bfd/
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "inferior.h" /* for inferior_ptid */
28 #include "regcache.h"
29 #include "gdb_assert.h"
30 #include "gdb_string.h"
31 #include "user-regs.h"
32 #include "gdb_obstack.h"
33 #include "dummy-frame.h"
34 #include "sentinel-frame.h"
35 #include "gdbcore.h"
36 #include "annotate.h"
37 #include "language.h"
38 #include "frame-unwind.h"
39 #include "frame-base.h"
40 #include "command.h"
41 #include "gdbcmd.h"
42 #include "observer.h"
43 #include "objfiles.h"
44 #include "exceptions.h"
45
46 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
47
48 /* We keep a cache of stack frames, each of which is a "struct
49 frame_info". The innermost one gets allocated (in
50 wait_for_inferior) each time the inferior stops; current_frame
51 points to it. Additional frames get allocated (in get_prev_frame)
52 as needed, and are chained through the next and prev fields. Any
53 time that the frame cache becomes invalid (most notably when we
54 execute something, but also if we change how we interpret the
55 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
56 which reads new symbols)), we should call reinit_frame_cache. */
57
58 struct frame_info
59 {
60 /* Level of this frame. The inner-most (youngest) frame is at level
61 0. As you move towards the outer-most (oldest) frame, the level
62 increases. This is a cached value. It could just as easily be
63 computed by counting back from the selected frame to the inner
64 most frame. */
65 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
66 reserved to indicate a bogus frame - one that has been created
67 just to keep GDB happy (GDB always needs a frame). For the
68 moment leave this as speculation. */
69 int level;
70
71 /* The frame's low-level unwinder and corresponding cache. The
72 low-level unwinder is responsible for unwinding register values
73 for the previous frame. The low-level unwind methods are
74 selected based on the presence, or otherwise, of register unwind
75 information such as CFI. */
76 void *prologue_cache;
77 const struct frame_unwind *unwind;
78
79 /* Cached copy of the previous frame's resume address. */
80 struct {
81 int p;
82 CORE_ADDR value;
83 } prev_pc;
84
85 /* Cached copy of the previous frame's function address. */
86 struct
87 {
88 CORE_ADDR addr;
89 int p;
90 } prev_func;
91
92 /* This frame's ID. */
93 struct
94 {
95 int p;
96 struct frame_id value;
97 } this_id;
98
99 /* The frame's high-level base methods, and corresponding cache.
100 The high level base methods are selected based on the frame's
101 debug info. */
102 const struct frame_base *base;
103 void *base_cache;
104
105 /* Pointers to the next (down, inner, younger) and previous (up,
106 outer, older) frame_info's in the frame cache. */
107 struct frame_info *next; /* down, inner, younger */
108 int prev_p;
109 struct frame_info *prev; /* up, outer, older */
110
111 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
112 could. Only valid when PREV_P is set. */
113 enum unwind_stop_reason stop_reason;
114 };
115
116 /* Flag to control debugging. */
117
118 static int frame_debug;
119 static void
120 show_frame_debug (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
124 }
125
126 /* Flag to indicate whether backtraces should stop at main et.al. */
127
128 static int backtrace_past_main;
129 static void
130 show_backtrace_past_main (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("\
134 Whether backtraces should continue past \"main\" is %s.\n"),
135 value);
136 }
137
138 static int backtrace_past_entry;
139 static void
140 show_backtrace_past_entry (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("\
144 Whether backtraces should continue past the entry point of a program is %s.\n"),
145 value);
146 }
147
148 static int backtrace_limit = INT_MAX;
149 static void
150 show_backtrace_limit (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file, _("\
154 An upper bound on the number of backtrace levels is %s.\n"),
155 value);
156 }
157
158
159 static void
160 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
161 {
162 if (p)
163 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
164 else
165 fprintf_unfiltered (file, "!%s", name);
166 }
167
168 void
169 fprint_frame_id (struct ui_file *file, struct frame_id id)
170 {
171 fprintf_unfiltered (file, "{");
172 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
173 fprintf_unfiltered (file, ",");
174 fprint_field (file, "code", id.code_addr_p, id.code_addr);
175 fprintf_unfiltered (file, ",");
176 fprint_field (file, "special", id.special_addr_p, id.special_addr);
177 fprintf_unfiltered (file, "}");
178 }
179
180 static void
181 fprint_frame_type (struct ui_file *file, enum frame_type type)
182 {
183 switch (type)
184 {
185 case NORMAL_FRAME:
186 fprintf_unfiltered (file, "NORMAL_FRAME");
187 return;
188 case DUMMY_FRAME:
189 fprintf_unfiltered (file, "DUMMY_FRAME");
190 return;
191 case SIGTRAMP_FRAME:
192 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
193 return;
194 default:
195 fprintf_unfiltered (file, "<unknown type>");
196 return;
197 };
198 }
199
200 static void
201 fprint_frame (struct ui_file *file, struct frame_info *fi)
202 {
203 if (fi == NULL)
204 {
205 fprintf_unfiltered (file, "<NULL frame>");
206 return;
207 }
208 fprintf_unfiltered (file, "{");
209 fprintf_unfiltered (file, "level=%d", fi->level);
210 fprintf_unfiltered (file, ",");
211 fprintf_unfiltered (file, "type=");
212 if (fi->unwind != NULL)
213 fprint_frame_type (file, fi->unwind->type);
214 else
215 fprintf_unfiltered (file, "<unknown>");
216 fprintf_unfiltered (file, ",");
217 fprintf_unfiltered (file, "unwind=");
218 if (fi->unwind != NULL)
219 gdb_print_host_address (fi->unwind, file);
220 else
221 fprintf_unfiltered (file, "<unknown>");
222 fprintf_unfiltered (file, ",");
223 fprintf_unfiltered (file, "pc=");
224 if (fi->next != NULL && fi->next->prev_pc.p)
225 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
226 else
227 fprintf_unfiltered (file, "<unknown>");
228 fprintf_unfiltered (file, ",");
229 fprintf_unfiltered (file, "id=");
230 if (fi->this_id.p)
231 fprint_frame_id (file, fi->this_id.value);
232 else
233 fprintf_unfiltered (file, "<unknown>");
234 fprintf_unfiltered (file, ",");
235 fprintf_unfiltered (file, "func=");
236 if (fi->next != NULL && fi->next->prev_func.p)
237 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
238 else
239 fprintf_unfiltered (file, "<unknown>");
240 fprintf_unfiltered (file, "}");
241 }
242
243 /* Return a frame uniq ID that can be used to, later, re-find the
244 frame. */
245
246 struct frame_id
247 get_frame_id (struct frame_info *fi)
248 {
249 if (fi == NULL)
250 {
251 return null_frame_id;
252 }
253 if (!fi->this_id.p)
254 {
255 if (frame_debug)
256 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
257 fi->level);
258 /* Find the unwinder. */
259 if (fi->unwind == NULL)
260 fi->unwind = frame_unwind_find_by_frame (fi->next,
261 &fi->prologue_cache);
262 /* Find THIS frame's ID. */
263 fi->unwind->this_id (fi->next, &fi->prologue_cache, &fi->this_id.value);
264 fi->this_id.p = 1;
265 if (frame_debug)
266 {
267 fprintf_unfiltered (gdb_stdlog, "-> ");
268 fprint_frame_id (gdb_stdlog, fi->this_id.value);
269 fprintf_unfiltered (gdb_stdlog, " }\n");
270 }
271 }
272 return fi->this_id.value;
273 }
274
275 struct frame_id
276 frame_unwind_id (struct frame_info *next_frame)
277 {
278 /* Use prev_frame, and not get_prev_frame. The latter will truncate
279 the frame chain, leading to this function unintentionally
280 returning a null_frame_id (e.g., when a caller requests the frame
281 ID of "main()"s caller. */
282 return get_frame_id (get_prev_frame_1 (next_frame));
283 }
284
285 const struct frame_id null_frame_id; /* All zeros. */
286
287 struct frame_id
288 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
289 CORE_ADDR special_addr)
290 {
291 struct frame_id id = null_frame_id;
292 id.stack_addr = stack_addr;
293 id.stack_addr_p = 1;
294 id.code_addr = code_addr;
295 id.code_addr_p = 1;
296 id.special_addr = special_addr;
297 id.special_addr_p = 1;
298 return id;
299 }
300
301 struct frame_id
302 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
303 {
304 struct frame_id id = null_frame_id;
305 id.stack_addr = stack_addr;
306 id.stack_addr_p = 1;
307 id.code_addr = code_addr;
308 id.code_addr_p = 1;
309 return id;
310 }
311
312 struct frame_id
313 frame_id_build_wild (CORE_ADDR stack_addr)
314 {
315 struct frame_id id = null_frame_id;
316 id.stack_addr = stack_addr;
317 id.stack_addr_p = 1;
318 return id;
319 }
320
321 int
322 frame_id_p (struct frame_id l)
323 {
324 int p;
325 /* The frame is valid iff it has a valid stack address. */
326 p = l.stack_addr_p;
327 if (frame_debug)
328 {
329 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
330 fprint_frame_id (gdb_stdlog, l);
331 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
332 }
333 return p;
334 }
335
336 int
337 frame_id_eq (struct frame_id l, struct frame_id r)
338 {
339 int eq;
340 if (!l.stack_addr_p || !r.stack_addr_p)
341 /* Like a NaN, if either ID is invalid, the result is false.
342 Note that a frame ID is invalid iff it is the null frame ID. */
343 eq = 0;
344 else if (l.stack_addr != r.stack_addr)
345 /* If .stack addresses are different, the frames are different. */
346 eq = 0;
347 else if (!l.code_addr_p || !r.code_addr_p)
348 /* An invalid code addr is a wild card, always succeed. */
349 eq = 1;
350 else if (l.code_addr != r.code_addr)
351 /* If .code addresses are different, the frames are different. */
352 eq = 0;
353 else if (!l.special_addr_p || !r.special_addr_p)
354 /* An invalid special addr is a wild card (or unused), always succeed. */
355 eq = 1;
356 else if (l.special_addr == r.special_addr)
357 /* Frames are equal. */
358 eq = 1;
359 else
360 /* No luck. */
361 eq = 0;
362 if (frame_debug)
363 {
364 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
365 fprint_frame_id (gdb_stdlog, l);
366 fprintf_unfiltered (gdb_stdlog, ",r=");
367 fprint_frame_id (gdb_stdlog, r);
368 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
369 }
370 return eq;
371 }
372
373 int
374 frame_id_inner (struct frame_id l, struct frame_id r)
375 {
376 int inner;
377 if (!l.stack_addr_p || !r.stack_addr_p)
378 /* Like NaN, any operation involving an invalid ID always fails. */
379 inner = 0;
380 else
381 /* Only return non-zero when strictly inner than. Note that, per
382 comment in "frame.h", there is some fuzz here. Frameless
383 functions are not strictly inner than (same .stack but
384 different .code and/or .special address). */
385 inner = INNER_THAN (l.stack_addr, r.stack_addr);
386 if (frame_debug)
387 {
388 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
389 fprint_frame_id (gdb_stdlog, l);
390 fprintf_unfiltered (gdb_stdlog, ",r=");
391 fprint_frame_id (gdb_stdlog, r);
392 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
393 }
394 return inner;
395 }
396
397 struct frame_info *
398 frame_find_by_id (struct frame_id id)
399 {
400 struct frame_info *frame;
401
402 /* ZERO denotes the null frame, let the caller decide what to do
403 about it. Should it instead return get_current_frame()? */
404 if (!frame_id_p (id))
405 return NULL;
406
407 for (frame = get_current_frame ();
408 frame != NULL;
409 frame = get_prev_frame (frame))
410 {
411 struct frame_id this = get_frame_id (frame);
412 if (frame_id_eq (id, this))
413 /* An exact match. */
414 return frame;
415 if (frame_id_inner (id, this))
416 /* Gone to far. */
417 return NULL;
418 /* Either we're not yet gone far enough out along the frame
419 chain (inner(this,id)), or we're comparing frameless functions
420 (same .base, different .func, no test available). Struggle
421 on until we've definitly gone to far. */
422 }
423 return NULL;
424 }
425
426 CORE_ADDR
427 frame_pc_unwind (struct frame_info *this_frame)
428 {
429 if (!this_frame->prev_pc.p)
430 {
431 CORE_ADDR pc;
432 if (this_frame->unwind == NULL)
433 this_frame->unwind
434 = frame_unwind_find_by_frame (this_frame->next,
435 &this_frame->prologue_cache);
436 if (this_frame->unwind->prev_pc != NULL)
437 /* A per-frame unwinder, prefer it. */
438 pc = this_frame->unwind->prev_pc (this_frame->next,
439 &this_frame->prologue_cache);
440 else if (gdbarch_unwind_pc_p (current_gdbarch))
441 {
442 /* The right way. The `pure' way. The one true way. This
443 method depends solely on the register-unwind code to
444 determine the value of registers in THIS frame, and hence
445 the value of this frame's PC (resume address). A typical
446 implementation is no more than:
447
448 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
449 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
450
451 Note: this method is very heavily dependent on a correct
452 register-unwind implementation, it pays to fix that
453 method first; this method is frame type agnostic, since
454 it only deals with register values, it works with any
455 frame. This is all in stark contrast to the old
456 FRAME_SAVED_PC which would try to directly handle all the
457 different ways that a PC could be unwound. */
458 pc = gdbarch_unwind_pc (current_gdbarch, this_frame);
459 }
460 else
461 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
462 this_frame->prev_pc.value = pc;
463 this_frame->prev_pc.p = 1;
464 if (frame_debug)
465 fprintf_unfiltered (gdb_stdlog,
466 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
467 this_frame->level,
468 paddr_nz (this_frame->prev_pc.value));
469 }
470 return this_frame->prev_pc.value;
471 }
472
473 CORE_ADDR
474 frame_func_unwind (struct frame_info *fi)
475 {
476 if (!fi->prev_func.p)
477 {
478 /* Make certain that this, and not the adjacent, function is
479 found. */
480 CORE_ADDR addr_in_block = frame_unwind_address_in_block (fi);
481 fi->prev_func.p = 1;
482 fi->prev_func.addr = get_pc_function_start (addr_in_block);
483 if (frame_debug)
484 fprintf_unfiltered (gdb_stdlog,
485 "{ frame_func_unwind (fi=%d) -> 0x%s }\n",
486 fi->level, paddr_nz (fi->prev_func.addr));
487 }
488 return fi->prev_func.addr;
489 }
490
491 CORE_ADDR
492 get_frame_func (struct frame_info *fi)
493 {
494 return frame_func_unwind (fi->next);
495 }
496
497 static int
498 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
499 {
500 frame_register_read (src, regnum, buf);
501 return 1;
502 }
503
504 struct regcache *
505 frame_save_as_regcache (struct frame_info *this_frame)
506 {
507 struct regcache *regcache = regcache_xmalloc (current_gdbarch);
508 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
509 regcache_save (regcache, do_frame_register_read, this_frame);
510 discard_cleanups (cleanups);
511 return regcache;
512 }
513
514 void
515 frame_pop (struct frame_info *this_frame)
516 {
517 /* Make a copy of all the register values unwound from this frame.
518 Save them in a scratch buffer so that there isn't a race between
519 trying to extract the old values from the current_regcache while
520 at the same time writing new values into that same cache. */
521 struct regcache *scratch
522 = frame_save_as_regcache (get_prev_frame_1 (this_frame));
523 struct cleanup *cleanups = make_cleanup_regcache_xfree (scratch);
524
525 /* FIXME: cagney/2003-03-16: It should be possible to tell the
526 target's register cache that it is about to be hit with a burst
527 register transfer and that the sequence of register writes should
528 be batched. The pair target_prepare_to_store() and
529 target_store_registers() kind of suggest this functionality.
530 Unfortunately, they don't implement it. Their lack of a formal
531 definition can lead to targets writing back bogus values
532 (arguably a bug in the target code mind). */
533 /* Now copy those saved registers into the current regcache.
534 Here, regcache_cpy() calls regcache_restore(). */
535 regcache_cpy (current_regcache, scratch);
536 do_cleanups (cleanups);
537
538 /* We've made right mess of GDB's local state, just discard
539 everything. */
540 flush_cached_frames ();
541 }
542
543 void
544 frame_register_unwind (struct frame_info *frame, int regnum,
545 int *optimizedp, enum lval_type *lvalp,
546 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
547 {
548 struct frame_unwind_cache *cache;
549
550 if (frame_debug)
551 {
552 fprintf_unfiltered (gdb_stdlog, "\
553 { frame_register_unwind (frame=%d,regnum=%d(%s),...) ",
554 frame->level, regnum,
555 frame_map_regnum_to_name (frame, regnum));
556 }
557
558 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
559 that the value proper does not need to be fetched. */
560 gdb_assert (optimizedp != NULL);
561 gdb_assert (lvalp != NULL);
562 gdb_assert (addrp != NULL);
563 gdb_assert (realnump != NULL);
564 /* gdb_assert (bufferp != NULL); */
565
566 /* NOTE: cagney/2002-11-27: A program trying to unwind a NULL frame
567 is broken. There is always a frame. If there, for some reason,
568 isn't a frame, there is some pretty busted code as it should have
569 detected the problem before calling here. */
570 gdb_assert (frame != NULL);
571
572 /* Find the unwinder. */
573 if (frame->unwind == NULL)
574 frame->unwind = frame_unwind_find_by_frame (frame->next,
575 &frame->prologue_cache);
576
577 /* Ask this frame to unwind its register. See comment in
578 "frame-unwind.h" for why NEXT frame and this unwind cache are
579 passed in. */
580 frame->unwind->prev_register (frame->next, &frame->prologue_cache, regnum,
581 optimizedp, lvalp, addrp, realnump, bufferp);
582
583 if (frame_debug)
584 {
585 fprintf_unfiltered (gdb_stdlog, "->");
586 fprintf_unfiltered (gdb_stdlog, " *optimizedp=%d", (*optimizedp));
587 fprintf_unfiltered (gdb_stdlog, " *lvalp=%d", (int) (*lvalp));
588 fprintf_unfiltered (gdb_stdlog, " *addrp=0x%s", paddr_nz ((*addrp)));
589 fprintf_unfiltered (gdb_stdlog, " *bufferp=");
590 if (bufferp == NULL)
591 fprintf_unfiltered (gdb_stdlog, "<NULL>");
592 else
593 {
594 int i;
595 const unsigned char *buf = bufferp;
596 fprintf_unfiltered (gdb_stdlog, "[");
597 for (i = 0; i < register_size (current_gdbarch, regnum); i++)
598 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
599 fprintf_unfiltered (gdb_stdlog, "]");
600 }
601 fprintf_unfiltered (gdb_stdlog, " }\n");
602 }
603 }
604
605 void
606 frame_register (struct frame_info *frame, int regnum,
607 int *optimizedp, enum lval_type *lvalp,
608 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
609 {
610 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
611 that the value proper does not need to be fetched. */
612 gdb_assert (optimizedp != NULL);
613 gdb_assert (lvalp != NULL);
614 gdb_assert (addrp != NULL);
615 gdb_assert (realnump != NULL);
616 /* gdb_assert (bufferp != NULL); */
617
618 /* Obtain the register value by unwinding the register from the next
619 (more inner frame). */
620 gdb_assert (frame != NULL && frame->next != NULL);
621 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
622 realnump, bufferp);
623 }
624
625 void
626 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
627 {
628 int optimized;
629 CORE_ADDR addr;
630 int realnum;
631 enum lval_type lval;
632 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
633 &realnum, buf);
634 }
635
636 void
637 get_frame_register (struct frame_info *frame,
638 int regnum, gdb_byte *buf)
639 {
640 frame_unwind_register (frame->next, regnum, buf);
641 }
642
643 LONGEST
644 frame_unwind_register_signed (struct frame_info *frame, int regnum)
645 {
646 gdb_byte buf[MAX_REGISTER_SIZE];
647 frame_unwind_register (frame, regnum, buf);
648 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
649 regnum));
650 }
651
652 LONGEST
653 get_frame_register_signed (struct frame_info *frame, int regnum)
654 {
655 return frame_unwind_register_signed (frame->next, regnum);
656 }
657
658 ULONGEST
659 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
660 {
661 gdb_byte buf[MAX_REGISTER_SIZE];
662 frame_unwind_register (frame, regnum, buf);
663 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
664 regnum));
665 }
666
667 ULONGEST
668 get_frame_register_unsigned (struct frame_info *frame, int regnum)
669 {
670 return frame_unwind_register_unsigned (frame->next, regnum);
671 }
672
673 void
674 frame_unwind_unsigned_register (struct frame_info *frame, int regnum,
675 ULONGEST *val)
676 {
677 gdb_byte buf[MAX_REGISTER_SIZE];
678 frame_unwind_register (frame, regnum, buf);
679 (*val) = extract_unsigned_integer (buf,
680 register_size (get_frame_arch (frame),
681 regnum));
682 }
683
684 void
685 put_frame_register (struct frame_info *frame, int regnum,
686 const gdb_byte *buf)
687 {
688 struct gdbarch *gdbarch = get_frame_arch (frame);
689 int realnum;
690 int optim;
691 enum lval_type lval;
692 CORE_ADDR addr;
693 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
694 if (optim)
695 error (_("Attempt to assign to a value that was optimized out."));
696 switch (lval)
697 {
698 case lval_memory:
699 {
700 /* FIXME: write_memory doesn't yet take constant buffers.
701 Arrrg! */
702 gdb_byte tmp[MAX_REGISTER_SIZE];
703 memcpy (tmp, buf, register_size (gdbarch, regnum));
704 write_memory (addr, tmp, register_size (gdbarch, regnum));
705 break;
706 }
707 case lval_register:
708 regcache_cooked_write (current_regcache, realnum, buf);
709 break;
710 default:
711 error (_("Attempt to assign to an unmodifiable value."));
712 }
713 }
714
715 /* frame_register_read ()
716
717 Find and return the value of REGNUM for the specified stack frame.
718 The number of bytes copied is REGISTER_SIZE (REGNUM).
719
720 Returns 0 if the register value could not be found. */
721
722 int
723 frame_register_read (struct frame_info *frame, int regnum,
724 gdb_byte *myaddr)
725 {
726 int optimized;
727 enum lval_type lval;
728 CORE_ADDR addr;
729 int realnum;
730 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
731
732 /* FIXME: cagney/2002-05-15: This test is just bogus.
733
734 It indicates that the target failed to supply a value for a
735 register because it was "not available" at this time. Problem
736 is, the target still has the register and so get saved_register()
737 may be returning a value saved on the stack. */
738
739 if (register_cached (regnum) < 0)
740 return 0; /* register value not available */
741
742 return !optimized;
743 }
744
745 int
746 get_frame_register_bytes (struct frame_info *frame, int regnum,
747 CORE_ADDR offset, int len, gdb_byte *myaddr)
748 {
749 struct gdbarch *gdbarch = get_frame_arch (frame);
750
751 /* Skip registers wholly inside of OFFSET. */
752 while (offset >= register_size (gdbarch, regnum))
753 {
754 offset -= register_size (gdbarch, regnum);
755 regnum++;
756 }
757
758 /* Copy the data. */
759 while (len > 0)
760 {
761 int curr_len = register_size (gdbarch, regnum) - offset;
762 if (curr_len > len)
763 curr_len = len;
764
765 if (curr_len == register_size (gdbarch, regnum))
766 {
767 if (!frame_register_read (frame, regnum, myaddr))
768 return 0;
769 }
770 else
771 {
772 gdb_byte buf[MAX_REGISTER_SIZE];
773 if (!frame_register_read (frame, regnum, buf))
774 return 0;
775 memcpy (myaddr, buf + offset, curr_len);
776 }
777
778 myaddr += curr_len;
779 len -= curr_len;
780 offset = 0;
781 regnum++;
782 }
783
784 return 1;
785 }
786
787 void
788 put_frame_register_bytes (struct frame_info *frame, int regnum,
789 CORE_ADDR offset, int len, const gdb_byte *myaddr)
790 {
791 struct gdbarch *gdbarch = get_frame_arch (frame);
792
793 /* Skip registers wholly inside of OFFSET. */
794 while (offset >= register_size (gdbarch, regnum))
795 {
796 offset -= register_size (gdbarch, regnum);
797 regnum++;
798 }
799
800 /* Copy the data. */
801 while (len > 0)
802 {
803 int curr_len = register_size (gdbarch, regnum) - offset;
804 if (curr_len > len)
805 curr_len = len;
806
807 if (curr_len == register_size (gdbarch, regnum))
808 {
809 put_frame_register (frame, regnum, myaddr);
810 }
811 else
812 {
813 gdb_byte buf[MAX_REGISTER_SIZE];
814 frame_register_read (frame, regnum, buf);
815 memcpy (buf + offset, myaddr, curr_len);
816 put_frame_register (frame, regnum, buf);
817 }
818
819 myaddr += curr_len;
820 len -= curr_len;
821 offset = 0;
822 regnum++;
823 }
824 }
825
826 /* Map between a frame register number and its name. A frame register
827 space is a superset of the cooked register space --- it also
828 includes builtin registers. */
829
830 int
831 frame_map_name_to_regnum (struct frame_info *frame, const char *name, int len)
832 {
833 return user_reg_map_name_to_regnum (get_frame_arch (frame), name, len);
834 }
835
836 const char *
837 frame_map_regnum_to_name (struct frame_info *frame, int regnum)
838 {
839 return user_reg_map_regnum_to_name (get_frame_arch (frame), regnum);
840 }
841
842 /* Create a sentinel frame. */
843
844 static struct frame_info *
845 create_sentinel_frame (struct regcache *regcache)
846 {
847 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
848 frame->level = -1;
849 /* Explicitly initialize the sentinel frame's cache. Provide it
850 with the underlying regcache. In the future additional
851 information, such as the frame's thread will be added. */
852 frame->prologue_cache = sentinel_frame_cache (regcache);
853 /* For the moment there is only one sentinel frame implementation. */
854 frame->unwind = sentinel_frame_unwind;
855 /* Link this frame back to itself. The frame is self referential
856 (the unwound PC is the same as the pc), so make it so. */
857 frame->next = frame;
858 /* Make the sentinel frame's ID valid, but invalid. That way all
859 comparisons with it should fail. */
860 frame->this_id.p = 1;
861 frame->this_id.value = null_frame_id;
862 if (frame_debug)
863 {
864 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
865 fprint_frame (gdb_stdlog, frame);
866 fprintf_unfiltered (gdb_stdlog, " }\n");
867 }
868 return frame;
869 }
870
871 /* Info about the innermost stack frame (contents of FP register) */
872
873 static struct frame_info *current_frame;
874
875 /* Cache for frame addresses already read by gdb. Valid only while
876 inferior is stopped. Control variables for the frame cache should
877 be local to this module. */
878
879 static struct obstack frame_cache_obstack;
880
881 void *
882 frame_obstack_zalloc (unsigned long size)
883 {
884 void *data = obstack_alloc (&frame_cache_obstack, size);
885 memset (data, 0, size);
886 return data;
887 }
888
889 /* Return the innermost (currently executing) stack frame. This is
890 split into two functions. The function unwind_to_current_frame()
891 is wrapped in catch exceptions so that, even when the unwind of the
892 sentinel frame fails, the function still returns a stack frame. */
893
894 static int
895 unwind_to_current_frame (struct ui_out *ui_out, void *args)
896 {
897 struct frame_info *frame = get_prev_frame (args);
898 /* A sentinel frame can fail to unwind, e.g., because its PC value
899 lands in somewhere like start. */
900 if (frame == NULL)
901 return 1;
902 current_frame = frame;
903 return 0;
904 }
905
906 struct frame_info *
907 get_current_frame (void)
908 {
909 /* First check, and report, the lack of registers. Having GDB
910 report "No stack!" or "No memory" when the target doesn't even
911 have registers is very confusing. Besides, "printcmd.exp"
912 explicitly checks that ``print $pc'' with no registers prints "No
913 registers". */
914 if (!target_has_registers)
915 error (_("No registers."));
916 if (!target_has_stack)
917 error (_("No stack."));
918 if (!target_has_memory)
919 error (_("No memory."));
920 if (current_frame == NULL)
921 {
922 struct frame_info *sentinel_frame =
923 create_sentinel_frame (current_regcache);
924 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
925 RETURN_MASK_ERROR) != 0)
926 {
927 /* Oops! Fake a current frame? Is this useful? It has a PC
928 of zero, for instance. */
929 current_frame = sentinel_frame;
930 }
931 }
932 return current_frame;
933 }
934
935 /* The "selected" stack frame is used by default for local and arg
936 access. May be zero, for no selected frame. */
937
938 struct frame_info *deprecated_selected_frame;
939
940 /* Return the selected frame. Always non-NULL (unless there isn't an
941 inferior sufficient for creating a frame) in which case an error is
942 thrown. */
943
944 struct frame_info *
945 get_selected_frame (const char *message)
946 {
947 if (deprecated_selected_frame == NULL)
948 {
949 if (message != NULL && (!target_has_registers
950 || !target_has_stack
951 || !target_has_memory))
952 error (("%s"), message);
953 /* Hey! Don't trust this. It should really be re-finding the
954 last selected frame of the currently selected thread. This,
955 though, is better than nothing. */
956 select_frame (get_current_frame ());
957 }
958 /* There is always a frame. */
959 gdb_assert (deprecated_selected_frame != NULL);
960 return deprecated_selected_frame;
961 }
962
963 /* This is a variant of get_selected_frame() which can be called when
964 the inferior does not have a frame; in that case it will return
965 NULL instead of calling error(). */
966
967 struct frame_info *
968 deprecated_safe_get_selected_frame (void)
969 {
970 if (!target_has_registers || !target_has_stack || !target_has_memory)
971 return NULL;
972 return get_selected_frame (NULL);
973 }
974
975 /* Select frame FI (or NULL - to invalidate the current frame). */
976
977 void
978 select_frame (struct frame_info *fi)
979 {
980 struct symtab *s;
981
982 deprecated_selected_frame = fi;
983 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
984 frame is being invalidated. */
985 if (deprecated_selected_frame_level_changed_hook)
986 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
987
988 /* FIXME: kseitz/2002-08-28: It would be nice to call
989 selected_frame_level_changed_event() right here, but due to limitations
990 in the current interfaces, we would end up flooding UIs with events
991 because select_frame() is used extensively internally.
992
993 Once we have frame-parameterized frame (and frame-related) commands,
994 the event notification can be moved here, since this function will only
995 be called when the user's selected frame is being changed. */
996
997 /* Ensure that symbols for this frame are read in. Also, determine the
998 source language of this frame, and switch to it if desired. */
999 if (fi)
1000 {
1001 /* We retrieve the frame's symtab by using the frame PC. However
1002 we cannot use the frame PC as-is, because it usually points to
1003 the instruction following the "call", which is sometimes the
1004 first instruction of another function. So we rely on
1005 get_frame_address_in_block() which provides us with a PC which
1006 is guaranteed to be inside the frame's code block. */
1007 s = find_pc_symtab (get_frame_address_in_block (fi));
1008 if (s
1009 && s->language != current_language->la_language
1010 && s->language != language_unknown
1011 && language_mode == language_mode_auto)
1012 {
1013 set_language (s->language);
1014 }
1015 }
1016 }
1017
1018 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1019 Always returns a non-NULL value. */
1020
1021 struct frame_info *
1022 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1023 {
1024 struct frame_info *fi;
1025
1026 if (frame_debug)
1027 {
1028 fprintf_unfiltered (gdb_stdlog,
1029 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1030 paddr_nz (addr), paddr_nz (pc));
1031 }
1032
1033 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1034
1035 fi->next = create_sentinel_frame (current_regcache);
1036
1037 /* Select/initialize both the unwind function and the frame's type
1038 based on the PC. */
1039 fi->unwind = frame_unwind_find_by_frame (fi->next, &fi->prologue_cache);
1040
1041 fi->this_id.p = 1;
1042 deprecated_update_frame_base_hack (fi, addr);
1043 deprecated_update_frame_pc_hack (fi, pc);
1044
1045 if (frame_debug)
1046 {
1047 fprintf_unfiltered (gdb_stdlog, "-> ");
1048 fprint_frame (gdb_stdlog, fi);
1049 fprintf_unfiltered (gdb_stdlog, " }\n");
1050 }
1051
1052 return fi;
1053 }
1054
1055 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1056 innermost frame). Be careful to not fall off the bottom of the
1057 frame chain and onto the sentinel frame. */
1058
1059 struct frame_info *
1060 get_next_frame (struct frame_info *this_frame)
1061 {
1062 if (this_frame->level > 0)
1063 return this_frame->next;
1064 else
1065 return NULL;
1066 }
1067
1068 /* Observer for the target_changed event. */
1069
1070 void
1071 frame_observer_target_changed (struct target_ops *target)
1072 {
1073 flush_cached_frames ();
1074 }
1075
1076 /* Flush the entire frame cache. */
1077
1078 void
1079 flush_cached_frames (void)
1080 {
1081 /* Since we can't really be sure what the first object allocated was */
1082 obstack_free (&frame_cache_obstack, 0);
1083 obstack_init (&frame_cache_obstack);
1084
1085 current_frame = NULL; /* Invalidate cache */
1086 select_frame (NULL);
1087 annotate_frames_invalid ();
1088 if (frame_debug)
1089 fprintf_unfiltered (gdb_stdlog, "{ flush_cached_frames () }\n");
1090 }
1091
1092 /* Flush the frame cache, and start a new one if necessary. */
1093
1094 void
1095 reinit_frame_cache (void)
1096 {
1097 flush_cached_frames ();
1098
1099 /* FIXME: The inferior_ptid test is wrong if there is a corefile. */
1100 if (PIDGET (inferior_ptid) != 0)
1101 {
1102 select_frame (get_current_frame ());
1103 }
1104 }
1105
1106 /* Find where a register is saved (in memory or another register).
1107 The result of frame_register_unwind is just where it is saved
1108 relative to this particular frame. */
1109
1110 static void
1111 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1112 int *optimizedp, enum lval_type *lvalp,
1113 CORE_ADDR *addrp, int *realnump)
1114 {
1115 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1116
1117 while (this_frame != NULL)
1118 {
1119 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1120 addrp, realnump, NULL);
1121
1122 if (*optimizedp)
1123 break;
1124
1125 if (*lvalp != lval_register)
1126 break;
1127
1128 regnum = *realnump;
1129 this_frame = get_next_frame (this_frame);
1130 }
1131 }
1132
1133 /* Return a "struct frame_info" corresponding to the frame that called
1134 THIS_FRAME. Returns NULL if there is no such frame.
1135
1136 Unlike get_prev_frame, this function always tries to unwind the
1137 frame. */
1138
1139 static struct frame_info *
1140 get_prev_frame_1 (struct frame_info *this_frame)
1141 {
1142 struct frame_info *prev_frame;
1143 struct frame_id this_id;
1144
1145 gdb_assert (this_frame != NULL);
1146
1147 if (frame_debug)
1148 {
1149 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1150 if (this_frame != NULL)
1151 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1152 else
1153 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1154 fprintf_unfiltered (gdb_stdlog, ") ");
1155 }
1156
1157 /* Only try to do the unwind once. */
1158 if (this_frame->prev_p)
1159 {
1160 if (frame_debug)
1161 {
1162 fprintf_unfiltered (gdb_stdlog, "-> ");
1163 fprint_frame (gdb_stdlog, this_frame->prev);
1164 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1165 }
1166 return this_frame->prev;
1167 }
1168 this_frame->prev_p = 1;
1169 this_frame->stop_reason = UNWIND_NO_REASON;
1170
1171 /* Check that this frame's ID was valid. If it wasn't, don't try to
1172 unwind to the prev frame. Be careful to not apply this test to
1173 the sentinel frame. */
1174 this_id = get_frame_id (this_frame);
1175 if (this_frame->level >= 0 && !frame_id_p (this_id))
1176 {
1177 if (frame_debug)
1178 {
1179 fprintf_unfiltered (gdb_stdlog, "-> ");
1180 fprint_frame (gdb_stdlog, NULL);
1181 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1182 }
1183 this_frame->stop_reason = UNWIND_NULL_ID;
1184 return NULL;
1185 }
1186
1187 /* Check that this frame's ID isn't inner to (younger, below, next)
1188 the next frame. This happens when a frame unwind goes backwards.
1189 Exclude signal trampolines (due to sigaltstack the frame ID can
1190 go backwards) and sentinel frames (the test is meaningless). */
1191 if (this_frame->next->level >= 0
1192 && this_frame->next->unwind->type != SIGTRAMP_FRAME
1193 && frame_id_inner (this_id, get_frame_id (this_frame->next)))
1194 {
1195 if (frame_debug)
1196 {
1197 fprintf_unfiltered (gdb_stdlog, "-> ");
1198 fprint_frame (gdb_stdlog, NULL);
1199 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1200 }
1201 this_frame->stop_reason = UNWIND_INNER_ID;
1202 return NULL;
1203 }
1204
1205 /* Check that this and the next frame are not identical. If they
1206 are, there is most likely a stack cycle. As with the inner-than
1207 test above, avoid comparing the inner-most and sentinel frames. */
1208 if (this_frame->level > 0
1209 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1210 {
1211 if (frame_debug)
1212 {
1213 fprintf_unfiltered (gdb_stdlog, "-> ");
1214 fprint_frame (gdb_stdlog, NULL);
1215 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1216 }
1217 this_frame->stop_reason = UNWIND_SAME_ID;
1218 return NULL;
1219 }
1220
1221 /* Check that this and the next frame do not unwind the PC register
1222 to the same memory location. If they do, then even though they
1223 have different frame IDs, the new frame will be bogus; two
1224 functions can't share a register save slot for the PC. This can
1225 happen when the prologue analyzer finds a stack adjustment, but
1226 no PC save.
1227
1228 This check does assume that the "PC register" is roughly a
1229 traditional PC, even if the gdbarch_unwind_pc method adjusts
1230 it (we do not rely on the value, only on the unwound PC being
1231 dependent on this value). A potential improvement would be
1232 to have the frame prev_pc method and the gdbarch unwind_pc
1233 method set the same lval and location information as
1234 frame_register_unwind. */
1235 if (this_frame->level > 0
1236 && PC_REGNUM >= 0
1237 && get_frame_type (this_frame) == NORMAL_FRAME
1238 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1239 {
1240 int optimized, realnum;
1241 enum lval_type lval, nlval;
1242 CORE_ADDR addr, naddr;
1243
1244 frame_register_unwind_location (this_frame, PC_REGNUM, &optimized,
1245 &lval, &addr, &realnum);
1246 frame_register_unwind_location (get_next_frame (this_frame), PC_REGNUM,
1247 &optimized, &nlval, &naddr, &realnum);
1248
1249 if (lval == lval_memory && lval == nlval && addr == naddr)
1250 {
1251 if (frame_debug)
1252 {
1253 fprintf_unfiltered (gdb_stdlog, "-> ");
1254 fprint_frame (gdb_stdlog, NULL);
1255 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1256 }
1257
1258 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1259 this_frame->prev = NULL;
1260 return NULL;
1261 }
1262 }
1263
1264 /* Allocate the new frame but do not wire it in to the frame chain.
1265 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1266 frame->next to pull some fancy tricks (of course such code is, by
1267 definition, recursive). Try to prevent it.
1268
1269 There is no reason to worry about memory leaks, should the
1270 remainder of the function fail. The allocated memory will be
1271 quickly reclaimed when the frame cache is flushed, and the `we've
1272 been here before' check above will stop repeated memory
1273 allocation calls. */
1274 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1275 prev_frame->level = this_frame->level + 1;
1276
1277 /* Don't yet compute ->unwind (and hence ->type). It is computed
1278 on-demand in get_frame_type, frame_register_unwind, and
1279 get_frame_id. */
1280
1281 /* Don't yet compute the frame's ID. It is computed on-demand by
1282 get_frame_id(). */
1283
1284 /* The unwound frame ID is validate at the start of this function,
1285 as part of the logic to decide if that frame should be further
1286 unwound, and not here while the prev frame is being created.
1287 Doing this makes it possible for the user to examine a frame that
1288 has an invalid frame ID.
1289
1290 Some very old VAX code noted: [...] For the sake of argument,
1291 suppose that the stack is somewhat trashed (which is one reason
1292 that "info frame" exists). So, return 0 (indicating we don't
1293 know the address of the arglist) if we don't know what frame this
1294 frame calls. */
1295
1296 /* Link it in. */
1297 this_frame->prev = prev_frame;
1298 prev_frame->next = this_frame;
1299
1300 if (frame_debug)
1301 {
1302 fprintf_unfiltered (gdb_stdlog, "-> ");
1303 fprint_frame (gdb_stdlog, prev_frame);
1304 fprintf_unfiltered (gdb_stdlog, " }\n");
1305 }
1306
1307 return prev_frame;
1308 }
1309
1310 /* Debug routine to print a NULL frame being returned. */
1311
1312 static void
1313 frame_debug_got_null_frame (struct ui_file *file,
1314 struct frame_info *this_frame,
1315 const char *reason)
1316 {
1317 if (frame_debug)
1318 {
1319 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1320 if (this_frame != NULL)
1321 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1322 else
1323 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1324 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1325 }
1326 }
1327
1328 /* Is this (non-sentinel) frame in the "main"() function? */
1329
1330 static int
1331 inside_main_func (struct frame_info *this_frame)
1332 {
1333 struct minimal_symbol *msymbol;
1334 CORE_ADDR maddr;
1335
1336 if (symfile_objfile == 0)
1337 return 0;
1338 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1339 if (msymbol == NULL)
1340 return 0;
1341 /* Make certain that the code, and not descriptor, address is
1342 returned. */
1343 maddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
1344 SYMBOL_VALUE_ADDRESS (msymbol),
1345 &current_target);
1346 return maddr == get_frame_func (this_frame);
1347 }
1348
1349 /* Test whether THIS_FRAME is inside the process entry point function. */
1350
1351 static int
1352 inside_entry_func (struct frame_info *this_frame)
1353 {
1354 return (get_frame_func (this_frame) == entry_point_address ());
1355 }
1356
1357 /* Return a structure containing various interesting information about
1358 the frame that called THIS_FRAME. Returns NULL if there is entier
1359 no such frame or the frame fails any of a set of target-independent
1360 condition that should terminate the frame chain (e.g., as unwinding
1361 past main()).
1362
1363 This function should not contain target-dependent tests, such as
1364 checking whether the program-counter is zero. */
1365
1366 struct frame_info *
1367 get_prev_frame (struct frame_info *this_frame)
1368 {
1369 struct frame_info *prev_frame;
1370
1371 /* Return the inner-most frame, when the caller passes in NULL. */
1372 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1373 caller should have previously obtained a valid frame using
1374 get_selected_frame() and then called this code - only possibility
1375 I can think of is code behaving badly.
1376
1377 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1378 block_innermost_frame(). It does the sequence: frame = NULL;
1379 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1380 it couldn't be written better, I don't know.
1381
1382 NOTE: cagney/2003-01-11: I suspect what is happening in
1383 block_innermost_frame() is, when the target has no state
1384 (registers, memory, ...), it is still calling this function. The
1385 assumption being that this function will return NULL indicating
1386 that a frame isn't possible, rather than checking that the target
1387 has state and then calling get_current_frame() and
1388 get_prev_frame(). This is a guess mind. */
1389 if (this_frame == NULL)
1390 {
1391 /* NOTE: cagney/2002-11-09: There was a code segment here that
1392 would error out when CURRENT_FRAME was NULL. The comment
1393 that went with it made the claim ...
1394
1395 ``This screws value_of_variable, which just wants a nice
1396 clean NULL return from block_innermost_frame if there are no
1397 frames. I don't think I've ever seen this message happen
1398 otherwise. And returning NULL here is a perfectly legitimate
1399 thing to do.''
1400
1401 Per the above, this code shouldn't even be called with a NULL
1402 THIS_FRAME. */
1403 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1404 return current_frame;
1405 }
1406
1407 /* There is always a frame. If this assertion fails, suspect that
1408 something should be calling get_selected_frame() or
1409 get_current_frame(). */
1410 gdb_assert (this_frame != NULL);
1411
1412 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1413 sense to stop unwinding at a dummy frame. One place where a dummy
1414 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1415 pcsqh register (space register for the instruction at the head of the
1416 instruction queue) cannot be written directly; the only way to set it
1417 is to branch to code that is in the target space. In order to implement
1418 frame dummies on HPUX, the called function is made to jump back to where
1419 the inferior was when the user function was called. If gdb was inside
1420 the main function when we created the dummy frame, the dummy frame will
1421 point inside the main function. */
1422 if (this_frame->level >= 0
1423 && get_frame_type (this_frame) != DUMMY_FRAME
1424 && !backtrace_past_main
1425 && inside_main_func (this_frame))
1426 /* Don't unwind past main(). Note, this is done _before_ the
1427 frame has been marked as previously unwound. That way if the
1428 user later decides to enable unwinds past main(), that will
1429 automatically happen. */
1430 {
1431 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1432 return NULL;
1433 }
1434
1435 /* If the user's backtrace limit has been exceeded, stop. We must
1436 add two to the current level; one of those accounts for backtrace_limit
1437 being 1-based and the level being 0-based, and the other accounts for
1438 the level of the new frame instead of the level of the current
1439 frame. */
1440 if (this_frame->level + 2 > backtrace_limit)
1441 {
1442 frame_debug_got_null_frame (gdb_stdlog, this_frame,
1443 "backtrace limit exceeded");
1444 return NULL;
1445 }
1446
1447 /* If we're already inside the entry function for the main objfile,
1448 then it isn't valid. Don't apply this test to a dummy frame -
1449 dummy frame PCs typically land in the entry func. Don't apply
1450 this test to the sentinel frame. Sentinel frames should always
1451 be allowed to unwind. */
1452 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1453 wasn't checking for "main" in the minimal symbols. With that
1454 fixed asm-source tests now stop in "main" instead of halting the
1455 backtrace in weird and wonderful ways somewhere inside the entry
1456 file. Suspect that tests for inside the entry file/func were
1457 added to work around that (now fixed) case. */
1458 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1459 suggested having the inside_entry_func test use the
1460 inside_main_func() msymbol trick (along with entry_point_address()
1461 I guess) to determine the address range of the start function.
1462 That should provide a far better stopper than the current
1463 heuristics. */
1464 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1465 applied tail-call optimizations to main so that a function called
1466 from main returns directly to the caller of main. Since we don't
1467 stop at main, we should at least stop at the entry point of the
1468 application. */
1469 if (!backtrace_past_entry
1470 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1471 && inside_entry_func (this_frame))
1472 {
1473 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1474 return NULL;
1475 }
1476
1477 /* Assume that the only way to get a zero PC is through something
1478 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1479 will never unwind a zero PC. */
1480 if (this_frame->level > 0
1481 && get_frame_type (this_frame) == NORMAL_FRAME
1482 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1483 && get_frame_pc (this_frame) == 0)
1484 {
1485 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1486 return NULL;
1487 }
1488
1489 return get_prev_frame_1 (this_frame);
1490 }
1491
1492 CORE_ADDR
1493 get_frame_pc (struct frame_info *frame)
1494 {
1495 gdb_assert (frame->next != NULL);
1496 return frame_pc_unwind (frame->next);
1497 }
1498
1499 /* Return an address of that falls within the frame's code block. */
1500
1501 CORE_ADDR
1502 frame_unwind_address_in_block (struct frame_info *next_frame)
1503 {
1504 /* A draft address. */
1505 CORE_ADDR pc = frame_pc_unwind (next_frame);
1506
1507 /* If THIS frame is not inner most (i.e., NEXT isn't the sentinel),
1508 and NEXT is `normal' (i.e., not a sigtramp, dummy, ....) THIS
1509 frame's PC ends up pointing at the instruction fallowing the
1510 "call". Adjust that PC value so that it falls on the call
1511 instruction (which, hopefully, falls within THIS frame's code
1512 block. So far it's proved to be a very good approximation. See
1513 get_frame_type() for why ->type can't be used. */
1514 if (next_frame->level >= 0
1515 && get_frame_type (next_frame) == NORMAL_FRAME)
1516 --pc;
1517 return pc;
1518 }
1519
1520 CORE_ADDR
1521 get_frame_address_in_block (struct frame_info *this_frame)
1522 {
1523 return frame_unwind_address_in_block (this_frame->next);
1524 }
1525
1526 static int
1527 pc_notcurrent (struct frame_info *frame)
1528 {
1529 /* If FRAME is not the innermost frame, that normally means that
1530 FRAME->pc points at the return instruction (which is *after* the
1531 call instruction), and we want to get the line containing the
1532 call (because the call is where the user thinks the program is).
1533 However, if the next frame is either a SIGTRAMP_FRAME or a
1534 DUMMY_FRAME, then the next frame will contain a saved interrupt
1535 PC and such a PC indicates the current (rather than next)
1536 instruction/line, consequently, for such cases, want to get the
1537 line containing fi->pc. */
1538 struct frame_info *next = get_next_frame (frame);
1539 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1540 return notcurrent;
1541 }
1542
1543 void
1544 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1545 {
1546 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1547 }
1548
1549 /* Per "frame.h", return the ``address'' of the frame. Code should
1550 really be using get_frame_id(). */
1551 CORE_ADDR
1552 get_frame_base (struct frame_info *fi)
1553 {
1554 return get_frame_id (fi).stack_addr;
1555 }
1556
1557 /* High-level offsets into the frame. Used by the debug info. */
1558
1559 CORE_ADDR
1560 get_frame_base_address (struct frame_info *fi)
1561 {
1562 if (get_frame_type (fi) != NORMAL_FRAME)
1563 return 0;
1564 if (fi->base == NULL)
1565 fi->base = frame_base_find_by_frame (fi->next);
1566 /* Sneaky: If the low-level unwind and high-level base code share a
1567 common unwinder, let them share the prologue cache. */
1568 if (fi->base->unwind == fi->unwind)
1569 return fi->base->this_base (fi->next, &fi->prologue_cache);
1570 return fi->base->this_base (fi->next, &fi->base_cache);
1571 }
1572
1573 CORE_ADDR
1574 get_frame_locals_address (struct frame_info *fi)
1575 {
1576 void **cache;
1577 if (get_frame_type (fi) != NORMAL_FRAME)
1578 return 0;
1579 /* If there isn't a frame address method, find it. */
1580 if (fi->base == NULL)
1581 fi->base = frame_base_find_by_frame (fi->next);
1582 /* Sneaky: If the low-level unwind and high-level base code share a
1583 common unwinder, let them share the prologue cache. */
1584 if (fi->base->unwind == fi->unwind)
1585 cache = &fi->prologue_cache;
1586 else
1587 cache = &fi->base_cache;
1588 return fi->base->this_locals (fi->next, cache);
1589 }
1590
1591 CORE_ADDR
1592 get_frame_args_address (struct frame_info *fi)
1593 {
1594 void **cache;
1595 if (get_frame_type (fi) != NORMAL_FRAME)
1596 return 0;
1597 /* If there isn't a frame address method, find it. */
1598 if (fi->base == NULL)
1599 fi->base = frame_base_find_by_frame (fi->next);
1600 /* Sneaky: If the low-level unwind and high-level base code share a
1601 common unwinder, let them share the prologue cache. */
1602 if (fi->base->unwind == fi->unwind)
1603 cache = &fi->prologue_cache;
1604 else
1605 cache = &fi->base_cache;
1606 return fi->base->this_args (fi->next, cache);
1607 }
1608
1609 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1610 or -1 for a NULL frame. */
1611
1612 int
1613 frame_relative_level (struct frame_info *fi)
1614 {
1615 if (fi == NULL)
1616 return -1;
1617 else
1618 return fi->level;
1619 }
1620
1621 enum frame_type
1622 get_frame_type (struct frame_info *frame)
1623 {
1624 if (frame->unwind == NULL)
1625 /* Initialize the frame's unwinder because that's what
1626 provides the frame's type. */
1627 frame->unwind = frame_unwind_find_by_frame (frame->next,
1628 &frame->prologue_cache);
1629 return frame->unwind->type;
1630 }
1631
1632 void
1633 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1634 {
1635 if (frame_debug)
1636 fprintf_unfiltered (gdb_stdlog,
1637 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1638 frame->level, paddr_nz (pc));
1639 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1640 maintaining a locally allocated frame object. Since such frames
1641 are not in the frame chain, it isn't possible to assume that the
1642 frame has a next. Sigh. */
1643 if (frame->next != NULL)
1644 {
1645 /* While we're at it, update this frame's cached PC value, found
1646 in the next frame. Oh for the day when "struct frame_info"
1647 is opaque and this hack on hack can just go away. */
1648 frame->next->prev_pc.value = pc;
1649 frame->next->prev_pc.p = 1;
1650 }
1651 }
1652
1653 void
1654 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1655 {
1656 if (frame_debug)
1657 fprintf_unfiltered (gdb_stdlog,
1658 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1659 frame->level, paddr_nz (base));
1660 /* See comment in "frame.h". */
1661 frame->this_id.value.stack_addr = base;
1662 }
1663
1664 /* Memory access methods. */
1665
1666 void
1667 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1668 gdb_byte *buf, int len)
1669 {
1670 read_memory (addr, buf, len);
1671 }
1672
1673 LONGEST
1674 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1675 int len)
1676 {
1677 return read_memory_integer (addr, len);
1678 }
1679
1680 ULONGEST
1681 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1682 int len)
1683 {
1684 return read_memory_unsigned_integer (addr, len);
1685 }
1686
1687 int
1688 safe_frame_unwind_memory (struct frame_info *this_frame,
1689 CORE_ADDR addr, gdb_byte *buf, int len)
1690 {
1691 /* NOTE: read_memory_nobpt returns zero on success! */
1692 return !read_memory_nobpt (addr, buf, len);
1693 }
1694
1695 /* Architecture method. */
1696
1697 struct gdbarch *
1698 get_frame_arch (struct frame_info *this_frame)
1699 {
1700 return current_gdbarch;
1701 }
1702
1703 /* Stack pointer methods. */
1704
1705 CORE_ADDR
1706 get_frame_sp (struct frame_info *this_frame)
1707 {
1708 return frame_sp_unwind (this_frame->next);
1709 }
1710
1711 CORE_ADDR
1712 frame_sp_unwind (struct frame_info *next_frame)
1713 {
1714 /* Normality - an architecture that provides a way of obtaining any
1715 frame inner-most address. */
1716 if (gdbarch_unwind_sp_p (current_gdbarch))
1717 return gdbarch_unwind_sp (current_gdbarch, next_frame);
1718 /* Things are looking grim. If it's the inner-most frame and there
1719 is a TARGET_READ_SP, then that can be used. */
1720 if (next_frame->level < 0 && TARGET_READ_SP_P ())
1721 return TARGET_READ_SP ();
1722 /* Now things are really are grim. Hope that the value returned by
1723 the SP_REGNUM register is meaningful. */
1724 if (SP_REGNUM >= 0)
1725 {
1726 ULONGEST sp;
1727 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1728 return sp;
1729 }
1730 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1731 }
1732
1733 /* Return the reason why we can't unwind past FRAME. */
1734
1735 enum unwind_stop_reason
1736 get_frame_unwind_stop_reason (struct frame_info *frame)
1737 {
1738 /* If we haven't tried to unwind past this point yet, then assume
1739 that unwinding would succeed. */
1740 if (frame->prev_p == 0)
1741 return UNWIND_NO_REASON;
1742
1743 /* Otherwise, we set a reason when we succeeded (or failed) to
1744 unwind. */
1745 return frame->stop_reason;
1746 }
1747
1748 /* Return a string explaining REASON. */
1749
1750 const char *
1751 frame_stop_reason_string (enum unwind_stop_reason reason)
1752 {
1753 switch (reason)
1754 {
1755 case UNWIND_NULL_ID:
1756 return _("unwinder did not report frame ID");
1757
1758 case UNWIND_INNER_ID:
1759 return _("previous frame inner to this frame (corrupt stack?)");
1760
1761 case UNWIND_SAME_ID:
1762 return _("previous frame identical to this frame (corrupt stack?)");
1763
1764 case UNWIND_NO_SAVED_PC:
1765 return _("frame did not save the PC");
1766
1767 case UNWIND_NO_REASON:
1768 case UNWIND_FIRST_ERROR:
1769 default:
1770 internal_error (__FILE__, __LINE__,
1771 "Invalid frame stop reason");
1772 }
1773 }
1774
1775 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1776
1777 static struct cmd_list_element *set_backtrace_cmdlist;
1778 static struct cmd_list_element *show_backtrace_cmdlist;
1779
1780 static void
1781 set_backtrace_cmd (char *args, int from_tty)
1782 {
1783 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1784 }
1785
1786 static void
1787 show_backtrace_cmd (char *args, int from_tty)
1788 {
1789 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1790 }
1791
1792 void
1793 _initialize_frame (void)
1794 {
1795 obstack_init (&frame_cache_obstack);
1796
1797 observer_attach_target_changed (frame_observer_target_changed);
1798
1799 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1800 Set backtrace specific variables.\n\
1801 Configure backtrace variables such as the backtrace limit"),
1802 &set_backtrace_cmdlist, "set backtrace ",
1803 0/*allow-unknown*/, &setlist);
1804 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1805 Show backtrace specific variables\n\
1806 Show backtrace variables such as the backtrace limit"),
1807 &show_backtrace_cmdlist, "show backtrace ",
1808 0/*allow-unknown*/, &showlist);
1809
1810 add_setshow_boolean_cmd ("past-main", class_obscure,
1811 &backtrace_past_main, _("\
1812 Set whether backtraces should continue past \"main\"."), _("\
1813 Show whether backtraces should continue past \"main\"."), _("\
1814 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1815 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1816 of the stack trace."),
1817 NULL,
1818 show_backtrace_past_main,
1819 &set_backtrace_cmdlist,
1820 &show_backtrace_cmdlist);
1821
1822 add_setshow_boolean_cmd ("past-entry", class_obscure,
1823 &backtrace_past_entry, _("\
1824 Set whether backtraces should continue past the entry point of a program."),
1825 _("\
1826 Show whether backtraces should continue past the entry point of a program."),
1827 _("\
1828 Normally there are no callers beyond the entry point of a program, so GDB\n\
1829 will terminate the backtrace there. Set this variable if you need to see \n\
1830 the rest of the stack trace."),
1831 NULL,
1832 show_backtrace_past_entry,
1833 &set_backtrace_cmdlist,
1834 &show_backtrace_cmdlist);
1835
1836 add_setshow_integer_cmd ("limit", class_obscure,
1837 &backtrace_limit, _("\
1838 Set an upper bound on the number of backtrace levels."), _("\
1839 Show the upper bound on the number of backtrace levels."), _("\
1840 No more than the specified number of frames can be displayed or examined.\n\
1841 Zero is unlimited."),
1842 NULL,
1843 show_backtrace_limit,
1844 &set_backtrace_cmdlist,
1845 &show_backtrace_cmdlist);
1846
1847 /* Debug this files internals. */
1848 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1849 Set frame debugging."), _("\
1850 Show frame debugging."), _("\
1851 When non-zero, frame specific internal debugging is enabled."),
1852 NULL,
1853 show_frame_debug,
1854 &setdebuglist, &showdebuglist);
1855 }
This page took 0.094219 seconds and 4 git commands to generate.