Add missing-END_CATCH detection/protection (to gdb's TRY/CATCH/END_CATCH)
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observer.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
48 innermost frame.
49
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object. */
59
60 enum cached_copy_status
61 {
62 /* Value is unknown. */
63 CC_UNKNOWN,
64
65 /* We have a value. */
66 CC_VALUE,
67
68 /* Value was not saved. */
69 CC_NOT_SAVED,
70
71 /* Value is unavailable. */
72 CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
77 wait_for_inferior) each time the inferior stops; sentinel_frame
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
84
85 struct frame_info
86 {
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
91 most frame. */
92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
96 int level;
97
98 /* The frame's program space. */
99 struct program_space *pspace;
100
101 /* The frame's address space. */
102 struct address_space *aspace;
103
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
107 selected based on the presence, or otherwise, of register unwind
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
111
112 /* Cached copy of the previous frame's architecture. */
113 struct
114 {
115 int p;
116 struct gdbarch *arch;
117 } prev_arch;
118
119 /* Cached copy of the previous frame's resume address. */
120 struct {
121 enum cached_copy_status status;
122 CORE_ADDR value;
123 } prev_pc;
124
125 /* Cached copy of the previous frame's function address. */
126 struct
127 {
128 CORE_ADDR addr;
129 int p;
130 } prev_func;
131
132 /* This frame's ID. */
133 struct
134 {
135 int p;
136 struct frame_id value;
137 } this_id;
138
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
141 debug info. */
142 const struct frame_base *base;
143 void *base_cache;
144
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
148 int prev_p;
149 struct frame_info *prev; /* up, outer, older */
150
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
154
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174 const struct frame_info *frame = (const struct frame_info *) ap;
175 const struct frame_id f_id = frame->this_id.value;
176 hashval_t hash = 0;
177
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
179 || f_id.code_addr_p
180 || f_id.special_addr_p);
181
182 if (f_id.stack_status == FID_STACK_VALID)
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
191
192 return hash;
193 }
194
195 /* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
203
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
210
211 static void
212 frame_stash_create (void)
213 {
214 frame_stash = htab_create (100,
215 frame_addr_hash,
216 frame_addr_hash_eq,
217 NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
222 otherwise. */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227 struct frame_info **slot;
228
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
231
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
233 frame,
234 INSERT);
235
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
240 if (*slot != NULL)
241 return 0;
242
243 *slot = frame;
244 return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
249 NULL. */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254 struct frame_info dummy;
255 struct frame_info *frame;
256
257 dummy.this_id.value = id;
258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259 return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
264 invalidated. */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269 htab_empty (frame_stash);
270 }
271
272 /* Flag to control debugging. */
273
274 unsigned int frame_debug;
275 static void
276 show_frame_debug (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278 {
279 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
280 }
281
282 /* Flag to indicate whether backtraces should stop at main et.al. */
283
284 static int backtrace_past_main;
285 static void
286 show_backtrace_past_main (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file,
290 _("Whether backtraces should "
291 "continue past \"main\" is %s.\n"),
292 value);
293 }
294
295 static int backtrace_past_entry;
296 static void
297 show_backtrace_past_entry (struct ui_file *file, int from_tty,
298 struct cmd_list_element *c, const char *value)
299 {
300 fprintf_filtered (file, _("Whether backtraces should continue past the "
301 "entry point of a program is %s.\n"),
302 value);
303 }
304
305 static unsigned int backtrace_limit = UINT_MAX;
306 static void
307 show_backtrace_limit (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309 {
310 fprintf_filtered (file,
311 _("An upper bound on the number "
312 "of backtrace levels is %s.\n"),
313 value);
314 }
315
316
317 static void
318 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
319 {
320 if (p)
321 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
322 else
323 fprintf_unfiltered (file, "!%s", name);
324 }
325
326 void
327 fprint_frame_id (struct ui_file *file, struct frame_id id)
328 {
329 fprintf_unfiltered (file, "{");
330
331 if (id.stack_status == FID_STACK_INVALID)
332 fprintf_unfiltered (file, "!stack");
333 else if (id.stack_status == FID_STACK_UNAVAILABLE)
334 fprintf_unfiltered (file, "stack=<unavailable>");
335 else if (id.stack_status == FID_STACK_SENTINEL)
336 fprintf_unfiltered (file, "stack=<sentinel>");
337 else
338 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
339 fprintf_unfiltered (file, ",");
340
341 fprint_field (file, "code", id.code_addr_p, id.code_addr);
342 fprintf_unfiltered (file, ",");
343
344 fprint_field (file, "special", id.special_addr_p, id.special_addr);
345
346 if (id.artificial_depth)
347 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
348
349 fprintf_unfiltered (file, "}");
350 }
351
352 static void
353 fprint_frame_type (struct ui_file *file, enum frame_type type)
354 {
355 switch (type)
356 {
357 case NORMAL_FRAME:
358 fprintf_unfiltered (file, "NORMAL_FRAME");
359 return;
360 case DUMMY_FRAME:
361 fprintf_unfiltered (file, "DUMMY_FRAME");
362 return;
363 case INLINE_FRAME:
364 fprintf_unfiltered (file, "INLINE_FRAME");
365 return;
366 case TAILCALL_FRAME:
367 fprintf_unfiltered (file, "TAILCALL_FRAME");
368 return;
369 case SIGTRAMP_FRAME:
370 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
371 return;
372 case ARCH_FRAME:
373 fprintf_unfiltered (file, "ARCH_FRAME");
374 return;
375 case SENTINEL_FRAME:
376 fprintf_unfiltered (file, "SENTINEL_FRAME");
377 return;
378 default:
379 fprintf_unfiltered (file, "<unknown type>");
380 return;
381 };
382 }
383
384 static void
385 fprint_frame (struct ui_file *file, struct frame_info *fi)
386 {
387 if (fi == NULL)
388 {
389 fprintf_unfiltered (file, "<NULL frame>");
390 return;
391 }
392 fprintf_unfiltered (file, "{");
393 fprintf_unfiltered (file, "level=%d", fi->level);
394 fprintf_unfiltered (file, ",");
395 fprintf_unfiltered (file, "type=");
396 if (fi->unwind != NULL)
397 fprint_frame_type (file, fi->unwind->type);
398 else
399 fprintf_unfiltered (file, "<unknown>");
400 fprintf_unfiltered (file, ",");
401 fprintf_unfiltered (file, "unwind=");
402 if (fi->unwind != NULL)
403 gdb_print_host_address (fi->unwind, file);
404 else
405 fprintf_unfiltered (file, "<unknown>");
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "pc=");
408 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
409 fprintf_unfiltered (file, "<unknown>");
410 else if (fi->next->prev_pc.status == CC_VALUE)
411 fprintf_unfiltered (file, "%s",
412 hex_string (fi->next->prev_pc.value));
413 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
414 val_print_not_saved (file);
415 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
416 val_print_unavailable (file);
417 fprintf_unfiltered (file, ",");
418 fprintf_unfiltered (file, "id=");
419 if (fi->this_id.p)
420 fprint_frame_id (file, fi->this_id.value);
421 else
422 fprintf_unfiltered (file, "<unknown>");
423 fprintf_unfiltered (file, ",");
424 fprintf_unfiltered (file, "func=");
425 if (fi->next != NULL && fi->next->prev_func.p)
426 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
427 else
428 fprintf_unfiltered (file, "<unknown>");
429 fprintf_unfiltered (file, "}");
430 }
431
432 /* Given FRAME, return the enclosing frame as found in real frames read-in from
433 inferior memory. Skip any previous frames which were made up by GDB.
434 Return FRAME if FRAME is a non-artificial frame.
435 Return NULL if FRAME is the start of an artificial-only chain. */
436
437 static struct frame_info *
438 skip_artificial_frames (struct frame_info *frame)
439 {
440 /* Note we use get_prev_frame_always, and not get_prev_frame. The
441 latter will truncate the frame chain, leading to this function
442 unintentionally returning a null_frame_id (e.g., when the user
443 sets a backtrace limit).
444
445 Note that for record targets we may get a frame chain that consists
446 of artificial frames only. */
447 while (get_frame_type (frame) == INLINE_FRAME
448 || get_frame_type (frame) == TAILCALL_FRAME)
449 {
450 frame = get_prev_frame_always (frame);
451 if (frame == NULL)
452 break;
453 }
454
455 return frame;
456 }
457
458 struct frame_info *
459 skip_unwritable_frames (struct frame_info *frame)
460 {
461 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
462 {
463 frame = get_prev_frame (frame);
464 if (frame == NULL)
465 break;
466 }
467
468 return frame;
469 }
470
471 /* See frame.h. */
472
473 struct frame_info *
474 skip_tailcall_frames (struct frame_info *frame)
475 {
476 while (get_frame_type (frame) == TAILCALL_FRAME)
477 {
478 /* Note that for record targets we may get a frame chain that consists of
479 tailcall frames only. */
480 frame = get_prev_frame (frame);
481 if (frame == NULL)
482 break;
483 }
484
485 return frame;
486 }
487
488 /* Compute the frame's uniq ID that can be used to, later, re-find the
489 frame. */
490
491 static void
492 compute_frame_id (struct frame_info *fi)
493 {
494 gdb_assert (!fi->this_id.p);
495
496 if (frame_debug)
497 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
498 fi->level);
499 /* Find the unwinder. */
500 if (fi->unwind == NULL)
501 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
502 /* Find THIS frame's ID. */
503 /* Default to outermost if no ID is found. */
504 fi->this_id.value = outer_frame_id;
505 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
506 gdb_assert (frame_id_p (fi->this_id.value));
507 fi->this_id.p = 1;
508 if (frame_debug)
509 {
510 fprintf_unfiltered (gdb_stdlog, "-> ");
511 fprint_frame_id (gdb_stdlog, fi->this_id.value);
512 fprintf_unfiltered (gdb_stdlog, " }\n");
513 }
514 }
515
516 /* Return a frame uniq ID that can be used to, later, re-find the
517 frame. */
518
519 struct frame_id
520 get_frame_id (struct frame_info *fi)
521 {
522 if (fi == NULL)
523 return null_frame_id;
524
525 if (!fi->this_id.p)
526 {
527 int stashed;
528
529 /* If we haven't computed the frame id yet, then it must be that
530 this is the current frame. Compute it now, and stash the
531 result. The IDs of other frames are computed as soon as
532 they're created, in order to detect cycles. See
533 get_prev_frame_if_no_cycle. */
534 gdb_assert (fi->level == 0);
535
536 /* Compute. */
537 compute_frame_id (fi);
538
539 /* Since this is the first frame in the chain, this should
540 always succeed. */
541 stashed = frame_stash_add (fi);
542 gdb_assert (stashed);
543 }
544
545 return fi->this_id.value;
546 }
547
548 struct frame_id
549 get_stack_frame_id (struct frame_info *next_frame)
550 {
551 return get_frame_id (skip_artificial_frames (next_frame));
552 }
553
554 struct frame_id
555 frame_unwind_caller_id (struct frame_info *next_frame)
556 {
557 struct frame_info *this_frame;
558
559 /* Use get_prev_frame_always, and not get_prev_frame. The latter
560 will truncate the frame chain, leading to this function
561 unintentionally returning a null_frame_id (e.g., when a caller
562 requests the frame ID of "main()"s caller. */
563
564 next_frame = skip_artificial_frames (next_frame);
565 if (next_frame == NULL)
566 return null_frame_id;
567
568 this_frame = get_prev_frame_always (next_frame);
569 if (this_frame)
570 return get_frame_id (skip_artificial_frames (this_frame));
571 else
572 return null_frame_id;
573 }
574
575 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
576 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
577 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
578
579 struct frame_id
580 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
581 CORE_ADDR special_addr)
582 {
583 struct frame_id id = null_frame_id;
584
585 id.stack_addr = stack_addr;
586 id.stack_status = FID_STACK_VALID;
587 id.code_addr = code_addr;
588 id.code_addr_p = 1;
589 id.special_addr = special_addr;
590 id.special_addr_p = 1;
591 return id;
592 }
593
594 /* See frame.h. */
595
596 struct frame_id
597 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
598 {
599 struct frame_id id = null_frame_id;
600
601 id.stack_status = FID_STACK_UNAVAILABLE;
602 id.code_addr = code_addr;
603 id.code_addr_p = 1;
604 return id;
605 }
606
607 /* See frame.h. */
608
609 struct frame_id
610 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
611 CORE_ADDR special_addr)
612 {
613 struct frame_id id = null_frame_id;
614
615 id.stack_status = FID_STACK_UNAVAILABLE;
616 id.code_addr = code_addr;
617 id.code_addr_p = 1;
618 id.special_addr = special_addr;
619 id.special_addr_p = 1;
620 return id;
621 }
622
623 struct frame_id
624 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
625 {
626 struct frame_id id = null_frame_id;
627
628 id.stack_addr = stack_addr;
629 id.stack_status = FID_STACK_VALID;
630 id.code_addr = code_addr;
631 id.code_addr_p = 1;
632 return id;
633 }
634
635 struct frame_id
636 frame_id_build_wild (CORE_ADDR stack_addr)
637 {
638 struct frame_id id = null_frame_id;
639
640 id.stack_addr = stack_addr;
641 id.stack_status = FID_STACK_VALID;
642 return id;
643 }
644
645 int
646 frame_id_p (struct frame_id l)
647 {
648 int p;
649
650 /* The frame is valid iff it has a valid stack address. */
651 p = l.stack_status != FID_STACK_INVALID;
652 /* outer_frame_id is also valid. */
653 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
654 p = 1;
655 if (frame_debug)
656 {
657 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
658 fprint_frame_id (gdb_stdlog, l);
659 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
660 }
661 return p;
662 }
663
664 int
665 frame_id_artificial_p (struct frame_id l)
666 {
667 if (!frame_id_p (l))
668 return 0;
669
670 return (l.artificial_depth != 0);
671 }
672
673 int
674 frame_id_eq (struct frame_id l, struct frame_id r)
675 {
676 int eq;
677
678 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
679 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
680 /* The outermost frame marker is equal to itself. This is the
681 dodgy thing about outer_frame_id, since between execution steps
682 we might step into another function - from which we can't
683 unwind either. More thought required to get rid of
684 outer_frame_id. */
685 eq = 1;
686 else if (l.stack_status == FID_STACK_INVALID
687 || r.stack_status == FID_STACK_INVALID)
688 /* Like a NaN, if either ID is invalid, the result is false.
689 Note that a frame ID is invalid iff it is the null frame ID. */
690 eq = 0;
691 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
692 /* If .stack addresses are different, the frames are different. */
693 eq = 0;
694 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
695 /* An invalid code addr is a wild card. If .code addresses are
696 different, the frames are different. */
697 eq = 0;
698 else if (l.special_addr_p && r.special_addr_p
699 && l.special_addr != r.special_addr)
700 /* An invalid special addr is a wild card (or unused). Otherwise
701 if special addresses are different, the frames are different. */
702 eq = 0;
703 else if (l.artificial_depth != r.artificial_depth)
704 /* If artifical depths are different, the frames must be different. */
705 eq = 0;
706 else
707 /* Frames are equal. */
708 eq = 1;
709
710 if (frame_debug)
711 {
712 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
713 fprint_frame_id (gdb_stdlog, l);
714 fprintf_unfiltered (gdb_stdlog, ",r=");
715 fprint_frame_id (gdb_stdlog, r);
716 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
717 }
718 return eq;
719 }
720
721 /* Safety net to check whether frame ID L should be inner to
722 frame ID R, according to their stack addresses.
723
724 This method cannot be used to compare arbitrary frames, as the
725 ranges of valid stack addresses may be discontiguous (e.g. due
726 to sigaltstack).
727
728 However, it can be used as safety net to discover invalid frame
729 IDs in certain circumstances. Assuming that NEXT is the immediate
730 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
731
732 * The stack address of NEXT must be inner-than-or-equal to the stack
733 address of THIS.
734
735 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
736 error has occurred.
737
738 * If NEXT and THIS have different stack addresses, no other frame
739 in the frame chain may have a stack address in between.
740
741 Therefore, if frame_id_inner (TEST, THIS) holds, but
742 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
743 to a valid frame in the frame chain.
744
745 The sanity checks above cannot be performed when a SIGTRAMP frame
746 is involved, because signal handlers might be executed on a different
747 stack than the stack used by the routine that caused the signal
748 to be raised. This can happen for instance when a thread exceeds
749 its maximum stack size. In this case, certain compilers implement
750 a stack overflow strategy that cause the handler to be run on a
751 different stack. */
752
753 static int
754 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
755 {
756 int inner;
757
758 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
759 /* Like NaN, any operation involving an invalid ID always fails.
760 Likewise if either ID has an unavailable stack address. */
761 inner = 0;
762 else if (l.artificial_depth > r.artificial_depth
763 && l.stack_addr == r.stack_addr
764 && l.code_addr_p == r.code_addr_p
765 && l.special_addr_p == r.special_addr_p
766 && l.special_addr == r.special_addr)
767 {
768 /* Same function, different inlined functions. */
769 const struct block *lb, *rb;
770
771 gdb_assert (l.code_addr_p && r.code_addr_p);
772
773 lb = block_for_pc (l.code_addr);
774 rb = block_for_pc (r.code_addr);
775
776 if (lb == NULL || rb == NULL)
777 /* Something's gone wrong. */
778 inner = 0;
779 else
780 /* This will return true if LB and RB are the same block, or
781 if the block with the smaller depth lexically encloses the
782 block with the greater depth. */
783 inner = contained_in (lb, rb);
784 }
785 else
786 /* Only return non-zero when strictly inner than. Note that, per
787 comment in "frame.h", there is some fuzz here. Frameless
788 functions are not strictly inner than (same .stack but
789 different .code and/or .special address). */
790 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
791 if (frame_debug)
792 {
793 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
794 fprint_frame_id (gdb_stdlog, l);
795 fprintf_unfiltered (gdb_stdlog, ",r=");
796 fprint_frame_id (gdb_stdlog, r);
797 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
798 }
799 return inner;
800 }
801
802 struct frame_info *
803 frame_find_by_id (struct frame_id id)
804 {
805 struct frame_info *frame, *prev_frame;
806
807 /* ZERO denotes the null frame, let the caller decide what to do
808 about it. Should it instead return get_current_frame()? */
809 if (!frame_id_p (id))
810 return NULL;
811
812 /* Check for the sentinel frame. */
813 if (frame_id_eq (id, sentinel_frame_id))
814 return sentinel_frame;
815
816 /* Try using the frame stash first. Finding it there removes the need
817 to perform the search by looping over all frames, which can be very
818 CPU-intensive if the number of frames is very high (the loop is O(n)
819 and get_prev_frame performs a series of checks that are relatively
820 expensive). This optimization is particularly useful when this function
821 is called from another function (such as value_fetch_lazy, case
822 VALUE_LVAL (val) == lval_register) which already loops over all frames,
823 making the overall behavior O(n^2). */
824 frame = frame_stash_find (id);
825 if (frame)
826 return frame;
827
828 for (frame = get_current_frame (); ; frame = prev_frame)
829 {
830 struct frame_id self = get_frame_id (frame);
831
832 if (frame_id_eq (id, self))
833 /* An exact match. */
834 return frame;
835
836 prev_frame = get_prev_frame (frame);
837 if (!prev_frame)
838 return NULL;
839
840 /* As a safety net to avoid unnecessary backtracing while trying
841 to find an invalid ID, we check for a common situation where
842 we can detect from comparing stack addresses that no other
843 frame in the current frame chain can have this ID. See the
844 comment at frame_id_inner for details. */
845 if (get_frame_type (frame) == NORMAL_FRAME
846 && !frame_id_inner (get_frame_arch (frame), id, self)
847 && frame_id_inner (get_frame_arch (prev_frame), id,
848 get_frame_id (prev_frame)))
849 return NULL;
850 }
851 return NULL;
852 }
853
854 static CORE_ADDR
855 frame_unwind_pc (struct frame_info *this_frame)
856 {
857 if (this_frame->prev_pc.status == CC_UNKNOWN)
858 {
859 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
860 {
861 struct gdbarch *prev_gdbarch;
862 CORE_ADDR pc = 0;
863 int pc_p = 0;
864
865 /* The right way. The `pure' way. The one true way. This
866 method depends solely on the register-unwind code to
867 determine the value of registers in THIS frame, and hence
868 the value of this frame's PC (resume address). A typical
869 implementation is no more than:
870
871 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
872 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
873
874 Note: this method is very heavily dependent on a correct
875 register-unwind implementation, it pays to fix that
876 method first; this method is frame type agnostic, since
877 it only deals with register values, it works with any
878 frame. This is all in stark contrast to the old
879 FRAME_SAVED_PC which would try to directly handle all the
880 different ways that a PC could be unwound. */
881 prev_gdbarch = frame_unwind_arch (this_frame);
882
883 TRY
884 {
885 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
886 pc_p = 1;
887 }
888 CATCH (ex, RETURN_MASK_ERROR)
889 {
890 if (ex.error == NOT_AVAILABLE_ERROR)
891 {
892 this_frame->prev_pc.status = CC_UNAVAILABLE;
893
894 if (frame_debug)
895 fprintf_unfiltered (gdb_stdlog,
896 "{ frame_unwind_pc (this_frame=%d)"
897 " -> <unavailable> }\n",
898 this_frame->level);
899 }
900 else if (ex.error == OPTIMIZED_OUT_ERROR)
901 {
902 this_frame->prev_pc.status = CC_NOT_SAVED;
903
904 if (frame_debug)
905 fprintf_unfiltered (gdb_stdlog,
906 "{ frame_unwind_pc (this_frame=%d)"
907 " -> <not saved> }\n",
908 this_frame->level);
909 }
910 else
911 throw_exception (ex);
912 }
913 END_CATCH
914
915 if (pc_p)
916 {
917 this_frame->prev_pc.value = pc;
918 this_frame->prev_pc.status = CC_VALUE;
919 if (frame_debug)
920 fprintf_unfiltered (gdb_stdlog,
921 "{ frame_unwind_pc (this_frame=%d) "
922 "-> %s }\n",
923 this_frame->level,
924 hex_string (this_frame->prev_pc.value));
925 }
926 }
927 else
928 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
929 }
930
931 if (this_frame->prev_pc.status == CC_VALUE)
932 return this_frame->prev_pc.value;
933 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
934 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
935 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
936 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
937 else
938 internal_error (__FILE__, __LINE__,
939 "unexpected prev_pc status: %d",
940 (int) this_frame->prev_pc.status);
941 }
942
943 CORE_ADDR
944 frame_unwind_caller_pc (struct frame_info *this_frame)
945 {
946 this_frame = skip_artificial_frames (this_frame);
947
948 /* We must have a non-artificial frame. The caller is supposed to check
949 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
950 in this case. */
951 gdb_assert (this_frame != NULL);
952
953 return frame_unwind_pc (this_frame);
954 }
955
956 int
957 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
958 {
959 struct frame_info *next_frame = this_frame->next;
960
961 if (!next_frame->prev_func.p)
962 {
963 CORE_ADDR addr_in_block;
964
965 /* Make certain that this, and not the adjacent, function is
966 found. */
967 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
968 {
969 next_frame->prev_func.p = -1;
970 if (frame_debug)
971 fprintf_unfiltered (gdb_stdlog,
972 "{ get_frame_func (this_frame=%d)"
973 " -> unavailable }\n",
974 this_frame->level);
975 }
976 else
977 {
978 next_frame->prev_func.p = 1;
979 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
980 if (frame_debug)
981 fprintf_unfiltered (gdb_stdlog,
982 "{ get_frame_func (this_frame=%d) -> %s }\n",
983 this_frame->level,
984 hex_string (next_frame->prev_func.addr));
985 }
986 }
987
988 if (next_frame->prev_func.p < 0)
989 {
990 *pc = -1;
991 return 0;
992 }
993 else
994 {
995 *pc = next_frame->prev_func.addr;
996 return 1;
997 }
998 }
999
1000 CORE_ADDR
1001 get_frame_func (struct frame_info *this_frame)
1002 {
1003 CORE_ADDR pc;
1004
1005 if (!get_frame_func_if_available (this_frame, &pc))
1006 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1007
1008 return pc;
1009 }
1010
1011 static enum register_status
1012 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
1013 {
1014 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
1015 return REG_UNAVAILABLE;
1016 else
1017 return REG_VALID;
1018 }
1019
1020 std::unique_ptr<struct regcache>
1021 frame_save_as_regcache (struct frame_info *this_frame)
1022 {
1023 struct address_space *aspace = get_frame_address_space (this_frame);
1024 std::unique_ptr<struct regcache> regcache
1025 (new struct regcache (get_frame_arch (this_frame), aspace));
1026
1027 regcache_save (regcache.get (), do_frame_register_read, this_frame);
1028 return regcache;
1029 }
1030
1031 void
1032 frame_pop (struct frame_info *this_frame)
1033 {
1034 struct frame_info *prev_frame;
1035
1036 if (get_frame_type (this_frame) == DUMMY_FRAME)
1037 {
1038 /* Popping a dummy frame involves restoring more than just registers.
1039 dummy_frame_pop does all the work. */
1040 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
1041 return;
1042 }
1043
1044 /* Ensure that we have a frame to pop to. */
1045 prev_frame = get_prev_frame_always (this_frame);
1046
1047 if (!prev_frame)
1048 error (_("Cannot pop the initial frame."));
1049
1050 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1051 entering THISFRAME. */
1052 prev_frame = skip_tailcall_frames (prev_frame);
1053
1054 if (prev_frame == NULL)
1055 error (_("Cannot find the caller frame."));
1056
1057 /* Make a copy of all the register values unwound from this frame.
1058 Save them in a scratch buffer so that there isn't a race between
1059 trying to extract the old values from the current regcache while
1060 at the same time writing new values into that same cache. */
1061 std::unique_ptr<struct regcache> scratch
1062 = frame_save_as_regcache (prev_frame);
1063
1064 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1065 target's register cache that it is about to be hit with a burst
1066 register transfer and that the sequence of register writes should
1067 be batched. The pair target_prepare_to_store() and
1068 target_store_registers() kind of suggest this functionality.
1069 Unfortunately, they don't implement it. Their lack of a formal
1070 definition can lead to targets writing back bogus values
1071 (arguably a bug in the target code mind). */
1072 /* Now copy those saved registers into the current regcache.
1073 Here, regcache_cpy() calls regcache_restore(). */
1074 regcache_cpy (get_current_regcache (), scratch.get ());
1075
1076 /* We've made right mess of GDB's local state, just discard
1077 everything. */
1078 reinit_frame_cache ();
1079 }
1080
1081 void
1082 frame_register_unwind (struct frame_info *frame, int regnum,
1083 int *optimizedp, int *unavailablep,
1084 enum lval_type *lvalp, CORE_ADDR *addrp,
1085 int *realnump, gdb_byte *bufferp)
1086 {
1087 struct value *value;
1088
1089 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1090 that the value proper does not need to be fetched. */
1091 gdb_assert (optimizedp != NULL);
1092 gdb_assert (lvalp != NULL);
1093 gdb_assert (addrp != NULL);
1094 gdb_assert (realnump != NULL);
1095 /* gdb_assert (bufferp != NULL); */
1096
1097 value = frame_unwind_register_value (frame, regnum);
1098
1099 gdb_assert (value != NULL);
1100
1101 *optimizedp = value_optimized_out (value);
1102 *unavailablep = !value_entirely_available (value);
1103 *lvalp = VALUE_LVAL (value);
1104 *addrp = value_address (value);
1105 if (*lvalp == lval_register)
1106 *realnump = VALUE_REGNUM (value);
1107 else
1108 *realnump = -1;
1109
1110 if (bufferp)
1111 {
1112 if (!*optimizedp && !*unavailablep)
1113 memcpy (bufferp, value_contents_all (value),
1114 TYPE_LENGTH (value_type (value)));
1115 else
1116 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1117 }
1118
1119 /* Dispose of the new value. This prevents watchpoints from
1120 trying to watch the saved frame pointer. */
1121 release_value (value);
1122 value_free (value);
1123 }
1124
1125 void
1126 frame_register (struct frame_info *frame, int regnum,
1127 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1128 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1129 {
1130 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1131 that the value proper does not need to be fetched. */
1132 gdb_assert (optimizedp != NULL);
1133 gdb_assert (lvalp != NULL);
1134 gdb_assert (addrp != NULL);
1135 gdb_assert (realnump != NULL);
1136 /* gdb_assert (bufferp != NULL); */
1137
1138 /* Obtain the register value by unwinding the register from the next
1139 (more inner frame). */
1140 gdb_assert (frame != NULL && frame->next != NULL);
1141 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1142 lvalp, addrp, realnump, bufferp);
1143 }
1144
1145 void
1146 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1147 {
1148 int optimized;
1149 int unavailable;
1150 CORE_ADDR addr;
1151 int realnum;
1152 enum lval_type lval;
1153
1154 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1155 &lval, &addr, &realnum, buf);
1156
1157 if (optimized)
1158 throw_error (OPTIMIZED_OUT_ERROR,
1159 _("Register %d was not saved"), regnum);
1160 if (unavailable)
1161 throw_error (NOT_AVAILABLE_ERROR,
1162 _("Register %d is not available"), regnum);
1163 }
1164
1165 void
1166 get_frame_register (struct frame_info *frame,
1167 int regnum, gdb_byte *buf)
1168 {
1169 frame_unwind_register (frame->next, regnum, buf);
1170 }
1171
1172 struct value *
1173 frame_unwind_register_value (struct frame_info *frame, int regnum)
1174 {
1175 struct gdbarch *gdbarch;
1176 struct value *value;
1177
1178 gdb_assert (frame != NULL);
1179 gdbarch = frame_unwind_arch (frame);
1180
1181 if (frame_debug)
1182 {
1183 fprintf_unfiltered (gdb_stdlog,
1184 "{ frame_unwind_register_value "
1185 "(frame=%d,regnum=%d(%s),...) ",
1186 frame->level, regnum,
1187 user_reg_map_regnum_to_name (gdbarch, regnum));
1188 }
1189
1190 /* Find the unwinder. */
1191 if (frame->unwind == NULL)
1192 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1193
1194 /* Ask this frame to unwind its register. */
1195 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1196
1197 if (frame_debug)
1198 {
1199 fprintf_unfiltered (gdb_stdlog, "->");
1200 if (value_optimized_out (value))
1201 {
1202 fprintf_unfiltered (gdb_stdlog, " ");
1203 val_print_optimized_out (value, gdb_stdlog);
1204 }
1205 else
1206 {
1207 if (VALUE_LVAL (value) == lval_register)
1208 fprintf_unfiltered (gdb_stdlog, " register=%d",
1209 VALUE_REGNUM (value));
1210 else if (VALUE_LVAL (value) == lval_memory)
1211 fprintf_unfiltered (gdb_stdlog, " address=%s",
1212 paddress (gdbarch,
1213 value_address (value)));
1214 else
1215 fprintf_unfiltered (gdb_stdlog, " computed");
1216
1217 if (value_lazy (value))
1218 fprintf_unfiltered (gdb_stdlog, " lazy");
1219 else
1220 {
1221 int i;
1222 const gdb_byte *buf = value_contents (value);
1223
1224 fprintf_unfiltered (gdb_stdlog, " bytes=");
1225 fprintf_unfiltered (gdb_stdlog, "[");
1226 for (i = 0; i < register_size (gdbarch, regnum); i++)
1227 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1228 fprintf_unfiltered (gdb_stdlog, "]");
1229 }
1230 }
1231
1232 fprintf_unfiltered (gdb_stdlog, " }\n");
1233 }
1234
1235 return value;
1236 }
1237
1238 struct value *
1239 get_frame_register_value (struct frame_info *frame, int regnum)
1240 {
1241 return frame_unwind_register_value (frame->next, regnum);
1242 }
1243
1244 LONGEST
1245 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1246 {
1247 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1248 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1249 int size = register_size (gdbarch, regnum);
1250 struct value *value = frame_unwind_register_value (frame, regnum);
1251
1252 gdb_assert (value != NULL);
1253
1254 if (value_optimized_out (value))
1255 {
1256 throw_error (OPTIMIZED_OUT_ERROR,
1257 _("Register %d was not saved"), regnum);
1258 }
1259 if (!value_entirely_available (value))
1260 {
1261 throw_error (NOT_AVAILABLE_ERROR,
1262 _("Register %d is not available"), regnum);
1263 }
1264
1265 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1266 byte_order);
1267
1268 release_value (value);
1269 value_free (value);
1270 return r;
1271 }
1272
1273 LONGEST
1274 get_frame_register_signed (struct frame_info *frame, int regnum)
1275 {
1276 return frame_unwind_register_signed (frame->next, regnum);
1277 }
1278
1279 ULONGEST
1280 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1281 {
1282 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1283 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1284 int size = register_size (gdbarch, regnum);
1285 struct value *value = frame_unwind_register_value (frame, regnum);
1286
1287 gdb_assert (value != NULL);
1288
1289 if (value_optimized_out (value))
1290 {
1291 throw_error (OPTIMIZED_OUT_ERROR,
1292 _("Register %d was not saved"), regnum);
1293 }
1294 if (!value_entirely_available (value))
1295 {
1296 throw_error (NOT_AVAILABLE_ERROR,
1297 _("Register %d is not available"), regnum);
1298 }
1299
1300 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1301 byte_order);
1302
1303 release_value (value);
1304 value_free (value);
1305 return r;
1306 }
1307
1308 ULONGEST
1309 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1310 {
1311 return frame_unwind_register_unsigned (frame->next, regnum);
1312 }
1313
1314 int
1315 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1316 ULONGEST *val)
1317 {
1318 struct value *regval = get_frame_register_value (frame, regnum);
1319
1320 if (!value_optimized_out (regval)
1321 && value_entirely_available (regval))
1322 {
1323 struct gdbarch *gdbarch = get_frame_arch (frame);
1324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1325 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1326
1327 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1328 return 1;
1329 }
1330
1331 return 0;
1332 }
1333
1334 void
1335 put_frame_register (struct frame_info *frame, int regnum,
1336 const gdb_byte *buf)
1337 {
1338 struct gdbarch *gdbarch = get_frame_arch (frame);
1339 int realnum;
1340 int optim;
1341 int unavail;
1342 enum lval_type lval;
1343 CORE_ADDR addr;
1344
1345 frame_register (frame, regnum, &optim, &unavail,
1346 &lval, &addr, &realnum, NULL);
1347 if (optim)
1348 error (_("Attempt to assign to a register that was not saved."));
1349 switch (lval)
1350 {
1351 case lval_memory:
1352 {
1353 write_memory (addr, buf, register_size (gdbarch, regnum));
1354 break;
1355 }
1356 case lval_register:
1357 regcache_cooked_write (get_current_regcache (), realnum, buf);
1358 break;
1359 default:
1360 error (_("Attempt to assign to an unmodifiable value."));
1361 }
1362 }
1363
1364 /* This function is deprecated. Use get_frame_register_value instead,
1365 which provides more accurate information.
1366
1367 Find and return the value of REGNUM for the specified stack frame.
1368 The number of bytes copied is REGISTER_SIZE (REGNUM).
1369
1370 Returns 0 if the register value could not be found. */
1371
1372 int
1373 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1374 gdb_byte *myaddr)
1375 {
1376 int optimized;
1377 int unavailable;
1378 enum lval_type lval;
1379 CORE_ADDR addr;
1380 int realnum;
1381
1382 frame_register (frame, regnum, &optimized, &unavailable,
1383 &lval, &addr, &realnum, myaddr);
1384
1385 return !optimized && !unavailable;
1386 }
1387
1388 int
1389 get_frame_register_bytes (struct frame_info *frame, int regnum,
1390 CORE_ADDR offset, int len, gdb_byte *myaddr,
1391 int *optimizedp, int *unavailablep)
1392 {
1393 struct gdbarch *gdbarch = get_frame_arch (frame);
1394 int i;
1395 int maxsize;
1396 int numregs;
1397
1398 /* Skip registers wholly inside of OFFSET. */
1399 while (offset >= register_size (gdbarch, regnum))
1400 {
1401 offset -= register_size (gdbarch, regnum);
1402 regnum++;
1403 }
1404
1405 /* Ensure that we will not read beyond the end of the register file.
1406 This can only ever happen if the debug information is bad. */
1407 maxsize = -offset;
1408 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1409 for (i = regnum; i < numregs; i++)
1410 {
1411 int thissize = register_size (gdbarch, i);
1412
1413 if (thissize == 0)
1414 break; /* This register is not available on this architecture. */
1415 maxsize += thissize;
1416 }
1417 if (len > maxsize)
1418 error (_("Bad debug information detected: "
1419 "Attempt to read %d bytes from registers."), len);
1420
1421 /* Copy the data. */
1422 while (len > 0)
1423 {
1424 int curr_len = register_size (gdbarch, regnum) - offset;
1425
1426 if (curr_len > len)
1427 curr_len = len;
1428
1429 if (curr_len == register_size (gdbarch, regnum))
1430 {
1431 enum lval_type lval;
1432 CORE_ADDR addr;
1433 int realnum;
1434
1435 frame_register (frame, regnum, optimizedp, unavailablep,
1436 &lval, &addr, &realnum, myaddr);
1437 if (*optimizedp || *unavailablep)
1438 return 0;
1439 }
1440 else
1441 {
1442 struct value *value = frame_unwind_register_value (frame->next,
1443 regnum);
1444 gdb_assert (value != NULL);
1445 *optimizedp = value_optimized_out (value);
1446 *unavailablep = !value_entirely_available (value);
1447
1448 if (*optimizedp || *unavailablep)
1449 {
1450 release_value (value);
1451 value_free (value);
1452 return 0;
1453 }
1454 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1455 release_value (value);
1456 value_free (value);
1457 }
1458
1459 myaddr += curr_len;
1460 len -= curr_len;
1461 offset = 0;
1462 regnum++;
1463 }
1464
1465 *optimizedp = 0;
1466 *unavailablep = 0;
1467 return 1;
1468 }
1469
1470 void
1471 put_frame_register_bytes (struct frame_info *frame, int regnum,
1472 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1473 {
1474 struct gdbarch *gdbarch = get_frame_arch (frame);
1475
1476 /* Skip registers wholly inside of OFFSET. */
1477 while (offset >= register_size (gdbarch, regnum))
1478 {
1479 offset -= register_size (gdbarch, regnum);
1480 regnum++;
1481 }
1482
1483 /* Copy the data. */
1484 while (len > 0)
1485 {
1486 int curr_len = register_size (gdbarch, regnum) - offset;
1487
1488 if (curr_len > len)
1489 curr_len = len;
1490
1491 if (curr_len == register_size (gdbarch, regnum))
1492 {
1493 put_frame_register (frame, regnum, myaddr);
1494 }
1495 else
1496 {
1497 struct value *value = frame_unwind_register_value (frame->next,
1498 regnum);
1499 gdb_assert (value != NULL);
1500
1501 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1502 curr_len);
1503 put_frame_register (frame, regnum, value_contents_raw (value));
1504 release_value (value);
1505 value_free (value);
1506 }
1507
1508 myaddr += curr_len;
1509 len -= curr_len;
1510 offset = 0;
1511 regnum++;
1512 }
1513 }
1514
1515 /* Create a sentinel frame. */
1516
1517 static struct frame_info *
1518 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1519 {
1520 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1521
1522 frame->level = -1;
1523 frame->pspace = pspace;
1524 frame->aspace = get_regcache_aspace (regcache);
1525 /* Explicitly initialize the sentinel frame's cache. Provide it
1526 with the underlying regcache. In the future additional
1527 information, such as the frame's thread will be added. */
1528 frame->prologue_cache = sentinel_frame_cache (regcache);
1529 /* For the moment there is only one sentinel frame implementation. */
1530 frame->unwind = &sentinel_frame_unwind;
1531 /* Link this frame back to itself. The frame is self referential
1532 (the unwound PC is the same as the pc), so make it so. */
1533 frame->next = frame;
1534 /* The sentinel frame has a special ID. */
1535 frame->this_id.p = 1;
1536 frame->this_id.value = sentinel_frame_id;
1537 if (frame_debug)
1538 {
1539 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1540 fprint_frame (gdb_stdlog, frame);
1541 fprintf_unfiltered (gdb_stdlog, " }\n");
1542 }
1543 return frame;
1544 }
1545
1546 /* Cache for frame addresses already read by gdb. Valid only while
1547 inferior is stopped. Control variables for the frame cache should
1548 be local to this module. */
1549
1550 static struct obstack frame_cache_obstack;
1551
1552 void *
1553 frame_obstack_zalloc (unsigned long size)
1554 {
1555 void *data = obstack_alloc (&frame_cache_obstack, size);
1556
1557 memset (data, 0, size);
1558 return data;
1559 }
1560
1561 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1562
1563 struct frame_info *
1564 get_current_frame (void)
1565 {
1566 struct frame_info *current_frame;
1567
1568 /* First check, and report, the lack of registers. Having GDB
1569 report "No stack!" or "No memory" when the target doesn't even
1570 have registers is very confusing. Besides, "printcmd.exp"
1571 explicitly checks that ``print $pc'' with no registers prints "No
1572 registers". */
1573 if (!target_has_registers)
1574 error (_("No registers."));
1575 if (!target_has_stack)
1576 error (_("No stack."));
1577 if (!target_has_memory)
1578 error (_("No memory."));
1579 /* Traceframes are effectively a substitute for the live inferior. */
1580 if (get_traceframe_number () < 0)
1581 validate_registers_access ();
1582
1583 if (sentinel_frame == NULL)
1584 sentinel_frame =
1585 create_sentinel_frame (current_program_space, get_current_regcache ());
1586
1587 /* Set the current frame before computing the frame id, to avoid
1588 recursion inside compute_frame_id, in case the frame's
1589 unwinder decides to do a symbol lookup (which depends on the
1590 selected frame's block).
1591
1592 This call must always succeed. In particular, nothing inside
1593 get_prev_frame_always_1 should try to unwind from the
1594 sentinel frame, because that could fail/throw, and we always
1595 want to leave with the current frame created and linked in --
1596 we should never end up with the sentinel frame as outermost
1597 frame. */
1598 current_frame = get_prev_frame_always_1 (sentinel_frame);
1599 gdb_assert (current_frame != NULL);
1600
1601 return current_frame;
1602 }
1603
1604 /* The "selected" stack frame is used by default for local and arg
1605 access. May be zero, for no selected frame. */
1606
1607 static struct frame_info *selected_frame;
1608
1609 int
1610 has_stack_frames (void)
1611 {
1612 if (!target_has_registers || !target_has_stack || !target_has_memory)
1613 return 0;
1614
1615 /* Traceframes are effectively a substitute for the live inferior. */
1616 if (get_traceframe_number () < 0)
1617 {
1618 /* No current inferior, no frame. */
1619 if (ptid_equal (inferior_ptid, null_ptid))
1620 return 0;
1621
1622 /* Don't try to read from a dead thread. */
1623 if (is_exited (inferior_ptid))
1624 return 0;
1625
1626 /* ... or from a spinning thread. */
1627 if (is_executing (inferior_ptid))
1628 return 0;
1629 }
1630
1631 return 1;
1632 }
1633
1634 /* Return the selected frame. Always non-NULL (unless there isn't an
1635 inferior sufficient for creating a frame) in which case an error is
1636 thrown. */
1637
1638 struct frame_info *
1639 get_selected_frame (const char *message)
1640 {
1641 if (selected_frame == NULL)
1642 {
1643 if (message != NULL && !has_stack_frames ())
1644 error (("%s"), message);
1645 /* Hey! Don't trust this. It should really be re-finding the
1646 last selected frame of the currently selected thread. This,
1647 though, is better than nothing. */
1648 select_frame (get_current_frame ());
1649 }
1650 /* There is always a frame. */
1651 gdb_assert (selected_frame != NULL);
1652 return selected_frame;
1653 }
1654
1655 /* If there is a selected frame, return it. Otherwise, return NULL. */
1656
1657 struct frame_info *
1658 get_selected_frame_if_set (void)
1659 {
1660 return selected_frame;
1661 }
1662
1663 /* This is a variant of get_selected_frame() which can be called when
1664 the inferior does not have a frame; in that case it will return
1665 NULL instead of calling error(). */
1666
1667 struct frame_info *
1668 deprecated_safe_get_selected_frame (void)
1669 {
1670 if (!has_stack_frames ())
1671 return NULL;
1672 return get_selected_frame (NULL);
1673 }
1674
1675 /* Select frame FI (or NULL - to invalidate the current frame). */
1676
1677 void
1678 select_frame (struct frame_info *fi)
1679 {
1680 selected_frame = fi;
1681 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1682 frame is being invalidated. */
1683
1684 /* FIXME: kseitz/2002-08-28: It would be nice to call
1685 selected_frame_level_changed_event() right here, but due to limitations
1686 in the current interfaces, we would end up flooding UIs with events
1687 because select_frame() is used extensively internally.
1688
1689 Once we have frame-parameterized frame (and frame-related) commands,
1690 the event notification can be moved here, since this function will only
1691 be called when the user's selected frame is being changed. */
1692
1693 /* Ensure that symbols for this frame are read in. Also, determine the
1694 source language of this frame, and switch to it if desired. */
1695 if (fi)
1696 {
1697 CORE_ADDR pc;
1698
1699 /* We retrieve the frame's symtab by using the frame PC.
1700 However we cannot use the frame PC as-is, because it usually
1701 points to the instruction following the "call", which is
1702 sometimes the first instruction of another function. So we
1703 rely on get_frame_address_in_block() which provides us with a
1704 PC which is guaranteed to be inside the frame's code
1705 block. */
1706 if (get_frame_address_in_block_if_available (fi, &pc))
1707 {
1708 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1709
1710 if (cust != NULL
1711 && compunit_language (cust) != current_language->la_language
1712 && compunit_language (cust) != language_unknown
1713 && language_mode == language_mode_auto)
1714 set_language (compunit_language (cust));
1715 }
1716 }
1717 }
1718
1719 #if GDB_SELF_TEST
1720 struct frame_info *
1721 create_test_frame (struct regcache *regcache)
1722 {
1723 struct frame_info *this_frame = XCNEW (struct frame_info);
1724
1725 sentinel_frame = create_sentinel_frame (NULL, regcache);
1726 sentinel_frame->prev = this_frame;
1727 sentinel_frame->prev_p = 1;;
1728 this_frame->prev_arch.p = 1;
1729 this_frame->prev_arch.arch = get_regcache_arch (regcache);
1730 this_frame->next = sentinel_frame;
1731
1732 return this_frame;
1733 }
1734 #endif
1735
1736 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1737 Always returns a non-NULL value. */
1738
1739 struct frame_info *
1740 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1741 {
1742 struct frame_info *fi;
1743
1744 if (frame_debug)
1745 {
1746 fprintf_unfiltered (gdb_stdlog,
1747 "{ create_new_frame (addr=%s, pc=%s) ",
1748 hex_string (addr), hex_string (pc));
1749 }
1750
1751 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1752
1753 fi->next = create_sentinel_frame (current_program_space,
1754 get_current_regcache ());
1755
1756 /* Set/update this frame's cached PC value, found in the next frame.
1757 Do this before looking for this frame's unwinder. A sniffer is
1758 very likely to read this, and the corresponding unwinder is
1759 entitled to rely that the PC doesn't magically change. */
1760 fi->next->prev_pc.value = pc;
1761 fi->next->prev_pc.status = CC_VALUE;
1762
1763 /* We currently assume that frame chain's can't cross spaces. */
1764 fi->pspace = fi->next->pspace;
1765 fi->aspace = fi->next->aspace;
1766
1767 /* Select/initialize both the unwind function and the frame's type
1768 based on the PC. */
1769 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1770
1771 fi->this_id.p = 1;
1772 fi->this_id.value = frame_id_build (addr, pc);
1773
1774 if (frame_debug)
1775 {
1776 fprintf_unfiltered (gdb_stdlog, "-> ");
1777 fprint_frame (gdb_stdlog, fi);
1778 fprintf_unfiltered (gdb_stdlog, " }\n");
1779 }
1780
1781 return fi;
1782 }
1783
1784 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1785 innermost frame). Be careful to not fall off the bottom of the
1786 frame chain and onto the sentinel frame. */
1787
1788 struct frame_info *
1789 get_next_frame (struct frame_info *this_frame)
1790 {
1791 if (this_frame->level > 0)
1792 return this_frame->next;
1793 else
1794 return NULL;
1795 }
1796
1797 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1798 innermost (i.e. current) frame, return the sentinel frame. Thus,
1799 unlike get_next_frame(), NULL will never be returned. */
1800
1801 struct frame_info *
1802 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1803 {
1804 gdb_assert (this_frame != NULL);
1805
1806 /* Note that, due to the manner in which the sentinel frame is
1807 constructed, this_frame->next still works even when this_frame
1808 is the sentinel frame. But we disallow it here anyway because
1809 calling get_next_frame_sentinel_okay() on the sentinel frame
1810 is likely a coding error. */
1811 gdb_assert (this_frame != sentinel_frame);
1812
1813 return this_frame->next;
1814 }
1815
1816 /* Observer for the target_changed event. */
1817
1818 static void
1819 frame_observer_target_changed (struct target_ops *target)
1820 {
1821 reinit_frame_cache ();
1822 }
1823
1824 /* Flush the entire frame cache. */
1825
1826 void
1827 reinit_frame_cache (void)
1828 {
1829 struct frame_info *fi;
1830
1831 /* Tear down all frame caches. */
1832 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1833 {
1834 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1835 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1836 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1837 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1838 }
1839
1840 /* Since we can't really be sure what the first object allocated was. */
1841 obstack_free (&frame_cache_obstack, 0);
1842 obstack_init (&frame_cache_obstack);
1843
1844 if (sentinel_frame != NULL)
1845 annotate_frames_invalid ();
1846
1847 sentinel_frame = NULL; /* Invalidate cache */
1848 select_frame (NULL);
1849 frame_stash_invalidate ();
1850 if (frame_debug)
1851 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1852 }
1853
1854 /* Find where a register is saved (in memory or another register).
1855 The result of frame_register_unwind is just where it is saved
1856 relative to this particular frame. */
1857
1858 static void
1859 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1860 int *optimizedp, enum lval_type *lvalp,
1861 CORE_ADDR *addrp, int *realnump)
1862 {
1863 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1864
1865 while (this_frame != NULL)
1866 {
1867 int unavailable;
1868
1869 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1870 lvalp, addrp, realnump, NULL);
1871
1872 if (*optimizedp)
1873 break;
1874
1875 if (*lvalp != lval_register)
1876 break;
1877
1878 regnum = *realnump;
1879 this_frame = get_next_frame (this_frame);
1880 }
1881 }
1882
1883 /* Called during frame unwinding to remove a previous frame pointer from a
1884 frame passed in ARG. */
1885
1886 static void
1887 remove_prev_frame (void *arg)
1888 {
1889 struct frame_info *this_frame, *prev_frame;
1890
1891 this_frame = (struct frame_info *) arg;
1892 prev_frame = this_frame->prev;
1893 gdb_assert (prev_frame != NULL);
1894
1895 prev_frame->next = NULL;
1896 this_frame->prev = NULL;
1897 }
1898
1899 /* Get the previous raw frame, and check that it is not identical to
1900 same other frame frame already in the chain. If it is, there is
1901 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1902 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1903 validity tests, that compare THIS_FRAME and the next frame, we do
1904 this right after creating the previous frame, to avoid ever ending
1905 up with two frames with the same id in the frame chain. */
1906
1907 static struct frame_info *
1908 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1909 {
1910 struct frame_info *prev_frame;
1911 struct cleanup *prev_frame_cleanup;
1912
1913 prev_frame = get_prev_frame_raw (this_frame);
1914
1915 /* Don't compute the frame id of the current frame yet. Unwinding
1916 the sentinel frame can fail (e.g., if the thread is gone and we
1917 can't thus read its registers). If we let the cycle detection
1918 code below try to compute a frame ID, then an error thrown from
1919 within the frame ID computation would result in the sentinel
1920 frame as outermost frame, which is bogus. Instead, we'll compute
1921 the current frame's ID lazily in get_frame_id. Note that there's
1922 no point in doing cycle detection when there's only one frame, so
1923 nothing is lost here. */
1924 if (prev_frame->level == 0)
1925 return prev_frame;
1926
1927 /* The cleanup will remove the previous frame that get_prev_frame_raw
1928 linked onto THIS_FRAME. */
1929 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1930
1931 compute_frame_id (prev_frame);
1932 if (!frame_stash_add (prev_frame))
1933 {
1934 /* Another frame with the same id was already in the stash. We just
1935 detected a cycle. */
1936 if (frame_debug)
1937 {
1938 fprintf_unfiltered (gdb_stdlog, "-> ");
1939 fprint_frame (gdb_stdlog, NULL);
1940 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1941 }
1942 this_frame->stop_reason = UNWIND_SAME_ID;
1943 /* Unlink. */
1944 prev_frame->next = NULL;
1945 this_frame->prev = NULL;
1946 prev_frame = NULL;
1947 }
1948
1949 discard_cleanups (prev_frame_cleanup);
1950 return prev_frame;
1951 }
1952
1953 /* Helper function for get_prev_frame_always, this is called inside a
1954 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1955 there is no such frame. This may throw an exception. */
1956
1957 static struct frame_info *
1958 get_prev_frame_always_1 (struct frame_info *this_frame)
1959 {
1960 struct gdbarch *gdbarch;
1961
1962 gdb_assert (this_frame != NULL);
1963 gdbarch = get_frame_arch (this_frame);
1964
1965 if (frame_debug)
1966 {
1967 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1968 if (this_frame != NULL)
1969 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1970 else
1971 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1972 fprintf_unfiltered (gdb_stdlog, ") ");
1973 }
1974
1975 /* Only try to do the unwind once. */
1976 if (this_frame->prev_p)
1977 {
1978 if (frame_debug)
1979 {
1980 fprintf_unfiltered (gdb_stdlog, "-> ");
1981 fprint_frame (gdb_stdlog, this_frame->prev);
1982 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1983 }
1984 return this_frame->prev;
1985 }
1986
1987 /* If the frame unwinder hasn't been selected yet, we must do so
1988 before setting prev_p; otherwise the check for misbehaved
1989 sniffers will think that this frame's sniffer tried to unwind
1990 further (see frame_cleanup_after_sniffer). */
1991 if (this_frame->unwind == NULL)
1992 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1993
1994 this_frame->prev_p = 1;
1995 this_frame->stop_reason = UNWIND_NO_REASON;
1996
1997 /* If we are unwinding from an inline frame, all of the below tests
1998 were already performed when we unwound from the next non-inline
1999 frame. We must skip them, since we can not get THIS_FRAME's ID
2000 until we have unwound all the way down to the previous non-inline
2001 frame. */
2002 if (get_frame_type (this_frame) == INLINE_FRAME)
2003 return get_prev_frame_if_no_cycle (this_frame);
2004
2005 /* Check that this frame is unwindable. If it isn't, don't try to
2006 unwind to the prev frame. */
2007 this_frame->stop_reason
2008 = this_frame->unwind->stop_reason (this_frame,
2009 &this_frame->prologue_cache);
2010
2011 if (this_frame->stop_reason != UNWIND_NO_REASON)
2012 {
2013 if (frame_debug)
2014 {
2015 enum unwind_stop_reason reason = this_frame->stop_reason;
2016
2017 fprintf_unfiltered (gdb_stdlog, "-> ");
2018 fprint_frame (gdb_stdlog, NULL);
2019 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
2020 frame_stop_reason_symbol_string (reason));
2021 }
2022 return NULL;
2023 }
2024
2025 /* Check that this frame's ID isn't inner to (younger, below, next)
2026 the next frame. This happens when a frame unwind goes backwards.
2027 This check is valid only if this frame and the next frame are NORMAL.
2028 See the comment at frame_id_inner for details. */
2029 if (get_frame_type (this_frame) == NORMAL_FRAME
2030 && this_frame->next->unwind->type == NORMAL_FRAME
2031 && frame_id_inner (get_frame_arch (this_frame->next),
2032 get_frame_id (this_frame),
2033 get_frame_id (this_frame->next)))
2034 {
2035 CORE_ADDR this_pc_in_block;
2036 struct minimal_symbol *morestack_msym;
2037 const char *morestack_name = NULL;
2038
2039 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2040 this_pc_in_block = get_frame_address_in_block (this_frame);
2041 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2042 if (morestack_msym)
2043 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
2044 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2045 {
2046 if (frame_debug)
2047 {
2048 fprintf_unfiltered (gdb_stdlog, "-> ");
2049 fprint_frame (gdb_stdlog, NULL);
2050 fprintf_unfiltered (gdb_stdlog,
2051 " // this frame ID is inner }\n");
2052 }
2053 this_frame->stop_reason = UNWIND_INNER_ID;
2054 return NULL;
2055 }
2056 }
2057
2058 /* Check that this and the next frame do not unwind the PC register
2059 to the same memory location. If they do, then even though they
2060 have different frame IDs, the new frame will be bogus; two
2061 functions can't share a register save slot for the PC. This can
2062 happen when the prologue analyzer finds a stack adjustment, but
2063 no PC save.
2064
2065 This check does assume that the "PC register" is roughly a
2066 traditional PC, even if the gdbarch_unwind_pc method adjusts
2067 it (we do not rely on the value, only on the unwound PC being
2068 dependent on this value). A potential improvement would be
2069 to have the frame prev_pc method and the gdbarch unwind_pc
2070 method set the same lval and location information as
2071 frame_register_unwind. */
2072 if (this_frame->level > 0
2073 && gdbarch_pc_regnum (gdbarch) >= 0
2074 && get_frame_type (this_frame) == NORMAL_FRAME
2075 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2076 || get_frame_type (this_frame->next) == INLINE_FRAME))
2077 {
2078 int optimized, realnum, nrealnum;
2079 enum lval_type lval, nlval;
2080 CORE_ADDR addr, naddr;
2081
2082 frame_register_unwind_location (this_frame,
2083 gdbarch_pc_regnum (gdbarch),
2084 &optimized, &lval, &addr, &realnum);
2085 frame_register_unwind_location (get_next_frame (this_frame),
2086 gdbarch_pc_regnum (gdbarch),
2087 &optimized, &nlval, &naddr, &nrealnum);
2088
2089 if ((lval == lval_memory && lval == nlval && addr == naddr)
2090 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2091 {
2092 if (frame_debug)
2093 {
2094 fprintf_unfiltered (gdb_stdlog, "-> ");
2095 fprint_frame (gdb_stdlog, NULL);
2096 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2097 }
2098
2099 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2100 this_frame->prev = NULL;
2101 return NULL;
2102 }
2103 }
2104
2105 return get_prev_frame_if_no_cycle (this_frame);
2106 }
2107
2108 /* Return a "struct frame_info" corresponding to the frame that called
2109 THIS_FRAME. Returns NULL if there is no such frame.
2110
2111 Unlike get_prev_frame, this function always tries to unwind the
2112 frame. */
2113
2114 struct frame_info *
2115 get_prev_frame_always (struct frame_info *this_frame)
2116 {
2117 struct frame_info *prev_frame = NULL;
2118
2119 TRY
2120 {
2121 prev_frame = get_prev_frame_always_1 (this_frame);
2122 }
2123 CATCH (ex, RETURN_MASK_ERROR)
2124 {
2125 if (ex.error == MEMORY_ERROR)
2126 {
2127 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2128 if (ex.message != NULL)
2129 {
2130 char *stop_string;
2131 size_t size;
2132
2133 /* The error needs to live as long as the frame does.
2134 Allocate using stack local STOP_STRING then assign the
2135 pointer to the frame, this allows the STOP_STRING on the
2136 frame to be of type 'const char *'. */
2137 size = strlen (ex.message) + 1;
2138 stop_string = (char *) frame_obstack_zalloc (size);
2139 memcpy (stop_string, ex.message, size);
2140 this_frame->stop_string = stop_string;
2141 }
2142 prev_frame = NULL;
2143 }
2144 else
2145 throw_exception (ex);
2146 }
2147 END_CATCH
2148
2149 return prev_frame;
2150 }
2151
2152 /* Construct a new "struct frame_info" and link it previous to
2153 this_frame. */
2154
2155 static struct frame_info *
2156 get_prev_frame_raw (struct frame_info *this_frame)
2157 {
2158 struct frame_info *prev_frame;
2159
2160 /* Allocate the new frame but do not wire it in to the frame chain.
2161 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2162 frame->next to pull some fancy tricks (of course such code is, by
2163 definition, recursive). Try to prevent it.
2164
2165 There is no reason to worry about memory leaks, should the
2166 remainder of the function fail. The allocated memory will be
2167 quickly reclaimed when the frame cache is flushed, and the `we've
2168 been here before' check above will stop repeated memory
2169 allocation calls. */
2170 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2171 prev_frame->level = this_frame->level + 1;
2172
2173 /* For now, assume we don't have frame chains crossing address
2174 spaces. */
2175 prev_frame->pspace = this_frame->pspace;
2176 prev_frame->aspace = this_frame->aspace;
2177
2178 /* Don't yet compute ->unwind (and hence ->type). It is computed
2179 on-demand in get_frame_type, frame_register_unwind, and
2180 get_frame_id. */
2181
2182 /* Don't yet compute the frame's ID. It is computed on-demand by
2183 get_frame_id(). */
2184
2185 /* The unwound frame ID is validate at the start of this function,
2186 as part of the logic to decide if that frame should be further
2187 unwound, and not here while the prev frame is being created.
2188 Doing this makes it possible for the user to examine a frame that
2189 has an invalid frame ID.
2190
2191 Some very old VAX code noted: [...] For the sake of argument,
2192 suppose that the stack is somewhat trashed (which is one reason
2193 that "info frame" exists). So, return 0 (indicating we don't
2194 know the address of the arglist) if we don't know what frame this
2195 frame calls. */
2196
2197 /* Link it in. */
2198 this_frame->prev = prev_frame;
2199 prev_frame->next = this_frame;
2200
2201 if (frame_debug)
2202 {
2203 fprintf_unfiltered (gdb_stdlog, "-> ");
2204 fprint_frame (gdb_stdlog, prev_frame);
2205 fprintf_unfiltered (gdb_stdlog, " }\n");
2206 }
2207
2208 return prev_frame;
2209 }
2210
2211 /* Debug routine to print a NULL frame being returned. */
2212
2213 static void
2214 frame_debug_got_null_frame (struct frame_info *this_frame,
2215 const char *reason)
2216 {
2217 if (frame_debug)
2218 {
2219 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2220 if (this_frame != NULL)
2221 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2222 else
2223 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2224 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2225 }
2226 }
2227
2228 /* Is this (non-sentinel) frame in the "main"() function? */
2229
2230 static int
2231 inside_main_func (struct frame_info *this_frame)
2232 {
2233 struct bound_minimal_symbol msymbol;
2234 CORE_ADDR maddr;
2235
2236 if (symfile_objfile == 0)
2237 return 0;
2238 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2239 if (msymbol.minsym == NULL)
2240 return 0;
2241 /* Make certain that the code, and not descriptor, address is
2242 returned. */
2243 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2244 BMSYMBOL_VALUE_ADDRESS (msymbol),
2245 &current_target);
2246 return maddr == get_frame_func (this_frame);
2247 }
2248
2249 /* Test whether THIS_FRAME is inside the process entry point function. */
2250
2251 static int
2252 inside_entry_func (struct frame_info *this_frame)
2253 {
2254 CORE_ADDR entry_point;
2255
2256 if (!entry_point_address_query (&entry_point))
2257 return 0;
2258
2259 return get_frame_func (this_frame) == entry_point;
2260 }
2261
2262 /* Return a structure containing various interesting information about
2263 the frame that called THIS_FRAME. Returns NULL if there is entier
2264 no such frame or the frame fails any of a set of target-independent
2265 condition that should terminate the frame chain (e.g., as unwinding
2266 past main()).
2267
2268 This function should not contain target-dependent tests, such as
2269 checking whether the program-counter is zero. */
2270
2271 struct frame_info *
2272 get_prev_frame (struct frame_info *this_frame)
2273 {
2274 CORE_ADDR frame_pc;
2275 int frame_pc_p;
2276
2277 /* There is always a frame. If this assertion fails, suspect that
2278 something should be calling get_selected_frame() or
2279 get_current_frame(). */
2280 gdb_assert (this_frame != NULL);
2281
2282 /* If this_frame is the current frame, then compute and stash
2283 its frame id prior to fetching and computing the frame id of the
2284 previous frame. Otherwise, the cycle detection code in
2285 get_prev_frame_if_no_cycle() will not work correctly. When
2286 get_frame_id() is called later on, an assertion error will
2287 be triggered in the event of a cycle between the current
2288 frame and its previous frame. */
2289 if (this_frame->level == 0)
2290 get_frame_id (this_frame);
2291
2292 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2293
2294 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2295 sense to stop unwinding at a dummy frame. One place where a dummy
2296 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2297 pcsqh register (space register for the instruction at the head of the
2298 instruction queue) cannot be written directly; the only way to set it
2299 is to branch to code that is in the target space. In order to implement
2300 frame dummies on HPUX, the called function is made to jump back to where
2301 the inferior was when the user function was called. If gdb was inside
2302 the main function when we created the dummy frame, the dummy frame will
2303 point inside the main function. */
2304 if (this_frame->level >= 0
2305 && get_frame_type (this_frame) == NORMAL_FRAME
2306 && !backtrace_past_main
2307 && frame_pc_p
2308 && inside_main_func (this_frame))
2309 /* Don't unwind past main(). Note, this is done _before_ the
2310 frame has been marked as previously unwound. That way if the
2311 user later decides to enable unwinds past main(), that will
2312 automatically happen. */
2313 {
2314 frame_debug_got_null_frame (this_frame, "inside main func");
2315 return NULL;
2316 }
2317
2318 /* If the user's backtrace limit has been exceeded, stop. We must
2319 add two to the current level; one of those accounts for backtrace_limit
2320 being 1-based and the level being 0-based, and the other accounts for
2321 the level of the new frame instead of the level of the current
2322 frame. */
2323 if (this_frame->level + 2 > backtrace_limit)
2324 {
2325 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2326 return NULL;
2327 }
2328
2329 /* If we're already inside the entry function for the main objfile,
2330 then it isn't valid. Don't apply this test to a dummy frame -
2331 dummy frame PCs typically land in the entry func. Don't apply
2332 this test to the sentinel frame. Sentinel frames should always
2333 be allowed to unwind. */
2334 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2335 wasn't checking for "main" in the minimal symbols. With that
2336 fixed asm-source tests now stop in "main" instead of halting the
2337 backtrace in weird and wonderful ways somewhere inside the entry
2338 file. Suspect that tests for inside the entry file/func were
2339 added to work around that (now fixed) case. */
2340 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2341 suggested having the inside_entry_func test use the
2342 inside_main_func() msymbol trick (along with entry_point_address()
2343 I guess) to determine the address range of the start function.
2344 That should provide a far better stopper than the current
2345 heuristics. */
2346 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2347 applied tail-call optimizations to main so that a function called
2348 from main returns directly to the caller of main. Since we don't
2349 stop at main, we should at least stop at the entry point of the
2350 application. */
2351 if (this_frame->level >= 0
2352 && get_frame_type (this_frame) == NORMAL_FRAME
2353 && !backtrace_past_entry
2354 && frame_pc_p
2355 && inside_entry_func (this_frame))
2356 {
2357 frame_debug_got_null_frame (this_frame, "inside entry func");
2358 return NULL;
2359 }
2360
2361 /* Assume that the only way to get a zero PC is through something
2362 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2363 will never unwind a zero PC. */
2364 if (this_frame->level > 0
2365 && (get_frame_type (this_frame) == NORMAL_FRAME
2366 || get_frame_type (this_frame) == INLINE_FRAME)
2367 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2368 && frame_pc_p && frame_pc == 0)
2369 {
2370 frame_debug_got_null_frame (this_frame, "zero PC");
2371 return NULL;
2372 }
2373
2374 return get_prev_frame_always (this_frame);
2375 }
2376
2377 struct frame_id
2378 get_prev_frame_id_by_id (struct frame_id id)
2379 {
2380 struct frame_id prev_id;
2381 struct frame_info *frame;
2382
2383 frame = frame_find_by_id (id);
2384
2385 if (frame != NULL)
2386 prev_id = get_frame_id (get_prev_frame (frame));
2387 else
2388 prev_id = null_frame_id;
2389
2390 return prev_id;
2391 }
2392
2393 CORE_ADDR
2394 get_frame_pc (struct frame_info *frame)
2395 {
2396 gdb_assert (frame->next != NULL);
2397 return frame_unwind_pc (frame->next);
2398 }
2399
2400 int
2401 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2402 {
2403
2404 gdb_assert (frame->next != NULL);
2405
2406 TRY
2407 {
2408 *pc = frame_unwind_pc (frame->next);
2409 }
2410 CATCH (ex, RETURN_MASK_ERROR)
2411 {
2412 if (ex.error == NOT_AVAILABLE_ERROR)
2413 return 0;
2414 else
2415 throw_exception (ex);
2416 }
2417 END_CATCH
2418
2419 return 1;
2420 }
2421
2422 /* Return an address that falls within THIS_FRAME's code block. */
2423
2424 CORE_ADDR
2425 get_frame_address_in_block (struct frame_info *this_frame)
2426 {
2427 /* A draft address. */
2428 CORE_ADDR pc = get_frame_pc (this_frame);
2429
2430 struct frame_info *next_frame = this_frame->next;
2431
2432 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2433 Normally the resume address is inside the body of the function
2434 associated with THIS_FRAME, but there is a special case: when
2435 calling a function which the compiler knows will never return
2436 (for instance abort), the call may be the very last instruction
2437 in the calling function. The resume address will point after the
2438 call and may be at the beginning of a different function
2439 entirely.
2440
2441 If THIS_FRAME is a signal frame or dummy frame, then we should
2442 not adjust the unwound PC. For a dummy frame, GDB pushed the
2443 resume address manually onto the stack. For a signal frame, the
2444 OS may have pushed the resume address manually and invoked the
2445 handler (e.g. GNU/Linux), or invoked the trampoline which called
2446 the signal handler - but in either case the signal handler is
2447 expected to return to the trampoline. So in both of these
2448 cases we know that the resume address is executable and
2449 related. So we only need to adjust the PC if THIS_FRAME
2450 is a normal function.
2451
2452 If the program has been interrupted while THIS_FRAME is current,
2453 then clearly the resume address is inside the associated
2454 function. There are three kinds of interruption: debugger stop
2455 (next frame will be SENTINEL_FRAME), operating system
2456 signal or exception (next frame will be SIGTRAMP_FRAME),
2457 or debugger-induced function call (next frame will be
2458 DUMMY_FRAME). So we only need to adjust the PC if
2459 NEXT_FRAME is a normal function.
2460
2461 We check the type of NEXT_FRAME first, since it is already
2462 known; frame type is determined by the unwinder, and since
2463 we have THIS_FRAME we've already selected an unwinder for
2464 NEXT_FRAME.
2465
2466 If the next frame is inlined, we need to keep going until we find
2467 the real function - for instance, if a signal handler is invoked
2468 while in an inlined function, then the code address of the
2469 "calling" normal function should not be adjusted either. */
2470
2471 while (get_frame_type (next_frame) == INLINE_FRAME)
2472 next_frame = next_frame->next;
2473
2474 if ((get_frame_type (next_frame) == NORMAL_FRAME
2475 || get_frame_type (next_frame) == TAILCALL_FRAME)
2476 && (get_frame_type (this_frame) == NORMAL_FRAME
2477 || get_frame_type (this_frame) == TAILCALL_FRAME
2478 || get_frame_type (this_frame) == INLINE_FRAME))
2479 return pc - 1;
2480
2481 return pc;
2482 }
2483
2484 int
2485 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2486 CORE_ADDR *pc)
2487 {
2488
2489 TRY
2490 {
2491 *pc = get_frame_address_in_block (this_frame);
2492 }
2493 CATCH (ex, RETURN_MASK_ERROR)
2494 {
2495 if (ex.error == NOT_AVAILABLE_ERROR)
2496 return 0;
2497 throw_exception (ex);
2498 }
2499 END_CATCH
2500
2501 return 1;
2502 }
2503
2504 symtab_and_line
2505 find_frame_sal (frame_info *frame)
2506 {
2507 struct frame_info *next_frame;
2508 int notcurrent;
2509 CORE_ADDR pc;
2510
2511 /* If the next frame represents an inlined function call, this frame's
2512 sal is the "call site" of that inlined function, which can not
2513 be inferred from get_frame_pc. */
2514 next_frame = get_next_frame (frame);
2515 if (frame_inlined_callees (frame) > 0)
2516 {
2517 struct symbol *sym;
2518
2519 if (next_frame)
2520 sym = get_frame_function (next_frame);
2521 else
2522 sym = inline_skipped_symbol (inferior_ptid);
2523
2524 /* If frame is inline, it certainly has symbols. */
2525 gdb_assert (sym);
2526
2527 symtab_and_line sal;
2528 if (SYMBOL_LINE (sym) != 0)
2529 {
2530 sal.symtab = symbol_symtab (sym);
2531 sal.line = SYMBOL_LINE (sym);
2532 }
2533 else
2534 /* If the symbol does not have a location, we don't know where
2535 the call site is. Do not pretend to. This is jarring, but
2536 we can't do much better. */
2537 sal.pc = get_frame_pc (frame);
2538
2539 sal.pspace = get_frame_program_space (frame);
2540 return sal;
2541 }
2542
2543 /* If FRAME is not the innermost frame, that normally means that
2544 FRAME->pc points at the return instruction (which is *after* the
2545 call instruction), and we want to get the line containing the
2546 call (because the call is where the user thinks the program is).
2547 However, if the next frame is either a SIGTRAMP_FRAME or a
2548 DUMMY_FRAME, then the next frame will contain a saved interrupt
2549 PC and such a PC indicates the current (rather than next)
2550 instruction/line, consequently, for such cases, want to get the
2551 line containing fi->pc. */
2552 if (!get_frame_pc_if_available (frame, &pc))
2553 return {};
2554
2555 notcurrent = (pc != get_frame_address_in_block (frame));
2556 return find_pc_line (pc, notcurrent);
2557 }
2558
2559 /* Per "frame.h", return the ``address'' of the frame. Code should
2560 really be using get_frame_id(). */
2561 CORE_ADDR
2562 get_frame_base (struct frame_info *fi)
2563 {
2564 return get_frame_id (fi).stack_addr;
2565 }
2566
2567 /* High-level offsets into the frame. Used by the debug info. */
2568
2569 CORE_ADDR
2570 get_frame_base_address (struct frame_info *fi)
2571 {
2572 if (get_frame_type (fi) != NORMAL_FRAME)
2573 return 0;
2574 if (fi->base == NULL)
2575 fi->base = frame_base_find_by_frame (fi);
2576 /* Sneaky: If the low-level unwind and high-level base code share a
2577 common unwinder, let them share the prologue cache. */
2578 if (fi->base->unwind == fi->unwind)
2579 return fi->base->this_base (fi, &fi->prologue_cache);
2580 return fi->base->this_base (fi, &fi->base_cache);
2581 }
2582
2583 CORE_ADDR
2584 get_frame_locals_address (struct frame_info *fi)
2585 {
2586 if (get_frame_type (fi) != NORMAL_FRAME)
2587 return 0;
2588 /* If there isn't a frame address method, find it. */
2589 if (fi->base == NULL)
2590 fi->base = frame_base_find_by_frame (fi);
2591 /* Sneaky: If the low-level unwind and high-level base code share a
2592 common unwinder, let them share the prologue cache. */
2593 if (fi->base->unwind == fi->unwind)
2594 return fi->base->this_locals (fi, &fi->prologue_cache);
2595 return fi->base->this_locals (fi, &fi->base_cache);
2596 }
2597
2598 CORE_ADDR
2599 get_frame_args_address (struct frame_info *fi)
2600 {
2601 if (get_frame_type (fi) != NORMAL_FRAME)
2602 return 0;
2603 /* If there isn't a frame address method, find it. */
2604 if (fi->base == NULL)
2605 fi->base = frame_base_find_by_frame (fi);
2606 /* Sneaky: If the low-level unwind and high-level base code share a
2607 common unwinder, let them share the prologue cache. */
2608 if (fi->base->unwind == fi->unwind)
2609 return fi->base->this_args (fi, &fi->prologue_cache);
2610 return fi->base->this_args (fi, &fi->base_cache);
2611 }
2612
2613 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2614 otherwise. */
2615
2616 int
2617 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2618 {
2619 if (fi->unwind == NULL)
2620 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2621 return fi->unwind == unwinder;
2622 }
2623
2624 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2625 or -1 for a NULL frame. */
2626
2627 int
2628 frame_relative_level (struct frame_info *fi)
2629 {
2630 if (fi == NULL)
2631 return -1;
2632 else
2633 return fi->level;
2634 }
2635
2636 enum frame_type
2637 get_frame_type (struct frame_info *frame)
2638 {
2639 if (frame->unwind == NULL)
2640 /* Initialize the frame's unwinder because that's what
2641 provides the frame's type. */
2642 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2643 return frame->unwind->type;
2644 }
2645
2646 struct program_space *
2647 get_frame_program_space (struct frame_info *frame)
2648 {
2649 return frame->pspace;
2650 }
2651
2652 struct program_space *
2653 frame_unwind_program_space (struct frame_info *this_frame)
2654 {
2655 gdb_assert (this_frame);
2656
2657 /* This is really a placeholder to keep the API consistent --- we
2658 assume for now that we don't have frame chains crossing
2659 spaces. */
2660 return this_frame->pspace;
2661 }
2662
2663 struct address_space *
2664 get_frame_address_space (struct frame_info *frame)
2665 {
2666 return frame->aspace;
2667 }
2668
2669 /* Memory access methods. */
2670
2671 void
2672 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2673 gdb_byte *buf, int len)
2674 {
2675 read_memory (addr, buf, len);
2676 }
2677
2678 LONGEST
2679 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2680 int len)
2681 {
2682 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2683 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2684
2685 return read_memory_integer (addr, len, byte_order);
2686 }
2687
2688 ULONGEST
2689 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2690 int len)
2691 {
2692 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2693 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2694
2695 return read_memory_unsigned_integer (addr, len, byte_order);
2696 }
2697
2698 int
2699 safe_frame_unwind_memory (struct frame_info *this_frame,
2700 CORE_ADDR addr, gdb_byte *buf, int len)
2701 {
2702 /* NOTE: target_read_memory returns zero on success! */
2703 return !target_read_memory (addr, buf, len);
2704 }
2705
2706 /* Architecture methods. */
2707
2708 struct gdbarch *
2709 get_frame_arch (struct frame_info *this_frame)
2710 {
2711 return frame_unwind_arch (this_frame->next);
2712 }
2713
2714 struct gdbarch *
2715 frame_unwind_arch (struct frame_info *next_frame)
2716 {
2717 if (!next_frame->prev_arch.p)
2718 {
2719 struct gdbarch *arch;
2720
2721 if (next_frame->unwind == NULL)
2722 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2723
2724 if (next_frame->unwind->prev_arch != NULL)
2725 arch = next_frame->unwind->prev_arch (next_frame,
2726 &next_frame->prologue_cache);
2727 else
2728 arch = get_frame_arch (next_frame);
2729
2730 next_frame->prev_arch.arch = arch;
2731 next_frame->prev_arch.p = 1;
2732 if (frame_debug)
2733 fprintf_unfiltered (gdb_stdlog,
2734 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2735 next_frame->level,
2736 gdbarch_bfd_arch_info (arch)->printable_name);
2737 }
2738
2739 return next_frame->prev_arch.arch;
2740 }
2741
2742 struct gdbarch *
2743 frame_unwind_caller_arch (struct frame_info *next_frame)
2744 {
2745 next_frame = skip_artificial_frames (next_frame);
2746
2747 /* We must have a non-artificial frame. The caller is supposed to check
2748 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2749 in this case. */
2750 gdb_assert (next_frame != NULL);
2751
2752 return frame_unwind_arch (next_frame);
2753 }
2754
2755 /* Gets the language of FRAME. */
2756
2757 enum language
2758 get_frame_language (struct frame_info *frame)
2759 {
2760 CORE_ADDR pc = 0;
2761 int pc_p = 0;
2762
2763 gdb_assert (frame!= NULL);
2764
2765 /* We determine the current frame language by looking up its
2766 associated symtab. To retrieve this symtab, we use the frame
2767 PC. However we cannot use the frame PC as is, because it
2768 usually points to the instruction following the "call", which
2769 is sometimes the first instruction of another function. So
2770 we rely on get_frame_address_in_block(), it provides us with
2771 a PC that is guaranteed to be inside the frame's code
2772 block. */
2773
2774 TRY
2775 {
2776 pc = get_frame_address_in_block (frame);
2777 pc_p = 1;
2778 }
2779 CATCH (ex, RETURN_MASK_ERROR)
2780 {
2781 if (ex.error != NOT_AVAILABLE_ERROR)
2782 throw_exception (ex);
2783 }
2784 END_CATCH
2785
2786 if (pc_p)
2787 {
2788 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2789
2790 if (cust != NULL)
2791 return compunit_language (cust);
2792 }
2793
2794 return language_unknown;
2795 }
2796
2797 /* Stack pointer methods. */
2798
2799 CORE_ADDR
2800 get_frame_sp (struct frame_info *this_frame)
2801 {
2802 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2803
2804 /* Normality - an architecture that provides a way of obtaining any
2805 frame inner-most address. */
2806 if (gdbarch_unwind_sp_p (gdbarch))
2807 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2808 operate on THIS_FRAME now. */
2809 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2810 /* Now things are really are grim. Hope that the value returned by
2811 the gdbarch_sp_regnum register is meaningful. */
2812 if (gdbarch_sp_regnum (gdbarch) >= 0)
2813 return get_frame_register_unsigned (this_frame,
2814 gdbarch_sp_regnum (gdbarch));
2815 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2816 }
2817
2818 /* Return the reason why we can't unwind past FRAME. */
2819
2820 enum unwind_stop_reason
2821 get_frame_unwind_stop_reason (struct frame_info *frame)
2822 {
2823 /* Fill-in STOP_REASON. */
2824 get_prev_frame_always (frame);
2825 gdb_assert (frame->prev_p);
2826
2827 return frame->stop_reason;
2828 }
2829
2830 /* Return a string explaining REASON. */
2831
2832 const char *
2833 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2834 {
2835 switch (reason)
2836 {
2837 #define SET(name, description) \
2838 case name: return _(description);
2839 #include "unwind_stop_reasons.def"
2840 #undef SET
2841
2842 default:
2843 internal_error (__FILE__, __LINE__,
2844 "Invalid frame stop reason");
2845 }
2846 }
2847
2848 const char *
2849 frame_stop_reason_string (struct frame_info *fi)
2850 {
2851 gdb_assert (fi->prev_p);
2852 gdb_assert (fi->prev == NULL);
2853
2854 /* Return the specific string if we have one. */
2855 if (fi->stop_string != NULL)
2856 return fi->stop_string;
2857
2858 /* Return the generic string if we have nothing better. */
2859 return unwind_stop_reason_to_string (fi->stop_reason);
2860 }
2861
2862 /* Return the enum symbol name of REASON as a string, to use in debug
2863 output. */
2864
2865 static const char *
2866 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2867 {
2868 switch (reason)
2869 {
2870 #define SET(name, description) \
2871 case name: return #name;
2872 #include "unwind_stop_reasons.def"
2873 #undef SET
2874
2875 default:
2876 internal_error (__FILE__, __LINE__,
2877 "Invalid frame stop reason");
2878 }
2879 }
2880
2881 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2882 FRAME. */
2883
2884 static void
2885 frame_cleanup_after_sniffer (void *arg)
2886 {
2887 struct frame_info *frame = (struct frame_info *) arg;
2888
2889 /* The sniffer should not allocate a prologue cache if it did not
2890 match this frame. */
2891 gdb_assert (frame->prologue_cache == NULL);
2892
2893 /* No sniffer should extend the frame chain; sniff based on what is
2894 already certain. */
2895 gdb_assert (!frame->prev_p);
2896
2897 /* The sniffer should not check the frame's ID; that's circular. */
2898 gdb_assert (!frame->this_id.p);
2899
2900 /* Clear cached fields dependent on the unwinder.
2901
2902 The previous PC is independent of the unwinder, but the previous
2903 function is not (see get_frame_address_in_block). */
2904 frame->prev_func.p = 0;
2905 frame->prev_func.addr = 0;
2906
2907 /* Discard the unwinder last, so that we can easily find it if an assertion
2908 in this function triggers. */
2909 frame->unwind = NULL;
2910 }
2911
2912 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2913 Return a cleanup which should be called if unwinding fails, and
2914 discarded if it succeeds. */
2915
2916 struct cleanup *
2917 frame_prepare_for_sniffer (struct frame_info *frame,
2918 const struct frame_unwind *unwind)
2919 {
2920 gdb_assert (frame->unwind == NULL);
2921 frame->unwind = unwind;
2922 return make_cleanup (frame_cleanup_after_sniffer, frame);
2923 }
2924
2925 static struct cmd_list_element *set_backtrace_cmdlist;
2926 static struct cmd_list_element *show_backtrace_cmdlist;
2927
2928 static void
2929 set_backtrace_cmd (char *args, int from_tty)
2930 {
2931 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2932 gdb_stdout);
2933 }
2934
2935 static void
2936 show_backtrace_cmd (char *args, int from_tty)
2937 {
2938 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2939 }
2940
2941 void
2942 _initialize_frame (void)
2943 {
2944 obstack_init (&frame_cache_obstack);
2945
2946 frame_stash_create ();
2947
2948 observer_attach_target_changed (frame_observer_target_changed);
2949
2950 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2951 Set backtrace specific variables.\n\
2952 Configure backtrace variables such as the backtrace limit"),
2953 &set_backtrace_cmdlist, "set backtrace ",
2954 0/*allow-unknown*/, &setlist);
2955 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2956 Show backtrace specific variables\n\
2957 Show backtrace variables such as the backtrace limit"),
2958 &show_backtrace_cmdlist, "show backtrace ",
2959 0/*allow-unknown*/, &showlist);
2960
2961 add_setshow_boolean_cmd ("past-main", class_obscure,
2962 &backtrace_past_main, _("\
2963 Set whether backtraces should continue past \"main\"."), _("\
2964 Show whether backtraces should continue past \"main\"."), _("\
2965 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2966 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2967 of the stack trace."),
2968 NULL,
2969 show_backtrace_past_main,
2970 &set_backtrace_cmdlist,
2971 &show_backtrace_cmdlist);
2972
2973 add_setshow_boolean_cmd ("past-entry", class_obscure,
2974 &backtrace_past_entry, _("\
2975 Set whether backtraces should continue past the entry point of a program."),
2976 _("\
2977 Show whether backtraces should continue past the entry point of a program."),
2978 _("\
2979 Normally there are no callers beyond the entry point of a program, so GDB\n\
2980 will terminate the backtrace there. Set this variable if you need to see\n\
2981 the rest of the stack trace."),
2982 NULL,
2983 show_backtrace_past_entry,
2984 &set_backtrace_cmdlist,
2985 &show_backtrace_cmdlist);
2986
2987 add_setshow_uinteger_cmd ("limit", class_obscure,
2988 &backtrace_limit, _("\
2989 Set an upper bound on the number of backtrace levels."), _("\
2990 Show the upper bound on the number of backtrace levels."), _("\
2991 No more than the specified number of frames can be displayed or examined.\n\
2992 Literal \"unlimited\" or zero means no limit."),
2993 NULL,
2994 show_backtrace_limit,
2995 &set_backtrace_cmdlist,
2996 &show_backtrace_cmdlist);
2997
2998 /* Debug this files internals. */
2999 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
3000 Set frame debugging."), _("\
3001 Show frame debugging."), _("\
3002 When non-zero, frame specific internal debugging is enabled."),
3003 NULL,
3004 show_frame_debug,
3005 &setdebuglist, &showdebuglist);
3006 }
This page took 0.090992 seconds and 4 git commands to generate.