* remote-sim.c (gdbsim_cntrl_c): Pass remote_sim_ptid to
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44
45 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
46
47 /* We keep a cache of stack frames, each of which is a "struct
48 frame_info". The innermost one gets allocated (in
49 wait_for_inferior) each time the inferior stops; current_frame
50 points to it. Additional frames get allocated (in get_prev_frame)
51 as needed, and are chained through the next and prev fields. Any
52 time that the frame cache becomes invalid (most notably when we
53 execute something, but also if we change how we interpret the
54 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
55 which reads new symbols)), we should call reinit_frame_cache. */
56
57 struct frame_info
58 {
59 /* Level of this frame. The inner-most (youngest) frame is at level
60 0. As you move towards the outer-most (oldest) frame, the level
61 increases. This is a cached value. It could just as easily be
62 computed by counting back from the selected frame to the inner
63 most frame. */
64 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
65 reserved to indicate a bogus frame - one that has been created
66 just to keep GDB happy (GDB always needs a frame). For the
67 moment leave this as speculation. */
68 int level;
69
70 /* The frame's low-level unwinder and corresponding cache. The
71 low-level unwinder is responsible for unwinding register values
72 for the previous frame. The low-level unwind methods are
73 selected based on the presence, or otherwise, of register unwind
74 information such as CFI. */
75 void *prologue_cache;
76 const struct frame_unwind *unwind;
77
78 /* Cached copy of the previous frame's resume address. */
79 struct {
80 int p;
81 CORE_ADDR value;
82 } prev_pc;
83
84 /* Cached copy of the previous frame's function address. */
85 struct
86 {
87 CORE_ADDR addr;
88 int p;
89 } prev_func;
90
91 /* This frame's ID. */
92 struct
93 {
94 int p;
95 struct frame_id value;
96 } this_id;
97
98 /* The frame's high-level base methods, and corresponding cache.
99 The high level base methods are selected based on the frame's
100 debug info. */
101 const struct frame_base *base;
102 void *base_cache;
103
104 /* Pointers to the next (down, inner, younger) and previous (up,
105 outer, older) frame_info's in the frame cache. */
106 struct frame_info *next; /* down, inner, younger */
107 int prev_p;
108 struct frame_info *prev; /* up, outer, older */
109
110 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
111 could. Only valid when PREV_P is set. */
112 enum unwind_stop_reason stop_reason;
113 };
114
115 /* Flag to control debugging. */
116
117 int frame_debug;
118 static void
119 show_frame_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
123 }
124
125 /* Flag to indicate whether backtraces should stop at main et.al. */
126
127 static int backtrace_past_main;
128 static void
129 show_backtrace_past_main (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131 {
132 fprintf_filtered (file, _("\
133 Whether backtraces should continue past \"main\" is %s.\n"),
134 value);
135 }
136
137 static int backtrace_past_entry;
138 static void
139 show_backtrace_past_entry (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Whether backtraces should continue past the entry point of a program is %s.\n"),
144 value);
145 }
146
147 static int backtrace_limit = INT_MAX;
148 static void
149 show_backtrace_limit (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("\
153 An upper bound on the number of backtrace levels is %s.\n"),
154 value);
155 }
156
157
158 static void
159 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
160 {
161 if (p)
162 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
163 else
164 fprintf_unfiltered (file, "!%s", name);
165 }
166
167 void
168 fprint_frame_id (struct ui_file *file, struct frame_id id)
169 {
170 fprintf_unfiltered (file, "{");
171 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
172 fprintf_unfiltered (file, ",");
173 fprint_field (file, "code", id.code_addr_p, id.code_addr);
174 fprintf_unfiltered (file, ",");
175 fprint_field (file, "special", id.special_addr_p, id.special_addr);
176 fprintf_unfiltered (file, "}");
177 }
178
179 static void
180 fprint_frame_type (struct ui_file *file, enum frame_type type)
181 {
182 switch (type)
183 {
184 case NORMAL_FRAME:
185 fprintf_unfiltered (file, "NORMAL_FRAME");
186 return;
187 case DUMMY_FRAME:
188 fprintf_unfiltered (file, "DUMMY_FRAME");
189 return;
190 case SIGTRAMP_FRAME:
191 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
192 return;
193 default:
194 fprintf_unfiltered (file, "<unknown type>");
195 return;
196 };
197 }
198
199 static void
200 fprint_frame (struct ui_file *file, struct frame_info *fi)
201 {
202 if (fi == NULL)
203 {
204 fprintf_unfiltered (file, "<NULL frame>");
205 return;
206 }
207 fprintf_unfiltered (file, "{");
208 fprintf_unfiltered (file, "level=%d", fi->level);
209 fprintf_unfiltered (file, ",");
210 fprintf_unfiltered (file, "type=");
211 if (fi->unwind != NULL)
212 fprint_frame_type (file, fi->unwind->type);
213 else
214 fprintf_unfiltered (file, "<unknown>");
215 fprintf_unfiltered (file, ",");
216 fprintf_unfiltered (file, "unwind=");
217 if (fi->unwind != NULL)
218 gdb_print_host_address (fi->unwind, file);
219 else
220 fprintf_unfiltered (file, "<unknown>");
221 fprintf_unfiltered (file, ",");
222 fprintf_unfiltered (file, "pc=");
223 if (fi->next != NULL && fi->next->prev_pc.p)
224 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
225 else
226 fprintf_unfiltered (file, "<unknown>");
227 fprintf_unfiltered (file, ",");
228 fprintf_unfiltered (file, "id=");
229 if (fi->this_id.p)
230 fprint_frame_id (file, fi->this_id.value);
231 else
232 fprintf_unfiltered (file, "<unknown>");
233 fprintf_unfiltered (file, ",");
234 fprintf_unfiltered (file, "func=");
235 if (fi->next != NULL && fi->next->prev_func.p)
236 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
237 else
238 fprintf_unfiltered (file, "<unknown>");
239 fprintf_unfiltered (file, "}");
240 }
241
242 /* Return a frame uniq ID that can be used to, later, re-find the
243 frame. */
244
245 struct frame_id
246 get_frame_id (struct frame_info *fi)
247 {
248 if (fi == NULL)
249 {
250 return null_frame_id;
251 }
252 if (!fi->this_id.p)
253 {
254 if (frame_debug)
255 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
256 fi->level);
257 /* Find the unwinder. */
258 if (fi->unwind == NULL)
259 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
260 /* Find THIS frame's ID. */
261 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
262 fi->this_id.p = 1;
263 if (frame_debug)
264 {
265 fprintf_unfiltered (gdb_stdlog, "-> ");
266 fprint_frame_id (gdb_stdlog, fi->this_id.value);
267 fprintf_unfiltered (gdb_stdlog, " }\n");
268 }
269 }
270 return fi->this_id.value;
271 }
272
273 struct frame_id
274 frame_unwind_id (struct frame_info *next_frame)
275 {
276 /* Use prev_frame, and not get_prev_frame. The latter will truncate
277 the frame chain, leading to this function unintentionally
278 returning a null_frame_id (e.g., when a caller requests the frame
279 ID of "main()"s caller. */
280 return get_frame_id (get_prev_frame_1 (next_frame));
281 }
282
283 const struct frame_id null_frame_id; /* All zeros. */
284
285 struct frame_id
286 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
287 CORE_ADDR special_addr)
288 {
289 struct frame_id id = null_frame_id;
290 id.stack_addr = stack_addr;
291 id.stack_addr_p = 1;
292 id.code_addr = code_addr;
293 id.code_addr_p = 1;
294 id.special_addr = special_addr;
295 id.special_addr_p = 1;
296 return id;
297 }
298
299 struct frame_id
300 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
301 {
302 struct frame_id id = null_frame_id;
303 id.stack_addr = stack_addr;
304 id.stack_addr_p = 1;
305 id.code_addr = code_addr;
306 id.code_addr_p = 1;
307 return id;
308 }
309
310 struct frame_id
311 frame_id_build_wild (CORE_ADDR stack_addr)
312 {
313 struct frame_id id = null_frame_id;
314 id.stack_addr = stack_addr;
315 id.stack_addr_p = 1;
316 return id;
317 }
318
319 int
320 frame_id_p (struct frame_id l)
321 {
322 int p;
323 /* The frame is valid iff it has a valid stack address. */
324 p = l.stack_addr_p;
325 if (frame_debug)
326 {
327 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
328 fprint_frame_id (gdb_stdlog, l);
329 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
330 }
331 return p;
332 }
333
334 int
335 frame_id_eq (struct frame_id l, struct frame_id r)
336 {
337 int eq;
338 if (!l.stack_addr_p || !r.stack_addr_p)
339 /* Like a NaN, if either ID is invalid, the result is false.
340 Note that a frame ID is invalid iff it is the null frame ID. */
341 eq = 0;
342 else if (l.stack_addr != r.stack_addr)
343 /* If .stack addresses are different, the frames are different. */
344 eq = 0;
345 else if (!l.code_addr_p || !r.code_addr_p)
346 /* An invalid code addr is a wild card, always succeed. */
347 eq = 1;
348 else if (l.code_addr != r.code_addr)
349 /* If .code addresses are different, the frames are different. */
350 eq = 0;
351 else if (!l.special_addr_p || !r.special_addr_p)
352 /* An invalid special addr is a wild card (or unused), always succeed. */
353 eq = 1;
354 else if (l.special_addr == r.special_addr)
355 /* Frames are equal. */
356 eq = 1;
357 else
358 /* No luck. */
359 eq = 0;
360 if (frame_debug)
361 {
362 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
363 fprint_frame_id (gdb_stdlog, l);
364 fprintf_unfiltered (gdb_stdlog, ",r=");
365 fprint_frame_id (gdb_stdlog, r);
366 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
367 }
368 return eq;
369 }
370
371 int
372 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
373 {
374 int inner;
375 if (!l.stack_addr_p || !r.stack_addr_p)
376 /* Like NaN, any operation involving an invalid ID always fails. */
377 inner = 0;
378 else
379 /* Only return non-zero when strictly inner than. Note that, per
380 comment in "frame.h", there is some fuzz here. Frameless
381 functions are not strictly inner than (same .stack but
382 different .code and/or .special address). */
383 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
384 if (frame_debug)
385 {
386 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
387 fprint_frame_id (gdb_stdlog, l);
388 fprintf_unfiltered (gdb_stdlog, ",r=");
389 fprint_frame_id (gdb_stdlog, r);
390 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
391 }
392 return inner;
393 }
394
395 struct frame_info *
396 frame_find_by_id (struct frame_id id)
397 {
398 struct frame_info *frame;
399
400 /* ZERO denotes the null frame, let the caller decide what to do
401 about it. Should it instead return get_current_frame()? */
402 if (!frame_id_p (id))
403 return NULL;
404
405 for (frame = get_current_frame ();
406 frame != NULL;
407 frame = get_prev_frame (frame))
408 {
409 struct frame_id this = get_frame_id (frame);
410 if (frame_id_eq (id, this))
411 /* An exact match. */
412 return frame;
413 if (frame_id_inner (get_frame_arch (frame), id, this))
414 /* Gone to far. */
415 return NULL;
416 /* Either we're not yet gone far enough out along the frame
417 chain (inner(this,id)), or we're comparing frameless functions
418 (same .base, different .func, no test available). Struggle
419 on until we've definitly gone to far. */
420 }
421 return NULL;
422 }
423
424 CORE_ADDR
425 frame_pc_unwind (struct frame_info *this_frame)
426 {
427 if (!this_frame->prev_pc.p)
428 {
429 CORE_ADDR pc;
430 if (gdbarch_unwind_pc_p (get_frame_arch (this_frame)))
431 {
432 /* The right way. The `pure' way. The one true way. This
433 method depends solely on the register-unwind code to
434 determine the value of registers in THIS frame, and hence
435 the value of this frame's PC (resume address). A typical
436 implementation is no more than:
437
438 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
439 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
440
441 Note: this method is very heavily dependent on a correct
442 register-unwind implementation, it pays to fix that
443 method first; this method is frame type agnostic, since
444 it only deals with register values, it works with any
445 frame. This is all in stark contrast to the old
446 FRAME_SAVED_PC which would try to directly handle all the
447 different ways that a PC could be unwound. */
448 pc = gdbarch_unwind_pc (get_frame_arch (this_frame), this_frame);
449 }
450 else
451 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
452 this_frame->prev_pc.value = pc;
453 this_frame->prev_pc.p = 1;
454 if (frame_debug)
455 fprintf_unfiltered (gdb_stdlog,
456 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
457 this_frame->level,
458 paddr_nz (this_frame->prev_pc.value));
459 }
460 return this_frame->prev_pc.value;
461 }
462
463 CORE_ADDR
464 frame_func_unwind (struct frame_info *fi, enum frame_type this_type)
465 {
466 if (!fi->prev_func.p)
467 {
468 /* Make certain that this, and not the adjacent, function is
469 found. */
470 CORE_ADDR addr_in_block = frame_unwind_address_in_block (fi, this_type);
471 fi->prev_func.p = 1;
472 fi->prev_func.addr = get_pc_function_start (addr_in_block);
473 if (frame_debug)
474 fprintf_unfiltered (gdb_stdlog,
475 "{ frame_func_unwind (fi=%d) -> 0x%s }\n",
476 fi->level, paddr_nz (fi->prev_func.addr));
477 }
478 return fi->prev_func.addr;
479 }
480
481 CORE_ADDR
482 get_frame_func (struct frame_info *fi)
483 {
484 return frame_func_unwind (fi->next, get_frame_type (fi));
485 }
486
487 static int
488 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
489 {
490 return frame_register_read (src, regnum, buf);
491 }
492
493 struct regcache *
494 frame_save_as_regcache (struct frame_info *this_frame)
495 {
496 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
497 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
498 regcache_save (regcache, do_frame_register_read, this_frame);
499 discard_cleanups (cleanups);
500 return regcache;
501 }
502
503 void
504 frame_pop (struct frame_info *this_frame)
505 {
506 struct frame_info *prev_frame;
507 struct regcache *scratch;
508 struct cleanup *cleanups;
509
510 /* Ensure that we have a frame to pop to. */
511 prev_frame = get_prev_frame_1 (this_frame);
512
513 if (!prev_frame)
514 error (_("Cannot pop the initial frame."));
515
516 /* Make a copy of all the register values unwound from this frame.
517 Save them in a scratch buffer so that there isn't a race between
518 trying to extract the old values from the current regcache while
519 at the same time writing new values into that same cache. */
520 scratch = frame_save_as_regcache (prev_frame);
521 cleanups = make_cleanup_regcache_xfree (scratch);
522
523 /* FIXME: cagney/2003-03-16: It should be possible to tell the
524 target's register cache that it is about to be hit with a burst
525 register transfer and that the sequence of register writes should
526 be batched. The pair target_prepare_to_store() and
527 target_store_registers() kind of suggest this functionality.
528 Unfortunately, they don't implement it. Their lack of a formal
529 definition can lead to targets writing back bogus values
530 (arguably a bug in the target code mind). */
531 /* Now copy those saved registers into the current regcache.
532 Here, regcache_cpy() calls regcache_restore(). */
533 regcache_cpy (get_current_regcache (), scratch);
534 do_cleanups (cleanups);
535
536 /* We've made right mess of GDB's local state, just discard
537 everything. */
538 reinit_frame_cache ();
539 }
540
541 void
542 frame_register_unwind (struct frame_info *frame, int regnum,
543 int *optimizedp, enum lval_type *lvalp,
544 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
545 {
546 struct value *value;
547
548 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
549 that the value proper does not need to be fetched. */
550 gdb_assert (optimizedp != NULL);
551 gdb_assert (lvalp != NULL);
552 gdb_assert (addrp != NULL);
553 gdb_assert (realnump != NULL);
554 /* gdb_assert (bufferp != NULL); */
555
556 value = frame_unwind_register_value (frame, regnum);
557
558 gdb_assert (value != NULL);
559
560 *optimizedp = value_optimized_out (value);
561 *lvalp = VALUE_LVAL (value);
562 *addrp = VALUE_ADDRESS (value);
563 *realnump = VALUE_REGNUM (value);
564
565 if (bufferp)
566 memcpy (bufferp, value_contents_all (value),
567 TYPE_LENGTH (value_type (value)));
568
569 /* Dispose of the new value. This prevents watchpoints from
570 trying to watch the saved frame pointer. */
571 release_value (value);
572 value_free (value);
573 }
574
575 void
576 frame_register (struct frame_info *frame, int regnum,
577 int *optimizedp, enum lval_type *lvalp,
578 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
579 {
580 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
581 that the value proper does not need to be fetched. */
582 gdb_assert (optimizedp != NULL);
583 gdb_assert (lvalp != NULL);
584 gdb_assert (addrp != NULL);
585 gdb_assert (realnump != NULL);
586 /* gdb_assert (bufferp != NULL); */
587
588 /* Obtain the register value by unwinding the register from the next
589 (more inner frame). */
590 gdb_assert (frame != NULL && frame->next != NULL);
591 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
592 realnump, bufferp);
593 }
594
595 void
596 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
597 {
598 int optimized;
599 CORE_ADDR addr;
600 int realnum;
601 enum lval_type lval;
602 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
603 &realnum, buf);
604 }
605
606 void
607 get_frame_register (struct frame_info *frame,
608 int regnum, gdb_byte *buf)
609 {
610 frame_unwind_register (frame->next, regnum, buf);
611 }
612
613 struct value *
614 frame_unwind_register_value (struct frame_info *frame, int regnum)
615 {
616 struct value *value;
617
618 gdb_assert (frame != NULL);
619
620 if (frame_debug)
621 {
622 fprintf_unfiltered (gdb_stdlog, "\
623 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
624 frame->level, regnum,
625 frame_map_regnum_to_name (frame, regnum));
626 }
627
628 /* Find the unwinder. */
629 if (frame->unwind == NULL)
630 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
631
632 /* Ask this frame to unwind its register. */
633 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
634
635 if (frame_debug)
636 {
637 fprintf_unfiltered (gdb_stdlog, "->");
638 if (value_optimized_out (value))
639 fprintf_unfiltered (gdb_stdlog, " optimized out");
640 else
641 {
642 if (VALUE_LVAL (value) == lval_register)
643 fprintf_unfiltered (gdb_stdlog, " register=%d",
644 VALUE_REGNUM (value));
645 else if (VALUE_LVAL (value) == lval_memory)
646 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
647 paddr_nz (VALUE_ADDRESS (value)));
648 else
649 fprintf_unfiltered (gdb_stdlog, " computed");
650
651 if (value_lazy (value))
652 fprintf_unfiltered (gdb_stdlog, " lazy");
653 else
654 {
655 int i;
656 const gdb_byte *buf = value_contents (value);
657
658 fprintf_unfiltered (gdb_stdlog, " bytes=");
659 fprintf_unfiltered (gdb_stdlog, "[");
660 for (i = 0; i < register_size (get_frame_arch (frame), regnum); i++)
661 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
662 fprintf_unfiltered (gdb_stdlog, "]");
663 }
664 }
665
666 fprintf_unfiltered (gdb_stdlog, " }\n");
667 }
668
669 return value;
670 }
671
672 struct value *
673 get_frame_register_value (struct frame_info *frame, int regnum)
674 {
675 return frame_unwind_register_value (frame->next, regnum);
676 }
677
678 LONGEST
679 frame_unwind_register_signed (struct frame_info *frame, int regnum)
680 {
681 gdb_byte buf[MAX_REGISTER_SIZE];
682 frame_unwind_register (frame, regnum, buf);
683 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
684 regnum));
685 }
686
687 LONGEST
688 get_frame_register_signed (struct frame_info *frame, int regnum)
689 {
690 return frame_unwind_register_signed (frame->next, regnum);
691 }
692
693 ULONGEST
694 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
695 {
696 gdb_byte buf[MAX_REGISTER_SIZE];
697 frame_unwind_register (frame, regnum, buf);
698 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
699 regnum));
700 }
701
702 ULONGEST
703 get_frame_register_unsigned (struct frame_info *frame, int regnum)
704 {
705 return frame_unwind_register_unsigned (frame->next, regnum);
706 }
707
708 void
709 put_frame_register (struct frame_info *frame, int regnum,
710 const gdb_byte *buf)
711 {
712 struct gdbarch *gdbarch = get_frame_arch (frame);
713 int realnum;
714 int optim;
715 enum lval_type lval;
716 CORE_ADDR addr;
717 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
718 if (optim)
719 error (_("Attempt to assign to a value that was optimized out."));
720 switch (lval)
721 {
722 case lval_memory:
723 {
724 /* FIXME: write_memory doesn't yet take constant buffers.
725 Arrrg! */
726 gdb_byte tmp[MAX_REGISTER_SIZE];
727 memcpy (tmp, buf, register_size (gdbarch, regnum));
728 write_memory (addr, tmp, register_size (gdbarch, regnum));
729 break;
730 }
731 case lval_register:
732 regcache_cooked_write (get_current_regcache (), realnum, buf);
733 break;
734 default:
735 error (_("Attempt to assign to an unmodifiable value."));
736 }
737 }
738
739 /* frame_register_read ()
740
741 Find and return the value of REGNUM for the specified stack frame.
742 The number of bytes copied is REGISTER_SIZE (REGNUM).
743
744 Returns 0 if the register value could not be found. */
745
746 int
747 frame_register_read (struct frame_info *frame, int regnum,
748 gdb_byte *myaddr)
749 {
750 int optimized;
751 enum lval_type lval;
752 CORE_ADDR addr;
753 int realnum;
754 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
755
756 return !optimized;
757 }
758
759 int
760 get_frame_register_bytes (struct frame_info *frame, int regnum,
761 CORE_ADDR offset, int len, gdb_byte *myaddr)
762 {
763 struct gdbarch *gdbarch = get_frame_arch (frame);
764
765 /* Skip registers wholly inside of OFFSET. */
766 while (offset >= register_size (gdbarch, regnum))
767 {
768 offset -= register_size (gdbarch, regnum);
769 regnum++;
770 }
771
772 /* Copy the data. */
773 while (len > 0)
774 {
775 int curr_len = register_size (gdbarch, regnum) - offset;
776 if (curr_len > len)
777 curr_len = len;
778
779 if (curr_len == register_size (gdbarch, regnum))
780 {
781 if (!frame_register_read (frame, regnum, myaddr))
782 return 0;
783 }
784 else
785 {
786 gdb_byte buf[MAX_REGISTER_SIZE];
787 if (!frame_register_read (frame, regnum, buf))
788 return 0;
789 memcpy (myaddr, buf + offset, curr_len);
790 }
791
792 myaddr += curr_len;
793 len -= curr_len;
794 offset = 0;
795 regnum++;
796 }
797
798 return 1;
799 }
800
801 void
802 put_frame_register_bytes (struct frame_info *frame, int regnum,
803 CORE_ADDR offset, int len, const gdb_byte *myaddr)
804 {
805 struct gdbarch *gdbarch = get_frame_arch (frame);
806
807 /* Skip registers wholly inside of OFFSET. */
808 while (offset >= register_size (gdbarch, regnum))
809 {
810 offset -= register_size (gdbarch, regnum);
811 regnum++;
812 }
813
814 /* Copy the data. */
815 while (len > 0)
816 {
817 int curr_len = register_size (gdbarch, regnum) - offset;
818 if (curr_len > len)
819 curr_len = len;
820
821 if (curr_len == register_size (gdbarch, regnum))
822 {
823 put_frame_register (frame, regnum, myaddr);
824 }
825 else
826 {
827 gdb_byte buf[MAX_REGISTER_SIZE];
828 frame_register_read (frame, regnum, buf);
829 memcpy (buf + offset, myaddr, curr_len);
830 put_frame_register (frame, regnum, buf);
831 }
832
833 myaddr += curr_len;
834 len -= curr_len;
835 offset = 0;
836 regnum++;
837 }
838 }
839
840 /* Map between a frame register number and its name. A frame register
841 space is a superset of the cooked register space --- it also
842 includes builtin registers. */
843
844 int
845 frame_map_name_to_regnum (struct frame_info *frame, const char *name, int len)
846 {
847 return user_reg_map_name_to_regnum (get_frame_arch (frame), name, len);
848 }
849
850 const char *
851 frame_map_regnum_to_name (struct frame_info *frame, int regnum)
852 {
853 return user_reg_map_regnum_to_name (get_frame_arch (frame), regnum);
854 }
855
856 /* Create a sentinel frame. */
857
858 static struct frame_info *
859 create_sentinel_frame (struct regcache *regcache)
860 {
861 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
862 frame->level = -1;
863 /* Explicitly initialize the sentinel frame's cache. Provide it
864 with the underlying regcache. In the future additional
865 information, such as the frame's thread will be added. */
866 frame->prologue_cache = sentinel_frame_cache (regcache);
867 /* For the moment there is only one sentinel frame implementation. */
868 frame->unwind = sentinel_frame_unwind;
869 /* Link this frame back to itself. The frame is self referential
870 (the unwound PC is the same as the pc), so make it so. */
871 frame->next = frame;
872 /* Make the sentinel frame's ID valid, but invalid. That way all
873 comparisons with it should fail. */
874 frame->this_id.p = 1;
875 frame->this_id.value = null_frame_id;
876 if (frame_debug)
877 {
878 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
879 fprint_frame (gdb_stdlog, frame);
880 fprintf_unfiltered (gdb_stdlog, " }\n");
881 }
882 return frame;
883 }
884
885 /* Info about the innermost stack frame (contents of FP register) */
886
887 static struct frame_info *current_frame;
888
889 /* Cache for frame addresses already read by gdb. Valid only while
890 inferior is stopped. Control variables for the frame cache should
891 be local to this module. */
892
893 static struct obstack frame_cache_obstack;
894
895 void *
896 frame_obstack_zalloc (unsigned long size)
897 {
898 void *data = obstack_alloc (&frame_cache_obstack, size);
899 memset (data, 0, size);
900 return data;
901 }
902
903 /* Return the innermost (currently executing) stack frame. This is
904 split into two functions. The function unwind_to_current_frame()
905 is wrapped in catch exceptions so that, even when the unwind of the
906 sentinel frame fails, the function still returns a stack frame. */
907
908 static int
909 unwind_to_current_frame (struct ui_out *ui_out, void *args)
910 {
911 struct frame_info *frame = get_prev_frame (args);
912 /* A sentinel frame can fail to unwind, e.g., because its PC value
913 lands in somewhere like start. */
914 if (frame == NULL)
915 return 1;
916 current_frame = frame;
917 return 0;
918 }
919
920 struct frame_info *
921 get_current_frame (void)
922 {
923 /* First check, and report, the lack of registers. Having GDB
924 report "No stack!" or "No memory" when the target doesn't even
925 have registers is very confusing. Besides, "printcmd.exp"
926 explicitly checks that ``print $pc'' with no registers prints "No
927 registers". */
928 if (!target_has_registers)
929 error (_("No registers."));
930 if (!target_has_stack)
931 error (_("No stack."));
932 if (!target_has_memory)
933 error (_("No memory."));
934 if (is_executing (inferior_ptid))
935 error (_("Target is executing."));
936
937 if (current_frame == NULL)
938 {
939 struct frame_info *sentinel_frame =
940 create_sentinel_frame (get_current_regcache ());
941 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
942 RETURN_MASK_ERROR) != 0)
943 {
944 /* Oops! Fake a current frame? Is this useful? It has a PC
945 of zero, for instance. */
946 current_frame = sentinel_frame;
947 }
948 }
949 return current_frame;
950 }
951
952 /* The "selected" stack frame is used by default for local and arg
953 access. May be zero, for no selected frame. */
954
955 static struct frame_info *selected_frame;
956
957 static int
958 has_stack_frames (void)
959 {
960 if (!target_has_registers || !target_has_stack || !target_has_memory)
961 return 0;
962
963 /* If the current thread is executing, don't try to read from
964 it. */
965 if (is_executing (inferior_ptid))
966 return 0;
967
968 return 1;
969 }
970
971 /* Return the selected frame. Always non-NULL (unless there isn't an
972 inferior sufficient for creating a frame) in which case an error is
973 thrown. */
974
975 struct frame_info *
976 get_selected_frame (const char *message)
977 {
978 if (selected_frame == NULL)
979 {
980 if (message != NULL && !has_stack_frames ())
981 error (("%s"), message);
982 /* Hey! Don't trust this. It should really be re-finding the
983 last selected frame of the currently selected thread. This,
984 though, is better than nothing. */
985 select_frame (get_current_frame ());
986 }
987 /* There is always a frame. */
988 gdb_assert (selected_frame != NULL);
989 return selected_frame;
990 }
991
992 /* This is a variant of get_selected_frame() which can be called when
993 the inferior does not have a frame; in that case it will return
994 NULL instead of calling error(). */
995
996 struct frame_info *
997 deprecated_safe_get_selected_frame (void)
998 {
999 if (!has_stack_frames ())
1000 return NULL;
1001 return get_selected_frame (NULL);
1002 }
1003
1004 /* Select frame FI (or NULL - to invalidate the current frame). */
1005
1006 void
1007 select_frame (struct frame_info *fi)
1008 {
1009 struct symtab *s;
1010
1011 selected_frame = fi;
1012 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1013 frame is being invalidated. */
1014 if (deprecated_selected_frame_level_changed_hook)
1015 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1016
1017 /* FIXME: kseitz/2002-08-28: It would be nice to call
1018 selected_frame_level_changed_event() right here, but due to limitations
1019 in the current interfaces, we would end up flooding UIs with events
1020 because select_frame() is used extensively internally.
1021
1022 Once we have frame-parameterized frame (and frame-related) commands,
1023 the event notification can be moved here, since this function will only
1024 be called when the user's selected frame is being changed. */
1025
1026 /* Ensure that symbols for this frame are read in. Also, determine the
1027 source language of this frame, and switch to it if desired. */
1028 if (fi)
1029 {
1030 /* We retrieve the frame's symtab by using the frame PC. However
1031 we cannot use the frame PC as-is, because it usually points to
1032 the instruction following the "call", which is sometimes the
1033 first instruction of another function. So we rely on
1034 get_frame_address_in_block() which provides us with a PC which
1035 is guaranteed to be inside the frame's code block. */
1036 s = find_pc_symtab (get_frame_address_in_block (fi));
1037 if (s
1038 && s->language != current_language->la_language
1039 && s->language != language_unknown
1040 && language_mode == language_mode_auto)
1041 {
1042 set_language (s->language);
1043 }
1044 }
1045 }
1046
1047 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1048 Always returns a non-NULL value. */
1049
1050 struct frame_info *
1051 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1052 {
1053 struct frame_info *fi;
1054
1055 if (frame_debug)
1056 {
1057 fprintf_unfiltered (gdb_stdlog,
1058 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1059 paddr_nz (addr), paddr_nz (pc));
1060 }
1061
1062 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1063
1064 fi->next = create_sentinel_frame (get_current_regcache ());
1065
1066 /* Select/initialize both the unwind function and the frame's type
1067 based on the PC. */
1068 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1069
1070 fi->this_id.p = 1;
1071 deprecated_update_frame_base_hack (fi, addr);
1072 deprecated_update_frame_pc_hack (fi, pc);
1073
1074 if (frame_debug)
1075 {
1076 fprintf_unfiltered (gdb_stdlog, "-> ");
1077 fprint_frame (gdb_stdlog, fi);
1078 fprintf_unfiltered (gdb_stdlog, " }\n");
1079 }
1080
1081 return fi;
1082 }
1083
1084 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1085 innermost frame). Be careful to not fall off the bottom of the
1086 frame chain and onto the sentinel frame. */
1087
1088 struct frame_info *
1089 get_next_frame (struct frame_info *this_frame)
1090 {
1091 if (this_frame->level > 0)
1092 return this_frame->next;
1093 else
1094 return NULL;
1095 }
1096
1097 /* Observer for the target_changed event. */
1098
1099 void
1100 frame_observer_target_changed (struct target_ops *target)
1101 {
1102 reinit_frame_cache ();
1103 }
1104
1105 /* Flush the entire frame cache. */
1106
1107 void
1108 reinit_frame_cache (void)
1109 {
1110 struct frame_info *fi;
1111
1112 /* Tear down all frame caches. */
1113 for (fi = current_frame; fi != NULL; fi = fi->prev)
1114 {
1115 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1116 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1117 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1118 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1119 }
1120
1121 /* Since we can't really be sure what the first object allocated was */
1122 obstack_free (&frame_cache_obstack, 0);
1123 obstack_init (&frame_cache_obstack);
1124
1125 if (current_frame != NULL)
1126 annotate_frames_invalid ();
1127
1128 current_frame = NULL; /* Invalidate cache */
1129 select_frame (NULL);
1130 if (frame_debug)
1131 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1132 }
1133
1134 /* Find where a register is saved (in memory or another register).
1135 The result of frame_register_unwind is just where it is saved
1136 relative to this particular frame. */
1137
1138 static void
1139 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1140 int *optimizedp, enum lval_type *lvalp,
1141 CORE_ADDR *addrp, int *realnump)
1142 {
1143 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1144
1145 while (this_frame != NULL)
1146 {
1147 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1148 addrp, realnump, NULL);
1149
1150 if (*optimizedp)
1151 break;
1152
1153 if (*lvalp != lval_register)
1154 break;
1155
1156 regnum = *realnump;
1157 this_frame = get_next_frame (this_frame);
1158 }
1159 }
1160
1161 /* Return a "struct frame_info" corresponding to the frame that called
1162 THIS_FRAME. Returns NULL if there is no such frame.
1163
1164 Unlike get_prev_frame, this function always tries to unwind the
1165 frame. */
1166
1167 static struct frame_info *
1168 get_prev_frame_1 (struct frame_info *this_frame)
1169 {
1170 struct frame_info *prev_frame;
1171 struct frame_id this_id;
1172 struct gdbarch *gdbarch;
1173
1174 gdb_assert (this_frame != NULL);
1175 gdbarch = get_frame_arch (this_frame);
1176
1177 if (frame_debug)
1178 {
1179 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1180 if (this_frame != NULL)
1181 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1182 else
1183 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1184 fprintf_unfiltered (gdb_stdlog, ") ");
1185 }
1186
1187 /* Only try to do the unwind once. */
1188 if (this_frame->prev_p)
1189 {
1190 if (frame_debug)
1191 {
1192 fprintf_unfiltered (gdb_stdlog, "-> ");
1193 fprint_frame (gdb_stdlog, this_frame->prev);
1194 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1195 }
1196 return this_frame->prev;
1197 }
1198
1199 /* If the frame unwinder hasn't been selected yet, we must do so
1200 before setting prev_p; otherwise the check for misbehaved
1201 sniffers will think that this frame's sniffer tried to unwind
1202 further (see frame_cleanup_after_sniffer). */
1203 if (this_frame->unwind == NULL)
1204 this_frame->unwind
1205 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1206
1207 this_frame->prev_p = 1;
1208 this_frame->stop_reason = UNWIND_NO_REASON;
1209
1210 /* Check that this frame's ID was valid. If it wasn't, don't try to
1211 unwind to the prev frame. Be careful to not apply this test to
1212 the sentinel frame. */
1213 this_id = get_frame_id (this_frame);
1214 if (this_frame->level >= 0 && !frame_id_p (this_id))
1215 {
1216 if (frame_debug)
1217 {
1218 fprintf_unfiltered (gdb_stdlog, "-> ");
1219 fprint_frame (gdb_stdlog, NULL);
1220 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1221 }
1222 this_frame->stop_reason = UNWIND_NULL_ID;
1223 return NULL;
1224 }
1225
1226 /* Check that this frame's ID isn't inner to (younger, below, next)
1227 the next frame. This happens when a frame unwind goes backwards.
1228 Exclude signal trampolines (due to sigaltstack the frame ID can
1229 go backwards) and sentinel frames (the test is meaningless). */
1230 if (this_frame->next->level >= 0
1231 && this_frame->next->unwind->type != SIGTRAMP_FRAME
1232 && frame_id_inner (get_frame_arch (this_frame), this_id,
1233 get_frame_id (this_frame->next)))
1234 {
1235 if (frame_debug)
1236 {
1237 fprintf_unfiltered (gdb_stdlog, "-> ");
1238 fprint_frame (gdb_stdlog, NULL);
1239 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1240 }
1241 this_frame->stop_reason = UNWIND_INNER_ID;
1242 return NULL;
1243 }
1244
1245 /* Check that this and the next frame are not identical. If they
1246 are, there is most likely a stack cycle. As with the inner-than
1247 test above, avoid comparing the inner-most and sentinel frames. */
1248 if (this_frame->level > 0
1249 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1250 {
1251 if (frame_debug)
1252 {
1253 fprintf_unfiltered (gdb_stdlog, "-> ");
1254 fprint_frame (gdb_stdlog, NULL);
1255 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1256 }
1257 this_frame->stop_reason = UNWIND_SAME_ID;
1258 return NULL;
1259 }
1260
1261 /* Check that this and the next frame do not unwind the PC register
1262 to the same memory location. If they do, then even though they
1263 have different frame IDs, the new frame will be bogus; two
1264 functions can't share a register save slot for the PC. This can
1265 happen when the prologue analyzer finds a stack adjustment, but
1266 no PC save.
1267
1268 This check does assume that the "PC register" is roughly a
1269 traditional PC, even if the gdbarch_unwind_pc method adjusts
1270 it (we do not rely on the value, only on the unwound PC being
1271 dependent on this value). A potential improvement would be
1272 to have the frame prev_pc method and the gdbarch unwind_pc
1273 method set the same lval and location information as
1274 frame_register_unwind. */
1275 if (this_frame->level > 0
1276 && gdbarch_pc_regnum (gdbarch) >= 0
1277 && get_frame_type (this_frame) == NORMAL_FRAME
1278 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1279 {
1280 int optimized, realnum, nrealnum;
1281 enum lval_type lval, nlval;
1282 CORE_ADDR addr, naddr;
1283
1284 frame_register_unwind_location (this_frame,
1285 gdbarch_pc_regnum (gdbarch),
1286 &optimized, &lval, &addr, &realnum);
1287 frame_register_unwind_location (get_next_frame (this_frame),
1288 gdbarch_pc_regnum (gdbarch),
1289 &optimized, &nlval, &naddr, &nrealnum);
1290
1291 if ((lval == lval_memory && lval == nlval && addr == naddr)
1292 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1293 {
1294 if (frame_debug)
1295 {
1296 fprintf_unfiltered (gdb_stdlog, "-> ");
1297 fprint_frame (gdb_stdlog, NULL);
1298 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1299 }
1300
1301 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1302 this_frame->prev = NULL;
1303 return NULL;
1304 }
1305 }
1306
1307 /* Allocate the new frame but do not wire it in to the frame chain.
1308 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1309 frame->next to pull some fancy tricks (of course such code is, by
1310 definition, recursive). Try to prevent it.
1311
1312 There is no reason to worry about memory leaks, should the
1313 remainder of the function fail. The allocated memory will be
1314 quickly reclaimed when the frame cache is flushed, and the `we've
1315 been here before' check above will stop repeated memory
1316 allocation calls. */
1317 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1318 prev_frame->level = this_frame->level + 1;
1319
1320 /* Don't yet compute ->unwind (and hence ->type). It is computed
1321 on-demand in get_frame_type, frame_register_unwind, and
1322 get_frame_id. */
1323
1324 /* Don't yet compute the frame's ID. It is computed on-demand by
1325 get_frame_id(). */
1326
1327 /* The unwound frame ID is validate at the start of this function,
1328 as part of the logic to decide if that frame should be further
1329 unwound, and not here while the prev frame is being created.
1330 Doing this makes it possible for the user to examine a frame that
1331 has an invalid frame ID.
1332
1333 Some very old VAX code noted: [...] For the sake of argument,
1334 suppose that the stack is somewhat trashed (which is one reason
1335 that "info frame" exists). So, return 0 (indicating we don't
1336 know the address of the arglist) if we don't know what frame this
1337 frame calls. */
1338
1339 /* Link it in. */
1340 this_frame->prev = prev_frame;
1341 prev_frame->next = this_frame;
1342
1343 if (frame_debug)
1344 {
1345 fprintf_unfiltered (gdb_stdlog, "-> ");
1346 fprint_frame (gdb_stdlog, prev_frame);
1347 fprintf_unfiltered (gdb_stdlog, " }\n");
1348 }
1349
1350 return prev_frame;
1351 }
1352
1353 /* Debug routine to print a NULL frame being returned. */
1354
1355 static void
1356 frame_debug_got_null_frame (struct ui_file *file,
1357 struct frame_info *this_frame,
1358 const char *reason)
1359 {
1360 if (frame_debug)
1361 {
1362 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1363 if (this_frame != NULL)
1364 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1365 else
1366 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1367 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1368 }
1369 }
1370
1371 /* Is this (non-sentinel) frame in the "main"() function? */
1372
1373 static int
1374 inside_main_func (struct frame_info *this_frame)
1375 {
1376 struct minimal_symbol *msymbol;
1377 CORE_ADDR maddr;
1378
1379 if (symfile_objfile == 0)
1380 return 0;
1381 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1382 if (msymbol == NULL)
1383 return 0;
1384 /* Make certain that the code, and not descriptor, address is
1385 returned. */
1386 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1387 SYMBOL_VALUE_ADDRESS (msymbol),
1388 &current_target);
1389 return maddr == get_frame_func (this_frame);
1390 }
1391
1392 /* Test whether THIS_FRAME is inside the process entry point function. */
1393
1394 static int
1395 inside_entry_func (struct frame_info *this_frame)
1396 {
1397 return (get_frame_func (this_frame) == entry_point_address ());
1398 }
1399
1400 /* Return a structure containing various interesting information about
1401 the frame that called THIS_FRAME. Returns NULL if there is entier
1402 no such frame or the frame fails any of a set of target-independent
1403 condition that should terminate the frame chain (e.g., as unwinding
1404 past main()).
1405
1406 This function should not contain target-dependent tests, such as
1407 checking whether the program-counter is zero. */
1408
1409 struct frame_info *
1410 get_prev_frame (struct frame_info *this_frame)
1411 {
1412 struct frame_info *prev_frame;
1413
1414 /* Return the inner-most frame, when the caller passes in NULL. */
1415 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1416 caller should have previously obtained a valid frame using
1417 get_selected_frame() and then called this code - only possibility
1418 I can think of is code behaving badly.
1419
1420 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1421 block_innermost_frame(). It does the sequence: frame = NULL;
1422 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1423 it couldn't be written better, I don't know.
1424
1425 NOTE: cagney/2003-01-11: I suspect what is happening in
1426 block_innermost_frame() is, when the target has no state
1427 (registers, memory, ...), it is still calling this function. The
1428 assumption being that this function will return NULL indicating
1429 that a frame isn't possible, rather than checking that the target
1430 has state and then calling get_current_frame() and
1431 get_prev_frame(). This is a guess mind. */
1432 if (this_frame == NULL)
1433 {
1434 /* NOTE: cagney/2002-11-09: There was a code segment here that
1435 would error out when CURRENT_FRAME was NULL. The comment
1436 that went with it made the claim ...
1437
1438 ``This screws value_of_variable, which just wants a nice
1439 clean NULL return from block_innermost_frame if there are no
1440 frames. I don't think I've ever seen this message happen
1441 otherwise. And returning NULL here is a perfectly legitimate
1442 thing to do.''
1443
1444 Per the above, this code shouldn't even be called with a NULL
1445 THIS_FRAME. */
1446 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1447 return current_frame;
1448 }
1449
1450 /* There is always a frame. If this assertion fails, suspect that
1451 something should be calling get_selected_frame() or
1452 get_current_frame(). */
1453 gdb_assert (this_frame != NULL);
1454
1455 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1456 sense to stop unwinding at a dummy frame. One place where a dummy
1457 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1458 pcsqh register (space register for the instruction at the head of the
1459 instruction queue) cannot be written directly; the only way to set it
1460 is to branch to code that is in the target space. In order to implement
1461 frame dummies on HPUX, the called function is made to jump back to where
1462 the inferior was when the user function was called. If gdb was inside
1463 the main function when we created the dummy frame, the dummy frame will
1464 point inside the main function. */
1465 if (this_frame->level >= 0
1466 && get_frame_type (this_frame) != DUMMY_FRAME
1467 && !backtrace_past_main
1468 && inside_main_func (this_frame))
1469 /* Don't unwind past main(). Note, this is done _before_ the
1470 frame has been marked as previously unwound. That way if the
1471 user later decides to enable unwinds past main(), that will
1472 automatically happen. */
1473 {
1474 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1475 return NULL;
1476 }
1477
1478 /* If the user's backtrace limit has been exceeded, stop. We must
1479 add two to the current level; one of those accounts for backtrace_limit
1480 being 1-based and the level being 0-based, and the other accounts for
1481 the level of the new frame instead of the level of the current
1482 frame. */
1483 if (this_frame->level + 2 > backtrace_limit)
1484 {
1485 frame_debug_got_null_frame (gdb_stdlog, this_frame,
1486 "backtrace limit exceeded");
1487 return NULL;
1488 }
1489
1490 /* If we're already inside the entry function for the main objfile,
1491 then it isn't valid. Don't apply this test to a dummy frame -
1492 dummy frame PCs typically land in the entry func. Don't apply
1493 this test to the sentinel frame. Sentinel frames should always
1494 be allowed to unwind. */
1495 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1496 wasn't checking for "main" in the minimal symbols. With that
1497 fixed asm-source tests now stop in "main" instead of halting the
1498 backtrace in weird and wonderful ways somewhere inside the entry
1499 file. Suspect that tests for inside the entry file/func were
1500 added to work around that (now fixed) case. */
1501 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1502 suggested having the inside_entry_func test use the
1503 inside_main_func() msymbol trick (along with entry_point_address()
1504 I guess) to determine the address range of the start function.
1505 That should provide a far better stopper than the current
1506 heuristics. */
1507 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1508 applied tail-call optimizations to main so that a function called
1509 from main returns directly to the caller of main. Since we don't
1510 stop at main, we should at least stop at the entry point of the
1511 application. */
1512 if (!backtrace_past_entry
1513 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1514 && inside_entry_func (this_frame))
1515 {
1516 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1517 return NULL;
1518 }
1519
1520 /* Assume that the only way to get a zero PC is through something
1521 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1522 will never unwind a zero PC. */
1523 if (this_frame->level > 0
1524 && get_frame_type (this_frame) == NORMAL_FRAME
1525 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1526 && get_frame_pc (this_frame) == 0)
1527 {
1528 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1529 return NULL;
1530 }
1531
1532 return get_prev_frame_1 (this_frame);
1533 }
1534
1535 CORE_ADDR
1536 get_frame_pc (struct frame_info *frame)
1537 {
1538 gdb_assert (frame->next != NULL);
1539 return frame_pc_unwind (frame->next);
1540 }
1541
1542 /* Return an address that falls within NEXT_FRAME's caller's code
1543 block, assuming that the caller is a THIS_TYPE frame. */
1544
1545 CORE_ADDR
1546 frame_unwind_address_in_block (struct frame_info *next_frame,
1547 enum frame_type this_type)
1548 {
1549 /* A draft address. */
1550 CORE_ADDR pc = frame_pc_unwind (next_frame);
1551
1552 /* If NEXT_FRAME was called by a signal frame or dummy frame, then
1553 we shold not adjust the unwound PC. These frames may not call
1554 their next frame in the normal way; the operating system or GDB
1555 may have pushed their resume address manually onto the stack, so
1556 it may be the very first instruction. Even if the resume address
1557 was not manually pushed, they expect to be returned to. */
1558 if (this_type != NORMAL_FRAME)
1559 return pc;
1560
1561 /* If THIS frame is not inner most (i.e., NEXT isn't the sentinel),
1562 and NEXT is `normal' (i.e., not a sigtramp, dummy, ....) THIS
1563 frame's PC ends up pointing at the instruction following the
1564 "call". Adjust that PC value so that it falls on the call
1565 instruction (which, hopefully, falls within THIS frame's code
1566 block). So far it's proved to be a very good approximation. See
1567 get_frame_type() for why ->type can't be used. */
1568 if (next_frame->level >= 0
1569 && get_frame_type (next_frame) == NORMAL_FRAME)
1570 --pc;
1571 return pc;
1572 }
1573
1574 CORE_ADDR
1575 get_frame_address_in_block (struct frame_info *this_frame)
1576 {
1577 return frame_unwind_address_in_block (this_frame->next,
1578 get_frame_type (this_frame));
1579 }
1580
1581 static int
1582 pc_notcurrent (struct frame_info *frame)
1583 {
1584 /* If FRAME is not the innermost frame, that normally means that
1585 FRAME->pc points at the return instruction (which is *after* the
1586 call instruction), and we want to get the line containing the
1587 call (because the call is where the user thinks the program is).
1588 However, if the next frame is either a SIGTRAMP_FRAME or a
1589 DUMMY_FRAME, then the next frame will contain a saved interrupt
1590 PC and such a PC indicates the current (rather than next)
1591 instruction/line, consequently, for such cases, want to get the
1592 line containing fi->pc. */
1593 struct frame_info *next = get_next_frame (frame);
1594 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1595 return notcurrent;
1596 }
1597
1598 void
1599 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1600 {
1601 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1602 }
1603
1604 /* Per "frame.h", return the ``address'' of the frame. Code should
1605 really be using get_frame_id(). */
1606 CORE_ADDR
1607 get_frame_base (struct frame_info *fi)
1608 {
1609 return get_frame_id (fi).stack_addr;
1610 }
1611
1612 /* High-level offsets into the frame. Used by the debug info. */
1613
1614 CORE_ADDR
1615 get_frame_base_address (struct frame_info *fi)
1616 {
1617 if (get_frame_type (fi) != NORMAL_FRAME)
1618 return 0;
1619 if (fi->base == NULL)
1620 fi->base = frame_base_find_by_frame (fi);
1621 /* Sneaky: If the low-level unwind and high-level base code share a
1622 common unwinder, let them share the prologue cache. */
1623 if (fi->base->unwind == fi->unwind)
1624 return fi->base->this_base (fi, &fi->prologue_cache);
1625 return fi->base->this_base (fi, &fi->base_cache);
1626 }
1627
1628 CORE_ADDR
1629 get_frame_locals_address (struct frame_info *fi)
1630 {
1631 void **cache;
1632 if (get_frame_type (fi) != NORMAL_FRAME)
1633 return 0;
1634 /* If there isn't a frame address method, find it. */
1635 if (fi->base == NULL)
1636 fi->base = frame_base_find_by_frame (fi);
1637 /* Sneaky: If the low-level unwind and high-level base code share a
1638 common unwinder, let them share the prologue cache. */
1639 if (fi->base->unwind == fi->unwind)
1640 return fi->base->this_locals (fi, &fi->prologue_cache);
1641 return fi->base->this_locals (fi, &fi->base_cache);
1642 }
1643
1644 CORE_ADDR
1645 get_frame_args_address (struct frame_info *fi)
1646 {
1647 void **cache;
1648 if (get_frame_type (fi) != NORMAL_FRAME)
1649 return 0;
1650 /* If there isn't a frame address method, find it. */
1651 if (fi->base == NULL)
1652 fi->base = frame_base_find_by_frame (fi);
1653 /* Sneaky: If the low-level unwind and high-level base code share a
1654 common unwinder, let them share the prologue cache. */
1655 if (fi->base->unwind == fi->unwind)
1656 return fi->base->this_args (fi, &fi->prologue_cache);
1657 return fi->base->this_args (fi, &fi->base_cache);
1658 }
1659
1660 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1661 or -1 for a NULL frame. */
1662
1663 int
1664 frame_relative_level (struct frame_info *fi)
1665 {
1666 if (fi == NULL)
1667 return -1;
1668 else
1669 return fi->level;
1670 }
1671
1672 enum frame_type
1673 get_frame_type (struct frame_info *frame)
1674 {
1675 if (frame->unwind == NULL)
1676 /* Initialize the frame's unwinder because that's what
1677 provides the frame's type. */
1678 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1679 return frame->unwind->type;
1680 }
1681
1682 void
1683 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1684 {
1685 if (frame_debug)
1686 fprintf_unfiltered (gdb_stdlog,
1687 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1688 frame->level, paddr_nz (pc));
1689 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1690 maintaining a locally allocated frame object. Since such frames
1691 are not in the frame chain, it isn't possible to assume that the
1692 frame has a next. Sigh. */
1693 if (frame->next != NULL)
1694 {
1695 /* While we're at it, update this frame's cached PC value, found
1696 in the next frame. Oh for the day when "struct frame_info"
1697 is opaque and this hack on hack can just go away. */
1698 frame->next->prev_pc.value = pc;
1699 frame->next->prev_pc.p = 1;
1700 }
1701 }
1702
1703 void
1704 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1705 {
1706 if (frame_debug)
1707 fprintf_unfiltered (gdb_stdlog,
1708 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1709 frame->level, paddr_nz (base));
1710 /* See comment in "frame.h". */
1711 frame->this_id.value.stack_addr = base;
1712 }
1713
1714 /* Memory access methods. */
1715
1716 void
1717 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1718 gdb_byte *buf, int len)
1719 {
1720 read_memory (addr, buf, len);
1721 }
1722
1723 LONGEST
1724 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1725 int len)
1726 {
1727 return read_memory_integer (addr, len);
1728 }
1729
1730 ULONGEST
1731 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1732 int len)
1733 {
1734 return read_memory_unsigned_integer (addr, len);
1735 }
1736
1737 int
1738 safe_frame_unwind_memory (struct frame_info *this_frame,
1739 CORE_ADDR addr, gdb_byte *buf, int len)
1740 {
1741 /* NOTE: target_read_memory returns zero on success! */
1742 return !target_read_memory (addr, buf, len);
1743 }
1744
1745 /* Architecture method. */
1746
1747 struct gdbarch *
1748 get_frame_arch (struct frame_info *this_frame)
1749 {
1750 return current_gdbarch;
1751 }
1752
1753 /* Stack pointer methods. */
1754
1755 CORE_ADDR
1756 get_frame_sp (struct frame_info *this_frame)
1757 {
1758 return frame_sp_unwind (this_frame->next);
1759 }
1760
1761 CORE_ADDR
1762 frame_sp_unwind (struct frame_info *next_frame)
1763 {
1764 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1765 /* Normality - an architecture that provides a way of obtaining any
1766 frame inner-most address. */
1767 if (gdbarch_unwind_sp_p (gdbarch))
1768 return gdbarch_unwind_sp (gdbarch, next_frame);
1769 /* Now things are really are grim. Hope that the value returned by
1770 the gdbarch_sp_regnum register is meaningful. */
1771 if (gdbarch_sp_regnum (gdbarch) >= 0)
1772 return frame_unwind_register_unsigned (next_frame,
1773 gdbarch_sp_regnum (gdbarch));
1774 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1775 }
1776
1777 /* Return the reason why we can't unwind past FRAME. */
1778
1779 enum unwind_stop_reason
1780 get_frame_unwind_stop_reason (struct frame_info *frame)
1781 {
1782 /* If we haven't tried to unwind past this point yet, then assume
1783 that unwinding would succeed. */
1784 if (frame->prev_p == 0)
1785 return UNWIND_NO_REASON;
1786
1787 /* Otherwise, we set a reason when we succeeded (or failed) to
1788 unwind. */
1789 return frame->stop_reason;
1790 }
1791
1792 /* Return a string explaining REASON. */
1793
1794 const char *
1795 frame_stop_reason_string (enum unwind_stop_reason reason)
1796 {
1797 switch (reason)
1798 {
1799 case UNWIND_NULL_ID:
1800 return _("unwinder did not report frame ID");
1801
1802 case UNWIND_INNER_ID:
1803 return _("previous frame inner to this frame (corrupt stack?)");
1804
1805 case UNWIND_SAME_ID:
1806 return _("previous frame identical to this frame (corrupt stack?)");
1807
1808 case UNWIND_NO_SAVED_PC:
1809 return _("frame did not save the PC");
1810
1811 case UNWIND_NO_REASON:
1812 case UNWIND_FIRST_ERROR:
1813 default:
1814 internal_error (__FILE__, __LINE__,
1815 "Invalid frame stop reason");
1816 }
1817 }
1818
1819 /* Clean up after a failed (wrong unwinder) attempt to unwind past
1820 FRAME. */
1821
1822 static void
1823 frame_cleanup_after_sniffer (void *arg)
1824 {
1825 struct frame_info *frame = arg;
1826
1827 /* The sniffer should not allocate a prologue cache if it did not
1828 match this frame. */
1829 gdb_assert (frame->prologue_cache == NULL);
1830
1831 /* No sniffer should extend the frame chain; sniff based on what is
1832 already certain. */
1833 gdb_assert (!frame->prev_p);
1834
1835 /* The sniffer should not check the frame's ID; that's circular. */
1836 gdb_assert (!frame->this_id.p);
1837
1838 /* Clear cached fields dependent on the unwinder.
1839
1840 The previous PC is independent of the unwinder, but the previous
1841 function is not (see frame_unwind_address_in_block). */
1842 frame->prev_func.p = 0;
1843 frame->prev_func.addr = 0;
1844
1845 /* Discard the unwinder last, so that we can easily find it if an assertion
1846 in this function triggers. */
1847 frame->unwind = NULL;
1848 }
1849
1850 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
1851 Return a cleanup which should be called if unwinding fails, and
1852 discarded if it succeeds. */
1853
1854 struct cleanup *
1855 frame_prepare_for_sniffer (struct frame_info *frame,
1856 const struct frame_unwind *unwind)
1857 {
1858 gdb_assert (frame->unwind == NULL);
1859 frame->unwind = unwind;
1860 return make_cleanup (frame_cleanup_after_sniffer, frame);
1861 }
1862
1863 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1864
1865 static struct cmd_list_element *set_backtrace_cmdlist;
1866 static struct cmd_list_element *show_backtrace_cmdlist;
1867
1868 static void
1869 set_backtrace_cmd (char *args, int from_tty)
1870 {
1871 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1872 }
1873
1874 static void
1875 show_backtrace_cmd (char *args, int from_tty)
1876 {
1877 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1878 }
1879
1880 void
1881 _initialize_frame (void)
1882 {
1883 obstack_init (&frame_cache_obstack);
1884
1885 observer_attach_target_changed (frame_observer_target_changed);
1886
1887 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1888 Set backtrace specific variables.\n\
1889 Configure backtrace variables such as the backtrace limit"),
1890 &set_backtrace_cmdlist, "set backtrace ",
1891 0/*allow-unknown*/, &setlist);
1892 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1893 Show backtrace specific variables\n\
1894 Show backtrace variables such as the backtrace limit"),
1895 &show_backtrace_cmdlist, "show backtrace ",
1896 0/*allow-unknown*/, &showlist);
1897
1898 add_setshow_boolean_cmd ("past-main", class_obscure,
1899 &backtrace_past_main, _("\
1900 Set whether backtraces should continue past \"main\"."), _("\
1901 Show whether backtraces should continue past \"main\"."), _("\
1902 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1903 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1904 of the stack trace."),
1905 NULL,
1906 show_backtrace_past_main,
1907 &set_backtrace_cmdlist,
1908 &show_backtrace_cmdlist);
1909
1910 add_setshow_boolean_cmd ("past-entry", class_obscure,
1911 &backtrace_past_entry, _("\
1912 Set whether backtraces should continue past the entry point of a program."),
1913 _("\
1914 Show whether backtraces should continue past the entry point of a program."),
1915 _("\
1916 Normally there are no callers beyond the entry point of a program, so GDB\n\
1917 will terminate the backtrace there. Set this variable if you need to see \n\
1918 the rest of the stack trace."),
1919 NULL,
1920 show_backtrace_past_entry,
1921 &set_backtrace_cmdlist,
1922 &show_backtrace_cmdlist);
1923
1924 add_setshow_integer_cmd ("limit", class_obscure,
1925 &backtrace_limit, _("\
1926 Set an upper bound on the number of backtrace levels."), _("\
1927 Show the upper bound on the number of backtrace levels."), _("\
1928 No more than the specified number of frames can be displayed or examined.\n\
1929 Zero is unlimited."),
1930 NULL,
1931 show_backtrace_limit,
1932 &set_backtrace_cmdlist,
1933 &show_backtrace_cmdlist);
1934
1935 /* Debug this files internals. */
1936 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1937 Set frame debugging."), _("\
1938 Show frame debugging."), _("\
1939 When non-zero, frame specific internal debugging is enabled."),
1940 NULL,
1941 show_frame_debug,
1942 &setdebuglist, &showdebuglist);
1943 }
This page took 0.069706 seconds and 4 git commands to generate.