Add "make pdf" and "make install-pdf", from Brooks Moses
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "inferior.h" /* for inferior_ptid */
28 #include "regcache.h"
29 #include "gdb_assert.h"
30 #include "gdb_string.h"
31 #include "user-regs.h"
32 #include "gdb_obstack.h"
33 #include "dummy-frame.h"
34 #include "sentinel-frame.h"
35 #include "gdbcore.h"
36 #include "annotate.h"
37 #include "language.h"
38 #include "frame-unwind.h"
39 #include "frame-base.h"
40 #include "command.h"
41 #include "gdbcmd.h"
42 #include "observer.h"
43 #include "objfiles.h"
44 #include "exceptions.h"
45
46 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
47
48 /* We keep a cache of stack frames, each of which is a "struct
49 frame_info". The innermost one gets allocated (in
50 wait_for_inferior) each time the inferior stops; current_frame
51 points to it. Additional frames get allocated (in get_prev_frame)
52 as needed, and are chained through the next and prev fields. Any
53 time that the frame cache becomes invalid (most notably when we
54 execute something, but also if we change how we interpret the
55 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
56 which reads new symbols)), we should call reinit_frame_cache. */
57
58 struct frame_info
59 {
60 /* Level of this frame. The inner-most (youngest) frame is at level
61 0. As you move towards the outer-most (oldest) frame, the level
62 increases. This is a cached value. It could just as easily be
63 computed by counting back from the selected frame to the inner
64 most frame. */
65 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
66 reserved to indicate a bogus frame - one that has been created
67 just to keep GDB happy (GDB always needs a frame). For the
68 moment leave this as speculation. */
69 int level;
70
71 /* The frame's low-level unwinder and corresponding cache. The
72 low-level unwinder is responsible for unwinding register values
73 for the previous frame. The low-level unwind methods are
74 selected based on the presence, or otherwise, of register unwind
75 information such as CFI. */
76 void *prologue_cache;
77 const struct frame_unwind *unwind;
78
79 /* Cached copy of the previous frame's resume address. */
80 struct {
81 int p;
82 CORE_ADDR value;
83 } prev_pc;
84
85 /* Cached copy of the previous frame's function address. */
86 struct
87 {
88 CORE_ADDR addr;
89 int p;
90 } prev_func;
91
92 /* This frame's ID. */
93 struct
94 {
95 int p;
96 struct frame_id value;
97 } this_id;
98
99 /* The frame's high-level base methods, and corresponding cache.
100 The high level base methods are selected based on the frame's
101 debug info. */
102 const struct frame_base *base;
103 void *base_cache;
104
105 /* Pointers to the next (down, inner, younger) and previous (up,
106 outer, older) frame_info's in the frame cache. */
107 struct frame_info *next; /* down, inner, younger */
108 int prev_p;
109 struct frame_info *prev; /* up, outer, older */
110
111 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
112 could. Only valid when PREV_P is set. */
113 enum unwind_stop_reason stop_reason;
114 };
115
116 /* Flag to control debugging. */
117
118 static int frame_debug;
119 static void
120 show_frame_debug (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
124 }
125
126 /* Flag to indicate whether backtraces should stop at main et.al. */
127
128 static int backtrace_past_main;
129 static void
130 show_backtrace_past_main (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("\
134 Whether backtraces should continue past \"main\" is %s.\n"),
135 value);
136 }
137
138 static int backtrace_past_entry;
139 static void
140 show_backtrace_past_entry (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("\
144 Whether backtraces should continue past the entry point of a program is %s.\n"),
145 value);
146 }
147
148 static int backtrace_limit = INT_MAX;
149 static void
150 show_backtrace_limit (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file, _("\
154 An upper bound on the number of backtrace levels is %s.\n"),
155 value);
156 }
157
158
159 static void
160 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
161 {
162 if (p)
163 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
164 else
165 fprintf_unfiltered (file, "!%s", name);
166 }
167
168 void
169 fprint_frame_id (struct ui_file *file, struct frame_id id)
170 {
171 fprintf_unfiltered (file, "{");
172 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
173 fprintf_unfiltered (file, ",");
174 fprint_field (file, "code", id.code_addr_p, id.code_addr);
175 fprintf_unfiltered (file, ",");
176 fprint_field (file, "special", id.special_addr_p, id.special_addr);
177 fprintf_unfiltered (file, "}");
178 }
179
180 static void
181 fprint_frame_type (struct ui_file *file, enum frame_type type)
182 {
183 switch (type)
184 {
185 case NORMAL_FRAME:
186 fprintf_unfiltered (file, "NORMAL_FRAME");
187 return;
188 case DUMMY_FRAME:
189 fprintf_unfiltered (file, "DUMMY_FRAME");
190 return;
191 case SIGTRAMP_FRAME:
192 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
193 return;
194 default:
195 fprintf_unfiltered (file, "<unknown type>");
196 return;
197 };
198 }
199
200 static void
201 fprint_frame (struct ui_file *file, struct frame_info *fi)
202 {
203 if (fi == NULL)
204 {
205 fprintf_unfiltered (file, "<NULL frame>");
206 return;
207 }
208 fprintf_unfiltered (file, "{");
209 fprintf_unfiltered (file, "level=%d", fi->level);
210 fprintf_unfiltered (file, ",");
211 fprintf_unfiltered (file, "type=");
212 if (fi->unwind != NULL)
213 fprint_frame_type (file, fi->unwind->type);
214 else
215 fprintf_unfiltered (file, "<unknown>");
216 fprintf_unfiltered (file, ",");
217 fprintf_unfiltered (file, "unwind=");
218 if (fi->unwind != NULL)
219 gdb_print_host_address (fi->unwind, file);
220 else
221 fprintf_unfiltered (file, "<unknown>");
222 fprintf_unfiltered (file, ",");
223 fprintf_unfiltered (file, "pc=");
224 if (fi->next != NULL && fi->next->prev_pc.p)
225 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
226 else
227 fprintf_unfiltered (file, "<unknown>");
228 fprintf_unfiltered (file, ",");
229 fprintf_unfiltered (file, "id=");
230 if (fi->this_id.p)
231 fprint_frame_id (file, fi->this_id.value);
232 else
233 fprintf_unfiltered (file, "<unknown>");
234 fprintf_unfiltered (file, ",");
235 fprintf_unfiltered (file, "func=");
236 if (fi->next != NULL && fi->next->prev_func.p)
237 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
238 else
239 fprintf_unfiltered (file, "<unknown>");
240 fprintf_unfiltered (file, "}");
241 }
242
243 /* Return a frame uniq ID that can be used to, later, re-find the
244 frame. */
245
246 struct frame_id
247 get_frame_id (struct frame_info *fi)
248 {
249 if (fi == NULL)
250 {
251 return null_frame_id;
252 }
253 if (!fi->this_id.p)
254 {
255 if (frame_debug)
256 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
257 fi->level);
258 /* Find the unwinder. */
259 if (fi->unwind == NULL)
260 fi->unwind = frame_unwind_find_by_frame (fi->next,
261 &fi->prologue_cache);
262 /* Find THIS frame's ID. */
263 fi->unwind->this_id (fi->next, &fi->prologue_cache, &fi->this_id.value);
264 fi->this_id.p = 1;
265 if (frame_debug)
266 {
267 fprintf_unfiltered (gdb_stdlog, "-> ");
268 fprint_frame_id (gdb_stdlog, fi->this_id.value);
269 fprintf_unfiltered (gdb_stdlog, " }\n");
270 }
271 }
272 return fi->this_id.value;
273 }
274
275 struct frame_id
276 frame_unwind_id (struct frame_info *next_frame)
277 {
278 /* Use prev_frame, and not get_prev_frame. The latter will truncate
279 the frame chain, leading to this function unintentionally
280 returning a null_frame_id (e.g., when a caller requests the frame
281 ID of "main()"s caller. */
282 return get_frame_id (get_prev_frame_1 (next_frame));
283 }
284
285 const struct frame_id null_frame_id; /* All zeros. */
286
287 struct frame_id
288 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
289 CORE_ADDR special_addr)
290 {
291 struct frame_id id = null_frame_id;
292 id.stack_addr = stack_addr;
293 id.stack_addr_p = 1;
294 id.code_addr = code_addr;
295 id.code_addr_p = 1;
296 id.special_addr = special_addr;
297 id.special_addr_p = 1;
298 return id;
299 }
300
301 struct frame_id
302 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
303 {
304 struct frame_id id = null_frame_id;
305 id.stack_addr = stack_addr;
306 id.stack_addr_p = 1;
307 id.code_addr = code_addr;
308 id.code_addr_p = 1;
309 return id;
310 }
311
312 struct frame_id
313 frame_id_build_wild (CORE_ADDR stack_addr)
314 {
315 struct frame_id id = null_frame_id;
316 id.stack_addr = stack_addr;
317 id.stack_addr_p = 1;
318 return id;
319 }
320
321 int
322 frame_id_p (struct frame_id l)
323 {
324 int p;
325 /* The frame is valid iff it has a valid stack address. */
326 p = l.stack_addr_p;
327 if (frame_debug)
328 {
329 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
330 fprint_frame_id (gdb_stdlog, l);
331 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
332 }
333 return p;
334 }
335
336 int
337 frame_id_eq (struct frame_id l, struct frame_id r)
338 {
339 int eq;
340 if (!l.stack_addr_p || !r.stack_addr_p)
341 /* Like a NaN, if either ID is invalid, the result is false.
342 Note that a frame ID is invalid iff it is the null frame ID. */
343 eq = 0;
344 else if (l.stack_addr != r.stack_addr)
345 /* If .stack addresses are different, the frames are different. */
346 eq = 0;
347 else if (!l.code_addr_p || !r.code_addr_p)
348 /* An invalid code addr is a wild card, always succeed. */
349 eq = 1;
350 else if (l.code_addr != r.code_addr)
351 /* If .code addresses are different, the frames are different. */
352 eq = 0;
353 else if (!l.special_addr_p || !r.special_addr_p)
354 /* An invalid special addr is a wild card (or unused), always succeed. */
355 eq = 1;
356 else if (l.special_addr == r.special_addr)
357 /* Frames are equal. */
358 eq = 1;
359 else
360 /* No luck. */
361 eq = 0;
362 if (frame_debug)
363 {
364 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
365 fprint_frame_id (gdb_stdlog, l);
366 fprintf_unfiltered (gdb_stdlog, ",r=");
367 fprint_frame_id (gdb_stdlog, r);
368 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
369 }
370 return eq;
371 }
372
373 int
374 frame_id_inner (struct frame_id l, struct frame_id r)
375 {
376 int inner;
377 if (!l.stack_addr_p || !r.stack_addr_p)
378 /* Like NaN, any operation involving an invalid ID always fails. */
379 inner = 0;
380 else
381 /* Only return non-zero when strictly inner than. Note that, per
382 comment in "frame.h", there is some fuzz here. Frameless
383 functions are not strictly inner than (same .stack but
384 different .code and/or .special address). */
385 inner = INNER_THAN (l.stack_addr, r.stack_addr);
386 if (frame_debug)
387 {
388 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
389 fprint_frame_id (gdb_stdlog, l);
390 fprintf_unfiltered (gdb_stdlog, ",r=");
391 fprint_frame_id (gdb_stdlog, r);
392 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
393 }
394 return inner;
395 }
396
397 struct frame_info *
398 frame_find_by_id (struct frame_id id)
399 {
400 struct frame_info *frame;
401
402 /* ZERO denotes the null frame, let the caller decide what to do
403 about it. Should it instead return get_current_frame()? */
404 if (!frame_id_p (id))
405 return NULL;
406
407 for (frame = get_current_frame ();
408 frame != NULL;
409 frame = get_prev_frame (frame))
410 {
411 struct frame_id this = get_frame_id (frame);
412 if (frame_id_eq (id, this))
413 /* An exact match. */
414 return frame;
415 if (frame_id_inner (id, this))
416 /* Gone to far. */
417 return NULL;
418 /* Either we're not yet gone far enough out along the frame
419 chain (inner(this,id)), or we're comparing frameless functions
420 (same .base, different .func, no test available). Struggle
421 on until we've definitly gone to far. */
422 }
423 return NULL;
424 }
425
426 CORE_ADDR
427 frame_pc_unwind (struct frame_info *this_frame)
428 {
429 if (!this_frame->prev_pc.p)
430 {
431 CORE_ADDR pc;
432 if (this_frame->unwind == NULL)
433 this_frame->unwind
434 = frame_unwind_find_by_frame (this_frame->next,
435 &this_frame->prologue_cache);
436 if (this_frame->unwind->prev_pc != NULL)
437 /* A per-frame unwinder, prefer it. */
438 pc = this_frame->unwind->prev_pc (this_frame->next,
439 &this_frame->prologue_cache);
440 else if (gdbarch_unwind_pc_p (current_gdbarch))
441 {
442 /* The right way. The `pure' way. The one true way. This
443 method depends solely on the register-unwind code to
444 determine the value of registers in THIS frame, and hence
445 the value of this frame's PC (resume address). A typical
446 implementation is no more than:
447
448 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
449 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
450
451 Note: this method is very heavily dependent on a correct
452 register-unwind implementation, it pays to fix that
453 method first; this method is frame type agnostic, since
454 it only deals with register values, it works with any
455 frame. This is all in stark contrast to the old
456 FRAME_SAVED_PC which would try to directly handle all the
457 different ways that a PC could be unwound. */
458 pc = gdbarch_unwind_pc (current_gdbarch, this_frame);
459 }
460 else
461 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
462 this_frame->prev_pc.value = pc;
463 this_frame->prev_pc.p = 1;
464 if (frame_debug)
465 fprintf_unfiltered (gdb_stdlog,
466 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
467 this_frame->level,
468 paddr_nz (this_frame->prev_pc.value));
469 }
470 return this_frame->prev_pc.value;
471 }
472
473 CORE_ADDR
474 frame_func_unwind (struct frame_info *fi, enum frame_type this_type)
475 {
476 if (!fi->prev_func.p)
477 {
478 /* Make certain that this, and not the adjacent, function is
479 found. */
480 CORE_ADDR addr_in_block = frame_unwind_address_in_block (fi, this_type);
481 fi->prev_func.p = 1;
482 fi->prev_func.addr = get_pc_function_start (addr_in_block);
483 if (frame_debug)
484 fprintf_unfiltered (gdb_stdlog,
485 "{ frame_func_unwind (fi=%d) -> 0x%s }\n",
486 fi->level, paddr_nz (fi->prev_func.addr));
487 }
488 return fi->prev_func.addr;
489 }
490
491 CORE_ADDR
492 get_frame_func (struct frame_info *fi)
493 {
494 return frame_func_unwind (fi->next, get_frame_type (fi));
495 }
496
497 static int
498 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
499 {
500 frame_register_read (src, regnum, buf);
501 return 1;
502 }
503
504 struct regcache *
505 frame_save_as_regcache (struct frame_info *this_frame)
506 {
507 struct regcache *regcache = regcache_xmalloc (current_gdbarch);
508 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
509 regcache_save (regcache, do_frame_register_read, this_frame);
510 discard_cleanups (cleanups);
511 return regcache;
512 }
513
514 void
515 frame_pop (struct frame_info *this_frame)
516 {
517 struct frame_info *prev_frame;
518 struct regcache *scratch;
519 struct cleanup *cleanups;
520
521 /* Ensure that we have a frame to pop to. */
522 prev_frame = get_prev_frame_1 (this_frame);
523
524 if (!prev_frame)
525 error (_("Cannot pop the initial frame."));
526
527 /* Make a copy of all the register values unwound from this frame.
528 Save them in a scratch buffer so that there isn't a race between
529 trying to extract the old values from the current_regcache while
530 at the same time writing new values into that same cache. */
531 scratch = frame_save_as_regcache (prev_frame);
532 cleanups = make_cleanup_regcache_xfree (scratch);
533
534 /* FIXME: cagney/2003-03-16: It should be possible to tell the
535 target's register cache that it is about to be hit with a burst
536 register transfer and that the sequence of register writes should
537 be batched. The pair target_prepare_to_store() and
538 target_store_registers() kind of suggest this functionality.
539 Unfortunately, they don't implement it. Their lack of a formal
540 definition can lead to targets writing back bogus values
541 (arguably a bug in the target code mind). */
542 /* Now copy those saved registers into the current regcache.
543 Here, regcache_cpy() calls regcache_restore(). */
544 regcache_cpy (current_regcache, scratch);
545 do_cleanups (cleanups);
546
547 /* We've made right mess of GDB's local state, just discard
548 everything. */
549 reinit_frame_cache ();
550 }
551
552 void
553 frame_register_unwind (struct frame_info *frame, int regnum,
554 int *optimizedp, enum lval_type *lvalp,
555 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
556 {
557 struct frame_unwind_cache *cache;
558
559 if (frame_debug)
560 {
561 fprintf_unfiltered (gdb_stdlog, "\
562 { frame_register_unwind (frame=%d,regnum=%d(%s),...) ",
563 frame->level, regnum,
564 frame_map_regnum_to_name (frame, regnum));
565 }
566
567 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
568 that the value proper does not need to be fetched. */
569 gdb_assert (optimizedp != NULL);
570 gdb_assert (lvalp != NULL);
571 gdb_assert (addrp != NULL);
572 gdb_assert (realnump != NULL);
573 /* gdb_assert (bufferp != NULL); */
574
575 /* NOTE: cagney/2002-11-27: A program trying to unwind a NULL frame
576 is broken. There is always a frame. If there, for some reason,
577 isn't a frame, there is some pretty busted code as it should have
578 detected the problem before calling here. */
579 gdb_assert (frame != NULL);
580
581 /* Find the unwinder. */
582 if (frame->unwind == NULL)
583 frame->unwind = frame_unwind_find_by_frame (frame->next,
584 &frame->prologue_cache);
585
586 /* Ask this frame to unwind its register. See comment in
587 "frame-unwind.h" for why NEXT frame and this unwind cache are
588 passed in. */
589 frame->unwind->prev_register (frame->next, &frame->prologue_cache, regnum,
590 optimizedp, lvalp, addrp, realnump, bufferp);
591
592 if (frame_debug)
593 {
594 fprintf_unfiltered (gdb_stdlog, "->");
595 fprintf_unfiltered (gdb_stdlog, " *optimizedp=%d", (*optimizedp));
596 fprintf_unfiltered (gdb_stdlog, " *lvalp=%d", (int) (*lvalp));
597 fprintf_unfiltered (gdb_stdlog, " *addrp=0x%s", paddr_nz ((*addrp)));
598 fprintf_unfiltered (gdb_stdlog, " *bufferp=");
599 if (bufferp == NULL)
600 fprintf_unfiltered (gdb_stdlog, "<NULL>");
601 else
602 {
603 int i;
604 const unsigned char *buf = bufferp;
605 fprintf_unfiltered (gdb_stdlog, "[");
606 for (i = 0; i < register_size (current_gdbarch, regnum); i++)
607 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
608 fprintf_unfiltered (gdb_stdlog, "]");
609 }
610 fprintf_unfiltered (gdb_stdlog, " }\n");
611 }
612 }
613
614 void
615 frame_register (struct frame_info *frame, int regnum,
616 int *optimizedp, enum lval_type *lvalp,
617 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
618 {
619 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
620 that the value proper does not need to be fetched. */
621 gdb_assert (optimizedp != NULL);
622 gdb_assert (lvalp != NULL);
623 gdb_assert (addrp != NULL);
624 gdb_assert (realnump != NULL);
625 /* gdb_assert (bufferp != NULL); */
626
627 /* Obtain the register value by unwinding the register from the next
628 (more inner frame). */
629 gdb_assert (frame != NULL && frame->next != NULL);
630 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
631 realnump, bufferp);
632 }
633
634 void
635 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
636 {
637 int optimized;
638 CORE_ADDR addr;
639 int realnum;
640 enum lval_type lval;
641 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
642 &realnum, buf);
643 }
644
645 void
646 get_frame_register (struct frame_info *frame,
647 int regnum, gdb_byte *buf)
648 {
649 frame_unwind_register (frame->next, regnum, buf);
650 }
651
652 LONGEST
653 frame_unwind_register_signed (struct frame_info *frame, int regnum)
654 {
655 gdb_byte buf[MAX_REGISTER_SIZE];
656 frame_unwind_register (frame, regnum, buf);
657 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
658 regnum));
659 }
660
661 LONGEST
662 get_frame_register_signed (struct frame_info *frame, int regnum)
663 {
664 return frame_unwind_register_signed (frame->next, regnum);
665 }
666
667 ULONGEST
668 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
669 {
670 gdb_byte buf[MAX_REGISTER_SIZE];
671 frame_unwind_register (frame, regnum, buf);
672 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
673 regnum));
674 }
675
676 ULONGEST
677 get_frame_register_unsigned (struct frame_info *frame, int regnum)
678 {
679 return frame_unwind_register_unsigned (frame->next, regnum);
680 }
681
682 void
683 frame_unwind_unsigned_register (struct frame_info *frame, int regnum,
684 ULONGEST *val)
685 {
686 gdb_byte buf[MAX_REGISTER_SIZE];
687 frame_unwind_register (frame, regnum, buf);
688 (*val) = extract_unsigned_integer (buf,
689 register_size (get_frame_arch (frame),
690 regnum));
691 }
692
693 void
694 put_frame_register (struct frame_info *frame, int regnum,
695 const gdb_byte *buf)
696 {
697 struct gdbarch *gdbarch = get_frame_arch (frame);
698 int realnum;
699 int optim;
700 enum lval_type lval;
701 CORE_ADDR addr;
702 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
703 if (optim)
704 error (_("Attempt to assign to a value that was optimized out."));
705 switch (lval)
706 {
707 case lval_memory:
708 {
709 /* FIXME: write_memory doesn't yet take constant buffers.
710 Arrrg! */
711 gdb_byte tmp[MAX_REGISTER_SIZE];
712 memcpy (tmp, buf, register_size (gdbarch, regnum));
713 write_memory (addr, tmp, register_size (gdbarch, regnum));
714 break;
715 }
716 case lval_register:
717 regcache_cooked_write (current_regcache, realnum, buf);
718 break;
719 default:
720 error (_("Attempt to assign to an unmodifiable value."));
721 }
722 }
723
724 /* frame_register_read ()
725
726 Find and return the value of REGNUM for the specified stack frame.
727 The number of bytes copied is REGISTER_SIZE (REGNUM).
728
729 Returns 0 if the register value could not be found. */
730
731 int
732 frame_register_read (struct frame_info *frame, int regnum,
733 gdb_byte *myaddr)
734 {
735 int optimized;
736 enum lval_type lval;
737 CORE_ADDR addr;
738 int realnum;
739 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
740
741 /* FIXME: cagney/2002-05-15: This test is just bogus.
742
743 It indicates that the target failed to supply a value for a
744 register because it was "not available" at this time. Problem
745 is, the target still has the register and so get saved_register()
746 may be returning a value saved on the stack. */
747
748 if (register_cached (regnum) < 0)
749 return 0; /* register value not available */
750
751 return !optimized;
752 }
753
754 int
755 get_frame_register_bytes (struct frame_info *frame, int regnum,
756 CORE_ADDR offset, int len, gdb_byte *myaddr)
757 {
758 struct gdbarch *gdbarch = get_frame_arch (frame);
759
760 /* Skip registers wholly inside of OFFSET. */
761 while (offset >= register_size (gdbarch, regnum))
762 {
763 offset -= register_size (gdbarch, regnum);
764 regnum++;
765 }
766
767 /* Copy the data. */
768 while (len > 0)
769 {
770 int curr_len = register_size (gdbarch, regnum) - offset;
771 if (curr_len > len)
772 curr_len = len;
773
774 if (curr_len == register_size (gdbarch, regnum))
775 {
776 if (!frame_register_read (frame, regnum, myaddr))
777 return 0;
778 }
779 else
780 {
781 gdb_byte buf[MAX_REGISTER_SIZE];
782 if (!frame_register_read (frame, regnum, buf))
783 return 0;
784 memcpy (myaddr, buf + offset, curr_len);
785 }
786
787 myaddr += curr_len;
788 len -= curr_len;
789 offset = 0;
790 regnum++;
791 }
792
793 return 1;
794 }
795
796 void
797 put_frame_register_bytes (struct frame_info *frame, int regnum,
798 CORE_ADDR offset, int len, const gdb_byte *myaddr)
799 {
800 struct gdbarch *gdbarch = get_frame_arch (frame);
801
802 /* Skip registers wholly inside of OFFSET. */
803 while (offset >= register_size (gdbarch, regnum))
804 {
805 offset -= register_size (gdbarch, regnum);
806 regnum++;
807 }
808
809 /* Copy the data. */
810 while (len > 0)
811 {
812 int curr_len = register_size (gdbarch, regnum) - offset;
813 if (curr_len > len)
814 curr_len = len;
815
816 if (curr_len == register_size (gdbarch, regnum))
817 {
818 put_frame_register (frame, regnum, myaddr);
819 }
820 else
821 {
822 gdb_byte buf[MAX_REGISTER_SIZE];
823 frame_register_read (frame, regnum, buf);
824 memcpy (buf + offset, myaddr, curr_len);
825 put_frame_register (frame, regnum, buf);
826 }
827
828 myaddr += curr_len;
829 len -= curr_len;
830 offset = 0;
831 regnum++;
832 }
833 }
834
835 /* Map between a frame register number and its name. A frame register
836 space is a superset of the cooked register space --- it also
837 includes builtin registers. */
838
839 int
840 frame_map_name_to_regnum (struct frame_info *frame, const char *name, int len)
841 {
842 return user_reg_map_name_to_regnum (get_frame_arch (frame), name, len);
843 }
844
845 const char *
846 frame_map_regnum_to_name (struct frame_info *frame, int regnum)
847 {
848 return user_reg_map_regnum_to_name (get_frame_arch (frame), regnum);
849 }
850
851 /* Create a sentinel frame. */
852
853 static struct frame_info *
854 create_sentinel_frame (struct regcache *regcache)
855 {
856 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
857 frame->level = -1;
858 /* Explicitly initialize the sentinel frame's cache. Provide it
859 with the underlying regcache. In the future additional
860 information, such as the frame's thread will be added. */
861 frame->prologue_cache = sentinel_frame_cache (regcache);
862 /* For the moment there is only one sentinel frame implementation. */
863 frame->unwind = sentinel_frame_unwind;
864 /* Link this frame back to itself. The frame is self referential
865 (the unwound PC is the same as the pc), so make it so. */
866 frame->next = frame;
867 /* Make the sentinel frame's ID valid, but invalid. That way all
868 comparisons with it should fail. */
869 frame->this_id.p = 1;
870 frame->this_id.value = null_frame_id;
871 if (frame_debug)
872 {
873 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
874 fprint_frame (gdb_stdlog, frame);
875 fprintf_unfiltered (gdb_stdlog, " }\n");
876 }
877 return frame;
878 }
879
880 /* Info about the innermost stack frame (contents of FP register) */
881
882 static struct frame_info *current_frame;
883
884 /* Cache for frame addresses already read by gdb. Valid only while
885 inferior is stopped. Control variables for the frame cache should
886 be local to this module. */
887
888 static struct obstack frame_cache_obstack;
889
890 void *
891 frame_obstack_zalloc (unsigned long size)
892 {
893 void *data = obstack_alloc (&frame_cache_obstack, size);
894 memset (data, 0, size);
895 return data;
896 }
897
898 /* Return the innermost (currently executing) stack frame. This is
899 split into two functions. The function unwind_to_current_frame()
900 is wrapped in catch exceptions so that, even when the unwind of the
901 sentinel frame fails, the function still returns a stack frame. */
902
903 static int
904 unwind_to_current_frame (struct ui_out *ui_out, void *args)
905 {
906 struct frame_info *frame = get_prev_frame (args);
907 /* A sentinel frame can fail to unwind, e.g., because its PC value
908 lands in somewhere like start. */
909 if (frame == NULL)
910 return 1;
911 current_frame = frame;
912 return 0;
913 }
914
915 struct frame_info *
916 get_current_frame (void)
917 {
918 /* First check, and report, the lack of registers. Having GDB
919 report "No stack!" or "No memory" when the target doesn't even
920 have registers is very confusing. Besides, "printcmd.exp"
921 explicitly checks that ``print $pc'' with no registers prints "No
922 registers". */
923 if (!target_has_registers)
924 error (_("No registers."));
925 if (!target_has_stack)
926 error (_("No stack."));
927 if (!target_has_memory)
928 error (_("No memory."));
929 if (current_frame == NULL)
930 {
931 struct frame_info *sentinel_frame =
932 create_sentinel_frame (current_regcache);
933 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
934 RETURN_MASK_ERROR) != 0)
935 {
936 /* Oops! Fake a current frame? Is this useful? It has a PC
937 of zero, for instance. */
938 current_frame = sentinel_frame;
939 }
940 }
941 return current_frame;
942 }
943
944 /* The "selected" stack frame is used by default for local and arg
945 access. May be zero, for no selected frame. */
946
947 static struct frame_info *selected_frame;
948
949 /* Return the selected frame. Always non-NULL (unless there isn't an
950 inferior sufficient for creating a frame) in which case an error is
951 thrown. */
952
953 struct frame_info *
954 get_selected_frame (const char *message)
955 {
956 if (selected_frame == NULL)
957 {
958 if (message != NULL && (!target_has_registers
959 || !target_has_stack
960 || !target_has_memory))
961 error (("%s"), message);
962 /* Hey! Don't trust this. It should really be re-finding the
963 last selected frame of the currently selected thread. This,
964 though, is better than nothing. */
965 select_frame (get_current_frame ());
966 }
967 /* There is always a frame. */
968 gdb_assert (selected_frame != NULL);
969 return selected_frame;
970 }
971
972 /* This is a variant of get_selected_frame() which can be called when
973 the inferior does not have a frame; in that case it will return
974 NULL instead of calling error(). */
975
976 struct frame_info *
977 deprecated_safe_get_selected_frame (void)
978 {
979 if (!target_has_registers || !target_has_stack || !target_has_memory)
980 return NULL;
981 return get_selected_frame (NULL);
982 }
983
984 /* Select frame FI (or NULL - to invalidate the current frame). */
985
986 void
987 select_frame (struct frame_info *fi)
988 {
989 struct symtab *s;
990
991 selected_frame = fi;
992 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
993 frame is being invalidated. */
994 if (deprecated_selected_frame_level_changed_hook)
995 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
996
997 /* FIXME: kseitz/2002-08-28: It would be nice to call
998 selected_frame_level_changed_event() right here, but due to limitations
999 in the current interfaces, we would end up flooding UIs with events
1000 because select_frame() is used extensively internally.
1001
1002 Once we have frame-parameterized frame (and frame-related) commands,
1003 the event notification can be moved here, since this function will only
1004 be called when the user's selected frame is being changed. */
1005
1006 /* Ensure that symbols for this frame are read in. Also, determine the
1007 source language of this frame, and switch to it if desired. */
1008 if (fi)
1009 {
1010 /* We retrieve the frame's symtab by using the frame PC. However
1011 we cannot use the frame PC as-is, because it usually points to
1012 the instruction following the "call", which is sometimes the
1013 first instruction of another function. So we rely on
1014 get_frame_address_in_block() which provides us with a PC which
1015 is guaranteed to be inside the frame's code block. */
1016 s = find_pc_symtab (get_frame_address_in_block (fi));
1017 if (s
1018 && s->language != current_language->la_language
1019 && s->language != language_unknown
1020 && language_mode == language_mode_auto)
1021 {
1022 set_language (s->language);
1023 }
1024 }
1025 }
1026
1027 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1028 Always returns a non-NULL value. */
1029
1030 struct frame_info *
1031 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1032 {
1033 struct frame_info *fi;
1034
1035 if (frame_debug)
1036 {
1037 fprintf_unfiltered (gdb_stdlog,
1038 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1039 paddr_nz (addr), paddr_nz (pc));
1040 }
1041
1042 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1043
1044 fi->next = create_sentinel_frame (current_regcache);
1045
1046 /* Select/initialize both the unwind function and the frame's type
1047 based on the PC. */
1048 fi->unwind = frame_unwind_find_by_frame (fi->next, &fi->prologue_cache);
1049
1050 fi->this_id.p = 1;
1051 deprecated_update_frame_base_hack (fi, addr);
1052 deprecated_update_frame_pc_hack (fi, pc);
1053
1054 if (frame_debug)
1055 {
1056 fprintf_unfiltered (gdb_stdlog, "-> ");
1057 fprint_frame (gdb_stdlog, fi);
1058 fprintf_unfiltered (gdb_stdlog, " }\n");
1059 }
1060
1061 return fi;
1062 }
1063
1064 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1065 innermost frame). Be careful to not fall off the bottom of the
1066 frame chain and onto the sentinel frame. */
1067
1068 struct frame_info *
1069 get_next_frame (struct frame_info *this_frame)
1070 {
1071 if (this_frame->level > 0)
1072 return this_frame->next;
1073 else
1074 return NULL;
1075 }
1076
1077 /* Observer for the target_changed event. */
1078
1079 void
1080 frame_observer_target_changed (struct target_ops *target)
1081 {
1082 reinit_frame_cache ();
1083 }
1084
1085 /* Flush the entire frame cache. */
1086
1087 void
1088 reinit_frame_cache (void)
1089 {
1090 /* Since we can't really be sure what the first object allocated was */
1091 obstack_free (&frame_cache_obstack, 0);
1092 obstack_init (&frame_cache_obstack);
1093
1094 current_frame = NULL; /* Invalidate cache */
1095 select_frame (NULL);
1096 annotate_frames_invalid ();
1097 if (frame_debug)
1098 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1099 }
1100
1101 /* Find where a register is saved (in memory or another register).
1102 The result of frame_register_unwind is just where it is saved
1103 relative to this particular frame. */
1104
1105 static void
1106 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1107 int *optimizedp, enum lval_type *lvalp,
1108 CORE_ADDR *addrp, int *realnump)
1109 {
1110 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1111
1112 while (this_frame != NULL)
1113 {
1114 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1115 addrp, realnump, NULL);
1116
1117 if (*optimizedp)
1118 break;
1119
1120 if (*lvalp != lval_register)
1121 break;
1122
1123 regnum = *realnump;
1124 this_frame = get_next_frame (this_frame);
1125 }
1126 }
1127
1128 /* Return a "struct frame_info" corresponding to the frame that called
1129 THIS_FRAME. Returns NULL if there is no such frame.
1130
1131 Unlike get_prev_frame, this function always tries to unwind the
1132 frame. */
1133
1134 static struct frame_info *
1135 get_prev_frame_1 (struct frame_info *this_frame)
1136 {
1137 struct frame_info *prev_frame;
1138 struct frame_id this_id;
1139
1140 gdb_assert (this_frame != NULL);
1141
1142 if (frame_debug)
1143 {
1144 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1145 if (this_frame != NULL)
1146 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1147 else
1148 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1149 fprintf_unfiltered (gdb_stdlog, ") ");
1150 }
1151
1152 /* Only try to do the unwind once. */
1153 if (this_frame->prev_p)
1154 {
1155 if (frame_debug)
1156 {
1157 fprintf_unfiltered (gdb_stdlog, "-> ");
1158 fprint_frame (gdb_stdlog, this_frame->prev);
1159 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1160 }
1161 return this_frame->prev;
1162 }
1163 this_frame->prev_p = 1;
1164 this_frame->stop_reason = UNWIND_NO_REASON;
1165
1166 /* Check that this frame's ID was valid. If it wasn't, don't try to
1167 unwind to the prev frame. Be careful to not apply this test to
1168 the sentinel frame. */
1169 this_id = get_frame_id (this_frame);
1170 if (this_frame->level >= 0 && !frame_id_p (this_id))
1171 {
1172 if (frame_debug)
1173 {
1174 fprintf_unfiltered (gdb_stdlog, "-> ");
1175 fprint_frame (gdb_stdlog, NULL);
1176 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1177 }
1178 this_frame->stop_reason = UNWIND_NULL_ID;
1179 return NULL;
1180 }
1181
1182 /* Check that this frame's ID isn't inner to (younger, below, next)
1183 the next frame. This happens when a frame unwind goes backwards.
1184 Exclude signal trampolines (due to sigaltstack the frame ID can
1185 go backwards) and sentinel frames (the test is meaningless). */
1186 if (this_frame->next->level >= 0
1187 && this_frame->next->unwind->type != SIGTRAMP_FRAME
1188 && frame_id_inner (this_id, get_frame_id (this_frame->next)))
1189 {
1190 if (frame_debug)
1191 {
1192 fprintf_unfiltered (gdb_stdlog, "-> ");
1193 fprint_frame (gdb_stdlog, NULL);
1194 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1195 }
1196 this_frame->stop_reason = UNWIND_INNER_ID;
1197 return NULL;
1198 }
1199
1200 /* Check that this and the next frame are not identical. If they
1201 are, there is most likely a stack cycle. As with the inner-than
1202 test above, avoid comparing the inner-most and sentinel frames. */
1203 if (this_frame->level > 0
1204 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1205 {
1206 if (frame_debug)
1207 {
1208 fprintf_unfiltered (gdb_stdlog, "-> ");
1209 fprint_frame (gdb_stdlog, NULL);
1210 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1211 }
1212 this_frame->stop_reason = UNWIND_SAME_ID;
1213 return NULL;
1214 }
1215
1216 /* Check that this and the next frame do not unwind the PC register
1217 to the same memory location. If they do, then even though they
1218 have different frame IDs, the new frame will be bogus; two
1219 functions can't share a register save slot for the PC. This can
1220 happen when the prologue analyzer finds a stack adjustment, but
1221 no PC save.
1222
1223 This check does assume that the "PC register" is roughly a
1224 traditional PC, even if the gdbarch_unwind_pc method adjusts
1225 it (we do not rely on the value, only on the unwound PC being
1226 dependent on this value). A potential improvement would be
1227 to have the frame prev_pc method and the gdbarch unwind_pc
1228 method set the same lval and location information as
1229 frame_register_unwind. */
1230 if (this_frame->level > 0
1231 && PC_REGNUM >= 0
1232 && get_frame_type (this_frame) == NORMAL_FRAME
1233 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1234 {
1235 int optimized, realnum;
1236 enum lval_type lval, nlval;
1237 CORE_ADDR addr, naddr;
1238
1239 frame_register_unwind_location (this_frame, PC_REGNUM, &optimized,
1240 &lval, &addr, &realnum);
1241 frame_register_unwind_location (get_next_frame (this_frame), PC_REGNUM,
1242 &optimized, &nlval, &naddr, &realnum);
1243
1244 if (lval == lval_memory && lval == nlval && addr == naddr)
1245 {
1246 if (frame_debug)
1247 {
1248 fprintf_unfiltered (gdb_stdlog, "-> ");
1249 fprint_frame (gdb_stdlog, NULL);
1250 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1251 }
1252
1253 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1254 this_frame->prev = NULL;
1255 return NULL;
1256 }
1257 }
1258
1259 /* Allocate the new frame but do not wire it in to the frame chain.
1260 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1261 frame->next to pull some fancy tricks (of course such code is, by
1262 definition, recursive). Try to prevent it.
1263
1264 There is no reason to worry about memory leaks, should the
1265 remainder of the function fail. The allocated memory will be
1266 quickly reclaimed when the frame cache is flushed, and the `we've
1267 been here before' check above will stop repeated memory
1268 allocation calls. */
1269 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1270 prev_frame->level = this_frame->level + 1;
1271
1272 /* Don't yet compute ->unwind (and hence ->type). It is computed
1273 on-demand in get_frame_type, frame_register_unwind, and
1274 get_frame_id. */
1275
1276 /* Don't yet compute the frame's ID. It is computed on-demand by
1277 get_frame_id(). */
1278
1279 /* The unwound frame ID is validate at the start of this function,
1280 as part of the logic to decide if that frame should be further
1281 unwound, and not here while the prev frame is being created.
1282 Doing this makes it possible for the user to examine a frame that
1283 has an invalid frame ID.
1284
1285 Some very old VAX code noted: [...] For the sake of argument,
1286 suppose that the stack is somewhat trashed (which is one reason
1287 that "info frame" exists). So, return 0 (indicating we don't
1288 know the address of the arglist) if we don't know what frame this
1289 frame calls. */
1290
1291 /* Link it in. */
1292 this_frame->prev = prev_frame;
1293 prev_frame->next = this_frame;
1294
1295 if (frame_debug)
1296 {
1297 fprintf_unfiltered (gdb_stdlog, "-> ");
1298 fprint_frame (gdb_stdlog, prev_frame);
1299 fprintf_unfiltered (gdb_stdlog, " }\n");
1300 }
1301
1302 return prev_frame;
1303 }
1304
1305 /* Debug routine to print a NULL frame being returned. */
1306
1307 static void
1308 frame_debug_got_null_frame (struct ui_file *file,
1309 struct frame_info *this_frame,
1310 const char *reason)
1311 {
1312 if (frame_debug)
1313 {
1314 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1315 if (this_frame != NULL)
1316 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1317 else
1318 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1319 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1320 }
1321 }
1322
1323 /* Is this (non-sentinel) frame in the "main"() function? */
1324
1325 static int
1326 inside_main_func (struct frame_info *this_frame)
1327 {
1328 struct minimal_symbol *msymbol;
1329 CORE_ADDR maddr;
1330
1331 if (symfile_objfile == 0)
1332 return 0;
1333 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1334 if (msymbol == NULL)
1335 return 0;
1336 /* Make certain that the code, and not descriptor, address is
1337 returned. */
1338 maddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
1339 SYMBOL_VALUE_ADDRESS (msymbol),
1340 &current_target);
1341 return maddr == get_frame_func (this_frame);
1342 }
1343
1344 /* Test whether THIS_FRAME is inside the process entry point function. */
1345
1346 static int
1347 inside_entry_func (struct frame_info *this_frame)
1348 {
1349 return (get_frame_func (this_frame) == entry_point_address ());
1350 }
1351
1352 /* Return a structure containing various interesting information about
1353 the frame that called THIS_FRAME. Returns NULL if there is entier
1354 no such frame or the frame fails any of a set of target-independent
1355 condition that should terminate the frame chain (e.g., as unwinding
1356 past main()).
1357
1358 This function should not contain target-dependent tests, such as
1359 checking whether the program-counter is zero. */
1360
1361 struct frame_info *
1362 get_prev_frame (struct frame_info *this_frame)
1363 {
1364 struct frame_info *prev_frame;
1365
1366 /* Return the inner-most frame, when the caller passes in NULL. */
1367 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1368 caller should have previously obtained a valid frame using
1369 get_selected_frame() and then called this code - only possibility
1370 I can think of is code behaving badly.
1371
1372 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1373 block_innermost_frame(). It does the sequence: frame = NULL;
1374 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1375 it couldn't be written better, I don't know.
1376
1377 NOTE: cagney/2003-01-11: I suspect what is happening in
1378 block_innermost_frame() is, when the target has no state
1379 (registers, memory, ...), it is still calling this function. The
1380 assumption being that this function will return NULL indicating
1381 that a frame isn't possible, rather than checking that the target
1382 has state and then calling get_current_frame() and
1383 get_prev_frame(). This is a guess mind. */
1384 if (this_frame == NULL)
1385 {
1386 /* NOTE: cagney/2002-11-09: There was a code segment here that
1387 would error out when CURRENT_FRAME was NULL. The comment
1388 that went with it made the claim ...
1389
1390 ``This screws value_of_variable, which just wants a nice
1391 clean NULL return from block_innermost_frame if there are no
1392 frames. I don't think I've ever seen this message happen
1393 otherwise. And returning NULL here is a perfectly legitimate
1394 thing to do.''
1395
1396 Per the above, this code shouldn't even be called with a NULL
1397 THIS_FRAME. */
1398 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1399 return current_frame;
1400 }
1401
1402 /* There is always a frame. If this assertion fails, suspect that
1403 something should be calling get_selected_frame() or
1404 get_current_frame(). */
1405 gdb_assert (this_frame != NULL);
1406
1407 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1408 sense to stop unwinding at a dummy frame. One place where a dummy
1409 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1410 pcsqh register (space register for the instruction at the head of the
1411 instruction queue) cannot be written directly; the only way to set it
1412 is to branch to code that is in the target space. In order to implement
1413 frame dummies on HPUX, the called function is made to jump back to where
1414 the inferior was when the user function was called. If gdb was inside
1415 the main function when we created the dummy frame, the dummy frame will
1416 point inside the main function. */
1417 if (this_frame->level >= 0
1418 && get_frame_type (this_frame) != DUMMY_FRAME
1419 && !backtrace_past_main
1420 && inside_main_func (this_frame))
1421 /* Don't unwind past main(). Note, this is done _before_ the
1422 frame has been marked as previously unwound. That way if the
1423 user later decides to enable unwinds past main(), that will
1424 automatically happen. */
1425 {
1426 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1427 return NULL;
1428 }
1429
1430 /* If the user's backtrace limit has been exceeded, stop. We must
1431 add two to the current level; one of those accounts for backtrace_limit
1432 being 1-based and the level being 0-based, and the other accounts for
1433 the level of the new frame instead of the level of the current
1434 frame. */
1435 if (this_frame->level + 2 > backtrace_limit)
1436 {
1437 frame_debug_got_null_frame (gdb_stdlog, this_frame,
1438 "backtrace limit exceeded");
1439 return NULL;
1440 }
1441
1442 /* If we're already inside the entry function for the main objfile,
1443 then it isn't valid. Don't apply this test to a dummy frame -
1444 dummy frame PCs typically land in the entry func. Don't apply
1445 this test to the sentinel frame. Sentinel frames should always
1446 be allowed to unwind. */
1447 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1448 wasn't checking for "main" in the minimal symbols. With that
1449 fixed asm-source tests now stop in "main" instead of halting the
1450 backtrace in weird and wonderful ways somewhere inside the entry
1451 file. Suspect that tests for inside the entry file/func were
1452 added to work around that (now fixed) case. */
1453 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1454 suggested having the inside_entry_func test use the
1455 inside_main_func() msymbol trick (along with entry_point_address()
1456 I guess) to determine the address range of the start function.
1457 That should provide a far better stopper than the current
1458 heuristics. */
1459 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1460 applied tail-call optimizations to main so that a function called
1461 from main returns directly to the caller of main. Since we don't
1462 stop at main, we should at least stop at the entry point of the
1463 application. */
1464 if (!backtrace_past_entry
1465 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1466 && inside_entry_func (this_frame))
1467 {
1468 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1469 return NULL;
1470 }
1471
1472 /* Assume that the only way to get a zero PC is through something
1473 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1474 will never unwind a zero PC. */
1475 if (this_frame->level > 0
1476 && get_frame_type (this_frame) == NORMAL_FRAME
1477 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1478 && get_frame_pc (this_frame) == 0)
1479 {
1480 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1481 return NULL;
1482 }
1483
1484 return get_prev_frame_1 (this_frame);
1485 }
1486
1487 CORE_ADDR
1488 get_frame_pc (struct frame_info *frame)
1489 {
1490 gdb_assert (frame->next != NULL);
1491 return frame_pc_unwind (frame->next);
1492 }
1493
1494 /* Return an address that falls within NEXT_FRAME's caller's code
1495 block, assuming that the caller is a THIS_TYPE frame. */
1496
1497 CORE_ADDR
1498 frame_unwind_address_in_block (struct frame_info *next_frame,
1499 enum frame_type this_type)
1500 {
1501 /* A draft address. */
1502 CORE_ADDR pc = frame_pc_unwind (next_frame);
1503
1504 /* If NEXT_FRAME was called by a signal frame or dummy frame, then
1505 we shold not adjust the unwound PC. These frames may not call
1506 their next frame in the normal way; the operating system or GDB
1507 may have pushed their resume address manually onto the stack, so
1508 it may be the very first instruction. Even if the resume address
1509 was not manually pushed, they expect to be returned to. */
1510 if (this_type != NORMAL_FRAME)
1511 return pc;
1512
1513 /* If THIS frame is not inner most (i.e., NEXT isn't the sentinel),
1514 and NEXT is `normal' (i.e., not a sigtramp, dummy, ....) THIS
1515 frame's PC ends up pointing at the instruction fallowing the
1516 "call". Adjust that PC value so that it falls on the call
1517 instruction (which, hopefully, falls within THIS frame's code
1518 block). So far it's proved to be a very good approximation. See
1519 get_frame_type() for why ->type can't be used. */
1520 if (next_frame->level >= 0
1521 && get_frame_type (next_frame) == NORMAL_FRAME)
1522 --pc;
1523 return pc;
1524 }
1525
1526 CORE_ADDR
1527 get_frame_address_in_block (struct frame_info *this_frame)
1528 {
1529 return frame_unwind_address_in_block (this_frame->next,
1530 get_frame_type (this_frame));
1531 }
1532
1533 static int
1534 pc_notcurrent (struct frame_info *frame)
1535 {
1536 /* If FRAME is not the innermost frame, that normally means that
1537 FRAME->pc points at the return instruction (which is *after* the
1538 call instruction), and we want to get the line containing the
1539 call (because the call is where the user thinks the program is).
1540 However, if the next frame is either a SIGTRAMP_FRAME or a
1541 DUMMY_FRAME, then the next frame will contain a saved interrupt
1542 PC and such a PC indicates the current (rather than next)
1543 instruction/line, consequently, for such cases, want to get the
1544 line containing fi->pc. */
1545 struct frame_info *next = get_next_frame (frame);
1546 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1547 return notcurrent;
1548 }
1549
1550 void
1551 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1552 {
1553 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1554 }
1555
1556 /* Per "frame.h", return the ``address'' of the frame. Code should
1557 really be using get_frame_id(). */
1558 CORE_ADDR
1559 get_frame_base (struct frame_info *fi)
1560 {
1561 return get_frame_id (fi).stack_addr;
1562 }
1563
1564 /* High-level offsets into the frame. Used by the debug info. */
1565
1566 CORE_ADDR
1567 get_frame_base_address (struct frame_info *fi)
1568 {
1569 if (get_frame_type (fi) != NORMAL_FRAME)
1570 return 0;
1571 if (fi->base == NULL)
1572 fi->base = frame_base_find_by_frame (fi->next);
1573 /* Sneaky: If the low-level unwind and high-level base code share a
1574 common unwinder, let them share the prologue cache. */
1575 if (fi->base->unwind == fi->unwind)
1576 return fi->base->this_base (fi->next, &fi->prologue_cache);
1577 return fi->base->this_base (fi->next, &fi->base_cache);
1578 }
1579
1580 CORE_ADDR
1581 get_frame_locals_address (struct frame_info *fi)
1582 {
1583 void **cache;
1584 if (get_frame_type (fi) != NORMAL_FRAME)
1585 return 0;
1586 /* If there isn't a frame address method, find it. */
1587 if (fi->base == NULL)
1588 fi->base = frame_base_find_by_frame (fi->next);
1589 /* Sneaky: If the low-level unwind and high-level base code share a
1590 common unwinder, let them share the prologue cache. */
1591 if (fi->base->unwind == fi->unwind)
1592 cache = &fi->prologue_cache;
1593 else
1594 cache = &fi->base_cache;
1595 return fi->base->this_locals (fi->next, cache);
1596 }
1597
1598 CORE_ADDR
1599 get_frame_args_address (struct frame_info *fi)
1600 {
1601 void **cache;
1602 if (get_frame_type (fi) != NORMAL_FRAME)
1603 return 0;
1604 /* If there isn't a frame address method, find it. */
1605 if (fi->base == NULL)
1606 fi->base = frame_base_find_by_frame (fi->next);
1607 /* Sneaky: If the low-level unwind and high-level base code share a
1608 common unwinder, let them share the prologue cache. */
1609 if (fi->base->unwind == fi->unwind)
1610 cache = &fi->prologue_cache;
1611 else
1612 cache = &fi->base_cache;
1613 return fi->base->this_args (fi->next, cache);
1614 }
1615
1616 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1617 or -1 for a NULL frame. */
1618
1619 int
1620 frame_relative_level (struct frame_info *fi)
1621 {
1622 if (fi == NULL)
1623 return -1;
1624 else
1625 return fi->level;
1626 }
1627
1628 enum frame_type
1629 get_frame_type (struct frame_info *frame)
1630 {
1631 if (frame->unwind == NULL)
1632 /* Initialize the frame's unwinder because that's what
1633 provides the frame's type. */
1634 frame->unwind = frame_unwind_find_by_frame (frame->next,
1635 &frame->prologue_cache);
1636 return frame->unwind->type;
1637 }
1638
1639 void
1640 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1641 {
1642 if (frame_debug)
1643 fprintf_unfiltered (gdb_stdlog,
1644 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1645 frame->level, paddr_nz (pc));
1646 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1647 maintaining a locally allocated frame object. Since such frames
1648 are not in the frame chain, it isn't possible to assume that the
1649 frame has a next. Sigh. */
1650 if (frame->next != NULL)
1651 {
1652 /* While we're at it, update this frame's cached PC value, found
1653 in the next frame. Oh for the day when "struct frame_info"
1654 is opaque and this hack on hack can just go away. */
1655 frame->next->prev_pc.value = pc;
1656 frame->next->prev_pc.p = 1;
1657 }
1658 }
1659
1660 void
1661 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1662 {
1663 if (frame_debug)
1664 fprintf_unfiltered (gdb_stdlog,
1665 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1666 frame->level, paddr_nz (base));
1667 /* See comment in "frame.h". */
1668 frame->this_id.value.stack_addr = base;
1669 }
1670
1671 /* Memory access methods. */
1672
1673 void
1674 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1675 gdb_byte *buf, int len)
1676 {
1677 read_memory (addr, buf, len);
1678 }
1679
1680 LONGEST
1681 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1682 int len)
1683 {
1684 return read_memory_integer (addr, len);
1685 }
1686
1687 ULONGEST
1688 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1689 int len)
1690 {
1691 return read_memory_unsigned_integer (addr, len);
1692 }
1693
1694 int
1695 safe_frame_unwind_memory (struct frame_info *this_frame,
1696 CORE_ADDR addr, gdb_byte *buf, int len)
1697 {
1698 /* NOTE: read_memory_nobpt returns zero on success! */
1699 return !read_memory_nobpt (addr, buf, len);
1700 }
1701
1702 /* Architecture method. */
1703
1704 struct gdbarch *
1705 get_frame_arch (struct frame_info *this_frame)
1706 {
1707 return current_gdbarch;
1708 }
1709
1710 /* Stack pointer methods. */
1711
1712 CORE_ADDR
1713 get_frame_sp (struct frame_info *this_frame)
1714 {
1715 return frame_sp_unwind (this_frame->next);
1716 }
1717
1718 CORE_ADDR
1719 frame_sp_unwind (struct frame_info *next_frame)
1720 {
1721 /* Normality - an architecture that provides a way of obtaining any
1722 frame inner-most address. */
1723 if (gdbarch_unwind_sp_p (current_gdbarch))
1724 return gdbarch_unwind_sp (current_gdbarch, next_frame);
1725 /* Things are looking grim. If it's the inner-most frame and there
1726 is a TARGET_READ_SP, then that can be used. */
1727 if (next_frame->level < 0 && TARGET_READ_SP_P ())
1728 return TARGET_READ_SP ();
1729 /* Now things are really are grim. Hope that the value returned by
1730 the SP_REGNUM register is meaningful. */
1731 if (SP_REGNUM >= 0)
1732 {
1733 ULONGEST sp;
1734 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1735 return sp;
1736 }
1737 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1738 }
1739
1740 /* Return the reason why we can't unwind past FRAME. */
1741
1742 enum unwind_stop_reason
1743 get_frame_unwind_stop_reason (struct frame_info *frame)
1744 {
1745 /* If we haven't tried to unwind past this point yet, then assume
1746 that unwinding would succeed. */
1747 if (frame->prev_p == 0)
1748 return UNWIND_NO_REASON;
1749
1750 /* Otherwise, we set a reason when we succeeded (or failed) to
1751 unwind. */
1752 return frame->stop_reason;
1753 }
1754
1755 /* Return a string explaining REASON. */
1756
1757 const char *
1758 frame_stop_reason_string (enum unwind_stop_reason reason)
1759 {
1760 switch (reason)
1761 {
1762 case UNWIND_NULL_ID:
1763 return _("unwinder did not report frame ID");
1764
1765 case UNWIND_INNER_ID:
1766 return _("previous frame inner to this frame (corrupt stack?)");
1767
1768 case UNWIND_SAME_ID:
1769 return _("previous frame identical to this frame (corrupt stack?)");
1770
1771 case UNWIND_NO_SAVED_PC:
1772 return _("frame did not save the PC");
1773
1774 case UNWIND_NO_REASON:
1775 case UNWIND_FIRST_ERROR:
1776 default:
1777 internal_error (__FILE__, __LINE__,
1778 "Invalid frame stop reason");
1779 }
1780 }
1781
1782 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1783
1784 static struct cmd_list_element *set_backtrace_cmdlist;
1785 static struct cmd_list_element *show_backtrace_cmdlist;
1786
1787 static void
1788 set_backtrace_cmd (char *args, int from_tty)
1789 {
1790 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1791 }
1792
1793 static void
1794 show_backtrace_cmd (char *args, int from_tty)
1795 {
1796 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1797 }
1798
1799 void
1800 _initialize_frame (void)
1801 {
1802 obstack_init (&frame_cache_obstack);
1803
1804 observer_attach_target_changed (frame_observer_target_changed);
1805
1806 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1807 Set backtrace specific variables.\n\
1808 Configure backtrace variables such as the backtrace limit"),
1809 &set_backtrace_cmdlist, "set backtrace ",
1810 0/*allow-unknown*/, &setlist);
1811 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1812 Show backtrace specific variables\n\
1813 Show backtrace variables such as the backtrace limit"),
1814 &show_backtrace_cmdlist, "show backtrace ",
1815 0/*allow-unknown*/, &showlist);
1816
1817 add_setshow_boolean_cmd ("past-main", class_obscure,
1818 &backtrace_past_main, _("\
1819 Set whether backtraces should continue past \"main\"."), _("\
1820 Show whether backtraces should continue past \"main\"."), _("\
1821 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1822 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1823 of the stack trace."),
1824 NULL,
1825 show_backtrace_past_main,
1826 &set_backtrace_cmdlist,
1827 &show_backtrace_cmdlist);
1828
1829 add_setshow_boolean_cmd ("past-entry", class_obscure,
1830 &backtrace_past_entry, _("\
1831 Set whether backtraces should continue past the entry point of a program."),
1832 _("\
1833 Show whether backtraces should continue past the entry point of a program."),
1834 _("\
1835 Normally there are no callers beyond the entry point of a program, so GDB\n\
1836 will terminate the backtrace there. Set this variable if you need to see \n\
1837 the rest of the stack trace."),
1838 NULL,
1839 show_backtrace_past_entry,
1840 &set_backtrace_cmdlist,
1841 &show_backtrace_cmdlist);
1842
1843 add_setshow_integer_cmd ("limit", class_obscure,
1844 &backtrace_limit, _("\
1845 Set an upper bound on the number of backtrace levels."), _("\
1846 Show the upper bound on the number of backtrace levels."), _("\
1847 No more than the specified number of frames can be displayed or examined.\n\
1848 Zero is unlimited."),
1849 NULL,
1850 show_backtrace_limit,
1851 &set_backtrace_cmdlist,
1852 &show_backtrace_cmdlist);
1853
1854 /* Debug this files internals. */
1855 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1856 Set frame debugging."), _("\
1857 Show frame debugging."), _("\
1858 When non-zero, frame specific internal debugging is enabled."),
1859 NULL,
1860 show_frame_debug,
1861 &setdebuglist, &showdebuglist);
1862 }
This page took 0.069588 seconds and 4 git commands to generate.