allocate a prologue cache if it did not
2221 match this frame. */
2222 gdb_assert (frame->prologue_cache == NULL);
2223
2224 /* No sniffer should extend the frame chain; sniff based on what is
2225 already certain. */
2226 gdb_assert (!frame->prev_p);
2227
2228 /* The sniffer should not check the frame's ID; that's circular. */
2229 gdb_assert (!frame->this_id.p);
2230
2231 /* Clear cached fields dependent on the unwinder.
2232
2233 The previous PC is independent of the unwinder, but the previous
2234 function is not (see get_frame_address_in_block). */
2235 frame->prev_func.p = 0;
2236 frame->prev_func.addr = 0;
2237
2238 /* Discard the unwinder last, so that we can easily find it if an assertion
2239 in this function triggers. */
2240 frame->unwind = NULL;
2241 }
2242
2243 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2244 Return a cleanup which should be called if unwinding fails, and
2245 discarded if it succeeds. */
2246
2247 struct cleanup *
2248 frame_prepare_for_sniffer (struct frame_info *frame,
2249 const struct frame_unwind *unwind)
2250 {
2251 gdb_assert (frame->unwind == NULL);
2252 frame->unwind = unwind;
2253 return make_cleanup (frame_cleanup_after_sniffer, frame);
2254 }
2255
2256 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2257
2258 static struct cmd_list_element *set_backtrace_cmdlist;
2259 static struct cmd_list_element *show_backtrace_cmdlist;
2260
2261 static void
2262 set_backtrace_cmd (char *args, int from_tty)
2263 {
2264 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2265 }
2266
2267 static void
2268 show_backtrace_cmd (char *args, int from_tty)
2269 {
2270 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2271 }
2272
2273 void
2274 _initialize_frame (void)
2275 {
2276 obstack_init (&frame_cache_obstack);
2277
2278 observer_attach_target_changed (frame_observer_target_changed);
2279
2280 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2281 Set backtrace specific variables.\n\
2282 Configure backtrace variables such as the backtrace limit"),
2283 &set_backtrace_cmdlist, "set backtrace ",
2284 0/*allow-unknown*/, &setlist);
2285 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2286 Show backtrace specific variables\n\
2287 Show backtrace variables such as the backtrace limit"),
2288 &show_backtrace_cmdlist, "show backtrace ",
2289 0/*allow-unknown*/, &showlist);
2290
2291 add_setshow_boolean_cmd ("past-main", class_obscure,
2292 &backtrace_past_main, _("\
2293 Set whether backtraces should continue past \"main\"."), _("\
2294 Show whether backtraces should continue past \"main\"."), _("\
2295 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2296 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2297 of the stack trace."),
2298 NULL,
2299 show_backtrace_past_main,
2300 &set_backtrace_cmdlist,
2301 &show_backtrace_cmdlist);
2302
2303 add_setshow_boolean_cmd ("past-entry", class_obscure,
2304 &backtrace_past_entry, _("\
2305 Set whether backtraces should continue past the entry point of a program."),
2306 _("\
2307 Show whether backtraces should continue past the entry point of a program."),
2308 _("\
2309 Normally there are no callers beyond the entry point of a program, so GDB\n\
2310 will terminate the backtrace there. Set this variable if you need to see\n\
2311 the rest of the stack trace."),
2312 NULL,
2313 show_backtrace_past_entry,
2314 &set_backtrace_cmdlist,
2315 &show_backtrace_cmdlist);
2316
2317 add_setshow_integer_cmd ("limit", class_obscure,
2318 &backtrace_limit, _("\
2319 Set an upper bound on the number of backtrace levels."), _("\
2320 Show the upper bound on the number of backtrace levels."), _("\
2321 No more than the specified number of frames can be displayed or examined.\n\
2322 Zero is unlimited."),
2323 NULL,
2324 show_backtrace_limit,
2325 &set_backtrace_cmdlist,
2326 &show_backtrace_cmdlist);
2327
2328 /* Debug this files internals. */
2329 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2330 Set frame debugging."), _("\
2331 Show frame debugging."), _("\
2332 When non-zero, frame specific internal debugging is enabled."),
2333 NULL,
2334 show_frame_debug,
2335 &setdebuglist, &showdebuglist);
2336 }
This page took 0.077399 seconds and 4 git commands to generate.