650b279819318e70b7d9851baaa39a1beec836da
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44 #include "block.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
49 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
50
51 /* We keep a cache of stack frames, each of which is a "struct
52 frame_info". The innermost one gets allocated (in
53 wait_for_inferior) each time the inferior stops; current_frame
54 points to it. Additional frames get allocated (in get_prev_frame)
55 as needed, and are chained through the next and prev fields. Any
56 time that the frame cache becomes invalid (most notably when we
57 execute something, but also if we change how we interpret the
58 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
59 which reads new symbols)), we should call reinit_frame_cache. */
60
61 struct frame_info
62 {
63 /* Level of this frame. The inner-most (youngest) frame is at level
64 0. As you move towards the outer-most (oldest) frame, the level
65 increases. This is a cached value. It could just as easily be
66 computed by counting back from the selected frame to the inner
67 most frame. */
68 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
69 reserved to indicate a bogus frame - one that has been created
70 just to keep GDB happy (GDB always needs a frame). For the
71 moment leave this as speculation. */
72 int level;
73
74 /* The frame's program space. */
75 struct program_space *pspace;
76
77 /* The frame's address space. */
78 struct address_space *aspace;
79
80 /* The frame's low-level unwinder and corresponding cache. The
81 low-level unwinder is responsible for unwinding register values
82 for the previous frame. The low-level unwind methods are
83 selected based on the presence, or otherwise, of register unwind
84 information such as CFI. */
85 void *prologue_cache;
86 const struct frame_unwind *unwind;
87
88 /* Cached copy of the previous frame's architecture. */
89 struct
90 {
91 int p;
92 struct gdbarch *arch;
93 } prev_arch;
94
95 /* Cached copy of the previous frame's resume address. */
96 struct {
97 int p;
98 CORE_ADDR value;
99 } prev_pc;
100
101 /* Cached copy of the previous frame's function address. */
102 struct
103 {
104 CORE_ADDR addr;
105 int p;
106 } prev_func;
107
108 /* This frame's ID. */
109 struct
110 {
111 int p;
112 struct frame_id value;
113 } this_id;
114
115 /* The frame's high-level base methods, and corresponding cache.
116 The high level base methods are selected based on the frame's
117 debug info. */
118 const struct frame_base *base;
119 void *base_cache;
120
121 /* Pointers to the next (down, inner, younger) and previous (up,
122 outer, older) frame_info's in the frame cache. */
123 struct frame_info *next; /* down, inner, younger */
124 int prev_p;
125 struct frame_info *prev; /* up, outer, older */
126
127 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
128 could. Only valid when PREV_P is set. */
129 enum unwind_stop_reason stop_reason;
130 };
131
132 /* A frame stash used to speed up frame lookups. */
133
134 /* We currently only stash one frame at a time, as this seems to be
135 sufficient for now. */
136 static struct frame_info *frame_stash = NULL;
137
138 /* Add the following FRAME to the frame stash. */
139
140 static void
141 frame_stash_add (struct frame_info *frame)
142 {
143 frame_stash = frame;
144 }
145
146 /* Search the frame stash for an entry with the given frame ID.
147 If found, return that frame. Otherwise return NULL. */
148
149 static struct frame_info *
150 frame_stash_find (struct frame_id id)
151 {
152 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
153 return frame_stash;
154
155 return NULL;
156 }
157
158 /* Invalidate the frame stash by removing all entries in it. */
159
160 static void
161 frame_stash_invalidate (void)
162 {
163 frame_stash = NULL;
164 }
165
166 /* Flag to control debugging. */
167
168 int frame_debug;
169 static void
170 show_frame_debug (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
174 }
175
176 /* Flag to indicate whether backtraces should stop at main et.al. */
177
178 static int backtrace_past_main;
179 static void
180 show_backtrace_past_main (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("\
184 Whether backtraces should continue past \"main\" is %s.\n"),
185 value);
186 }
187
188 static int backtrace_past_entry;
189 static void
190 show_backtrace_past_entry (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192 {
193 fprintf_filtered (file, _("\
194 Whether backtraces should continue past the entry point of a program is %s.\n"),
195 value);
196 }
197
198 static int backtrace_limit = INT_MAX;
199 static void
200 show_backtrace_limit (struct ui_file *file, int from_tty,
201 struct cmd_list_element *c, const char *value)
202 {
203 fprintf_filtered (file, _("\
204 An upper bound on the number of backtrace levels is %s.\n"),
205 value);
206 }
207
208
209 static void
210 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
211 {
212 if (p)
213 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
214 else
215 fprintf_unfiltered (file, "!%s", name);
216 }
217
218 void
219 fprint_frame_id (struct ui_file *file, struct frame_id id)
220 {
221 fprintf_unfiltered (file, "{");
222 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
223 fprintf_unfiltered (file, ",");
224 fprint_field (file, "code", id.code_addr_p, id.code_addr);
225 fprintf_unfiltered (file, ",");
226 fprint_field (file, "special", id.special_addr_p, id.special_addr);
227 if (id.inline_depth)
228 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
229 fprintf_unfiltered (file, "}");
230 }
231
232 static void
233 fprint_frame_type (struct ui_file *file, enum frame_type type)
234 {
235 switch (type)
236 {
237 case NORMAL_FRAME:
238 fprintf_unfiltered (file, "NORMAL_FRAME");
239 return;
240 case DUMMY_FRAME:
241 fprintf_unfiltered (file, "DUMMY_FRAME");
242 return;
243 case INLINE_FRAME:
244 fprintf_unfiltered (file, "INLINE_FRAME");
245 return;
246 case SENTINEL_FRAME:
247 fprintf_unfiltered (file, "SENTINEL_FRAME");
248 return;
249 case SIGTRAMP_FRAME:
250 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
251 return;
252 case ARCH_FRAME:
253 fprintf_unfiltered (file, "ARCH_FRAME");
254 return;
255 default:
256 fprintf_unfiltered (file, "<unknown type>");
257 return;
258 };
259 }
260
261 static void
262 fprint_frame (struct ui_file *file, struct frame_info *fi)
263 {
264 if (fi == NULL)
265 {
266 fprintf_unfiltered (file, "<NULL frame>");
267 return;
268 }
269 fprintf_unfiltered (file, "{");
270 fprintf_unfiltered (file, "level=%d", fi->level);
271 fprintf_unfiltered (file, ",");
272 fprintf_unfiltered (file, "type=");
273 if (fi->unwind != NULL)
274 fprint_frame_type (file, fi->unwind->type);
275 else
276 fprintf_unfiltered (file, "<unknown>");
277 fprintf_unfiltered (file, ",");
278 fprintf_unfiltered (file, "unwind=");
279 if (fi->unwind != NULL)
280 gdb_print_host_address (fi->unwind, file);
281 else
282 fprintf_unfiltered (file, "<unknown>");
283 fprintf_unfiltered (file, ",");
284 fprintf_unfiltered (file, "pc=");
285 if (fi->next != NULL && fi->next->prev_pc.p)
286 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
287 else
288 fprintf_unfiltered (file, "<unknown>");
289 fprintf_unfiltered (file, ",");
290 fprintf_unfiltered (file, "id=");
291 if (fi->this_id.p)
292 fprint_frame_id (file, fi->this_id.value);
293 else
294 fprintf_unfiltered (file, "<unknown>");
295 fprintf_unfiltered (file, ",");
296 fprintf_unfiltered (file, "func=");
297 if (fi->next != NULL && fi->next->prev_func.p)
298 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
299 else
300 fprintf_unfiltered (file, "<unknown>");
301 fprintf_unfiltered (file, "}");
302 }
303
304 /* Given FRAME, return the enclosing normal frame for inlined
305 function frames. Otherwise return the original frame. */
306
307 static struct frame_info *
308 skip_inlined_frames (struct frame_info *frame)
309 {
310 while (get_frame_type (frame) == INLINE_FRAME)
311 frame = get_prev_frame (frame);
312
313 return frame;
314 }
315
316 /* Return a frame uniq ID that can be used to, later, re-find the
317 frame. */
318
319 struct frame_id
320 get_frame_id (struct frame_info *fi)
321 {
322 if (fi == NULL)
323 return null_frame_id;
324
325 if (!fi->this_id.p)
326 {
327 if (frame_debug)
328 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
329 fi->level);
330 /* Find the unwinder. */
331 if (fi->unwind == NULL)
332 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
333 /* Find THIS frame's ID. */
334 /* Default to outermost if no ID is found. */
335 fi->this_id.value = outer_frame_id;
336 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
337 gdb_assert (frame_id_p (fi->this_id.value));
338 fi->this_id.p = 1;
339 if (frame_debug)
340 {
341 fprintf_unfiltered (gdb_stdlog, "-> ");
342 fprint_frame_id (gdb_stdlog, fi->this_id.value);
343 fprintf_unfiltered (gdb_stdlog, " }\n");
344 }
345 }
346
347 frame_stash_add (fi);
348
349 return fi->this_id.value;
350 }
351
352 struct frame_id
353 get_stack_frame_id (struct frame_info *next_frame)
354 {
355 return get_frame_id (skip_inlined_frames (next_frame));
356 }
357
358 struct frame_id
359 frame_unwind_caller_id (struct frame_info *next_frame)
360 {
361 struct frame_info *this_frame;
362
363 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
364 the frame chain, leading to this function unintentionally
365 returning a null_frame_id (e.g., when a caller requests the frame
366 ID of "main()"s caller. */
367
368 next_frame = skip_inlined_frames (next_frame);
369 this_frame = get_prev_frame_1 (next_frame);
370 if (this_frame)
371 return get_frame_id (skip_inlined_frames (this_frame));
372 else
373 return null_frame_id;
374 }
375
376 const struct frame_id null_frame_id; /* All zeros. */
377 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
378
379 struct frame_id
380 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
381 CORE_ADDR special_addr)
382 {
383 struct frame_id id = null_frame_id;
384
385 id.stack_addr = stack_addr;
386 id.stack_addr_p = 1;
387 id.code_addr = code_addr;
388 id.code_addr_p = 1;
389 id.special_addr = special_addr;
390 id.special_addr_p = 1;
391 return id;
392 }
393
394 struct frame_id
395 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
396 {
397 struct frame_id id = null_frame_id;
398
399 id.stack_addr = stack_addr;
400 id.stack_addr_p = 1;
401 id.code_addr = code_addr;
402 id.code_addr_p = 1;
403 return id;
404 }
405
406 struct frame_id
407 frame_id_build_wild (CORE_ADDR stack_addr)
408 {
409 struct frame_id id = null_frame_id;
410
411 id.stack_addr = stack_addr;
412 id.stack_addr_p = 1;
413 return id;
414 }
415
416 int
417 frame_id_p (struct frame_id l)
418 {
419 int p;
420
421 /* The frame is valid iff it has a valid stack address. */
422 p = l.stack_addr_p;
423 /* outer_frame_id is also valid. */
424 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
425 p = 1;
426 if (frame_debug)
427 {
428 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
429 fprint_frame_id (gdb_stdlog, l);
430 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
431 }
432 return p;
433 }
434
435 int
436 frame_id_inlined_p (struct frame_id l)
437 {
438 if (!frame_id_p (l))
439 return 0;
440
441 return (l.inline_depth != 0);
442 }
443
444 int
445 frame_id_eq (struct frame_id l, struct frame_id r)
446 {
447 int eq;
448
449 if (!l.stack_addr_p && l.special_addr_p && !r.stack_addr_p && r.special_addr_p)
450 /* The outermost frame marker is equal to itself. This is the
451 dodgy thing about outer_frame_id, since between execution steps
452 we might step into another function - from which we can't
453 unwind either. More thought required to get rid of
454 outer_frame_id. */
455 eq = 1;
456 else if (!l.stack_addr_p || !r.stack_addr_p)
457 /* Like a NaN, if either ID is invalid, the result is false.
458 Note that a frame ID is invalid iff it is the null frame ID. */
459 eq = 0;
460 else if (l.stack_addr != r.stack_addr)
461 /* If .stack addresses are different, the frames are different. */
462 eq = 0;
463 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
464 /* An invalid code addr is a wild card. If .code addresses are
465 different, the frames are different. */
466 eq = 0;
467 else if (l.special_addr_p && r.special_addr_p
468 && l.special_addr != r.special_addr)
469 /* An invalid special addr is a wild card (or unused). Otherwise
470 if special addresses are different, the frames are different. */
471 eq = 0;
472 else if (l.inline_depth != r.inline_depth)
473 /* If inline depths are different, the frames must be different. */
474 eq = 0;
475 else
476 /* Frames are equal. */
477 eq = 1;
478
479 if (frame_debug)
480 {
481 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
482 fprint_frame_id (gdb_stdlog, l);
483 fprintf_unfiltered (gdb_stdlog, ",r=");
484 fprint_frame_id (gdb_stdlog, r);
485 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
486 }
487 return eq;
488 }
489
490 /* Safety net to check whether frame ID L should be inner to
491 frame ID R, according to their stack addresses.
492
493 This method cannot be used to compare arbitrary frames, as the
494 ranges of valid stack addresses may be discontiguous (e.g. due
495 to sigaltstack).
496
497 However, it can be used as safety net to discover invalid frame
498 IDs in certain circumstances. Assuming that NEXT is the immediate
499 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
500
501 * The stack address of NEXT must be inner-than-or-equal to the stack
502 address of THIS.
503
504 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
505 error has occurred.
506
507 * If NEXT and THIS have different stack addresses, no other frame
508 in the frame chain may have a stack address in between.
509
510 Therefore, if frame_id_inner (TEST, THIS) holds, but
511 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
512 to a valid frame in the frame chain.
513
514 The sanity checks above cannot be performed when a SIGTRAMP frame
515 is involved, because signal handlers might be executed on a different
516 stack than the stack used by the routine that caused the signal
517 to be raised. This can happen for instance when a thread exceeds
518 its maximum stack size. In this case, certain compilers implement
519 a stack overflow strategy that cause the handler to be run on a
520 different stack. */
521
522 static int
523 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
524 {
525 int inner;
526
527 if (!l.stack_addr_p || !r.stack_addr_p)
528 /* Like NaN, any operation involving an invalid ID always fails. */
529 inner = 0;
530 else if (l.inline_depth > r.inline_depth
531 && l.stack_addr == r.stack_addr
532 && l.code_addr_p == r.code_addr_p
533 && l.special_addr_p == r.special_addr_p
534 && l.special_addr == r.special_addr)
535 {
536 /* Same function, different inlined functions. */
537 struct block *lb, *rb;
538
539 gdb_assert (l.code_addr_p && r.code_addr_p);
540
541 lb = block_for_pc (l.code_addr);
542 rb = block_for_pc (r.code_addr);
543
544 if (lb == NULL || rb == NULL)
545 /* Something's gone wrong. */
546 inner = 0;
547 else
548 /* This will return true if LB and RB are the same block, or
549 if the block with the smaller depth lexically encloses the
550 block with the greater depth. */
551 inner = contained_in (lb, rb);
552 }
553 else
554 /* Only return non-zero when strictly inner than. Note that, per
555 comment in "frame.h", there is some fuzz here. Frameless
556 functions are not strictly inner than (same .stack but
557 different .code and/or .special address). */
558 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
559 if (frame_debug)
560 {
561 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
562 fprint_frame_id (gdb_stdlog, l);
563 fprintf_unfiltered (gdb_stdlog, ",r=");
564 fprint_frame_id (gdb_stdlog, r);
565 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
566 }
567 return inner;
568 }
569
570 struct frame_info *
571 frame_find_by_id (struct frame_id id)
572 {
573 struct frame_info *frame, *prev_frame;
574
575 /* ZERO denotes the null frame, let the caller decide what to do
576 about it. Should it instead return get_current_frame()? */
577 if (!frame_id_p (id))
578 return NULL;
579
580 /* Try using the frame stash first. Finding it there removes the need
581 to perform the search by looping over all frames, which can be very
582 CPU-intensive if the number of frames is very high (the loop is O(n)
583 and get_prev_frame performs a series of checks that are relatively
584 expensive). This optimization is particularly useful when this function
585 is called from another function (such as value_fetch_lazy, case
586 VALUE_LVAL (val) == lval_register) which already loops over all frames,
587 making the overall behavior O(n^2). */
588 frame = frame_stash_find (id);
589 if (frame)
590 return frame;
591
592 for (frame = get_current_frame (); ; frame = prev_frame)
593 {
594 struct frame_id this = get_frame_id (frame);
595 if (frame_id_eq (id, this))
596 /* An exact match. */
597 return frame;
598
599 prev_frame = get_prev_frame (frame);
600 if (!prev_frame)
601 return NULL;
602
603 /* As a safety net to avoid unnecessary backtracing while trying
604 to find an invalid ID, we check for a common situation where
605 we can detect from comparing stack addresses that no other
606 frame in the current frame chain can have this ID. See the
607 comment at frame_id_inner for details. */
608 if (get_frame_type (frame) == NORMAL_FRAME
609 && !frame_id_inner (get_frame_arch (frame), id, this)
610 && frame_id_inner (get_frame_arch (prev_frame), id,
611 get_frame_id (prev_frame)))
612 return NULL;
613 }
614 return NULL;
615 }
616
617 static CORE_ADDR
618 frame_unwind_pc (struct frame_info *this_frame)
619 {
620 if (!this_frame->prev_pc.p)
621 {
622 CORE_ADDR pc;
623 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
624 {
625 /* The right way. The `pure' way. The one true way. This
626 method depends solely on the register-unwind code to
627 determine the value of registers in THIS frame, and hence
628 the value of this frame's PC (resume address). A typical
629 implementation is no more than:
630
631 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
632 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
633
634 Note: this method is very heavily dependent on a correct
635 register-unwind implementation, it pays to fix that
636 method first; this method is frame type agnostic, since
637 it only deals with register values, it works with any
638 frame. This is all in stark contrast to the old
639 FRAME_SAVED_PC which would try to directly handle all the
640 different ways that a PC could be unwound. */
641 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
642 }
643 else
644 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
645 this_frame->prev_pc.value = pc;
646 this_frame->prev_pc.p = 1;
647 if (frame_debug)
648 fprintf_unfiltered (gdb_stdlog,
649 "{ frame_unwind_caller_pc (this_frame=%d) -> %s }\n",
650 this_frame->level,
651 hex_string (this_frame->prev_pc.value));
652 }
653 return this_frame->prev_pc.value;
654 }
655
656 CORE_ADDR
657 frame_unwind_caller_pc (struct frame_info *this_frame)
658 {
659 return frame_unwind_pc (skip_inlined_frames (this_frame));
660 }
661
662 CORE_ADDR
663 get_frame_func (struct frame_info *this_frame)
664 {
665 struct frame_info *next_frame = this_frame->next;
666
667 if (!next_frame->prev_func.p)
668 {
669 /* Make certain that this, and not the adjacent, function is
670 found. */
671 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
672 next_frame->prev_func.p = 1;
673 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
674 if (frame_debug)
675 fprintf_unfiltered (gdb_stdlog,
676 "{ get_frame_func (this_frame=%d) -> %s }\n",
677 this_frame->level,
678 hex_string (next_frame->prev_func.addr));
679 }
680 return next_frame->prev_func.addr;
681 }
682
683 static int
684 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
685 {
686 return frame_register_read (src, regnum, buf);
687 }
688
689 struct regcache *
690 frame_save_as_regcache (struct frame_info *this_frame)
691 {
692 struct address_space *aspace = get_frame_address_space (this_frame);
693 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
694 aspace);
695 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
696
697 regcache_save (regcache, do_frame_register_read, this_frame);
698 discard_cleanups (cleanups);
699 return regcache;
700 }
701
702 void
703 frame_pop (struct frame_info *this_frame)
704 {
705 struct frame_info *prev_frame;
706 struct regcache *scratch;
707 struct cleanup *cleanups;
708
709 if (get_frame_type (this_frame) == DUMMY_FRAME)
710 {
711 /* Popping a dummy frame involves restoring more than just registers.
712 dummy_frame_pop does all the work. */
713 dummy_frame_pop (get_frame_id (this_frame));
714 return;
715 }
716
717 /* Ensure that we have a frame to pop to. */
718 prev_frame = get_prev_frame_1 (this_frame);
719
720 if (!prev_frame)
721 error (_("Cannot pop the initial frame."));
722
723 /* Make a copy of all the register values unwound from this frame.
724 Save them in a scratch buffer so that there isn't a race between
725 trying to extract the old values from the current regcache while
726 at the same time writing new values into that same cache. */
727 scratch = frame_save_as_regcache (prev_frame);
728 cleanups = make_cleanup_regcache_xfree (scratch);
729
730 /* FIXME: cagney/2003-03-16: It should be possible to tell the
731 target's register cache that it is about to be hit with a burst
732 register transfer and that the sequence of register writes should
733 be batched. The pair target_prepare_to_store() and
734 target_store_registers() kind of suggest this functionality.
735 Unfortunately, they don't implement it. Their lack of a formal
736 definition can lead to targets writing back bogus values
737 (arguably a bug in the target code mind). */
738 /* Now copy those saved registers into the current regcache.
739 Here, regcache_cpy() calls regcache_restore(). */
740 regcache_cpy (get_current_regcache (), scratch);
741 do_cleanups (cleanups);
742
743 /* We've made right mess of GDB's local state, just discard
744 everything. */
745 reinit_frame_cache ();
746 }
747
748 void
749 frame_register_unwind (struct frame_info *frame, int regnum,
750 int *optimizedp, enum lval_type *lvalp,
751 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
752 {
753 struct value *value;
754
755 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
756 that the value proper does not need to be fetched. */
757 gdb_assert (optimizedp != NULL);
758 gdb_assert (lvalp != NULL);
759 gdb_assert (addrp != NULL);
760 gdb_assert (realnump != NULL);
761 /* gdb_assert (bufferp != NULL); */
762
763 value = frame_unwind_register_value (frame, regnum);
764
765 gdb_assert (value != NULL);
766
767 *optimizedp = value_optimized_out (value);
768 *lvalp = VALUE_LVAL (value);
769 *addrp = value_address (value);
770 *realnump = VALUE_REGNUM (value);
771
772 if (bufferp)
773 memcpy (bufferp, value_contents_all (value),
774 TYPE_LENGTH (value_type (value)));
775
776 /* Dispose of the new value. This prevents watchpoints from
777 trying to watch the saved frame pointer. */
778 release_value (value);
779 value_free (value);
780 }
781
782 void
783 frame_register (struct frame_info *frame, int regnum,
784 int *optimizedp, enum lval_type *lvalp,
785 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
786 {
787 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
788 that the value proper does not need to be fetched. */
789 gdb_assert (optimizedp != NULL);
790 gdb_assert (lvalp != NULL);
791 gdb_assert (addrp != NULL);
792 gdb_assert (realnump != NULL);
793 /* gdb_assert (bufferp != NULL); */
794
795 /* Obtain the register value by unwinding the register from the next
796 (more inner frame). */
797 gdb_assert (frame != NULL && frame->next != NULL);
798 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
799 realnump, bufferp);
800 }
801
802 void
803 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
804 {
805 int optimized;
806 CORE_ADDR addr;
807 int realnum;
808 enum lval_type lval;
809
810 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
811 &realnum, buf);
812 }
813
814 void
815 get_frame_register (struct frame_info *frame,
816 int regnum, gdb_byte *buf)
817 {
818 frame_unwind_register (frame->next, regnum, buf);
819 }
820
821 struct value *
822 frame_unwind_register_value (struct frame_info *frame, int regnum)
823 {
824 struct gdbarch *gdbarch;
825 struct value *value;
826
827 gdb_assert (frame != NULL);
828 gdbarch = frame_unwind_arch (frame);
829
830 if (frame_debug)
831 {
832 fprintf_unfiltered (gdb_stdlog, "\
833 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
834 frame->level, regnum,
835 user_reg_map_regnum_to_name (gdbarch, regnum));
836 }
837
838 /* Find the unwinder. */
839 if (frame->unwind == NULL)
840 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
841
842 /* Ask this frame to unwind its register. */
843 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
844
845 if (frame_debug)
846 {
847 fprintf_unfiltered (gdb_stdlog, "->");
848 if (value_optimized_out (value))
849 fprintf_unfiltered (gdb_stdlog, " optimized out");
850 else
851 {
852 if (VALUE_LVAL (value) == lval_register)
853 fprintf_unfiltered (gdb_stdlog, " register=%d",
854 VALUE_REGNUM (value));
855 else if (VALUE_LVAL (value) == lval_memory)
856 fprintf_unfiltered (gdb_stdlog, " address=%s",
857 paddress (gdbarch,
858 value_address (value)));
859 else
860 fprintf_unfiltered (gdb_stdlog, " computed");
861
862 if (value_lazy (value))
863 fprintf_unfiltered (gdb_stdlog, " lazy");
864 else
865 {
866 int i;
867 const gdb_byte *buf = value_contents (value);
868
869 fprintf_unfiltered (gdb_stdlog, " bytes=");
870 fprintf_unfiltered (gdb_stdlog, "[");
871 for (i = 0; i < register_size (gdbarch, regnum); i++)
872 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
873 fprintf_unfiltered (gdb_stdlog, "]");
874 }
875 }
876
877 fprintf_unfiltered (gdb_stdlog, " }\n");
878 }
879
880 return value;
881 }
882
883 struct value *
884 get_frame_register_value (struct frame_info *frame, int regnum)
885 {
886 return frame_unwind_register_value (frame->next, regnum);
887 }
888
889 LONGEST
890 frame_unwind_register_signed (struct frame_info *frame, int regnum)
891 {
892 struct gdbarch *gdbarch = frame_unwind_arch (frame);
893 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
894 int size = register_size (gdbarch, regnum);
895 gdb_byte buf[MAX_REGISTER_SIZE];
896
897 frame_unwind_register (frame, regnum, buf);
898 return extract_signed_integer (buf, size, byte_order);
899 }
900
901 LONGEST
902 get_frame_register_signed (struct frame_info *frame, int regnum)
903 {
904 return frame_unwind_register_signed (frame->next, regnum);
905 }
906
907 ULONGEST
908 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
909 {
910 struct gdbarch *gdbarch = frame_unwind_arch (frame);
911 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
912 int size = register_size (gdbarch, regnum);
913 gdb_byte buf[MAX_REGISTER_SIZE];
914
915 frame_unwind_register (frame, regnum, buf);
916 return extract_unsigned_integer (buf, size, byte_order);
917 }
918
919 ULONGEST
920 get_frame_register_unsigned (struct frame_info *frame, int regnum)
921 {
922 return frame_unwind_register_unsigned (frame->next, regnum);
923 }
924
925 void
926 put_frame_register (struct frame_info *frame, int regnum,
927 const gdb_byte *buf)
928 {
929 struct gdbarch *gdbarch = get_frame_arch (frame);
930 int realnum;
931 int optim;
932 enum lval_type lval;
933 CORE_ADDR addr;
934
935 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
936 if (optim)
937 error (_("Attempt to assign to a value that was optimized out."));
938 switch (lval)
939 {
940 case lval_memory:
941 {
942 /* FIXME: write_memory doesn't yet take constant buffers.
943 Arrrg! */
944 gdb_byte tmp[MAX_REGISTER_SIZE];
945 memcpy (tmp, buf, register_size (gdbarch, regnum));
946 write_memory (addr, tmp, register_size (gdbarch, regnum));
947 break;
948 }
949 case lval_register:
950 regcache_cooked_write (get_current_regcache (), realnum, buf);
951 break;
952 default:
953 error (_("Attempt to assign to an unmodifiable value."));
954 }
955 }
956
957 /* frame_register_read ()
958
959 Find and return the value of REGNUM for the specified stack frame.
960 The number of bytes copied is REGISTER_SIZE (REGNUM).
961
962 Returns 0 if the register value could not be found. */
963
964 int
965 frame_register_read (struct frame_info *frame, int regnum,
966 gdb_byte *myaddr)
967 {
968 int optimized;
969 enum lval_type lval;
970 CORE_ADDR addr;
971 int realnum;
972
973 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
974
975 return !optimized;
976 }
977
978 int
979 get_frame_register_bytes (struct frame_info *frame, int regnum,
980 CORE_ADDR offset, int len, gdb_byte *myaddr)
981 {
982 struct gdbarch *gdbarch = get_frame_arch (frame);
983 int i;
984 int maxsize;
985 int numregs;
986
987 /* Skip registers wholly inside of OFFSET. */
988 while (offset >= register_size (gdbarch, regnum))
989 {
990 offset -= register_size (gdbarch, regnum);
991 regnum++;
992 }
993
994 /* Ensure that we will not read beyond the end of the register file.
995 This can only ever happen if the debug information is bad. */
996 maxsize = -offset;
997 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
998 for (i = regnum; i < numregs; i++)
999 {
1000 int thissize = register_size (gdbarch, i);
1001 if (thissize == 0)
1002 break; /* This register is not available on this architecture. */
1003 maxsize += thissize;
1004 }
1005 if (len > maxsize)
1006 {
1007 warning (_("Bad debug information detected: "
1008 "Attempt to read %d bytes from registers."), len);
1009 return 0;
1010 }
1011
1012 /* Copy the data. */
1013 while (len > 0)
1014 {
1015 int curr_len = register_size (gdbarch, regnum) - offset;
1016 if (curr_len > len)
1017 curr_len = len;
1018
1019 if (curr_len == register_size (gdbarch, regnum))
1020 {
1021 if (!frame_register_read (frame, regnum, myaddr))
1022 return 0;
1023 }
1024 else
1025 {
1026 gdb_byte buf[MAX_REGISTER_SIZE];
1027 if (!frame_register_read (frame, regnum, buf))
1028 return 0;
1029 memcpy (myaddr, buf + offset, curr_len);
1030 }
1031
1032 myaddr += curr_len;
1033 len -= curr_len;
1034 offset = 0;
1035 regnum++;
1036 }
1037
1038 return 1;
1039 }
1040
1041 void
1042 put_frame_register_bytes (struct frame_info *frame, int regnum,
1043 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1044 {
1045 struct gdbarch *gdbarch = get_frame_arch (frame);
1046
1047 /* Skip registers wholly inside of OFFSET. */
1048 while (offset >= register_size (gdbarch, regnum))
1049 {
1050 offset -= register_size (gdbarch, regnum);
1051 regnum++;
1052 }
1053
1054 /* Copy the data. */
1055 while (len > 0)
1056 {
1057 int curr_len = register_size (gdbarch, regnum) - offset;
1058 if (curr_len > len)
1059 curr_len = len;
1060
1061 if (curr_len == register_size (gdbarch, regnum))
1062 {
1063 put_frame_register (frame, regnum, myaddr);
1064 }
1065 else
1066 {
1067 gdb_byte buf[MAX_REGISTER_SIZE];
1068 frame_register_read (frame, regnum, buf);
1069 memcpy (buf + offset, myaddr, curr_len);
1070 put_frame_register (frame, regnum, buf);
1071 }
1072
1073 myaddr += curr_len;
1074 len -= curr_len;
1075 offset = 0;
1076 regnum++;
1077 }
1078 }
1079
1080 /* Create a sentinel frame. */
1081
1082 static struct frame_info *
1083 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1084 {
1085 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1086
1087 frame->level = -1;
1088 frame->pspace = pspace;
1089 frame->aspace = get_regcache_aspace (regcache);
1090 /* Explicitly initialize the sentinel frame's cache. Provide it
1091 with the underlying regcache. In the future additional
1092 information, such as the frame's thread will be added. */
1093 frame->prologue_cache = sentinel_frame_cache (regcache);
1094 /* For the moment there is only one sentinel frame implementation. */
1095 frame->unwind = sentinel_frame_unwind;
1096 /* Link this frame back to itself. The frame is self referential
1097 (the unwound PC is the same as the pc), so make it so. */
1098 frame->next = frame;
1099 /* Make the sentinel frame's ID valid, but invalid. That way all
1100 comparisons with it should fail. */
1101 frame->this_id.p = 1;
1102 frame->this_id.value = null_frame_id;
1103 if (frame_debug)
1104 {
1105 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1106 fprint_frame (gdb_stdlog, frame);
1107 fprintf_unfiltered (gdb_stdlog, " }\n");
1108 }
1109 return frame;
1110 }
1111
1112 /* Info about the innermost stack frame (contents of FP register) */
1113
1114 static struct frame_info *current_frame;
1115
1116 /* Cache for frame addresses already read by gdb. Valid only while
1117 inferior is stopped. Control variables for the frame cache should
1118 be local to this module. */
1119
1120 static struct obstack frame_cache_obstack;
1121
1122 void *
1123 frame_obstack_zalloc (unsigned long size)
1124 {
1125 void *data = obstack_alloc (&frame_cache_obstack, size);
1126
1127 memset (data, 0, size);
1128 return data;
1129 }
1130
1131 /* Return the innermost (currently executing) stack frame. This is
1132 split into two functions. The function unwind_to_current_frame()
1133 is wrapped in catch exceptions so that, even when the unwind of the
1134 sentinel frame fails, the function still returns a stack frame. */
1135
1136 static int
1137 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1138 {
1139 struct frame_info *frame = get_prev_frame (args);
1140
1141 /* A sentinel frame can fail to unwind, e.g., because its PC value
1142 lands in somewhere like start. */
1143 if (frame == NULL)
1144 return 1;
1145 current_frame = frame;
1146 return 0;
1147 }
1148
1149 struct frame_info *
1150 get_current_frame (void)
1151 {
1152 /* First check, and report, the lack of registers. Having GDB
1153 report "No stack!" or "No memory" when the target doesn't even
1154 have registers is very confusing. Besides, "printcmd.exp"
1155 explicitly checks that ``print $pc'' with no registers prints "No
1156 registers". */
1157 if (!target_has_registers)
1158 error (_("No registers."));
1159 if (!target_has_stack)
1160 error (_("No stack."));
1161 if (!target_has_memory)
1162 error (_("No memory."));
1163 /* Traceframes are effectively a substitute for the live inferior. */
1164 if (get_traceframe_number () < 0)
1165 {
1166 if (ptid_equal (inferior_ptid, null_ptid))
1167 error (_("No selected thread."));
1168 if (is_exited (inferior_ptid))
1169 error (_("Invalid selected thread."));
1170 if (is_executing (inferior_ptid))
1171 error (_("Target is executing."));
1172 }
1173
1174 if (current_frame == NULL)
1175 {
1176 struct frame_info *sentinel_frame =
1177 create_sentinel_frame (current_program_space, get_current_regcache ());
1178 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1179 RETURN_MASK_ERROR) != 0)
1180 {
1181 /* Oops! Fake a current frame? Is this useful? It has a PC
1182 of zero, for instance. */
1183 current_frame = sentinel_frame;
1184 }
1185 }
1186 return current_frame;
1187 }
1188
1189 /* The "selected" stack frame is used by default for local and arg
1190 access. May be zero, for no selected frame. */
1191
1192 static struct frame_info *selected_frame;
1193
1194 int
1195 has_stack_frames (void)
1196 {
1197 if (!target_has_registers || !target_has_stack || !target_has_memory)
1198 return 0;
1199
1200 /* No current inferior, no frame. */
1201 if (ptid_equal (inferior_ptid, null_ptid))
1202 return 0;
1203
1204 /* Don't try to read from a dead thread. */
1205 if (is_exited (inferior_ptid))
1206 return 0;
1207
1208 /* ... or from a spinning thread. */
1209 if (is_executing (inferior_ptid))
1210 return 0;
1211
1212 return 1;
1213 }
1214
1215 /* Return the selected frame. Always non-NULL (unless there isn't an
1216 inferior sufficient for creating a frame) in which case an error is
1217 thrown. */
1218
1219 struct frame_info *
1220 get_selected_frame (const char *message)
1221 {
1222 if (selected_frame == NULL)
1223 {
1224 if (message != NULL && !has_stack_frames ())
1225 error (("%s"), message);
1226 /* Hey! Don't trust this. It should really be re-finding the
1227 last selected frame of the currently selected thread. This,
1228 though, is better than nothing. */
1229 select_frame (get_current_frame ());
1230 }
1231 /* There is always a frame. */
1232 gdb_assert (selected_frame != NULL);
1233 return selected_frame;
1234 }
1235
1236 /* This is a variant of get_selected_frame() which can be called when
1237 the inferior does not have a frame; in that case it will return
1238 NULL instead of calling error(). */
1239
1240 struct frame_info *
1241 deprecated_safe_get_selected_frame (void)
1242 {
1243 if (!has_stack_frames ())
1244 return NULL;
1245 return get_selected_frame (NULL);
1246 }
1247
1248 /* Select frame FI (or NULL - to invalidate the current frame). */
1249
1250 void
1251 select_frame (struct frame_info *fi)
1252 {
1253 struct symtab *s;
1254
1255 selected_frame = fi;
1256 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1257 frame is being invalidated. */
1258 if (deprecated_selected_frame_level_changed_hook)
1259 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1260
1261 /* FIXME: kseitz/2002-08-28: It would be nice to call
1262 selected_frame_level_changed_event() right here, but due to limitations
1263 in the current interfaces, we would end up flooding UIs with events
1264 because select_frame() is used extensively internally.
1265
1266 Once we have frame-parameterized frame (and frame-related) commands,
1267 the event notification can be moved here, since this function will only
1268 be called when the user's selected frame is being changed. */
1269
1270 /* Ensure that symbols for this frame are read in. Also, determine the
1271 source language of this frame, and switch to it if desired. */
1272 if (fi)
1273 {
1274 /* We retrieve the frame's symtab by using the frame PC. However
1275 we cannot use the frame PC as-is, because it usually points to
1276 the instruction following the "call", which is sometimes the
1277 first instruction of another function. So we rely on
1278 get_frame_address_in_block() which provides us with a PC which
1279 is guaranteed to be inside the frame's code block. */
1280 s = find_pc_symtab (get_frame_address_in_block (fi));
1281 if (s
1282 && s->language != current_language->la_language
1283 && s->language != language_unknown
1284 && language_mode == language_mode_auto)
1285 {
1286 set_language (s->language);
1287 }
1288 }
1289 }
1290
1291 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1292 Always returns a non-NULL value. */
1293
1294 struct frame_info *
1295 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1296 {
1297 struct frame_info *fi;
1298
1299 if (frame_debug)
1300 {
1301 fprintf_unfiltered (gdb_stdlog,
1302 "{ create_new_frame (addr=%s, pc=%s) ",
1303 hex_string (addr), hex_string (pc));
1304 }
1305
1306 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1307
1308 fi->next = create_sentinel_frame (current_program_space, get_current_regcache ());
1309
1310 /* Set/update this frame's cached PC value, found in the next frame.
1311 Do this before looking for this frame's unwinder. A sniffer is
1312 very likely to read this, and the corresponding unwinder is
1313 entitled to rely that the PC doesn't magically change. */
1314 fi->next->prev_pc.value = pc;
1315 fi->next->prev_pc.p = 1;
1316
1317 /* We currently assume that frame chain's can't cross spaces. */
1318 fi->pspace = fi->next->pspace;
1319 fi->aspace = fi->next->aspace;
1320
1321 /* Select/initialize both the unwind function and the frame's type
1322 based on the PC. */
1323 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1324
1325 fi->this_id.p = 1;
1326 fi->this_id.value = frame_id_build (addr, pc);
1327
1328 if (frame_debug)
1329 {
1330 fprintf_unfiltered (gdb_stdlog, "-> ");
1331 fprint_frame (gdb_stdlog, fi);
1332 fprintf_unfiltered (gdb_stdlog, " }\n");
1333 }
1334
1335 return fi;
1336 }
1337
1338 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1339 innermost frame). Be careful to not fall off the bottom of the
1340 frame chain and onto the sentinel frame. */
1341
1342 struct frame_info *
1343 get_next_frame (struct frame_info *this_frame)
1344 {
1345 if (this_frame->level > 0)
1346 return this_frame->next;
1347 else
1348 return NULL;
1349 }
1350
1351 /* Observer for the target_changed event. */
1352
1353 static void
1354 frame_observer_target_changed (struct target_ops *target)
1355 {
1356 reinit_frame_cache ();
1357 }
1358
1359 /* Flush the entire frame cache. */
1360
1361 void
1362 reinit_frame_cache (void)
1363 {
1364 struct frame_info *fi;
1365
1366 /* Tear down all frame caches. */
1367 for (fi = current_frame; fi != NULL; fi = fi->prev)
1368 {
1369 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1370 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1371 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1372 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1373 }
1374
1375 /* Since we can't really be sure what the first object allocated was */
1376 obstack_free (&frame_cache_obstack, 0);
1377 obstack_init (&frame_cache_obstack);
1378
1379 if (current_frame != NULL)
1380 annotate_frames_invalid ();
1381
1382 current_frame = NULL; /* Invalidate cache */
1383 select_frame (NULL);
1384 frame_stash_invalidate ();
1385 if (frame_debug)
1386 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1387 }
1388
1389 /* Find where a register is saved (in memory or another register).
1390 The result of frame_register_unwind is just where it is saved
1391 relative to this particular frame. */
1392
1393 static void
1394 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1395 int *optimizedp, enum lval_type *lvalp,
1396 CORE_ADDR *addrp, int *realnump)
1397 {
1398 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1399
1400 while (this_frame != NULL)
1401 {
1402 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1403 addrp, realnump, NULL);
1404
1405 if (*optimizedp)
1406 break;
1407
1408 if (*lvalp != lval_register)
1409 break;
1410
1411 regnum = *realnump;
1412 this_frame = get_next_frame (this_frame);
1413 }
1414 }
1415
1416 /* Return a "struct frame_info" corresponding to the frame that called
1417 THIS_FRAME. Returns NULL if there is no such frame.
1418
1419 Unlike get_prev_frame, this function always tries to unwind the
1420 frame. */
1421
1422 static struct frame_info *
1423 get_prev_frame_1 (struct frame_info *this_frame)
1424 {
1425 struct frame_id this_id;
1426 struct gdbarch *gdbarch;
1427
1428 gdb_assert (this_frame != NULL);
1429 gdbarch = get_frame_arch (this_frame);
1430
1431 if (frame_debug)
1432 {
1433 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1434 if (this_frame != NULL)
1435 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1436 else
1437 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1438 fprintf_unfiltered (gdb_stdlog, ") ");
1439 }
1440
1441 /* Only try to do the unwind once. */
1442 if (this_frame->prev_p)
1443 {
1444 if (frame_debug)
1445 {
1446 fprintf_unfiltered (gdb_stdlog, "-> ");
1447 fprint_frame (gdb_stdlog, this_frame->prev);
1448 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1449 }
1450 return this_frame->prev;
1451 }
1452
1453 /* If the frame unwinder hasn't been selected yet, we must do so
1454 before setting prev_p; otherwise the check for misbehaved
1455 sniffers will think that this frame's sniffer tried to unwind
1456 further (see frame_cleanup_after_sniffer). */
1457 if (this_frame->unwind == NULL)
1458 this_frame->unwind
1459 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1460
1461 this_frame->prev_p = 1;
1462 this_frame->stop_reason = UNWIND_NO_REASON;
1463
1464 /* If we are unwinding from an inline frame, all of the below tests
1465 were already performed when we unwound from the next non-inline
1466 frame. We must skip them, since we can not get THIS_FRAME's ID
1467 until we have unwound all the way down to the previous non-inline
1468 frame. */
1469 if (get_frame_type (this_frame) == INLINE_FRAME)
1470 return get_prev_frame_raw (this_frame);
1471
1472 /* Check that this frame's ID was valid. If it wasn't, don't try to
1473 unwind to the prev frame. Be careful to not apply this test to
1474 the sentinel frame. */
1475 this_id = get_frame_id (this_frame);
1476 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1477 {
1478 if (frame_debug)
1479 {
1480 fprintf_unfiltered (gdb_stdlog, "-> ");
1481 fprint_frame (gdb_stdlog, NULL);
1482 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1483 }
1484 this_frame->stop_reason = UNWIND_NULL_ID;
1485 return NULL;
1486 }
1487
1488 /* Check that this frame's ID isn't inner to (younger, below, next)
1489 the next frame. This happens when a frame unwind goes backwards.
1490 This check is valid only if this frame and the next frame are NORMAL.
1491 See the comment at frame_id_inner for details. */
1492 if (get_frame_type (this_frame) == NORMAL_FRAME
1493 && this_frame->next->unwind->type == NORMAL_FRAME
1494 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1495 get_frame_id (this_frame->next)))
1496 {
1497 if (frame_debug)
1498 {
1499 fprintf_unfiltered (gdb_stdlog, "-> ");
1500 fprint_frame (gdb_stdlog, NULL);
1501 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1502 }
1503 this_frame->stop_reason = UNWIND_INNER_ID;
1504 return NULL;
1505 }
1506
1507 /* Check that this and the next frame are not identical. If they
1508 are, there is most likely a stack cycle. As with the inner-than
1509 test above, avoid comparing the inner-most and sentinel frames. */
1510 if (this_frame->level > 0
1511 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1512 {
1513 if (frame_debug)
1514 {
1515 fprintf_unfiltered (gdb_stdlog, "-> ");
1516 fprint_frame (gdb_stdlog, NULL);
1517 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1518 }
1519 this_frame->stop_reason = UNWIND_SAME_ID;
1520 return NULL;
1521 }
1522
1523 /* Check that this and the next frame do not unwind the PC register
1524 to the same memory location. If they do, then even though they
1525 have different frame IDs, the new frame will be bogus; two
1526 functions can't share a register save slot for the PC. This can
1527 happen when the prologue analyzer finds a stack adjustment, but
1528 no PC save.
1529
1530 This check does assume that the "PC register" is roughly a
1531 traditional PC, even if the gdbarch_unwind_pc method adjusts
1532 it (we do not rely on the value, only on the unwound PC being
1533 dependent on this value). A potential improvement would be
1534 to have the frame prev_pc method and the gdbarch unwind_pc
1535 method set the same lval and location information as
1536 frame_register_unwind. */
1537 if (this_frame->level > 0
1538 && gdbarch_pc_regnum (gdbarch) >= 0
1539 && get_frame_type (this_frame) == NORMAL_FRAME
1540 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1541 || get_frame_type (this_frame->next) == INLINE_FRAME))
1542 {
1543 int optimized, realnum, nrealnum;
1544 enum lval_type lval, nlval;
1545 CORE_ADDR addr, naddr;
1546
1547 frame_register_unwind_location (this_frame,
1548 gdbarch_pc_regnum (gdbarch),
1549 &optimized, &lval, &addr, &realnum);
1550 frame_register_unwind_location (get_next_frame (this_frame),
1551 gdbarch_pc_regnum (gdbarch),
1552 &optimized, &nlval, &naddr, &nrealnum);
1553
1554 if ((lval == lval_memory && lval == nlval && addr == naddr)
1555 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1556 {
1557 if (frame_debug)
1558 {
1559 fprintf_unfiltered (gdb_stdlog, "-> ");
1560 fprint_frame (gdb_stdlog, NULL);
1561 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1562 }
1563
1564 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1565 this_frame->prev = NULL;
1566 return NULL;
1567 }
1568 }
1569
1570 return get_prev_frame_raw (this_frame);
1571 }
1572
1573 /* Construct a new "struct frame_info" and link it previous to
1574 this_frame. */
1575
1576 static struct frame_info *
1577 get_prev_frame_raw (struct frame_info *this_frame)
1578 {
1579 struct frame_info *prev_frame;
1580
1581 /* Allocate the new frame but do not wire it in to the frame chain.
1582 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1583 frame->next to pull some fancy tricks (of course such code is, by
1584 definition, recursive). Try to prevent it.
1585
1586 There is no reason to worry about memory leaks, should the
1587 remainder of the function fail. The allocated memory will be
1588 quickly reclaimed when the frame cache is flushed, and the `we've
1589 been here before' check above will stop repeated memory
1590 allocation calls. */
1591 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1592 prev_frame->level = this_frame->level + 1;
1593
1594 /* For now, assume we don't have frame chains crossing address
1595 spaces. */
1596 prev_frame->pspace = this_frame->pspace;
1597 prev_frame->aspace = this_frame->aspace;
1598
1599 /* Don't yet compute ->unwind (and hence ->type). It is computed
1600 on-demand in get_frame_type, frame_register_unwind, and
1601 get_frame_id. */
1602
1603 /* Don't yet compute the frame's ID. It is computed on-demand by
1604 get_frame_id(). */
1605
1606 /* The unwound frame ID is validate at the start of this function,
1607 as part of the logic to decide if that frame should be further
1608 unwound, and not here while the prev frame is being created.
1609 Doing this makes it possible for the user to examine a frame that
1610 has an invalid frame ID.
1611
1612 Some very old VAX code noted: [...] For the sake of argument,
1613 suppose that the stack is somewhat trashed (which is one reason
1614 that "info frame" exists). So, return 0 (indicating we don't
1615 know the address of the arglist) if we don't know what frame this
1616 frame calls. */
1617
1618 /* Link it in. */
1619 this_frame->prev = prev_frame;
1620 prev_frame->next = this_frame;
1621
1622 if (frame_debug)
1623 {
1624 fprintf_unfiltered (gdb_stdlog, "-> ");
1625 fprint_frame (gdb_stdlog, prev_frame);
1626 fprintf_unfiltered (gdb_stdlog, " }\n");
1627 }
1628
1629 return prev_frame;
1630 }
1631
1632 /* Debug routine to print a NULL frame being returned. */
1633
1634 static void
1635 frame_debug_got_null_frame (struct frame_info *this_frame,
1636 const char *reason)
1637 {
1638 if (frame_debug)
1639 {
1640 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1641 if (this_frame != NULL)
1642 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1643 else
1644 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1645 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1646 }
1647 }
1648
1649 /* Is this (non-sentinel) frame in the "main"() function? */
1650
1651 static int
1652 inside_main_func (struct frame_info *this_frame)
1653 {
1654 struct minimal_symbol *msymbol;
1655 CORE_ADDR maddr;
1656
1657 if (symfile_objfile == 0)
1658 return 0;
1659 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1660 if (msymbol == NULL)
1661 return 0;
1662 /* Make certain that the code, and not descriptor, address is
1663 returned. */
1664 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1665 SYMBOL_VALUE_ADDRESS (msymbol),
1666 &current_target);
1667 return maddr == get_frame_func (this_frame);
1668 }
1669
1670 /* Test whether THIS_FRAME is inside the process entry point function. */
1671
1672 static int
1673 inside_entry_func (struct frame_info *this_frame)
1674 {
1675 CORE_ADDR entry_point;
1676
1677 if (!entry_point_address_query (&entry_point))
1678 return 0;
1679
1680 return get_frame_func (this_frame) == entry_point;
1681 }
1682
1683 /* Return a structure containing various interesting information about
1684 the frame that called THIS_FRAME. Returns NULL if there is entier
1685 no such frame or the frame fails any of a set of target-independent
1686 condition that should terminate the frame chain (e.g., as unwinding
1687 past main()).
1688
1689 This function should not contain target-dependent tests, such as
1690 checking whether the program-counter is zero. */
1691
1692 struct frame_info *
1693 get_prev_frame (struct frame_info *this_frame)
1694 {
1695 /* There is always a frame. If this assertion fails, suspect that
1696 something should be calling get_selected_frame() or
1697 get_current_frame(). */
1698 gdb_assert (this_frame != NULL);
1699
1700 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1701 sense to stop unwinding at a dummy frame. One place where a dummy
1702 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1703 pcsqh register (space register for the instruction at the head of the
1704 instruction queue) cannot be written directly; the only way to set it
1705 is to branch to code that is in the target space. In order to implement
1706 frame dummies on HPUX, the called function is made to jump back to where
1707 the inferior was when the user function was called. If gdb was inside
1708 the main function when we created the dummy frame, the dummy frame will
1709 point inside the main function. */
1710 if (this_frame->level >= 0
1711 && get_frame_type (this_frame) == NORMAL_FRAME
1712 && !backtrace_past_main
1713 && inside_main_func (this_frame))
1714 /* Don't unwind past main(). Note, this is done _before_ the
1715 frame has been marked as previously unwound. That way if the
1716 user later decides to enable unwinds past main(), that will
1717 automatically happen. */
1718 {
1719 frame_debug_got_null_frame (this_frame, "inside main func");
1720 return NULL;
1721 }
1722
1723 /* If the user's backtrace limit has been exceeded, stop. We must
1724 add two to the current level; one of those accounts for backtrace_limit
1725 being 1-based and the level being 0-based, and the other accounts for
1726 the level of the new frame instead of the level of the current
1727 frame. */
1728 if (this_frame->level + 2 > backtrace_limit)
1729 {
1730 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1731 return NULL;
1732 }
1733
1734 /* If we're already inside the entry function for the main objfile,
1735 then it isn't valid. Don't apply this test to a dummy frame -
1736 dummy frame PCs typically land in the entry func. Don't apply
1737 this test to the sentinel frame. Sentinel frames should always
1738 be allowed to unwind. */
1739 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1740 wasn't checking for "main" in the minimal symbols. With that
1741 fixed asm-source tests now stop in "main" instead of halting the
1742 backtrace in weird and wonderful ways somewhere inside the entry
1743 file. Suspect that tests for inside the entry file/func were
1744 added to work around that (now fixed) case. */
1745 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1746 suggested having the inside_entry_func test use the
1747 inside_main_func() msymbol trick (along with entry_point_address()
1748 I guess) to determine the address range of the start function.
1749 That should provide a far better stopper than the current
1750 heuristics. */
1751 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1752 applied tail-call optimizations to main so that a function called
1753 from main returns directly to the caller of main. Since we don't
1754 stop at main, we should at least stop at the entry point of the
1755 application. */
1756 if (this_frame->level >= 0
1757 && get_frame_type (this_frame) == NORMAL_FRAME
1758 && !backtrace_past_entry
1759 && inside_entry_func (this_frame))
1760 {
1761 frame_debug_got_null_frame (this_frame, "inside entry func");
1762 return NULL;
1763 }
1764
1765 /* Assume that the only way to get a zero PC is through something
1766 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1767 will never unwind a zero PC. */
1768 if (this_frame->level > 0
1769 && (get_frame_type (this_frame) == NORMAL_FRAME
1770 || get_frame_type (this_frame) == INLINE_FRAME)
1771 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1772 && get_frame_pc (this_frame) == 0)
1773 {
1774 frame_debug_got_null_frame (this_frame, "zero PC");
1775 return NULL;
1776 }
1777
1778 return get_prev_frame_1 (this_frame);
1779 }
1780
1781 CORE_ADDR
1782 get_frame_pc (struct frame_info *frame)
1783 {
1784 gdb_assert (frame->next != NULL);
1785 return frame_unwind_pc (frame->next);
1786 }
1787
1788 /* Return an address that falls within THIS_FRAME's code block. */
1789
1790 CORE_ADDR
1791 get_frame_address_in_block (struct frame_info *this_frame)
1792 {
1793 /* A draft address. */
1794 CORE_ADDR pc = get_frame_pc (this_frame);
1795
1796 struct frame_info *next_frame = this_frame->next;
1797
1798 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1799 Normally the resume address is inside the body of the function
1800 associated with THIS_FRAME, but there is a special case: when
1801 calling a function which the compiler knows will never return
1802 (for instance abort), the call may be the very last instruction
1803 in the calling function. The resume address will point after the
1804 call and may be at the beginning of a different function
1805 entirely.
1806
1807 If THIS_FRAME is a signal frame or dummy frame, then we should
1808 not adjust the unwound PC. For a dummy frame, GDB pushed the
1809 resume address manually onto the stack. For a signal frame, the
1810 OS may have pushed the resume address manually and invoked the
1811 handler (e.g. GNU/Linux), or invoked the trampoline which called
1812 the signal handler - but in either case the signal handler is
1813 expected to return to the trampoline. So in both of these
1814 cases we know that the resume address is executable and
1815 related. So we only need to adjust the PC if THIS_FRAME
1816 is a normal function.
1817
1818 If the program has been interrupted while THIS_FRAME is current,
1819 then clearly the resume address is inside the associated
1820 function. There are three kinds of interruption: debugger stop
1821 (next frame will be SENTINEL_FRAME), operating system
1822 signal or exception (next frame will be SIGTRAMP_FRAME),
1823 or debugger-induced function call (next frame will be
1824 DUMMY_FRAME). So we only need to adjust the PC if
1825 NEXT_FRAME is a normal function.
1826
1827 We check the type of NEXT_FRAME first, since it is already
1828 known; frame type is determined by the unwinder, and since
1829 we have THIS_FRAME we've already selected an unwinder for
1830 NEXT_FRAME.
1831
1832 If the next frame is inlined, we need to keep going until we find
1833 the real function - for instance, if a signal handler is invoked
1834 while in an inlined function, then the code address of the
1835 "calling" normal function should not be adjusted either. */
1836
1837 while (get_frame_type (next_frame) == INLINE_FRAME)
1838 next_frame = next_frame->next;
1839
1840 if (get_frame_type (next_frame) == NORMAL_FRAME
1841 && (get_frame_type (this_frame) == NORMAL_FRAME
1842 || get_frame_type (this_frame) == INLINE_FRAME))
1843 return pc - 1;
1844
1845 return pc;
1846 }
1847
1848 void
1849 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1850 {
1851 struct frame_info *next_frame;
1852 int notcurrent;
1853
1854 /* If the next frame represents an inlined function call, this frame's
1855 sal is the "call site" of that inlined function, which can not
1856 be inferred from get_frame_pc. */
1857 next_frame = get_next_frame (frame);
1858 if (frame_inlined_callees (frame) > 0)
1859 {
1860 struct symbol *sym;
1861
1862 if (next_frame)
1863 sym = get_frame_function (next_frame);
1864 else
1865 sym = inline_skipped_symbol (inferior_ptid);
1866
1867 init_sal (sal);
1868 if (SYMBOL_LINE (sym) != 0)
1869 {
1870 sal->symtab = SYMBOL_SYMTAB (sym);
1871 sal->line = SYMBOL_LINE (sym);
1872 }
1873 else
1874 /* If the symbol does not have a location, we don't know where
1875 the call site is. Do not pretend to. This is jarring, but
1876 we can't do much better. */
1877 sal->pc = get_frame_pc (frame);
1878
1879 return;
1880 }
1881
1882 /* If FRAME is not the innermost frame, that normally means that
1883 FRAME->pc points at the return instruction (which is *after* the
1884 call instruction), and we want to get the line containing the
1885 call (because the call is where the user thinks the program is).
1886 However, if the next frame is either a SIGTRAMP_FRAME or a
1887 DUMMY_FRAME, then the next frame will contain a saved interrupt
1888 PC and such a PC indicates the current (rather than next)
1889 instruction/line, consequently, for such cases, want to get the
1890 line containing fi->pc. */
1891 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1892 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1893 }
1894
1895 /* Per "frame.h", return the ``address'' of the frame. Code should
1896 really be using get_frame_id(). */
1897 CORE_ADDR
1898 get_frame_base (struct frame_info *fi)
1899 {
1900 return get_frame_id (fi).stack_addr;
1901 }
1902
1903 /* High-level offsets into the frame. Used by the debug info. */
1904
1905 CORE_ADDR
1906 get_frame_base_address (struct frame_info *fi)
1907 {
1908 if (get_frame_type (fi) != NORMAL_FRAME)
1909 return 0;
1910 if (fi->base == NULL)
1911 fi->base = frame_base_find_by_frame (fi);
1912 /* Sneaky: If the low-level unwind and high-level base code share a
1913 common unwinder, let them share the prologue cache. */
1914 if (fi->base->unwind == fi->unwind)
1915 return fi->base->this_base (fi, &fi->prologue_cache);
1916 return fi->base->this_base (fi, &fi->base_cache);
1917 }
1918
1919 CORE_ADDR
1920 get_frame_locals_address (struct frame_info *fi)
1921 {
1922 if (get_frame_type (fi) != NORMAL_FRAME)
1923 return 0;
1924 /* If there isn't a frame address method, find it. */
1925 if (fi->base == NULL)
1926 fi->base = frame_base_find_by_frame (fi);
1927 /* Sneaky: If the low-level unwind and high-level base code share a
1928 common unwinder, let them share the prologue cache. */
1929 if (fi->base->unwind == fi->unwind)
1930 return fi->base->this_locals (fi, &fi->prologue_cache);
1931 return fi->base->this_locals (fi, &fi->base_cache);
1932 }
1933
1934 CORE_ADDR
1935 get_frame_args_address (struct frame_info *fi)
1936 {
1937 if (get_frame_type (fi) != NORMAL_FRAME)
1938 return 0;
1939 /* If there isn't a frame address method, find it. */
1940 if (fi->base == NULL)
1941 fi->base = frame_base_find_by_frame (fi);
1942 /* Sneaky: If the low-level unwind and high-level base code share a
1943 common unwinder, let them share the prologue cache. */
1944 if (fi->base->unwind == fi->unwind)
1945 return fi->base->this_args (fi, &fi->prologue_cache);
1946 return fi->base->this_args (fi, &fi->base_cache);
1947 }
1948
1949 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1950 otherwise. */
1951
1952 int
1953 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1954 {
1955 if (fi->unwind == NULL)
1956 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1957 return fi->unwind == unwinder;
1958 }
1959
1960 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1961 or -1 for a NULL frame. */
1962
1963 int
1964 frame_relative_level (struct frame_info *fi)
1965 {
1966 if (fi == NULL)
1967 return -1;
1968 else
1969 return fi->level;
1970 }
1971
1972 enum frame_type
1973 get_frame_type (struct frame_info *frame)
1974 {
1975 if (frame->unwind == NULL)
1976 /* Initialize the frame's unwinder because that's what
1977 provides the frame's type. */
1978 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1979 return frame->unwind->type;
1980 }
1981
1982 struct program_space *
1983 get_frame_program_space (struct frame_info *frame)
1984 {
1985 return frame->pspace;
1986 }
1987
1988 struct program_space *
1989 frame_unwind_program_space (struct frame_info *this_frame)
1990 {
1991 gdb_assert (this_frame);
1992
1993 /* This is really a placeholder to keep the API consistent --- we
1994 assume for now that we don't have frame chains crossing
1995 spaces. */
1996 return this_frame->pspace;
1997 }
1998
1999 struct address_space *
2000 get_frame_address_space (struct frame_info *frame)
2001 {
2002 return frame->aspace;
2003 }
2004
2005 /* Memory access methods. */
2006
2007 void
2008 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2009 gdb_byte *buf, int len)
2010 {
2011 read_memory (addr, buf, len);
2012 }
2013
2014 LONGEST
2015 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2016 int len)
2017 {
2018 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2019 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2020
2021 return read_memory_integer (addr, len, byte_order);
2022 }
2023
2024 ULONGEST
2025 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2026 int len)
2027 {
2028 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2029 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2030
2031 return read_memory_unsigned_integer (addr, len, byte_order);
2032 }
2033
2034 int
2035 safe_frame_unwind_memory (struct frame_info *this_frame,
2036 CORE_ADDR addr, gdb_byte *buf, int len)
2037 {
2038 /* NOTE: target_read_memory returns zero on success! */
2039 return !target_read_memory (addr, buf, len);
2040 }
2041
2042 /* Architecture methods. */
2043
2044 struct gdbarch *
2045 get_frame_arch (struct frame_info *this_frame)
2046 {
2047 return frame_unwind_arch (this_frame->next);
2048 }
2049
2050 struct gdbarch *
2051 frame_unwind_arch (struct frame_info *next_frame)
2052 {
2053 if (!next_frame->prev_arch.p)
2054 {
2055 struct gdbarch *arch;
2056
2057 if (next_frame->unwind == NULL)
2058 next_frame->unwind
2059 = frame_unwind_find_by_frame (next_frame,
2060 &next_frame->prologue_cache);
2061
2062 if (next_frame->unwind->prev_arch != NULL)
2063 arch = next_frame->unwind->prev_arch (next_frame,
2064 &next_frame->prologue_cache);
2065 else
2066 arch = get_frame_arch (next_frame);
2067
2068 next_frame->prev_arch.arch = arch;
2069 next_frame->prev_arch.p = 1;
2070 if (frame_debug)
2071 fprintf_unfiltered (gdb_stdlog,
2072 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2073 next_frame->level,
2074 gdbarch_bfd_arch_info (arch)->printable_name);
2075 }
2076
2077 return next_frame->prev_arch.arch;
2078 }
2079
2080 struct gdbarch *
2081 frame_unwind_caller_arch (struct frame_info *next_frame)
2082 {
2083 return frame_unwind_arch (skip_inlined_frames (next_frame));
2084 }
2085
2086 /* Stack pointer methods. */
2087
2088 CORE_ADDR
2089 get_frame_sp (struct frame_info *this_frame)
2090 {
2091 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2092
2093 /* Normality - an architecture that provides a way of obtaining any
2094 frame inner-most address. */
2095 if (gdbarch_unwind_sp_p (gdbarch))
2096 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2097 operate on THIS_FRAME now. */
2098 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2099 /* Now things are really are grim. Hope that the value returned by
2100 the gdbarch_sp_regnum register is meaningful. */
2101 if (gdbarch_sp_regnum (gdbarch) >= 0)
2102 return get_frame_register_unsigned (this_frame,
2103 gdbarch_sp_regnum (gdbarch));
2104 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2105 }
2106
2107 /* Return the reason why we can't unwind past FRAME. */
2108
2109 enum unwind_stop_reason
2110 get_frame_unwind_stop_reason (struct frame_info *frame)
2111 {
2112 /* If we haven't tried to unwind past this point yet, then assume
2113 that unwinding would succeed. */
2114 if (frame->prev_p == 0)
2115 return UNWIND_NO_REASON;
2116
2117 /* Otherwise, we set a reason when we succeeded (or failed) to
2118 unwind. */
2119 return frame->stop_reason;
2120 }
2121
2122 /* Return a string explaining REASON. */
2123
2124 const char *
2125 frame_stop_reason_string (enum unwind_stop_reason reason)
2126 {
2127 switch (reason)
2128 {
2129 case UNWIND_NULL_ID:
2130 return _("unwinder did not report frame ID");
2131
2132 case UNWIND_INNER_ID:
2133 return _("previous frame inner to this frame (corrupt stack?)");
2134
2135 case UNWIND_SAME_ID:
2136 return _("previous frame identical to this frame (corrupt stack?)");
2137
2138 case UNWIND_NO_SAVED_PC:
2139 return _("frame did not save the PC");
2140
2141 case UNWIND_NO_REASON:
2142 case UNWIND_FIRST_ERROR:
2143 default:
2144 internal_error (__FILE__, __LINE__,
2145 "Invalid frame stop reason");
2146 }
2147 }
2148
2149 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2150 FRAME. */
2151
2152 static void
2153 frame_cleanup_after_sniffer (void *arg)
2154 {
2155 struct frame_info *frame = arg;
2156
2157 /* The sniffer should not allocate a prologue cache if it did not
2158 match this frame. */
2159 gdb_assert (frame->prologue_cache == NULL);
2160
2161 /* No sniffer should extend the frame chain; sniff based on what is
2162 already certain. */
2163 gdb_assert (!frame->prev_p);
2164
2165 /* The sniffer should not check the frame's ID; that's circular. */
2166 gdb_assert (!frame->this_id.p);
2167
2168 /* Clear cached fields dependent on the unwinder.
2169
2170 The previous PC is independent of the unwinder, but the previous
2171 function is not (see get_frame_address_in_block). */
2172 frame->prev_func.p = 0;
2173 frame->prev_func.addr = 0;
2174
2175 /* Discard the unwinder last, so that we can easily find it if an assertion
2176 in this function triggers. */
2177 frame->unwind = NULL;
2178 }
2179
2180 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2181 Return a cleanup which should be called if unwinding fails, and
2182 discarded if it succeeds. */
2183
2184 struct cleanup *
2185 frame_prepare_for_sniffer (struct frame_info *frame,
2186 const struct frame_unwind *unwind)
2187 {
2188 gdb_assert (frame->unwind == NULL);
2189 frame->unwind = unwind;
2190 return make_cleanup (frame_cleanup_after_sniffer, frame);
2191 }
2192
2193 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2194
2195 static struct cmd_list_element *set_backtrace_cmdlist;
2196 static struct cmd_list_element *show_backtrace_cmdlist;
2197
2198 static void
2199 set_backtrace_cmd (char *args, int from_tty)
2200 {
2201 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2202 }
2203
2204 static void
2205 show_backtrace_cmd (char *args, int from_tty)
2206 {
2207 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2208 }
2209
2210 void
2211 _initialize_frame (void)
2212 {
2213 obstack_init (&frame_cache_obstack);
2214
2215 observer_attach_target_changed (frame_observer_target_changed);
2216
2217 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2218 Set backtrace specific variables.\n\
2219 Configure backtrace variables such as the backtrace limit"),
2220 &set_backtrace_cmdlist, "set backtrace ",
2221 0/*allow-unknown*/, &setlist);
2222 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2223 Show backtrace specific variables\n\
2224 Show backtrace variables such as the backtrace limit"),
2225 &show_backtrace_cmdlist, "show backtrace ",
2226 0/*allow-unknown*/, &showlist);
2227
2228 add_setshow_boolean_cmd ("past-main", class_obscure,
2229 &backtrace_past_main, _("\
2230 Set whether backtraces should continue past \"main\"."), _("\
2231 Show whether backtraces should continue past \"main\"."), _("\
2232 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2233 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2234 of the stack trace."),
2235 NULL,
2236 show_backtrace_past_main,
2237 &set_backtrace_cmdlist,
2238 &show_backtrace_cmdlist);
2239
2240 add_setshow_boolean_cmd ("past-entry", class_obscure,
2241 &backtrace_past_entry, _("\
2242 Set whether backtraces should continue past the entry point of a program."),
2243 _("\
2244 Show whether backtraces should continue past the entry point of a program."),
2245 _("\
2246 Normally there are no callers beyond the entry point of a program, so GDB\n\
2247 will terminate the backtrace there. Set this variable if you need to see \n\
2248 the rest of the stack trace."),
2249 NULL,
2250 show_backtrace_past_entry,
2251 &set_backtrace_cmdlist,
2252 &show_backtrace_cmdlist);
2253
2254 add_setshow_integer_cmd ("limit", class_obscure,
2255 &backtrace_limit, _("\
2256 Set an upper bound on the number of backtrace levels."), _("\
2257 Show the upper bound on the number of backtrace levels."), _("\
2258 No more than the specified number of frames can be displayed or examined.\n\
2259 Zero is unlimited."),
2260 NULL,
2261 show_backtrace_limit,
2262 &set_backtrace_cmdlist,
2263 &show_backtrace_cmdlist);
2264
2265 /* Debug this files internals. */
2266 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2267 Set frame debugging."), _("\
2268 Show frame debugging."), _("\
2269 When non-zero, frame specific internal debugging is enabled."),
2270 NULL,
2271 show_frame_debug,
2272 &setdebuglist, &showdebuglist);
2273 }
This page took 0.103699 seconds and 4 git commands to generate.