a817e4d6eb8b75d240f3a34b41592b65e5e7dd2e
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "target.h"
25 #include "value.h"
26 #include "inferior.h" /* for inferior_ptid */
27 #include "regcache.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "user-regs.h"
31 #include "gdb_obstack.h"
32 #include "dummy-frame.h"
33 #include "sentinel-frame.h"
34 #include "gdbcore.h"
35 #include "annotate.h"
36 #include "language.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "command.h"
40 #include "gdbcmd.h"
41 #include "observer.h"
42 #include "objfiles.h"
43 #include "exceptions.h"
44 #include "gdbthread.h"
45 #include "block.h"
46 #include "inline-frame.h"
47 #include "tracepoint.h"
48
49 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
50 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
51
52 /* We keep a cache of stack frames, each of which is a "struct
53 frame_info". The innermost one gets allocated (in
54 wait_for_inferior) each time the inferior stops; current_frame
55 points to it. Additional frames get allocated (in get_prev_frame)
56 as needed, and are chained through the next and prev fields. Any
57 time that the frame cache becomes invalid (most notably when we
58 execute something, but also if we change how we interpret the
59 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
60 which reads new symbols)), we should call reinit_frame_cache. */
61
62 struct frame_info
63 {
64 /* Level of this frame. The inner-most (youngest) frame is at level
65 0. As you move towards the outer-most (oldest) frame, the level
66 increases. This is a cached value. It could just as easily be
67 computed by counting back from the selected frame to the inner
68 most frame. */
69 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
70 reserved to indicate a bogus frame - one that has been created
71 just to keep GDB happy (GDB always needs a frame). For the
72 moment leave this as speculation. */
73 int level;
74
75 /* The frame's program space. */
76 struct program_space *pspace;
77
78 /* The frame's address space. */
79 struct address_space *aspace;
80
81 /* The frame's low-level unwinder and corresponding cache. The
82 low-level unwinder is responsible for unwinding register values
83 for the previous frame. The low-level unwind methods are
84 selected based on the presence, or otherwise, of register unwind
85 information such as CFI. */
86 void *prologue_cache;
87 const struct frame_unwind *unwind;
88
89 /* Cached copy of the previous frame's architecture. */
90 struct
91 {
92 int p;
93 struct gdbarch *arch;
94 } prev_arch;
95
96 /* Cached copy of the previous frame's resume address. */
97 struct {
98 int p;
99 CORE_ADDR value;
100 } prev_pc;
101
102 /* Cached copy of the previous frame's function address. */
103 struct
104 {
105 CORE_ADDR addr;
106 int p;
107 } prev_func;
108
109 /* This frame's ID. */
110 struct
111 {
112 int p;
113 struct frame_id value;
114 } this_id;
115
116 /* The frame's high-level base methods, and corresponding cache.
117 The high level base methods are selected based on the frame's
118 debug info. */
119 const struct frame_base *base;
120 void *base_cache;
121
122 /* Pointers to the next (down, inner, younger) and previous (up,
123 outer, older) frame_info's in the frame cache. */
124 struct frame_info *next; /* down, inner, younger */
125 int prev_p;
126 struct frame_info *prev; /* up, outer, older */
127
128 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
129 could. Only valid when PREV_P is set. */
130 enum unwind_stop_reason stop_reason;
131 };
132
133 /* A frame stash used to speed up frame lookups. */
134
135 /* We currently only stash one frame at a time, as this seems to be
136 sufficient for now. */
137 static struct frame_info *frame_stash = NULL;
138
139 /* Add the following FRAME to the frame stash. */
140
141 static void
142 frame_stash_add (struct frame_info *frame)
143 {
144 frame_stash = frame;
145 }
146
147 /* Search the frame stash for an entry with the given frame ID.
148 If found, return that frame. Otherwise return NULL. */
149
150 static struct frame_info *
151 frame_stash_find (struct frame_id id)
152 {
153 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
154 return frame_stash;
155
156 return NULL;
157 }
158
159 /* Invalidate the frame stash by removing all entries in it. */
160
161 static void
162 frame_stash_invalidate (void)
163 {
164 frame_stash = NULL;
165 }
166
167 /* Flag to control debugging. */
168
169 int frame_debug;
170 static void
171 show_frame_debug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
175 }
176
177 /* Flag to indicate whether backtraces should stop at main et.al. */
178
179 static int backtrace_past_main;
180 static void
181 show_backtrace_past_main (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file,
185 _("Whether backtraces should "
186 "continue past \"main\" is %s.\n"),
187 value);
188 }
189
190 static int backtrace_past_entry;
191 static void
192 show_backtrace_past_entry (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194 {
195 fprintf_filtered (file, _("Whether backtraces should continue past the "
196 "entry point of a program is %s.\n"),
197 value);
198 }
199
200 static int backtrace_limit = INT_MAX;
201 static void
202 show_backtrace_limit (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file,
206 _("An upper bound on the number "
207 "of backtrace levels is %s.\n"),
208 value);
209 }
210
211
212 static void
213 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
214 {
215 if (p)
216 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
217 else
218 fprintf_unfiltered (file, "!%s", name);
219 }
220
221 void
222 fprint_frame_id (struct ui_file *file, struct frame_id id)
223 {
224 fprintf_unfiltered (file, "{");
225 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
226 fprintf_unfiltered (file, ",");
227 fprint_field (file, "code", id.code_addr_p, id.code_addr);
228 fprintf_unfiltered (file, ",");
229 fprint_field (file, "special", id.special_addr_p, id.special_addr);
230 if (id.inline_depth)
231 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
232 fprintf_unfiltered (file, "}");
233 }
234
235 static void
236 fprint_frame_type (struct ui_file *file, enum frame_type type)
237 {
238 switch (type)
239 {
240 case NORMAL_FRAME:
241 fprintf_unfiltered (file, "NORMAL_FRAME");
242 return;
243 case DUMMY_FRAME:
244 fprintf_unfiltered (file, "DUMMY_FRAME");
245 return;
246 case INLINE_FRAME:
247 fprintf_unfiltered (file, "INLINE_FRAME");
248 return;
249 case SENTINEL_FRAME:
250 fprintf_unfiltered (file, "SENTINEL_FRAME");
251 return;
252 case SIGTRAMP_FRAME:
253 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
254 return;
255 case ARCH_FRAME:
256 fprintf_unfiltered (file, "ARCH_FRAME");
257 return;
258 default:
259 fprintf_unfiltered (file, "<unknown type>");
260 return;
261 };
262 }
263
264 static void
265 fprint_frame (struct ui_file *file, struct frame_info *fi)
266 {
267 if (fi == NULL)
268 {
269 fprintf_unfiltered (file, "<NULL frame>");
270 return;
271 }
272 fprintf_unfiltered (file, "{");
273 fprintf_unfiltered (file, "level=%d", fi->level);
274 fprintf_unfiltered (file, ",");
275 fprintf_unfiltered (file, "type=");
276 if (fi->unwind != NULL)
277 fprint_frame_type (file, fi->unwind->type);
278 else
279 fprintf_unfiltered (file, "<unknown>");
280 fprintf_unfiltered (file, ",");
281 fprintf_unfiltered (file, "unwind=");
282 if (fi->unwind != NULL)
283 gdb_print_host_address (fi->unwind, file);
284 else
285 fprintf_unfiltered (file, "<unknown>");
286 fprintf_unfiltered (file, ",");
287 fprintf_unfiltered (file, "pc=");
288 if (fi->next != NULL && fi->next->prev_pc.p)
289 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
290 else
291 fprintf_unfiltered (file, "<unknown>");
292 fprintf_unfiltered (file, ",");
293 fprintf_unfiltered (file, "id=");
294 if (fi->this_id.p)
295 fprint_frame_id (file, fi->this_id.value);
296 else
297 fprintf_unfiltered (file, "<unknown>");
298 fprintf_unfiltered (file, ",");
299 fprintf_unfiltered (file, "func=");
300 if (fi->next != NULL && fi->next->prev_func.p)
301 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
302 else
303 fprintf_unfiltered (file, "<unknown>");
304 fprintf_unfiltered (file, "}");
305 }
306
307 /* Given FRAME, return the enclosing normal frame for inlined
308 function frames. Otherwise return the original frame. */
309
310 static struct frame_info *
311 skip_inlined_frames (struct frame_info *frame)
312 {
313 while (get_frame_type (frame) == INLINE_FRAME)
314 frame = get_prev_frame (frame);
315
316 return frame;
317 }
318
319 /* Return a frame uniq ID that can be used to, later, re-find the
320 frame. */
321
322 struct frame_id
323 get_frame_id (struct frame_info *fi)
324 {
325 if (fi == NULL)
326 return null_frame_id;
327
328 if (!fi->this_id.p)
329 {
330 if (frame_debug)
331 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
332 fi->level);
333 /* Find the unwinder. */
334 if (fi->unwind == NULL)
335 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
336 /* Find THIS frame's ID. */
337 /* Default to outermost if no ID is found. */
338 fi->this_id.value = outer_frame_id;
339 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
340 gdb_assert (frame_id_p (fi->this_id.value));
341 fi->this_id.p = 1;
342 if (frame_debug)
343 {
344 fprintf_unfiltered (gdb_stdlog, "-> ");
345 fprint_frame_id (gdb_stdlog, fi->this_id.value);
346 fprintf_unfiltered (gdb_stdlog, " }\n");
347 }
348 }
349
350 frame_stash_add (fi);
351
352 return fi->this_id.value;
353 }
354
355 struct frame_id
356 get_stack_frame_id (struct frame_info *next_frame)
357 {
358 return get_frame_id (skip_inlined_frames (next_frame));
359 }
360
361 struct frame_id
362 frame_unwind_caller_id (struct frame_info *next_frame)
363 {
364 struct frame_info *this_frame;
365
366 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
367 the frame chain, leading to this function unintentionally
368 returning a null_frame_id (e.g., when a caller requests the frame
369 ID of "main()"s caller. */
370
371 next_frame = skip_inlined_frames (next_frame);
372 this_frame = get_prev_frame_1 (next_frame);
373 if (this_frame)
374 return get_frame_id (skip_inlined_frames (this_frame));
375 else
376 return null_frame_id;
377 }
378
379 const struct frame_id null_frame_id; /* All zeros. */
380 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
381
382 struct frame_id
383 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
384 CORE_ADDR special_addr)
385 {
386 struct frame_id id = null_frame_id;
387
388 id.stack_addr = stack_addr;
389 id.stack_addr_p = 1;
390 id.code_addr = code_addr;
391 id.code_addr_p = 1;
392 id.special_addr = special_addr;
393 id.special_addr_p = 1;
394 return id;
395 }
396
397 struct frame_id
398 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
399 {
400 struct frame_id id = null_frame_id;
401
402 id.stack_addr = stack_addr;
403 id.stack_addr_p = 1;
404 id.code_addr = code_addr;
405 id.code_addr_p = 1;
406 return id;
407 }
408
409 struct frame_id
410 frame_id_build_wild (CORE_ADDR stack_addr)
411 {
412 struct frame_id id = null_frame_id;
413
414 id.stack_addr = stack_addr;
415 id.stack_addr_p = 1;
416 return id;
417 }
418
419 int
420 frame_id_p (struct frame_id l)
421 {
422 int p;
423
424 /* The frame is valid iff it has a valid stack address. */
425 p = l.stack_addr_p;
426 /* outer_frame_id is also valid. */
427 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
428 p = 1;
429 if (frame_debug)
430 {
431 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
432 fprint_frame_id (gdb_stdlog, l);
433 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
434 }
435 return p;
436 }
437
438 int
439 frame_id_inlined_p (struct frame_id l)
440 {
441 if (!frame_id_p (l))
442 return 0;
443
444 return (l.inline_depth != 0);
445 }
446
447 int
448 frame_id_eq (struct frame_id l, struct frame_id r)
449 {
450 int eq;
451
452 if (!l.stack_addr_p && l.special_addr_p
453 && !r.stack_addr_p && r.special_addr_p)
454 /* The outermost frame marker is equal to itself. This is the
455 dodgy thing about outer_frame_id, since between execution steps
456 we might step into another function - from which we can't
457 unwind either. More thought required to get rid of
458 outer_frame_id. */
459 eq = 1;
460 else if (!l.stack_addr_p || !r.stack_addr_p)
461 /* Like a NaN, if either ID is invalid, the result is false.
462 Note that a frame ID is invalid iff it is the null frame ID. */
463 eq = 0;
464 else if (l.stack_addr != r.stack_addr)
465 /* If .stack addresses are different, the frames are different. */
466 eq = 0;
467 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
468 /* An invalid code addr is a wild card. If .code addresses are
469 different, the frames are different. */
470 eq = 0;
471 else if (l.special_addr_p && r.special_addr_p
472 && l.special_addr != r.special_addr)
473 /* An invalid special addr is a wild card (or unused). Otherwise
474 if special addresses are different, the frames are different. */
475 eq = 0;
476 else if (l.inline_depth != r.inline_depth)
477 /* If inline depths are different, the frames must be different. */
478 eq = 0;
479 else
480 /* Frames are equal. */
481 eq = 1;
482
483 if (frame_debug)
484 {
485 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
486 fprint_frame_id (gdb_stdlog, l);
487 fprintf_unfiltered (gdb_stdlog, ",r=");
488 fprint_frame_id (gdb_stdlog, r);
489 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
490 }
491 return eq;
492 }
493
494 /* Safety net to check whether frame ID L should be inner to
495 frame ID R, according to their stack addresses.
496
497 This method cannot be used to compare arbitrary frames, as the
498 ranges of valid stack addresses may be discontiguous (e.g. due
499 to sigaltstack).
500
501 However, it can be used as safety net to discover invalid frame
502 IDs in certain circumstances. Assuming that NEXT is the immediate
503 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
504
505 * The stack address of NEXT must be inner-than-or-equal to the stack
506 address of THIS.
507
508 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
509 error has occurred.
510
511 * If NEXT and THIS have different stack addresses, no other frame
512 in the frame chain may have a stack address in between.
513
514 Therefore, if frame_id_inner (TEST, THIS) holds, but
515 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
516 to a valid frame in the frame chain.
517
518 The sanity checks above cannot be performed when a SIGTRAMP frame
519 is involved, because signal handlers might be executed on a different
520 stack than the stack used by the routine that caused the signal
521 to be raised. This can happen for instance when a thread exceeds
522 its maximum stack size. In this case, certain compilers implement
523 a stack overflow strategy that cause the handler to be run on a
524 different stack. */
525
526 static int
527 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
528 {
529 int inner;
530
531 if (!l.stack_addr_p || !r.stack_addr_p)
532 /* Like NaN, any operation involving an invalid ID always fails. */
533 inner = 0;
534 else if (l.inline_depth > r.inline_depth
535 && l.stack_addr == r.stack_addr
536 && l.code_addr_p == r.code_addr_p
537 && l.special_addr_p == r.special_addr_p
538 && l.special_addr == r.special_addr)
539 {
540 /* Same function, different inlined functions. */
541 struct block *lb, *rb;
542
543 gdb_assert (l.code_addr_p && r.code_addr_p);
544
545 lb = block_for_pc (l.code_addr);
546 rb = block_for_pc (r.code_addr);
547
548 if (lb == NULL || rb == NULL)
549 /* Something's gone wrong. */
550 inner = 0;
551 else
552 /* This will return true if LB and RB are the same block, or
553 if the block with the smaller depth lexically encloses the
554 block with the greater depth. */
555 inner = contained_in (lb, rb);
556 }
557 else
558 /* Only return non-zero when strictly inner than. Note that, per
559 comment in "frame.h", there is some fuzz here. Frameless
560 functions are not strictly inner than (same .stack but
561 different .code and/or .special address). */
562 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
563 if (frame_debug)
564 {
565 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
566 fprint_frame_id (gdb_stdlog, l);
567 fprintf_unfiltered (gdb_stdlog, ",r=");
568 fprint_frame_id (gdb_stdlog, r);
569 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
570 }
571 return inner;
572 }
573
574 struct frame_info *
575 frame_find_by_id (struct frame_id id)
576 {
577 struct frame_info *frame, *prev_frame;
578
579 /* ZERO denotes the null frame, let the caller decide what to do
580 about it. Should it instead return get_current_frame()? */
581 if (!frame_id_p (id))
582 return NULL;
583
584 /* Try using the frame stash first. Finding it there removes the need
585 to perform the search by looping over all frames, which can be very
586 CPU-intensive if the number of frames is very high (the loop is O(n)
587 and get_prev_frame performs a series of checks that are relatively
588 expensive). This optimization is particularly useful when this function
589 is called from another function (such as value_fetch_lazy, case
590 VALUE_LVAL (val) == lval_register) which already loops over all frames,
591 making the overall behavior O(n^2). */
592 frame = frame_stash_find (id);
593 if (frame)
594 return frame;
595
596 for (frame = get_current_frame (); ; frame = prev_frame)
597 {
598 struct frame_id this = get_frame_id (frame);
599
600 if (frame_id_eq (id, this))
601 /* An exact match. */
602 return frame;
603
604 prev_frame = get_prev_frame (frame);
605 if (!prev_frame)
606 return NULL;
607
608 /* As a safety net to avoid unnecessary backtracing while trying
609 to find an invalid ID, we check for a common situation where
610 we can detect from comparing stack addresses that no other
611 frame in the current frame chain can have this ID. See the
612 comment at frame_id_inner for details. */
613 if (get_frame_type (frame) == NORMAL_FRAME
614 && !frame_id_inner (get_frame_arch (frame), id, this)
615 && frame_id_inner (get_frame_arch (prev_frame), id,
616 get_frame_id (prev_frame)))
617 return NULL;
618 }
619 return NULL;
620 }
621
622 static int
623 frame_unwind_pc_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
624 {
625 if (!this_frame->prev_pc.p)
626 {
627 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
628 {
629 volatile struct gdb_exception ex;
630 struct gdbarch *prev_gdbarch;
631 CORE_ADDR pc = 0;
632
633 /* The right way. The `pure' way. The one true way. This
634 method depends solely on the register-unwind code to
635 determine the value of registers in THIS frame, and hence
636 the value of this frame's PC (resume address). A typical
637 implementation is no more than:
638
639 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
640 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
641
642 Note: this method is very heavily dependent on a correct
643 register-unwind implementation, it pays to fix that
644 method first; this method is frame type agnostic, since
645 it only deals with register values, it works with any
646 frame. This is all in stark contrast to the old
647 FRAME_SAVED_PC which would try to directly handle all the
648 different ways that a PC could be unwound. */
649 prev_gdbarch = frame_unwind_arch (this_frame);
650
651 TRY_CATCH (ex, RETURN_MASK_ERROR)
652 {
653 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
654 }
655 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
656 {
657 this_frame->prev_pc.p = -1;
658
659 if (frame_debug)
660 fprintf_unfiltered (gdb_stdlog,
661 "{ frame_unwind_pc (this_frame=%d)"
662 " -> <unavailable> }\n",
663 this_frame->level);
664 }
665 else if (ex.reason < 0)
666 {
667 throw_exception (ex);
668 }
669 else
670 {
671 this_frame->prev_pc.value = pc;
672 this_frame->prev_pc.p = 1;
673 if (frame_debug)
674 fprintf_unfiltered (gdb_stdlog,
675 "{ frame_unwind_pc (this_frame=%d) "
676 "-> %s }\n",
677 this_frame->level,
678 hex_string (this_frame->prev_pc.value));
679 }
680 }
681 else
682 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
683 }
684 if (this_frame->prev_pc.p < 0)
685 {
686 *pc = -1;
687 return 0;
688 }
689 else
690 {
691 *pc = this_frame->prev_pc.value;
692 return 1;
693 }
694 }
695
696 static CORE_ADDR
697 frame_unwind_pc (struct frame_info *this_frame)
698 {
699 CORE_ADDR pc;
700
701 if (!frame_unwind_pc_if_available (this_frame, &pc))
702 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
703 else
704 return pc;
705 }
706
707 CORE_ADDR
708 frame_unwind_caller_pc (struct frame_info *this_frame)
709 {
710 return frame_unwind_pc (skip_inlined_frames (this_frame));
711 }
712
713 int
714 frame_unwind_caller_pc_if_available (struct frame_info *this_frame,
715 CORE_ADDR *pc)
716 {
717 return frame_unwind_pc_if_available (skip_inlined_frames (this_frame), pc);
718 }
719
720 int
721 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
722 {
723 struct frame_info *next_frame = this_frame->next;
724
725 if (!next_frame->prev_func.p)
726 {
727 CORE_ADDR addr_in_block;
728
729 /* Make certain that this, and not the adjacent, function is
730 found. */
731 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
732 {
733 next_frame->prev_func.p = -1;
734 if (frame_debug)
735 fprintf_unfiltered (gdb_stdlog,
736 "{ get_frame_func (this_frame=%d)"
737 " -> unavailable }\n",
738 this_frame->level);
739 }
740 else
741 {
742 next_frame->prev_func.p = 1;
743 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
744 if (frame_debug)
745 fprintf_unfiltered (gdb_stdlog,
746 "{ get_frame_func (this_frame=%d) -> %s }\n",
747 this_frame->level,
748 hex_string (next_frame->prev_func.addr));
749 }
750 }
751
752 if (next_frame->prev_func.p < 0)
753 {
754 *pc = -1;
755 return 0;
756 }
757 else
758 {
759 *pc = next_frame->prev_func.addr;
760 return 1;
761 }
762 }
763
764 CORE_ADDR
765 get_frame_func (struct frame_info *this_frame)
766 {
767 CORE_ADDR pc;
768
769 if (!get_frame_func_if_available (this_frame, &pc))
770 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
771
772 return pc;
773 }
774
775 static enum register_status
776 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
777 {
778 if (!frame_register_read (src, regnum, buf))
779 return REG_UNAVAILABLE;
780 else
781 return REG_VALID;
782 }
783
784 struct regcache *
785 frame_save_as_regcache (struct frame_info *this_frame)
786 {
787 struct address_space *aspace = get_frame_address_space (this_frame);
788 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
789 aspace);
790 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
791
792 regcache_save (regcache, do_frame_register_read, this_frame);
793 discard_cleanups (cleanups);
794 return regcache;
795 }
796
797 void
798 frame_pop (struct frame_info *this_frame)
799 {
800 struct frame_info *prev_frame;
801 struct regcache *scratch;
802 struct cleanup *cleanups;
803
804 if (get_frame_type (this_frame) == DUMMY_FRAME)
805 {
806 /* Popping a dummy frame involves restoring more than just registers.
807 dummy_frame_pop does all the work. */
808 dummy_frame_pop (get_frame_id (this_frame));
809 return;
810 }
811
812 /* Ensure that we have a frame to pop to. */
813 prev_frame = get_prev_frame_1 (this_frame);
814
815 if (!prev_frame)
816 error (_("Cannot pop the initial frame."));
817
818 /* Make a copy of all the register values unwound from this frame.
819 Save them in a scratch buffer so that there isn't a race between
820 trying to extract the old values from the current regcache while
821 at the same time writing new values into that same cache. */
822 scratch = frame_save_as_regcache (prev_frame);
823 cleanups = make_cleanup_regcache_xfree (scratch);
824
825 /* FIXME: cagney/2003-03-16: It should be possible to tell the
826 target's register cache that it is about to be hit with a burst
827 register transfer and that the sequence of register writes should
828 be batched. The pair target_prepare_to_store() and
829 target_store_registers() kind of suggest this functionality.
830 Unfortunately, they don't implement it. Their lack of a formal
831 definition can lead to targets writing back bogus values
832 (arguably a bug in the target code mind). */
833 /* Now copy those saved registers into the current regcache.
834 Here, regcache_cpy() calls regcache_restore(). */
835 regcache_cpy (get_current_regcache (), scratch);
836 do_cleanups (cleanups);
837
838 /* We've made right mess of GDB's local state, just discard
839 everything. */
840 reinit_frame_cache ();
841 }
842
843 void
844 frame_register_unwind (struct frame_info *frame, int regnum,
845 int *optimizedp, int *unavailablep,
846 enum lval_type *lvalp, CORE_ADDR *addrp,
847 int *realnump, gdb_byte *bufferp)
848 {
849 struct value *value;
850
851 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
852 that the value proper does not need to be fetched. */
853 gdb_assert (optimizedp != NULL);
854 gdb_assert (lvalp != NULL);
855 gdb_assert (addrp != NULL);
856 gdb_assert (realnump != NULL);
857 /* gdb_assert (bufferp != NULL); */
858
859 value = frame_unwind_register_value (frame, regnum);
860
861 gdb_assert (value != NULL);
862
863 *optimizedp = value_optimized_out (value);
864 *unavailablep = !value_entirely_available (value);
865 *lvalp = VALUE_LVAL (value);
866 *addrp = value_address (value);
867 *realnump = VALUE_REGNUM (value);
868
869 if (bufferp)
870 {
871 if (!*optimizedp && !*unavailablep)
872 memcpy (bufferp, value_contents_all (value),
873 TYPE_LENGTH (value_type (value)));
874 else
875 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
876 }
877
878 /* Dispose of the new value. This prevents watchpoints from
879 trying to watch the saved frame pointer. */
880 release_value (value);
881 value_free (value);
882 }
883
884 void
885 frame_register (struct frame_info *frame, int regnum,
886 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
887 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
888 {
889 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
890 that the value proper does not need to be fetched. */
891 gdb_assert (optimizedp != NULL);
892 gdb_assert (lvalp != NULL);
893 gdb_assert (addrp != NULL);
894 gdb_assert (realnump != NULL);
895 /* gdb_assert (bufferp != NULL); */
896
897 /* Obtain the register value by unwinding the register from the next
898 (more inner frame). */
899 gdb_assert (frame != NULL && frame->next != NULL);
900 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
901 lvalp, addrp, realnump, bufferp);
902 }
903
904 void
905 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
906 {
907 int optimized;
908 int unavailable;
909 CORE_ADDR addr;
910 int realnum;
911 enum lval_type lval;
912
913 frame_register_unwind (frame, regnum, &optimized, &unavailable,
914 &lval, &addr, &realnum, buf);
915 }
916
917 void
918 get_frame_register (struct frame_info *frame,
919 int regnum, gdb_byte *buf)
920 {
921 frame_unwind_register (frame->next, regnum, buf);
922 }
923
924 struct value *
925 frame_unwind_register_value (struct frame_info *frame, int regnum)
926 {
927 struct gdbarch *gdbarch;
928 struct value *value;
929
930 gdb_assert (frame != NULL);
931 gdbarch = frame_unwind_arch (frame);
932
933 if (frame_debug)
934 {
935 fprintf_unfiltered (gdb_stdlog,
936 "{ frame_unwind_register_value "
937 "(frame=%d,regnum=%d(%s),...) ",
938 frame->level, regnum,
939 user_reg_map_regnum_to_name (gdbarch, regnum));
940 }
941
942 /* Find the unwinder. */
943 if (frame->unwind == NULL)
944 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
945
946 /* Ask this frame to unwind its register. */
947 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
948
949 if (frame_debug)
950 {
951 fprintf_unfiltered (gdb_stdlog, "->");
952 if (value_optimized_out (value))
953 fprintf_unfiltered (gdb_stdlog, " optimized out");
954 else
955 {
956 if (VALUE_LVAL (value) == lval_register)
957 fprintf_unfiltered (gdb_stdlog, " register=%d",
958 VALUE_REGNUM (value));
959 else if (VALUE_LVAL (value) == lval_memory)
960 fprintf_unfiltered (gdb_stdlog, " address=%s",
961 paddress (gdbarch,
962 value_address (value)));
963 else
964 fprintf_unfiltered (gdb_stdlog, " computed");
965
966 if (value_lazy (value))
967 fprintf_unfiltered (gdb_stdlog, " lazy");
968 else
969 {
970 int i;
971 const gdb_byte *buf = value_contents (value);
972
973 fprintf_unfiltered (gdb_stdlog, " bytes=");
974 fprintf_unfiltered (gdb_stdlog, "[");
975 for (i = 0; i < register_size (gdbarch, regnum); i++)
976 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
977 fprintf_unfiltered (gdb_stdlog, "]");
978 }
979 }
980
981 fprintf_unfiltered (gdb_stdlog, " }\n");
982 }
983
984 return value;
985 }
986
987 struct value *
988 get_frame_register_value (struct frame_info *frame, int regnum)
989 {
990 return frame_unwind_register_value (frame->next, regnum);
991 }
992
993 LONGEST
994 frame_unwind_register_signed (struct frame_info *frame, int regnum)
995 {
996 struct gdbarch *gdbarch = frame_unwind_arch (frame);
997 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
998 int size = register_size (gdbarch, regnum);
999 gdb_byte buf[MAX_REGISTER_SIZE];
1000
1001 frame_unwind_register (frame, regnum, buf);
1002 return extract_signed_integer (buf, size, byte_order);
1003 }
1004
1005 LONGEST
1006 get_frame_register_signed (struct frame_info *frame, int regnum)
1007 {
1008 return frame_unwind_register_signed (frame->next, regnum);
1009 }
1010
1011 ULONGEST
1012 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1013 {
1014 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1015 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1016 int size = register_size (gdbarch, regnum);
1017 gdb_byte buf[MAX_REGISTER_SIZE];
1018
1019 frame_unwind_register (frame, regnum, buf);
1020 return extract_unsigned_integer (buf, size, byte_order);
1021 }
1022
1023 ULONGEST
1024 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1025 {
1026 return frame_unwind_register_unsigned (frame->next, regnum);
1027 }
1028
1029 void
1030 put_frame_register (struct frame_info *frame, int regnum,
1031 const gdb_byte *buf)
1032 {
1033 struct gdbarch *gdbarch = get_frame_arch (frame);
1034 int realnum;
1035 int optim;
1036 int unavail;
1037 enum lval_type lval;
1038 CORE_ADDR addr;
1039
1040 frame_register (frame, regnum, &optim, &unavail,
1041 &lval, &addr, &realnum, NULL);
1042 if (optim)
1043 error (_("Attempt to assign to a value that was optimized out."));
1044 switch (lval)
1045 {
1046 case lval_memory:
1047 {
1048 /* FIXME: write_memory doesn't yet take constant buffers.
1049 Arrrg! */
1050 gdb_byte tmp[MAX_REGISTER_SIZE];
1051
1052 memcpy (tmp, buf, register_size (gdbarch, regnum));
1053 write_memory (addr, tmp, register_size (gdbarch, regnum));
1054 break;
1055 }
1056 case lval_register:
1057 regcache_cooked_write (get_current_regcache (), realnum, buf);
1058 break;
1059 default:
1060 error (_("Attempt to assign to an unmodifiable value."));
1061 }
1062 }
1063
1064 /* frame_register_read ()
1065
1066 Find and return the value of REGNUM for the specified stack frame.
1067 The number of bytes copied is REGISTER_SIZE (REGNUM).
1068
1069 Returns 0 if the register value could not be found. */
1070
1071 int
1072 frame_register_read (struct frame_info *frame, int regnum,
1073 gdb_byte *myaddr)
1074 {
1075 int optimized;
1076 int unavailable;
1077 enum lval_type lval;
1078 CORE_ADDR addr;
1079 int realnum;
1080
1081 frame_register (frame, regnum, &optimized, &unavailable,
1082 &lval, &addr, &realnum, myaddr);
1083
1084 return !optimized && !unavailable;
1085 }
1086
1087 int
1088 get_frame_register_bytes (struct frame_info *frame, int regnum,
1089 CORE_ADDR offset, int len, gdb_byte *myaddr,
1090 int *optimizedp, int *unavailablep)
1091 {
1092 struct gdbarch *gdbarch = get_frame_arch (frame);
1093 int i;
1094 int maxsize;
1095 int numregs;
1096
1097 /* Skip registers wholly inside of OFFSET. */
1098 while (offset >= register_size (gdbarch, regnum))
1099 {
1100 offset -= register_size (gdbarch, regnum);
1101 regnum++;
1102 }
1103
1104 /* Ensure that we will not read beyond the end of the register file.
1105 This can only ever happen if the debug information is bad. */
1106 maxsize = -offset;
1107 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1108 for (i = regnum; i < numregs; i++)
1109 {
1110 int thissize = register_size (gdbarch, i);
1111
1112 if (thissize == 0)
1113 break; /* This register is not available on this architecture. */
1114 maxsize += thissize;
1115 }
1116 if (len > maxsize)
1117 error (_("Bad debug information detected: "
1118 "Attempt to read %d bytes from registers."), len);
1119
1120 /* Copy the data. */
1121 while (len > 0)
1122 {
1123 int curr_len = register_size (gdbarch, regnum) - offset;
1124
1125 if (curr_len > len)
1126 curr_len = len;
1127
1128 if (curr_len == register_size (gdbarch, regnum))
1129 {
1130 enum lval_type lval;
1131 CORE_ADDR addr;
1132 int realnum;
1133
1134 frame_register (frame, regnum, optimizedp, unavailablep,
1135 &lval, &addr, &realnum, myaddr);
1136 if (*optimizedp || *unavailablep)
1137 return 0;
1138 }
1139 else
1140 {
1141 gdb_byte buf[MAX_REGISTER_SIZE];
1142 enum lval_type lval;
1143 CORE_ADDR addr;
1144 int realnum;
1145
1146 frame_register (frame, regnum, optimizedp, unavailablep,
1147 &lval, &addr, &realnum, buf);
1148 if (*optimizedp || *unavailablep)
1149 return 0;
1150 memcpy (myaddr, buf + offset, curr_len);
1151 }
1152
1153 myaddr += curr_len;
1154 len -= curr_len;
1155 offset = 0;
1156 regnum++;
1157 }
1158
1159 *optimizedp = 0;
1160 *unavailablep = 0;
1161 return 1;
1162 }
1163
1164 void
1165 put_frame_register_bytes (struct frame_info *frame, int regnum,
1166 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1167 {
1168 struct gdbarch *gdbarch = get_frame_arch (frame);
1169
1170 /* Skip registers wholly inside of OFFSET. */
1171 while (offset >= register_size (gdbarch, regnum))
1172 {
1173 offset -= register_size (gdbarch, regnum);
1174 regnum++;
1175 }
1176
1177 /* Copy the data. */
1178 while (len > 0)
1179 {
1180 int curr_len = register_size (gdbarch, regnum) - offset;
1181
1182 if (curr_len > len)
1183 curr_len = len;
1184
1185 if (curr_len == register_size (gdbarch, regnum))
1186 {
1187 put_frame_register (frame, regnum, myaddr);
1188 }
1189 else
1190 {
1191 gdb_byte buf[MAX_REGISTER_SIZE];
1192
1193 frame_register_read (frame, regnum, buf);
1194 memcpy (buf + offset, myaddr, curr_len);
1195 put_frame_register (frame, regnum, buf);
1196 }
1197
1198 myaddr += curr_len;
1199 len -= curr_len;
1200 offset = 0;
1201 regnum++;
1202 }
1203 }
1204
1205 /* Create a sentinel frame. */
1206
1207 static struct frame_info *
1208 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1209 {
1210 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1211
1212 frame->level = -1;
1213 frame->pspace = pspace;
1214 frame->aspace = get_regcache_aspace (regcache);
1215 /* Explicitly initialize the sentinel frame's cache. Provide it
1216 with the underlying regcache. In the future additional
1217 information, such as the frame's thread will be added. */
1218 frame->prologue_cache = sentinel_frame_cache (regcache);
1219 /* For the moment there is only one sentinel frame implementation. */
1220 frame->unwind = &sentinel_frame_unwind;
1221 /* Link this frame back to itself. The frame is self referential
1222 (the unwound PC is the same as the pc), so make it so. */
1223 frame->next = frame;
1224 /* Make the sentinel frame's ID valid, but invalid. That way all
1225 comparisons with it should fail. */
1226 frame->this_id.p = 1;
1227 frame->this_id.value = null_frame_id;
1228 if (frame_debug)
1229 {
1230 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1231 fprint_frame (gdb_stdlog, frame);
1232 fprintf_unfiltered (gdb_stdlog, " }\n");
1233 }
1234 return frame;
1235 }
1236
1237 /* Info about the innermost stack frame (contents of FP register). */
1238
1239 static struct frame_info *current_frame;
1240
1241 /* Cache for frame addresses already read by gdb. Valid only while
1242 inferior is stopped. Control variables for the frame cache should
1243 be local to this module. */
1244
1245 static struct obstack frame_cache_obstack;
1246
1247 void *
1248 frame_obstack_zalloc (unsigned long size)
1249 {
1250 void *data = obstack_alloc (&frame_cache_obstack, size);
1251
1252 memset (data, 0, size);
1253 return data;
1254 }
1255
1256 /* Return the innermost (currently executing) stack frame. This is
1257 split into two functions. The function unwind_to_current_frame()
1258 is wrapped in catch exceptions so that, even when the unwind of the
1259 sentinel frame fails, the function still returns a stack frame. */
1260
1261 static int
1262 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1263 {
1264 struct frame_info *frame = get_prev_frame (args);
1265
1266 /* A sentinel frame can fail to unwind, e.g., because its PC value
1267 lands in somewhere like start. */
1268 if (frame == NULL)
1269 return 1;
1270 current_frame = frame;
1271 return 0;
1272 }
1273
1274 struct frame_info *
1275 get_current_frame (void)
1276 {
1277 /* First check, and report, the lack of registers. Having GDB
1278 report "No stack!" or "No memory" when the target doesn't even
1279 have registers is very confusing. Besides, "printcmd.exp"
1280 explicitly checks that ``print $pc'' with no registers prints "No
1281 registers". */
1282 if (!target_has_registers)
1283 error (_("No registers."));
1284 if (!target_has_stack)
1285 error (_("No stack."));
1286 if (!target_has_memory)
1287 error (_("No memory."));
1288 /* Traceframes are effectively a substitute for the live inferior. */
1289 if (get_traceframe_number () < 0)
1290 {
1291 if (ptid_equal (inferior_ptid, null_ptid))
1292 error (_("No selected thread."));
1293 if (is_exited (inferior_ptid))
1294 error (_("Invalid selected thread."));
1295 if (is_executing (inferior_ptid))
1296 error (_("Target is executing."));
1297 }
1298
1299 if (current_frame == NULL)
1300 {
1301 struct frame_info *sentinel_frame =
1302 create_sentinel_frame (current_program_space, get_current_regcache ());
1303 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1304 RETURN_MASK_ERROR) != 0)
1305 {
1306 /* Oops! Fake a current frame? Is this useful? It has a PC
1307 of zero, for instance. */
1308 current_frame = sentinel_frame;
1309 }
1310 }
1311 return current_frame;
1312 }
1313
1314 /* The "selected" stack frame is used by default for local and arg
1315 access. May be zero, for no selected frame. */
1316
1317 static struct frame_info *selected_frame;
1318
1319 int
1320 has_stack_frames (void)
1321 {
1322 if (!target_has_registers || !target_has_stack || !target_has_memory)
1323 return 0;
1324
1325 /* No current inferior, no frame. */
1326 if (ptid_equal (inferior_ptid, null_ptid))
1327 return 0;
1328
1329 /* Don't try to read from a dead thread. */
1330 if (is_exited (inferior_ptid))
1331 return 0;
1332
1333 /* ... or from a spinning thread. */
1334 if (is_executing (inferior_ptid))
1335 return 0;
1336
1337 return 1;
1338 }
1339
1340 /* Return the selected frame. Always non-NULL (unless there isn't an
1341 inferior sufficient for creating a frame) in which case an error is
1342 thrown. */
1343
1344 struct frame_info *
1345 get_selected_frame (const char *message)
1346 {
1347 if (selected_frame == NULL)
1348 {
1349 if (message != NULL && !has_stack_frames ())
1350 error (("%s"), message);
1351 /* Hey! Don't trust this. It should really be re-finding the
1352 last selected frame of the currently selected thread. This,
1353 though, is better than nothing. */
1354 select_frame (get_current_frame ());
1355 }
1356 /* There is always a frame. */
1357 gdb_assert (selected_frame != NULL);
1358 return selected_frame;
1359 }
1360
1361 /* If there is a selected frame, return it. Otherwise, return NULL. */
1362
1363 struct frame_info *
1364 get_selected_frame_if_set (void)
1365 {
1366 return selected_frame;
1367 }
1368
1369 /* This is a variant of get_selected_frame() which can be called when
1370 the inferior does not have a frame; in that case it will return
1371 NULL instead of calling error(). */
1372
1373 struct frame_info *
1374 deprecated_safe_get_selected_frame (void)
1375 {
1376 if (!has_stack_frames ())
1377 return NULL;
1378 return get_selected_frame (NULL);
1379 }
1380
1381 /* Select frame FI (or NULL - to invalidate the current frame). */
1382
1383 void
1384 select_frame (struct frame_info *fi)
1385 {
1386 selected_frame = fi;
1387 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1388 frame is being invalidated. */
1389 if (deprecated_selected_frame_level_changed_hook)
1390 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1391
1392 /* FIXME: kseitz/2002-08-28: It would be nice to call
1393 selected_frame_level_changed_event() right here, but due to limitations
1394 in the current interfaces, we would end up flooding UIs with events
1395 because select_frame() is used extensively internally.
1396
1397 Once we have frame-parameterized frame (and frame-related) commands,
1398 the event notification can be moved here, since this function will only
1399 be called when the user's selected frame is being changed. */
1400
1401 /* Ensure that symbols for this frame are read in. Also, determine the
1402 source language of this frame, and switch to it if desired. */
1403 if (fi)
1404 {
1405 CORE_ADDR pc;
1406
1407 /* We retrieve the frame's symtab by using the frame PC.
1408 However we cannot use the frame PC as-is, because it usually
1409 points to the instruction following the "call", which is
1410 sometimes the first instruction of another function. So we
1411 rely on get_frame_address_in_block() which provides us with a
1412 PC which is guaranteed to be inside the frame's code
1413 block. */
1414 if (get_frame_address_in_block_if_available (fi, &pc))
1415 {
1416 struct symtab *s = find_pc_symtab (pc);
1417
1418 if (s
1419 && s->language != current_language->la_language
1420 && s->language != language_unknown
1421 && language_mode == language_mode_auto)
1422 set_language (s->language);
1423 }
1424 }
1425 }
1426
1427 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1428 Always returns a non-NULL value. */
1429
1430 struct frame_info *
1431 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1432 {
1433 struct frame_info *fi;
1434
1435 if (frame_debug)
1436 {
1437 fprintf_unfiltered (gdb_stdlog,
1438 "{ create_new_frame (addr=%s, pc=%s) ",
1439 hex_string (addr), hex_string (pc));
1440 }
1441
1442 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1443
1444 fi->next = create_sentinel_frame (current_program_space,
1445 get_current_regcache ());
1446
1447 /* Set/update this frame's cached PC value, found in the next frame.
1448 Do this before looking for this frame's unwinder. A sniffer is
1449 very likely to read this, and the corresponding unwinder is
1450 entitled to rely that the PC doesn't magically change. */
1451 fi->next->prev_pc.value = pc;
1452 fi->next->prev_pc.p = 1;
1453
1454 /* We currently assume that frame chain's can't cross spaces. */
1455 fi->pspace = fi->next->pspace;
1456 fi->aspace = fi->next->aspace;
1457
1458 /* Select/initialize both the unwind function and the frame's type
1459 based on the PC. */
1460 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1461
1462 fi->this_id.p = 1;
1463 fi->this_id.value = frame_id_build (addr, pc);
1464
1465 if (frame_debug)
1466 {
1467 fprintf_unfiltered (gdb_stdlog, "-> ");
1468 fprint_frame (gdb_stdlog, fi);
1469 fprintf_unfiltered (gdb_stdlog, " }\n");
1470 }
1471
1472 return fi;
1473 }
1474
1475 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1476 innermost frame). Be careful to not fall off the bottom of the
1477 frame chain and onto the sentinel frame. */
1478
1479 struct frame_info *
1480 get_next_frame (struct frame_info *this_frame)
1481 {
1482 if (this_frame->level > 0)
1483 return this_frame->next;
1484 else
1485 return NULL;
1486 }
1487
1488 /* Observer for the target_changed event. */
1489
1490 static void
1491 frame_observer_target_changed (struct target_ops *target)
1492 {
1493 reinit_frame_cache ();
1494 }
1495
1496 /* Flush the entire frame cache. */
1497
1498 void
1499 reinit_frame_cache (void)
1500 {
1501 struct frame_info *fi;
1502
1503 /* Tear down all frame caches. */
1504 for (fi = current_frame; fi != NULL; fi = fi->prev)
1505 {
1506 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1507 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1508 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1509 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1510 }
1511
1512 /* Since we can't really be sure what the first object allocated was. */
1513 obstack_free (&frame_cache_obstack, 0);
1514 obstack_init (&frame_cache_obstack);
1515
1516 if (current_frame != NULL)
1517 annotate_frames_invalid ();
1518
1519 current_frame = NULL; /* Invalidate cache */
1520 select_frame (NULL);
1521 frame_stash_invalidate ();
1522 if (frame_debug)
1523 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1524 }
1525
1526 /* Find where a register is saved (in memory or another register).
1527 The result of frame_register_unwind is just where it is saved
1528 relative to this particular frame. */
1529
1530 static void
1531 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1532 int *optimizedp, enum lval_type *lvalp,
1533 CORE_ADDR *addrp, int *realnump)
1534 {
1535 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1536
1537 while (this_frame != NULL)
1538 {
1539 int unavailable;
1540
1541 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1542 lvalp, addrp, realnump, NULL);
1543
1544 if (*optimizedp)
1545 break;
1546
1547 if (*lvalp != lval_register)
1548 break;
1549
1550 regnum = *realnump;
1551 this_frame = get_next_frame (this_frame);
1552 }
1553 }
1554
1555 /* Return a "struct frame_info" corresponding to the frame that called
1556 THIS_FRAME. Returns NULL if there is no such frame.
1557
1558 Unlike get_prev_frame, this function always tries to unwind the
1559 frame. */
1560
1561 static struct frame_info *
1562 get_prev_frame_1 (struct frame_info *this_frame)
1563 {
1564 struct frame_id this_id;
1565 struct gdbarch *gdbarch;
1566
1567 gdb_assert (this_frame != NULL);
1568 gdbarch = get_frame_arch (this_frame);
1569
1570 if (frame_debug)
1571 {
1572 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1573 if (this_frame != NULL)
1574 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1575 else
1576 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1577 fprintf_unfiltered (gdb_stdlog, ") ");
1578 }
1579
1580 /* Only try to do the unwind once. */
1581 if (this_frame->prev_p)
1582 {
1583 if (frame_debug)
1584 {
1585 fprintf_unfiltered (gdb_stdlog, "-> ");
1586 fprint_frame (gdb_stdlog, this_frame->prev);
1587 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1588 }
1589 return this_frame->prev;
1590 }
1591
1592 /* If the frame unwinder hasn't been selected yet, we must do so
1593 before setting prev_p; otherwise the check for misbehaved
1594 sniffers will think that this frame's sniffer tried to unwind
1595 further (see frame_cleanup_after_sniffer). */
1596 if (this_frame->unwind == NULL)
1597 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1598
1599 this_frame->prev_p = 1;
1600 this_frame->stop_reason = UNWIND_NO_REASON;
1601
1602 /* If we are unwinding from an inline frame, all of the below tests
1603 were already performed when we unwound from the next non-inline
1604 frame. We must skip them, since we can not get THIS_FRAME's ID
1605 until we have unwound all the way down to the previous non-inline
1606 frame. */
1607 if (get_frame_type (this_frame) == INLINE_FRAME)
1608 return get_prev_frame_raw (this_frame);
1609
1610 /* Check that this frame's ID was valid. If it wasn't, don't try to
1611 unwind to the prev frame. Be careful to not apply this test to
1612 the sentinel frame. */
1613 this_id = get_frame_id (this_frame);
1614 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1615 {
1616 if (frame_debug)
1617 {
1618 fprintf_unfiltered (gdb_stdlog, "-> ");
1619 fprint_frame (gdb_stdlog, NULL);
1620 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1621 }
1622 this_frame->stop_reason = UNWIND_NULL_ID;
1623 return NULL;
1624 }
1625
1626 /* Check that this frame's ID isn't inner to (younger, below, next)
1627 the next frame. This happens when a frame unwind goes backwards.
1628 This check is valid only if this frame and the next frame are NORMAL.
1629 See the comment at frame_id_inner for details. */
1630 if (get_frame_type (this_frame) == NORMAL_FRAME
1631 && this_frame->next->unwind->type == NORMAL_FRAME
1632 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1633 get_frame_id (this_frame->next)))
1634 {
1635 CORE_ADDR this_pc_in_block;
1636 struct minimal_symbol *morestack_msym;
1637 const char *morestack_name = NULL;
1638
1639 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1640 this_pc_in_block = get_frame_address_in_block (this_frame);
1641 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block);
1642 if (morestack_msym)
1643 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1644 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1645 {
1646 if (frame_debug)
1647 {
1648 fprintf_unfiltered (gdb_stdlog, "-> ");
1649 fprint_frame (gdb_stdlog, NULL);
1650 fprintf_unfiltered (gdb_stdlog,
1651 " // this frame ID is inner }\n");
1652 }
1653 this_frame->stop_reason = UNWIND_INNER_ID;
1654 return NULL;
1655 }
1656 }
1657
1658 /* Check that this and the next frame are not identical. If they
1659 are, there is most likely a stack cycle. As with the inner-than
1660 test above, avoid comparing the inner-most and sentinel frames. */
1661 if (this_frame->level > 0
1662 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1663 {
1664 if (frame_debug)
1665 {
1666 fprintf_unfiltered (gdb_stdlog, "-> ");
1667 fprint_frame (gdb_stdlog, NULL);
1668 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1669 }
1670 this_frame->stop_reason = UNWIND_SAME_ID;
1671 return NULL;
1672 }
1673
1674 /* Check that this and the next frame do not unwind the PC register
1675 to the same memory location. If they do, then even though they
1676 have different frame IDs, the new frame will be bogus; two
1677 functions can't share a register save slot for the PC. This can
1678 happen when the prologue analyzer finds a stack adjustment, but
1679 no PC save.
1680
1681 This check does assume that the "PC register" is roughly a
1682 traditional PC, even if the gdbarch_unwind_pc method adjusts
1683 it (we do not rely on the value, only on the unwound PC being
1684 dependent on this value). A potential improvement would be
1685 to have the frame prev_pc method and the gdbarch unwind_pc
1686 method set the same lval and location information as
1687 frame_register_unwind. */
1688 if (this_frame->level > 0
1689 && gdbarch_pc_regnum (gdbarch) >= 0
1690 && get_frame_type (this_frame) == NORMAL_FRAME
1691 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1692 || get_frame_type (this_frame->next) == INLINE_FRAME))
1693 {
1694 int optimized, realnum, nrealnum;
1695 enum lval_type lval, nlval;
1696 CORE_ADDR addr, naddr;
1697
1698 frame_register_unwind_location (this_frame,
1699 gdbarch_pc_regnum (gdbarch),
1700 &optimized, &lval, &addr, &realnum);
1701 frame_register_unwind_location (get_next_frame (this_frame),
1702 gdbarch_pc_regnum (gdbarch),
1703 &optimized, &nlval, &naddr, &nrealnum);
1704
1705 if ((lval == lval_memory && lval == nlval && addr == naddr)
1706 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1707 {
1708 if (frame_debug)
1709 {
1710 fprintf_unfiltered (gdb_stdlog, "-> ");
1711 fprint_frame (gdb_stdlog, NULL);
1712 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1713 }
1714
1715 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1716 this_frame->prev = NULL;
1717 return NULL;
1718 }
1719 }
1720
1721 return get_prev_frame_raw (this_frame);
1722 }
1723
1724 /* Construct a new "struct frame_info" and link it previous to
1725 this_frame. */
1726
1727 static struct frame_info *
1728 get_prev_frame_raw (struct frame_info *this_frame)
1729 {
1730 struct frame_info *prev_frame;
1731
1732 /* Allocate the new frame but do not wire it in to the frame chain.
1733 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1734 frame->next to pull some fancy tricks (of course such code is, by
1735 definition, recursive). Try to prevent it.
1736
1737 There is no reason to worry about memory leaks, should the
1738 remainder of the function fail. The allocated memory will be
1739 quickly reclaimed when the frame cache is flushed, and the `we've
1740 been here before' check above will stop repeated memory
1741 allocation calls. */
1742 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1743 prev_frame->level = this_frame->level + 1;
1744
1745 /* For now, assume we don't have frame chains crossing address
1746 spaces. */
1747 prev_frame->pspace = this_frame->pspace;
1748 prev_frame->aspace = this_frame->aspace;
1749
1750 /* Don't yet compute ->unwind (and hence ->type). It is computed
1751 on-demand in get_frame_type, frame_register_unwind, and
1752 get_frame_id. */
1753
1754 /* Don't yet compute the frame's ID. It is computed on-demand by
1755 get_frame_id(). */
1756
1757 /* The unwound frame ID is validate at the start of this function,
1758 as part of the logic to decide if that frame should be further
1759 unwound, and not here while the prev frame is being created.
1760 Doing this makes it possible for the user to examine a frame that
1761 has an invalid frame ID.
1762
1763 Some very old VAX code noted: [...] For the sake of argument,
1764 suppose that the stack is somewhat trashed (which is one reason
1765 that "info frame" exists). So, return 0 (indicating we don't
1766 know the address of the arglist) if we don't know what frame this
1767 frame calls. */
1768
1769 /* Link it in. */
1770 this_frame->prev = prev_frame;
1771 prev_frame->next = this_frame;
1772
1773 if (frame_debug)
1774 {
1775 fprintf_unfiltered (gdb_stdlog, "-> ");
1776 fprint_frame (gdb_stdlog, prev_frame);
1777 fprintf_unfiltered (gdb_stdlog, " }\n");
1778 }
1779
1780 return prev_frame;
1781 }
1782
1783 /* Debug routine to print a NULL frame being returned. */
1784
1785 static void
1786 frame_debug_got_null_frame (struct frame_info *this_frame,
1787 const char *reason)
1788 {
1789 if (frame_debug)
1790 {
1791 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1792 if (this_frame != NULL)
1793 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1794 else
1795 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1796 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1797 }
1798 }
1799
1800 /* Is this (non-sentinel) frame in the "main"() function? */
1801
1802 static int
1803 inside_main_func (struct frame_info *this_frame)
1804 {
1805 struct minimal_symbol *msymbol;
1806 CORE_ADDR maddr;
1807
1808 if (symfile_objfile == 0)
1809 return 0;
1810 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1811 if (msymbol == NULL)
1812 return 0;
1813 /* Make certain that the code, and not descriptor, address is
1814 returned. */
1815 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1816 SYMBOL_VALUE_ADDRESS (msymbol),
1817 &current_target);
1818 return maddr == get_frame_func (this_frame);
1819 }
1820
1821 /* Test whether THIS_FRAME is inside the process entry point function. */
1822
1823 static int
1824 inside_entry_func (struct frame_info *this_frame)
1825 {
1826 CORE_ADDR entry_point;
1827
1828 if (!entry_point_address_query (&entry_point))
1829 return 0;
1830
1831 return get_frame_func (this_frame) == entry_point;
1832 }
1833
1834 /* Return a structure containing various interesting information about
1835 the frame that called THIS_FRAME. Returns NULL if there is entier
1836 no such frame or the frame fails any of a set of target-independent
1837 condition that should terminate the frame chain (e.g., as unwinding
1838 past main()).
1839
1840 This function should not contain target-dependent tests, such as
1841 checking whether the program-counter is zero. */
1842
1843 struct frame_info *
1844 get_prev_frame (struct frame_info *this_frame)
1845 {
1846 CORE_ADDR frame_pc;
1847 int frame_pc_p;
1848
1849 /* There is always a frame. If this assertion fails, suspect that
1850 something should be calling get_selected_frame() or
1851 get_current_frame(). */
1852 gdb_assert (this_frame != NULL);
1853 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
1854
1855 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1856 sense to stop unwinding at a dummy frame. One place where a dummy
1857 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1858 pcsqh register (space register for the instruction at the head of the
1859 instruction queue) cannot be written directly; the only way to set it
1860 is to branch to code that is in the target space. In order to implement
1861 frame dummies on HPUX, the called function is made to jump back to where
1862 the inferior was when the user function was called. If gdb was inside
1863 the main function when we created the dummy frame, the dummy frame will
1864 point inside the main function. */
1865 if (this_frame->level >= 0
1866 && get_frame_type (this_frame) == NORMAL_FRAME
1867 && !backtrace_past_main
1868 && frame_pc_p
1869 && inside_main_func (this_frame))
1870 /* Don't unwind past main(). Note, this is done _before_ the
1871 frame has been marked as previously unwound. That way if the
1872 user later decides to enable unwinds past main(), that will
1873 automatically happen. */
1874 {
1875 frame_debug_got_null_frame (this_frame, "inside main func");
1876 return NULL;
1877 }
1878
1879 /* If the user's backtrace limit has been exceeded, stop. We must
1880 add two to the current level; one of those accounts for backtrace_limit
1881 being 1-based and the level being 0-based, and the other accounts for
1882 the level of the new frame instead of the level of the current
1883 frame. */
1884 if (this_frame->level + 2 > backtrace_limit)
1885 {
1886 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1887 return NULL;
1888 }
1889
1890 /* If we're already inside the entry function for the main objfile,
1891 then it isn't valid. Don't apply this test to a dummy frame -
1892 dummy frame PCs typically land in the entry func. Don't apply
1893 this test to the sentinel frame. Sentinel frames should always
1894 be allowed to unwind. */
1895 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1896 wasn't checking for "main" in the minimal symbols. With that
1897 fixed asm-source tests now stop in "main" instead of halting the
1898 backtrace in weird and wonderful ways somewhere inside the entry
1899 file. Suspect that tests for inside the entry file/func were
1900 added to work around that (now fixed) case. */
1901 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1902 suggested having the inside_entry_func test use the
1903 inside_main_func() msymbol trick (along with entry_point_address()
1904 I guess) to determine the address range of the start function.
1905 That should provide a far better stopper than the current
1906 heuristics. */
1907 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1908 applied tail-call optimizations to main so that a function called
1909 from main returns directly to the caller of main. Since we don't
1910 stop at main, we should at least stop at the entry point of the
1911 application. */
1912 if (this_frame->level >= 0
1913 && get_frame_type (this_frame) == NORMAL_FRAME
1914 && !backtrace_past_entry
1915 && frame_pc_p
1916 && inside_entry_func (this_frame))
1917 {
1918 frame_debug_got_null_frame (this_frame, "inside entry func");
1919 return NULL;
1920 }
1921
1922 /* Assume that the only way to get a zero PC is through something
1923 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1924 will never unwind a zero PC. */
1925 if (this_frame->level > 0
1926 && (get_frame_type (this_frame) == NORMAL_FRAME
1927 || get_frame_type (this_frame) == INLINE_FRAME)
1928 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1929 && frame_pc_p && frame_pc == 0)
1930 {
1931 frame_debug_got_null_frame (this_frame, "zero PC");
1932 return NULL;
1933 }
1934
1935 return get_prev_frame_1 (this_frame);
1936 }
1937
1938 CORE_ADDR
1939 get_frame_pc (struct frame_info *frame)
1940 {
1941 gdb_assert (frame->next != NULL);
1942 return frame_unwind_pc (frame->next);
1943 }
1944
1945 int
1946 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
1947 {
1948 volatile struct gdb_exception ex;
1949
1950 gdb_assert (frame->next != NULL);
1951
1952 TRY_CATCH (ex, RETURN_MASK_ERROR)
1953 {
1954 *pc = frame_unwind_pc (frame->next);
1955 }
1956 if (ex.reason < 0)
1957 {
1958 if (ex.error == NOT_AVAILABLE_ERROR)
1959 return 0;
1960 else
1961 throw_exception (ex);
1962 }
1963
1964 return 1;
1965 }
1966
1967 /* Return an address that falls within THIS_FRAME's code block. */
1968
1969 CORE_ADDR
1970 get_frame_address_in_block (struct frame_info *this_frame)
1971 {
1972 /* A draft address. */
1973 CORE_ADDR pc = get_frame_pc (this_frame);
1974
1975 struct frame_info *next_frame = this_frame->next;
1976
1977 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1978 Normally the resume address is inside the body of the function
1979 associated with THIS_FRAME, but there is a special case: when
1980 calling a function which the compiler knows will never return
1981 (for instance abort), the call may be the very last instruction
1982 in the calling function. The resume address will point after the
1983 call and may be at the beginning of a different function
1984 entirely.
1985
1986 If THIS_FRAME is a signal frame or dummy frame, then we should
1987 not adjust the unwound PC. For a dummy frame, GDB pushed the
1988 resume address manually onto the stack. For a signal frame, the
1989 OS may have pushed the resume address manually and invoked the
1990 handler (e.g. GNU/Linux), or invoked the trampoline which called
1991 the signal handler - but in either case the signal handler is
1992 expected to return to the trampoline. So in both of these
1993 cases we know that the resume address is executable and
1994 related. So we only need to adjust the PC if THIS_FRAME
1995 is a normal function.
1996
1997 If the program has been interrupted while THIS_FRAME is current,
1998 then clearly the resume address is inside the associated
1999 function. There are three kinds of interruption: debugger stop
2000 (next frame will be SENTINEL_FRAME), operating system
2001 signal or exception (next frame will be SIGTRAMP_FRAME),
2002 or debugger-induced function call (next frame will be
2003 DUMMY_FRAME). So we only need to adjust the PC if
2004 NEXT_FRAME is a normal function.
2005
2006 We check the type of NEXT_FRAME first, since it is already
2007 known; frame type is determined by the unwinder, and since
2008 we have THIS_FRAME we've already selected an unwinder for
2009 NEXT_FRAME.
2010
2011 If the next frame is inlined, we need to keep going until we find
2012 the real function - for instance, if a signal handler is invoked
2013 while in an inlined function, then the code address of the
2014 "calling" normal function should not be adjusted either. */
2015
2016 while (get_frame_type (next_frame) == INLINE_FRAME)
2017 next_frame = next_frame->next;
2018
2019 if (get_frame_type (next_frame) == NORMAL_FRAME
2020 && (get_frame_type (this_frame) == NORMAL_FRAME
2021 || get_frame_type (this_frame) == INLINE_FRAME))
2022 return pc - 1;
2023
2024 return pc;
2025 }
2026
2027 int
2028 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2029 CORE_ADDR *pc)
2030 {
2031 volatile struct gdb_exception ex;
2032
2033 TRY_CATCH (ex, RETURN_MASK_ERROR)
2034 {
2035 *pc = get_frame_address_in_block (this_frame);
2036 }
2037 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2038 return 0;
2039 else if (ex.reason < 0)
2040 throw_exception (ex);
2041 else
2042 return 1;
2043 }
2044
2045 void
2046 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2047 {
2048 struct frame_info *next_frame;
2049 int notcurrent;
2050 CORE_ADDR pc;
2051
2052 /* If the next frame represents an inlined function call, this frame's
2053 sal is the "call site" of that inlined function, which can not
2054 be inferred from get_frame_pc. */
2055 next_frame = get_next_frame (frame);
2056 if (frame_inlined_callees (frame) > 0)
2057 {
2058 struct symbol *sym;
2059
2060 if (next_frame)
2061 sym = get_frame_function (next_frame);
2062 else
2063 sym = inline_skipped_symbol (inferior_ptid);
2064
2065 /* If frame is inline, it certainly has symbols. */
2066 gdb_assert (sym);
2067 init_sal (sal);
2068 if (SYMBOL_LINE (sym) != 0)
2069 {
2070 sal->symtab = SYMBOL_SYMTAB (sym);
2071 sal->line = SYMBOL_LINE (sym);
2072 }
2073 else
2074 /* If the symbol does not have a location, we don't know where
2075 the call site is. Do not pretend to. This is jarring, but
2076 we can't do much better. */
2077 sal->pc = get_frame_pc (frame);
2078
2079 return;
2080 }
2081
2082 /* If FRAME is not the innermost frame, that normally means that
2083 FRAME->pc points at the return instruction (which is *after* the
2084 call instruction), and we want to get the line containing the
2085 call (because the call is where the user thinks the program is).
2086 However, if the next frame is either a SIGTRAMP_FRAME or a
2087 DUMMY_FRAME, then the next frame will contain a saved interrupt
2088 PC and such a PC indicates the current (rather than next)
2089 instruction/line, consequently, for such cases, want to get the
2090 line containing fi->pc. */
2091 if (!get_frame_pc_if_available (frame, &pc))
2092 {
2093 init_sal (sal);
2094 return;
2095 }
2096
2097 notcurrent = (pc != get_frame_address_in_block (frame));
2098 (*sal) = find_pc_line (pc, notcurrent);
2099 }
2100
2101 /* Per "frame.h", return the ``address'' of the frame. Code should
2102 really be using get_frame_id(). */
2103 CORE_ADDR
2104 get_frame_base (struct frame_info *fi)
2105 {
2106 return get_frame_id (fi).stack_addr;
2107 }
2108
2109 /* High-level offsets into the frame. Used by the debug info. */
2110
2111 CORE_ADDR
2112 get_frame_base_address (struct frame_info *fi)
2113 {
2114 if (get_frame_type (fi) != NORMAL_FRAME)
2115 return 0;
2116 if (fi->base == NULL)
2117 fi->base = frame_base_find_by_frame (fi);
2118 /* Sneaky: If the low-level unwind and high-level base code share a
2119 common unwinder, let them share the prologue cache. */
2120 if (fi->base->unwind == fi->unwind)
2121 return fi->base->this_base (fi, &fi->prologue_cache);
2122 return fi->base->this_base (fi, &fi->base_cache);
2123 }
2124
2125 CORE_ADDR
2126 get_frame_locals_address (struct frame_info *fi)
2127 {
2128 if (get_frame_type (fi) != NORMAL_FRAME)
2129 return 0;
2130 /* If there isn't a frame address method, find it. */
2131 if (fi->base == NULL)
2132 fi->base = frame_base_find_by_frame (fi);
2133 /* Sneaky: If the low-level unwind and high-level base code share a
2134 common unwinder, let them share the prologue cache. */
2135 if (fi->base->unwind == fi->unwind)
2136 return fi->base->this_locals (fi, &fi->prologue_cache);
2137 return fi->base->this_locals (fi, &fi->base_cache);
2138 }
2139
2140 CORE_ADDR
2141 get_frame_args_address (struct frame_info *fi)
2142 {
2143 if (get_frame_type (fi) != NORMAL_FRAME)
2144 return 0;
2145 /* If there isn't a frame address method, find it. */
2146 if (fi->base == NULL)
2147 fi->base = frame_base_find_by_frame (fi);
2148 /* Sneaky: If the low-level unwind and high-level base code share a
2149 common unwinder, let them share the prologue cache. */
2150 if (fi->base->unwind == fi->unwind)
2151 return fi->base->this_args (fi, &fi->prologue_cache);
2152 return fi->base->this_args (fi, &fi->base_cache);
2153 }
2154
2155 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2156 otherwise. */
2157
2158 int
2159 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2160 {
2161 if (fi->unwind == NULL)
2162 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2163 return fi->unwind == unwinder;
2164 }
2165
2166 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2167 or -1 for a NULL frame. */
2168
2169 int
2170 frame_relative_level (struct frame_info *fi)
2171 {
2172 if (fi == NULL)
2173 return -1;
2174 else
2175 return fi->level;
2176 }
2177
2178 enum frame_type
2179 get_frame_type (struct frame_info *frame)
2180 {
2181 if (frame->unwind == NULL)
2182 /* Initialize the frame's unwinder because that's what
2183 provides the frame's type. */
2184 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2185 return frame->unwind->type;
2186 }
2187
2188 struct program_space *
2189 get_frame_program_space (struct frame_info *frame)
2190 {
2191 return frame->pspace;
2192 }
2193
2194 struct program_space *
2195 frame_unwind_program_space (struct frame_info *this_frame)
2196 {
2197 gdb_assert (this_frame);
2198
2199 /* This is really a placeholder to keep the API consistent --- we
2200 assume for now that we don't have frame chains crossing
2201 spaces. */
2202 return this_frame->pspace;
2203 }
2204
2205 struct address_space *
2206 get_frame_address_space (struct frame_info *frame)
2207 {
2208 return frame->aspace;
2209 }
2210
2211 /* Memory access methods. */
2212
2213 void
2214 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2215 gdb_byte *buf, int len)
2216 {
2217 read_memory (addr, buf, len);
2218 }
2219
2220 LONGEST
2221 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2222 int len)
2223 {
2224 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2225 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2226
2227 return read_memory_integer (addr, len, byte_order);
2228 }
2229
2230 ULONGEST
2231 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2232 int len)
2233 {
2234 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2235 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2236
2237 return read_memory_unsigned_integer (addr, len, byte_order);
2238 }
2239
2240 int
2241 safe_frame_unwind_memory (struct frame_info *this_frame,
2242 CORE_ADDR addr, gdb_byte *buf, int len)
2243 {
2244 /* NOTE: target_read_memory returns zero on success! */
2245 return !target_read_memory (addr, buf, len);
2246 }
2247
2248 /* Architecture methods. */
2249
2250 struct gdbarch *
2251 get_frame_arch (struct frame_info *this_frame)
2252 {
2253 return frame_unwind_arch (this_frame->next);
2254 }
2255
2256 struct gdbarch *
2257 frame_unwind_arch (struct frame_info *next_frame)
2258 {
2259 if (!next_frame->prev_arch.p)
2260 {
2261 struct gdbarch *arch;
2262
2263 if (next_frame->unwind == NULL)
2264 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2265
2266 if (next_frame->unwind->prev_arch != NULL)
2267 arch = next_frame->unwind->prev_arch (next_frame,
2268 &next_frame->prologue_cache);
2269 else
2270 arch = get_frame_arch (next_frame);
2271
2272 next_frame->prev_arch.arch = arch;
2273 next_frame->prev_arch.p = 1;
2274 if (frame_debug)
2275 fprintf_unfiltered (gdb_stdlog,
2276 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2277 next_frame->level,
2278 gdbarch_bfd_arch_info (arch)->printable_name);
2279 }
2280
2281 return next_frame->prev_arch.arch;
2282 }
2283
2284 struct gdbarch *
2285 frame_unwind_caller_arch (struct frame_info *next_frame)
2286 {
2287 return frame_unwind_arch (skip_inlined_frames (next_frame));
2288 }
2289
2290 /* Stack pointer methods. */
2291
2292 CORE_ADDR
2293 get_frame_sp (struct frame_info *this_frame)
2294 {
2295 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2296
2297 /* Normality - an architecture that provides a way of obtaining any
2298 frame inner-most address. */
2299 if (gdbarch_unwind_sp_p (gdbarch))
2300 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2301 operate on THIS_FRAME now. */
2302 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2303 /* Now things are really are grim. Hope that the value returned by
2304 the gdbarch_sp_regnum register is meaningful. */
2305 if (gdbarch_sp_regnum (gdbarch) >= 0)
2306 return get_frame_register_unsigned (this_frame,
2307 gdbarch_sp_regnum (gdbarch));
2308 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2309 }
2310
2311 /* Return the reason why we can't unwind past FRAME. */
2312
2313 enum unwind_stop_reason
2314 get_frame_unwind_stop_reason (struct frame_info *frame)
2315 {
2316 /* If we haven't tried to unwind past this point yet, then assume
2317 that unwinding would succeed. */
2318 if (frame->prev_p == 0)
2319 return UNWIND_NO_REASON;
2320
2321 /* Otherwise, we set a reason when we succeeded (or failed) to
2322 unwind. */
2323 return frame->stop_reason;
2324 }
2325
2326 /* Return a string explaining REASON. */
2327
2328 const char *
2329 frame_stop_reason_string (enum unwind_stop_reason reason)
2330 {
2331 switch (reason)
2332 {
2333 case UNWIND_NULL_ID:
2334 return _("unwinder did not report frame ID");
2335
2336 case UNWIND_INNER_ID:
2337 return _("previous frame inner to this frame (corrupt stack?)");
2338
2339 case UNWIND_SAME_ID:
2340 return _("previous frame identical to this frame (corrupt stack?)");
2341
2342 case UNWIND_NO_SAVED_PC:
2343 return _("frame did not save the PC");
2344
2345 case UNWIND_NO_REASON:
2346 case UNWIND_FIRST_ERROR:
2347 default:
2348 internal_error (__FILE__, __LINE__,
2349 "Invalid frame stop reason");
2350 }
2351 }
2352
2353 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2354 FRAME. */
2355
2356 static void
2357 frame_cleanup_after_sniffer (void *arg)
2358 {
2359 struct frame_info *frame = arg;
2360
2361 /* The sniffer should not allocate a prologue cache if it did not
2362 match this frame. */
2363 gdb_assert (frame->prologue_cache == NULL);
2364
2365 /* No sniffer should extend the frame chain; sniff based on what is
2366 already certain. */
2367 gdb_assert (!frame->prev_p);
2368
2369 /* The sniffer should not check the frame's ID; that's circular. */
2370 gdb_assert (!frame->this_id.p);
2371
2372 /* Clear cached fields dependent on the unwinder.
2373
2374 The previous PC is independent of the unwinder, but the previous
2375 function is not (see get_frame_address_in_block). */
2376 frame->prev_func.p = 0;
2377 frame->prev_func.addr = 0;
2378
2379 /* Discard the unwinder last, so that we can easily find it if an assertion
2380 in this function triggers. */
2381 frame->unwind = NULL;
2382 }
2383
2384 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2385 Return a cleanup which should be called if unwinding fails, and
2386 discarded if it succeeds. */
2387
2388 struct cleanup *
2389 frame_prepare_for_sniffer (struct frame_info *frame,
2390 const struct frame_unwind *unwind)
2391 {
2392 gdb_assert (frame->unwind == NULL);
2393 frame->unwind = unwind;
2394 return make_cleanup (frame_cleanup_after_sniffer, frame);
2395 }
2396
2397 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2398
2399 static struct cmd_list_element *set_backtrace_cmdlist;
2400 static struct cmd_list_element *show_backtrace_cmdlist;
2401
2402 static void
2403 set_backtrace_cmd (char *args, int from_tty)
2404 {
2405 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2406 }
2407
2408 static void
2409 show_backtrace_cmd (char *args, int from_tty)
2410 {
2411 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2412 }
2413
2414 void
2415 _initialize_frame (void)
2416 {
2417 obstack_init (&frame_cache_obstack);
2418
2419 observer_attach_target_changed (frame_observer_target_changed);
2420
2421 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2422 Set backtrace specific variables.\n\
2423 Configure backtrace variables such as the backtrace limit"),
2424 &set_backtrace_cmdlist, "set backtrace ",
2425 0/*allow-unknown*/, &setlist);
2426 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2427 Show backtrace specific variables\n\
2428 Show backtrace variables such as the backtrace limit"),
2429 &show_backtrace_cmdlist, "show backtrace ",
2430 0/*allow-unknown*/, &showlist);
2431
2432 add_setshow_boolean_cmd ("past-main", class_obscure,
2433 &backtrace_past_main, _("\
2434 Set whether backtraces should continue past \"main\"."), _("\
2435 Show whether backtraces should continue past \"main\"."), _("\
2436 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2437 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2438 of the stack trace."),
2439 NULL,
2440 show_backtrace_past_main,
2441 &set_backtrace_cmdlist,
2442 &show_backtrace_cmdlist);
2443
2444 add_setshow_boolean_cmd ("past-entry", class_obscure,
2445 &backtrace_past_entry, _("\
2446 Set whether backtraces should continue past the entry point of a program."),
2447 _("\
2448 Show whether backtraces should continue past the entry point of a program."),
2449 _("\
2450 Normally there are no callers beyond the entry point of a program, so GDB\n\
2451 will terminate the backtrace there. Set this variable if you need to see\n\
2452 the rest of the stack trace."),
2453 NULL,
2454 show_backtrace_past_entry,
2455 &set_backtrace_cmdlist,
2456 &show_backtrace_cmdlist);
2457
2458 add_setshow_integer_cmd ("limit", class_obscure,
2459 &backtrace_limit, _("\
2460 Set an upper bound on the number of backtrace levels."), _("\
2461 Show the upper bound on the number of backtrace levels."), _("\
2462 No more than the specified number of frames can be displayed or examined.\n\
2463 Zero is unlimited."),
2464 NULL,
2465 show_backtrace_limit,
2466 &set_backtrace_cmdlist,
2467 &show_backtrace_cmdlist);
2468
2469 /* Debug this files internals. */
2470 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2471 Set frame debugging."), _("\
2472 Show frame debugging."), _("\
2473 When non-zero, frame specific internal debugging is enabled."),
2474 NULL,
2475 show_frame_debug,
2476 &setdebuglist, &showdebuglist);
2477 }
This page took 0.097016 seconds and 4 git commands to generate.