*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44 #include "block.h"
45 #include "inline-frame.h"
46
47 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
48 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
49
50 /* We keep a cache of stack frames, each of which is a "struct
51 frame_info". The innermost one gets allocated (in
52 wait_for_inferior) each time the inferior stops; current_frame
53 points to it. Additional frames get allocated (in get_prev_frame)
54 as needed, and are chained through the next and prev fields. Any
55 time that the frame cache becomes invalid (most notably when we
56 execute something, but also if we change how we interpret the
57 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
58 which reads new symbols)), we should call reinit_frame_cache. */
59
60 struct frame_info
61 {
62 /* Level of this frame. The inner-most (youngest) frame is at level
63 0. As you move towards the outer-most (oldest) frame, the level
64 increases. This is a cached value. It could just as easily be
65 computed by counting back from the selected frame to the inner
66 most frame. */
67 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
68 reserved to indicate a bogus frame - one that has been created
69 just to keep GDB happy (GDB always needs a frame). For the
70 moment leave this as speculation. */
71 int level;
72
73 /* The frame's low-level unwinder and corresponding cache. The
74 low-level unwinder is responsible for unwinding register values
75 for the previous frame. The low-level unwind methods are
76 selected based on the presence, or otherwise, of register unwind
77 information such as CFI. */
78 void *prologue_cache;
79 const struct frame_unwind *unwind;
80
81 /* Cached copy of the previous frame's architecture. */
82 struct
83 {
84 int p;
85 struct gdbarch *arch;
86 } prev_arch;
87
88 /* Cached copy of the previous frame's resume address. */
89 struct {
90 int p;
91 CORE_ADDR value;
92 } prev_pc;
93
94 /* Cached copy of the previous frame's function address. */
95 struct
96 {
97 CORE_ADDR addr;
98 int p;
99 } prev_func;
100
101 /* This frame's ID. */
102 struct
103 {
104 int p;
105 struct frame_id value;
106 } this_id;
107
108 /* The frame's high-level base methods, and corresponding cache.
109 The high level base methods are selected based on the frame's
110 debug info. */
111 const struct frame_base *base;
112 void *base_cache;
113
114 /* Pointers to the next (down, inner, younger) and previous (up,
115 outer, older) frame_info's in the frame cache. */
116 struct frame_info *next; /* down, inner, younger */
117 int prev_p;
118 struct frame_info *prev; /* up, outer, older */
119
120 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
121 could. Only valid when PREV_P is set. */
122 enum unwind_stop_reason stop_reason;
123 };
124
125 /* A frame stash used to speed up frame lookups. */
126
127 /* We currently only stash one frame at a time, as this seems to be
128 sufficient for now. */
129 static struct frame_info *frame_stash = NULL;
130
131 /* Add the following FRAME to the frame stash. */
132
133 static void
134 frame_stash_add (struct frame_info *frame)
135 {
136 frame_stash = frame;
137 }
138
139 /* Search the frame stash for an entry with the given frame ID.
140 If found, return that frame. Otherwise return NULL. */
141
142 static struct frame_info *
143 frame_stash_find (struct frame_id id)
144 {
145 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
146 return frame_stash;
147
148 return NULL;
149 }
150
151 /* Invalidate the frame stash by removing all entries in it. */
152
153 static void
154 frame_stash_invalidate (void)
155 {
156 frame_stash = NULL;
157 }
158
159 /* Flag to control debugging. */
160
161 int frame_debug;
162 static void
163 show_frame_debug (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
167 }
168
169 /* Flag to indicate whether backtraces should stop at main et.al. */
170
171 static int backtrace_past_main;
172 static void
173 show_backtrace_past_main (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("\
177 Whether backtraces should continue past \"main\" is %s.\n"),
178 value);
179 }
180
181 static int backtrace_past_entry;
182 static void
183 show_backtrace_past_entry (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185 {
186 fprintf_filtered (file, _("\
187 Whether backtraces should continue past the entry point of a program is %s.\n"),
188 value);
189 }
190
191 static int backtrace_limit = INT_MAX;
192 static void
193 show_backtrace_limit (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 fprintf_filtered (file, _("\
197 An upper bound on the number of backtrace levels is %s.\n"),
198 value);
199 }
200
201
202 static void
203 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
204 {
205 if (p)
206 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
207 else
208 fprintf_unfiltered (file, "!%s", name);
209 }
210
211 void
212 fprint_frame_id (struct ui_file *file, struct frame_id id)
213 {
214 fprintf_unfiltered (file, "{");
215 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
216 fprintf_unfiltered (file, ",");
217 fprint_field (file, "code", id.code_addr_p, id.code_addr);
218 fprintf_unfiltered (file, ",");
219 fprint_field (file, "special", id.special_addr_p, id.special_addr);
220 if (id.inline_depth)
221 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
222 fprintf_unfiltered (file, "}");
223 }
224
225 static void
226 fprint_frame_type (struct ui_file *file, enum frame_type type)
227 {
228 switch (type)
229 {
230 case NORMAL_FRAME:
231 fprintf_unfiltered (file, "NORMAL_FRAME");
232 return;
233 case DUMMY_FRAME:
234 fprintf_unfiltered (file, "DUMMY_FRAME");
235 return;
236 case INLINE_FRAME:
237 fprintf_unfiltered (file, "INLINE_FRAME");
238 return;
239 case SENTINEL_FRAME:
240 fprintf_unfiltered (file, "SENTINEL_FRAME");
241 return;
242 case SIGTRAMP_FRAME:
243 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
244 return;
245 case ARCH_FRAME:
246 fprintf_unfiltered (file, "ARCH_FRAME");
247 return;
248 default:
249 fprintf_unfiltered (file, "<unknown type>");
250 return;
251 };
252 }
253
254 static void
255 fprint_frame (struct ui_file *file, struct frame_info *fi)
256 {
257 if (fi == NULL)
258 {
259 fprintf_unfiltered (file, "<NULL frame>");
260 return;
261 }
262 fprintf_unfiltered (file, "{");
263 fprintf_unfiltered (file, "level=%d", fi->level);
264 fprintf_unfiltered (file, ",");
265 fprintf_unfiltered (file, "type=");
266 if (fi->unwind != NULL)
267 fprint_frame_type (file, fi->unwind->type);
268 else
269 fprintf_unfiltered (file, "<unknown>");
270 fprintf_unfiltered (file, ",");
271 fprintf_unfiltered (file, "unwind=");
272 if (fi->unwind != NULL)
273 gdb_print_host_address (fi->unwind, file);
274 else
275 fprintf_unfiltered (file, "<unknown>");
276 fprintf_unfiltered (file, ",");
277 fprintf_unfiltered (file, "pc=");
278 if (fi->next != NULL && fi->next->prev_pc.p)
279 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
280 else
281 fprintf_unfiltered (file, "<unknown>");
282 fprintf_unfiltered (file, ",");
283 fprintf_unfiltered (file, "id=");
284 if (fi->this_id.p)
285 fprint_frame_id (file, fi->this_id.value);
286 else
287 fprintf_unfiltered (file, "<unknown>");
288 fprintf_unfiltered (file, ",");
289 fprintf_unfiltered (file, "func=");
290 if (fi->next != NULL && fi->next->prev_func.p)
291 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
292 else
293 fprintf_unfiltered (file, "<unknown>");
294 fprintf_unfiltered (file, "}");
295 }
296
297 /* Given FRAME, return the enclosing normal frame for inlined
298 function frames. Otherwise return the original frame. */
299
300 static struct frame_info *
301 skip_inlined_frames (struct frame_info *frame)
302 {
303 while (get_frame_type (frame) == INLINE_FRAME)
304 frame = get_prev_frame (frame);
305
306 return frame;
307 }
308
309 /* Return a frame uniq ID that can be used to, later, re-find the
310 frame. */
311
312 struct frame_id
313 get_frame_id (struct frame_info *fi)
314 {
315 if (fi == NULL)
316 return null_frame_id;
317
318 if (!fi->this_id.p)
319 {
320 if (frame_debug)
321 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
322 fi->level);
323 /* Find the unwinder. */
324 if (fi->unwind == NULL)
325 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
326 /* Find THIS frame's ID. */
327 /* Default to outermost if no ID is found. */
328 fi->this_id.value = outer_frame_id;
329 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
330 gdb_assert (frame_id_p (fi->this_id.value));
331 fi->this_id.p = 1;
332 if (frame_debug)
333 {
334 fprintf_unfiltered (gdb_stdlog, "-> ");
335 fprint_frame_id (gdb_stdlog, fi->this_id.value);
336 fprintf_unfiltered (gdb_stdlog, " }\n");
337 }
338 }
339
340 frame_stash_add (fi);
341
342 return fi->this_id.value;
343 }
344
345 struct frame_id
346 get_stack_frame_id (struct frame_info *next_frame)
347 {
348 return get_frame_id (skip_inlined_frames (next_frame));
349 }
350
351 struct frame_id
352 frame_unwind_caller_id (struct frame_info *next_frame)
353 {
354 struct frame_info *this_frame;
355
356 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
357 the frame chain, leading to this function unintentionally
358 returning a null_frame_id (e.g., when a caller requests the frame
359 ID of "main()"s caller. */
360
361 next_frame = skip_inlined_frames (next_frame);
362 this_frame = get_prev_frame_1 (next_frame);
363 if (this_frame)
364 return get_frame_id (skip_inlined_frames (this_frame));
365 else
366 return null_frame_id;
367 }
368
369 const struct frame_id null_frame_id; /* All zeros. */
370 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
371
372 struct frame_id
373 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
374 CORE_ADDR special_addr)
375 {
376 struct frame_id id = null_frame_id;
377 id.stack_addr = stack_addr;
378 id.stack_addr_p = 1;
379 id.code_addr = code_addr;
380 id.code_addr_p = 1;
381 id.special_addr = special_addr;
382 id.special_addr_p = 1;
383 return id;
384 }
385
386 struct frame_id
387 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
388 {
389 struct frame_id id = null_frame_id;
390 id.stack_addr = stack_addr;
391 id.stack_addr_p = 1;
392 id.code_addr = code_addr;
393 id.code_addr_p = 1;
394 return id;
395 }
396
397 struct frame_id
398 frame_id_build_wild (CORE_ADDR stack_addr)
399 {
400 struct frame_id id = null_frame_id;
401 id.stack_addr = stack_addr;
402 id.stack_addr_p = 1;
403 return id;
404 }
405
406 int
407 frame_id_p (struct frame_id l)
408 {
409 int p;
410 /* The frame is valid iff it has a valid stack address. */
411 p = l.stack_addr_p;
412 /* outer_frame_id is also valid. */
413 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
414 p = 1;
415 if (frame_debug)
416 {
417 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
418 fprint_frame_id (gdb_stdlog, l);
419 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
420 }
421 return p;
422 }
423
424 int
425 frame_id_inlined_p (struct frame_id l)
426 {
427 if (!frame_id_p (l))
428 return 0;
429
430 return (l.inline_depth != 0);
431 }
432
433 int
434 frame_id_eq (struct frame_id l, struct frame_id r)
435 {
436 int eq;
437 if (!l.stack_addr_p && l.special_addr_p && !r.stack_addr_p && r.special_addr_p)
438 /* The outermost frame marker is equal to itself. This is the
439 dodgy thing about outer_frame_id, since between execution steps
440 we might step into another function - from which we can't
441 unwind either. More thought required to get rid of
442 outer_frame_id. */
443 eq = 1;
444 else if (!l.stack_addr_p || !r.stack_addr_p)
445 /* Like a NaN, if either ID is invalid, the result is false.
446 Note that a frame ID is invalid iff it is the null frame ID. */
447 eq = 0;
448 else if (l.stack_addr != r.stack_addr)
449 /* If .stack addresses are different, the frames are different. */
450 eq = 0;
451 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
452 /* An invalid code addr is a wild card. If .code addresses are
453 different, the frames are different. */
454 eq = 0;
455 else if (l.special_addr_p && r.special_addr_p
456 && l.special_addr != r.special_addr)
457 /* An invalid special addr is a wild card (or unused). Otherwise
458 if special addresses are different, the frames are different. */
459 eq = 0;
460 else if (l.inline_depth != r.inline_depth)
461 /* If inline depths are different, the frames must be different. */
462 eq = 0;
463 else
464 /* Frames are equal. */
465 eq = 1;
466
467 if (frame_debug)
468 {
469 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
470 fprint_frame_id (gdb_stdlog, l);
471 fprintf_unfiltered (gdb_stdlog, ",r=");
472 fprint_frame_id (gdb_stdlog, r);
473 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
474 }
475 return eq;
476 }
477
478 /* Safety net to check whether frame ID L should be inner to
479 frame ID R, according to their stack addresses.
480
481 This method cannot be used to compare arbitrary frames, as the
482 ranges of valid stack addresses may be discontiguous (e.g. due
483 to sigaltstack).
484
485 However, it can be used as safety net to discover invalid frame
486 IDs in certain circumstances. Assuming that NEXT is the immediate
487 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
488
489 * The stack address of NEXT must be inner-than-or-equal to the stack
490 address of THIS.
491
492 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
493 error has occurred.
494
495 * If NEXT and THIS have different stack addresses, no other frame
496 in the frame chain may have a stack address in between.
497
498 Therefore, if frame_id_inner (TEST, THIS) holds, but
499 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
500 to a valid frame in the frame chain.
501
502 The sanity checks above cannot be performed when a SIGTRAMP frame
503 is involved, because signal handlers might be executed on a different
504 stack than the stack used by the routine that caused the signal
505 to be raised. This can happen for instance when a thread exceeds
506 its maximum stack size. In this case, certain compilers implement
507 a stack overflow strategy that cause the handler to be run on a
508 different stack. */
509
510 static int
511 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
512 {
513 int inner;
514 if (!l.stack_addr_p || !r.stack_addr_p)
515 /* Like NaN, any operation involving an invalid ID always fails. */
516 inner = 0;
517 else if (l.inline_depth > r.inline_depth
518 && l.stack_addr == r.stack_addr
519 && l.code_addr_p == r.code_addr_p
520 && l.special_addr_p == r.special_addr_p
521 && l.special_addr == r.special_addr)
522 {
523 /* Same function, different inlined functions. */
524 struct block *lb, *rb;
525
526 gdb_assert (l.code_addr_p && r.code_addr_p);
527
528 lb = block_for_pc (l.code_addr);
529 rb = block_for_pc (r.code_addr);
530
531 if (lb == NULL || rb == NULL)
532 /* Something's gone wrong. */
533 inner = 0;
534 else
535 /* This will return true if LB and RB are the same block, or
536 if the block with the smaller depth lexically encloses the
537 block with the greater depth. */
538 inner = contained_in (lb, rb);
539 }
540 else
541 /* Only return non-zero when strictly inner than. Note that, per
542 comment in "frame.h", there is some fuzz here. Frameless
543 functions are not strictly inner than (same .stack but
544 different .code and/or .special address). */
545 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
546 if (frame_debug)
547 {
548 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
549 fprint_frame_id (gdb_stdlog, l);
550 fprintf_unfiltered (gdb_stdlog, ",r=");
551 fprint_frame_id (gdb_stdlog, r);
552 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
553 }
554 return inner;
555 }
556
557 struct frame_info *
558 frame_find_by_id (struct frame_id id)
559 {
560 struct frame_info *frame, *prev_frame;
561
562 /* ZERO denotes the null frame, let the caller decide what to do
563 about it. Should it instead return get_current_frame()? */
564 if (!frame_id_p (id))
565 return NULL;
566
567 /* Try using the frame stash first. Finding it there removes the need
568 to perform the search by looping over all frames, which can be very
569 CPU-intensive if the number of frames is very high (the loop is O(n)
570 and get_prev_frame performs a series of checks that are relatively
571 expensive). This optimization is particularly useful when this function
572 is called from another function (such as value_fetch_lazy, case
573 VALUE_LVAL (val) == lval_register) which already loops over all frames,
574 making the overall behavior O(n^2). */
575 frame = frame_stash_find (id);
576 if (frame)
577 return frame;
578
579 for (frame = get_current_frame (); ; frame = prev_frame)
580 {
581 struct frame_id this = get_frame_id (frame);
582 if (frame_id_eq (id, this))
583 /* An exact match. */
584 return frame;
585
586 prev_frame = get_prev_frame (frame);
587 if (!prev_frame)
588 return NULL;
589
590 /* As a safety net to avoid unnecessary backtracing while trying
591 to find an invalid ID, we check for a common situation where
592 we can detect from comparing stack addresses that no other
593 frame in the current frame chain can have this ID. See the
594 comment at frame_id_inner for details. */
595 if (get_frame_type (frame) == NORMAL_FRAME
596 && !frame_id_inner (get_frame_arch (frame), id, this)
597 && frame_id_inner (get_frame_arch (prev_frame), id,
598 get_frame_id (prev_frame)))
599 return NULL;
600 }
601 return NULL;
602 }
603
604 static CORE_ADDR
605 frame_unwind_pc (struct frame_info *this_frame)
606 {
607 if (!this_frame->prev_pc.p)
608 {
609 CORE_ADDR pc;
610 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
611 {
612 /* The right way. The `pure' way. The one true way. This
613 method depends solely on the register-unwind code to
614 determine the value of registers in THIS frame, and hence
615 the value of this frame's PC (resume address). A typical
616 implementation is no more than:
617
618 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
619 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
620
621 Note: this method is very heavily dependent on a correct
622 register-unwind implementation, it pays to fix that
623 method first; this method is frame type agnostic, since
624 it only deals with register values, it works with any
625 frame. This is all in stark contrast to the old
626 FRAME_SAVED_PC which would try to directly handle all the
627 different ways that a PC could be unwound. */
628 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
629 }
630 else
631 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
632 this_frame->prev_pc.value = pc;
633 this_frame->prev_pc.p = 1;
634 if (frame_debug)
635 fprintf_unfiltered (gdb_stdlog,
636 "{ frame_unwind_caller_pc (this_frame=%d) -> 0x%s }\n",
637 this_frame->level,
638 hex_string (this_frame->prev_pc.value));
639 }
640 return this_frame->prev_pc.value;
641 }
642
643 CORE_ADDR
644 frame_unwind_caller_pc (struct frame_info *this_frame)
645 {
646 return frame_unwind_pc (skip_inlined_frames (this_frame));
647 }
648
649 CORE_ADDR
650 get_frame_func (struct frame_info *this_frame)
651 {
652 struct frame_info *next_frame = this_frame->next;
653
654 if (!next_frame->prev_func.p)
655 {
656 /* Make certain that this, and not the adjacent, function is
657 found. */
658 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
659 next_frame->prev_func.p = 1;
660 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
661 if (frame_debug)
662 fprintf_unfiltered (gdb_stdlog,
663 "{ get_frame_func (this_frame=%d) -> %s }\n",
664 this_frame->level,
665 hex_string (next_frame->prev_func.addr));
666 }
667 return next_frame->prev_func.addr;
668 }
669
670 static int
671 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
672 {
673 return frame_register_read (src, regnum, buf);
674 }
675
676 struct regcache *
677 frame_save_as_regcache (struct frame_info *this_frame)
678 {
679 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
680 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
681 regcache_save (regcache, do_frame_register_read, this_frame);
682 discard_cleanups (cleanups);
683 return regcache;
684 }
685
686 void
687 frame_pop (struct frame_info *this_frame)
688 {
689 struct frame_info *prev_frame;
690 struct regcache *scratch;
691 struct cleanup *cleanups;
692
693 if (get_frame_type (this_frame) == DUMMY_FRAME)
694 {
695 /* Popping a dummy frame involves restoring more than just registers.
696 dummy_frame_pop does all the work. */
697 dummy_frame_pop (get_frame_id (this_frame));
698 return;
699 }
700
701 /* Ensure that we have a frame to pop to. */
702 prev_frame = get_prev_frame_1 (this_frame);
703
704 if (!prev_frame)
705 error (_("Cannot pop the initial frame."));
706
707 /* Make a copy of all the register values unwound from this frame.
708 Save them in a scratch buffer so that there isn't a race between
709 trying to extract the old values from the current regcache while
710 at the same time writing new values into that same cache. */
711 scratch = frame_save_as_regcache (prev_frame);
712 cleanups = make_cleanup_regcache_xfree (scratch);
713
714 /* FIXME: cagney/2003-03-16: It should be possible to tell the
715 target's register cache that it is about to be hit with a burst
716 register transfer and that the sequence of register writes should
717 be batched. The pair target_prepare_to_store() and
718 target_store_registers() kind of suggest this functionality.
719 Unfortunately, they don't implement it. Their lack of a formal
720 definition can lead to targets writing back bogus values
721 (arguably a bug in the target code mind). */
722 /* Now copy those saved registers into the current regcache.
723 Here, regcache_cpy() calls regcache_restore(). */
724 regcache_cpy (get_current_regcache (), scratch);
725 do_cleanups (cleanups);
726
727 /* We've made right mess of GDB's local state, just discard
728 everything. */
729 reinit_frame_cache ();
730 }
731
732 void
733 frame_register_unwind (struct frame_info *frame, int regnum,
734 int *optimizedp, enum lval_type *lvalp,
735 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
736 {
737 struct value *value;
738
739 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
740 that the value proper does not need to be fetched. */
741 gdb_assert (optimizedp != NULL);
742 gdb_assert (lvalp != NULL);
743 gdb_assert (addrp != NULL);
744 gdb_assert (realnump != NULL);
745 /* gdb_assert (bufferp != NULL); */
746
747 value = frame_unwind_register_value (frame, regnum);
748
749 gdb_assert (value != NULL);
750
751 *optimizedp = value_optimized_out (value);
752 *lvalp = VALUE_LVAL (value);
753 *addrp = value_address (value);
754 *realnump = VALUE_REGNUM (value);
755
756 if (bufferp)
757 memcpy (bufferp, value_contents_all (value),
758 TYPE_LENGTH (value_type (value)));
759
760 /* Dispose of the new value. This prevents watchpoints from
761 trying to watch the saved frame pointer. */
762 release_value (value);
763 value_free (value);
764 }
765
766 void
767 frame_register (struct frame_info *frame, int regnum,
768 int *optimizedp, enum lval_type *lvalp,
769 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
770 {
771 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
772 that the value proper does not need to be fetched. */
773 gdb_assert (optimizedp != NULL);
774 gdb_assert (lvalp != NULL);
775 gdb_assert (addrp != NULL);
776 gdb_assert (realnump != NULL);
777 /* gdb_assert (bufferp != NULL); */
778
779 /* Obtain the register value by unwinding the register from the next
780 (more inner frame). */
781 gdb_assert (frame != NULL && frame->next != NULL);
782 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
783 realnump, bufferp);
784 }
785
786 void
787 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
788 {
789 int optimized;
790 CORE_ADDR addr;
791 int realnum;
792 enum lval_type lval;
793 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
794 &realnum, buf);
795 }
796
797 void
798 get_frame_register (struct frame_info *frame,
799 int regnum, gdb_byte *buf)
800 {
801 frame_unwind_register (frame->next, regnum, buf);
802 }
803
804 struct value *
805 frame_unwind_register_value (struct frame_info *frame, int regnum)
806 {
807 struct gdbarch *gdbarch;
808 struct value *value;
809
810 gdb_assert (frame != NULL);
811 gdbarch = frame_unwind_arch (frame);
812
813 if (frame_debug)
814 {
815 fprintf_unfiltered (gdb_stdlog, "\
816 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
817 frame->level, regnum,
818 user_reg_map_regnum_to_name (gdbarch, regnum));
819 }
820
821 /* Find the unwinder. */
822 if (frame->unwind == NULL)
823 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
824
825 /* Ask this frame to unwind its register. */
826 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
827
828 if (frame_debug)
829 {
830 fprintf_unfiltered (gdb_stdlog, "->");
831 if (value_optimized_out (value))
832 fprintf_unfiltered (gdb_stdlog, " optimized out");
833 else
834 {
835 if (VALUE_LVAL (value) == lval_register)
836 fprintf_unfiltered (gdb_stdlog, " register=%d",
837 VALUE_REGNUM (value));
838 else if (VALUE_LVAL (value) == lval_memory)
839 fprintf_unfiltered (gdb_stdlog, " address=%s",
840 paddress (gdbarch,
841 value_address (value)));
842 else
843 fprintf_unfiltered (gdb_stdlog, " computed");
844
845 if (value_lazy (value))
846 fprintf_unfiltered (gdb_stdlog, " lazy");
847 else
848 {
849 int i;
850 const gdb_byte *buf = value_contents (value);
851
852 fprintf_unfiltered (gdb_stdlog, " bytes=");
853 fprintf_unfiltered (gdb_stdlog, "[");
854 for (i = 0; i < register_size (gdbarch, regnum); i++)
855 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
856 fprintf_unfiltered (gdb_stdlog, "]");
857 }
858 }
859
860 fprintf_unfiltered (gdb_stdlog, " }\n");
861 }
862
863 return value;
864 }
865
866 struct value *
867 get_frame_register_value (struct frame_info *frame, int regnum)
868 {
869 return frame_unwind_register_value (frame->next, regnum);
870 }
871
872 LONGEST
873 frame_unwind_register_signed (struct frame_info *frame, int regnum)
874 {
875 struct gdbarch *gdbarch = frame_unwind_arch (frame);
876 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
877 int size = register_size (gdbarch, regnum);
878 gdb_byte buf[MAX_REGISTER_SIZE];
879 frame_unwind_register (frame, regnum, buf);
880 return extract_signed_integer (buf, size, byte_order);
881 }
882
883 LONGEST
884 get_frame_register_signed (struct frame_info *frame, int regnum)
885 {
886 return frame_unwind_register_signed (frame->next, regnum);
887 }
888
889 ULONGEST
890 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
891 {
892 struct gdbarch *gdbarch = frame_unwind_arch (frame);
893 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
894 int size = register_size (gdbarch, regnum);
895 gdb_byte buf[MAX_REGISTER_SIZE];
896 frame_unwind_register (frame, regnum, buf);
897 return extract_unsigned_integer (buf, size, byte_order);
898 }
899
900 ULONGEST
901 get_frame_register_unsigned (struct frame_info *frame, int regnum)
902 {
903 return frame_unwind_register_unsigned (frame->next, regnum);
904 }
905
906 void
907 put_frame_register (struct frame_info *frame, int regnum,
908 const gdb_byte *buf)
909 {
910 struct gdbarch *gdbarch = get_frame_arch (frame);
911 int realnum;
912 int optim;
913 enum lval_type lval;
914 CORE_ADDR addr;
915 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
916 if (optim)
917 error (_("Attempt to assign to a value that was optimized out."));
918 switch (lval)
919 {
920 case lval_memory:
921 {
922 /* FIXME: write_memory doesn't yet take constant buffers.
923 Arrrg! */
924 gdb_byte tmp[MAX_REGISTER_SIZE];
925 memcpy (tmp, buf, register_size (gdbarch, regnum));
926 write_memory (addr, tmp, register_size (gdbarch, regnum));
927 break;
928 }
929 case lval_register:
930 regcache_cooked_write (get_current_regcache (), realnum, buf);
931 break;
932 default:
933 error (_("Attempt to assign to an unmodifiable value."));
934 }
935 }
936
937 /* frame_register_read ()
938
939 Find and return the value of REGNUM for the specified stack frame.
940 The number of bytes copied is REGISTER_SIZE (REGNUM).
941
942 Returns 0 if the register value could not be found. */
943
944 int
945 frame_register_read (struct frame_info *frame, int regnum,
946 gdb_byte *myaddr)
947 {
948 int optimized;
949 enum lval_type lval;
950 CORE_ADDR addr;
951 int realnum;
952 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
953
954 return !optimized;
955 }
956
957 int
958 get_frame_register_bytes (struct frame_info *frame, int regnum,
959 CORE_ADDR offset, int len, gdb_byte *myaddr)
960 {
961 struct gdbarch *gdbarch = get_frame_arch (frame);
962 int i;
963 int maxsize;
964 int numregs;
965
966 /* Skip registers wholly inside of OFFSET. */
967 while (offset >= register_size (gdbarch, regnum))
968 {
969 offset -= register_size (gdbarch, regnum);
970 regnum++;
971 }
972
973 /* Ensure that we will not read beyond the end of the register file.
974 This can only ever happen if the debug information is bad. */
975 maxsize = -offset;
976 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
977 for (i = regnum; i < numregs; i++)
978 {
979 int thissize = register_size (gdbarch, i);
980 if (thissize == 0)
981 break; /* This register is not available on this architecture. */
982 maxsize += thissize;
983 }
984 if (len > maxsize)
985 {
986 warning (_("Bad debug information detected: "
987 "Attempt to read %d bytes from registers."), len);
988 return 0;
989 }
990
991 /* Copy the data. */
992 while (len > 0)
993 {
994 int curr_len = register_size (gdbarch, regnum) - offset;
995 if (curr_len > len)
996 curr_len = len;
997
998 if (curr_len == register_size (gdbarch, regnum))
999 {
1000 if (!frame_register_read (frame, regnum, myaddr))
1001 return 0;
1002 }
1003 else
1004 {
1005 gdb_byte buf[MAX_REGISTER_SIZE];
1006 if (!frame_register_read (frame, regnum, buf))
1007 return 0;
1008 memcpy (myaddr, buf + offset, curr_len);
1009 }
1010
1011 myaddr += curr_len;
1012 len -= curr_len;
1013 offset = 0;
1014 regnum++;
1015 }
1016
1017 return 1;
1018 }
1019
1020 void
1021 put_frame_register_bytes (struct frame_info *frame, int regnum,
1022 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1023 {
1024 struct gdbarch *gdbarch = get_frame_arch (frame);
1025
1026 /* Skip registers wholly inside of OFFSET. */
1027 while (offset >= register_size (gdbarch, regnum))
1028 {
1029 offset -= register_size (gdbarch, regnum);
1030 regnum++;
1031 }
1032
1033 /* Copy the data. */
1034 while (len > 0)
1035 {
1036 int curr_len = register_size (gdbarch, regnum) - offset;
1037 if (curr_len > len)
1038 curr_len = len;
1039
1040 if (curr_len == register_size (gdbarch, regnum))
1041 {
1042 put_frame_register (frame, regnum, myaddr);
1043 }
1044 else
1045 {
1046 gdb_byte buf[MAX_REGISTER_SIZE];
1047 frame_register_read (frame, regnum, buf);
1048 memcpy (buf + offset, myaddr, curr_len);
1049 put_frame_register (frame, regnum, buf);
1050 }
1051
1052 myaddr += curr_len;
1053 len -= curr_len;
1054 offset = 0;
1055 regnum++;
1056 }
1057 }
1058
1059 /* Create a sentinel frame. */
1060
1061 static struct frame_info *
1062 create_sentinel_frame (struct regcache *regcache)
1063 {
1064 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1065 frame->level = -1;
1066 /* Explicitly initialize the sentinel frame's cache. Provide it
1067 with the underlying regcache. In the future additional
1068 information, such as the frame's thread will be added. */
1069 frame->prologue_cache = sentinel_frame_cache (regcache);
1070 /* For the moment there is only one sentinel frame implementation. */
1071 frame->unwind = sentinel_frame_unwind;
1072 /* Link this frame back to itself. The frame is self referential
1073 (the unwound PC is the same as the pc), so make it so. */
1074 frame->next = frame;
1075 /* Make the sentinel frame's ID valid, but invalid. That way all
1076 comparisons with it should fail. */
1077 frame->this_id.p = 1;
1078 frame->this_id.value = null_frame_id;
1079 if (frame_debug)
1080 {
1081 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1082 fprint_frame (gdb_stdlog, frame);
1083 fprintf_unfiltered (gdb_stdlog, " }\n");
1084 }
1085 return frame;
1086 }
1087
1088 /* Info about the innermost stack frame (contents of FP register) */
1089
1090 static struct frame_info *current_frame;
1091
1092 /* Cache for frame addresses already read by gdb. Valid only while
1093 inferior is stopped. Control variables for the frame cache should
1094 be local to this module. */
1095
1096 static struct obstack frame_cache_obstack;
1097
1098 void *
1099 frame_obstack_zalloc (unsigned long size)
1100 {
1101 void *data = obstack_alloc (&frame_cache_obstack, size);
1102 memset (data, 0, size);
1103 return data;
1104 }
1105
1106 /* Return the innermost (currently executing) stack frame. This is
1107 split into two functions. The function unwind_to_current_frame()
1108 is wrapped in catch exceptions so that, even when the unwind of the
1109 sentinel frame fails, the function still returns a stack frame. */
1110
1111 static int
1112 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1113 {
1114 struct frame_info *frame = get_prev_frame (args);
1115 /* A sentinel frame can fail to unwind, e.g., because its PC value
1116 lands in somewhere like start. */
1117 if (frame == NULL)
1118 return 1;
1119 current_frame = frame;
1120 return 0;
1121 }
1122
1123 struct frame_info *
1124 get_current_frame (void)
1125 {
1126 /* First check, and report, the lack of registers. Having GDB
1127 report "No stack!" or "No memory" when the target doesn't even
1128 have registers is very confusing. Besides, "printcmd.exp"
1129 explicitly checks that ``print $pc'' with no registers prints "No
1130 registers". */
1131 if (!target_has_registers)
1132 error (_("No registers."));
1133 if (!target_has_stack)
1134 error (_("No stack."));
1135 if (!target_has_memory)
1136 error (_("No memory."));
1137 if (ptid_equal (inferior_ptid, null_ptid))
1138 error (_("No selected thread."));
1139 if (is_exited (inferior_ptid))
1140 error (_("Invalid selected thread."));
1141 if (is_executing (inferior_ptid))
1142 error (_("Target is executing."));
1143
1144 if (current_frame == NULL)
1145 {
1146 struct frame_info *sentinel_frame =
1147 create_sentinel_frame (get_current_regcache ());
1148 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1149 RETURN_MASK_ERROR) != 0)
1150 {
1151 /* Oops! Fake a current frame? Is this useful? It has a PC
1152 of zero, for instance. */
1153 current_frame = sentinel_frame;
1154 }
1155 }
1156 return current_frame;
1157 }
1158
1159 /* The "selected" stack frame is used by default for local and arg
1160 access. May be zero, for no selected frame. */
1161
1162 static struct frame_info *selected_frame;
1163
1164 int
1165 has_stack_frames (void)
1166 {
1167 if (!target_has_registers || !target_has_stack || !target_has_memory)
1168 return 0;
1169
1170 /* No current inferior, no frame. */
1171 if (ptid_equal (inferior_ptid, null_ptid))
1172 return 0;
1173
1174 /* Don't try to read from a dead thread. */
1175 if (is_exited (inferior_ptid))
1176 return 0;
1177
1178 /* ... or from a spinning thread. */
1179 if (is_executing (inferior_ptid))
1180 return 0;
1181
1182 return 1;
1183 }
1184
1185 /* Return the selected frame. Always non-NULL (unless there isn't an
1186 inferior sufficient for creating a frame) in which case an error is
1187 thrown. */
1188
1189 struct frame_info *
1190 get_selected_frame (const char *message)
1191 {
1192 if (selected_frame == NULL)
1193 {
1194 if (message != NULL && !has_stack_frames ())
1195 error (("%s"), message);
1196 /* Hey! Don't trust this. It should really be re-finding the
1197 last selected frame of the currently selected thread. This,
1198 though, is better than nothing. */
1199 select_frame (get_current_frame ());
1200 }
1201 /* There is always a frame. */
1202 gdb_assert (selected_frame != NULL);
1203 return selected_frame;
1204 }
1205
1206 /* This is a variant of get_selected_frame() which can be called when
1207 the inferior does not have a frame; in that case it will return
1208 NULL instead of calling error(). */
1209
1210 struct frame_info *
1211 deprecated_safe_get_selected_frame (void)
1212 {
1213 if (!has_stack_frames ())
1214 return NULL;
1215 return get_selected_frame (NULL);
1216 }
1217
1218 /* Select frame FI (or NULL - to invalidate the current frame). */
1219
1220 void
1221 select_frame (struct frame_info *fi)
1222 {
1223 struct symtab *s;
1224
1225 selected_frame = fi;
1226 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1227 frame is being invalidated. */
1228 if (deprecated_selected_frame_level_changed_hook)
1229 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1230
1231 /* FIXME: kseitz/2002-08-28: It would be nice to call
1232 selected_frame_level_changed_event() right here, but due to limitations
1233 in the current interfaces, we would end up flooding UIs with events
1234 because select_frame() is used extensively internally.
1235
1236 Once we have frame-parameterized frame (and frame-related) commands,
1237 the event notification can be moved here, since this function will only
1238 be called when the user's selected frame is being changed. */
1239
1240 /* Ensure that symbols for this frame are read in. Also, determine the
1241 source language of this frame, and switch to it if desired. */
1242 if (fi)
1243 {
1244 /* We retrieve the frame's symtab by using the frame PC. However
1245 we cannot use the frame PC as-is, because it usually points to
1246 the instruction following the "call", which is sometimes the
1247 first instruction of another function. So we rely on
1248 get_frame_address_in_block() which provides us with a PC which
1249 is guaranteed to be inside the frame's code block. */
1250 s = find_pc_symtab (get_frame_address_in_block (fi));
1251 if (s
1252 && s->language != current_language->la_language
1253 && s->language != language_unknown
1254 && language_mode == language_mode_auto)
1255 {
1256 set_language (s->language);
1257 }
1258 }
1259 }
1260
1261 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1262 Always returns a non-NULL value. */
1263
1264 struct frame_info *
1265 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1266 {
1267 struct frame_info *fi;
1268
1269 if (frame_debug)
1270 {
1271 fprintf_unfiltered (gdb_stdlog,
1272 "{ create_new_frame (addr=%s, pc=%s) ",
1273 hex_string (addr), hex_string (pc));
1274 }
1275
1276 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1277
1278 fi->next = create_sentinel_frame (get_current_regcache ());
1279
1280 /* Set/update this frame's cached PC value, found in the next frame.
1281 Do this before looking for this frame's unwinder. A sniffer is
1282 very likely to read this, and the corresponding unwinder is
1283 entitled to rely that the PC doesn't magically change. */
1284 fi->next->prev_pc.value = pc;
1285 fi->next->prev_pc.p = 1;
1286
1287 /* Select/initialize both the unwind function and the frame's type
1288 based on the PC. */
1289 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1290
1291 fi->this_id.p = 1;
1292 fi->this_id.value = frame_id_build (addr, pc);
1293
1294 if (frame_debug)
1295 {
1296 fprintf_unfiltered (gdb_stdlog, "-> ");
1297 fprint_frame (gdb_stdlog, fi);
1298 fprintf_unfiltered (gdb_stdlog, " }\n");
1299 }
1300
1301 return fi;
1302 }
1303
1304 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1305 innermost frame). Be careful to not fall off the bottom of the
1306 frame chain and onto the sentinel frame. */
1307
1308 struct frame_info *
1309 get_next_frame (struct frame_info *this_frame)
1310 {
1311 if (this_frame->level > 0)
1312 return this_frame->next;
1313 else
1314 return NULL;
1315 }
1316
1317 /* Observer for the target_changed event. */
1318
1319 static void
1320 frame_observer_target_changed (struct target_ops *target)
1321 {
1322 reinit_frame_cache ();
1323 }
1324
1325 /* Flush the entire frame cache. */
1326
1327 void
1328 reinit_frame_cache (void)
1329 {
1330 struct frame_info *fi;
1331
1332 /* Tear down all frame caches. */
1333 for (fi = current_frame; fi != NULL; fi = fi->prev)
1334 {
1335 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1336 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1337 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1338 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1339 }
1340
1341 /* Since we can't really be sure what the first object allocated was */
1342 obstack_free (&frame_cache_obstack, 0);
1343 obstack_init (&frame_cache_obstack);
1344
1345 if (current_frame != NULL)
1346 annotate_frames_invalid ();
1347
1348 current_frame = NULL; /* Invalidate cache */
1349 select_frame (NULL);
1350 frame_stash_invalidate ();
1351 if (frame_debug)
1352 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1353 }
1354
1355 /* Find where a register is saved (in memory or another register).
1356 The result of frame_register_unwind is just where it is saved
1357 relative to this particular frame. */
1358
1359 static void
1360 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1361 int *optimizedp, enum lval_type *lvalp,
1362 CORE_ADDR *addrp, int *realnump)
1363 {
1364 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1365
1366 while (this_frame != NULL)
1367 {
1368 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1369 addrp, realnump, NULL);
1370
1371 if (*optimizedp)
1372 break;
1373
1374 if (*lvalp != lval_register)
1375 break;
1376
1377 regnum = *realnump;
1378 this_frame = get_next_frame (this_frame);
1379 }
1380 }
1381
1382 /* Return a "struct frame_info" corresponding to the frame that called
1383 THIS_FRAME. Returns NULL if there is no such frame.
1384
1385 Unlike get_prev_frame, this function always tries to unwind the
1386 frame. */
1387
1388 static struct frame_info *
1389 get_prev_frame_1 (struct frame_info *this_frame)
1390 {
1391 struct frame_id this_id;
1392 struct gdbarch *gdbarch;
1393
1394 gdb_assert (this_frame != NULL);
1395 gdbarch = get_frame_arch (this_frame);
1396
1397 if (frame_debug)
1398 {
1399 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1400 if (this_frame != NULL)
1401 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1402 else
1403 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1404 fprintf_unfiltered (gdb_stdlog, ") ");
1405 }
1406
1407 /* Only try to do the unwind once. */
1408 if (this_frame->prev_p)
1409 {
1410 if (frame_debug)
1411 {
1412 fprintf_unfiltered (gdb_stdlog, "-> ");
1413 fprint_frame (gdb_stdlog, this_frame->prev);
1414 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1415 }
1416 return this_frame->prev;
1417 }
1418
1419 /* If the frame unwinder hasn't been selected yet, we must do so
1420 before setting prev_p; otherwise the check for misbehaved
1421 sniffers will think that this frame's sniffer tried to unwind
1422 further (see frame_cleanup_after_sniffer). */
1423 if (this_frame->unwind == NULL)
1424 this_frame->unwind
1425 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1426
1427 this_frame->prev_p = 1;
1428 this_frame->stop_reason = UNWIND_NO_REASON;
1429
1430 /* If we are unwinding from an inline frame, all of the below tests
1431 were already performed when we unwound from the next non-inline
1432 frame. We must skip them, since we can not get THIS_FRAME's ID
1433 until we have unwound all the way down to the previous non-inline
1434 frame. */
1435 if (get_frame_type (this_frame) == INLINE_FRAME)
1436 return get_prev_frame_raw (this_frame);
1437
1438 /* Check that this frame's ID was valid. If it wasn't, don't try to
1439 unwind to the prev frame. Be careful to not apply this test to
1440 the sentinel frame. */
1441 this_id = get_frame_id (this_frame);
1442 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1443 {
1444 if (frame_debug)
1445 {
1446 fprintf_unfiltered (gdb_stdlog, "-> ");
1447 fprint_frame (gdb_stdlog, NULL);
1448 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1449 }
1450 this_frame->stop_reason = UNWIND_NULL_ID;
1451 return NULL;
1452 }
1453
1454 /* Check that this frame's ID isn't inner to (younger, below, next)
1455 the next frame. This happens when a frame unwind goes backwards.
1456 This check is valid only if this frame and the next frame are NORMAL.
1457 See the comment at frame_id_inner for details. */
1458 if (get_frame_type (this_frame) == NORMAL_FRAME
1459 && this_frame->next->unwind->type == NORMAL_FRAME
1460 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1461 get_frame_id (this_frame->next)))
1462 {
1463 if (frame_debug)
1464 {
1465 fprintf_unfiltered (gdb_stdlog, "-> ");
1466 fprint_frame (gdb_stdlog, NULL);
1467 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1468 }
1469 this_frame->stop_reason = UNWIND_INNER_ID;
1470 return NULL;
1471 }
1472
1473 /* Check that this and the next frame are not identical. If they
1474 are, there is most likely a stack cycle. As with the inner-than
1475 test above, avoid comparing the inner-most and sentinel frames. */
1476 if (this_frame->level > 0
1477 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1478 {
1479 if (frame_debug)
1480 {
1481 fprintf_unfiltered (gdb_stdlog, "-> ");
1482 fprint_frame (gdb_stdlog, NULL);
1483 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1484 }
1485 this_frame->stop_reason = UNWIND_SAME_ID;
1486 return NULL;
1487 }
1488
1489 /* Check that this and the next frame do not unwind the PC register
1490 to the same memory location. If they do, then even though they
1491 have different frame IDs, the new frame will be bogus; two
1492 functions can't share a register save slot for the PC. This can
1493 happen when the prologue analyzer finds a stack adjustment, but
1494 no PC save.
1495
1496 This check does assume that the "PC register" is roughly a
1497 traditional PC, even if the gdbarch_unwind_pc method adjusts
1498 it (we do not rely on the value, only on the unwound PC being
1499 dependent on this value). A potential improvement would be
1500 to have the frame prev_pc method and the gdbarch unwind_pc
1501 method set the same lval and location information as
1502 frame_register_unwind. */
1503 if (this_frame->level > 0
1504 && gdbarch_pc_regnum (gdbarch) >= 0
1505 && get_frame_type (this_frame) == NORMAL_FRAME
1506 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1507 || get_frame_type (this_frame->next) == INLINE_FRAME))
1508 {
1509 int optimized, realnum, nrealnum;
1510 enum lval_type lval, nlval;
1511 CORE_ADDR addr, naddr;
1512
1513 frame_register_unwind_location (this_frame,
1514 gdbarch_pc_regnum (gdbarch),
1515 &optimized, &lval, &addr, &realnum);
1516 frame_register_unwind_location (get_next_frame (this_frame),
1517 gdbarch_pc_regnum (gdbarch),
1518 &optimized, &nlval, &naddr, &nrealnum);
1519
1520 if ((lval == lval_memory && lval == nlval && addr == naddr)
1521 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1522 {
1523 if (frame_debug)
1524 {
1525 fprintf_unfiltered (gdb_stdlog, "-> ");
1526 fprint_frame (gdb_stdlog, NULL);
1527 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1528 }
1529
1530 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1531 this_frame->prev = NULL;
1532 return NULL;
1533 }
1534 }
1535
1536 return get_prev_frame_raw (this_frame);
1537 }
1538
1539 /* Construct a new "struct frame_info" and link it previous to
1540 this_frame. */
1541
1542 static struct frame_info *
1543 get_prev_frame_raw (struct frame_info *this_frame)
1544 {
1545 struct frame_info *prev_frame;
1546
1547 /* Allocate the new frame but do not wire it in to the frame chain.
1548 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1549 frame->next to pull some fancy tricks (of course such code is, by
1550 definition, recursive). Try to prevent it.
1551
1552 There is no reason to worry about memory leaks, should the
1553 remainder of the function fail. The allocated memory will be
1554 quickly reclaimed when the frame cache is flushed, and the `we've
1555 been here before' check above will stop repeated memory
1556 allocation calls. */
1557 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1558 prev_frame->level = this_frame->level + 1;
1559
1560 /* Don't yet compute ->unwind (and hence ->type). It is computed
1561 on-demand in get_frame_type, frame_register_unwind, and
1562 get_frame_id. */
1563
1564 /* Don't yet compute the frame's ID. It is computed on-demand by
1565 get_frame_id(). */
1566
1567 /* The unwound frame ID is validate at the start of this function,
1568 as part of the logic to decide if that frame should be further
1569 unwound, and not here while the prev frame is being created.
1570 Doing this makes it possible for the user to examine a frame that
1571 has an invalid frame ID.
1572
1573 Some very old VAX code noted: [...] For the sake of argument,
1574 suppose that the stack is somewhat trashed (which is one reason
1575 that "info frame" exists). So, return 0 (indicating we don't
1576 know the address of the arglist) if we don't know what frame this
1577 frame calls. */
1578
1579 /* Link it in. */
1580 this_frame->prev = prev_frame;
1581 prev_frame->next = this_frame;
1582
1583 if (frame_debug)
1584 {
1585 fprintf_unfiltered (gdb_stdlog, "-> ");
1586 fprint_frame (gdb_stdlog, prev_frame);
1587 fprintf_unfiltered (gdb_stdlog, " }\n");
1588 }
1589
1590 return prev_frame;
1591 }
1592
1593 /* Debug routine to print a NULL frame being returned. */
1594
1595 static void
1596 frame_debug_got_null_frame (struct frame_info *this_frame,
1597 const char *reason)
1598 {
1599 if (frame_debug)
1600 {
1601 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1602 if (this_frame != NULL)
1603 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1604 else
1605 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1606 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1607 }
1608 }
1609
1610 /* Is this (non-sentinel) frame in the "main"() function? */
1611
1612 static int
1613 inside_main_func (struct frame_info *this_frame)
1614 {
1615 struct minimal_symbol *msymbol;
1616 CORE_ADDR maddr;
1617
1618 if (symfile_objfile == 0)
1619 return 0;
1620 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1621 if (msymbol == NULL)
1622 return 0;
1623 /* Make certain that the code, and not descriptor, address is
1624 returned. */
1625 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1626 SYMBOL_VALUE_ADDRESS (msymbol),
1627 &current_target);
1628 return maddr == get_frame_func (this_frame);
1629 }
1630
1631 /* Test whether THIS_FRAME is inside the process entry point function. */
1632
1633 static int
1634 inside_entry_func (struct frame_info *this_frame)
1635 {
1636 return (get_frame_func (this_frame) == entry_point_address ());
1637 }
1638
1639 /* Return a structure containing various interesting information about
1640 the frame that called THIS_FRAME. Returns NULL if there is entier
1641 no such frame or the frame fails any of a set of target-independent
1642 condition that should terminate the frame chain (e.g., as unwinding
1643 past main()).
1644
1645 This function should not contain target-dependent tests, such as
1646 checking whether the program-counter is zero. */
1647
1648 struct frame_info *
1649 get_prev_frame (struct frame_info *this_frame)
1650 {
1651 struct frame_info *prev_frame;
1652
1653 /* There is always a frame. If this assertion fails, suspect that
1654 something should be calling get_selected_frame() or
1655 get_current_frame(). */
1656 gdb_assert (this_frame != NULL);
1657
1658 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1659 sense to stop unwinding at a dummy frame. One place where a dummy
1660 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1661 pcsqh register (space register for the instruction at the head of the
1662 instruction queue) cannot be written directly; the only way to set it
1663 is to branch to code that is in the target space. In order to implement
1664 frame dummies on HPUX, the called function is made to jump back to where
1665 the inferior was when the user function was called. If gdb was inside
1666 the main function when we created the dummy frame, the dummy frame will
1667 point inside the main function. */
1668 if (this_frame->level >= 0
1669 && get_frame_type (this_frame) == NORMAL_FRAME
1670 && !backtrace_past_main
1671 && inside_main_func (this_frame))
1672 /* Don't unwind past main(). Note, this is done _before_ the
1673 frame has been marked as previously unwound. That way if the
1674 user later decides to enable unwinds past main(), that will
1675 automatically happen. */
1676 {
1677 frame_debug_got_null_frame (this_frame, "inside main func");
1678 return NULL;
1679 }
1680
1681 /* If the user's backtrace limit has been exceeded, stop. We must
1682 add two to the current level; one of those accounts for backtrace_limit
1683 being 1-based and the level being 0-based, and the other accounts for
1684 the level of the new frame instead of the level of the current
1685 frame. */
1686 if (this_frame->level + 2 > backtrace_limit)
1687 {
1688 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1689 return NULL;
1690 }
1691
1692 /* If we're already inside the entry function for the main objfile,
1693 then it isn't valid. Don't apply this test to a dummy frame -
1694 dummy frame PCs typically land in the entry func. Don't apply
1695 this test to the sentinel frame. Sentinel frames should always
1696 be allowed to unwind. */
1697 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1698 wasn't checking for "main" in the minimal symbols. With that
1699 fixed asm-source tests now stop in "main" instead of halting the
1700 backtrace in weird and wonderful ways somewhere inside the entry
1701 file. Suspect that tests for inside the entry file/func were
1702 added to work around that (now fixed) case. */
1703 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1704 suggested having the inside_entry_func test use the
1705 inside_main_func() msymbol trick (along with entry_point_address()
1706 I guess) to determine the address range of the start function.
1707 That should provide a far better stopper than the current
1708 heuristics. */
1709 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1710 applied tail-call optimizations to main so that a function called
1711 from main returns directly to the caller of main. Since we don't
1712 stop at main, we should at least stop at the entry point of the
1713 application. */
1714 if (this_frame->level >= 0
1715 && get_frame_type (this_frame) == NORMAL_FRAME
1716 && !backtrace_past_entry
1717 && inside_entry_func (this_frame))
1718 {
1719 frame_debug_got_null_frame (this_frame, "inside entry func");
1720 return NULL;
1721 }
1722
1723 /* Assume that the only way to get a zero PC is through something
1724 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1725 will never unwind a zero PC. */
1726 if (this_frame->level > 0
1727 && (get_frame_type (this_frame) == NORMAL_FRAME
1728 || get_frame_type (this_frame) == INLINE_FRAME)
1729 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1730 && get_frame_pc (this_frame) == 0)
1731 {
1732 frame_debug_got_null_frame (this_frame, "zero PC");
1733 return NULL;
1734 }
1735
1736 return get_prev_frame_1 (this_frame);
1737 }
1738
1739 CORE_ADDR
1740 get_frame_pc (struct frame_info *frame)
1741 {
1742 gdb_assert (frame->next != NULL);
1743 return frame_unwind_pc (frame->next);
1744 }
1745
1746 /* Return an address that falls within THIS_FRAME's code block. */
1747
1748 CORE_ADDR
1749 get_frame_address_in_block (struct frame_info *this_frame)
1750 {
1751 /* A draft address. */
1752 CORE_ADDR pc = get_frame_pc (this_frame);
1753
1754 struct frame_info *next_frame = this_frame->next;
1755
1756 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1757 Normally the resume address is inside the body of the function
1758 associated with THIS_FRAME, but there is a special case: when
1759 calling a function which the compiler knows will never return
1760 (for instance abort), the call may be the very last instruction
1761 in the calling function. The resume address will point after the
1762 call and may be at the beginning of a different function
1763 entirely.
1764
1765 If THIS_FRAME is a signal frame or dummy frame, then we should
1766 not adjust the unwound PC. For a dummy frame, GDB pushed the
1767 resume address manually onto the stack. For a signal frame, the
1768 OS may have pushed the resume address manually and invoked the
1769 handler (e.g. GNU/Linux), or invoked the trampoline which called
1770 the signal handler - but in either case the signal handler is
1771 expected to return to the trampoline. So in both of these
1772 cases we know that the resume address is executable and
1773 related. So we only need to adjust the PC if THIS_FRAME
1774 is a normal function.
1775
1776 If the program has been interrupted while THIS_FRAME is current,
1777 then clearly the resume address is inside the associated
1778 function. There are three kinds of interruption: debugger stop
1779 (next frame will be SENTINEL_FRAME), operating system
1780 signal or exception (next frame will be SIGTRAMP_FRAME),
1781 or debugger-induced function call (next frame will be
1782 DUMMY_FRAME). So we only need to adjust the PC if
1783 NEXT_FRAME is a normal function.
1784
1785 We check the type of NEXT_FRAME first, since it is already
1786 known; frame type is determined by the unwinder, and since
1787 we have THIS_FRAME we've already selected an unwinder for
1788 NEXT_FRAME.
1789
1790 If the next frame is inlined, we need to keep going until we find
1791 the real function - for instance, if a signal handler is invoked
1792 while in an inlined function, then the code address of the
1793 "calling" normal function should not be adjusted either. */
1794
1795 while (get_frame_type (next_frame) == INLINE_FRAME)
1796 next_frame = next_frame->next;
1797
1798 if (get_frame_type (next_frame) == NORMAL_FRAME
1799 && (get_frame_type (this_frame) == NORMAL_FRAME
1800 || get_frame_type (this_frame) == INLINE_FRAME))
1801 return pc - 1;
1802
1803 return pc;
1804 }
1805
1806 void
1807 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1808 {
1809 struct frame_info *next_frame;
1810 int notcurrent;
1811
1812 /* If the next frame represents an inlined function call, this frame's
1813 sal is the "call site" of that inlined function, which can not
1814 be inferred from get_frame_pc. */
1815 next_frame = get_next_frame (frame);
1816 if (frame_inlined_callees (frame) > 0)
1817 {
1818 struct symbol *sym;
1819
1820 if (next_frame)
1821 sym = get_frame_function (next_frame);
1822 else
1823 sym = inline_skipped_symbol (inferior_ptid);
1824
1825 init_sal (sal);
1826 if (SYMBOL_LINE (sym) != 0)
1827 {
1828 sal->symtab = SYMBOL_SYMTAB (sym);
1829 sal->line = SYMBOL_LINE (sym);
1830 }
1831 else
1832 /* If the symbol does not have a location, we don't know where
1833 the call site is. Do not pretend to. This is jarring, but
1834 we can't do much better. */
1835 sal->pc = get_frame_pc (frame);
1836
1837 return;
1838 }
1839
1840 /* If FRAME is not the innermost frame, that normally means that
1841 FRAME->pc points at the return instruction (which is *after* the
1842 call instruction), and we want to get the line containing the
1843 call (because the call is where the user thinks the program is).
1844 However, if the next frame is either a SIGTRAMP_FRAME or a
1845 DUMMY_FRAME, then the next frame will contain a saved interrupt
1846 PC and such a PC indicates the current (rather than next)
1847 instruction/line, consequently, for such cases, want to get the
1848 line containing fi->pc. */
1849 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1850 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1851 }
1852
1853 /* Per "frame.h", return the ``address'' of the frame. Code should
1854 really be using get_frame_id(). */
1855 CORE_ADDR
1856 get_frame_base (struct frame_info *fi)
1857 {
1858 return get_frame_id (fi).stack_addr;
1859 }
1860
1861 /* High-level offsets into the frame. Used by the debug info. */
1862
1863 CORE_ADDR
1864 get_frame_base_address (struct frame_info *fi)
1865 {
1866 if (get_frame_type (fi) != NORMAL_FRAME)
1867 return 0;
1868 if (fi->base == NULL)
1869 fi->base = frame_base_find_by_frame (fi);
1870 /* Sneaky: If the low-level unwind and high-level base code share a
1871 common unwinder, let them share the prologue cache. */
1872 if (fi->base->unwind == fi->unwind)
1873 return fi->base->this_base (fi, &fi->prologue_cache);
1874 return fi->base->this_base (fi, &fi->base_cache);
1875 }
1876
1877 CORE_ADDR
1878 get_frame_locals_address (struct frame_info *fi)
1879 {
1880 void **cache;
1881 if (get_frame_type (fi) != NORMAL_FRAME)
1882 return 0;
1883 /* If there isn't a frame address method, find it. */
1884 if (fi->base == NULL)
1885 fi->base = frame_base_find_by_frame (fi);
1886 /* Sneaky: If the low-level unwind and high-level base code share a
1887 common unwinder, let them share the prologue cache. */
1888 if (fi->base->unwind == fi->unwind)
1889 return fi->base->this_locals (fi, &fi->prologue_cache);
1890 return fi->base->this_locals (fi, &fi->base_cache);
1891 }
1892
1893 CORE_ADDR
1894 get_frame_args_address (struct frame_info *fi)
1895 {
1896 void **cache;
1897 if (get_frame_type (fi) != NORMAL_FRAME)
1898 return 0;
1899 /* If there isn't a frame address method, find it. */
1900 if (fi->base == NULL)
1901 fi->base = frame_base_find_by_frame (fi);
1902 /* Sneaky: If the low-level unwind and high-level base code share a
1903 common unwinder, let them share the prologue cache. */
1904 if (fi->base->unwind == fi->unwind)
1905 return fi->base->this_args (fi, &fi->prologue_cache);
1906 return fi->base->this_args (fi, &fi->base_cache);
1907 }
1908
1909 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1910 otherwise. */
1911
1912 int
1913 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1914 {
1915 if (fi->unwind == NULL)
1916 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1917 return fi->unwind == unwinder;
1918 }
1919
1920 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1921 or -1 for a NULL frame. */
1922
1923 int
1924 frame_relative_level (struct frame_info *fi)
1925 {
1926 if (fi == NULL)
1927 return -1;
1928 else
1929 return fi->level;
1930 }
1931
1932 enum frame_type
1933 get_frame_type (struct frame_info *frame)
1934 {
1935 if (frame->unwind == NULL)
1936 /* Initialize the frame's unwinder because that's what
1937 provides the frame's type. */
1938 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1939 return frame->unwind->type;
1940 }
1941
1942 /* Memory access methods. */
1943
1944 void
1945 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1946 gdb_byte *buf, int len)
1947 {
1948 read_memory (addr, buf, len);
1949 }
1950
1951 LONGEST
1952 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1953 int len)
1954 {
1955 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1957 return read_memory_integer (addr, len, byte_order);
1958 }
1959
1960 ULONGEST
1961 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1962 int len)
1963 {
1964 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1965 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1966 return read_memory_unsigned_integer (addr, len, byte_order);
1967 }
1968
1969 int
1970 safe_frame_unwind_memory (struct frame_info *this_frame,
1971 CORE_ADDR addr, gdb_byte *buf, int len)
1972 {
1973 /* NOTE: target_read_memory returns zero on success! */
1974 return !target_read_memory (addr, buf, len);
1975 }
1976
1977 /* Architecture methods. */
1978
1979 struct gdbarch *
1980 get_frame_arch (struct frame_info *this_frame)
1981 {
1982 return frame_unwind_arch (this_frame->next);
1983 }
1984
1985 struct gdbarch *
1986 frame_unwind_arch (struct frame_info *next_frame)
1987 {
1988 if (!next_frame->prev_arch.p)
1989 {
1990 struct gdbarch *arch;
1991
1992 if (next_frame->unwind == NULL)
1993 next_frame->unwind
1994 = frame_unwind_find_by_frame (next_frame,
1995 &next_frame->prologue_cache);
1996
1997 if (next_frame->unwind->prev_arch != NULL)
1998 arch = next_frame->unwind->prev_arch (next_frame,
1999 &next_frame->prologue_cache);
2000 else
2001 arch = get_frame_arch (next_frame);
2002
2003 next_frame->prev_arch.arch = arch;
2004 next_frame->prev_arch.p = 1;
2005 if (frame_debug)
2006 fprintf_unfiltered (gdb_stdlog,
2007 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2008 next_frame->level,
2009 gdbarch_bfd_arch_info (arch)->printable_name);
2010 }
2011
2012 return next_frame->prev_arch.arch;
2013 }
2014
2015 struct gdbarch *
2016 frame_unwind_caller_arch (struct frame_info *next_frame)
2017 {
2018 return frame_unwind_arch (skip_inlined_frames (next_frame));
2019 }
2020
2021 /* Stack pointer methods. */
2022
2023 CORE_ADDR
2024 get_frame_sp (struct frame_info *this_frame)
2025 {
2026 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2027 /* Normality - an architecture that provides a way of obtaining any
2028 frame inner-most address. */
2029 if (gdbarch_unwind_sp_p (gdbarch))
2030 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2031 operate on THIS_FRAME now. */
2032 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2033 /* Now things are really are grim. Hope that the value returned by
2034 the gdbarch_sp_regnum register is meaningful. */
2035 if (gdbarch_sp_regnum (gdbarch) >= 0)
2036 return get_frame_register_unsigned (this_frame,
2037 gdbarch_sp_regnum (gdbarch));
2038 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2039 }
2040
2041 /* Return the reason why we can't unwind past FRAME. */
2042
2043 enum unwind_stop_reason
2044 get_frame_unwind_stop_reason (struct frame_info *frame)
2045 {
2046 /* If we haven't tried to unwind past this point yet, then assume
2047 that unwinding would succeed. */
2048 if (frame->prev_p == 0)
2049 return UNWIND_NO_REASON;
2050
2051 /* Otherwise, we set a reason when we succeeded (or failed) to
2052 unwind. */
2053 return frame->stop_reason;
2054 }
2055
2056 /* Return a string explaining REASON. */
2057
2058 const char *
2059 frame_stop_reason_string (enum unwind_stop_reason reason)
2060 {
2061 switch (reason)
2062 {
2063 case UNWIND_NULL_ID:
2064 return _("unwinder did not report frame ID");
2065
2066 case UNWIND_INNER_ID:
2067 return _("previous frame inner to this frame (corrupt stack?)");
2068
2069 case UNWIND_SAME_ID:
2070 return _("previous frame identical to this frame (corrupt stack?)");
2071
2072 case UNWIND_NO_SAVED_PC:
2073 return _("frame did not save the PC");
2074
2075 case UNWIND_NO_REASON:
2076 case UNWIND_FIRST_ERROR:
2077 default:
2078 internal_error (__FILE__, __LINE__,
2079 "Invalid frame stop reason");
2080 }
2081 }
2082
2083 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2084 FRAME. */
2085
2086 static void
2087 frame_cleanup_after_sniffer (void *arg)
2088 {
2089 struct frame_info *frame = arg;
2090
2091 /* The sniffer should not allocate a prologue cache if it did not
2092 match this frame. */
2093 gdb_assert (frame->prologue_cache == NULL);
2094
2095 /* No sniffer should extend the frame chain; sniff based on what is
2096 already certain. */
2097 gdb_assert (!frame->prev_p);
2098
2099 /* The sniffer should not check the frame's ID; that's circular. */
2100 gdb_assert (!frame->this_id.p);
2101
2102 /* Clear cached fields dependent on the unwinder.
2103
2104 The previous PC is independent of the unwinder, but the previous
2105 function is not (see get_frame_address_in_block). */
2106 frame->prev_func.p = 0;
2107 frame->prev_func.addr = 0;
2108
2109 /* Discard the unwinder last, so that we can easily find it if an assertion
2110 in this function triggers. */
2111 frame->unwind = NULL;
2112 }
2113
2114 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2115 Return a cleanup which should be called if unwinding fails, and
2116 discarded if it succeeds. */
2117
2118 struct cleanup *
2119 frame_prepare_for_sniffer (struct frame_info *frame,
2120 const struct frame_unwind *unwind)
2121 {
2122 gdb_assert (frame->unwind == NULL);
2123 frame->unwind = unwind;
2124 return make_cleanup (frame_cleanup_after_sniffer, frame);
2125 }
2126
2127 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2128
2129 static struct cmd_list_element *set_backtrace_cmdlist;
2130 static struct cmd_list_element *show_backtrace_cmdlist;
2131
2132 static void
2133 set_backtrace_cmd (char *args, int from_tty)
2134 {
2135 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2136 }
2137
2138 static void
2139 show_backtrace_cmd (char *args, int from_tty)
2140 {
2141 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2142 }
2143
2144 void
2145 _initialize_frame (void)
2146 {
2147 obstack_init (&frame_cache_obstack);
2148
2149 observer_attach_target_changed (frame_observer_target_changed);
2150
2151 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2152 Set backtrace specific variables.\n\
2153 Configure backtrace variables such as the backtrace limit"),
2154 &set_backtrace_cmdlist, "set backtrace ",
2155 0/*allow-unknown*/, &setlist);
2156 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2157 Show backtrace specific variables\n\
2158 Show backtrace variables such as the backtrace limit"),
2159 &show_backtrace_cmdlist, "show backtrace ",
2160 0/*allow-unknown*/, &showlist);
2161
2162 add_setshow_boolean_cmd ("past-main", class_obscure,
2163 &backtrace_past_main, _("\
2164 Set whether backtraces should continue past \"main\"."), _("\
2165 Show whether backtraces should continue past \"main\"."), _("\
2166 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2167 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2168 of the stack trace."),
2169 NULL,
2170 show_backtrace_past_main,
2171 &set_backtrace_cmdlist,
2172 &show_backtrace_cmdlist);
2173
2174 add_setshow_boolean_cmd ("past-entry", class_obscure,
2175 &backtrace_past_entry, _("\
2176 Set whether backtraces should continue past the entry point of a program."),
2177 _("\
2178 Show whether backtraces should continue past the entry point of a program."),
2179 _("\
2180 Normally there are no callers beyond the entry point of a program, so GDB\n\
2181 will terminate the backtrace there. Set this variable if you need to see \n\
2182 the rest of the stack trace."),
2183 NULL,
2184 show_backtrace_past_entry,
2185 &set_backtrace_cmdlist,
2186 &show_backtrace_cmdlist);
2187
2188 add_setshow_integer_cmd ("limit", class_obscure,
2189 &backtrace_limit, _("\
2190 Set an upper bound on the number of backtrace levels."), _("\
2191 Show the upper bound on the number of backtrace levels."), _("\
2192 No more than the specified number of frames can be displayed or examined.\n\
2193 Zero is unlimited."),
2194 NULL,
2195 show_backtrace_limit,
2196 &set_backtrace_cmdlist,
2197 &show_backtrace_cmdlist);
2198
2199 /* Debug this files internals. */
2200 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2201 Set frame debugging."), _("\
2202 Show frame debugging."), _("\
2203 When non-zero, frame specific internal debugging is enabled."),
2204 NULL,
2205 show_frame_debug,
2206 &setdebuglist, &showdebuglist);
2207 }
This page took 0.095524 seconds and 4 git commands to generate.