Index: sh/ChangeLog
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000,
4 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "inferior.h" /* for inferior_ptid */
28 #include "regcache.h"
29 #include "gdb_assert.h"
30 #include "gdb_string.h"
31 #include "user-regs.h"
32 #include "gdb_obstack.h"
33 #include "dummy-frame.h"
34 #include "sentinel-frame.h"
35 #include "gdbcore.h"
36 #include "annotate.h"
37 #include "language.h"
38 #include "frame-unwind.h"
39 #include "frame-base.h"
40 #include "command.h"
41 #include "gdbcmd.h"
42 #include "observer.h"
43 #include "objfiles.h"
44
45 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
46
47 /* We keep a cache of stack frames, each of which is a "struct
48 frame_info". The innermost one gets allocated (in
49 wait_for_inferior) each time the inferior stops; current_frame
50 points to it. Additional frames get allocated (in get_prev_frame)
51 as needed, and are chained through the next and prev fields. Any
52 time that the frame cache becomes invalid (most notably when we
53 execute something, but also if we change how we interpret the
54 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
55 which reads new symbols)), we should call reinit_frame_cache. */
56
57 struct frame_info
58 {
59 /* Level of this frame. The inner-most (youngest) frame is at level
60 0. As you move towards the outer-most (oldest) frame, the level
61 increases. This is a cached value. It could just as easily be
62 computed by counting back from the selected frame to the inner
63 most frame. */
64 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
65 reserved to indicate a bogus frame - one that has been created
66 just to keep GDB happy (GDB always needs a frame). For the
67 moment leave this as speculation. */
68 int level;
69
70 /* The frame's low-level unwinder and corresponding cache. The
71 low-level unwinder is responsible for unwinding register values
72 for the previous frame. The low-level unwind methods are
73 selected based on the presence, or otherwise, of register unwind
74 information such as CFI. */
75 void *prologue_cache;
76 const struct frame_unwind *unwind;
77
78 /* Cached copy of the previous frame's resume address. */
79 struct {
80 int p;
81 CORE_ADDR value;
82 } prev_pc;
83
84 /* Cached copy of the previous frame's function address. */
85 struct
86 {
87 CORE_ADDR addr;
88 int p;
89 } prev_func;
90
91 /* This frame's ID. */
92 struct
93 {
94 int p;
95 struct frame_id value;
96 } this_id;
97
98 /* The frame's high-level base methods, and corresponding cache.
99 The high level base methods are selected based on the frame's
100 debug info. */
101 const struct frame_base *base;
102 void *base_cache;
103
104 /* Pointers to the next (down, inner, younger) and previous (up,
105 outer, older) frame_info's in the frame cache. */
106 struct frame_info *next; /* down, inner, younger */
107 int prev_p;
108 struct frame_info *prev; /* up, outer, older */
109 };
110
111 /* Flag to control debugging. */
112
113 static int frame_debug;
114
115 /* Flag to indicate whether backtraces should stop at main et.al. */
116
117 static int backtrace_past_main;
118 static int backtrace_past_entry;
119 static unsigned int backtrace_limit = UINT_MAX;
120
121 static void
122 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
123 {
124 if (p)
125 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
126 else
127 fprintf_unfiltered (file, "!%s", name);
128 }
129
130 void
131 fprint_frame_id (struct ui_file *file, struct frame_id id)
132 {
133 fprintf_unfiltered (file, "{");
134 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
135 fprintf_unfiltered (file, ",");
136 fprint_field (file, "code", id.code_addr_p, id.code_addr);
137 fprintf_unfiltered (file, ",");
138 fprint_field (file, "special", id.special_addr_p, id.special_addr);
139 fprintf_unfiltered (file, "}");
140 }
141
142 static void
143 fprint_frame_type (struct ui_file *file, enum frame_type type)
144 {
145 switch (type)
146 {
147 case NORMAL_FRAME:
148 fprintf_unfiltered (file, "NORMAL_FRAME");
149 return;
150 case DUMMY_FRAME:
151 fprintf_unfiltered (file, "DUMMY_FRAME");
152 return;
153 case SIGTRAMP_FRAME:
154 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
155 return;
156 default:
157 fprintf_unfiltered (file, "<unknown type>");
158 return;
159 };
160 }
161
162 static void
163 fprint_frame (struct ui_file *file, struct frame_info *fi)
164 {
165 if (fi == NULL)
166 {
167 fprintf_unfiltered (file, "<NULL frame>");
168 return;
169 }
170 fprintf_unfiltered (file, "{");
171 fprintf_unfiltered (file, "level=%d", fi->level);
172 fprintf_unfiltered (file, ",");
173 fprintf_unfiltered (file, "type=");
174 if (fi->unwind != NULL)
175 fprint_frame_type (file, fi->unwind->type);
176 else
177 fprintf_unfiltered (file, "<unknown>");
178 fprintf_unfiltered (file, ",");
179 fprintf_unfiltered (file, "unwind=");
180 if (fi->unwind != NULL)
181 gdb_print_host_address (fi->unwind, file);
182 else
183 fprintf_unfiltered (file, "<unknown>");
184 fprintf_unfiltered (file, ",");
185 fprintf_unfiltered (file, "pc=");
186 if (fi->next != NULL && fi->next->prev_pc.p)
187 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
188 else
189 fprintf_unfiltered (file, "<unknown>");
190 fprintf_unfiltered (file, ",");
191 fprintf_unfiltered (file, "id=");
192 if (fi->this_id.p)
193 fprint_frame_id (file, fi->this_id.value);
194 else
195 fprintf_unfiltered (file, "<unknown>");
196 fprintf_unfiltered (file, ",");
197 fprintf_unfiltered (file, "func=");
198 if (fi->next != NULL && fi->next->prev_func.p)
199 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
200 else
201 fprintf_unfiltered (file, "<unknown>");
202 fprintf_unfiltered (file, "}");
203 }
204
205 /* Return a frame uniq ID that can be used to, later, re-find the
206 frame. */
207
208 struct frame_id
209 get_frame_id (struct frame_info *fi)
210 {
211 if (fi == NULL)
212 {
213 return null_frame_id;
214 }
215 if (!fi->this_id.p)
216 {
217 if (frame_debug)
218 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
219 fi->level);
220 /* Find the unwinder. */
221 if (fi->unwind == NULL)
222 fi->unwind = frame_unwind_find_by_frame (fi->next,
223 &fi->prologue_cache);
224 /* Find THIS frame's ID. */
225 fi->unwind->this_id (fi->next, &fi->prologue_cache, &fi->this_id.value);
226 fi->this_id.p = 1;
227 if (frame_debug)
228 {
229 fprintf_unfiltered (gdb_stdlog, "-> ");
230 fprint_frame_id (gdb_stdlog, fi->this_id.value);
231 fprintf_unfiltered (gdb_stdlog, " }\n");
232 }
233 }
234 return fi->this_id.value;
235 }
236
237 struct frame_id
238 frame_unwind_id (struct frame_info *next_frame)
239 {
240 /* Use prev_frame, and not get_prev_frame. The latter will truncate
241 the frame chain, leading to this function unintentionally
242 returning a null_frame_id (e.g., when a caller requests the frame
243 ID of "main()"s caller. */
244 return get_frame_id (get_prev_frame_1 (next_frame));
245 }
246
247 const struct frame_id null_frame_id; /* All zeros. */
248
249 struct frame_id
250 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
251 CORE_ADDR special_addr)
252 {
253 struct frame_id id = null_frame_id;
254 id.stack_addr = stack_addr;
255 id.stack_addr_p = 1;
256 id.code_addr = code_addr;
257 id.code_addr_p = 1;
258 id.special_addr = special_addr;
259 id.special_addr_p = 1;
260 return id;
261 }
262
263 struct frame_id
264 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
265 {
266 struct frame_id id = null_frame_id;
267 id.stack_addr = stack_addr;
268 id.stack_addr_p = 1;
269 id.code_addr = code_addr;
270 id.code_addr_p = 1;
271 return id;
272 }
273
274 struct frame_id
275 frame_id_build_wild (CORE_ADDR stack_addr)
276 {
277 struct frame_id id = null_frame_id;
278 id.stack_addr = stack_addr;
279 id.stack_addr_p = 1;
280 return id;
281 }
282
283 int
284 frame_id_p (struct frame_id l)
285 {
286 int p;
287 /* The frame is valid iff it has a valid stack address. */
288 p = l.stack_addr_p;
289 if (frame_debug)
290 {
291 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
292 fprint_frame_id (gdb_stdlog, l);
293 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
294 }
295 return p;
296 }
297
298 int
299 frame_id_eq (struct frame_id l, struct frame_id r)
300 {
301 int eq;
302 if (!l.stack_addr_p || !r.stack_addr_p)
303 /* Like a NaN, if either ID is invalid, the result is false.
304 Note that a frame ID is invalid iff it is the null frame ID. */
305 eq = 0;
306 else if (l.stack_addr != r.stack_addr)
307 /* If .stack addresses are different, the frames are different. */
308 eq = 0;
309 else if (!l.code_addr_p || !r.code_addr_p)
310 /* An invalid code addr is a wild card, always succeed. */
311 eq = 1;
312 else if (l.code_addr != r.code_addr)
313 /* If .code addresses are different, the frames are different. */
314 eq = 0;
315 else if (!l.special_addr_p || !r.special_addr_p)
316 /* An invalid special addr is a wild card (or unused), always succeed. */
317 eq = 1;
318 else if (l.special_addr == r.special_addr)
319 /* Frames are equal. */
320 eq = 1;
321 else
322 /* No luck. */
323 eq = 0;
324 if (frame_debug)
325 {
326 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
327 fprint_frame_id (gdb_stdlog, l);
328 fprintf_unfiltered (gdb_stdlog, ",r=");
329 fprint_frame_id (gdb_stdlog, r);
330 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
331 }
332 return eq;
333 }
334
335 int
336 frame_id_inner (struct frame_id l, struct frame_id r)
337 {
338 int inner;
339 if (!l.stack_addr_p || !r.stack_addr_p)
340 /* Like NaN, any operation involving an invalid ID always fails. */
341 inner = 0;
342 else
343 /* Only return non-zero when strictly inner than. Note that, per
344 comment in "frame.h", there is some fuzz here. Frameless
345 functions are not strictly inner than (same .stack but
346 different .code and/or .special address). */
347 inner = INNER_THAN (l.stack_addr, r.stack_addr);
348 if (frame_debug)
349 {
350 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
351 fprint_frame_id (gdb_stdlog, l);
352 fprintf_unfiltered (gdb_stdlog, ",r=");
353 fprint_frame_id (gdb_stdlog, r);
354 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
355 }
356 return inner;
357 }
358
359 struct frame_info *
360 frame_find_by_id (struct frame_id id)
361 {
362 struct frame_info *frame;
363
364 /* ZERO denotes the null frame, let the caller decide what to do
365 about it. Should it instead return get_current_frame()? */
366 if (!frame_id_p (id))
367 return NULL;
368
369 for (frame = get_current_frame ();
370 frame != NULL;
371 frame = get_prev_frame (frame))
372 {
373 struct frame_id this = get_frame_id (frame);
374 if (frame_id_eq (id, this))
375 /* An exact match. */
376 return frame;
377 if (frame_id_inner (id, this))
378 /* Gone to far. */
379 return NULL;
380 /* Either we're not yet gone far enough out along the frame
381 chain (inner(this,id)), or we're comparing frameless functions
382 (same .base, different .func, no test available). Struggle
383 on until we've definitly gone to far. */
384 }
385 return NULL;
386 }
387
388 CORE_ADDR
389 frame_pc_unwind (struct frame_info *this_frame)
390 {
391 if (!this_frame->prev_pc.p)
392 {
393 CORE_ADDR pc;
394 if (this_frame->unwind == NULL)
395 this_frame->unwind
396 = frame_unwind_find_by_frame (this_frame->next,
397 &this_frame->prologue_cache);
398 if (this_frame->unwind->prev_pc != NULL)
399 /* A per-frame unwinder, prefer it. */
400 pc = this_frame->unwind->prev_pc (this_frame->next,
401 &this_frame->prologue_cache);
402 else if (gdbarch_unwind_pc_p (current_gdbarch))
403 {
404 /* The right way. The `pure' way. The one true way. This
405 method depends solely on the register-unwind code to
406 determine the value of registers in THIS frame, and hence
407 the value of this frame's PC (resume address). A typical
408 implementation is no more than:
409
410 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
411 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
412
413 Note: this method is very heavily dependent on a correct
414 register-unwind implementation, it pays to fix that
415 method first; this method is frame type agnostic, since
416 it only deals with register values, it works with any
417 frame. This is all in stark contrast to the old
418 FRAME_SAVED_PC which would try to directly handle all the
419 different ways that a PC could be unwound. */
420 pc = gdbarch_unwind_pc (current_gdbarch, this_frame);
421 }
422 else
423 internal_error (__FILE__, __LINE__, "No unwind_pc method");
424 this_frame->prev_pc.value = pc;
425 this_frame->prev_pc.p = 1;
426 if (frame_debug)
427 fprintf_unfiltered (gdb_stdlog,
428 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
429 this_frame->level,
430 paddr_nz (this_frame->prev_pc.value));
431 }
432 return this_frame->prev_pc.value;
433 }
434
435 CORE_ADDR
436 frame_func_unwind (struct frame_info *fi)
437 {
438 if (!fi->prev_func.p)
439 {
440 /* Make certain that this, and not the adjacent, function is
441 found. */
442 CORE_ADDR addr_in_block = frame_unwind_address_in_block (fi);
443 fi->prev_func.p = 1;
444 fi->prev_func.addr = get_pc_function_start (addr_in_block);
445 if (frame_debug)
446 fprintf_unfiltered (gdb_stdlog,
447 "{ frame_func_unwind (fi=%d) -> 0x%s }\n",
448 fi->level, paddr_nz (fi->prev_func.addr));
449 }
450 return fi->prev_func.addr;
451 }
452
453 CORE_ADDR
454 get_frame_func (struct frame_info *fi)
455 {
456 return frame_func_unwind (fi->next);
457 }
458
459 static int
460 do_frame_register_read (void *src, int regnum, void *buf)
461 {
462 frame_register_read (src, regnum, buf);
463 return 1;
464 }
465
466 struct regcache *
467 frame_save_as_regcache (struct frame_info *this_frame)
468 {
469 struct regcache *regcache = regcache_xmalloc (current_gdbarch);
470 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
471 regcache_save (regcache, do_frame_register_read, this_frame);
472 discard_cleanups (cleanups);
473 return regcache;
474 }
475
476 void
477 frame_pop (struct frame_info *this_frame)
478 {
479 /* Make a copy of all the register values unwound from this frame.
480 Save them in a scratch buffer so that there isn't a race between
481 trying to extract the old values from the current_regcache while
482 at the same time writing new values into that same cache. */
483 struct regcache *scratch
484 = frame_save_as_regcache (get_prev_frame_1 (this_frame));
485 struct cleanup *cleanups = make_cleanup_regcache_xfree (scratch);
486
487 /* FIXME: cagney/2003-03-16: It should be possible to tell the
488 target's register cache that it is about to be hit with a burst
489 register transfer and that the sequence of register writes should
490 be batched. The pair target_prepare_to_store() and
491 target_store_registers() kind of suggest this functionality.
492 Unfortunately, they don't implement it. Their lack of a formal
493 definition can lead to targets writing back bogus values
494 (arguably a bug in the target code mind). */
495 /* Now copy those saved registers into the current regcache.
496 Here, regcache_cpy() calls regcache_restore(). */
497 regcache_cpy (current_regcache, scratch);
498 do_cleanups (cleanups);
499
500 /* We've made right mess of GDB's local state, just discard
501 everything. */
502 flush_cached_frames ();
503 }
504
505 void
506 frame_register_unwind (struct frame_info *frame, int regnum,
507 int *optimizedp, enum lval_type *lvalp,
508 CORE_ADDR *addrp, int *realnump, void *bufferp)
509 {
510 struct frame_unwind_cache *cache;
511
512 if (frame_debug)
513 {
514 fprintf_unfiltered (gdb_stdlog, "\
515 { frame_register_unwind (frame=%d,regnum=%d(%s),...) ",
516 frame->level, regnum,
517 frame_map_regnum_to_name (frame, regnum));
518 }
519
520 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
521 that the value proper does not need to be fetched. */
522 gdb_assert (optimizedp != NULL);
523 gdb_assert (lvalp != NULL);
524 gdb_assert (addrp != NULL);
525 gdb_assert (realnump != NULL);
526 /* gdb_assert (bufferp != NULL); */
527
528 /* NOTE: cagney/2002-11-27: A program trying to unwind a NULL frame
529 is broken. There is always a frame. If there, for some reason,
530 isn't a frame, there is some pretty busted code as it should have
531 detected the problem before calling here. */
532 gdb_assert (frame != NULL);
533
534 /* Find the unwinder. */
535 if (frame->unwind == NULL)
536 frame->unwind = frame_unwind_find_by_frame (frame->next,
537 &frame->prologue_cache);
538
539 /* Ask this frame to unwind its register. See comment in
540 "frame-unwind.h" for why NEXT frame and this unwind cache are
541 passed in. */
542 frame->unwind->prev_register (frame->next, &frame->prologue_cache, regnum,
543 optimizedp, lvalp, addrp, realnump, bufferp);
544
545 if (frame_debug)
546 {
547 fprintf_unfiltered (gdb_stdlog, "->");
548 fprintf_unfiltered (gdb_stdlog, " *optimizedp=%d", (*optimizedp));
549 fprintf_unfiltered (gdb_stdlog, " *lvalp=%d", (int) (*lvalp));
550 fprintf_unfiltered (gdb_stdlog, " *addrp=0x%s", paddr_nz ((*addrp)));
551 fprintf_unfiltered (gdb_stdlog, " *bufferp=");
552 if (bufferp == NULL)
553 fprintf_unfiltered (gdb_stdlog, "<NULL>");
554 else
555 {
556 int i;
557 const unsigned char *buf = bufferp;
558 fprintf_unfiltered (gdb_stdlog, "[");
559 for (i = 0; i < register_size (current_gdbarch, regnum); i++)
560 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
561 fprintf_unfiltered (gdb_stdlog, "]");
562 }
563 fprintf_unfiltered (gdb_stdlog, " }\n");
564 }
565 }
566
567 void
568 frame_register (struct frame_info *frame, int regnum,
569 int *optimizedp, enum lval_type *lvalp,
570 CORE_ADDR *addrp, int *realnump, void *bufferp)
571 {
572 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
573 that the value proper does not need to be fetched. */
574 gdb_assert (optimizedp != NULL);
575 gdb_assert (lvalp != NULL);
576 gdb_assert (addrp != NULL);
577 gdb_assert (realnump != NULL);
578 /* gdb_assert (bufferp != NULL); */
579
580 /* Obtain the register value by unwinding the register from the next
581 (more inner frame). */
582 gdb_assert (frame != NULL && frame->next != NULL);
583 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
584 realnump, bufferp);
585 }
586
587 void
588 frame_unwind_register (struct frame_info *frame, int regnum, void *buf)
589 {
590 int optimized;
591 CORE_ADDR addr;
592 int realnum;
593 enum lval_type lval;
594 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
595 &realnum, buf);
596 }
597
598 void
599 get_frame_register (struct frame_info *frame,
600 int regnum, void *buf)
601 {
602 frame_unwind_register (frame->next, regnum, buf);
603 }
604
605 LONGEST
606 frame_unwind_register_signed (struct frame_info *frame, int regnum)
607 {
608 char buf[MAX_REGISTER_SIZE];
609 frame_unwind_register (frame, regnum, buf);
610 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
611 regnum));
612 }
613
614 LONGEST
615 get_frame_register_signed (struct frame_info *frame, int regnum)
616 {
617 return frame_unwind_register_signed (frame->next, regnum);
618 }
619
620 ULONGEST
621 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
622 {
623 char buf[MAX_REGISTER_SIZE];
624 frame_unwind_register (frame, regnum, buf);
625 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
626 regnum));
627 }
628
629 ULONGEST
630 get_frame_register_unsigned (struct frame_info *frame, int regnum)
631 {
632 return frame_unwind_register_unsigned (frame->next, regnum);
633 }
634
635 void
636 frame_unwind_unsigned_register (struct frame_info *frame, int regnum,
637 ULONGEST *val)
638 {
639 char buf[MAX_REGISTER_SIZE];
640 frame_unwind_register (frame, regnum, buf);
641 (*val) = extract_unsigned_integer (buf,
642 register_size (get_frame_arch (frame),
643 regnum));
644 }
645
646 void
647 put_frame_register (struct frame_info *frame, int regnum, const void *buf)
648 {
649 struct gdbarch *gdbarch = get_frame_arch (frame);
650 int realnum;
651 int optim;
652 enum lval_type lval;
653 CORE_ADDR addr;
654 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
655 if (optim)
656 error ("Attempt to assign to a value that was optimized out.");
657 switch (lval)
658 {
659 case lval_memory:
660 {
661 /* FIXME: write_memory doesn't yet take constant buffers.
662 Arrrg! */
663 char tmp[MAX_REGISTER_SIZE];
664 memcpy (tmp, buf, register_size (gdbarch, regnum));
665 write_memory (addr, tmp, register_size (gdbarch, regnum));
666 break;
667 }
668 case lval_register:
669 regcache_cooked_write (current_regcache, realnum, buf);
670 break;
671 default:
672 error ("Attempt to assign to an unmodifiable value.");
673 }
674 }
675
676 /* frame_register_read ()
677
678 Find and return the value of REGNUM for the specified stack frame.
679 The number of bytes copied is REGISTER_SIZE (REGNUM).
680
681 Returns 0 if the register value could not be found. */
682
683 int
684 frame_register_read (struct frame_info *frame, int regnum, void *myaddr)
685 {
686 int optimized;
687 enum lval_type lval;
688 CORE_ADDR addr;
689 int realnum;
690 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
691
692 /* FIXME: cagney/2002-05-15: This test is just bogus.
693
694 It indicates that the target failed to supply a value for a
695 register because it was "not available" at this time. Problem
696 is, the target still has the register and so get saved_register()
697 may be returning a value saved on the stack. */
698
699 if (register_cached (regnum) < 0)
700 return 0; /* register value not available */
701
702 return !optimized;
703 }
704
705
706 /* Map between a frame register number and its name. A frame register
707 space is a superset of the cooked register space --- it also
708 includes builtin registers. */
709
710 int
711 frame_map_name_to_regnum (struct frame_info *frame, const char *name, int len)
712 {
713 return user_reg_map_name_to_regnum (get_frame_arch (frame), name, len);
714 }
715
716 const char *
717 frame_map_regnum_to_name (struct frame_info *frame, int regnum)
718 {
719 return user_reg_map_regnum_to_name (get_frame_arch (frame), regnum);
720 }
721
722 /* Create a sentinel frame. */
723
724 static struct frame_info *
725 create_sentinel_frame (struct regcache *regcache)
726 {
727 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
728 frame->level = -1;
729 /* Explicitly initialize the sentinel frame's cache. Provide it
730 with the underlying regcache. In the future additional
731 information, such as the frame's thread will be added. */
732 frame->prologue_cache = sentinel_frame_cache (regcache);
733 /* For the moment there is only one sentinel frame implementation. */
734 frame->unwind = sentinel_frame_unwind;
735 /* Link this frame back to itself. The frame is self referential
736 (the unwound PC is the same as the pc), so make it so. */
737 frame->next = frame;
738 /* Make the sentinel frame's ID valid, but invalid. That way all
739 comparisons with it should fail. */
740 frame->this_id.p = 1;
741 frame->this_id.value = null_frame_id;
742 if (frame_debug)
743 {
744 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
745 fprint_frame (gdb_stdlog, frame);
746 fprintf_unfiltered (gdb_stdlog, " }\n");
747 }
748 return frame;
749 }
750
751 /* Info about the innermost stack frame (contents of FP register) */
752
753 static struct frame_info *current_frame;
754
755 /* Cache for frame addresses already read by gdb. Valid only while
756 inferior is stopped. Control variables for the frame cache should
757 be local to this module. */
758
759 static struct obstack frame_cache_obstack;
760
761 void *
762 frame_obstack_zalloc (unsigned long size)
763 {
764 void *data = obstack_alloc (&frame_cache_obstack, size);
765 memset (data, 0, size);
766 return data;
767 }
768
769 /* Return the innermost (currently executing) stack frame. This is
770 split into two functions. The function unwind_to_current_frame()
771 is wrapped in catch exceptions so that, even when the unwind of the
772 sentinel frame fails, the function still returns a stack frame. */
773
774 static int
775 unwind_to_current_frame (struct ui_out *ui_out, void *args)
776 {
777 struct frame_info *frame = get_prev_frame (args);
778 /* A sentinel frame can fail to unwind, e.g., because its PC value
779 lands in somewhere like start. */
780 if (frame == NULL)
781 return 1;
782 current_frame = frame;
783 return 0;
784 }
785
786 struct frame_info *
787 get_current_frame (void)
788 {
789 /* First check, and report, the lack of registers. Having GDB
790 report "No stack!" or "No memory" when the target doesn't even
791 have registers is very confusing. Besides, "printcmd.exp"
792 explicitly checks that ``print $pc'' with no registers prints "No
793 registers". */
794 if (!target_has_registers)
795 error ("No registers.");
796 if (!target_has_stack)
797 error ("No stack.");
798 if (!target_has_memory)
799 error ("No memory.");
800 if (current_frame == NULL)
801 {
802 struct frame_info *sentinel_frame =
803 create_sentinel_frame (current_regcache);
804 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
805 NULL, RETURN_MASK_ERROR) != 0)
806 {
807 /* Oops! Fake a current frame? Is this useful? It has a PC
808 of zero, for instance. */
809 current_frame = sentinel_frame;
810 }
811 }
812 return current_frame;
813 }
814
815 /* The "selected" stack frame is used by default for local and arg
816 access. May be zero, for no selected frame. */
817
818 struct frame_info *deprecated_selected_frame;
819
820 /* Return the selected frame. Always non-NULL (unless there isn't an
821 inferior sufficient for creating a frame) in which case an error is
822 thrown. */
823
824 struct frame_info *
825 get_selected_frame (const char *message)
826 {
827 if (deprecated_selected_frame == NULL)
828 {
829 if (message != NULL && (!target_has_registers
830 || !target_has_stack
831 || !target_has_memory))
832 error ("%s", message);
833 /* Hey! Don't trust this. It should really be re-finding the
834 last selected frame of the currently selected thread. This,
835 though, is better than nothing. */
836 select_frame (get_current_frame ());
837 }
838 /* There is always a frame. */
839 gdb_assert (deprecated_selected_frame != NULL);
840 return deprecated_selected_frame;
841 }
842
843 /* This is a variant of get_selected_frame() which can be called when
844 the inferior does not have a frame; in that case it will return
845 NULL instead of calling error(). */
846
847 struct frame_info *
848 deprecated_safe_get_selected_frame (void)
849 {
850 if (!target_has_registers || !target_has_stack || !target_has_memory)
851 return NULL;
852 return get_selected_frame (NULL);
853 }
854
855 /* Select frame FI (or NULL - to invalidate the current frame). */
856
857 void
858 select_frame (struct frame_info *fi)
859 {
860 struct symtab *s;
861
862 deprecated_selected_frame = fi;
863 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
864 frame is being invalidated. */
865 if (deprecated_selected_frame_level_changed_hook)
866 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
867
868 /* FIXME: kseitz/2002-08-28: It would be nice to call
869 selected_frame_level_changed_event() right here, but due to limitations
870 in the current interfaces, we would end up flooding UIs with events
871 because select_frame() is used extensively internally.
872
873 Once we have frame-parameterized frame (and frame-related) commands,
874 the event notification can be moved here, since this function will only
875 be called when the user's selected frame is being changed. */
876
877 /* Ensure that symbols for this frame are read in. Also, determine the
878 source language of this frame, and switch to it if desired. */
879 if (fi)
880 {
881 /* We retrieve the frame's symtab by using the frame PC. However
882 we cannot use the frame PC as-is, because it usually points to
883 the instruction following the "call", which is sometimes the
884 first instruction of another function. So we rely on
885 get_frame_address_in_block() which provides us with a PC which
886 is guaranteed to be inside the frame's code block. */
887 s = find_pc_symtab (get_frame_address_in_block (fi));
888 if (s
889 && s->language != current_language->la_language
890 && s->language != language_unknown
891 && language_mode == language_mode_auto)
892 {
893 set_language (s->language);
894 }
895 }
896 }
897
898 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
899 Always returns a non-NULL value. */
900
901 struct frame_info *
902 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
903 {
904 struct frame_info *fi;
905
906 if (frame_debug)
907 {
908 fprintf_unfiltered (gdb_stdlog,
909 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
910 paddr_nz (addr), paddr_nz (pc));
911 }
912
913 fi = frame_obstack_zalloc (sizeof (struct frame_info));
914
915 fi->next = create_sentinel_frame (current_regcache);
916
917 /* Select/initialize both the unwind function and the frame's type
918 based on the PC. */
919 fi->unwind = frame_unwind_find_by_frame (fi->next, &fi->prologue_cache);
920
921 fi->this_id.p = 1;
922 deprecated_update_frame_base_hack (fi, addr);
923 deprecated_update_frame_pc_hack (fi, pc);
924
925 if (frame_debug)
926 {
927 fprintf_unfiltered (gdb_stdlog, "-> ");
928 fprint_frame (gdb_stdlog, fi);
929 fprintf_unfiltered (gdb_stdlog, " }\n");
930 }
931
932 return fi;
933 }
934
935 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
936 innermost frame). Be careful to not fall off the bottom of the
937 frame chain and onto the sentinel frame. */
938
939 struct frame_info *
940 get_next_frame (struct frame_info *this_frame)
941 {
942 if (this_frame->level > 0)
943 return this_frame->next;
944 else
945 return NULL;
946 }
947
948 /* Observer for the target_changed event. */
949
950 void
951 frame_observer_target_changed (struct target_ops *target)
952 {
953 flush_cached_frames ();
954 }
955
956 /* Flush the entire frame cache. */
957
958 void
959 flush_cached_frames (void)
960 {
961 /* Since we can't really be sure what the first object allocated was */
962 obstack_free (&frame_cache_obstack, 0);
963 obstack_init (&frame_cache_obstack);
964
965 current_frame = NULL; /* Invalidate cache */
966 select_frame (NULL);
967 annotate_frames_invalid ();
968 if (frame_debug)
969 fprintf_unfiltered (gdb_stdlog, "{ flush_cached_frames () }\n");
970 }
971
972 /* Flush the frame cache, and start a new one if necessary. */
973
974 void
975 reinit_frame_cache (void)
976 {
977 flush_cached_frames ();
978
979 /* FIXME: The inferior_ptid test is wrong if there is a corefile. */
980 if (PIDGET (inferior_ptid) != 0)
981 {
982 select_frame (get_current_frame ());
983 }
984 }
985
986 /* Return a "struct frame_info" corresponding to the frame that called
987 THIS_FRAME. Returns NULL if there is no such frame.
988
989 Unlike get_prev_frame, this function always tries to unwind the
990 frame. */
991
992 static struct frame_info *
993 get_prev_frame_1 (struct frame_info *this_frame)
994 {
995 struct frame_info *prev_frame;
996 struct frame_id this_id;
997
998 gdb_assert (this_frame != NULL);
999
1000 if (frame_debug)
1001 {
1002 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1003 if (this_frame != NULL)
1004 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1005 else
1006 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1007 fprintf_unfiltered (gdb_stdlog, ") ");
1008 }
1009
1010 /* Only try to do the unwind once. */
1011 if (this_frame->prev_p)
1012 {
1013 if (frame_debug)
1014 {
1015 fprintf_unfiltered (gdb_stdlog, "-> ");
1016 fprint_frame (gdb_stdlog, this_frame->prev);
1017 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1018 }
1019 return this_frame->prev;
1020 }
1021 this_frame->prev_p = 1;
1022
1023 /* Check that this frame's ID was valid. If it wasn't, don't try to
1024 unwind to the prev frame. Be careful to not apply this test to
1025 the sentinel frame. */
1026 this_id = get_frame_id (this_frame);
1027 if (this_frame->level >= 0 && !frame_id_p (this_id))
1028 {
1029 if (frame_debug)
1030 {
1031 fprintf_unfiltered (gdb_stdlog, "-> ");
1032 fprint_frame (gdb_stdlog, NULL);
1033 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1034 }
1035 return NULL;
1036 }
1037
1038 /* Check that this frame's ID isn't inner to (younger, below, next)
1039 the next frame. This happens when a frame unwind goes backwards.
1040 Exclude signal trampolines (due to sigaltstack the frame ID can
1041 go backwards) and sentinel frames (the test is meaningless). */
1042 if (this_frame->next->level >= 0
1043 && this_frame->next->unwind->type != SIGTRAMP_FRAME
1044 && frame_id_inner (this_id, get_frame_id (this_frame->next)))
1045 error ("Previous frame inner to this frame (corrupt stack?)");
1046
1047 /* Check that this and the next frame are not identical. If they
1048 are, there is most likely a stack cycle. As with the inner-than
1049 test above, avoid comparing the inner-most and sentinel frames. */
1050 if (this_frame->level > 0
1051 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1052 error ("Previous frame identical to this frame (corrupt stack?)");
1053
1054 /* Allocate the new frame but do not wire it in to the frame chain.
1055 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1056 frame->next to pull some fancy tricks (of course such code is, by
1057 definition, recursive). Try to prevent it.
1058
1059 There is no reason to worry about memory leaks, should the
1060 remainder of the function fail. The allocated memory will be
1061 quickly reclaimed when the frame cache is flushed, and the `we've
1062 been here before' check above will stop repeated memory
1063 allocation calls. */
1064 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1065 prev_frame->level = this_frame->level + 1;
1066
1067 /* Don't yet compute ->unwind (and hence ->type). It is computed
1068 on-demand in get_frame_type, frame_register_unwind, and
1069 get_frame_id. */
1070
1071 /* Don't yet compute the frame's ID. It is computed on-demand by
1072 get_frame_id(). */
1073
1074 /* The unwound frame ID is validate at the start of this function,
1075 as part of the logic to decide if that frame should be further
1076 unwound, and not here while the prev frame is being created.
1077 Doing this makes it possible for the user to examine a frame that
1078 has an invalid frame ID.
1079
1080 Some very old VAX code noted: [...] For the sake of argument,
1081 suppose that the stack is somewhat trashed (which is one reason
1082 that "info frame" exists). So, return 0 (indicating we don't
1083 know the address of the arglist) if we don't know what frame this
1084 frame calls. */
1085
1086 /* Link it in. */
1087 this_frame->prev = prev_frame;
1088 prev_frame->next = this_frame;
1089
1090 if (frame_debug)
1091 {
1092 fprintf_unfiltered (gdb_stdlog, "-> ");
1093 fprint_frame (gdb_stdlog, prev_frame);
1094 fprintf_unfiltered (gdb_stdlog, " }\n");
1095 }
1096
1097 return prev_frame;
1098 }
1099
1100 /* Debug routine to print a NULL frame being returned. */
1101
1102 static void
1103 frame_debug_got_null_frame (struct ui_file *file,
1104 struct frame_info *this_frame,
1105 const char *reason)
1106 {
1107 if (frame_debug)
1108 {
1109 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1110 if (this_frame != NULL)
1111 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1112 else
1113 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1114 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1115 }
1116 }
1117
1118 /* Is this (non-sentinel) frame in the "main"() function? */
1119
1120 static int
1121 inside_main_func (struct frame_info *this_frame)
1122 {
1123 struct minimal_symbol *msymbol;
1124 CORE_ADDR maddr;
1125
1126 if (symfile_objfile == 0)
1127 return 0;
1128 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1129 if (msymbol == NULL)
1130 return 0;
1131 /* Make certain that the code, and not descriptor, address is
1132 returned. */
1133 maddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
1134 SYMBOL_VALUE_ADDRESS (msymbol),
1135 &current_target);
1136 return maddr == get_frame_func (this_frame);
1137 }
1138
1139 /* Test whether THIS_FRAME is inside the process entry point function. */
1140
1141 static int
1142 inside_entry_func (struct frame_info *this_frame)
1143 {
1144 return (get_frame_func (this_frame) == entry_point_address ());
1145 }
1146
1147 /* Return a structure containing various interesting information about
1148 the frame that called THIS_FRAME. Returns NULL if there is entier
1149 no such frame or the frame fails any of a set of target-independent
1150 condition that should terminate the frame chain (e.g., as unwinding
1151 past main()).
1152
1153 This function should not contain target-dependent tests, such as
1154 checking whether the program-counter is zero. */
1155
1156 struct frame_info *
1157 get_prev_frame (struct frame_info *this_frame)
1158 {
1159 struct frame_info *prev_frame;
1160
1161 /* Return the inner-most frame, when the caller passes in NULL. */
1162 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1163 caller should have previously obtained a valid frame using
1164 get_selected_frame() and then called this code - only possibility
1165 I can think of is code behaving badly.
1166
1167 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1168 block_innermost_frame(). It does the sequence: frame = NULL;
1169 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1170 it couldn't be written better, I don't know.
1171
1172 NOTE: cagney/2003-01-11: I suspect what is happening in
1173 block_innermost_frame() is, when the target has no state
1174 (registers, memory, ...), it is still calling this function. The
1175 assumption being that this function will return NULL indicating
1176 that a frame isn't possible, rather than checking that the target
1177 has state and then calling get_current_frame() and
1178 get_prev_frame(). This is a guess mind. */
1179 if (this_frame == NULL)
1180 {
1181 /* NOTE: cagney/2002-11-09: There was a code segment here that
1182 would error out when CURRENT_FRAME was NULL. The comment
1183 that went with it made the claim ...
1184
1185 ``This screws value_of_variable, which just wants a nice
1186 clean NULL return from block_innermost_frame if there are no
1187 frames. I don't think I've ever seen this message happen
1188 otherwise. And returning NULL here is a perfectly legitimate
1189 thing to do.''
1190
1191 Per the above, this code shouldn't even be called with a NULL
1192 THIS_FRAME. */
1193 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1194 return current_frame;
1195 }
1196
1197 /* There is always a frame. If this assertion fails, suspect that
1198 something should be calling get_selected_frame() or
1199 get_current_frame(). */
1200 gdb_assert (this_frame != NULL);
1201
1202 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1203 sense to stop unwinding at a dummy frame. One place where a dummy
1204 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1205 pcsqh register (space register for the instruction at the head of the
1206 instruction queue) cannot be written directly; the only way to set it
1207 is to branch to code that is in the target space. In order to implement
1208 frame dummies on HPUX, the called function is made to jump back to where
1209 the inferior was when the user function was called. If gdb was inside
1210 the main function when we created the dummy frame, the dummy frame will
1211 point inside the main function. */
1212 if (this_frame->level >= 0
1213 && get_frame_type (this_frame) != DUMMY_FRAME
1214 && !backtrace_past_main
1215 && inside_main_func (this_frame))
1216 /* Don't unwind past main(). Note, this is done _before_ the
1217 frame has been marked as previously unwound. That way if the
1218 user later decides to enable unwinds past main(), that will
1219 automatically happen. */
1220 {
1221 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1222 return NULL;
1223 }
1224
1225 if (this_frame->level > backtrace_limit)
1226 {
1227 error ("Backtrace limit of %d exceeded", backtrace_limit);
1228 }
1229
1230 /* If we're already inside the entry function for the main objfile,
1231 then it isn't valid. Don't apply this test to a dummy frame -
1232 dummy frame PCs typically land in the entry func. Don't apply
1233 this test to the sentinel frame. Sentinel frames should always
1234 be allowed to unwind. */
1235 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1236 wasn't checking for "main" in the minimal symbols. With that
1237 fixed asm-source tests now stop in "main" instead of halting the
1238 backtrace in weird and wonderful ways somewhere inside the entry
1239 file. Suspect that tests for inside the entry file/func were
1240 added to work around that (now fixed) case. */
1241 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1242 suggested having the inside_entry_func test use the
1243 inside_main_func() msymbol trick (along with entry_point_address()
1244 I guess) to determine the address range of the start function.
1245 That should provide a far better stopper than the current
1246 heuristics. */
1247 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1248 applied tail-call optimizations to main so that a function called
1249 from main returns directly to the caller of main. Since we don't
1250 stop at main, we should at least stop at the entry point of the
1251 application. */
1252 if (!backtrace_past_entry
1253 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1254 && inside_entry_func (this_frame))
1255 {
1256 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1257 return NULL;
1258 }
1259
1260 /* Assume that the only way to get a zero PC is through something
1261 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1262 will never unwind a zero PC. */
1263 if (this_frame->level > 0
1264 && get_frame_type (this_frame) == NORMAL_FRAME
1265 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1266 && get_frame_pc (this_frame) == 0)
1267 {
1268 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1269 return NULL;
1270 }
1271
1272 return get_prev_frame_1 (this_frame);
1273 }
1274
1275 CORE_ADDR
1276 get_frame_pc (struct frame_info *frame)
1277 {
1278 gdb_assert (frame->next != NULL);
1279 return frame_pc_unwind (frame->next);
1280 }
1281
1282 /* Return an address of that falls within the frame's code block. */
1283
1284 CORE_ADDR
1285 frame_unwind_address_in_block (struct frame_info *next_frame)
1286 {
1287 /* A draft address. */
1288 CORE_ADDR pc = frame_pc_unwind (next_frame);
1289
1290 /* If THIS frame is not inner most (i.e., NEXT isn't the sentinel),
1291 and NEXT is `normal' (i.e., not a sigtramp, dummy, ....) THIS
1292 frame's PC ends up pointing at the instruction fallowing the
1293 "call". Adjust that PC value so that it falls on the call
1294 instruction (which, hopefully, falls within THIS frame's code
1295 block. So far it's proved to be a very good approximation. See
1296 get_frame_type() for why ->type can't be used. */
1297 if (next_frame->level >= 0
1298 && get_frame_type (next_frame) == NORMAL_FRAME)
1299 --pc;
1300 return pc;
1301 }
1302
1303 CORE_ADDR
1304 get_frame_address_in_block (struct frame_info *this_frame)
1305 {
1306 return frame_unwind_address_in_block (this_frame->next);
1307 }
1308
1309 static int
1310 pc_notcurrent (struct frame_info *frame)
1311 {
1312 /* If FRAME is not the innermost frame, that normally means that
1313 FRAME->pc points at the return instruction (which is *after* the
1314 call instruction), and we want to get the line containing the
1315 call (because the call is where the user thinks the program is).
1316 However, if the next frame is either a SIGTRAMP_FRAME or a
1317 DUMMY_FRAME, then the next frame will contain a saved interrupt
1318 PC and such a PC indicates the current (rather than next)
1319 instruction/line, consequently, for such cases, want to get the
1320 line containing fi->pc. */
1321 struct frame_info *next = get_next_frame (frame);
1322 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1323 return notcurrent;
1324 }
1325
1326 void
1327 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1328 {
1329 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1330 }
1331
1332 /* Per "frame.h", return the ``address'' of the frame. Code should
1333 really be using get_frame_id(). */
1334 CORE_ADDR
1335 get_frame_base (struct frame_info *fi)
1336 {
1337 return get_frame_id (fi).stack_addr;
1338 }
1339
1340 /* High-level offsets into the frame. Used by the debug info. */
1341
1342 CORE_ADDR
1343 get_frame_base_address (struct frame_info *fi)
1344 {
1345 if (get_frame_type (fi) != NORMAL_FRAME)
1346 return 0;
1347 if (fi->base == NULL)
1348 fi->base = frame_base_find_by_frame (fi->next);
1349 /* Sneaky: If the low-level unwind and high-level base code share a
1350 common unwinder, let them share the prologue cache. */
1351 if (fi->base->unwind == fi->unwind)
1352 return fi->base->this_base (fi->next, &fi->prologue_cache);
1353 return fi->base->this_base (fi->next, &fi->base_cache);
1354 }
1355
1356 CORE_ADDR
1357 get_frame_locals_address (struct frame_info *fi)
1358 {
1359 void **cache;
1360 if (get_frame_type (fi) != NORMAL_FRAME)
1361 return 0;
1362 /* If there isn't a frame address method, find it. */
1363 if (fi->base == NULL)
1364 fi->base = frame_base_find_by_frame (fi->next);
1365 /* Sneaky: If the low-level unwind and high-level base code share a
1366 common unwinder, let them share the prologue cache. */
1367 if (fi->base->unwind == fi->unwind)
1368 cache = &fi->prologue_cache;
1369 else
1370 cache = &fi->base_cache;
1371 return fi->base->this_locals (fi->next, cache);
1372 }
1373
1374 CORE_ADDR
1375 get_frame_args_address (struct frame_info *fi)
1376 {
1377 void **cache;
1378 if (get_frame_type (fi) != NORMAL_FRAME)
1379 return 0;
1380 /* If there isn't a frame address method, find it. */
1381 if (fi->base == NULL)
1382 fi->base = frame_base_find_by_frame (fi->next);
1383 /* Sneaky: If the low-level unwind and high-level base code share a
1384 common unwinder, let them share the prologue cache. */
1385 if (fi->base->unwind == fi->unwind)
1386 cache = &fi->prologue_cache;
1387 else
1388 cache = &fi->base_cache;
1389 return fi->base->this_args (fi->next, cache);
1390 }
1391
1392 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1393 or -1 for a NULL frame. */
1394
1395 int
1396 frame_relative_level (struct frame_info *fi)
1397 {
1398 if (fi == NULL)
1399 return -1;
1400 else
1401 return fi->level;
1402 }
1403
1404 enum frame_type
1405 get_frame_type (struct frame_info *frame)
1406 {
1407 if (frame->unwind == NULL)
1408 /* Initialize the frame's unwinder because that's what
1409 provides the frame's type. */
1410 frame->unwind = frame_unwind_find_by_frame (frame->next,
1411 &frame->prologue_cache);
1412 return frame->unwind->type;
1413 }
1414
1415 void
1416 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1417 {
1418 if (frame_debug)
1419 fprintf_unfiltered (gdb_stdlog,
1420 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1421 frame->level, paddr_nz (pc));
1422 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1423 maintaining a locally allocated frame object. Since such frames
1424 are not in the frame chain, it isn't possible to assume that the
1425 frame has a next. Sigh. */
1426 if (frame->next != NULL)
1427 {
1428 /* While we're at it, update this frame's cached PC value, found
1429 in the next frame. Oh for the day when "struct frame_info"
1430 is opaque and this hack on hack can just go away. */
1431 frame->next->prev_pc.value = pc;
1432 frame->next->prev_pc.p = 1;
1433 }
1434 }
1435
1436 void
1437 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1438 {
1439 if (frame_debug)
1440 fprintf_unfiltered (gdb_stdlog,
1441 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1442 frame->level, paddr_nz (base));
1443 /* See comment in "frame.h". */
1444 frame->this_id.value.stack_addr = base;
1445 }
1446
1447 /* Memory access methods. */
1448
1449 void
1450 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr, void *buf,
1451 int len)
1452 {
1453 read_memory (addr, buf, len);
1454 }
1455
1456 LONGEST
1457 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1458 int len)
1459 {
1460 return read_memory_integer (addr, len);
1461 }
1462
1463 ULONGEST
1464 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1465 int len)
1466 {
1467 return read_memory_unsigned_integer (addr, len);
1468 }
1469
1470 int
1471 safe_frame_unwind_memory (struct frame_info *this_frame,
1472 CORE_ADDR addr, void *buf, int len)
1473 {
1474 /* NOTE: deprecated_read_memory_nobpt returns zero on success! */
1475 return !deprecated_read_memory_nobpt (addr, buf, len);
1476 }
1477
1478 /* Architecture method. */
1479
1480 struct gdbarch *
1481 get_frame_arch (struct frame_info *this_frame)
1482 {
1483 return current_gdbarch;
1484 }
1485
1486 /* Stack pointer methods. */
1487
1488 CORE_ADDR
1489 get_frame_sp (struct frame_info *this_frame)
1490 {
1491 return frame_sp_unwind (this_frame->next);
1492 }
1493
1494 CORE_ADDR
1495 frame_sp_unwind (struct frame_info *next_frame)
1496 {
1497 /* Normality - an architecture that provides a way of obtaining any
1498 frame inner-most address. */
1499 if (gdbarch_unwind_sp_p (current_gdbarch))
1500 return gdbarch_unwind_sp (current_gdbarch, next_frame);
1501 /* Things are looking grim. If it's the inner-most frame and there
1502 is a TARGET_READ_SP, then that can be used. */
1503 if (next_frame->level < 0 && TARGET_READ_SP_P ())
1504 return TARGET_READ_SP ();
1505 /* Now things are really are grim. Hope that the value returned by
1506 the SP_REGNUM register is meaningful. */
1507 if (SP_REGNUM >= 0)
1508 {
1509 ULONGEST sp;
1510 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1511 return sp;
1512 }
1513 internal_error (__FILE__, __LINE__, "Missing unwind SP method");
1514 }
1515
1516 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1517
1518 static struct cmd_list_element *set_backtrace_cmdlist;
1519 static struct cmd_list_element *show_backtrace_cmdlist;
1520
1521 static void
1522 set_backtrace_cmd (char *args, int from_tty)
1523 {
1524 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1525 }
1526
1527 static void
1528 show_backtrace_cmd (char *args, int from_tty)
1529 {
1530 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1531 }
1532
1533 void
1534 _initialize_frame (void)
1535 {
1536 obstack_init (&frame_cache_obstack);
1537
1538 observer_attach_target_changed (frame_observer_target_changed);
1539
1540 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, "\
1541 Set backtrace specific variables.\n\
1542 Configure backtrace variables such as the backtrace limit",
1543 &set_backtrace_cmdlist, "set backtrace ",
1544 0/*allow-unknown*/, &setlist);
1545 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, "\
1546 Show backtrace specific variables\n\
1547 Show backtrace variables such as the backtrace limit",
1548 &show_backtrace_cmdlist, "show backtrace ",
1549 0/*allow-unknown*/, &showlist);
1550
1551 add_setshow_boolean_cmd ("past-main", class_obscure,
1552 &backtrace_past_main, "\
1553 Set whether backtraces should continue past \"main\".", "\
1554 Show whether backtraces should continue past \"main\".", "\
1555 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1556 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1557 of the stack trace.", "\
1558 Whether backtraces should continue past \"main\" is %s.",
1559 NULL, NULL, &set_backtrace_cmdlist,
1560 &show_backtrace_cmdlist);
1561
1562 add_setshow_boolean_cmd ("past-entry", class_obscure,
1563 &backtrace_past_entry, "\
1564 Set whether backtraces should continue past the entry point of a program.", "\
1565 Show whether backtraces should continue past the entry point of a program.", "\
1566 Normally there are no callers beyond the entry point of a program, so GDB\n\
1567 will terminate the backtrace there. Set this variable if you need to see \n\
1568 the rest of the stack trace.", "\
1569 Whether backtraces should continue past the entry point is %s.",
1570 NULL, NULL, &set_backtrace_cmdlist,
1571 &show_backtrace_cmdlist);
1572
1573 add_setshow_uinteger_cmd ("limit", class_obscure,
1574 &backtrace_limit, "\
1575 Set an upper bound on the number of backtrace levels.", "\
1576 Show the upper bound on the number of backtrace levels.", "\
1577 No more than the specified number of frames can be displayed or examined.\n\
1578 Zero is unlimited.", "\
1579 An upper bound on the number of backtrace levels is %s.",
1580 NULL, NULL, &set_backtrace_cmdlist,
1581 &show_backtrace_cmdlist);
1582
1583 /* Debug this files internals. */
1584 deprecated_add_show_from_set
1585 (add_set_cmd ("frame", class_maintenance, var_zinteger,
1586 &frame_debug, "Set frame debugging.\n\
1587 When non-zero, frame specific internal debugging is enabled.", &setdebuglist),
1588 &showdebuglist);
1589 }
This page took 0.343616 seconds and 4 git commands to generate.