*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44 #include "block.h"
45 #include "inline-frame.h"
46
47 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
48 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
49
50 /* We keep a cache of stack frames, each of which is a "struct
51 frame_info". The innermost one gets allocated (in
52 wait_for_inferior) each time the inferior stops; current_frame
53 points to it. Additional frames get allocated (in get_prev_frame)
54 as needed, and are chained through the next and prev fields. Any
55 time that the frame cache becomes invalid (most notably when we
56 execute something, but also if we change how we interpret the
57 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
58 which reads new symbols)), we should call reinit_frame_cache. */
59
60 struct frame_info
61 {
62 /* Level of this frame. The inner-most (youngest) frame is at level
63 0. As you move towards the outer-most (oldest) frame, the level
64 increases. This is a cached value. It could just as easily be
65 computed by counting back from the selected frame to the inner
66 most frame. */
67 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
68 reserved to indicate a bogus frame - one that has been created
69 just to keep GDB happy (GDB always needs a frame). For the
70 moment leave this as speculation. */
71 int level;
72
73 /* The frame's low-level unwinder and corresponding cache. The
74 low-level unwinder is responsible for unwinding register values
75 for the previous frame. The low-level unwind methods are
76 selected based on the presence, or otherwise, of register unwind
77 information such as CFI. */
78 void *prologue_cache;
79 const struct frame_unwind *unwind;
80
81 /* Cached copy of the previous frame's architecture. */
82 struct
83 {
84 int p;
85 struct gdbarch *arch;
86 } prev_arch;
87
88 /* Cached copy of the previous frame's resume address. */
89 struct {
90 int p;
91 CORE_ADDR value;
92 } prev_pc;
93
94 /* Cached copy of the previous frame's function address. */
95 struct
96 {
97 CORE_ADDR addr;
98 int p;
99 } prev_func;
100
101 /* This frame's ID. */
102 struct
103 {
104 int p;
105 struct frame_id value;
106 } this_id;
107
108 /* The frame's high-level base methods, and corresponding cache.
109 The high level base methods are selected based on the frame's
110 debug info. */
111 const struct frame_base *base;
112 void *base_cache;
113
114 /* Pointers to the next (down, inner, younger) and previous (up,
115 outer, older) frame_info's in the frame cache. */
116 struct frame_info *next; /* down, inner, younger */
117 int prev_p;
118 struct frame_info *prev; /* up, outer, older */
119
120 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
121 could. Only valid when PREV_P is set. */
122 enum unwind_stop_reason stop_reason;
123 };
124
125 /* A frame stash used to speed up frame lookups. */
126
127 /* We currently only stash one frame at a time, as this seems to be
128 sufficient for now. */
129 static struct frame_info *frame_stash = NULL;
130
131 /* Add the following FRAME to the frame stash. */
132
133 static void
134 frame_stash_add (struct frame_info *frame)
135 {
136 frame_stash = frame;
137 }
138
139 /* Search the frame stash for an entry with the given frame ID.
140 If found, return that frame. Otherwise return NULL. */
141
142 static struct frame_info *
143 frame_stash_find (struct frame_id id)
144 {
145 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
146 return frame_stash;
147
148 return NULL;
149 }
150
151 /* Invalidate the frame stash by removing all entries in it. */
152
153 static void
154 frame_stash_invalidate (void)
155 {
156 frame_stash = NULL;
157 }
158
159 /* Flag to control debugging. */
160
161 int frame_debug;
162 static void
163 show_frame_debug (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165 {
166 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
167 }
168
169 /* Flag to indicate whether backtraces should stop at main et.al. */
170
171 static int backtrace_past_main;
172 static void
173 show_backtrace_past_main (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("\
177 Whether backtraces should continue past \"main\" is %s.\n"),
178 value);
179 }
180
181 static int backtrace_past_entry;
182 static void
183 show_backtrace_past_entry (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185 {
186 fprintf_filtered (file, _("\
187 Whether backtraces should continue past the entry point of a program is %s.\n"),
188 value);
189 }
190
191 static int backtrace_limit = INT_MAX;
192 static void
193 show_backtrace_limit (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 fprintf_filtered (file, _("\
197 An upper bound on the number of backtrace levels is %s.\n"),
198 value);
199 }
200
201
202 static void
203 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
204 {
205 if (p)
206 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
207 else
208 fprintf_unfiltered (file, "!%s", name);
209 }
210
211 void
212 fprint_frame_id (struct ui_file *file, struct frame_id id)
213 {
214 fprintf_unfiltered (file, "{");
215 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
216 fprintf_unfiltered (file, ",");
217 fprint_field (file, "code", id.code_addr_p, id.code_addr);
218 fprintf_unfiltered (file, ",");
219 fprint_field (file, "special", id.special_addr_p, id.special_addr);
220 if (id.inline_depth)
221 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
222 fprintf_unfiltered (file, "}");
223 }
224
225 static void
226 fprint_frame_type (struct ui_file *file, enum frame_type type)
227 {
228 switch (type)
229 {
230 case NORMAL_FRAME:
231 fprintf_unfiltered (file, "NORMAL_FRAME");
232 return;
233 case DUMMY_FRAME:
234 fprintf_unfiltered (file, "DUMMY_FRAME");
235 return;
236 case INLINE_FRAME:
237 fprintf_unfiltered (file, "INLINE_FRAME");
238 return;
239 case SENTINEL_FRAME:
240 fprintf_unfiltered (file, "SENTINEL_FRAME");
241 return;
242 case SIGTRAMP_FRAME:
243 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
244 return;
245 case ARCH_FRAME:
246 fprintf_unfiltered (file, "ARCH_FRAME");
247 return;
248 default:
249 fprintf_unfiltered (file, "<unknown type>");
250 return;
251 };
252 }
253
254 static void
255 fprint_frame (struct ui_file *file, struct frame_info *fi)
256 {
257 if (fi == NULL)
258 {
259 fprintf_unfiltered (file, "<NULL frame>");
260 return;
261 }
262 fprintf_unfiltered (file, "{");
263 fprintf_unfiltered (file, "level=%d", fi->level);
264 fprintf_unfiltered (file, ",");
265 fprintf_unfiltered (file, "type=");
266 if (fi->unwind != NULL)
267 fprint_frame_type (file, fi->unwind->type);
268 else
269 fprintf_unfiltered (file, "<unknown>");
270 fprintf_unfiltered (file, ",");
271 fprintf_unfiltered (file, "unwind=");
272 if (fi->unwind != NULL)
273 gdb_print_host_address (fi->unwind, file);
274 else
275 fprintf_unfiltered (file, "<unknown>");
276 fprintf_unfiltered (file, ",");
277 fprintf_unfiltered (file, "pc=");
278 if (fi->next != NULL && fi->next->prev_pc.p)
279 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
280 else
281 fprintf_unfiltered (file, "<unknown>");
282 fprintf_unfiltered (file, ",");
283 fprintf_unfiltered (file, "id=");
284 if (fi->this_id.p)
285 fprint_frame_id (file, fi->this_id.value);
286 else
287 fprintf_unfiltered (file, "<unknown>");
288 fprintf_unfiltered (file, ",");
289 fprintf_unfiltered (file, "func=");
290 if (fi->next != NULL && fi->next->prev_func.p)
291 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
292 else
293 fprintf_unfiltered (file, "<unknown>");
294 fprintf_unfiltered (file, "}");
295 }
296
297 /* Given FRAME, return the enclosing normal frame for inlined
298 function frames. Otherwise return the original frame. */
299
300 static struct frame_info *
301 skip_inlined_frames (struct frame_info *frame)
302 {
303 while (get_frame_type (frame) == INLINE_FRAME)
304 frame = get_prev_frame (frame);
305
306 return frame;
307 }
308
309 /* Return a frame uniq ID that can be used to, later, re-find the
310 frame. */
311
312 struct frame_id
313 get_frame_id (struct frame_info *fi)
314 {
315 if (fi == NULL)
316 return null_frame_id;
317
318 if (!fi->this_id.p)
319 {
320 if (frame_debug)
321 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
322 fi->level);
323 /* Find the unwinder. */
324 if (fi->unwind == NULL)
325 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
326 /* Find THIS frame's ID. */
327 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
328 fi->this_id.p = 1;
329 if (frame_debug)
330 {
331 fprintf_unfiltered (gdb_stdlog, "-> ");
332 fprint_frame_id (gdb_stdlog, fi->this_id.value);
333 fprintf_unfiltered (gdb_stdlog, " }\n");
334 }
335 }
336
337 frame_stash_add (fi);
338
339 return fi->this_id.value;
340 }
341
342 struct frame_id
343 get_stack_frame_id (struct frame_info *next_frame)
344 {
345 return get_frame_id (skip_inlined_frames (next_frame));
346 }
347
348 struct frame_id
349 frame_unwind_caller_id (struct frame_info *next_frame)
350 {
351 struct frame_info *this_frame;
352
353 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
354 the frame chain, leading to this function unintentionally
355 returning a null_frame_id (e.g., when a caller requests the frame
356 ID of "main()"s caller. */
357
358 next_frame = skip_inlined_frames (next_frame);
359 this_frame = get_prev_frame_1 (next_frame);
360 if (this_frame)
361 return get_frame_id (skip_inlined_frames (this_frame));
362 else
363 return null_frame_id;
364 }
365
366 const struct frame_id null_frame_id; /* All zeros. */
367
368 struct frame_id
369 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
370 CORE_ADDR special_addr)
371 {
372 struct frame_id id = null_frame_id;
373 id.stack_addr = stack_addr;
374 id.stack_addr_p = 1;
375 id.code_addr = code_addr;
376 id.code_addr_p = 1;
377 id.special_addr = special_addr;
378 id.special_addr_p = 1;
379 return id;
380 }
381
382 struct frame_id
383 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
384 {
385 struct frame_id id = null_frame_id;
386 id.stack_addr = stack_addr;
387 id.stack_addr_p = 1;
388 id.code_addr = code_addr;
389 id.code_addr_p = 1;
390 return id;
391 }
392
393 struct frame_id
394 frame_id_build_wild (CORE_ADDR stack_addr)
395 {
396 struct frame_id id = null_frame_id;
397 id.stack_addr = stack_addr;
398 id.stack_addr_p = 1;
399 return id;
400 }
401
402 int
403 frame_id_p (struct frame_id l)
404 {
405 int p;
406 /* The frame is valid iff it has a valid stack address. */
407 p = l.stack_addr_p;
408 if (frame_debug)
409 {
410 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
411 fprint_frame_id (gdb_stdlog, l);
412 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
413 }
414 return p;
415 }
416
417 int
418 frame_id_inlined_p (struct frame_id l)
419 {
420 if (!frame_id_p (l))
421 return 0;
422
423 return (l.inline_depth != 0);
424 }
425
426 int
427 frame_id_eq (struct frame_id l, struct frame_id r)
428 {
429 int eq;
430 if (!l.stack_addr_p || !r.stack_addr_p)
431 /* Like a NaN, if either ID is invalid, the result is false.
432 Note that a frame ID is invalid iff it is the null frame ID. */
433 eq = 0;
434 else if (l.stack_addr != r.stack_addr)
435 /* If .stack addresses are different, the frames are different. */
436 eq = 0;
437 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
438 /* An invalid code addr is a wild card. If .code addresses are
439 different, the frames are different. */
440 eq = 0;
441 else if (l.special_addr_p && r.special_addr_p
442 && l.special_addr != r.special_addr)
443 /* An invalid special addr is a wild card (or unused). Otherwise
444 if special addresses are different, the frames are different. */
445 eq = 0;
446 else if (l.inline_depth != r.inline_depth)
447 /* If inline depths are different, the frames must be different. */
448 eq = 0;
449 else
450 /* Frames are equal. */
451 eq = 1;
452
453 if (frame_debug)
454 {
455 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
456 fprint_frame_id (gdb_stdlog, l);
457 fprintf_unfiltered (gdb_stdlog, ",r=");
458 fprint_frame_id (gdb_stdlog, r);
459 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
460 }
461 return eq;
462 }
463
464 /* Safety net to check whether frame ID L should be inner to
465 frame ID R, according to their stack addresses.
466
467 This method cannot be used to compare arbitrary frames, as the
468 ranges of valid stack addresses may be discontiguous (e.g. due
469 to sigaltstack).
470
471 However, it can be used as safety net to discover invalid frame
472 IDs in certain circumstances. Assuming that NEXT is the immediate
473 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
474
475 * The stack address of NEXT must be inner-than-or-equal to the stack
476 address of THIS.
477
478 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
479 error has occurred.
480
481 * If NEXT and THIS have different stack addresses, no other frame
482 in the frame chain may have a stack address in between.
483
484 Therefore, if frame_id_inner (TEST, THIS) holds, but
485 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
486 to a valid frame in the frame chain.
487
488 The sanity checks above cannot be performed when a SIGTRAMP frame
489 is involved, because signal handlers might be executed on a different
490 stack than the stack used by the routine that caused the signal
491 to be raised. This can happen for instance when a thread exceeds
492 its maximum stack size. In this case, certain compilers implement
493 a stack overflow strategy that cause the handler to be run on a
494 different stack. */
495
496 static int
497 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
498 {
499 int inner;
500 if (!l.stack_addr_p || !r.stack_addr_p)
501 /* Like NaN, any operation involving an invalid ID always fails. */
502 inner = 0;
503 else if (l.inline_depth > r.inline_depth
504 && l.stack_addr == r.stack_addr
505 && l.code_addr_p == r.code_addr_p
506 && l.special_addr_p == r.special_addr_p
507 && l.special_addr == r.special_addr)
508 {
509 /* Same function, different inlined functions. */
510 struct block *lb, *rb;
511
512 gdb_assert (l.code_addr_p && r.code_addr_p);
513
514 lb = block_for_pc (l.code_addr);
515 rb = block_for_pc (r.code_addr);
516
517 if (lb == NULL || rb == NULL)
518 /* Something's gone wrong. */
519 inner = 0;
520 else
521 /* This will return true if LB and RB are the same block, or
522 if the block with the smaller depth lexically encloses the
523 block with the greater depth. */
524 inner = contained_in (lb, rb);
525 }
526 else
527 /* Only return non-zero when strictly inner than. Note that, per
528 comment in "frame.h", there is some fuzz here. Frameless
529 functions are not strictly inner than (same .stack but
530 different .code and/or .special address). */
531 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
532 if (frame_debug)
533 {
534 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
535 fprint_frame_id (gdb_stdlog, l);
536 fprintf_unfiltered (gdb_stdlog, ",r=");
537 fprint_frame_id (gdb_stdlog, r);
538 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
539 }
540 return inner;
541 }
542
543 struct frame_info *
544 frame_find_by_id (struct frame_id id)
545 {
546 struct frame_info *frame, *prev_frame;
547
548 /* ZERO denotes the null frame, let the caller decide what to do
549 about it. Should it instead return get_current_frame()? */
550 if (!frame_id_p (id))
551 return NULL;
552
553 /* Try using the frame stash first. Finding it there removes the need
554 to perform the search by looping over all frames, which can be very
555 CPU-intensive if the number of frames is very high (the loop is O(n)
556 and get_prev_frame performs a series of checks that are relatively
557 expensive). This optimization is particularly useful when this function
558 is called from another function (such as value_fetch_lazy, case
559 VALUE_LVAL (val) == lval_register) which already loops over all frames,
560 making the overall behavior O(n^2). */
561 frame = frame_stash_find (id);
562 if (frame)
563 return frame;
564
565 for (frame = get_current_frame (); ; frame = prev_frame)
566 {
567 struct frame_id this = get_frame_id (frame);
568 if (frame_id_eq (id, this))
569 /* An exact match. */
570 return frame;
571
572 prev_frame = get_prev_frame (frame);
573 if (!prev_frame)
574 return NULL;
575
576 /* As a safety net to avoid unnecessary backtracing while trying
577 to find an invalid ID, we check for a common situation where
578 we can detect from comparing stack addresses that no other
579 frame in the current frame chain can have this ID. See the
580 comment at frame_id_inner for details. */
581 if (get_frame_type (frame) == NORMAL_FRAME
582 && !frame_id_inner (get_frame_arch (frame), id, this)
583 && frame_id_inner (get_frame_arch (prev_frame), id,
584 get_frame_id (prev_frame)))
585 return NULL;
586 }
587 return NULL;
588 }
589
590 static CORE_ADDR
591 frame_unwind_pc (struct frame_info *this_frame)
592 {
593 if (!this_frame->prev_pc.p)
594 {
595 CORE_ADDR pc;
596 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
597 {
598 /* The right way. The `pure' way. The one true way. This
599 method depends solely on the register-unwind code to
600 determine the value of registers in THIS frame, and hence
601 the value of this frame's PC (resume address). A typical
602 implementation is no more than:
603
604 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
605 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
606
607 Note: this method is very heavily dependent on a correct
608 register-unwind implementation, it pays to fix that
609 method first; this method is frame type agnostic, since
610 it only deals with register values, it works with any
611 frame. This is all in stark contrast to the old
612 FRAME_SAVED_PC which would try to directly handle all the
613 different ways that a PC could be unwound. */
614 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
615 }
616 else
617 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
618 this_frame->prev_pc.value = pc;
619 this_frame->prev_pc.p = 1;
620 if (frame_debug)
621 fprintf_unfiltered (gdb_stdlog,
622 "{ frame_unwind_caller_pc (this_frame=%d) -> 0x%s }\n",
623 this_frame->level,
624 hex_string (this_frame->prev_pc.value));
625 }
626 return this_frame->prev_pc.value;
627 }
628
629 CORE_ADDR
630 frame_unwind_caller_pc (struct frame_info *this_frame)
631 {
632 return frame_unwind_pc (skip_inlined_frames (this_frame));
633 }
634
635 CORE_ADDR
636 get_frame_func (struct frame_info *this_frame)
637 {
638 struct frame_info *next_frame = this_frame->next;
639
640 if (!next_frame->prev_func.p)
641 {
642 /* Make certain that this, and not the adjacent, function is
643 found. */
644 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
645 next_frame->prev_func.p = 1;
646 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
647 if (frame_debug)
648 fprintf_unfiltered (gdb_stdlog,
649 "{ get_frame_func (this_frame=%d) -> %s }\n",
650 this_frame->level,
651 hex_string (next_frame->prev_func.addr));
652 }
653 return next_frame->prev_func.addr;
654 }
655
656 static int
657 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
658 {
659 return frame_register_read (src, regnum, buf);
660 }
661
662 struct regcache *
663 frame_save_as_regcache (struct frame_info *this_frame)
664 {
665 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
666 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
667 regcache_save (regcache, do_frame_register_read, this_frame);
668 discard_cleanups (cleanups);
669 return regcache;
670 }
671
672 void
673 frame_pop (struct frame_info *this_frame)
674 {
675 struct frame_info *prev_frame;
676 struct regcache *scratch;
677 struct cleanup *cleanups;
678
679 if (get_frame_type (this_frame) == DUMMY_FRAME)
680 {
681 /* Popping a dummy frame involves restoring more than just registers.
682 dummy_frame_pop does all the work. */
683 dummy_frame_pop (get_frame_id (this_frame));
684 return;
685 }
686
687 /* Ensure that we have a frame to pop to. */
688 prev_frame = get_prev_frame_1 (this_frame);
689
690 if (!prev_frame)
691 error (_("Cannot pop the initial frame."));
692
693 /* Make a copy of all the register values unwound from this frame.
694 Save them in a scratch buffer so that there isn't a race between
695 trying to extract the old values from the current regcache while
696 at the same time writing new values into that same cache. */
697 scratch = frame_save_as_regcache (prev_frame);
698 cleanups = make_cleanup_regcache_xfree (scratch);
699
700 /* FIXME: cagney/2003-03-16: It should be possible to tell the
701 target's register cache that it is about to be hit with a burst
702 register transfer and that the sequence of register writes should
703 be batched. The pair target_prepare_to_store() and
704 target_store_registers() kind of suggest this functionality.
705 Unfortunately, they don't implement it. Their lack of a formal
706 definition can lead to targets writing back bogus values
707 (arguably a bug in the target code mind). */
708 /* Now copy those saved registers into the current regcache.
709 Here, regcache_cpy() calls regcache_restore(). */
710 regcache_cpy (get_current_regcache (), scratch);
711 do_cleanups (cleanups);
712
713 /* We've made right mess of GDB's local state, just discard
714 everything. */
715 reinit_frame_cache ();
716 }
717
718 void
719 frame_register_unwind (struct frame_info *frame, int regnum,
720 int *optimizedp, enum lval_type *lvalp,
721 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
722 {
723 struct value *value;
724
725 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
726 that the value proper does not need to be fetched. */
727 gdb_assert (optimizedp != NULL);
728 gdb_assert (lvalp != NULL);
729 gdb_assert (addrp != NULL);
730 gdb_assert (realnump != NULL);
731 /* gdb_assert (bufferp != NULL); */
732
733 value = frame_unwind_register_value (frame, regnum);
734
735 gdb_assert (value != NULL);
736
737 *optimizedp = value_optimized_out (value);
738 *lvalp = VALUE_LVAL (value);
739 *addrp = value_address (value);
740 *realnump = VALUE_REGNUM (value);
741
742 if (bufferp)
743 memcpy (bufferp, value_contents_all (value),
744 TYPE_LENGTH (value_type (value)));
745
746 /* Dispose of the new value. This prevents watchpoints from
747 trying to watch the saved frame pointer. */
748 release_value (value);
749 value_free (value);
750 }
751
752 void
753 frame_register (struct frame_info *frame, int regnum,
754 int *optimizedp, enum lval_type *lvalp,
755 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
756 {
757 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
758 that the value proper does not need to be fetched. */
759 gdb_assert (optimizedp != NULL);
760 gdb_assert (lvalp != NULL);
761 gdb_assert (addrp != NULL);
762 gdb_assert (realnump != NULL);
763 /* gdb_assert (bufferp != NULL); */
764
765 /* Obtain the register value by unwinding the register from the next
766 (more inner frame). */
767 gdb_assert (frame != NULL && frame->next != NULL);
768 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
769 realnump, bufferp);
770 }
771
772 void
773 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
774 {
775 int optimized;
776 CORE_ADDR addr;
777 int realnum;
778 enum lval_type lval;
779 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
780 &realnum, buf);
781 }
782
783 void
784 get_frame_register (struct frame_info *frame,
785 int regnum, gdb_byte *buf)
786 {
787 frame_unwind_register (frame->next, regnum, buf);
788 }
789
790 struct value *
791 frame_unwind_register_value (struct frame_info *frame, int regnum)
792 {
793 struct gdbarch *gdbarch;
794 struct value *value;
795
796 gdb_assert (frame != NULL);
797 gdbarch = frame_unwind_arch (frame);
798
799 if (frame_debug)
800 {
801 fprintf_unfiltered (gdb_stdlog, "\
802 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
803 frame->level, regnum,
804 user_reg_map_regnum_to_name (gdbarch, regnum));
805 }
806
807 /* Find the unwinder. */
808 if (frame->unwind == NULL)
809 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
810
811 /* Ask this frame to unwind its register. */
812 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
813
814 if (frame_debug)
815 {
816 fprintf_unfiltered (gdb_stdlog, "->");
817 if (value_optimized_out (value))
818 fprintf_unfiltered (gdb_stdlog, " optimized out");
819 else
820 {
821 if (VALUE_LVAL (value) == lval_register)
822 fprintf_unfiltered (gdb_stdlog, " register=%d",
823 VALUE_REGNUM (value));
824 else if (VALUE_LVAL (value) == lval_memory)
825 fprintf_unfiltered (gdb_stdlog, " address=%s",
826 paddress (gdbarch,
827 value_address (value)));
828 else
829 fprintf_unfiltered (gdb_stdlog, " computed");
830
831 if (value_lazy (value))
832 fprintf_unfiltered (gdb_stdlog, " lazy");
833 else
834 {
835 int i;
836 const gdb_byte *buf = value_contents (value);
837
838 fprintf_unfiltered (gdb_stdlog, " bytes=");
839 fprintf_unfiltered (gdb_stdlog, "[");
840 for (i = 0; i < register_size (gdbarch, regnum); i++)
841 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
842 fprintf_unfiltered (gdb_stdlog, "]");
843 }
844 }
845
846 fprintf_unfiltered (gdb_stdlog, " }\n");
847 }
848
849 return value;
850 }
851
852 struct value *
853 get_frame_register_value (struct frame_info *frame, int regnum)
854 {
855 return frame_unwind_register_value (frame->next, regnum);
856 }
857
858 LONGEST
859 frame_unwind_register_signed (struct frame_info *frame, int regnum)
860 {
861 struct gdbarch *gdbarch = frame_unwind_arch (frame);
862 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
863 int size = register_size (gdbarch, regnum);
864 gdb_byte buf[MAX_REGISTER_SIZE];
865 frame_unwind_register (frame, regnum, buf);
866 return extract_signed_integer (buf, size, byte_order);
867 }
868
869 LONGEST
870 get_frame_register_signed (struct frame_info *frame, int regnum)
871 {
872 return frame_unwind_register_signed (frame->next, regnum);
873 }
874
875 ULONGEST
876 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
877 {
878 struct gdbarch *gdbarch = frame_unwind_arch (frame);
879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
880 int size = register_size (gdbarch, regnum);
881 gdb_byte buf[MAX_REGISTER_SIZE];
882 frame_unwind_register (frame, regnum, buf);
883 return extract_unsigned_integer (buf, size, byte_order);
884 }
885
886 ULONGEST
887 get_frame_register_unsigned (struct frame_info *frame, int regnum)
888 {
889 return frame_unwind_register_unsigned (frame->next, regnum);
890 }
891
892 void
893 put_frame_register (struct frame_info *frame, int regnum,
894 const gdb_byte *buf)
895 {
896 struct gdbarch *gdbarch = get_frame_arch (frame);
897 int realnum;
898 int optim;
899 enum lval_type lval;
900 CORE_ADDR addr;
901 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
902 if (optim)
903 error (_("Attempt to assign to a value that was optimized out."));
904 switch (lval)
905 {
906 case lval_memory:
907 {
908 /* FIXME: write_memory doesn't yet take constant buffers.
909 Arrrg! */
910 gdb_byte tmp[MAX_REGISTER_SIZE];
911 memcpy (tmp, buf, register_size (gdbarch, regnum));
912 write_memory (addr, tmp, register_size (gdbarch, regnum));
913 break;
914 }
915 case lval_register:
916 regcache_cooked_write (get_current_regcache (), realnum, buf);
917 break;
918 default:
919 error (_("Attempt to assign to an unmodifiable value."));
920 }
921 }
922
923 /* frame_register_read ()
924
925 Find and return the value of REGNUM for the specified stack frame.
926 The number of bytes copied is REGISTER_SIZE (REGNUM).
927
928 Returns 0 if the register value could not be found. */
929
930 int
931 frame_register_read (struct frame_info *frame, int regnum,
932 gdb_byte *myaddr)
933 {
934 int optimized;
935 enum lval_type lval;
936 CORE_ADDR addr;
937 int realnum;
938 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
939
940 return !optimized;
941 }
942
943 int
944 get_frame_register_bytes (struct frame_info *frame, int regnum,
945 CORE_ADDR offset, int len, gdb_byte *myaddr)
946 {
947 struct gdbarch *gdbarch = get_frame_arch (frame);
948 int i;
949 int maxsize;
950 int numregs;
951
952 /* Skip registers wholly inside of OFFSET. */
953 while (offset >= register_size (gdbarch, regnum))
954 {
955 offset -= register_size (gdbarch, regnum);
956 regnum++;
957 }
958
959 /* Ensure that we will not read beyond the end of the register file.
960 This can only ever happen if the debug information is bad. */
961 maxsize = -offset;
962 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
963 for (i = regnum; i < numregs; i++)
964 {
965 int thissize = register_size (gdbarch, i);
966 if (thissize == 0)
967 break; /* This register is not available on this architecture. */
968 maxsize += thissize;
969 }
970 if (len > maxsize)
971 {
972 warning (_("Bad debug information detected: "
973 "Attempt to read %d bytes from registers."), len);
974 return 0;
975 }
976
977 /* Copy the data. */
978 while (len > 0)
979 {
980 int curr_len = register_size (gdbarch, regnum) - offset;
981 if (curr_len > len)
982 curr_len = len;
983
984 if (curr_len == register_size (gdbarch, regnum))
985 {
986 if (!frame_register_read (frame, regnum, myaddr))
987 return 0;
988 }
989 else
990 {
991 gdb_byte buf[MAX_REGISTER_SIZE];
992 if (!frame_register_read (frame, regnum, buf))
993 return 0;
994 memcpy (myaddr, buf + offset, curr_len);
995 }
996
997 myaddr += curr_len;
998 len -= curr_len;
999 offset = 0;
1000 regnum++;
1001 }
1002
1003 return 1;
1004 }
1005
1006 void
1007 put_frame_register_bytes (struct frame_info *frame, int regnum,
1008 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1009 {
1010 struct gdbarch *gdbarch = get_frame_arch (frame);
1011
1012 /* Skip registers wholly inside of OFFSET. */
1013 while (offset >= register_size (gdbarch, regnum))
1014 {
1015 offset -= register_size (gdbarch, regnum);
1016 regnum++;
1017 }
1018
1019 /* Copy the data. */
1020 while (len > 0)
1021 {
1022 int curr_len = register_size (gdbarch, regnum) - offset;
1023 if (curr_len > len)
1024 curr_len = len;
1025
1026 if (curr_len == register_size (gdbarch, regnum))
1027 {
1028 put_frame_register (frame, regnum, myaddr);
1029 }
1030 else
1031 {
1032 gdb_byte buf[MAX_REGISTER_SIZE];
1033 frame_register_read (frame, regnum, buf);
1034 memcpy (buf + offset, myaddr, curr_len);
1035 put_frame_register (frame, regnum, buf);
1036 }
1037
1038 myaddr += curr_len;
1039 len -= curr_len;
1040 offset = 0;
1041 regnum++;
1042 }
1043 }
1044
1045 /* Create a sentinel frame. */
1046
1047 static struct frame_info *
1048 create_sentinel_frame (struct regcache *regcache)
1049 {
1050 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1051 frame->level = -1;
1052 /* Explicitly initialize the sentinel frame's cache. Provide it
1053 with the underlying regcache. In the future additional
1054 information, such as the frame's thread will be added. */
1055 frame->prologue_cache = sentinel_frame_cache (regcache);
1056 /* For the moment there is only one sentinel frame implementation. */
1057 frame->unwind = sentinel_frame_unwind;
1058 /* Link this frame back to itself. The frame is self referential
1059 (the unwound PC is the same as the pc), so make it so. */
1060 frame->next = frame;
1061 /* Make the sentinel frame's ID valid, but invalid. That way all
1062 comparisons with it should fail. */
1063 frame->this_id.p = 1;
1064 frame->this_id.value = null_frame_id;
1065 if (frame_debug)
1066 {
1067 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1068 fprint_frame (gdb_stdlog, frame);
1069 fprintf_unfiltered (gdb_stdlog, " }\n");
1070 }
1071 return frame;
1072 }
1073
1074 /* Info about the innermost stack frame (contents of FP register) */
1075
1076 static struct frame_info *current_frame;
1077
1078 /* Cache for frame addresses already read by gdb. Valid only while
1079 inferior is stopped. Control variables for the frame cache should
1080 be local to this module. */
1081
1082 static struct obstack frame_cache_obstack;
1083
1084 void *
1085 frame_obstack_zalloc (unsigned long size)
1086 {
1087 void *data = obstack_alloc (&frame_cache_obstack, size);
1088 memset (data, 0, size);
1089 return data;
1090 }
1091
1092 /* Return the innermost (currently executing) stack frame. This is
1093 split into two functions. The function unwind_to_current_frame()
1094 is wrapped in catch exceptions so that, even when the unwind of the
1095 sentinel frame fails, the function still returns a stack frame. */
1096
1097 static int
1098 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1099 {
1100 struct frame_info *frame = get_prev_frame (args);
1101 /* A sentinel frame can fail to unwind, e.g., because its PC value
1102 lands in somewhere like start. */
1103 if (frame == NULL)
1104 return 1;
1105 current_frame = frame;
1106 return 0;
1107 }
1108
1109 struct frame_info *
1110 get_current_frame (void)
1111 {
1112 /* First check, and report, the lack of registers. Having GDB
1113 report "No stack!" or "No memory" when the target doesn't even
1114 have registers is very confusing. Besides, "printcmd.exp"
1115 explicitly checks that ``print $pc'' with no registers prints "No
1116 registers". */
1117 if (!target_has_registers)
1118 error (_("No registers."));
1119 if (!target_has_stack)
1120 error (_("No stack."));
1121 if (!target_has_memory)
1122 error (_("No memory."));
1123 if (ptid_equal (inferior_ptid, null_ptid))
1124 error (_("No selected thread."));
1125 if (is_exited (inferior_ptid))
1126 error (_("Invalid selected thread."));
1127 if (is_executing (inferior_ptid))
1128 error (_("Target is executing."));
1129
1130 if (current_frame == NULL)
1131 {
1132 struct frame_info *sentinel_frame =
1133 create_sentinel_frame (get_current_regcache ());
1134 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1135 RETURN_MASK_ERROR) != 0)
1136 {
1137 /* Oops! Fake a current frame? Is this useful? It has a PC
1138 of zero, for instance. */
1139 current_frame = sentinel_frame;
1140 }
1141 }
1142 return current_frame;
1143 }
1144
1145 /* The "selected" stack frame is used by default for local and arg
1146 access. May be zero, for no selected frame. */
1147
1148 static struct frame_info *selected_frame;
1149
1150 int
1151 has_stack_frames (void)
1152 {
1153 if (!target_has_registers || !target_has_stack || !target_has_memory)
1154 return 0;
1155
1156 /* No current inferior, no frame. */
1157 if (ptid_equal (inferior_ptid, null_ptid))
1158 return 0;
1159
1160 /* Don't try to read from a dead thread. */
1161 if (is_exited (inferior_ptid))
1162 return 0;
1163
1164 /* ... or from a spinning thread. */
1165 if (is_executing (inferior_ptid))
1166 return 0;
1167
1168 return 1;
1169 }
1170
1171 /* Return the selected frame. Always non-NULL (unless there isn't an
1172 inferior sufficient for creating a frame) in which case an error is
1173 thrown. */
1174
1175 struct frame_info *
1176 get_selected_frame (const char *message)
1177 {
1178 if (selected_frame == NULL)
1179 {
1180 if (message != NULL && !has_stack_frames ())
1181 error (("%s"), message);
1182 /* Hey! Don't trust this. It should really be re-finding the
1183 last selected frame of the currently selected thread. This,
1184 though, is better than nothing. */
1185 select_frame (get_current_frame ());
1186 }
1187 /* There is always a frame. */
1188 gdb_assert (selected_frame != NULL);
1189 return selected_frame;
1190 }
1191
1192 /* This is a variant of get_selected_frame() which can be called when
1193 the inferior does not have a frame; in that case it will return
1194 NULL instead of calling error(). */
1195
1196 struct frame_info *
1197 deprecated_safe_get_selected_frame (void)
1198 {
1199 if (!has_stack_frames ())
1200 return NULL;
1201 return get_selected_frame (NULL);
1202 }
1203
1204 /* Select frame FI (or NULL - to invalidate the current frame). */
1205
1206 void
1207 select_frame (struct frame_info *fi)
1208 {
1209 struct symtab *s;
1210
1211 selected_frame = fi;
1212 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1213 frame is being invalidated. */
1214 if (deprecated_selected_frame_level_changed_hook)
1215 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1216
1217 /* FIXME: kseitz/2002-08-28: It would be nice to call
1218 selected_frame_level_changed_event() right here, but due to limitations
1219 in the current interfaces, we would end up flooding UIs with events
1220 because select_frame() is used extensively internally.
1221
1222 Once we have frame-parameterized frame (and frame-related) commands,
1223 the event notification can be moved here, since this function will only
1224 be called when the user's selected frame is being changed. */
1225
1226 /* Ensure that symbols for this frame are read in. Also, determine the
1227 source language of this frame, and switch to it if desired. */
1228 if (fi)
1229 {
1230 /* We retrieve the frame's symtab by using the frame PC. However
1231 we cannot use the frame PC as-is, because it usually points to
1232 the instruction following the "call", which is sometimes the
1233 first instruction of another function. So we rely on
1234 get_frame_address_in_block() which provides us with a PC which
1235 is guaranteed to be inside the frame's code block. */
1236 s = find_pc_symtab (get_frame_address_in_block (fi));
1237 if (s
1238 && s->language != current_language->la_language
1239 && s->language != language_unknown
1240 && language_mode == language_mode_auto)
1241 {
1242 set_language (s->language);
1243 }
1244 }
1245 }
1246
1247 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1248 Always returns a non-NULL value. */
1249
1250 struct frame_info *
1251 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1252 {
1253 struct frame_info *fi;
1254
1255 if (frame_debug)
1256 {
1257 fprintf_unfiltered (gdb_stdlog,
1258 "{ create_new_frame (addr=%s, pc=%s) ",
1259 hex_string (addr), hex_string (pc));
1260 }
1261
1262 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1263
1264 fi->next = create_sentinel_frame (get_current_regcache ());
1265
1266 /* Set/update this frame's cached PC value, found in the next frame.
1267 Do this before looking for this frame's unwinder. A sniffer is
1268 very likely to read this, and the corresponding unwinder is
1269 entitled to rely that the PC doesn't magically change. */
1270 fi->next->prev_pc.value = pc;
1271 fi->next->prev_pc.p = 1;
1272
1273 /* Select/initialize both the unwind function and the frame's type
1274 based on the PC. */
1275 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1276
1277 fi->this_id.p = 1;
1278 fi->this_id.value = frame_id_build (addr, pc);
1279
1280 if (frame_debug)
1281 {
1282 fprintf_unfiltered (gdb_stdlog, "-> ");
1283 fprint_frame (gdb_stdlog, fi);
1284 fprintf_unfiltered (gdb_stdlog, " }\n");
1285 }
1286
1287 return fi;
1288 }
1289
1290 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1291 innermost frame). Be careful to not fall off the bottom of the
1292 frame chain and onto the sentinel frame. */
1293
1294 struct frame_info *
1295 get_next_frame (struct frame_info *this_frame)
1296 {
1297 if (this_frame->level > 0)
1298 return this_frame->next;
1299 else
1300 return NULL;
1301 }
1302
1303 /* Observer for the target_changed event. */
1304
1305 static void
1306 frame_observer_target_changed (struct target_ops *target)
1307 {
1308 reinit_frame_cache ();
1309 }
1310
1311 /* Flush the entire frame cache. */
1312
1313 void
1314 reinit_frame_cache (void)
1315 {
1316 struct frame_info *fi;
1317
1318 /* Tear down all frame caches. */
1319 for (fi = current_frame; fi != NULL; fi = fi->prev)
1320 {
1321 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1322 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1323 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1324 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1325 }
1326
1327 /* Since we can't really be sure what the first object allocated was */
1328 obstack_free (&frame_cache_obstack, 0);
1329 obstack_init (&frame_cache_obstack);
1330
1331 if (current_frame != NULL)
1332 annotate_frames_invalid ();
1333
1334 current_frame = NULL; /* Invalidate cache */
1335 select_frame (NULL);
1336 frame_stash_invalidate ();
1337 if (frame_debug)
1338 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1339 }
1340
1341 /* Find where a register is saved (in memory or another register).
1342 The result of frame_register_unwind is just where it is saved
1343 relative to this particular frame. */
1344
1345 static void
1346 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1347 int *optimizedp, enum lval_type *lvalp,
1348 CORE_ADDR *addrp, int *realnump)
1349 {
1350 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1351
1352 while (this_frame != NULL)
1353 {
1354 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1355 addrp, realnump, NULL);
1356
1357 if (*optimizedp)
1358 break;
1359
1360 if (*lvalp != lval_register)
1361 break;
1362
1363 regnum = *realnump;
1364 this_frame = get_next_frame (this_frame);
1365 }
1366 }
1367
1368 /* Return a "struct frame_info" corresponding to the frame that called
1369 THIS_FRAME. Returns NULL if there is no such frame.
1370
1371 Unlike get_prev_frame, this function always tries to unwind the
1372 frame. */
1373
1374 static struct frame_info *
1375 get_prev_frame_1 (struct frame_info *this_frame)
1376 {
1377 struct frame_id this_id;
1378 struct gdbarch *gdbarch;
1379
1380 gdb_assert (this_frame != NULL);
1381 gdbarch = get_frame_arch (this_frame);
1382
1383 if (frame_debug)
1384 {
1385 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1386 if (this_frame != NULL)
1387 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1388 else
1389 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1390 fprintf_unfiltered (gdb_stdlog, ") ");
1391 }
1392
1393 /* Only try to do the unwind once. */
1394 if (this_frame->prev_p)
1395 {
1396 if (frame_debug)
1397 {
1398 fprintf_unfiltered (gdb_stdlog, "-> ");
1399 fprint_frame (gdb_stdlog, this_frame->prev);
1400 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1401 }
1402 return this_frame->prev;
1403 }
1404
1405 /* If the frame unwinder hasn't been selected yet, we must do so
1406 before setting prev_p; otherwise the check for misbehaved
1407 sniffers will think that this frame's sniffer tried to unwind
1408 further (see frame_cleanup_after_sniffer). */
1409 if (this_frame->unwind == NULL)
1410 this_frame->unwind
1411 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1412
1413 this_frame->prev_p = 1;
1414 this_frame->stop_reason = UNWIND_NO_REASON;
1415
1416 /* If we are unwinding from an inline frame, all of the below tests
1417 were already performed when we unwound from the next non-inline
1418 frame. We must skip them, since we can not get THIS_FRAME's ID
1419 until we have unwound all the way down to the previous non-inline
1420 frame. */
1421 if (get_frame_type (this_frame) == INLINE_FRAME)
1422 return get_prev_frame_raw (this_frame);
1423
1424 /* Check that this frame's ID was valid. If it wasn't, don't try to
1425 unwind to the prev frame. Be careful to not apply this test to
1426 the sentinel frame. */
1427 this_id = get_frame_id (this_frame);
1428 if (this_frame->level >= 0 && !frame_id_p (this_id))
1429 {
1430 if (frame_debug)
1431 {
1432 fprintf_unfiltered (gdb_stdlog, "-> ");
1433 fprint_frame (gdb_stdlog, NULL);
1434 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1435 }
1436 this_frame->stop_reason = UNWIND_NULL_ID;
1437 return NULL;
1438 }
1439
1440 /* Check that this frame's ID isn't inner to (younger, below, next)
1441 the next frame. This happens when a frame unwind goes backwards.
1442 This check is valid only if this frame and the next frame are NORMAL.
1443 See the comment at frame_id_inner for details. */
1444 if (get_frame_type (this_frame) == NORMAL_FRAME
1445 && this_frame->next->unwind->type == NORMAL_FRAME
1446 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1447 get_frame_id (this_frame->next)))
1448 {
1449 if (frame_debug)
1450 {
1451 fprintf_unfiltered (gdb_stdlog, "-> ");
1452 fprint_frame (gdb_stdlog, NULL);
1453 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1454 }
1455 this_frame->stop_reason = UNWIND_INNER_ID;
1456 return NULL;
1457 }
1458
1459 /* Check that this and the next frame are not identical. If they
1460 are, there is most likely a stack cycle. As with the inner-than
1461 test above, avoid comparing the inner-most and sentinel frames. */
1462 if (this_frame->level > 0
1463 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1464 {
1465 if (frame_debug)
1466 {
1467 fprintf_unfiltered (gdb_stdlog, "-> ");
1468 fprint_frame (gdb_stdlog, NULL);
1469 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1470 }
1471 this_frame->stop_reason = UNWIND_SAME_ID;
1472 return NULL;
1473 }
1474
1475 /* Check that this and the next frame do not unwind the PC register
1476 to the same memory location. If they do, then even though they
1477 have different frame IDs, the new frame will be bogus; two
1478 functions can't share a register save slot for the PC. This can
1479 happen when the prologue analyzer finds a stack adjustment, but
1480 no PC save.
1481
1482 This check does assume that the "PC register" is roughly a
1483 traditional PC, even if the gdbarch_unwind_pc method adjusts
1484 it (we do not rely on the value, only on the unwound PC being
1485 dependent on this value). A potential improvement would be
1486 to have the frame prev_pc method and the gdbarch unwind_pc
1487 method set the same lval and location information as
1488 frame_register_unwind. */
1489 if (this_frame->level > 0
1490 && gdbarch_pc_regnum (gdbarch) >= 0
1491 && get_frame_type (this_frame) == NORMAL_FRAME
1492 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1493 || get_frame_type (this_frame->next) == INLINE_FRAME))
1494 {
1495 int optimized, realnum, nrealnum;
1496 enum lval_type lval, nlval;
1497 CORE_ADDR addr, naddr;
1498
1499 frame_register_unwind_location (this_frame,
1500 gdbarch_pc_regnum (gdbarch),
1501 &optimized, &lval, &addr, &realnum);
1502 frame_register_unwind_location (get_next_frame (this_frame),
1503 gdbarch_pc_regnum (gdbarch),
1504 &optimized, &nlval, &naddr, &nrealnum);
1505
1506 if ((lval == lval_memory && lval == nlval && addr == naddr)
1507 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1508 {
1509 if (frame_debug)
1510 {
1511 fprintf_unfiltered (gdb_stdlog, "-> ");
1512 fprint_frame (gdb_stdlog, NULL);
1513 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1514 }
1515
1516 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1517 this_frame->prev = NULL;
1518 return NULL;
1519 }
1520 }
1521
1522 return get_prev_frame_raw (this_frame);
1523 }
1524
1525 /* Construct a new "struct frame_info" and link it previous to
1526 this_frame. */
1527
1528 static struct frame_info *
1529 get_prev_frame_raw (struct frame_info *this_frame)
1530 {
1531 struct frame_info *prev_frame;
1532
1533 /* Allocate the new frame but do not wire it in to the frame chain.
1534 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1535 frame->next to pull some fancy tricks (of course such code is, by
1536 definition, recursive). Try to prevent it.
1537
1538 There is no reason to worry about memory leaks, should the
1539 remainder of the function fail. The allocated memory will be
1540 quickly reclaimed when the frame cache is flushed, and the `we've
1541 been here before' check above will stop repeated memory
1542 allocation calls. */
1543 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1544 prev_frame->level = this_frame->level + 1;
1545
1546 /* Don't yet compute ->unwind (and hence ->type). It is computed
1547 on-demand in get_frame_type, frame_register_unwind, and
1548 get_frame_id. */
1549
1550 /* Don't yet compute the frame's ID. It is computed on-demand by
1551 get_frame_id(). */
1552
1553 /* The unwound frame ID is validate at the start of this function,
1554 as part of the logic to decide if that frame should be further
1555 unwound, and not here while the prev frame is being created.
1556 Doing this makes it possible for the user to examine a frame that
1557 has an invalid frame ID.
1558
1559 Some very old VAX code noted: [...] For the sake of argument,
1560 suppose that the stack is somewhat trashed (which is one reason
1561 that "info frame" exists). So, return 0 (indicating we don't
1562 know the address of the arglist) if we don't know what frame this
1563 frame calls. */
1564
1565 /* Link it in. */
1566 this_frame->prev = prev_frame;
1567 prev_frame->next = this_frame;
1568
1569 if (frame_debug)
1570 {
1571 fprintf_unfiltered (gdb_stdlog, "-> ");
1572 fprint_frame (gdb_stdlog, prev_frame);
1573 fprintf_unfiltered (gdb_stdlog, " }\n");
1574 }
1575
1576 return prev_frame;
1577 }
1578
1579 /* Debug routine to print a NULL frame being returned. */
1580
1581 static void
1582 frame_debug_got_null_frame (struct frame_info *this_frame,
1583 const char *reason)
1584 {
1585 if (frame_debug)
1586 {
1587 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1588 if (this_frame != NULL)
1589 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1590 else
1591 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1592 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1593 }
1594 }
1595
1596 /* Is this (non-sentinel) frame in the "main"() function? */
1597
1598 static int
1599 inside_main_func (struct frame_info *this_frame)
1600 {
1601 struct minimal_symbol *msymbol;
1602 CORE_ADDR maddr;
1603
1604 if (symfile_objfile == 0)
1605 return 0;
1606 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1607 if (msymbol == NULL)
1608 return 0;
1609 /* Make certain that the code, and not descriptor, address is
1610 returned. */
1611 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1612 SYMBOL_VALUE_ADDRESS (msymbol),
1613 &current_target);
1614 return maddr == get_frame_func (this_frame);
1615 }
1616
1617 /* Test whether THIS_FRAME is inside the process entry point function. */
1618
1619 static int
1620 inside_entry_func (struct frame_info *this_frame)
1621 {
1622 return (get_frame_func (this_frame) == entry_point_address ());
1623 }
1624
1625 /* Return a structure containing various interesting information about
1626 the frame that called THIS_FRAME. Returns NULL if there is entier
1627 no such frame or the frame fails any of a set of target-independent
1628 condition that should terminate the frame chain (e.g., as unwinding
1629 past main()).
1630
1631 This function should not contain target-dependent tests, such as
1632 checking whether the program-counter is zero. */
1633
1634 struct frame_info *
1635 get_prev_frame (struct frame_info *this_frame)
1636 {
1637 struct frame_info *prev_frame;
1638
1639 /* There is always a frame. If this assertion fails, suspect that
1640 something should be calling get_selected_frame() or
1641 get_current_frame(). */
1642 gdb_assert (this_frame != NULL);
1643
1644 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1645 sense to stop unwinding at a dummy frame. One place where a dummy
1646 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1647 pcsqh register (space register for the instruction at the head of the
1648 instruction queue) cannot be written directly; the only way to set it
1649 is to branch to code that is in the target space. In order to implement
1650 frame dummies on HPUX, the called function is made to jump back to where
1651 the inferior was when the user function was called. If gdb was inside
1652 the main function when we created the dummy frame, the dummy frame will
1653 point inside the main function. */
1654 if (this_frame->level >= 0
1655 && get_frame_type (this_frame) == NORMAL_FRAME
1656 && !backtrace_past_main
1657 && inside_main_func (this_frame))
1658 /* Don't unwind past main(). Note, this is done _before_ the
1659 frame has been marked as previously unwound. That way if the
1660 user later decides to enable unwinds past main(), that will
1661 automatically happen. */
1662 {
1663 frame_debug_got_null_frame (this_frame, "inside main func");
1664 return NULL;
1665 }
1666
1667 /* If the user's backtrace limit has been exceeded, stop. We must
1668 add two to the current level; one of those accounts for backtrace_limit
1669 being 1-based and the level being 0-based, and the other accounts for
1670 the level of the new frame instead of the level of the current
1671 frame. */
1672 if (this_frame->level + 2 > backtrace_limit)
1673 {
1674 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1675 return NULL;
1676 }
1677
1678 /* If we're already inside the entry function for the main objfile,
1679 then it isn't valid. Don't apply this test to a dummy frame -
1680 dummy frame PCs typically land in the entry func. Don't apply
1681 this test to the sentinel frame. Sentinel frames should always
1682 be allowed to unwind. */
1683 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1684 wasn't checking for "main" in the minimal symbols. With that
1685 fixed asm-source tests now stop in "main" instead of halting the
1686 backtrace in weird and wonderful ways somewhere inside the entry
1687 file. Suspect that tests for inside the entry file/func were
1688 added to work around that (now fixed) case. */
1689 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1690 suggested having the inside_entry_func test use the
1691 inside_main_func() msymbol trick (along with entry_point_address()
1692 I guess) to determine the address range of the start function.
1693 That should provide a far better stopper than the current
1694 heuristics. */
1695 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1696 applied tail-call optimizations to main so that a function called
1697 from main returns directly to the caller of main. Since we don't
1698 stop at main, we should at least stop at the entry point of the
1699 application. */
1700 if (this_frame->level >= 0
1701 && get_frame_type (this_frame) == NORMAL_FRAME
1702 && !backtrace_past_entry
1703 && inside_entry_func (this_frame))
1704 {
1705 frame_debug_got_null_frame (this_frame, "inside entry func");
1706 return NULL;
1707 }
1708
1709 /* Assume that the only way to get a zero PC is through something
1710 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1711 will never unwind a zero PC. */
1712 if (this_frame->level > 0
1713 && (get_frame_type (this_frame) == NORMAL_FRAME
1714 || get_frame_type (this_frame) == INLINE_FRAME)
1715 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1716 && get_frame_pc (this_frame) == 0)
1717 {
1718 frame_debug_got_null_frame (this_frame, "zero PC");
1719 return NULL;
1720 }
1721
1722 return get_prev_frame_1 (this_frame);
1723 }
1724
1725 CORE_ADDR
1726 get_frame_pc (struct frame_info *frame)
1727 {
1728 gdb_assert (frame->next != NULL);
1729 return frame_unwind_pc (frame->next);
1730 }
1731
1732 /* Return an address that falls within THIS_FRAME's code block. */
1733
1734 CORE_ADDR
1735 get_frame_address_in_block (struct frame_info *this_frame)
1736 {
1737 /* A draft address. */
1738 CORE_ADDR pc = get_frame_pc (this_frame);
1739
1740 struct frame_info *next_frame = this_frame->next;
1741
1742 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1743 Normally the resume address is inside the body of the function
1744 associated with THIS_FRAME, but there is a special case: when
1745 calling a function which the compiler knows will never return
1746 (for instance abort), the call may be the very last instruction
1747 in the calling function. The resume address will point after the
1748 call and may be at the beginning of a different function
1749 entirely.
1750
1751 If THIS_FRAME is a signal frame or dummy frame, then we should
1752 not adjust the unwound PC. For a dummy frame, GDB pushed the
1753 resume address manually onto the stack. For a signal frame, the
1754 OS may have pushed the resume address manually and invoked the
1755 handler (e.g. GNU/Linux), or invoked the trampoline which called
1756 the signal handler - but in either case the signal handler is
1757 expected to return to the trampoline. So in both of these
1758 cases we know that the resume address is executable and
1759 related. So we only need to adjust the PC if THIS_FRAME
1760 is a normal function.
1761
1762 If the program has been interrupted while THIS_FRAME is current,
1763 then clearly the resume address is inside the associated
1764 function. There are three kinds of interruption: debugger stop
1765 (next frame will be SENTINEL_FRAME), operating system
1766 signal or exception (next frame will be SIGTRAMP_FRAME),
1767 or debugger-induced function call (next frame will be
1768 DUMMY_FRAME). So we only need to adjust the PC if
1769 NEXT_FRAME is a normal function.
1770
1771 We check the type of NEXT_FRAME first, since it is already
1772 known; frame type is determined by the unwinder, and since
1773 we have THIS_FRAME we've already selected an unwinder for
1774 NEXT_FRAME.
1775
1776 If the next frame is inlined, we need to keep going until we find
1777 the real function - for instance, if a signal handler is invoked
1778 while in an inlined function, then the code address of the
1779 "calling" normal function should not be adjusted either. */
1780
1781 while (get_frame_type (next_frame) == INLINE_FRAME)
1782 next_frame = next_frame->next;
1783
1784 if (get_frame_type (next_frame) == NORMAL_FRAME
1785 && (get_frame_type (this_frame) == NORMAL_FRAME
1786 || get_frame_type (this_frame) == INLINE_FRAME))
1787 return pc - 1;
1788
1789 return pc;
1790 }
1791
1792 void
1793 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1794 {
1795 struct frame_info *next_frame;
1796 int notcurrent;
1797
1798 /* If the next frame represents an inlined function call, this frame's
1799 sal is the "call site" of that inlined function, which can not
1800 be inferred from get_frame_pc. */
1801 next_frame = get_next_frame (frame);
1802 if (frame_inlined_callees (frame) > 0)
1803 {
1804 struct symbol *sym;
1805
1806 if (next_frame)
1807 sym = get_frame_function (next_frame);
1808 else
1809 sym = inline_skipped_symbol (inferior_ptid);
1810
1811 init_sal (sal);
1812 if (SYMBOL_LINE (sym) != 0)
1813 {
1814 sal->symtab = SYMBOL_SYMTAB (sym);
1815 sal->line = SYMBOL_LINE (sym);
1816 }
1817 else
1818 /* If the symbol does not have a location, we don't know where
1819 the call site is. Do not pretend to. This is jarring, but
1820 we can't do much better. */
1821 sal->pc = get_frame_pc (frame);
1822
1823 return;
1824 }
1825
1826 /* If FRAME is not the innermost frame, that normally means that
1827 FRAME->pc points at the return instruction (which is *after* the
1828 call instruction), and we want to get the line containing the
1829 call (because the call is where the user thinks the program is).
1830 However, if the next frame is either a SIGTRAMP_FRAME or a
1831 DUMMY_FRAME, then the next frame will contain a saved interrupt
1832 PC and such a PC indicates the current (rather than next)
1833 instruction/line, consequently, for such cases, want to get the
1834 line containing fi->pc. */
1835 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1836 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1837 }
1838
1839 /* Per "frame.h", return the ``address'' of the frame. Code should
1840 really be using get_frame_id(). */
1841 CORE_ADDR
1842 get_frame_base (struct frame_info *fi)
1843 {
1844 return get_frame_id (fi).stack_addr;
1845 }
1846
1847 /* High-level offsets into the frame. Used by the debug info. */
1848
1849 CORE_ADDR
1850 get_frame_base_address (struct frame_info *fi)
1851 {
1852 if (get_frame_type (fi) != NORMAL_FRAME)
1853 return 0;
1854 if (fi->base == NULL)
1855 fi->base = frame_base_find_by_frame (fi);
1856 /* Sneaky: If the low-level unwind and high-level base code share a
1857 common unwinder, let them share the prologue cache. */
1858 if (fi->base->unwind == fi->unwind)
1859 return fi->base->this_base (fi, &fi->prologue_cache);
1860 return fi->base->this_base (fi, &fi->base_cache);
1861 }
1862
1863 CORE_ADDR
1864 get_frame_locals_address (struct frame_info *fi)
1865 {
1866 void **cache;
1867 if (get_frame_type (fi) != NORMAL_FRAME)
1868 return 0;
1869 /* If there isn't a frame address method, find it. */
1870 if (fi->base == NULL)
1871 fi->base = frame_base_find_by_frame (fi);
1872 /* Sneaky: If the low-level unwind and high-level base code share a
1873 common unwinder, let them share the prologue cache. */
1874 if (fi->base->unwind == fi->unwind)
1875 return fi->base->this_locals (fi, &fi->prologue_cache);
1876 return fi->base->this_locals (fi, &fi->base_cache);
1877 }
1878
1879 CORE_ADDR
1880 get_frame_args_address (struct frame_info *fi)
1881 {
1882 void **cache;
1883 if (get_frame_type (fi) != NORMAL_FRAME)
1884 return 0;
1885 /* If there isn't a frame address method, find it. */
1886 if (fi->base == NULL)
1887 fi->base = frame_base_find_by_frame (fi);
1888 /* Sneaky: If the low-level unwind and high-level base code share a
1889 common unwinder, let them share the prologue cache. */
1890 if (fi->base->unwind == fi->unwind)
1891 return fi->base->this_args (fi, &fi->prologue_cache);
1892 return fi->base->this_args (fi, &fi->base_cache);
1893 }
1894
1895 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1896 otherwise. */
1897
1898 int
1899 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1900 {
1901 if (fi->unwind == NULL)
1902 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1903 return fi->unwind == unwinder;
1904 }
1905
1906 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1907 or -1 for a NULL frame. */
1908
1909 int
1910 frame_relative_level (struct frame_info *fi)
1911 {
1912 if (fi == NULL)
1913 return -1;
1914 else
1915 return fi->level;
1916 }
1917
1918 enum frame_type
1919 get_frame_type (struct frame_info *frame)
1920 {
1921 if (frame->unwind == NULL)
1922 /* Initialize the frame's unwinder because that's what
1923 provides the frame's type. */
1924 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1925 return frame->unwind->type;
1926 }
1927
1928 /* Memory access methods. */
1929
1930 void
1931 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1932 gdb_byte *buf, int len)
1933 {
1934 read_memory (addr, buf, len);
1935 }
1936
1937 LONGEST
1938 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1939 int len)
1940 {
1941 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1942 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1943 return read_memory_integer (addr, len, byte_order);
1944 }
1945
1946 ULONGEST
1947 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1948 int len)
1949 {
1950 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1951 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1952 return read_memory_unsigned_integer (addr, len, byte_order);
1953 }
1954
1955 int
1956 safe_frame_unwind_memory (struct frame_info *this_frame,
1957 CORE_ADDR addr, gdb_byte *buf, int len)
1958 {
1959 /* NOTE: target_read_memory returns zero on success! */
1960 return !target_read_memory (addr, buf, len);
1961 }
1962
1963 /* Architecture methods. */
1964
1965 struct gdbarch *
1966 get_frame_arch (struct frame_info *this_frame)
1967 {
1968 return frame_unwind_arch (this_frame->next);
1969 }
1970
1971 struct gdbarch *
1972 frame_unwind_arch (struct frame_info *next_frame)
1973 {
1974 if (!next_frame->prev_arch.p)
1975 {
1976 struct gdbarch *arch;
1977
1978 if (next_frame->unwind == NULL)
1979 next_frame->unwind
1980 = frame_unwind_find_by_frame (next_frame,
1981 &next_frame->prologue_cache);
1982
1983 if (next_frame->unwind->prev_arch != NULL)
1984 arch = next_frame->unwind->prev_arch (next_frame,
1985 &next_frame->prologue_cache);
1986 else
1987 arch = get_frame_arch (next_frame);
1988
1989 next_frame->prev_arch.arch = arch;
1990 next_frame->prev_arch.p = 1;
1991 if (frame_debug)
1992 fprintf_unfiltered (gdb_stdlog,
1993 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
1994 next_frame->level,
1995 gdbarch_bfd_arch_info (arch)->printable_name);
1996 }
1997
1998 return next_frame->prev_arch.arch;
1999 }
2000
2001 struct gdbarch *
2002 frame_unwind_caller_arch (struct frame_info *next_frame)
2003 {
2004 return frame_unwind_arch (skip_inlined_frames (next_frame));
2005 }
2006
2007 /* Stack pointer methods. */
2008
2009 CORE_ADDR
2010 get_frame_sp (struct frame_info *this_frame)
2011 {
2012 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2013 /* Normality - an architecture that provides a way of obtaining any
2014 frame inner-most address. */
2015 if (gdbarch_unwind_sp_p (gdbarch))
2016 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2017 operate on THIS_FRAME now. */
2018 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2019 /* Now things are really are grim. Hope that the value returned by
2020 the gdbarch_sp_regnum register is meaningful. */
2021 if (gdbarch_sp_regnum (gdbarch) >= 0)
2022 return get_frame_register_unsigned (this_frame,
2023 gdbarch_sp_regnum (gdbarch));
2024 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2025 }
2026
2027 /* Return the reason why we can't unwind past FRAME. */
2028
2029 enum unwind_stop_reason
2030 get_frame_unwind_stop_reason (struct frame_info *frame)
2031 {
2032 /* If we haven't tried to unwind past this point yet, then assume
2033 that unwinding would succeed. */
2034 if (frame->prev_p == 0)
2035 return UNWIND_NO_REASON;
2036
2037 /* Otherwise, we set a reason when we succeeded (or failed) to
2038 unwind. */
2039 return frame->stop_reason;
2040 }
2041
2042 /* Return a string explaining REASON. */
2043
2044 const char *
2045 frame_stop_reason_string (enum unwind_stop_reason reason)
2046 {
2047 switch (reason)
2048 {
2049 case UNWIND_NULL_ID:
2050 return _("unwinder did not report frame ID");
2051
2052 case UNWIND_INNER_ID:
2053 return _("previous frame inner to this frame (corrupt stack?)");
2054
2055 case UNWIND_SAME_ID:
2056 return _("previous frame identical to this frame (corrupt stack?)");
2057
2058 case UNWIND_NO_SAVED_PC:
2059 return _("frame did not save the PC");
2060
2061 case UNWIND_NO_REASON:
2062 case UNWIND_FIRST_ERROR:
2063 default:
2064 internal_error (__FILE__, __LINE__,
2065 "Invalid frame stop reason");
2066 }
2067 }
2068
2069 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2070 FRAME. */
2071
2072 static void
2073 frame_cleanup_after_sniffer (void *arg)
2074 {
2075 struct frame_info *frame = arg;
2076
2077 /* The sniffer should not allocate a prologue cache if it did not
2078 match this frame. */
2079 gdb_assert (frame->prologue_cache == NULL);
2080
2081 /* No sniffer should extend the frame chain; sniff based on what is
2082 already certain. */
2083 gdb_assert (!frame->prev_p);
2084
2085 /* The sniffer should not check the frame's ID; that's circular. */
2086 gdb_assert (!frame->this_id.p);
2087
2088 /* Clear cached fields dependent on the unwinder.
2089
2090 The previous PC is independent of the unwinder, but the previous
2091 function is not (see get_frame_address_in_block). */
2092 frame->prev_func.p = 0;
2093 frame->prev_func.addr = 0;
2094
2095 /* Discard the unwinder last, so that we can easily find it if an assertion
2096 in this function triggers. */
2097 frame->unwind = NULL;
2098 }
2099
2100 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2101 Return a cleanup which should be called if unwinding fails, and
2102 discarded if it succeeds. */
2103
2104 struct cleanup *
2105 frame_prepare_for_sniffer (struct frame_info *frame,
2106 const struct frame_unwind *unwind)
2107 {
2108 gdb_assert (frame->unwind == NULL);
2109 frame->unwind = unwind;
2110 return make_cleanup (frame_cleanup_after_sniffer, frame);
2111 }
2112
2113 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2114
2115 static struct cmd_list_element *set_backtrace_cmdlist;
2116 static struct cmd_list_element *show_backtrace_cmdlist;
2117
2118 static void
2119 set_backtrace_cmd (char *args, int from_tty)
2120 {
2121 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2122 }
2123
2124 static void
2125 show_backtrace_cmd (char *args, int from_tty)
2126 {
2127 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2128 }
2129
2130 void
2131 _initialize_frame (void)
2132 {
2133 obstack_init (&frame_cache_obstack);
2134
2135 observer_attach_target_changed (frame_observer_target_changed);
2136
2137 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2138 Set backtrace specific variables.\n\
2139 Configure backtrace variables such as the backtrace limit"),
2140 &set_backtrace_cmdlist, "set backtrace ",
2141 0/*allow-unknown*/, &setlist);
2142 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2143 Show backtrace specific variables\n\
2144 Show backtrace variables such as the backtrace limit"),
2145 &show_backtrace_cmdlist, "show backtrace ",
2146 0/*allow-unknown*/, &showlist);
2147
2148 add_setshow_boolean_cmd ("past-main", class_obscure,
2149 &backtrace_past_main, _("\
2150 Set whether backtraces should continue past \"main\"."), _("\
2151 Show whether backtraces should continue past \"main\"."), _("\
2152 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2153 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2154 of the stack trace."),
2155 NULL,
2156 show_backtrace_past_main,
2157 &set_backtrace_cmdlist,
2158 &show_backtrace_cmdlist);
2159
2160 add_setshow_boolean_cmd ("past-entry", class_obscure,
2161 &backtrace_past_entry, _("\
2162 Set whether backtraces should continue past the entry point of a program."),
2163 _("\
2164 Show whether backtraces should continue past the entry point of a program."),
2165 _("\
2166 Normally there are no callers beyond the entry point of a program, so GDB\n\
2167 will terminate the backtrace there. Set this variable if you need to see \n\
2168 the rest of the stack trace."),
2169 NULL,
2170 show_backtrace_past_entry,
2171 &set_backtrace_cmdlist,
2172 &show_backtrace_cmdlist);
2173
2174 add_setshow_integer_cmd ("limit", class_obscure,
2175 &backtrace_limit, _("\
2176 Set an upper bound on the number of backtrace levels."), _("\
2177 Show the upper bound on the number of backtrace levels."), _("\
2178 No more than the specified number of frames can be displayed or examined.\n\
2179 Zero is unlimited."),
2180 NULL,
2181 show_backtrace_limit,
2182 &set_backtrace_cmdlist,
2183 &show_backtrace_cmdlist);
2184
2185 /* Debug this files internals. */
2186 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2187 Set frame debugging."), _("\
2188 Show frame debugging."), _("\
2189 When non-zero, frame specific internal debugging is enabled."),
2190 NULL,
2191 show_frame_debug,
2192 &setdebuglist, &showdebuglist);
2193 }
This page took 0.096697 seconds and 4 git commands to generate.