* thread.c (restore_selected_frame): Handle frame_level == -1.
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "target.h"
25 #include "value.h"
26 #include "inferior.h" /* for inferior_ptid */
27 #include "regcache.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "user-regs.h"
31 #include "gdb_obstack.h"
32 #include "dummy-frame.h"
33 #include "sentinel-frame.h"
34 #include "gdbcore.h"
35 #include "annotate.h"
36 #include "language.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "command.h"
40 #include "gdbcmd.h"
41 #include "observer.h"
42 #include "objfiles.h"
43 #include "exceptions.h"
44 #include "gdbthread.h"
45 #include "block.h"
46 #include "inline-frame.h"
47 #include "tracepoint.h"
48
49 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
50 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
51
52 /* We keep a cache of stack frames, each of which is a "struct
53 frame_info". The innermost one gets allocated (in
54 wait_for_inferior) each time the inferior stops; current_frame
55 points to it. Additional frames get allocated (in get_prev_frame)
56 as needed, and are chained through the next and prev fields. Any
57 time that the frame cache becomes invalid (most notably when we
58 execute something, but also if we change how we interpret the
59 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
60 which reads new symbols)), we should call reinit_frame_cache. */
61
62 struct frame_info
63 {
64 /* Level of this frame. The inner-most (youngest) frame is at level
65 0. As you move towards the outer-most (oldest) frame, the level
66 increases. This is a cached value. It could just as easily be
67 computed by counting back from the selected frame to the inner
68 most frame. */
69 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
70 reserved to indicate a bogus frame - one that has been created
71 just to keep GDB happy (GDB always needs a frame). For the
72 moment leave this as speculation. */
73 int level;
74
75 /* The frame's program space. */
76 struct program_space *pspace;
77
78 /* The frame's address space. */
79 struct address_space *aspace;
80
81 /* The frame's low-level unwinder and corresponding cache. The
82 low-level unwinder is responsible for unwinding register values
83 for the previous frame. The low-level unwind methods are
84 selected based on the presence, or otherwise, of register unwind
85 information such as CFI. */
86 void *prologue_cache;
87 const struct frame_unwind *unwind;
88
89 /* Cached copy of the previous frame's architecture. */
90 struct
91 {
92 int p;
93 struct gdbarch *arch;
94 } prev_arch;
95
96 /* Cached copy of the previous frame's resume address. */
97 struct {
98 int p;
99 CORE_ADDR value;
100 } prev_pc;
101
102 /* Cached copy of the previous frame's function address. */
103 struct
104 {
105 CORE_ADDR addr;
106 int p;
107 } prev_func;
108
109 /* This frame's ID. */
110 struct
111 {
112 int p;
113 struct frame_id value;
114 } this_id;
115
116 /* The frame's high-level base methods, and corresponding cache.
117 The high level base methods are selected based on the frame's
118 debug info. */
119 const struct frame_base *base;
120 void *base_cache;
121
122 /* Pointers to the next (down, inner, younger) and previous (up,
123 outer, older) frame_info's in the frame cache. */
124 struct frame_info *next; /* down, inner, younger */
125 int prev_p;
126 struct frame_info *prev; /* up, outer, older */
127
128 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
129 could. Only valid when PREV_P is set. */
130 enum unwind_stop_reason stop_reason;
131 };
132
133 /* A frame stash used to speed up frame lookups. */
134
135 /* We currently only stash one frame at a time, as this seems to be
136 sufficient for now. */
137 static struct frame_info *frame_stash = NULL;
138
139 /* Add the following FRAME to the frame stash. */
140
141 static void
142 frame_stash_add (struct frame_info *frame)
143 {
144 frame_stash = frame;
145 }
146
147 /* Search the frame stash for an entry with the given frame ID.
148 If found, return that frame. Otherwise return NULL. */
149
150 static struct frame_info *
151 frame_stash_find (struct frame_id id)
152 {
153 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
154 return frame_stash;
155
156 return NULL;
157 }
158
159 /* Invalidate the frame stash by removing all entries in it. */
160
161 static void
162 frame_stash_invalidate (void)
163 {
164 frame_stash = NULL;
165 }
166
167 /* Flag to control debugging. */
168
169 int frame_debug;
170 static void
171 show_frame_debug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
175 }
176
177 /* Flag to indicate whether backtraces should stop at main et.al. */
178
179 static int backtrace_past_main;
180 static void
181 show_backtrace_past_main (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file,
185 _("Whether backtraces should "
186 "continue past \"main\" is %s.\n"),
187 value);
188 }
189
190 static int backtrace_past_entry;
191 static void
192 show_backtrace_past_entry (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194 {
195 fprintf_filtered (file, _("Whether backtraces should continue past the "
196 "entry point of a program is %s.\n"),
197 value);
198 }
199
200 static int backtrace_limit = INT_MAX;
201 static void
202 show_backtrace_limit (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file,
206 _("An upper bound on the number "
207 "of backtrace levels is %s.\n"),
208 value);
209 }
210
211
212 static void
213 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
214 {
215 if (p)
216 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
217 else
218 fprintf_unfiltered (file, "!%s", name);
219 }
220
221 void
222 fprint_frame_id (struct ui_file *file, struct frame_id id)
223 {
224 fprintf_unfiltered (file, "{");
225 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
226 fprintf_unfiltered (file, ",");
227 fprint_field (file, "code", id.code_addr_p, id.code_addr);
228 fprintf_unfiltered (file, ",");
229 fprint_field (file, "special", id.special_addr_p, id.special_addr);
230 if (id.inline_depth)
231 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
232 fprintf_unfiltered (file, "}");
233 }
234
235 static void
236 fprint_frame_type (struct ui_file *file, enum frame_type type)
237 {
238 switch (type)
239 {
240 case NORMAL_FRAME:
241 fprintf_unfiltered (file, "NORMAL_FRAME");
242 return;
243 case DUMMY_FRAME:
244 fprintf_unfiltered (file, "DUMMY_FRAME");
245 return;
246 case INLINE_FRAME:
247 fprintf_unfiltered (file, "INLINE_FRAME");
248 return;
249 case SENTINEL_FRAME:
250 fprintf_unfiltered (file, "SENTINEL_FRAME");
251 return;
252 case SIGTRAMP_FRAME:
253 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
254 return;
255 case ARCH_FRAME:
256 fprintf_unfiltered (file, "ARCH_FRAME");
257 return;
258 default:
259 fprintf_unfiltered (file, "<unknown type>");
260 return;
261 };
262 }
263
264 static void
265 fprint_frame (struct ui_file *file, struct frame_info *fi)
266 {
267 if (fi == NULL)
268 {
269 fprintf_unfiltered (file, "<NULL frame>");
270 return;
271 }
272 fprintf_unfiltered (file, "{");
273 fprintf_unfiltered (file, "level=%d", fi->level);
274 fprintf_unfiltered (file, ",");
275 fprintf_unfiltered (file, "type=");
276 if (fi->unwind != NULL)
277 fprint_frame_type (file, fi->unwind->type);
278 else
279 fprintf_unfiltered (file, "<unknown>");
280 fprintf_unfiltered (file, ",");
281 fprintf_unfiltered (file, "unwind=");
282 if (fi->unwind != NULL)
283 gdb_print_host_address (fi->unwind, file);
284 else
285 fprintf_unfiltered (file, "<unknown>");
286 fprintf_unfiltered (file, ",");
287 fprintf_unfiltered (file, "pc=");
288 if (fi->next != NULL && fi->next->prev_pc.p)
289 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
290 else
291 fprintf_unfiltered (file, "<unknown>");
292 fprintf_unfiltered (file, ",");
293 fprintf_unfiltered (file, "id=");
294 if (fi->this_id.p)
295 fprint_frame_id (file, fi->this_id.value);
296 else
297 fprintf_unfiltered (file, "<unknown>");
298 fprintf_unfiltered (file, ",");
299 fprintf_unfiltered (file, "func=");
300 if (fi->next != NULL && fi->next->prev_func.p)
301 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
302 else
303 fprintf_unfiltered (file, "<unknown>");
304 fprintf_unfiltered (file, "}");
305 }
306
307 /* Given FRAME, return the enclosing normal frame for inlined
308 function frames. Otherwise return the original frame. */
309
310 static struct frame_info *
311 skip_inlined_frames (struct frame_info *frame)
312 {
313 while (get_frame_type (frame) == INLINE_FRAME)
314 frame = get_prev_frame (frame);
315
316 return frame;
317 }
318
319 /* Return a frame uniq ID that can be used to, later, re-find the
320 frame. */
321
322 struct frame_id
323 get_frame_id (struct frame_info *fi)
324 {
325 if (fi == NULL)
326 return null_frame_id;
327
328 if (!fi->this_id.p)
329 {
330 if (frame_debug)
331 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
332 fi->level);
333 /* Find the unwinder. */
334 if (fi->unwind == NULL)
335 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
336 /* Find THIS frame's ID. */
337 /* Default to outermost if no ID is found. */
338 fi->this_id.value = outer_frame_id;
339 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
340 gdb_assert (frame_id_p (fi->this_id.value));
341 fi->this_id.p = 1;
342 if (frame_debug)
343 {
344 fprintf_unfiltered (gdb_stdlog, "-> ");
345 fprint_frame_id (gdb_stdlog, fi->this_id.value);
346 fprintf_unfiltered (gdb_stdlog, " }\n");
347 }
348 }
349
350 frame_stash_add (fi);
351
352 return fi->this_id.value;
353 }
354
355 struct frame_id
356 get_stack_frame_id (struct frame_info *next_frame)
357 {
358 return get_frame_id (skip_inlined_frames (next_frame));
359 }
360
361 struct frame_id
362 frame_unwind_caller_id (struct frame_info *next_frame)
363 {
364 struct frame_info *this_frame;
365
366 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
367 the frame chain, leading to this function unintentionally
368 returning a null_frame_id (e.g., when a caller requests the frame
369 ID of "main()"s caller. */
370
371 next_frame = skip_inlined_frames (next_frame);
372 this_frame = get_prev_frame_1 (next_frame);
373 if (this_frame)
374 return get_frame_id (skip_inlined_frames (this_frame));
375 else
376 return null_frame_id;
377 }
378
379 const struct frame_id null_frame_id; /* All zeros. */
380 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
381
382 struct frame_id
383 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
384 CORE_ADDR special_addr)
385 {
386 struct frame_id id = null_frame_id;
387
388 id.stack_addr = stack_addr;
389 id.stack_addr_p = 1;
390 id.code_addr = code_addr;
391 id.code_addr_p = 1;
392 id.special_addr = special_addr;
393 id.special_addr_p = 1;
394 return id;
395 }
396
397 struct frame_id
398 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
399 {
400 struct frame_id id = null_frame_id;
401
402 id.stack_addr = stack_addr;
403 id.stack_addr_p = 1;
404 id.code_addr = code_addr;
405 id.code_addr_p = 1;
406 return id;
407 }
408
409 struct frame_id
410 frame_id_build_wild (CORE_ADDR stack_addr)
411 {
412 struct frame_id id = null_frame_id;
413
414 id.stack_addr = stack_addr;
415 id.stack_addr_p = 1;
416 return id;
417 }
418
419 int
420 frame_id_p (struct frame_id l)
421 {
422 int p;
423
424 /* The frame is valid iff it has a valid stack address. */
425 p = l.stack_addr_p;
426 /* outer_frame_id is also valid. */
427 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
428 p = 1;
429 if (frame_debug)
430 {
431 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
432 fprint_frame_id (gdb_stdlog, l);
433 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
434 }
435 return p;
436 }
437
438 int
439 frame_id_inlined_p (struct frame_id l)
440 {
441 if (!frame_id_p (l))
442 return 0;
443
444 return (l.inline_depth != 0);
445 }
446
447 int
448 frame_id_eq (struct frame_id l, struct frame_id r)
449 {
450 int eq;
451
452 if (!l.stack_addr_p && l.special_addr_p
453 && !r.stack_addr_p && r.special_addr_p)
454 /* The outermost frame marker is equal to itself. This is the
455 dodgy thing about outer_frame_id, since between execution steps
456 we might step into another function - from which we can't
457 unwind either. More thought required to get rid of
458 outer_frame_id. */
459 eq = 1;
460 else if (!l.stack_addr_p || !r.stack_addr_p)
461 /* Like a NaN, if either ID is invalid, the result is false.
462 Note that a frame ID is invalid iff it is the null frame ID. */
463 eq = 0;
464 else if (l.stack_addr != r.stack_addr)
465 /* If .stack addresses are different, the frames are different. */
466 eq = 0;
467 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
468 /* An invalid code addr is a wild card. If .code addresses are
469 different, the frames are different. */
470 eq = 0;
471 else if (l.special_addr_p && r.special_addr_p
472 && l.special_addr != r.special_addr)
473 /* An invalid special addr is a wild card (or unused). Otherwise
474 if special addresses are different, the frames are different. */
475 eq = 0;
476 else if (l.inline_depth != r.inline_depth)
477 /* If inline depths are different, the frames must be different. */
478 eq = 0;
479 else
480 /* Frames are equal. */
481 eq = 1;
482
483 if (frame_debug)
484 {
485 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
486 fprint_frame_id (gdb_stdlog, l);
487 fprintf_unfiltered (gdb_stdlog, ",r=");
488 fprint_frame_id (gdb_stdlog, r);
489 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
490 }
491 return eq;
492 }
493
494 /* Safety net to check whether frame ID L should be inner to
495 frame ID R, according to their stack addresses.
496
497 This method cannot be used to compare arbitrary frames, as the
498 ranges of valid stack addresses may be discontiguous (e.g. due
499 to sigaltstack).
500
501 However, it can be used as safety net to discover invalid frame
502 IDs in certain circumstances. Assuming that NEXT is the immediate
503 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
504
505 * The stack address of NEXT must be inner-than-or-equal to the stack
506 address of THIS.
507
508 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
509 error has occurred.
510
511 * If NEXT and THIS have different stack addresses, no other frame
512 in the frame chain may have a stack address in between.
513
514 Therefore, if frame_id_inner (TEST, THIS) holds, but
515 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
516 to a valid frame in the frame chain.
517
518 The sanity checks above cannot be performed when a SIGTRAMP frame
519 is involved, because signal handlers might be executed on a different
520 stack than the stack used by the routine that caused the signal
521 to be raised. This can happen for instance when a thread exceeds
522 its maximum stack size. In this case, certain compilers implement
523 a stack overflow strategy that cause the handler to be run on a
524 different stack. */
525
526 static int
527 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
528 {
529 int inner;
530
531 if (!l.stack_addr_p || !r.stack_addr_p)
532 /* Like NaN, any operation involving an invalid ID always fails. */
533 inner = 0;
534 else if (l.inline_depth > r.inline_depth
535 && l.stack_addr == r.stack_addr
536 && l.code_addr_p == r.code_addr_p
537 && l.special_addr_p == r.special_addr_p
538 && l.special_addr == r.special_addr)
539 {
540 /* Same function, different inlined functions. */
541 struct block *lb, *rb;
542
543 gdb_assert (l.code_addr_p && r.code_addr_p);
544
545 lb = block_for_pc (l.code_addr);
546 rb = block_for_pc (r.code_addr);
547
548 if (lb == NULL || rb == NULL)
549 /* Something's gone wrong. */
550 inner = 0;
551 else
552 /* This will return true if LB and RB are the same block, or
553 if the block with the smaller depth lexically encloses the
554 block with the greater depth. */
555 inner = contained_in (lb, rb);
556 }
557 else
558 /* Only return non-zero when strictly inner than. Note that, per
559 comment in "frame.h", there is some fuzz here. Frameless
560 functions are not strictly inner than (same .stack but
561 different .code and/or .special address). */
562 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
563 if (frame_debug)
564 {
565 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
566 fprint_frame_id (gdb_stdlog, l);
567 fprintf_unfiltered (gdb_stdlog, ",r=");
568 fprint_frame_id (gdb_stdlog, r);
569 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
570 }
571 return inner;
572 }
573
574 struct frame_info *
575 frame_find_by_id (struct frame_id id)
576 {
577 struct frame_info *frame, *prev_frame;
578
579 /* ZERO denotes the null frame, let the caller decide what to do
580 about it. Should it instead return get_current_frame()? */
581 if (!frame_id_p (id))
582 return NULL;
583
584 /* Try using the frame stash first. Finding it there removes the need
585 to perform the search by looping over all frames, which can be very
586 CPU-intensive if the number of frames is very high (the loop is O(n)
587 and get_prev_frame performs a series of checks that are relatively
588 expensive). This optimization is particularly useful when this function
589 is called from another function (such as value_fetch_lazy, case
590 VALUE_LVAL (val) == lval_register) which already loops over all frames,
591 making the overall behavior O(n^2). */
592 frame = frame_stash_find (id);
593 if (frame)
594 return frame;
595
596 for (frame = get_current_frame (); ; frame = prev_frame)
597 {
598 struct frame_id this = get_frame_id (frame);
599
600 if (frame_id_eq (id, this))
601 /* An exact match. */
602 return frame;
603
604 prev_frame = get_prev_frame (frame);
605 if (!prev_frame)
606 return NULL;
607
608 /* As a safety net to avoid unnecessary backtracing while trying
609 to find an invalid ID, we check for a common situation where
610 we can detect from comparing stack addresses that no other
611 frame in the current frame chain can have this ID. See the
612 comment at frame_id_inner for details. */
613 if (get_frame_type (frame) == NORMAL_FRAME
614 && !frame_id_inner (get_frame_arch (frame), id, this)
615 && frame_id_inner (get_frame_arch (prev_frame), id,
616 get_frame_id (prev_frame)))
617 return NULL;
618 }
619 return NULL;
620 }
621
622 static CORE_ADDR
623 frame_unwind_pc (struct frame_info *this_frame)
624 {
625 if (!this_frame->prev_pc.p)
626 {
627 CORE_ADDR pc;
628
629 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
630 {
631 /* The right way. The `pure' way. The one true way. This
632 method depends solely on the register-unwind code to
633 determine the value of registers in THIS frame, and hence
634 the value of this frame's PC (resume address). A typical
635 implementation is no more than:
636
637 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
638 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
639
640 Note: this method is very heavily dependent on a correct
641 register-unwind implementation, it pays to fix that
642 method first; this method is frame type agnostic, since
643 it only deals with register values, it works with any
644 frame. This is all in stark contrast to the old
645 FRAME_SAVED_PC which would try to directly handle all the
646 different ways that a PC could be unwound. */
647 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
648 }
649 else
650 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
651 this_frame->prev_pc.value = pc;
652 this_frame->prev_pc.p = 1;
653 if (frame_debug)
654 fprintf_unfiltered (gdb_stdlog,
655 "{ frame_unwind_caller_pc "
656 "(this_frame=%d) -> %s }\n",
657 this_frame->level,
658 hex_string (this_frame->prev_pc.value));
659 }
660 return this_frame->prev_pc.value;
661 }
662
663 CORE_ADDR
664 frame_unwind_caller_pc (struct frame_info *this_frame)
665 {
666 return frame_unwind_pc (skip_inlined_frames (this_frame));
667 }
668
669 CORE_ADDR
670 get_frame_func (struct frame_info *this_frame)
671 {
672 struct frame_info *next_frame = this_frame->next;
673
674 if (!next_frame->prev_func.p)
675 {
676 /* Make certain that this, and not the adjacent, function is
677 found. */
678 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
679 next_frame->prev_func.p = 1;
680 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
681 if (frame_debug)
682 fprintf_unfiltered (gdb_stdlog,
683 "{ get_frame_func (this_frame=%d) -> %s }\n",
684 this_frame->level,
685 hex_string (next_frame->prev_func.addr));
686 }
687 return next_frame->prev_func.addr;
688 }
689
690 static int
691 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
692 {
693 return frame_register_read (src, regnum, buf);
694 }
695
696 struct regcache *
697 frame_save_as_regcache (struct frame_info *this_frame)
698 {
699 struct address_space *aspace = get_frame_address_space (this_frame);
700 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
701 aspace);
702 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
703
704 regcache_save (regcache, do_frame_register_read, this_frame);
705 discard_cleanups (cleanups);
706 return regcache;
707 }
708
709 void
710 frame_pop (struct frame_info *this_frame)
711 {
712 struct frame_info *prev_frame;
713 struct regcache *scratch;
714 struct cleanup *cleanups;
715
716 if (get_frame_type (this_frame) == DUMMY_FRAME)
717 {
718 /* Popping a dummy frame involves restoring more than just registers.
719 dummy_frame_pop does all the work. */
720 dummy_frame_pop (get_frame_id (this_frame));
721 return;
722 }
723
724 /* Ensure that we have a frame to pop to. */
725 prev_frame = get_prev_frame_1 (this_frame);
726
727 if (!prev_frame)
728 error (_("Cannot pop the initial frame."));
729
730 /* Make a copy of all the register values unwound from this frame.
731 Save them in a scratch buffer so that there isn't a race between
732 trying to extract the old values from the current regcache while
733 at the same time writing new values into that same cache. */
734 scratch = frame_save_as_regcache (prev_frame);
735 cleanups = make_cleanup_regcache_xfree (scratch);
736
737 /* FIXME: cagney/2003-03-16: It should be possible to tell the
738 target's register cache that it is about to be hit with a burst
739 register transfer and that the sequence of register writes should
740 be batched. The pair target_prepare_to_store() and
741 target_store_registers() kind of suggest this functionality.
742 Unfortunately, they don't implement it. Their lack of a formal
743 definition can lead to targets writing back bogus values
744 (arguably a bug in the target code mind). */
745 /* Now copy those saved registers into the current regcache.
746 Here, regcache_cpy() calls regcache_restore(). */
747 regcache_cpy (get_current_regcache (), scratch);
748 do_cleanups (cleanups);
749
750 /* We've made right mess of GDB's local state, just discard
751 everything. */
752 reinit_frame_cache ();
753 }
754
755 void
756 frame_register_unwind (struct frame_info *frame, int regnum,
757 int *optimizedp, enum lval_type *lvalp,
758 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
759 {
760 struct value *value;
761
762 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
763 that the value proper does not need to be fetched. */
764 gdb_assert (optimizedp != NULL);
765 gdb_assert (lvalp != NULL);
766 gdb_assert (addrp != NULL);
767 gdb_assert (realnump != NULL);
768 /* gdb_assert (bufferp != NULL); */
769
770 value = frame_unwind_register_value (frame, regnum);
771
772 gdb_assert (value != NULL);
773
774 *optimizedp = value_optimized_out (value);
775 *lvalp = VALUE_LVAL (value);
776 *addrp = value_address (value);
777 *realnump = VALUE_REGNUM (value);
778
779 if (bufferp && !*optimizedp)
780 memcpy (bufferp, value_contents_all (value),
781 TYPE_LENGTH (value_type (value)));
782
783 /* Dispose of the new value. This prevents watchpoints from
784 trying to watch the saved frame pointer. */
785 release_value (value);
786 value_free (value);
787 }
788
789 void
790 frame_register (struct frame_info *frame, int regnum,
791 int *optimizedp, enum lval_type *lvalp,
792 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
793 {
794 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
795 that the value proper does not need to be fetched. */
796 gdb_assert (optimizedp != NULL);
797 gdb_assert (lvalp != NULL);
798 gdb_assert (addrp != NULL);
799 gdb_assert (realnump != NULL);
800 /* gdb_assert (bufferp != NULL); */
801
802 /* Obtain the register value by unwinding the register from the next
803 (more inner frame). */
804 gdb_assert (frame != NULL && frame->next != NULL);
805 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
806 realnump, bufferp);
807 }
808
809 void
810 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
811 {
812 int optimized;
813 CORE_ADDR addr;
814 int realnum;
815 enum lval_type lval;
816
817 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
818 &realnum, buf);
819 }
820
821 void
822 get_frame_register (struct frame_info *frame,
823 int regnum, gdb_byte *buf)
824 {
825 frame_unwind_register (frame->next, regnum, buf);
826 }
827
828 struct value *
829 frame_unwind_register_value (struct frame_info *frame, int regnum)
830 {
831 struct gdbarch *gdbarch;
832 struct value *value;
833
834 gdb_assert (frame != NULL);
835 gdbarch = frame_unwind_arch (frame);
836
837 if (frame_debug)
838 {
839 fprintf_unfiltered (gdb_stdlog,
840 "{ frame_unwind_register_value "
841 "(frame=%d,regnum=%d(%s),...) ",
842 frame->level, regnum,
843 user_reg_map_regnum_to_name (gdbarch, regnum));
844 }
845
846 /* Find the unwinder. */
847 if (frame->unwind == NULL)
848 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
849
850 /* Ask this frame to unwind its register. */
851 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
852
853 if (frame_debug)
854 {
855 fprintf_unfiltered (gdb_stdlog, "->");
856 if (value_optimized_out (value))
857 fprintf_unfiltered (gdb_stdlog, " optimized out");
858 else
859 {
860 if (VALUE_LVAL (value) == lval_register)
861 fprintf_unfiltered (gdb_stdlog, " register=%d",
862 VALUE_REGNUM (value));
863 else if (VALUE_LVAL (value) == lval_memory)
864 fprintf_unfiltered (gdb_stdlog, " address=%s",
865 paddress (gdbarch,
866 value_address (value)));
867 else
868 fprintf_unfiltered (gdb_stdlog, " computed");
869
870 if (value_lazy (value))
871 fprintf_unfiltered (gdb_stdlog, " lazy");
872 else
873 {
874 int i;
875 const gdb_byte *buf = value_contents (value);
876
877 fprintf_unfiltered (gdb_stdlog, " bytes=");
878 fprintf_unfiltered (gdb_stdlog, "[");
879 for (i = 0; i < register_size (gdbarch, regnum); i++)
880 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
881 fprintf_unfiltered (gdb_stdlog, "]");
882 }
883 }
884
885 fprintf_unfiltered (gdb_stdlog, " }\n");
886 }
887
888 return value;
889 }
890
891 struct value *
892 get_frame_register_value (struct frame_info *frame, int regnum)
893 {
894 return frame_unwind_register_value (frame->next, regnum);
895 }
896
897 LONGEST
898 frame_unwind_register_signed (struct frame_info *frame, int regnum)
899 {
900 struct gdbarch *gdbarch = frame_unwind_arch (frame);
901 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
902 int size = register_size (gdbarch, regnum);
903 gdb_byte buf[MAX_REGISTER_SIZE];
904
905 frame_unwind_register (frame, regnum, buf);
906 return extract_signed_integer (buf, size, byte_order);
907 }
908
909 LONGEST
910 get_frame_register_signed (struct frame_info *frame, int regnum)
911 {
912 return frame_unwind_register_signed (frame->next, regnum);
913 }
914
915 ULONGEST
916 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
917 {
918 struct gdbarch *gdbarch = frame_unwind_arch (frame);
919 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
920 int size = register_size (gdbarch, regnum);
921 gdb_byte buf[MAX_REGISTER_SIZE];
922
923 frame_unwind_register (frame, regnum, buf);
924 return extract_unsigned_integer (buf, size, byte_order);
925 }
926
927 ULONGEST
928 get_frame_register_unsigned (struct frame_info *frame, int regnum)
929 {
930 return frame_unwind_register_unsigned (frame->next, regnum);
931 }
932
933 void
934 put_frame_register (struct frame_info *frame, int regnum,
935 const gdb_byte *buf)
936 {
937 struct gdbarch *gdbarch = get_frame_arch (frame);
938 int realnum;
939 int optim;
940 enum lval_type lval;
941 CORE_ADDR addr;
942
943 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
944 if (optim)
945 error (_("Attempt to assign to a value that was optimized out."));
946 switch (lval)
947 {
948 case lval_memory:
949 {
950 /* FIXME: write_memory doesn't yet take constant buffers.
951 Arrrg! */
952 gdb_byte tmp[MAX_REGISTER_SIZE];
953
954 memcpy (tmp, buf, register_size (gdbarch, regnum));
955 write_memory (addr, tmp, register_size (gdbarch, regnum));
956 break;
957 }
958 case lval_register:
959 regcache_cooked_write (get_current_regcache (), realnum, buf);
960 break;
961 default:
962 error (_("Attempt to assign to an unmodifiable value."));
963 }
964 }
965
966 /* frame_register_read ()
967
968 Find and return the value of REGNUM for the specified stack frame.
969 The number of bytes copied is REGISTER_SIZE (REGNUM).
970
971 Returns 0 if the register value could not be found. */
972
973 int
974 frame_register_read (struct frame_info *frame, int regnum,
975 gdb_byte *myaddr)
976 {
977 int optimized;
978 enum lval_type lval;
979 CORE_ADDR addr;
980 int realnum;
981
982 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
983
984 return !optimized;
985 }
986
987 int
988 get_frame_register_bytes (struct frame_info *frame, int regnum,
989 CORE_ADDR offset, int len, gdb_byte *myaddr)
990 {
991 struct gdbarch *gdbarch = get_frame_arch (frame);
992 int i;
993 int maxsize;
994 int numregs;
995
996 /* Skip registers wholly inside of OFFSET. */
997 while (offset >= register_size (gdbarch, regnum))
998 {
999 offset -= register_size (gdbarch, regnum);
1000 regnum++;
1001 }
1002
1003 /* Ensure that we will not read beyond the end of the register file.
1004 This can only ever happen if the debug information is bad. */
1005 maxsize = -offset;
1006 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1007 for (i = regnum; i < numregs; i++)
1008 {
1009 int thissize = register_size (gdbarch, i);
1010
1011 if (thissize == 0)
1012 break; /* This register is not available on this architecture. */
1013 maxsize += thissize;
1014 }
1015 if (len > maxsize)
1016 {
1017 warning (_("Bad debug information detected: "
1018 "Attempt to read %d bytes from registers."), len);
1019 return 0;
1020 }
1021
1022 /* Copy the data. */
1023 while (len > 0)
1024 {
1025 int curr_len = register_size (gdbarch, regnum) - offset;
1026
1027 if (curr_len > len)
1028 curr_len = len;
1029
1030 if (curr_len == register_size (gdbarch, regnum))
1031 {
1032 if (!frame_register_read (frame, regnum, myaddr))
1033 return 0;
1034 }
1035 else
1036 {
1037 gdb_byte buf[MAX_REGISTER_SIZE];
1038
1039 if (!frame_register_read (frame, regnum, buf))
1040 return 0;
1041 memcpy (myaddr, buf + offset, curr_len);
1042 }
1043
1044 myaddr += curr_len;
1045 len -= curr_len;
1046 offset = 0;
1047 regnum++;
1048 }
1049
1050 return 1;
1051 }
1052
1053 void
1054 put_frame_register_bytes (struct frame_info *frame, int regnum,
1055 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1056 {
1057 struct gdbarch *gdbarch = get_frame_arch (frame);
1058
1059 /* Skip registers wholly inside of OFFSET. */
1060 while (offset >= register_size (gdbarch, regnum))
1061 {
1062 offset -= register_size (gdbarch, regnum);
1063 regnum++;
1064 }
1065
1066 /* Copy the data. */
1067 while (len > 0)
1068 {
1069 int curr_len = register_size (gdbarch, regnum) - offset;
1070
1071 if (curr_len > len)
1072 curr_len = len;
1073
1074 if (curr_len == register_size (gdbarch, regnum))
1075 {
1076 put_frame_register (frame, regnum, myaddr);
1077 }
1078 else
1079 {
1080 gdb_byte buf[MAX_REGISTER_SIZE];
1081
1082 frame_register_read (frame, regnum, buf);
1083 memcpy (buf + offset, myaddr, curr_len);
1084 put_frame_register (frame, regnum, buf);
1085 }
1086
1087 myaddr += curr_len;
1088 len -= curr_len;
1089 offset = 0;
1090 regnum++;
1091 }
1092 }
1093
1094 /* Create a sentinel frame. */
1095
1096 static struct frame_info *
1097 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1098 {
1099 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1100
1101 frame->level = -1;
1102 frame->pspace = pspace;
1103 frame->aspace = get_regcache_aspace (regcache);
1104 /* Explicitly initialize the sentinel frame's cache. Provide it
1105 with the underlying regcache. In the future additional
1106 information, such as the frame's thread will be added. */
1107 frame->prologue_cache = sentinel_frame_cache (regcache);
1108 /* For the moment there is only one sentinel frame implementation. */
1109 frame->unwind = &sentinel_frame_unwind;
1110 /* Link this frame back to itself. The frame is self referential
1111 (the unwound PC is the same as the pc), so make it so. */
1112 frame->next = frame;
1113 /* Make the sentinel frame's ID valid, but invalid. That way all
1114 comparisons with it should fail. */
1115 frame->this_id.p = 1;
1116 frame->this_id.value = null_frame_id;
1117 if (frame_debug)
1118 {
1119 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1120 fprint_frame (gdb_stdlog, frame);
1121 fprintf_unfiltered (gdb_stdlog, " }\n");
1122 }
1123 return frame;
1124 }
1125
1126 /* Info about the innermost stack frame (contents of FP register). */
1127
1128 static struct frame_info *current_frame;
1129
1130 /* Cache for frame addresses already read by gdb. Valid only while
1131 inferior is stopped. Control variables for the frame cache should
1132 be local to this module. */
1133
1134 static struct obstack frame_cache_obstack;
1135
1136 void *
1137 frame_obstack_zalloc (unsigned long size)
1138 {
1139 void *data = obstack_alloc (&frame_cache_obstack, size);
1140
1141 memset (data, 0, size);
1142 return data;
1143 }
1144
1145 /* Return the innermost (currently executing) stack frame. This is
1146 split into two functions. The function unwind_to_current_frame()
1147 is wrapped in catch exceptions so that, even when the unwind of the
1148 sentinel frame fails, the function still returns a stack frame. */
1149
1150 static int
1151 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1152 {
1153 struct frame_info *frame = get_prev_frame (args);
1154
1155 /* A sentinel frame can fail to unwind, e.g., because its PC value
1156 lands in somewhere like start. */
1157 if (frame == NULL)
1158 return 1;
1159 current_frame = frame;
1160 return 0;
1161 }
1162
1163 struct frame_info *
1164 get_current_frame (void)
1165 {
1166 /* First check, and report, the lack of registers. Having GDB
1167 report "No stack!" or "No memory" when the target doesn't even
1168 have registers is very confusing. Besides, "printcmd.exp"
1169 explicitly checks that ``print $pc'' with no registers prints "No
1170 registers". */
1171 if (!target_has_registers)
1172 error (_("No registers."));
1173 if (!target_has_stack)
1174 error (_("No stack."));
1175 if (!target_has_memory)
1176 error (_("No memory."));
1177 /* Traceframes are effectively a substitute for the live inferior. */
1178 if (get_traceframe_number () < 0)
1179 {
1180 if (ptid_equal (inferior_ptid, null_ptid))
1181 error (_("No selected thread."));
1182 if (is_exited (inferior_ptid))
1183 error (_("Invalid selected thread."));
1184 if (is_executing (inferior_ptid))
1185 error (_("Target is executing."));
1186 }
1187
1188 if (current_frame == NULL)
1189 {
1190 struct frame_info *sentinel_frame =
1191 create_sentinel_frame (current_program_space, get_current_regcache ());
1192 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1193 RETURN_MASK_ERROR) != 0)
1194 {
1195 /* Oops! Fake a current frame? Is this useful? It has a PC
1196 of zero, for instance. */
1197 current_frame = sentinel_frame;
1198 }
1199 }
1200 return current_frame;
1201 }
1202
1203 /* The "selected" stack frame is used by default for local and arg
1204 access. May be zero, for no selected frame. */
1205
1206 static struct frame_info *selected_frame;
1207
1208 int
1209 has_stack_frames (void)
1210 {
1211 if (!target_has_registers || !target_has_stack || !target_has_memory)
1212 return 0;
1213
1214 /* No current inferior, no frame. */
1215 if (ptid_equal (inferior_ptid, null_ptid))
1216 return 0;
1217
1218 /* Don't try to read from a dead thread. */
1219 if (is_exited (inferior_ptid))
1220 return 0;
1221
1222 /* ... or from a spinning thread. */
1223 if (is_executing (inferior_ptid))
1224 return 0;
1225
1226 return 1;
1227 }
1228
1229 /* Return the selected frame. Always non-NULL (unless there isn't an
1230 inferior sufficient for creating a frame) in which case an error is
1231 thrown. */
1232
1233 struct frame_info *
1234 get_selected_frame (const char *message)
1235 {
1236 if (selected_frame == NULL)
1237 {
1238 if (message != NULL && !has_stack_frames ())
1239 error (("%s"), message);
1240 /* Hey! Don't trust this. It should really be re-finding the
1241 last selected frame of the currently selected thread. This,
1242 though, is better than nothing. */
1243 select_frame (get_current_frame ());
1244 }
1245 /* There is always a frame. */
1246 gdb_assert (selected_frame != NULL);
1247 return selected_frame;
1248 }
1249
1250 /* If there is a selected frame, return it. Otherwise, return NULL. */
1251
1252 struct frame_info *
1253 get_selected_frame_if_set (void)
1254 {
1255 return selected_frame;
1256 }
1257
1258 /* This is a variant of get_selected_frame() which can be called when
1259 the inferior does not have a frame; in that case it will return
1260 NULL instead of calling error(). */
1261
1262 struct frame_info *
1263 deprecated_safe_get_selected_frame (void)
1264 {
1265 if (!has_stack_frames ())
1266 return NULL;
1267 return get_selected_frame (NULL);
1268 }
1269
1270 /* Select frame FI (or NULL - to invalidate the current frame). */
1271
1272 void
1273 select_frame (struct frame_info *fi)
1274 {
1275 struct symtab *s;
1276
1277 selected_frame = fi;
1278 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1279 frame is being invalidated. */
1280 if (deprecated_selected_frame_level_changed_hook)
1281 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1282
1283 /* FIXME: kseitz/2002-08-28: It would be nice to call
1284 selected_frame_level_changed_event() right here, but due to limitations
1285 in the current interfaces, we would end up flooding UIs with events
1286 because select_frame() is used extensively internally.
1287
1288 Once we have frame-parameterized frame (and frame-related) commands,
1289 the event notification can be moved here, since this function will only
1290 be called when the user's selected frame is being changed. */
1291
1292 /* Ensure that symbols for this frame are read in. Also, determine the
1293 source language of this frame, and switch to it if desired. */
1294 if (fi)
1295 {
1296 /* We retrieve the frame's symtab by using the frame PC. However
1297 we cannot use the frame PC as-is, because it usually points to
1298 the instruction following the "call", which is sometimes the
1299 first instruction of another function. So we rely on
1300 get_frame_address_in_block() which provides us with a PC which
1301 is guaranteed to be inside the frame's code block. */
1302 s = find_pc_symtab (get_frame_address_in_block (fi));
1303 if (s
1304 && s->language != current_language->la_language
1305 && s->language != language_unknown
1306 && language_mode == language_mode_auto)
1307 {
1308 set_language (s->language);
1309 }
1310 }
1311 }
1312
1313 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1314 Always returns a non-NULL value. */
1315
1316 struct frame_info *
1317 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1318 {
1319 struct frame_info *fi;
1320
1321 if (frame_debug)
1322 {
1323 fprintf_unfiltered (gdb_stdlog,
1324 "{ create_new_frame (addr=%s, pc=%s) ",
1325 hex_string (addr), hex_string (pc));
1326 }
1327
1328 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1329
1330 fi->next = create_sentinel_frame (current_program_space,
1331 get_current_regcache ());
1332
1333 /* Set/update this frame's cached PC value, found in the next frame.
1334 Do this before looking for this frame's unwinder. A sniffer is
1335 very likely to read this, and the corresponding unwinder is
1336 entitled to rely that the PC doesn't magically change. */
1337 fi->next->prev_pc.value = pc;
1338 fi->next->prev_pc.p = 1;
1339
1340 /* We currently assume that frame chain's can't cross spaces. */
1341 fi->pspace = fi->next->pspace;
1342 fi->aspace = fi->next->aspace;
1343
1344 /* Select/initialize both the unwind function and the frame's type
1345 based on the PC. */
1346 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1347
1348 fi->this_id.p = 1;
1349 fi->this_id.value = frame_id_build (addr, pc);
1350
1351 if (frame_debug)
1352 {
1353 fprintf_unfiltered (gdb_stdlog, "-> ");
1354 fprint_frame (gdb_stdlog, fi);
1355 fprintf_unfiltered (gdb_stdlog, " }\n");
1356 }
1357
1358 return fi;
1359 }
1360
1361 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1362 innermost frame). Be careful to not fall off the bottom of the
1363 frame chain and onto the sentinel frame. */
1364
1365 struct frame_info *
1366 get_next_frame (struct frame_info *this_frame)
1367 {
1368 if (this_frame->level > 0)
1369 return this_frame->next;
1370 else
1371 return NULL;
1372 }
1373
1374 /* Observer for the target_changed event. */
1375
1376 static void
1377 frame_observer_target_changed (struct target_ops *target)
1378 {
1379 reinit_frame_cache ();
1380 }
1381
1382 /* Flush the entire frame cache. */
1383
1384 void
1385 reinit_frame_cache (void)
1386 {
1387 struct frame_info *fi;
1388
1389 /* Tear down all frame caches. */
1390 for (fi = current_frame; fi != NULL; fi = fi->prev)
1391 {
1392 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1393 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1394 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1395 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1396 }
1397
1398 /* Since we can't really be sure what the first object allocated was. */
1399 obstack_free (&frame_cache_obstack, 0);
1400 obstack_init (&frame_cache_obstack);
1401
1402 if (current_frame != NULL)
1403 annotate_frames_invalid ();
1404
1405 current_frame = NULL; /* Invalidate cache */
1406 select_frame (NULL);
1407 frame_stash_invalidate ();
1408 if (frame_debug)
1409 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1410 }
1411
1412 /* Find where a register is saved (in memory or another register).
1413 The result of frame_register_unwind is just where it is saved
1414 relative to this particular frame. */
1415
1416 static void
1417 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1418 int *optimizedp, enum lval_type *lvalp,
1419 CORE_ADDR *addrp, int *realnump)
1420 {
1421 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1422
1423 while (this_frame != NULL)
1424 {
1425 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1426 addrp, realnump, NULL);
1427
1428 if (*optimizedp)
1429 break;
1430
1431 if (*lvalp != lval_register)
1432 break;
1433
1434 regnum = *realnump;
1435 this_frame = get_next_frame (this_frame);
1436 }
1437 }
1438
1439 /* Return a "struct frame_info" corresponding to the frame that called
1440 THIS_FRAME. Returns NULL if there is no such frame.
1441
1442 Unlike get_prev_frame, this function always tries to unwind the
1443 frame. */
1444
1445 static struct frame_info *
1446 get_prev_frame_1 (struct frame_info *this_frame)
1447 {
1448 struct frame_id this_id;
1449 struct gdbarch *gdbarch;
1450
1451 gdb_assert (this_frame != NULL);
1452 gdbarch = get_frame_arch (this_frame);
1453
1454 if (frame_debug)
1455 {
1456 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1457 if (this_frame != NULL)
1458 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1459 else
1460 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1461 fprintf_unfiltered (gdb_stdlog, ") ");
1462 }
1463
1464 /* Only try to do the unwind once. */
1465 if (this_frame->prev_p)
1466 {
1467 if (frame_debug)
1468 {
1469 fprintf_unfiltered (gdb_stdlog, "-> ");
1470 fprint_frame (gdb_stdlog, this_frame->prev);
1471 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1472 }
1473 return this_frame->prev;
1474 }
1475
1476 /* If the frame unwinder hasn't been selected yet, we must do so
1477 before setting prev_p; otherwise the check for misbehaved
1478 sniffers will think that this frame's sniffer tried to unwind
1479 further (see frame_cleanup_after_sniffer). */
1480 if (this_frame->unwind == NULL)
1481 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1482
1483 this_frame->prev_p = 1;
1484 this_frame->stop_reason = UNWIND_NO_REASON;
1485
1486 /* If we are unwinding from an inline frame, all of the below tests
1487 were already performed when we unwound from the next non-inline
1488 frame. We must skip them, since we can not get THIS_FRAME's ID
1489 until we have unwound all the way down to the previous non-inline
1490 frame. */
1491 if (get_frame_type (this_frame) == INLINE_FRAME)
1492 return get_prev_frame_raw (this_frame);
1493
1494 /* Check that this frame's ID was valid. If it wasn't, don't try to
1495 unwind to the prev frame. Be careful to not apply this test to
1496 the sentinel frame. */
1497 this_id = get_frame_id (this_frame);
1498 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1499 {
1500 if (frame_debug)
1501 {
1502 fprintf_unfiltered (gdb_stdlog, "-> ");
1503 fprint_frame (gdb_stdlog, NULL);
1504 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1505 }
1506 this_frame->stop_reason = UNWIND_NULL_ID;
1507 return NULL;
1508 }
1509
1510 /* Check that this frame's ID isn't inner to (younger, below, next)
1511 the next frame. This happens when a frame unwind goes backwards.
1512 This check is valid only if this frame and the next frame are NORMAL.
1513 See the comment at frame_id_inner for details. */
1514 if (get_frame_type (this_frame) == NORMAL_FRAME
1515 && this_frame->next->unwind->type == NORMAL_FRAME
1516 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1517 get_frame_id (this_frame->next)))
1518 {
1519 CORE_ADDR this_pc_in_block;
1520 struct minimal_symbol *morestack_msym;
1521 const char *morestack_name = NULL;
1522
1523 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1524 this_pc_in_block = get_frame_address_in_block (this_frame);
1525 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block);
1526 if (morestack_msym)
1527 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1528 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1529 {
1530 if (frame_debug)
1531 {
1532 fprintf_unfiltered (gdb_stdlog, "-> ");
1533 fprint_frame (gdb_stdlog, NULL);
1534 fprintf_unfiltered (gdb_stdlog,
1535 " // this frame ID is inner }\n");
1536 }
1537 this_frame->stop_reason = UNWIND_INNER_ID;
1538 return NULL;
1539 }
1540 }
1541
1542 /* Check that this and the next frame are not identical. If they
1543 are, there is most likely a stack cycle. As with the inner-than
1544 test above, avoid comparing the inner-most and sentinel frames. */
1545 if (this_frame->level > 0
1546 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1547 {
1548 if (frame_debug)
1549 {
1550 fprintf_unfiltered (gdb_stdlog, "-> ");
1551 fprint_frame (gdb_stdlog, NULL);
1552 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1553 }
1554 this_frame->stop_reason = UNWIND_SAME_ID;
1555 return NULL;
1556 }
1557
1558 /* Check that this and the next frame do not unwind the PC register
1559 to the same memory location. If they do, then even though they
1560 have different frame IDs, the new frame will be bogus; two
1561 functions can't share a register save slot for the PC. This can
1562 happen when the prologue analyzer finds a stack adjustment, but
1563 no PC save.
1564
1565 This check does assume that the "PC register" is roughly a
1566 traditional PC, even if the gdbarch_unwind_pc method adjusts
1567 it (we do not rely on the value, only on the unwound PC being
1568 dependent on this value). A potential improvement would be
1569 to have the frame prev_pc method and the gdbarch unwind_pc
1570 method set the same lval and location information as
1571 frame_register_unwind. */
1572 if (this_frame->level > 0
1573 && gdbarch_pc_regnum (gdbarch) >= 0
1574 && get_frame_type (this_frame) == NORMAL_FRAME
1575 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1576 || get_frame_type (this_frame->next) == INLINE_FRAME))
1577 {
1578 int optimized, realnum, nrealnum;
1579 enum lval_type lval, nlval;
1580 CORE_ADDR addr, naddr;
1581
1582 frame_register_unwind_location (this_frame,
1583 gdbarch_pc_regnum (gdbarch),
1584 &optimized, &lval, &addr, &realnum);
1585 frame_register_unwind_location (get_next_frame (this_frame),
1586 gdbarch_pc_regnum (gdbarch),
1587 &optimized, &nlval, &naddr, &nrealnum);
1588
1589 if ((lval == lval_memory && lval == nlval && addr == naddr)
1590 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1591 {
1592 if (frame_debug)
1593 {
1594 fprintf_unfiltered (gdb_stdlog, "-> ");
1595 fprint_frame (gdb_stdlog, NULL);
1596 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1597 }
1598
1599 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1600 this_frame->prev = NULL;
1601 return NULL;
1602 }
1603 }
1604
1605 return get_prev_frame_raw (this_frame);
1606 }
1607
1608 /* Construct a new "struct frame_info" and link it previous to
1609 this_frame. */
1610
1611 static struct frame_info *
1612 get_prev_frame_raw (struct frame_info *this_frame)
1613 {
1614 struct frame_info *prev_frame;
1615
1616 /* Allocate the new frame but do not wire it in to the frame chain.
1617 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1618 frame->next to pull some fancy tricks (of course such code is, by
1619 definition, recursive). Try to prevent it.
1620
1621 There is no reason to worry about memory leaks, should the
1622 remainder of the function fail. The allocated memory will be
1623 quickly reclaimed when the frame cache is flushed, and the `we've
1624 been here before' check above will stop repeated memory
1625 allocation calls. */
1626 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1627 prev_frame->level = this_frame->level + 1;
1628
1629 /* For now, assume we don't have frame chains crossing address
1630 spaces. */
1631 prev_frame->pspace = this_frame->pspace;
1632 prev_frame->aspace = this_frame->aspace;
1633
1634 /* Don't yet compute ->unwind (and hence ->type). It is computed
1635 on-demand in get_frame_type, frame_register_unwind, and
1636 get_frame_id. */
1637
1638 /* Don't yet compute the frame's ID. It is computed on-demand by
1639 get_frame_id(). */
1640
1641 /* The unwound frame ID is validate at the start of this function,
1642 as part of the logic to decide if that frame should be further
1643 unwound, and not here while the prev frame is being created.
1644 Doing this makes it possible for the user to examine a frame that
1645 has an invalid frame ID.
1646
1647 Some very old VAX code noted: [...] For the sake of argument,
1648 suppose that the stack is somewhat trashed (which is one reason
1649 that "info frame" exists). So, return 0 (indicating we don't
1650 know the address of the arglist) if we don't know what frame this
1651 frame calls. */
1652
1653 /* Link it in. */
1654 this_frame->prev = prev_frame;
1655 prev_frame->next = this_frame;
1656
1657 if (frame_debug)
1658 {
1659 fprintf_unfiltered (gdb_stdlog, "-> ");
1660 fprint_frame (gdb_stdlog, prev_frame);
1661 fprintf_unfiltered (gdb_stdlog, " }\n");
1662 }
1663
1664 return prev_frame;
1665 }
1666
1667 /* Debug routine to print a NULL frame being returned. */
1668
1669 static void
1670 frame_debug_got_null_frame (struct frame_info *this_frame,
1671 const char *reason)
1672 {
1673 if (frame_debug)
1674 {
1675 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1676 if (this_frame != NULL)
1677 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1678 else
1679 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1680 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1681 }
1682 }
1683
1684 /* Is this (non-sentinel) frame in the "main"() function? */
1685
1686 static int
1687 inside_main_func (struct frame_info *this_frame)
1688 {
1689 struct minimal_symbol *msymbol;
1690 CORE_ADDR maddr;
1691
1692 if (symfile_objfile == 0)
1693 return 0;
1694 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1695 if (msymbol == NULL)
1696 return 0;
1697 /* Make certain that the code, and not descriptor, address is
1698 returned. */
1699 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1700 SYMBOL_VALUE_ADDRESS (msymbol),
1701 &current_target);
1702 return maddr == get_frame_func (this_frame);
1703 }
1704
1705 /* Test whether THIS_FRAME is inside the process entry point function. */
1706
1707 static int
1708 inside_entry_func (struct frame_info *this_frame)
1709 {
1710 CORE_ADDR entry_point;
1711
1712 if (!entry_point_address_query (&entry_point))
1713 return 0;
1714
1715 return get_frame_func (this_frame) == entry_point;
1716 }
1717
1718 /* Return a structure containing various interesting information about
1719 the frame that called THIS_FRAME. Returns NULL if there is entier
1720 no such frame or the frame fails any of a set of target-independent
1721 condition that should terminate the frame chain (e.g., as unwinding
1722 past main()).
1723
1724 This function should not contain target-dependent tests, such as
1725 checking whether the program-counter is zero. */
1726
1727 struct frame_info *
1728 get_prev_frame (struct frame_info *this_frame)
1729 {
1730 /* There is always a frame. If this assertion fails, suspect that
1731 something should be calling get_selected_frame() or
1732 get_current_frame(). */
1733 gdb_assert (this_frame != NULL);
1734
1735 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1736 sense to stop unwinding at a dummy frame. One place where a dummy
1737 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1738 pcsqh register (space register for the instruction at the head of the
1739 instruction queue) cannot be written directly; the only way to set it
1740 is to branch to code that is in the target space. In order to implement
1741 frame dummies on HPUX, the called function is made to jump back to where
1742 the inferior was when the user function was called. If gdb was inside
1743 the main function when we created the dummy frame, the dummy frame will
1744 point inside the main function. */
1745 if (this_frame->level >= 0
1746 && get_frame_type (this_frame) == NORMAL_FRAME
1747 && !backtrace_past_main
1748 && inside_main_func (this_frame))
1749 /* Don't unwind past main(). Note, this is done _before_ the
1750 frame has been marked as previously unwound. That way if the
1751 user later decides to enable unwinds past main(), that will
1752 automatically happen. */
1753 {
1754 frame_debug_got_null_frame (this_frame, "inside main func");
1755 return NULL;
1756 }
1757
1758 /* If the user's backtrace limit has been exceeded, stop. We must
1759 add two to the current level; one of those accounts for backtrace_limit
1760 being 1-based and the level being 0-based, and the other accounts for
1761 the level of the new frame instead of the level of the current
1762 frame. */
1763 if (this_frame->level + 2 > backtrace_limit)
1764 {
1765 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1766 return NULL;
1767 }
1768
1769 /* If we're already inside the entry function for the main objfile,
1770 then it isn't valid. Don't apply this test to a dummy frame -
1771 dummy frame PCs typically land in the entry func. Don't apply
1772 this test to the sentinel frame. Sentinel frames should always
1773 be allowed to unwind. */
1774 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1775 wasn't checking for "main" in the minimal symbols. With that
1776 fixed asm-source tests now stop in "main" instead of halting the
1777 backtrace in weird and wonderful ways somewhere inside the entry
1778 file. Suspect that tests for inside the entry file/func were
1779 added to work around that (now fixed) case. */
1780 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1781 suggested having the inside_entry_func test use the
1782 inside_main_func() msymbol trick (along with entry_point_address()
1783 I guess) to determine the address range of the start function.
1784 That should provide a far better stopper than the current
1785 heuristics. */
1786 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1787 applied tail-call optimizations to main so that a function called
1788 from main returns directly to the caller of main. Since we don't
1789 stop at main, we should at least stop at the entry point of the
1790 application. */
1791 if (this_frame->level >= 0
1792 && get_frame_type (this_frame) == NORMAL_FRAME
1793 && !backtrace_past_entry
1794 && inside_entry_func (this_frame))
1795 {
1796 frame_debug_got_null_frame (this_frame, "inside entry func");
1797 return NULL;
1798 }
1799
1800 /* Assume that the only way to get a zero PC is through something
1801 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1802 will never unwind a zero PC. */
1803 if (this_frame->level > 0
1804 && (get_frame_type (this_frame) == NORMAL_FRAME
1805 || get_frame_type (this_frame) == INLINE_FRAME)
1806 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1807 && get_frame_pc (this_frame) == 0)
1808 {
1809 frame_debug_got_null_frame (this_frame, "zero PC");
1810 return NULL;
1811 }
1812
1813 return get_prev_frame_1 (this_frame);
1814 }
1815
1816 CORE_ADDR
1817 get_frame_pc (struct frame_info *frame)
1818 {
1819 gdb_assert (frame->next != NULL);
1820 return frame_unwind_pc (frame->next);
1821 }
1822
1823 /* Return an address that falls within THIS_FRAME's code block. */
1824
1825 CORE_ADDR
1826 get_frame_address_in_block (struct frame_info *this_frame)
1827 {
1828 /* A draft address. */
1829 CORE_ADDR pc = get_frame_pc (this_frame);
1830
1831 struct frame_info *next_frame = this_frame->next;
1832
1833 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1834 Normally the resume address is inside the body of the function
1835 associated with THIS_FRAME, but there is a special case: when
1836 calling a function which the compiler knows will never return
1837 (for instance abort), the call may be the very last instruction
1838 in the calling function. The resume address will point after the
1839 call and may be at the beginning of a different function
1840 entirely.
1841
1842 If THIS_FRAME is a signal frame or dummy frame, then we should
1843 not adjust the unwound PC. For a dummy frame, GDB pushed the
1844 resume address manually onto the stack. For a signal frame, the
1845 OS may have pushed the resume address manually and invoked the
1846 handler (e.g. GNU/Linux), or invoked the trampoline which called
1847 the signal handler - but in either case the signal handler is
1848 expected to return to the trampoline. So in both of these
1849 cases we know that the resume address is executable and
1850 related. So we only need to adjust the PC if THIS_FRAME
1851 is a normal function.
1852
1853 If the program has been interrupted while THIS_FRAME is current,
1854 then clearly the resume address is inside the associated
1855 function. There are three kinds of interruption: debugger stop
1856 (next frame will be SENTINEL_FRAME), operating system
1857 signal or exception (next frame will be SIGTRAMP_FRAME),
1858 or debugger-induced function call (next frame will be
1859 DUMMY_FRAME). So we only need to adjust the PC if
1860 NEXT_FRAME is a normal function.
1861
1862 We check the type of NEXT_FRAME first, since it is already
1863 known; frame type is determined by the unwinder, and since
1864 we have THIS_FRAME we've already selected an unwinder for
1865 NEXT_FRAME.
1866
1867 If the next frame is inlined, we need to keep going until we find
1868 the real function - for instance, if a signal handler is invoked
1869 while in an inlined function, then the code address of the
1870 "calling" normal function should not be adjusted either. */
1871
1872 while (get_frame_type (next_frame) == INLINE_FRAME)
1873 next_frame = next_frame->next;
1874
1875 if (get_frame_type (next_frame) == NORMAL_FRAME
1876 && (get_frame_type (this_frame) == NORMAL_FRAME
1877 || get_frame_type (this_frame) == INLINE_FRAME))
1878 return pc - 1;
1879
1880 return pc;
1881 }
1882
1883 void
1884 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1885 {
1886 struct frame_info *next_frame;
1887 int notcurrent;
1888
1889 /* If the next frame represents an inlined function call, this frame's
1890 sal is the "call site" of that inlined function, which can not
1891 be inferred from get_frame_pc. */
1892 next_frame = get_next_frame (frame);
1893 if (frame_inlined_callees (frame) > 0)
1894 {
1895 struct symbol *sym;
1896
1897 if (next_frame)
1898 sym = get_frame_function (next_frame);
1899 else
1900 sym = inline_skipped_symbol (inferior_ptid);
1901
1902 init_sal (sal);
1903 if (SYMBOL_LINE (sym) != 0)
1904 {
1905 sal->symtab = SYMBOL_SYMTAB (sym);
1906 sal->line = SYMBOL_LINE (sym);
1907 }
1908 else
1909 /* If the symbol does not have a location, we don't know where
1910 the call site is. Do not pretend to. This is jarring, but
1911 we can't do much better. */
1912 sal->pc = get_frame_pc (frame);
1913
1914 return;
1915 }
1916
1917 /* If FRAME is not the innermost frame, that normally means that
1918 FRAME->pc points at the return instruction (which is *after* the
1919 call instruction), and we want to get the line containing the
1920 call (because the call is where the user thinks the program is).
1921 However, if the next frame is either a SIGTRAMP_FRAME or a
1922 DUMMY_FRAME, then the next frame will contain a saved interrupt
1923 PC and such a PC indicates the current (rather than next)
1924 instruction/line, consequently, for such cases, want to get the
1925 line containing fi->pc. */
1926 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1927 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1928 }
1929
1930 /* Per "frame.h", return the ``address'' of the frame. Code should
1931 really be using get_frame_id(). */
1932 CORE_ADDR
1933 get_frame_base (struct frame_info *fi)
1934 {
1935 return get_frame_id (fi).stack_addr;
1936 }
1937
1938 /* High-level offsets into the frame. Used by the debug info. */
1939
1940 CORE_ADDR
1941 get_frame_base_address (struct frame_info *fi)
1942 {
1943 if (get_frame_type (fi) != NORMAL_FRAME)
1944 return 0;
1945 if (fi->base == NULL)
1946 fi->base = frame_base_find_by_frame (fi);
1947 /* Sneaky: If the low-level unwind and high-level base code share a
1948 common unwinder, let them share the prologue cache. */
1949 if (fi->base->unwind == fi->unwind)
1950 return fi->base->this_base (fi, &fi->prologue_cache);
1951 return fi->base->this_base (fi, &fi->base_cache);
1952 }
1953
1954 CORE_ADDR
1955 get_frame_locals_address (struct frame_info *fi)
1956 {
1957 if (get_frame_type (fi) != NORMAL_FRAME)
1958 return 0;
1959 /* If there isn't a frame address method, find it. */
1960 if (fi->base == NULL)
1961 fi->base = frame_base_find_by_frame (fi);
1962 /* Sneaky: If the low-level unwind and high-level base code share a
1963 common unwinder, let them share the prologue cache. */
1964 if (fi->base->unwind == fi->unwind)
1965 return fi->base->this_locals (fi, &fi->prologue_cache);
1966 return fi->base->this_locals (fi, &fi->base_cache);
1967 }
1968
1969 CORE_ADDR
1970 get_frame_args_address (struct frame_info *fi)
1971 {
1972 if (get_frame_type (fi) != NORMAL_FRAME)
1973 return 0;
1974 /* If there isn't a frame address method, find it. */
1975 if (fi->base == NULL)
1976 fi->base = frame_base_find_by_frame (fi);
1977 /* Sneaky: If the low-level unwind and high-level base code share a
1978 common unwinder, let them share the prologue cache. */
1979 if (fi->base->unwind == fi->unwind)
1980 return fi->base->this_args (fi, &fi->prologue_cache);
1981 return fi->base->this_args (fi, &fi->base_cache);
1982 }
1983
1984 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1985 otherwise. */
1986
1987 int
1988 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1989 {
1990 if (fi->unwind == NULL)
1991 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1992 return fi->unwind == unwinder;
1993 }
1994
1995 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1996 or -1 for a NULL frame. */
1997
1998 int
1999 frame_relative_level (struct frame_info *fi)
2000 {
2001 if (fi == NULL)
2002 return -1;
2003 else
2004 return fi->level;
2005 }
2006
2007 enum frame_type
2008 get_frame_type (struct frame_info *frame)
2009 {
2010 if (frame->unwind == NULL)
2011 /* Initialize the frame's unwinder because that's what
2012 provides the frame's type. */
2013 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2014 return frame->unwind->type;
2015 }
2016
2017 struct program_space *
2018 get_frame_program_space (struct frame_info *frame)
2019 {
2020 return frame->pspace;
2021 }
2022
2023 struct program_space *
2024 frame_unwind_program_space (struct frame_info *this_frame)
2025 {
2026 gdb_assert (this_frame);
2027
2028 /* This is really a placeholder to keep the API consistent --- we
2029 assume for now that we don't have frame chains crossing
2030 spaces. */
2031 return this_frame->pspace;
2032 }
2033
2034 struct address_space *
2035 get_frame_address_space (struct frame_info *frame)
2036 {
2037 return frame->aspace;
2038 }
2039
2040 /* Memory access methods. */
2041
2042 void
2043 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2044 gdb_byte *buf, int len)
2045 {
2046 read_memory (addr, buf, len);
2047 }
2048
2049 LONGEST
2050 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2051 int len)
2052 {
2053 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2054 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2055
2056 return read_memory_integer (addr, len, byte_order);
2057 }
2058
2059 ULONGEST
2060 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2061 int len)
2062 {
2063 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2064 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2065
2066 return read_memory_unsigned_integer (addr, len, byte_order);
2067 }
2068
2069 int
2070 safe_frame_unwind_memory (struct frame_info *this_frame,
2071 CORE_ADDR addr, gdb_byte *buf, int len)
2072 {
2073 /* NOTE: target_read_memory returns zero on success! */
2074 return !target_read_memory (addr, buf, len);
2075 }
2076
2077 /* Architecture methods. */
2078
2079 struct gdbarch *
2080 get_frame_arch (struct frame_info *this_frame)
2081 {
2082 return frame_unwind_arch (this_frame->next);
2083 }
2084
2085 struct gdbarch *
2086 frame_unwind_arch (struct frame_info *next_frame)
2087 {
2088 if (!next_frame->prev_arch.p)
2089 {
2090 struct gdbarch *arch;
2091
2092 if (next_frame->unwind == NULL)
2093 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2094
2095 if (next_frame->unwind->prev_arch != NULL)
2096 arch = next_frame->unwind->prev_arch (next_frame,
2097 &next_frame->prologue_cache);
2098 else
2099 arch = get_frame_arch (next_frame);
2100
2101 next_frame->prev_arch.arch = arch;
2102 next_frame->prev_arch.p = 1;
2103 if (frame_debug)
2104 fprintf_unfiltered (gdb_stdlog,
2105 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2106 next_frame->level,
2107 gdbarch_bfd_arch_info (arch)->printable_name);
2108 }
2109
2110 return next_frame->prev_arch.arch;
2111 }
2112
2113 struct gdbarch *
2114 frame_unwind_caller_arch (struct frame_info *next_frame)
2115 {
2116 return frame_unwind_arch (skip_inlined_frames (next_frame));
2117 }
2118
2119 /* Stack pointer methods. */
2120
2121 CORE_ADDR
2122 get_frame_sp (struct frame_info *this_frame)
2123 {
2124 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2125
2126 /* Normality - an architecture that provides a way of obtaining any
2127 frame inner-most address. */
2128 if (gdbarch_unwind_sp_p (gdbarch))
2129 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2130 operate on THIS_FRAME now. */
2131 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2132 /* Now things are really are grim. Hope that the value returned by
2133 the gdbarch_sp_regnum register is meaningful. */
2134 if (gdbarch_sp_regnum (gdbarch) >= 0)
2135 return get_frame_register_unsigned (this_frame,
2136 gdbarch_sp_regnum (gdbarch));
2137 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2138 }
2139
2140 /* Return the reason why we can't unwind past FRAME. */
2141
2142 enum unwind_stop_reason
2143 get_frame_unwind_stop_reason (struct frame_info *frame)
2144 {
2145 /* If we haven't tried to unwind past this point yet, then assume
2146 that unwinding would succeed. */
2147 if (frame->prev_p == 0)
2148 return UNWIND_NO_REASON;
2149
2150 /* Otherwise, we set a reason when we succeeded (or failed) to
2151 unwind. */
2152 return frame->stop_reason;
2153 }
2154
2155 /* Return a string explaining REASON. */
2156
2157 const char *
2158 frame_stop_reason_string (enum unwind_stop_reason reason)
2159 {
2160 switch (reason)
2161 {
2162 case UNWIND_NULL_ID:
2163 return _("unwinder did not report frame ID");
2164
2165 case UNWIND_INNER_ID:
2166 return _("previous frame inner to this frame (corrupt stack?)");
2167
2168 case UNWIND_SAME_ID:
2169 return _("previous frame identical to this frame (corrupt stack?)");
2170
2171 case UNWIND_NO_SAVED_PC:
2172 return _("frame did not save the PC");
2173
2174 case UNWIND_NO_REASON:
2175 case UNWIND_FIRST_ERROR:
2176 default:
2177 internal_error (__FILE__, __LINE__,
2178 "Invalid frame stop reason");
2179 }
2180 }
2181
2182 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2183 FRAME. */
2184
2185 static void
2186 frame_cleanup_after_sniffer (void *arg)
2187 {
2188 struct frame_info *frame = arg;
2189
2190 /* The sniffer should not allocate a prologue cache if it did not
2191 match this frame. */
2192 gdb_assert (frame->prologue_cache == NULL);
2193
2194 /* No sniffer should extend the frame chain; sniff based on what is
2195 already certain. */
2196 gdb_assert (!frame->prev_p);
2197
2198 /* The sniffer should not check the frame's ID; that's circular. */
2199 gdb_assert (!frame->this_id.p);
2200
2201 /* Clear cached fields dependent on the unwinder.
2202
2203 The previous PC is independent of the unwinder, but the previous
2204 function is not (see get_frame_address_in_block). */
2205 frame->prev_func.p = 0;
2206 frame->prev_func.addr = 0;
2207
2208 /* Discard the unwinder last, so that we can easily find it if an assertion
2209 in this function triggers. */
2210 frame->unwind = NULL;
2211 }
2212
2213 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2214 Return a cleanup which should be called if unwinding fails, and
2215 discarded if it succeeds. */
2216
2217 struct cleanup *
2218 frame_prepare_for_sniffer (struct frame_info *frame,
2219 const struct frame_unwind *unwind)
2220 {
2221 gdb_assert (frame->unwind == NULL);
2222 frame->unwind = unwind;
2223 return make_cleanup (frame_cleanup_after_sniffer, frame);
2224 }
2225
2226 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2227
2228 static struct cmd_list_element *set_backtrace_cmdlist;
2229 static struct cmd_list_element *show_backtrace_cmdlist;
2230
2231 static void
2232 set_backtrace_cmd (char *args, int from_tty)
2233 {
2234 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2235 }
2236
2237 static void
2238 show_backtrace_cmd (char *args, int from_tty)
2239 {
2240 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2241 }
2242
2243 void
2244 _initialize_frame (void)
2245 {
2246 obstack_init (&frame_cache_obstack);
2247
2248 observer_attach_target_changed (frame_observer_target_changed);
2249
2250 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2251 Set backtrace specific variables.\n\
2252 Configure backtrace variables such as the backtrace limit"),
2253 &set_backtrace_cmdlist, "set backtrace ",
2254 0/*allow-unknown*/, &setlist);
2255 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2256 Show backtrace specific variables\n\
2257 Show backtrace variables such as the backtrace limit"),
2258 &show_backtrace_cmdlist, "show backtrace ",
2259 0/*allow-unknown*/, &showlist);
2260
2261 add_setshow_boolean_cmd ("past-main", class_obscure,
2262 &backtrace_past_main, _("\
2263 Set whether backtraces should continue past \"main\"."), _("\
2264 Show whether backtraces should continue past \"main\"."), _("\
2265 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2266 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2267 of the stack trace."),
2268 NULL,
2269 show_backtrace_past_main,
2270 &set_backtrace_cmdlist,
2271 &show_backtrace_cmdlist);
2272
2273 add_setshow_boolean_cmd ("past-entry", class_obscure,
2274 &backtrace_past_entry, _("\
2275 Set whether backtraces should continue past the entry point of a program."),
2276 _("\
2277 Show whether backtraces should continue past the entry point of a program."),
2278 _("\
2279 Normally there are no callers beyond the entry point of a program, so GDB\n\
2280 will terminate the backtrace there. Set this variable if you need to see\n\
2281 the rest of the stack trace."),
2282 NULL,
2283 show_backtrace_past_entry,
2284 &set_backtrace_cmdlist,
2285 &show_backtrace_cmdlist);
2286
2287 add_setshow_integer_cmd ("limit", class_obscure,
2288 &backtrace_limit, _("\
2289 Set an upper bound on the number of backtrace levels."), _("\
2290 Show the upper bound on the number of backtrace levels."), _("\
2291 No more than the specified number of frames can be displayed or examined.\n\
2292 Zero is unlimited."),
2293 NULL,
2294 show_backtrace_limit,
2295 &set_backtrace_cmdlist,
2296 &show_backtrace_cmdlist);
2297
2298 /* Debug this files internals. */
2299 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2300 Set frame debugging."), _("\
2301 Show frame debugging."), _("\
2302 When non-zero, frame specific internal debugging is enabled."),
2303 NULL,
2304 show_frame_debug,
2305 &setdebuglist, &showdebuglist);
2306 }
This page took 0.080065 seconds and 4 git commands to generate.